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Abstract. The aim of this paper is to prove the existence of minimizers for a variational
problem involving the minimization under volume constraint of the sum of the perimeter and
a non-local energy of Wasserstein type. This extends previous partial results to the full range
of parameters. We also show that in the regime where the perimeter is dominant, the energy is
uniquely minimized by balls.

1. Introduction

In this paper we consider a variational problem first proposed in [20] as a model describing
the formation of bi-layers cellular membranes. Our first main result is the proof of the existence
of minimizers in every space dimension and for every value of the parameters in the model.
This extends previous results obtained in [2, 24] to which we refer for further motivation of the
problem. Our second main result is a proof of the minimality of the ball in the regime where
the perimeter is dominant. To be more concrete, denoting by Wp the Wasserstein distance for

p ≥ 1 (see [23]) and identifying a set E ⊂ Rd with the restriction of the Lebesgue measure to E,
we introduce the non-local energy

(1.1) Wp(E) = inf
|F∩E|=0

Wp(E,F ).

As already noticed in [2], this may be viewed as a projection problem for the Wasserstein distance
(see [6]). We then consider for λ, α > 0 the variational problem

(1.2) inf
|E|=ωd

P (E) + λ
[
Wp
p (E)

]α
,

where ωd is the volume of the unit ball and P (E) denotes the perimeter of E, see [15]. Let us
point out that probably the two most interesting cases are α = 1 and α = 1

p . Our first main

result is the following:

Theorem 1.1. For every d ≥ 2, p ≥ 1, α > 0 and λ > 0, problem (1.2) has minimizers.
Moreover, there exists C = C(d, p, α) > 0 such that if E = ∪Ii=1E

i is such a minimizer with Ei

the connected components of E, then

I∑
i=1

diam(Ei) ≤ C(1 + λ)
(d−1)(1+p)

1+αp and inf
i

diam(Ei) ≥ C(1 + λ)
− 1+p

1+αp .

As a consequence I ≤ C(1 + λ)
d(1+p)
1+αp .

Notice that we can actually say much more about the regularity of the minimizers, see Remark
3.6. This result was first obtained in the case d = 2 in [2] and then extended to the case d ≥ 3
in [24] but under the assumption that λ is small together with some restrictions on α. The idea
of the proof, which is by now well-established in the context of geometrical variational problems
(see e.g. [11, 14, 8, 18]), is to follow a concentration-compactness type argument. We first show
that thanks to the isoperimetric inequality, lack of compactness for minimizing sequences can
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only come from splitting of the mass. This leads to the existence of so-called generalized mini-
mizers (see Proposition 3.1). Then, we show following [2], that these generalized minimizers are
actually Λ−minimizers of the perimeter (see [15]) and therefore have uniform density bounds.
As a direct consequence, we obtain that they are made of a finite number of uniformly bounded
connected components. At this point the proof of the existence is concluded as in [2] using the
fact that the non-local energy Wp

p is additive for sets which are sufficiently far apart.

Our second main result is that if λ is small enough then (1.2) is uniquely minimized by balls.

Theorem 1.2. For every d ≥ 2, p ≥ 1 and α > 0, there exists λ0 > 0 such that for every
λ ≤ λ0, balls are the only minimizers of (1.2).

Remark 1.3. Let us point out that if we considered the volume as the relevant parameter and
replaced (1.2) by

min
|E|=m

P (E) +
[
Wp
p (E)

]α
,

then by scaling (see [24]) we would obtain that balls are the unique minimizers for small m
if α

(
1 + p

d

)
+ 1

d > 1 (which is essentially the case for which [24] obtained the existence of

minimizers) while balls are the unique minimizers for large m if α
(
1 + p

d

)
+ 1

d < 1.

Again, this result is neither surprising by its statement nor by the strategy to prove it. Indeed,
following the pioneering work of Cicalese and Leonardi which gave in [5] an alternative proof
of the quantitative isoperimetric inequality, it has been understood that such stability results
may be obtained by combining the regularity theory for Λ−minimizers of the perimeter together
with a (usually delicate) Taylor expansion of the energy around the ball. This second part of the
proof is often referred to as a Fuglede type argument, see [10]. Let us cite [13, 1, 7, 3, 16] as a few
examples where this strategy has been carried out. The main difficulty here is that our non-local
energy depends in a very implicit way on the competitor. Moreover, as opposed to [1, 16, 12],
the underlying PDE is non-linear (namely the Monge-Ampère equation) making it very difficult
to use standard tools from shape optimization such as shape derivatives. This makes the exact
computation of the Taylor expansion of the energy challenging. We go around this difficulty by
plugging in the dual formulation of optimal transport the Kantorovich potentials corresponding
to the ball and show that this leads to a lower bound which is good enough for our purpose (see
Proposition 4.2).

Related results in the literature. In the footsteps of [13] there has been an intense research
activity around isoperimetric problems with non-local interactions. Probably the simplest and
most studied one is the Gamow liquid-drop model where the non-local part of the energy is
given by a Riesz type interaction energy. For this model, it has been shown that generalized
minimizers exist and are balls for small volume (see [13, 7, 3, 18] and the review paper [4]).
However, as opposed to our setting, it has been proven for the liquid-drop model that under
some restrictions on the parameters, classical minimizers do not exist for large volumes (see
[13, 9]). This is due to the long-range nature of the interactions induced by the Riesz kernel (in
comparison with Proposition 2.2). Indeed, for compactly supported kernels it is shown in [21]
that minimizers exist for all volumes (see also [19]).

Acknowledgements. This work was partially supported by the ANR project SHAPO.

Shortly before submitting this paper, Novack, Topaloglu and Venkatraman proved in [17]
(uploaded on the Arxiv the 10th of August 2021) essentially the same existence result as Theorem
1.1. While the basic ingredients of the proofs are similar (a combination of the isoperimetric
inequality to avoid the loss of mass for minimizing sequences together with a quasi-minimality
property in order to obtain density estimates), the implementation is quite different. Indeed, in
the present work we avoid the use of Almgren nucleation Lemma and rely simply on the relative
isoperimetric inequality. Moreover, we separate the compactness and the regularity issues with
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the use of generalized minimizers. As a result, we can directly rely on the well-established
regularity theory for Λ−minimizers of the perimeter. Finally, our result is more quantitative
thanks to a more explicit treatment of the volume constraint (see Proposition 3.3) and our
interpolation inequality (see Proposition 2.5).

2. The non-local energy

In this section we gather a few useful results about the energy Wp defined in (1.1). Most of
these results were obtained in the case of bounded sets in [2, 24] but often with quite different
proofs. We start with the well-posedness of (1.1).

Proposition 2.1. There exists C = C(d, p) > 0 such that for every set E ⊂ Rd,

(2.1) Wp(E) ≤ C|E|
1
p

+ 1
d .

Moreover, if |E| <∞, the minimization problem (1.1) is attained by a unique minimizer F and
if π is an optimal transport plan1for Wp(E,F ), we have the estimate

(2.2) |x− y| ≤ C|E|
1
d for π − a.e. (x, y).

Proof. We may assume without loss of generality that |E| < ∞ otherwise there is nothing to
prove. By scaling we can further assume that |E| = 1. In order to prove (2.1), we will construct
a partition (Ei)i≥1 of E such that each Ei can be transported with a well-controlled cost. To

this aim, consider a partition of Rd into cubes (Qi)i≥1 of sidelength ` = 21/d. Since |E| = 1, if
we define Ei = E ∩ Qi we have |Ei| ≤ |Qi|/2 for every i. Therefore we can find a set Fi ⊂ Qi
such that |E ∩Fi| = 0 and |Fi| = |Ei|. If Ti is the optimal transport map (in fact any transport
map would work) from Ei to Fi we have

sup
Ei

|Ti − x| ≤ C.

Finally, consider F = ∪iFi and T the map whose restriction to each Qi is Ti. The map T is a
transport map from E to F and

Wp(E) ≤Wp(E,F ) ≤
(∑
i≥1

∫
Ei

|Ti − x|p
) 1
p

≤ C.

This proves (2.1).

Existence and uniqueness of a minimizer F for (1.1) follows from [6, Proposition 5.2] (which
is stated for p = 2, but generalizes easily to any p ≥ 1) with f = χEc and Ω = Rd. Moreover, as
a consequence of [6, Proposition 5.2] we have

(2.3) W̃p(E) = inf
µ
{Wp(E,µ) : µ ≤ χEc} =Wp(E).

and χF is also the unique minimizer of W̃p(E). Let π be an optimal transport plan for Wp(E,F )
and let us show (2.2). For this we adapt the proof of [24, Lemma 4.3] to the case of plans instead
of maps. Letting

Γ = {(x, y) ∈ sptπ : |x− y| ≥ C}
let us show that for C large enough, π(Γ) = 0. Assume that it is not the case and let R be such
that |BR| = 3. Then, there exists x ∈ Rd such that m = π(Γ∩ (BR(x)×Rd)) > 0. Without loss
of generality we may assume that x = 0. Let πbad = χΓ∩(BR×Rd)π. Since |BR| − |E| − |F | ≥ 1 ≥
m > 0, there exists µ̃ ≤ χBR(1 − χE − χF ) with µ̃(Rd) = πbad(Rd × Rd). Finally let θ be the
first marginal of πbad and set

π̃ = π − πbad +
1

m
θ ⊗ µ̃.

1for p > 1 we know from [23, Theorem 2.44] that π is unique and is induced by a map but for p = 1, since we
do not assume finite moments for E it does not follow from [23, Theorem 2.50].
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It is readily checked that the first marginal of π̃ is χE and that its second marginal µ satisfies
µ ≤ χEc . We thus have on the one hand by definition of Γ

W p
p (E,F ) ≥

∫
(Γ∩(BR×Rd))c

|x− y|pdπ +mCp.

On the other hand, by minimality of F for W̃p(E),

W p
p (E,F ) ≤W p

p (E,µ) ≤
∫

(Γ∩(BR×Rd))c
|x− y|pdπ +m2pRp.

This implies C < 2R and concludes the proof that π(Γ) = 0 if C is large enough.
�

We now turn to the super-additivity and lower semi-continuity of Wp.

Proposition 2.2. We have:

(i) If E and E′ are disjoint sets then

(2.4) Wp
p (E ∪ E′) ≥ Wp

p (E) +Wp
p (E′).

As a consequence, if E ⊂ E′ then Wp(E) ≤ Wp(E
′);

(ii) There exists C > 0 such that if

d(E,E′) ≥ C max(|E|
1
d , |E′|

1
d ),

then
Wp
p (E ∪ E′) =Wp

p (E) +Wp
p (E′);

(iii) If En converges in L1
loc to E then

(2.5) Wp(E) ≤ lim inf
n
Wp(En).

Proof. To prove (i), let F be the Wp-minimizer for E ∪E′, and π be an optimal transport plan
from E ∪E′ to F . Let µE be the second marginal of χE×Rdπ and µE′ be the second marginal of

χE′×Rdπ. By definition µE is W̃p-admissible (recall (2.3)) for E. Moreover, χE×Rdπ is an optimal
transport plan between E and µE . The corresponding statement also holds for E′ instead of E.
Therefore, appealing once more to (2.3),

Wp
p (E) +Wp

p (E′) ≤W p
p (E,µE) +W p

p (E′, µE′) =

∫
(E∪E′)×Rd

|x− y|p dπ =Wp
p (E ∪ E′).

Property (ii) is a direct consequence of (2.2). Indeed, if F and F ′ are the Wp-minimizers
for E and E′, by (2.2), |F ∩ F ′| = 0 so that F ∪ F ′ is admissible for E ∪ E′ which gives
Wp(E ∪ E′) ≤ Wp(E) +Wp(E

′).

We finally prove (iii), and consider a sequence (En)n≥1 that is L1
loc converging to E. For every

R > 0 set ER,n = En ∩BR so that ER,n converges in L1 to ER = E ∩BR. Using the continuity
of Wp with respect to weak convergence, (2.2) and (2.3) it is not hard to check that Wp is lower
semi-continuous with respect to L1 convergence (in Lemma 2.4 below we will actually prove a
much stronger result). Since by (2.4), Wp(ER,n) ≤ Wp(En) we have

Wp(ER) ≤ lim inf
n→∞

Wp(ER,n) ≤ lim inf
n→∞

Wp(En).

Since ER converges in L1 to E as R→∞, using once more the lower semi-continuity of Wp for
this convergence we conclude the proof. �

Remark 2.3. Let us point out that for every set E with |E| < ∞, since E ∩ BR converges
in L1 to E as R → ∞, we have by lower semi-continuity and Wp(E ∩ BR) ≤ Wp(E) that
limR→∞Wp(E ∩BR) =Wp(E).

We then prove that Wp
p is Lipschitz continuous with respect to L1 convergence. This is a

crucial ingredient in order to obtain the Λ−minimality property of generalized minimizers.
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Lemma 2.4. There exists a constant C = C(d, p) > 0 such that for any Lebesgue sets E,E′

(2.6) |Wp
p (E)−Wp

p (E′)| ≤ C(|E|
p
d + |E′|

p
d )|E∆E′|.

Moreover, there exists C = C(d, p, α) > 0 such that for every family of sets (Ei)i≥1 and
((E′)i)i≥1,

(2.7)

∣∣∣∣∣
[∑

i

Wp
p (Ei)

]α
−

[∑
i

Wp
p ((E′)i)

]α∣∣∣∣∣
≤ C max

(∑
i

Wp
p (Ei)

)α−1

,

(∑
i

Wp
p ((E′)i)

)α−1
∣∣∣∣∣∑

i

Wp
p (Ei)−

∑
i

Wp
p ((E′)i)

∣∣∣∣∣ .
Proof. We start with the proof of (2.6). Thanks to Remark 2.3 we may assume that E and E′

are bounded sets. By symmetry of the roles of E and E′, it is sufficient to show that

(2.8) Wp
p (E′)−Wp

p (E) ≤ C|E′|
p
d |E′ \ E|.

By scaling we may assume that |E′| = 1. Let F with |E ∩ F | = 0 be such that Wp(E) =
W p
p (E,F ). Let TE be an optimal transport map from E to F (which exists by [23, Theorem

2.44 & Theorem 2.50] since E and F are bounded), and denote TF = T−1
E which is an optimal

transport map from F to E. We define F̃ = F \E′, set F− = TE(E′)∩ F̃ and decompose E′ as

E′ = (E′ ∩ TF (F̃ )) ∪ (E′ \ TF (F̃ ))

so that TE(E′ ∩ TF (F̃ )) = F−. Our goal is now to construct a set F+ ⊂ (E′ ∪ F−)c and a map

T+ from E′ \ TF (F̃ ) to F+ with controlled transport cost. We proceed as in the proof of (2.1)

and consider a partition of Rd into cubes (Qi)i≥1 of sidelength ` = 31/d. We thus have for every
i ≥ 1,

|Qi| − |E′ ∩Qi| − |F− ∩Qi| ≥ |E′ \ TF (F̃ )|.

Therefore, for any i ≥ 1, there exists Fi ⊂ Qi ∩ (E′ ∪ F−)c such that |Fi| = |(E′ \ TF (F̃ )) ∩Qi|
and an optimal transport map Ti from (E′ \ TF (F̃ ))∩Qi to Fi. We set F+ = ∪i≥1Fi and define

T+ from E′ \ TF (F̃ ) to F+ by setting its restriction on any Qi to be Ti. By construction,

sup
E′\TF (F̃ )

|T+ − x| ≤ C.

We can now set T = TE on E′ ∩ TF (F̃ ) and T = T+ on E′ \ TF (F̃ ) and obtain

Wp
p (E′)−Wp

p (E) ≤
∫
E′∩TF (F̃ )

|TE − x|p +

∫
E′\TF (F̃ )

|T+ − x|p −Wp
p (E)

≤
∫
E′\TF (F̃ )

|T+ − x|p

≤ C|E′ \ TF (F̃ )|.

We finally observe that

|E′ \ TF (F̃ )| ≤ |E′ \ E|+ |E\TF (F̃ )|
= |E′ \ E|+ |E| − |F\E′|
≤ |E′ \ E|+ |E′ ∩ F |
≤ 2|E′ \ E|.

This proves (2.8).
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We now turn to (2.7). For this we simply use the fact that there exists C = C(α) > 0 such
that for every a > 0 and b > 0

|aα − bα| ≤ C max(aα−1, bα−1)|a− b|.
�

From (2.7), we see that in order to obtain a good Lipschitz bound for E 7→ [Wp
p (E)]

α
when

α < 1 (recall that we are particularly interested in the case α = 1
p ≤ 1), we will need a control

from below on the transport term. This is obtained through the following interpolation result
between the perimeter and Wp.

Proposition 2.5. There exists a constant C = C(d) > 0 such that for every family of sets
(Ei)i≥1 we have

(2.9)

(∑
i

Wp
p (Ei)

) 1
p
(∑

i

P (Ei)

)
≥ C

(∑
i

|Ei|

)1+ 1
p

Proof. Since by Hölder inequality, W1(E) ≤ Wp(E)|E|1−
1
p , using Hölder inequality once more

for the sum we see that it is enough to prove (2.9) for p = 1. Let E be a set of finite perimeter
and volume. We will first show that there exists C = C(d) > 0 such that

(2.10) W1(E) ≥ Cr(|E| − CrP (E)).

Take η a standard mollifier, rescale it by setting ηr(x) = r−dη(x/r) and consider φr = ηr ∗ χE .
Using Young’s inequality, we have

|∇φr|∞ ≤ |χE |∞|∇ηr|1 ≤ Cr−1.

Therefore, by Kantorovich duality for W1, we obtain using F ⊂ Ec,

W1(E) = W1(E,F ) = sup
|∇ψ|≤1

∫
ψ(χE − χF ) ≥ C

∫
rφr(χE − χF ) ≥ Cr

∫
φr(χE − χEc).

Since
∫
φr = |E|, ∫

φrχE = |E| −
∫
φr(1− χE) = |E| −

∫
φrχEc ,

so that

W1(E) ≥ Cr
(
|E| − 2

∫
φrχEc

)
.

We now re-express the term
∫
φrχEc in order to bound it by the perimeter of E :∫

φrχEc =

∫∫
ηr(y − x)χE(x)χEc(y) dxdy

=
1

2

∫∫
ηr(x− y)|χE(x)− χE(y)|dxdy

=
1

2

∫∫
ηr(z)|χE(x)− χE(x+ z)|dxdz

≤ CP (E)

∫
|z|ηr(z) dz

≤ CrP (E).

This proves (2.10). Let now (Ei)i≥1 be a family of sets and let us show (2.9). We may assume
that

∑
i P (Ei) + |Ei| <∞ since otherwise there is nothing to prove. Summing (2.10) over i ≥ 1

yields ∑
i≥1

W1(Ei) ≥ Cr
(∑
i≥1

|Ei| − Cr
∑
i≥1

P (Ei)

)
.
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We conclude the proof by taking

r = ε

∑
i≥1 |Ei|∑
i≥1 P (Ei)

,

with ε chosen small enough so that εC ≤ 1/2. �

3. Existence of minimizers

In this section we prove Theorem 1.1. As already explained in the introduction, we will first
prove the existence of generalized minimizers and then prove that they are Λ−minimizers of the
perimeter to obtain a bound on their diameter which readily implies the existence of minimizers
in a classical sense.

3.1. Existence of generalized minimizers. We start with some notation. For a set E we
define the energy (we keep the dependence in p and α implicit)

Eλ(E) = P (E) + λ
[
Wp
p (E)

]α
.

We call a family Ẽ = (Ei)i≥1 a generalized set and define the generalized energy as

(3.1) Ẽλ(Ẽ) =
∑
i

P (Ei) + λ

[∑
i

Wp
p (Ei)

]α
.

We say that Ẽ is a generalized minimizer if
∑

i |Ei| = ωd and

Ẽλ(Ẽ) = inf

{
Ẽλ(Ẽ′) :

∑
i

|(E′)i| = ωd

}
.

Proposition 3.1. For every d ≥ 2, p ≥ 1, α > 0 and λ > 0, there exists generalized minimizers
and

(3.2) inf {Eλ(E) : |E| = ωd} = inf

{
Ẽλ(Ẽ) :

∑
i

|Ei| = ωd

}
.

Proof. We start by pointing out that using Proposition 2.2 and a simple rescaling argument (see
for instance [24]), it is not hard to modify a generalized minimizing sequence into a classical
minimizing sequence so that (3.2) holds.

By (3.2), in order to prove the existence of a generalized minimizer we can consider a classical
minimizing sequence (En)n≥1 such that

lim
n→∞

Eλ(En) = inf

{
Ẽλ(Ẽ) :

∑
i

|Ei| = ωd

}
.

We now follow relatively closely the proof of [11, Theorem 4.9]. We first notice that using the
unit ball B1 as competitor, we have limn→∞ Eλ(En) ≤ Eλ(B1) ≤ C(1 + λ). For every n ≥ 1, let
Qn,i be a partition of Rd into disjoint cubes of sidelength 2 and such that

mn,i = |En ∩Qn,i|
is a decreasing sequence. By the relative isoperimetric inequality we have∑

i

m
d−1
d

n,i ≤ C
∑
i

P (En, Qn,i) = CP (En) ≤ C(1 + λ).

Since
∑

imn,i = ωd, we have for every I ≥ 1, and every i ≥ I, mi ≤ mI ≤ ωd/I and thus∑
i≥I

mn,i =
∑
i≥I

m
d−1
d

n,i m
1
d
n,i ≤ CI

− 1
d

∑
i≥I

m
d−1
d

n,i ≤ C(1 + λ)I−
1
d .

This proves uniform tightness of mn,i and thus up to extraction we may assume that for every
i, mn,i → mi with

∑
imi = ωd. Let now zn,i ∈ Qn,i. Up to a further extraction we may assume
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that for every i, j, |zn,i− zn,j | → cij ∈ [0,∞] and En− zn,i → Ei in L1
loc(Rd). We now introduce

an equivalence class by saying that i ∼ j if cij <∞ and denote by [i] the equivalence class of i.
Notice that if i ∼ j, Ei and Ej coincide up to a translation. For every equivalence class [i] let
m[i] =

∑
j∈[i]mj so that ∑

[i]

m[i] =
∑
i

mi = ωd.

By the L1
loc convergence of En − zn,i to Ei and the definition of the equivalence relation, we

have for every j ∈ [i], |Ej | = m[i]. Up to a relabeling we may now assume that there is a unique

element Ei in each equivalence class. We have thus constructed a generalized set Ẽ = (Ei)i≥1

such that
∑

i |Ei| = ωd. We are left with the proof of

(3.3) Ẽλ(Ẽ) ≤ lim inf
n→∞

Eλ(En) = inf

{
Ẽλ(Ẽ) :

∑
i

|Ei| = ωd

}
.

To this aim let I ∈ N. And let zn,1, · · · , zn,I be as before such that En − zn,i to Ei and
|zn,i − zn,j | → ∞ if i 6= j. For every R > 0, if n is large enough, mini 6=j |zn,i − zn,j | ≥ 4R. By
the co-area formula, for every n there is Rn ∈ (R, 2R) such that

I∑
i=1

Hd−1(∂BRn(zn,i) ∩ En) ≤ C

R
.

We now define Ei,Rn = (BRn(zn,i) ∩ En)− zn,i so that on the one hand,

(3.4)
I∑
i=1

P (Ei,Rn) ≤ P (En) +
C

R

and on the other hand by (2.4),

I∑
i=1

Wp
p (Ei,Rn) ≤ Wp

p

(
∪Ii=1BRn(zn,i) ∩ En

)
≤ Wp

p (En).

From the bound (3.4), we conclude that up to extraction, Ei,Rn converges in L1 to a set Ei,R as
n → ∞. Moreover, from the L1

loc convergence of En − zn,i to Ei it is not hard to see that also

Ei,R converges to Ei in L1 as R → ∞. We thus conclude that by lower semi-continuity of the
perimeter and (2.5) that

I∑
i=1

P (Ei,R) + λ

(
I∑
i=1

Wp
p (Ei,R)

)α
≤ lim inf

n→∞

(
P (En) + λ

[
Wp
p (En)

]α)
+
C

R
.

Letting then R→∞ and finally I →∞ we conclude the proof of (3.3). �

Before proceeding further let us study the scaling of the energy.

Proposition 3.2. For every fixed d ≥ 2, p ≥ 1 and α > 0, there exists C = C(d, p, α) > 0 such
that for every λ > 0,

(3.5)
1

C
(1 + λ)

1
1+αp ≤ inf

|E|=ωd
Eλ(E) ≤ C (1 + λ)

1
1+αp .

Moreover, if Ẽ = (Ei)i≥1 is a generalized minimizer, then

(3.6)
1

C
(1 + λ)

1
1+αp ≤

∑
i

P (Ei) ≤ C (1 + λ)
1

1+αp

and

(3.7)
1

C
(1 + λ)

− p
1+αp ≤

∑
i

Wp
p (Ei) ≤ C (1 + λ)

− p
1+αp .
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Proof. Let us first consider the case λ ≤ 1. Using the ball B1 as competitor and the isoperimetric

inequality we have for every generalized minimizer Ẽ,

P (B1) + λ

[∑
i

Wp
p (Ei)

]α
≤
∑
i

P (Ei) + λ

[∑
i

Wp
p (Ei)

]α
≤ P (B1) + λ

[
Wp
p (B1)

]α
.

From this combined with the isoperimetric inequality we obtain (3.5) and (3.6) together with∑
iW

p
p (Ei) ≤ Wp(B1). To obtain the first inequality in (3.7) we combine (2.9) with

∑
i P (Ei) ≤

C.

Let now λ ≥ 1. We consider the competitor made of N balls Ei of radius r so that the
constraint

∑
i |Ei| = ωd translates into Nrd = 1. The energy of such a competitor is

Ẽλ(Ẽ) = C
(
r−1 + λrpα

)
.

Minimizing in r by choosing r = λ
− 1

1+αp (which is admissible since the corresponding N is large)
gives the upper bounds in (3.5), (3.6) and (3.7). Using (2.9) we see that the upper bound in
(3.6) gives the lower bound in (3.7) and vice-versa. These lower bounds then also imply the
lower bound in (3.5). �

3.2. Quasi-minimality properties of generalized minimizers. As in many similar varia-
tional problems, in order to prove a quasi-minimality property, it will be convenient to relax the

volume constraint. To this aim, for Λ > 0 and Ẽ a generalized set we introduce the penalized
energy

(3.8) Ẽλ,Λ(Ẽ) =
∑
i

P (Ei) + λ

[∑
i

Wp
p (Ei)

]α
+ Λ

∣∣∣∣∣∑
i

|Ei| − ωd

∣∣∣∣∣ .
We start by proving that if Λ is large enough, then every generalized minimizer is also an

unconstrained minimizer of Ẽλ,Λ.

Proposition 3.3. There exists C = C(d, p, α) > 0 such that for every λ > 0, if Λ ≥ C (1 + λ)
1

1+αp

then every generalized minimizer of (3.1) is also a minimizer of Ẽλ,Λ.

Proof. Let C0 to be fixed below and assume that Λ ≥ C0 (1 + λ)
1

1+αp . By (3.5), if there exists

Ẽ such that

Ẽλ,Λ(Ẽ) < inf

{
Ẽλ(Ẽ′) :

∑
i

|(E′)i| = ωd

}
we must have

(3.9) Λ

∣∣∣∣∣∑
i

|Ei| − ωd

∣∣∣∣∣ ≤ C (1 + λ)
1

1+αp .

and
∑

i |Ei| 6= ωd. Let

t = ω
1
d
d

(∑
i

|Ei|

)−d
so that tẼ = (tEi)i≥1 satisfies

∑
i |tEi| = ωd. From (3.9), we see that t = 1 + ε with |ε| ≤

CΛ−1 (1 + λ)
1

1+αp . By hypothesis we have

Ẽλ,Λ(Ẽ) < Ẽλ(tẼ) = (1 + ε)d−1
∑
i

P (Ei) + λ(1 + ε)(d+p)α

[∑
i

Wp
p (Ei)

]α
.
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By Taylor expansion we have for Λ ≥ C (1 + λ)
1

1+αp ,

Λε < Cε

(∑
i

P (Ei) +

[∑
i

Wp
p (Ei)

]α)
≤ Cε (1 + λ)

1
1+αp .

This gives the bound Λ ≤ C (1 + λ)
1

1+αp which yields the conclusion provided C0 > C. �

Combining Lemma 2.4 together with Proposition 3.3 we may now prove that generalized
minimizers are Λ−minimizers of the perimeter.

Proposition 3.4. There exists C = C(d, p, α) > 0 such that if Λ ≥ C (1 + λ)
1+p
1+αp , every

generalized minimizer Ẽ = (Ei)i≥1 of Ẽλ is a Λ−minimizer of the perimeter in the sense that
for every i ≥ 1 and every set E ⊂ Rd,
(3.10) P (Ei) ≤ P (E) + Λ|Ei∆E|.

Proof. Let Λ0 = C (1 + λ)
1

1+αp be such that Proposition 3.3 applies and let Ẽ = (Ei)i≥1 be a

generalized minimizer of Ẽλ. Without loss of generality, let us prove (3.10) for E1. Using as

competitor E × (Ei)i≥2 for Ẽλ,Λ0 we find after simplification that

(3.11) P (E1) ≤ P (E) + λ

Wp
p (E) +

∑
i≥2

Wp
p (Ei)

α − [∑
i

Wp
p (Ei)

]α+ Λ0|E1∆E|.

Notice that we can now assume that

(3.12) Wp
p (E) ≥ Wp

p (E1)

since otherwise we can already conclude that (3.10) holds. Moreover, (3.6) implies in particular

that P (E1) ≤ C(1 + λ)
1

1+αp so that we can assume that

|E1∆E| ≤ CΛ−1(1 + λ)
1

1+αp ≤ C(1 + λ)
− p

1+αp ,

which in particular yields |E1| ≤ C. From (2.6), this implies that we can work under the
assumption

(3.13) Wp
p (E) ≤ Wp

p (E1) + C(1 + λ)
− p

1+αp

(3.7)

≤ C(1 + λ)
− p

1+αp .

Combining (3.11), (2.7) and (2.6) we find

P (E1) ≤ P (E) + λmax

(∑
i

Wp
p (Ei)

)α−1

,

Wp
p (E) +

∑
i≥2

Wp
p (Ei)

α−1 |E1∆E|

+ Λ0|E1∆E|
(3.12)&(3.13)&(3.7)

≤ P (E) + C

(
λ(1 + λ)

− p(α−1)
1+αp + (1 + λ)

1
1+αp

)
|E1∆E|

≤ P (E) + C(1 + λ)
1+p
1+αp |E1∆E|.

This proves (3.10). �

As a direct corollary we obtain uniform density estimates for generalized minimizers (see [15,
Theorem 21.11]).

Proposition 3.5. There exists C = C(d, p, α) > 0 such that if r < C (1 + λ)
− 1+p

1+αp , every

generalized minimizer Ẽ = (Ei)i≥1 of Ẽλ satisfies for every i and every x ∈ Ei

(3.14) |Ei ∩B(x, r)| ≥ ωd
4d
rd.
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As a consequence, up to relabeling, we have Ẽ = (Ei)Ii=1 where for every i, Ei are compact
connected sets such that Hd−1(∂Ei) = P (Ei). Moreover, there is a constant C = C(d, p, α) > 0
such that

(3.15)
I∑
i=1

diam(Ei) ≤ C(1 + λ)
(d−1)(1+p)

1+αp and inf
i

diam(Ei) ≥ C(1 + λ)
− 1+p

1+αp .

As a consequence I ≤ C(1 + λ)
d(1+p)
1+αp .

Remark 3.6. Let us notice that the regularity theory for Λ−minimizers of the perimeter gives
us actually much more. Denote ∂∗E the reduced boundary of E (see [15]) and Σ(E) = ∂E\∂∗E.
Then if E is a Λ−minimizer of the perimeter, ∂∗E is C1,γ for every γ < 1/2 and Σ(E) is empty
if d ≤ 7, an at most finite union of points if d = 8 and satisfies Hs(Σ(E)) = 0 for every s > d−8
if d ≥ 9. For classical or generalized minimizers of our energy we expect higher regularity to
hold but this goes beyond the scope of this paper.

Proof of Proposition 3.5. By Proposition 3.4, there exists Λ = C (1 + λ)
1+p
1+αp such that every

generalized minimizer Ẽ = (Ei)i≥1 is a Λ−minimizer of the perimeter. By [15, Theorem 21.11],
(3.14) holds as long as Λr < 1. This proves the first part of the claim. We can further make the
identification

Ei = {x ∈ Rd : lim inf
r→0

|Ei ∩B(x, r)| > 0}

so that thanks to (3.14), Ei are closed sets with Hd−1(∂Ei) = P (Ei). By (2.4) we may further
assume that each Ei is connected. Fix now r such that Λr = 1/2. By Vitali’s covering Lemma,

for every i let x1, · · · , xNi ∈ Ei be such that Ei ⊂ ∪Nij=1B(xj , r) and B(xj , r/5) are pairwise

disjoint. Using (3.14) we have Ni ≤ Cr−d|Ei|. Since diam(Ei) ≤ CrNi we have∑
i

diam(Ei) ≤ Cr−(d−1) ≤ C(1 + λ)
(d−1)(1+p)

1+αp .

This proves the first part of (3.15). The second part follows from diam(Ei) ≥ C|Ei|1/d ≥ Cr
which is a direct consequence of (3.14). �

3.3. Proof of Theorem 1.1. We may now conclude the proof of Theorem 1.1 and show the
existence of (classical) minimizers for (1.2).

Proof of Theorem 1.1. For every fixed d ≥ 2, p ≥ 1, α > 0 and λ > 0, Proposition 3.1 gives the

existence of a generalized minimizer Ẽ = (Ei)i≥1. We thus have by (3.2),∑
i

P (Ei) + λ

[∑
i

Wp
p (Ei)

]α
= inf
|E|=ωd

Eλ(E).

Thanks to Proposition 3.5, if R = C(1 +λ)
(d−1)(1+p)

1+αp with C > 0 large enough, then Ẽ = (Ei)Ii=1

with I ≤ R
d
d−1 and for every i ≤ I, Ei is a connected compact set with

∑I
i=1 diam(Ei) ≤ CR.

Let (e1, · · · , ed) be the canonical basis of Rd and define the set

E = ∪Ii=1(Ei +Rie1).

By Proposition 2.2, if C is large enough, Wp
p (E) =

∑
iW

p
p (Ei). Since Ei are pairwise disjoint

we also have P (E) =
∑

i P (Ei) (and |E| =
∑

i |Ei| = ωd) so that

Eλ(E) =
∑
i

P (Ei) + λ

[∑
i

Wp
p (Ei)

]α
(3.2)
= inf
|E|=ωd

Eλ(E).

Therefore E is a minimizer of (1.2) and the proof is complete. �
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4. Minimality of the ball for small λ

We now turn to Theorem 1.2 and prove that for small λ the unique minimizers of (1.2) are
balls. We first show that for λ small enough, up to a translation, every minimizer of (1.2) is a
small C1,γ perturbation of the ball B1.

Proposition 4.1. For every d ≥ 2, p ≥ 1, α > 0, γ ∈ (0, 1/2) and ε > 0, there exists
λ0 = λ0(d, p, α, γ, ε) such that for every λ ≤ λ0, up to translation, every minimizer E of (1.2)
is nearly spherical in the sense that its barycenter is in 0 and there exists f : ∂B1 7→ R with
‖f‖C1,γ ≤ ε such that

∂E = {(1 + f(x))x : x ∈ ∂B1}.

Proof. The proof is quite classical and mostly rests on the (uniform in λ) Λ−minimizing property
of E. Let Eλ be a sequence of minimizers of (1.2). For fixed γ ∈ (0, 1/2) we aim at proving that
up to translation Eλ converges in C1,γ to B1. We start by noting that using B1 as a competitor
together with the quantitative isoperimetric inequality we have up to translation,

(4.1) |Eλ∆B1|2 ≤ C (P (E)− P (B1)) ≤ Cλ
([
Wp
p (B1)

]α − [Wp
p (Eλ)

]α) ≤ Cλ [Wp
p (B1)

]α
.

Therefore Eλ converges in L1 to B1. It is now a classical fact that if a sequence of Λ−minimizers
converges in L1 to a smooth set then the whole sequence is actually smooth (with the notation
of Remark 3.6, Σ(Eλ) = ∅) and the convergence holds in C1,γ (see e.g. [5, Lemma 3.6]). As a
consequence also the barycenter of Eλ converges to 0 and the proof is concluded. �

We now recall that for nearly spherical sets, it was shown in [10] that there exists C = C(d) > 0
such that

(4.2)

∫
∂B1

f2 ≤ C (P (E)− P (B1)) .

We postpone the proof of the following counterpart for Wp to the next section.

Proposition 4.2. There exists C = C(d, p, α) > 0 such that for every nearly spherical set E,

(4.3)
[
Wp
p (B1)

]α − [Wp
p (E)

]α ≤ C ∫
∂B1

f2.

Taking this estimate for granted we may easily conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. By Proposition 4.1, if λ is small enough then every minimizer E of (1.2)
is nearly spherical. Arguing as in (4.1) we have∫

∂B1

f2
(4.2)

≤ C (P (E)− P (B1)) ≤ Cλ
([
Wp
p (B1)

]α − [Wp
p (E)

]α) (4.3)

≤ Cλ

∫
∂B1

f2,

which implies that if λ is small enough, f = 0 and thus E = B1. �

4.1. Proof of Proposition 4.2. We start with a few simple facts about Wp(B1). We let
A = B21/d\B1 be the annulus of volume ωd around B1. With a slight abuse of notation, we will
write φ(x) = φ(|x|) if φ is a radial function.

Lemma 4.3. We have the following properties:

(i) A is the minimizer of (1.1) for B1, i.e. Wp(B1) = Wp(B1, A);
(ii) The map

(4.4) T (x) =
(

1 + |x|d
) 1
d x

|x|
is an optimal transport map (the unique one if p > 1) between B1 and A. Moreover,
the corresponding Kantorovich potentials (φ, ψ) are radially symmetric and r 7→ ψ(r) is
increasing. Finally, (φ, ψ) are locally Lipschitz continuous.
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Proof. We start with (i). By Proposition 2.1 let F be the unique minimizer of (1.1) for B1 so
that Wp(B1) = Wp(B1, F ). If R is any rotation of Rd, since Wp(R(B1), R(F )) = Wp(B1, F ), we
see that R(F ) is also a minimizer of (1.1) for B1. By uniqueness we have F = R(F ) and thus
F is radially symmetric. It is then immediate to check that among radially symmetric sets the
minimizer is indeed A.

We now turn to (ii). We start by noting that T defined in (4.4) is the unique radially
symmetric map (in the sense that T (x) = f(|x|) x

|x|) which solves det∇T = 1 and f(0) = 1. Let

us argue that T is c−cyclically monotone for the cost c(x, y) = |x − y|p and thus an optimal
transport map between any bounded radially symmetric set E and T (E) (see [23, Definition

2.33 & Remark 2.39]). This follows from the fact that f(r) = (1 + rd)1/d is monotone on R+

and thus also c−cyclically monotone on R+ (as these two notions coincide for convex costs in
dimension one) so that for every x1, · · · , xI , using the convention x0 = xI

I∑
i=1

|T (xi)− xi|p =
I∑
i=1

|f(|xi|)− |xi||p ≤
I∑
i=1

|f(|xi−1|)− |xi||p

≤
I∑
i=1

|f(|xi−1|)
xi−1

|xi−1|
− xi|p =

I∑
i=1

|T (xi−1)− xi|p.

Notice that the inverse map T−1 : Bc
1 7→ Rd is given by

T−1(y) =

(
|y|d − 1

) 1
d y

|y|
.

We now argue a bit differently for p > 1 and p = 1 regarding the Kantorovich potentials.
Let us start with the easier case p = 1. Denoting φ(x) = −|x| we have that φ is 1−Lipschitz,
radially symmetric and decreasing (and thus ψ = −φ is radially symmetric and increasing) and
satisfies for x ∈ Rd

(4.5) φ(x)− φ(T (x)) = |T (x)| − |x| = |T (x)− x|

so that (φ,−φ) is indeed a couple of Kantorovich potentials. As a side note, it is easily seen
from (4.5) that on the one hand, up to a constant φ is the unique Kantorovich potential and on
the other hand that every optimal transport map must be radially symmetric (there is however
no uniqueness of the optimal transport map). Note also that the validity of (4.5) gives an
alternative proof of the optimality of T when p = 1.
For p > 1, we first argue that φ is radially symmetric and decreasing. For this we use that by
[22, Theorem 1.17], if we let h(z) = |z|p, then the unique Kantorovich potential φ is given by

∇φ(x) = ∇h(x− T (x)) = −p
(

(1 + |x|d)
1
d − |x|

)p−1 x

|x|
= φ′(|x|) x

|x|

with φ′ ≤ 0. Now since φ and ψ are c−conjugate, we have

(4.6) ψ(y) = inf
x

[|x− y|p − φ(x)]

from which we deduce that also ψ is radially symmetric. Arguing exactly as for φ but with
T replaced by T−1 we see that ψ is increasing on Bc

1. In order to conclude that ψ is in fact
increasing on Rd we will prove that for y ∈ B1,

(4.7) ψ(y) = |y|p − φ(0)

or in other words that (4.6) is attained at x = 0. We first point out that (4.7) holds for |y| = 1
since T−1(y) = 0 and thus by definition of Kantorovich potentials

φ(0) + φ(y) = |y|p.
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We also observe that since φ is decreasing, for every y ∈ Rd the optimal x in (4.6) must satisfy
|x| ≤ |y| (and x = |x|y/|y|). Fix now y ∈ B1 and let x be such that

ψ(y) = |y − x|p − φ(x).

Let ȳ = y/|y| ∈ ∂B1. Using x as a competitor in (4.6) for ȳ we have

ψ(ȳ) = 1− φ(0) ≤ (1− |x|)p − φ(x).

Using now 0 as competitor in (4.6) for y we also have

(|y| − |x|)p − φ(x) ≤ |y|p − φ(0)

so that

1− (1− |x|)p ≤ φ(0)− φ(x) ≤ |y|p − (|y| − |x|)p.
However the function t→ tp− (t−|x|)p is increasing in [|x|,∞) so that we reach a contradiction
unless x = 0.
To conclude, the local Lipschitz continuity of (φ, ψ) is standard, see [23, Proposition 2.43]. �

In order to prove (4.3) we will need the following simple result.

Lemma 4.4. Let ψ be a radially symmetric and increasing function and let E ⊂ B21/d with
|E| = ωd. Then

(4.8) inf
F

{∫
F
ψ : |F ∩ E| = 0 and |F | = ωd

}
=

∫
B

21/d
\E
ψ.

Proof. We first show that for any r > 0,

(4.9) min
|E|=|Br|

∫
E
ψ =

∫
Br

ψ.

For E with |E| = |Br|, we write∫
E
ψ −

∫
Br

ψ =

∫
E\Br

ψ −
∫
Br\E

ψ.

Since ψ is radially increasing we have

inf
E\Br

ψ ≥ ψ(r) ≥ sup
Br\E

ψ.

Using |E\Br| = |Br\E|, we find ∫
E
ψ −

∫
Br

ψ ≥ 0

and thus (4.9) holds.
Now if E ⊂ B21/d with |E| = ωd, for every set F with |F ∩ E| = 0 and |F | = |E| = ωd, we have
|E ∪ F | = |B21/d | and thus∫

F
ψ =

∫
F∪E

ψ −
∫
E
ψ

(4.9)

≥
∫
B

21/d

ψ −
∫
E
ψ =

∫
B

21/d
\E
ψ,

which is the desired conclusion. �

We may now prove Proposition 4.2.

Proof of Proposition 4.2. We may assume that Wp(B1) ≥ Wp(E) since otherwise there is noth-
ing to prove. Using (2.7) we see that it is enough to prove the estimate for α = 1, that is

(4.10) Wp
p (B1)−Wp

p (E) ≤ C
∫
∂B1

f2.
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Let (φ, ψ) be the Kantorovich potentials associated with Wp(B1, A) and recall that by Lemma
4.3, ψ is radially symmetric and increasing. Since E is nearly spherical we have E ⊂ B21/d . For
every admissible competitor F for Wp(E) we have by duality

W p
p (E,F ) ≥

∫
E
φ+

∫
F
ψ.

Taking the infimum over F we get

Wp
p (E) ≥

∫
E
φ+ inf

F

{∫
F
ψ : |F ∩ E| = 0 and |F | = ωd

}
(4.8)

≥
∫
E
φ+

∫
B

21/d
\E
ψ.

Therefore,

Wp
p (B1)−Wp

p (E) ≤
∫
B1

φ+

∫
A
ψ −

∫
E
φ−

∫
B

21/d
\E
ψ

=

∫
B1

(φ− ψ)−
∫
E

(φ− ψ)

=

∫
B1\E

(φ− ψ)−
∫
E\B1

(φ− ψ).

We may now argue as in [13, Proposition 6.2]. We let c = φ(1)−ψ(1) and use that φ and ψ are
Lipschitz continuous in a neighborhood of ∂B1 to infer∫

B1\E
(φ− ψ)−

∫
E\B1

(φ− ψ) =

∫
B1\E

[(φ− ψ)− c]−
∫
E\B1

[(φ− ψ)− c]

≤ C
∫
B1∆E

|1− |x||

≤ C
∫
∂B1

∫ f(x)

0
tdtdHd−1(x)

≤ C
∫
∂B1

f2.

This concludes the proof of (4.10). �
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