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Abstract

This paper is concerned with second-order elliptic operators whose diffusion coeffi-
cients degenerate at the boundary in first order. In this borderline case, the behavior
strongly depends on the size and direction of the drift term. Mildly inward (or out-
ward) pointing and strongly outward pointing drift terms were studied before. Here
we treat the intermediate case equipped with Dirichlet boundary conditions, and show
generation of an analytic positive C0-semigroup. The main result is a precise descrip-
tion of the domain of the generator, which is more involved than in the other cases and
exhibits reduced regularity compared to them.

Mathematics subject classification (2000): 35J70, 35K65.

1 Introduction

In the present paper we investigate regularity and generation properties of second-order
elliptic operators in Lp whose diffusion coefficients degenerate in first order at the boundary.
This type of degeneration is a borderline case in the sense that the drift term in normal
direction is of the same ‘order’ as the diffusion part, roughly speaking. Accordingly, the
size and direction of the drift term in normal direction play a crucial role in our results and
proofs. In this sense, first-order degeneration is the most interesting situation in this context.
We treat the case where all diffusion coefficients behave as the distance to the boundary. In
[10] we had studied the case that this is only true for their tangential component. Here the
drift term is a small perturbation of the diffusion part, and thus the result in [10] does not
depend on size or the direction of the drift term.

Besides the intrinsic PDE motivation, degenerate operators of such type also occur, for
instance, in mathematical finance (Heston volatility model), population biology (generalized
Kimura diffusion), or in the treatment of nonlinear equations (e.g. porous medium). Also
motivated by such applications, they have been studied in (weighted) Sobolev or supnorm
spaces or in Hölder spaces for an adapted metric in e.g. [2], [3], [6], [7], [8], [14], [15], [16],
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[17]. These papers deal with different situations as our paper, however, where [17] is closest
to us. (See also [10] for references to earlier work.)

We explain the effects of the drift term in the present paper on the level of the model
operator

A = −y∆ + βDy + b · ∇x (1.1)

with constant drift coefficients b ∈ RN and β ∈ R acting on the strip S = {z = (x, y) ∈
RN+1 |x ∈ RN , 0 < y < 1}. Let p ∈ (1,∞). It follows from the paper [9] (co-authored by
three of the present authors) that the operator −A with the domain

D0
reg =

{
u ∈W 1,p

0 (S) ∩W 2,p
loc (S)

∣∣ y|D2u| ∈ Lp(S)
}

(1.2)

generates an analytic C0-semigroup of positive contractions on Lp(S) if β > −1/p. This
condition means that the drift points inward at the boundary or only mildly outward.
Correspondingly, one has to impose Dirichlet boundary conditions.

In the more recent contribution [23] the case of a strongly outward pointing drift with
β ≤ −1 was studied. Here one derives these generation properties for −A on the domain

Dreg =
{
u ∈W 1,p(S) ∩W 2,p

loc (S)
∣∣ y|D2u| ∈ Lp(S)

}
. (1.3)

In both cases one has the full regularity that one can expect reasonably. In the second one
there are no (apparent) boundary conditions. Moreover, a one-dimensional example in [9]
shows that −A with domain D0

reg is not a generator if β ≤ −1/p.
The present paper focuses on the intermediate case −1 < β ≤ −1/p. We equip −A with

Dirichlet boundary conditions and establish its sectoriality in Lp(S) on the domain

D0
par =

{
u ∈ Lp(S)

∣∣ y|D2
xu|, y|D2

xyu|, |∇xu|, Dyu− β+1
y u, yD2

yu− βDyu ∈ Lp(S)
}

(1.4)

exhibiting only partial regularity. The generated semigroup is again positive. Example 3.15
indicates that this domain is optimal. By the same approach we also reprove the above
mentioned results from [9] and [23] which were originally shown by quite different methods,
see Theorems 4.2, 6.3 and 6.4.

We construct the resolvent and the semigroup for the above operators by approximation.
To this aim, we consider A on the strip Sε = RN×(ε, 1) (where it is non-degenerate), equip it
with Dirichlet boundary conditions, and let ε→ 0+. In [11] we studied the one-dimensional
case in great detail. In particular, using the Neumann condition u′(ε) = 0 (instead of
u(ε) = 0) in the approximation we showed that also the operator (−A,Dreg) is sectorial if
β ∈ (−1,−1/p). The results of [11] heavily rely on explicit formulas for the solution of the
equation Au = f on (0, 1). Employing the Neumann approximation, we could establish the
sectoriality of (−A,Dreg) also in the multidimensional case if p = 2 in [12]. The methods
used there fail for p 6= 2. By completely different techniques involving singular integrals,
Theorem 4.6.5 of [17] shows maximal regularity for the parabolic problem in Lp under (a
variant of) Neumann boundary conditions and also obtaining full regularity as in Dreg.

Hence, our present setting in the intermediate range −1 < β ≤ −1/p and with Dirichlet
boundary conditions differs considerably from the previous results in so far that one has
only reduced regularity in D0

par which involves mixed conditions as yD2
yu− βDyu ∈ Lp(S)

exhibiting cancellations.

We describe our reasoning in more detail, again focusing on the model operator. The
Dirichlet condition on Sε yields ε-independent variational estimates for Aε = (A,W 2,p(Sε)∩
W 1,p

0 (Sε)). Combined with standard elliptic regularity, in the limit ε → 0 we obtain the
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resolvent of the generator −Ap of a positive contraction semigroup in Lp(S), where Ap is
the realization of the model operator A on a (yet unknown) domain Dp. Moreover, the
solutions uε of Aεuε = f tend to u = A−1

p f in W 2,p(Sδ) for each δ ∈ (0, 1).
To compute Dp, we first let b = 0 on (1.1). (The tangential drift b · ∇ is added later

using the Kalton–Weis theorem on operator sums from operator-valued harmonic analysis.)
The main observation is that the mapping u 7→ v := yu transforms Au into

Au = Av := −∆xv −D2
yv + (β + 2)

Dyv

y
− (β + 2)

v

y2
=: −∆xv + Lv,

thus decoupling the variables x and y. Since the inverse transformation is not uniformly
bounded on Lp(Sε), the operators A and A are not similar in a reasonable sense, but by
the above equation estimates on Av itself transfer to Au. Singular operators like L were
studied in detail in [19] and [21], and we employ kernel estimates established there. Since
∆x and L commute, we can then use the Kalton–Weis theorem to deduce ε-independent
apriori estimates for A.

Next, we isolate the derivatives in y and rewrite Aεuε = f on Sε as

−yD2
yuε + βDyuε = f + y∆xuε.

For fixed x ∈ RN we now apply formulas from the one-dimensional case shown in our
previous paper [11]. Combined with the apriori estimates mentioned above, by this approach
we reprove the domain characterizations in (1.2) and (1.3) for β > −1/p and β ≤ −1,
respectively. In the intermediate range −1 < β ≤ −1/p we obtain (1.4) except for the (a
bit unexpected) conditions |∇xu|, y|Dxyu| ∈ Lp(S). These can be deduced from very recent
results in [20] using again the transformation u 7→ v = yu.

The analyticity of the semigroup then follows from the corresponding result in [9] for
β > −1/p, Stein interpolation and duality. In a final step we use a localization procedure
to show corresponding generation theorems on a bounded smooth domain in RN+1. Here
we can use ideas from [9] and [10], for instance, but it requires some effort and care to deal
with the more complicated domain of the model operator.

The plan of the paper is the following. In Section 2 we give the construction of the
semigroup for the model operator. In Section 3 we investigate the domain of the generator
when b = 0, as indicated above. In Section 4 we use the domain description to deduce
analyticity of the semigroup for b = 0. The analyticity then allows us to add the drift
term b · ∇x to our prototype operator on the strip. In Section 5 we extend our results to
operators on S with variable coefficients. Finally, in the last section we prove the main result
in bounded smooth domains of RN+1. Here we also state the hypotheses for the coefficients
in this setting.

2 Construction of the semigroup

We investigate the operator A given by (1.1) on S = RN × (0, 1). For every ε ∈ (0, 1/2] and
p ∈ (1,∞), set Sε = RN × (ε, 1), Dp,ε = W 2,p(Sε) ∩W 1,p

0 (Sε), and S0 = S. We first prove
an accretivity inequality for Ap,ε = (A,Dp,ε) with constants independent of ε. This will
allow us to construct a generator Ap in the limit ε→ 0. We also show a related inequality
implying the positivity of the semigroup.

It is well known that the operator −Ap,ε generates an analytic C0-semigroup (Tp,ε(t))t≥0

on Lp(Sε) which is consistent; i.e., one has Tp,ε(t)f = Tq,ε(t)f for all f ∈ Lp(Sε) ∩ Lq(Sε)
for q ∈ (1,∞) and t ≥ 0. We thus also write Tε(t) instead of Tp,ε(t).
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Lemma 2.1. Let β ∈ R, b ∈ RN , ε ∈ (0, 1/2], u ∈ Dp,ε, and u∗ = u|u|p−2. Then we have∫
Sε

Auu∗ = (p− 1)

∫
Sε

y|∇u|2|u|p−2χ{u 6=0}, (2.1)∫
Sε

Au (u−)p−1 = −(p− 1)

∫
Sε

y|∇u|2(u−)p−2χ{u<0}. (2.2)

Proof. We first prove (2.1). Let p ≥ 2 and u ∈ Dp,ε. Recall that ∇u∗ = (p − 1)|u|p−2∇u
and u∗Du = p−1D|u|p. Integrating by parts and using the Dirichlet conditions in Dp,ε, we
infer∫

Sε

Auu∗ = (p− 1)

∫ 1

ε

y|∇u|2|u|p−2 + (β + 1)

∫
Sε

(Dyu)u|u|p−2 +

∫
Sε

b · ∇xu |u|p−2u

= (p− 1)

∫
Sε

y|∇u|2|u|p−2 +
β + 1

p

∫
Sε

Dy|u|p +
1

p

∫
Sε

b · ∇x|u|p

= (p− 1)

∫
Sε

y|∇u|2|u|p−2. (2.3)

The case p ∈ (1, 2) can be handled by a regularization argument as in Lemmas 2.1 and 2.2
of [11]. Assertion (2.2) is shown similarly, using ∇u− = −∇uχ{u<0}.

The next result will imply that the limit operator Ap is invertible.

Lemma 2.2. Let β ∈ R, b ∈ RN , and ε ∈ (0, 1/2]. There exists a number ωp > 0 such that

ωp

∫
Sε

|u|p ≤
∫
Sε

Auu∗, (2.4)

ωp

∫
Sε

(u−)p ≤ −
∫
Sε

Au (u−)p−1. (2.5)

for each u ∈ Dp,ε.

Proof. As in the previous lemma we focus on (2.4) for p ≥ 2. Let u ∈ Dp,ε. We compute

|u(x, y)|
p
2 = −p

2

∫ 1

y

(
(Dyu)u|u|

p
2−2
)

(x, η) dη

≤ p

2

(∫ 1

y

η
(
(Dyu)2|u|p−2

)
(x, η) dη

) 1
2
(∫ 1

y

1

η
dη

) 1
2

for (x, y) ∈ Sε. Equality (2.1) then implies∫
Sε

|u(x, y)|p ≤ p2

4

(∫ 1

0

| log y| dy
)(∫

Sε

y(Dyu)2|u|p−2

)
≤ ω−1

p

∫
Sε

Auu∗,

where we set ω−1
p = p2

4(p−1)

∫ 1

0
| log y| dy.

We can now derive the desired uniform accretivity inequality and positivity.
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Corollary 2.3. Let β ∈ R, b ∈ RN , ε ∈ (0, 1/2]. For any λ > −ωp and u ∈ Dp,ε we have

(λ+ ωp)‖u‖Lp(Sε) ≤ ‖(λ+A)u‖Lp(Sε).

In particular, (A− ωp, Dp,ε) is accretive and (A,Dp,ε) is invertible in Lp(Sε). Moreover, u
is non-negative if λu+Au ≥ 0.

Proof. Let u ∈ Dp,ε and λ > −ωp. Formula (2.4) and Hölder’s inequality yield

(λ+ ωp)‖u‖pLp(Sε)
≤
∫
Sε

(λu+Au)u∗ ≤ ‖(λ+A)u‖Lp(Sε) ‖u‖
p−1
Lp(Sε)

.

Let f ≥ 0. We multiply the equation λu + Au = f by (u−)p−1 and integrate over Sε.
Employing (2.5), we obtain∫

Sε

f(u−)p−1 =

∫
Sε

(
−λ(u−)p +Au(u−)p−1

)
≤ −(λ+ ωp)

∫
Sε

(u−)p

and thus a contradiction if u− 6= 0; i.e., u ≥ 0.

As in [1] and using the above estimates, we next construct a contraction semigroup
generated by the restriction of −A to a suitable domain. To this aim, we set

Dmax =
{
u ∈ Lp(S) ∩

⋂
δ∈(0,1)

W 2,p(Sδ)
∣∣∣Au ∈ Lp(S), u(·, 1) = 0

}
,

Den =

{
u ∈ Dmax

∣∣∣ ∫
S

y|∇u|2|u|p−2χ{u6=0} < +∞
}
. (2.6)

Moreover, Pε : Lp(S) → Lp(Sε) is the restriction operator and Eε : Lp(Sε) → Lp(S) the
extension by 0.

Proposition 2.4. Let β ∈ R and b ∈ RN . There exists a subspace Dp = Dp(β, b) ⊆ Den

such that −Ap := (−A,Dp) generates a positive strongly continuous semigroup (Tp(t))t≥0

on Lp(S) with ‖Tp(t)‖ ≤ e−ωpt for t ≥ 0. If 1 < q <∞, then Tp(t)f = Tq(t)f for all t ≥ 0
and f ∈ Lp(S) ∩ Lq(S). The operator Tp(t) is the strong limit in Lp(S) of EεTp,ε(t)Pε as
ε→ 0, and analogously for the resolvents of the generators.

The generator Ap is invertible. Moreover, each u ∈ Dp is the limit in Lp(S) of the (zero
extension) of the functions uε ∈ Dp,ε satisfying Auε = Au on Sε. The maps uε converge to
u also in W 2,p(Sδ) for every δ ∈ (0, 1).

Proof. 1) Fix f ∈ Lp(S), f ≥ 0, and λ > −ωp. For every ε ∈ (0, 1/2], let uε ≥ 0 be the
unique solution in Dp,ε of λuε +Auε = Pεf in Sε given by Corollary 2.3. Since

(λ+ ωp)‖uε‖Lp(Sε) ≤ ‖f‖Lp(S),

we obtain the uniform bound

‖Auε‖Lp(Sε) ≤ ‖f‖Lp(Sε) + |λ|‖uε‖Lp(Sε) ≤
(

1 +
|λ|

λ+ ωp

)
‖f‖Lp(S).

To show that the net (uε) increases pointwise as ε→ 0, we proceed as in Theorem 3.1 of [1].
Let ε > δ > 0. Then uε, uδ ≥ 0 in Sε. The function v = uδ − uε ∈W 2,p(Sε) is non-negative
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on ∂Sε and satisfies λv+Av = 0 in Sε. We multiply this identity by (v−)p−1 and integrate
by parts as in (2.3), where the boundary terms vanish since v− has trace 0 on ∂Sε. Also
using an estimate analogous to (2.5), we infer

0 =

∫
Sε

(
−λ(v−)p +Av(v−)p−1

)
≤ −(λ+ ωp)

∫
Sε

(v−)p ≤ 0.

Hence v− = 0, and the monotonicity of (uε) follows. Let u ≥ 0 be the pointwise limit uε on
S. By the Beppo Levi theorem, the functions uε converge to u in Lp(S) and u satisfies

(λ+ ωp)‖u‖p ≤ ‖f‖p. (2.7)

Standard results on W 2,p–regularity imply that (uε) tends to u in W 2,p(Sδ) for every δ ∈
(0, 1). (See [13, Theorem 9.11], the proof for balls easily extends to strips.) As a result, the
limit u belongs to Dmax and fulfills λu + Au = f in S. Moreover, u is even contained in
Den by (2.1).

2) Recall that −Ap,ε = (−A,Dp,ε) generates the C0–semigroup (Tp,ε(t)). Corollary 2.3
implies that Tp,ε(t) is bounded by e−ωpt. In view of step 1) the operators Eε(λ+Ap,ε)

−1Pε
have the strong limit R(λ) in Lp(S) for λ > −ωp, with R(λ) ≥ 0 and ‖R(λ)‖ ≤ (λ+ ωp)

−1.
One can check that {R(λ) |λ > −ωp} is a pseudoresolvent, see the proof of Theorem 3.1 of [1].
Our construction yields f = (λ+A)R(λ)f so that R(λ) is injective. By Proposition III.4.6
of [5] there exists a closed operator −Ap with (λ–independent) domain Dp = R(λ)Lp(S) in
Lp(S) satisfying R(λ) = (λ+Ap)

−1 for λ > −ωp.
3) From the previous steps we infer the inclusion Dp ⊆ Den and that Ap is a restriction

of A. Since ‖R(µ − ωp)‖ ≤ 1/µ for µ > 0, Corollary II.3.20 of [5] shows that the operator
ωp − Ap is densely defined and generates a contraction semigroup (Sp(t))t≥0. It is positive
due to the positivity of the resolvent and Theorem VI.1.8 of [5]. It follows that −Ap
generates (Tp(t))t≥0 = (e−ωptSp(t))t≥0. The asserted convergence of EεTp,ε(t)Pε to Tp(t)
is a consequence of the corresponding property of the resolvents and of the proof of the
Trotter-Kato theorem given in [22, Theorem 3.4.2]. We finally deduce the consistency of
the semigroup (Tp(t)) from that of (Tp,ε(t)).

Since Tp(t) = Tq(t) on Lp(S)∩Lq(S), we often write T (t) instead of Tp(t). Before we can
show the analyticity of this semigroup, we have to determine the domain of its generator
Ap more precisely.

3 Description of the domain if b = 0

In order to obtain information on the regularity of the functions of Dp, we thoroughly
investigate the properties of the approximating functions uε. After some preparations, we
show a precise description of Dp for the cases β ≤ −1 and β > −1 separately. Our reasoning
requires that b = 0, so that we have to restrict ourselves to this special case at first. The
drift term b · ∇x will be added in the next section.

At some points we use deep facts from operator-valued harmonic analysis. We refer the
reader to [18] for an introduction to the background on R-sectoriality, H∞–calculus, and
operator sums.
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3.1 Preliminary regularity results

The starting point of our arguments is the transformation u 7→ v = yu for a function
u ∈W 2,p(Sε) (or u ∈W 2,p(S)). A straightforward calculation yields Au = Av, where

Av := −∆xv −D2
yv + (β + 2)

Dyv

y
− (β + 2)

v

y2
= −∆xv + Lv, (3.1)

Lv := −D2
yv + (β + 2)

Dyv

y
− (β + 2)

v

y2
= −yD2

yu+ βDyu,

so that the variables x and y are separated in Av. We stress that the inverse transformation
v 7→ u = v/y is not uniformly bounded in Lp(Sε) as ε→ 0. Nevertheless, in the next lemma
formula (3.1) leads to uniform bounds on certain higher-order derivatives of uε.

Lemma 3.1. Let β ∈ R and b = 0. Then there exists a positive constant c such that for
every uε ∈ Dp,ε and ε ∈ (0, 1/2] we have

‖y∆xuε‖Lp(Sε) + ‖yD2
yuε − βDyuε‖Lp(Sε) ≤ c ‖Auε‖Lp(Sε).

Moreover, every u ∈ Dp satisfies

‖yD2
xu‖Lp(S) + ‖yD2

yu− βDyu‖Lp(S) ≤ c ‖Au‖Lp(S).

Proof. 1) We first establish several properties of the operators in (3.1). In Lp(Sε) we endow
∆x and L with the domains

Dε(∆x) = {v ∈ Lp(Sε) | v(·, y) ∈W 2,p(RN ), y ∈ (ε, 1), ∆xv ∈ Lp(Sε)},
Dε(L) = {v ∈ Lp(Sε) | v(x, ·) ∈W 2,p(ε, 1) ∩W 1,p

0 (ε, 1), x ∈ RN , Lv ∈ Lp(Sε)}.

The Laplacian is sectorial and has an H∞–calculus on Lp(RN ), both of angle 0, see Ex-
ample 10.2 in [18]. It is then easy to see that ∆x has the same property on Lp(Sε) with
uniform bounds.

The scalar version −Lε of −L generates a positive bounded analytic C0–semigroup
(Vε(t))t≥0 on Lp(ε, 1), when endowed with Dirichlet boundary conditions. For our pur-
poses it is crucial to bound its heat kernel pεt > 0, independently of ε. To this aim, we also
consider L as an operator L+ on R+. Following Section 4 of [19], L+ is the self-adjoint
operator in L2(R+; r−(β+2) dr) associated with the closure of the form

b(u, v) :=

∫ ∞
0

(
urvr − (β + 2)

uv

r2

)
r−(β+2)dr, D(b) := C∞c (R+) .

On D(b) this operator is indeed given as in (3.1), see Proposition 4.2 in [19]. Due to
Corollary 4.15 of [21] or Proposition 4.14 of [19] the semigroup (V (t))t≥0 generated by L+

has a positive kernel pt which is bounded by

0 ≤ pt(x, y) ≤ κ√
t

( |x|
t1/2
∧1
)−s1( |y|

t1/2
∧1
)−s∗1

exp
(
−|x− y|

2

mt

)
≤ κ√

t
exp

(
−|x− y|

2

mt

)
(3.2)

for t > 0, x, y > 0, and constants κ,m > 0. We note that in [19] the estimate is given in a
slightly different form. The exponents are given by

s1 = −(β + 2), s∗1 = 0 if β ≥ −1,
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s1 = −1, s∗1 = β + 1 if β < −1.

The last inequality in (3.2) follows by virtue of these identities. The semigroup is strongly
continuous also in Lp(R+) with respect to the Lebesgue measure and its domain can be
described explicitly, however we do not need these facts.

We employ the same construction for Lε and (Vε(t))t≥0, that is we restrict the above form
b to H1

0 (ε, 1). Note that this form indeed induces the operator Lε with domain W 2,p(ε, 1)∩
W 1,p

0 (ε, 1) on Lp(ε, 1). Since by [19, Lemma 4.1] the domain of the closure of b consists of
H1
loc functions, the Beurling-Deny criteria give 0 ≤ Vε(t)f ≤ V (t)f for f ≥ 0 (extending

Vε(t)f by 0). Hence, 0 ≤ pεt ≤ pt so that the kernel pεt > 0 also fulfills (3.2) on (ε, 1).

2) Take λ ∈ C \ {0} with | arg λ| ≤ θ for some θ < π/2. Since the resolvent of −Lε is
given by the Laplace transform of (Vε(t)), it has a kernel kελ bounded by

|kελ(x, y)| =
∣∣∣ ∫ ∞

0

e−λtpεt (x, y)dt
∣∣∣ ≤ κ∫ ∞

0

e−Reλt 1√
t
e−
|x−y|2
mt dt ≤ κ

∫ ∞
0

e−2c|λ|t
√
t

e−
|x−y|2
mt dt

for x, y ∈ (ε, 1) and a constant c > 0. Splitting the integral at τ = |x−y|/|λ|1/2, we compute

|kελ(x, y)| ≤ κ
∫ τ

0

e−2c|λ|t
√
t

e−m
−1|x−y| |λ|1/2dt+ κ

∫ ∞
τ

e−c|λ|t√
t
e−c|x−y| |λ|

1/2

e−
|x−y|2
mt dt

≤ κe−m
−1|x−y| |λ|1/2

|λ|1/2

∫ ∞
0

e−2cs

√
s
ds+

κe−c|x−y| |λ|
1/2

|λ|1/2

∫ ∞
0

e−cs√
s
ds

≤ c e−c
′|x−y| |λ|1/2

|λ|1/2
,

where the constants do not depend on ε. This Poisson estimate and Theorem 4.8 of [4] show
that Lε is R-sectorial of angle smaller than or equal π − θ in Lp(ε, 1). The R-sectoriality
can be extended to the operator (L, Dε(L)) on Lp(Sε) with the same constants.

3) The resolvents of ∆x and (L, Dε(L)) commute in Lp(Sε) since the semigroups commute
in view of their kernel representations. The Kalton-Weis Theorem 12.13 in [18] thus yields
a constant C > 0 independent of ε ∈ (0, 1/2] such that

‖∆xv + Lv‖Lp(Sε) ≥ C
(
‖∆xv‖Lp(Sε) + ‖Lv‖Lp(Sε)

)
, (3.3)

for every v ∈ Dε(∆x) ∩Dε(L) in Lp(Sε). Let uε ∈ Dp,ε. The function vε := yuε belongs to
Dp,ε ⊆ Dε(∆x) ∩Dε(L). Applying (3.3), we estimate

C
(
‖∆xvε‖Lp(Sε) + ‖Lvε‖Lp(Sε)

)
≤ ‖Avε‖Lp(Sε) = ‖Auε‖Lp(Sε).

In particular, as ∆xvε = y∆xuε and Lvε = −yD2
yuε + βDyuε, we infer that

‖y∆xuε‖Lp(Sε) + ‖yD2
yuε − βDyuε‖Lp(Sε) ≤ C

−1‖Auε‖Lp(Sε), (3.4)

which proves the first inequality of the statement with c = C−1.
Next, let u ∈ Dp and set f = Au. Proposition 2.4 yields a function uε in Dp,ε such that

Auε = f in Sε, for each ε ∈ (0, 1/2]. Moreover, the maps uε converge to u in W 2,p(Sδ) for
every δ > 0. Estimate (3.4) provides the uniform bound

‖y∆xuε‖Lp(Sε) + ‖yD2
yuε − βDyuε‖Lp(Sε) ≤ C

−1‖f‖Lp(S).

8



From the Calderón–Zygmund theorem and (2.7) we deduce

‖D2
x(yuε)‖Lp(Sε) ≤ c(‖∆x(yuε)‖Lp(Sε) + ‖yuε‖Lp(Sε)) ≤ c‖f‖Lp(S).

(The constant c in the first inequality does not depend on 0 < ε ≤ 1/2 by a simple scaling
argument.) Taking the limit as ε→ 0, we obtain the second assertion.

The regularity gained in the previous lemma allows us to rewrite the equation Auε = f
isolating the derivatives with respect to y. In this way we obtain an ordinary differential
equation in y (with fixed x) whose solutions can be computed explicitly. This equation and
its limit version have the inhomogeneities

gε := f + y∆xuε and g := f + y∆xu (3.5)

for f ∈ Lp(S) and the functions uε ∈ Dp,ε and u ∈ Dp solving Aw = f on Sε and S,
respectively. In the next lemma we express uε by gε.

Lemma 3.2. Let β ∈ R, b = 0, ε ∈ (0, 1/2], and f ∈ Lp(S). The solution uε ∈ Dp,ε to the
equation Auε = f given by Proposition 2.4 satisfies

uε(x, y) =
cε(x)

β + 1
(yβ+1 − 1)− 1

β + 1

∫ 1

y

gε(x, t) dt+
yβ+1

β + 1

∫ 1

y

gε(x, t)

tβ+1
dt,

cε(x) =
1

εβ+1 − 1

(∫ 1

ε

gε(x, t) dt− εβ+1

∫ 1

ε

gε(x, t)

tβ+1
dt

) (3.6)

if β 6= −1, and

uε(x, y) = cε(x) log y −
∫ 1

y

gε(x, t) log
t

y
dt,

cε(x) = −
∫ 1

ε

gε(x, t) dt+ (log ε)−1

∫ 1

ε

gε(x, t) log t dt

(3.7)

if β = −1. Here x ∈ RN , y ∈ (ε, 1) and gε = f + y∆xuε.

Proof. The proof is based on elementary calculus, as it consists in solving the ordinary
differential equation −yD2

yuε + βDyuε = gε in y (and for fixed x ∈ RN ) with 0-boundary
conditions at y = ε and y = 1. The details can be found in formula (2.4) and the proof of
Proposition 2.8 in [11].

In the next step we take the limit as ε → 0 in the above formulas. We first prove that
gε from (3.5) tend to g in some sense.

Lemma 3.3. Let β ∈ R, b = 0, ε ∈ (0, 1/2], and u ∈ Dp. Let uε be the maps given by
Proposition 2.4 and represented in (3.6) and (3.7). Define g and gε as in (3.5) for f = Au.
We have

‖g‖Lp(S), ‖gε‖Lp(Sε) ≤M (3.8)

for a suitable constant M > 0 independent of ε. Moreover,

lim
ε→0

∫ 1

ε

∣∣gε(·, t)− g(·, t)
∣∣ dt = 0 in Lp(RN ).

9



Proof. Lemma 3.1 implies (3.8). We recall that the maps uε converge to u in W 2,p(Sδ) for
every δ > 0 by Proposition 2.4. Hence, the functions gε = f + y∆xuε tend to g in Lp(Sδ)
for every δ > 0. To show the asserted limit, we fix δ ∈ (0, 1/2], take ε ∈ (0, δ), and write∫ 1

ε

∣∣gε(x, t)− g(x, t)
∣∣ dt =

∫ δ

ε

∣∣gε(x, t)− g(x, t)
∣∣ dt+

∫ 1

δ

∣∣gε(x, t)− g(x, t)
∣∣ dt

for x ∈ RN . Hölder’s inequality and (3.8) yield∫
RN

(∫ δ

ε

∣∣gε(x, t)− g(x, t)
∣∣ dt)p dx ≤ δp−1‖gε − g‖pLp(Sε)

≤ Cδp−1,

∫
RN

(∫ 1

δ

∣∣gε(x, t)− g(x, t)
∣∣ dt)p dx ≤ ‖gε − g‖pLp(Sδ)

.

Next, fix η > 0 and choose δ > 0 with Cδp−1 < η. Since ‖gε − g‖Lp(Sδ) → 0, there exists a
number ε0 ∈ (0, δ) such that ‖gε − g‖pLp(Sδ)

< η for every ε < ε0. It follows∫
RN

(∫ 1

ε

∣∣gε(x, t)− g(x, t)
∣∣ dt)p dx < 2pη

for every ε < ε0, and the claim is proved.

In the next two results we compute the limit as ε → 0 of the functions cε in identities
(3.6) and (3.7). This leads to an implicit formula for the limit u of uε and later to the
desired description of the domain Dp. From now on, we have to distinguish between the
cases β ≤ −1 and β > −1 since the limits of (cε) differ.

Lemma 3.4. Let β ≤ −1, b = 0, and u ∈ Dp. Set f = Au and g = f + y∆xu. Let uε be
the functions given by Proposition 2.4 and represented in (3.6) and (3.7). We then have

lim
ε→0

cε = −
∫ 1

0

g(·, t)
tβ+1

dt in Lp(RN ).

For (x, y) ∈ S, we thus obtain the expressions

u(x, y) =
1

β + 1

∫ 1

0

g(x, t)

tβ+1
dt− yβ+1

β + 1

∫ y

0

g(x, t)

tβ+1
dt− 1

β + 1

∫ 1

y

g(x, t) dt (3.9)

if β < −1, and

u(x, y) = − log y

∫ 1

0

g(x, t)dt−
∫ 1

y

g(x, t) log
t

y
dt (3.10)

if β = −1.

Proof. Let x ∈ RN . Set c̃(x) = −
∫ 1

0
g(x, t)t−(β+1)dt. We first assume that β < −1. The

definition of cε in (3.6) yields

cε(x)− c̃(x) =
1

εβ+1 − 1

(∫ 1

ε

gε(x, t) dt−
∫ 1

ε

g(x, t)

tβ+1
dt

)
+

∫ ε

0

g(x, t)

tβ+1
dt

+
εβ+1

εβ+1 − 1

∫ 1

ε

g(x, t)− gε(x, t)
tβ+1

dt.

(3.11)

10



Since β + 1 < 0, we have∫ 1

ε

|g(x, t)− gε(x, t)|
tβ+1

dt ≤
∫ 1

ε

|g(x, t)− gε(x, t)| dt,

and the last integral converges to 0 in Lp(RN ) by Lemma 3.3. Moreover, Hölder’s inequality
and (3.8) imply the uniform bounds∫

RN

∣∣∣∣ ∫ 1

ε

gε(x, t) dt

∣∣∣∣pdx ≤ ‖gε‖pLp(Sε)
≤Mp,∫

RN

∣∣∣∣ ∫ 1

ε

g(x, t)

tβ+1
dt

∣∣∣∣pdx ≤ ‖g‖pLp(S), (3.12)∫
RN

∣∣∣∣∫ ε

0

g(x, t) dt

∣∣∣∣p dx ≤ εp−1‖g‖pLp(S).

Since εβ+1 → +∞ as ε → 0, we conclude that all the addends in the right-hand side of
(3.11) tend to 0 in Lp(RN ).

Next, take β = −1. From formula (3.7) we infer

cε(x)− c̃(x) =

∫ 1

ε

(
g(x, t)− gε(x, t)

)
dt+ (log ε)−1

∫ 1

ε

gε(x, t) log t dt+

∫ ε

0

g(x, t) dt.

The first and third addends converge to 0 in Lp(RN ) as ε → 0 thanks to Lemma 3.3 and
(3.12), respectively. As regards the second addend, Hölder’s inequality and (3.8) lead to the
estimate ∣∣∣∣∫ 1

ε

gε(x, t) log t dt

∣∣∣∣p ≤ (∫ 1

ε

|gε(x, t)|pdt
)(∫ 1

0

| log t|p
′
dt

) p
p′

≤ C.

Therefore the claim is proved also in this case. The representation formulas for u then follow
in a similar way.

We next show an analogous result for β > −1.

Lemma 3.5. Let β > −1, b = 0, and u ∈ Dp. Set f = Au and g = f + y∆xu. Let uε be
the functions given by Proposition 2.4 and represented in (3.6). We have

lim
ε→0

cε = −
∫ 1

0

g(·, t) dt in Lp(RN ). (3.13)

For (x, y) ∈ S, we thus obtain the expression

u(x, y) =
1

β + 1

∫ y

0

g(x, t) dt− yβ+1

β + 1

∫ 1

0

g(x, t) dt+
yβ+1

β + 1

∫ 1

y

g(x, t)

tβ+1
dt. (3.14)

Proof. Let x ∈ RN and set ĉ(x) = −
∫ 1

0
g(x, t) dt. From equation (3.6) we deduce

cε(x)− ĉ(x) =
1

εβ+1 − 1

∫ 1

ε

gε(x, t) dt+

∫ 1

0

g(x, t) dt+
εβ+1

1− εβ+1

∫ 1

ε

gε(x, t)

tβ+1
dt.

11



We first treat the last summand. Hölder’s inequality yields

εβ+1

∫ 1

ε

|gε(x, t)|
tβ+1

dt ≤
(∫ 1

ε

|gε(x, t)|p dt
) 1
p

(
ε(β+1)p′ − ε

1− (β + 1)p′

) 1
p′

,

if β 6= − 1
p and therefore

∫
RN

∣∣∣∣εβ+1

∫ 1

ε

gε(x, t)

tβ+1
dt

∣∣∣∣p dx ≤
(
ε(β+1)p′ − ε

(β + 1)p′ − 1

)p−1

‖gε‖pLp(Sε)
.

For β = − 1
p we have (β + 1)p′ = 1. In the above computation we thus replace the quantity

ε(β+1)p′−ε
1−(β+1)p′ by ε log 1

ε . In both cases the bound (3.8) leads to the limit

εβ+1

∫ 1

ε

gε(·, t)
tβ+1

dt −→ 0 in Lp(RN ), as ε → 0.

The other terms in cε − ĉ are written as

1

εβ+1 − 1

∫ 1

ε

gε(x, t) dt+

∫ 1

0

g(x, t) dt =
1

εβ+1 − 1

∫ 1

ε

(
gε(x, t)− g(x, t)

)
dt

+
εβ+1

εβ+1 − 1

∫ 1

ε

g(x, t) dt+

∫ ε

0

g(x, t) dt

(3.15)

The first addend on the right hand side of (3.15) converges to 0 in Lp(RN ) as ε → 0
by Lemma 3.3. Using also (3.12), we conclude that the right-hand side of (3.15) tends
to 0 in Lp(RN ). We have thus proved (3.13). Formula (3.14) is then shown by similar
arguments.

3.2 The domain for b = 0 and β ≤ −1
We first treat the case β ≤ −1. Here, the functions in Dp do not satisfy a boundary condition
at y = 0, but have ‘full’ regularity as described by the space

Dreg :=
{
u ∈ Dmax ∩W 1,p(S)

∣∣ y|D2u| ∈ Lp(S)
}
. (3.16)

In the next result we deduce the inclusion Dp ⊆ Dreg using formulas (3.9) and (3.10) as
well as the Calderón–Zygmund and Hardy inequalities applied to v = yu. For the other
inclusion we show that I + A is injective on Dreg. A slight variant of Proposition 3.7 has
been proved in [23] using different methods. For the proof, we need the following lemma.

Lemma 3.6. Let v ∈W 2,p(Sδ) for every 0 < δ < 1, v(·, 1) = 0, and v,∆v ∈ Lp(S). Assume
that the function u = v/y satisfies u,Dyu ∈ Lp(S). Then v belongs to W 2,p(S) ∩W 1,p

0 (S).

Proof. Let u = v/y be given as in the statement. We have

u(x, ε) =

∫ 1

ε

Dyu(x, y) dy,

∫
RN
|u(x, ε)|p dx ≤

∫
S

|Dyu|p dx dy.

12



Observe that

lim inf
ε→0

εp
∫
RN
|Dyu(x, ε)|p dx = 0,

as otherwise |Dyu|p would not be integrable on S. Since v = yu and Dyv = yDyu+ u, the
above inequalities yield

lim inf
ε→0

∫
RN
|Dyv(x, ε)| |v(x, ε)|p−1 dx (3.17)

≤ lim inf
ε→0

(∫
RN
|Dyv(x, ε)|p

) 1
p
(∫

RN
|v(x, ε)|p

)1− 1
p

= 0.

Let w ∈ W 2,p(S) ∩W 1,p
0 (S) be such that w −∆w = v −∆v. Then w satisfies (3.17) and

the same holds for z = v−w. We multiply z−∆z = 0 by z|z|p−2 and integrate by parts on
Sε, obtaining

0 =

∫
Sε

(z −∆z)z|z|p−2 =

∫
Sε

|z|p + (p− 1)

∫
Sε

|∇z|2|z|p−2 +

∫
RN

(Dyz)z|z|p−2(x, ε) dx.

Letting ε→ 0 along an appropriate sequence, we deduce z = 0 and hence v = w.

Proposition 3.7. Let β ≤ −1 and b = 0. Then Dp = Dreg.

Proof. 1) We first show the inclusion Dp ⊆ Dreg. Let u ∈ Dp. Differentiating formulas (3.9)
and (3.10) with respect to y, we find

Dyu(x, y) = −yβ
∫ y

0

g(x, t)

tβ+1
dt = −

∫ 1

0

g(x, sy)

sβ+1
ds

for (x, y) ∈ S. Minkowski’s (integral) inequality then yields(∫ 1

0

|Dyu(x, y)|pdy
) 1
p

≤
∫ 1

0

1

sβ+1

(∫ 1

0

|g(x, sy)|pdy
) 1
p

ds ≤
∫ 1

0

ds

sβ+1+ 1
p

(∫ 1

0

|g(x, z)|pdz
) 1
p

.

Raising to the power p and integrating with respect to x, we obtain the bound ‖Dyu‖Lp(S) ≤
C‖g‖Lp(S). Since yD2

xu belongs to Lp(S) due to Lemma 3.1 and Au ∈ Lp(S), by difference
the function yD2

yu is an element of Lp(S).
2) Setting v = yu again, we infer that ∆xv = y∆xu and D2

yv = yD2
yu + 2Dyu are

contained in Lp(S). Moreover, v vanishes at y = 1 and u,Dyu ∈ Lp(S) by point 1). An

application of Lemma 3.6 thus yields v ∈ W 2,p(S) ∩ W 1,p
0 (S). Hence |D2

xyv| belongs to
Lp(S), implying that |yD2

xyu + ∇xu| ∈ Lp(S). On the other hand, as Dxiv vanishes at
y = 0, Hardy’s inequality shows that (Dxiv)/y = Dxiu is contained in Lp(S), so that also
y|D2

xyu| ∈ Lp(S). Summing up, u is an element of Dreg.

3) It remains to establish the injectivity of (I +A,Dreg) which follows from accretivity.
To this aim, let u ∈ C∞c (RN+1) vanish for y = 1. As in Lemma 2.1 we compute∫

S

(Au)u|u|p−2 = (p− 1)

∫
S

y|∇u|2|u|p−2χ{u6=0} −
β + 1

p

∫
RN
|u(x, 0)|pdx ≥ 0

Such functions u are dense in Dreg by the proof of [9, Lemma 2.1] where the same result is
shown in the infinite strip RN × [0,∞). Hence, A is accretive on Dreg.

Remark 3.8. Note that point 3) in the above proof gives Dreg ⊆ Den for β ≤ −1.
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3.3 The domains for b = 0 and β > −1
We treat the case β > −1 in a similar way, now based on the represention formula (3.14).
In the range β > −1, the value −1/p represents a threshold for regularity. For β > −1/p
the domain Dp has again full regularity and coincides with the space

D0
reg := {u ∈ Dreg |u(·, 0) = 0},

cf. (3.16). Indeed, since u belongs to W 1,p((0, 1), Lp(RN )), the above boundary condition is
understood in C([0, 1], Lp(RN )). This result has already been shown in [9] in the half-space
RN × (0,+∞). We give here an independent proof for b = 0.

Proposition 3.9. Let β > −1/p and b = 0. We then have Dp = D0
reg.

Proof. Let u ∈ Dp. Formula (3.14) gives

Dyu(x, y) = −yβ
∫ 1

0

g(x, t) dt+ yβ
∫ 1

y

g(x, t)

tβ+1
dt. (3.18)

Proceeding as in Lemma 2.10 (iii) of [11], one can see that Dyu ∈ Lp(S). The arguments
in step 3) of the proof of Proposition 3.7 then imply that u belongs Dreg. To show that
u ∈ D0

reg, we verify that ‖u(·, ε)‖Lp(RN ) → 0 as ε→ 0 using (3.14); i.e.,

u(x, ε) =
1

β + 1

∫ ε

0

g(x, t) dt− εβ+1

β + 1

∫ 1

0

g(x, t) dt+
εβ+1

β + 1

∫ 1

ε

g(x, t)

tβ+1
dt.

The convergence property is clear for the first two addends on the right hand side, since
β + 1 > 0. Concerning the third, say w, Hölder’s inequality and β > −1/p yield

|w(x, ε)|p ≤ C
(
ε− ε(β+1)p′

)p−1
∫ 1

0

|g(x, t)|p dt ≤ Cεp−1

∫ 1

0

|g(x, t)|p dt.

Integrating with respect to x ∈ RN , the thesis follows. This shows that Dp ⊆ D0
reg.

To prove the converse, we take a function u ∈ D0
reg such that u + Au = 0. Employing

the boundary conditions, we compute

0 =

∫
S

|u|p +

∫
S

(Au)u|u|p−2 =

∫
S

|u|p + (p− 1)

∫
S

y|∇u|2|u|p−2χ{u6=0}.

It follows that u = 0 and so Dp = D0
reg.

Remark 3.10. Note that the above proof yields D0
reg ⊆ Den, also for β > −1/p.

In the case −1 < β ≤ −1/p, we do not have full regularity as shown by Example 3.15.
Nevertheless, certain linear combinations of the functions Dyu, yD2

yu and u/y still belong
to Dp in this case.

Lemma 3.11. Let −1 < β ≤ −1/p and b = 0. Then for every u ∈ Dp the functions
Dyu− (β + 1)u/y and −yD2

yu+ βDyu belong to Lp(S).

Proof. Let u ∈ Dp. The second assertion was already shown in Lemma 3.1. Equations
(3.18) and (3.14) yield

Dyu− (β + 1)
u

y
= −1

y

∫ y

0

g(x, t) dt. (3.19)

The first statement now follows from Hardy’s inequality.
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The first property proven above already implies a Dirichlet and a Neumann-type bound-
ary condition as y → 0.

Lemma 3.12. Let −1 < β ≤ −1/p and u ∈ W 1,p(Sε) for every 0 < ε ≤ 1/2 such
that u(·, 1) = 0 and Dyu − (β + 1)u/y ∈ Lp(S). Then lim

ε→0
‖u(·, ε)‖Lp(RN ) = 0 and

lim inf
ε→0

ε‖Dyu(·, ε)‖Lp(RN ) = 0.

Proof. Set f = Dyu− (β + 1)u/y. Due to the boundary condition at y = 1, integration by
parts and Hölder’s inequality yield

u(x, ε) = −εβ+1

∫ 1

ε

f(x, y)y−(β+1) dy,

|u(x, ε)|p ≤ εp(β+1)

∫ 1

0

|f(x, y)|p dy
(∫ 1

ε

y−(β+1)p′ dy

)p−1

. (3.20)

The last integral is bounded if β < −1/p and grows logarithmically when β = −1/p. In
both cases, it follows that ‖u(·, ε)‖Lp(RN ) → 0 as ε→ 0.

We also have yDyu(x, y) = (β + 1)u+ yf . Observe that lim infε→0 ε‖f(·, ε)‖Lp(RN ) = 0,
since otherwise |f |p would not be integrable in S. So also the second statement is true.

We can now give a first description of Dp in the intermediate range −1 < β ≤ −1/p. Here
we only have partial regularity but Dirichlet boundary conditions at y = 0, see Remark 3.14.

Proposition 3.13. Let −1 < β ≤ −1/p and b = 0. We then have the equality

Dp =
{
u ∈Den

∣∣∣ y|D2
xu|, Dyu− (β + 1)u/y, −yD2

yu+ βDyu ∈ Lp(S)
}
.

Proof. Let D be the right-hand side. The inclusion Dp ⊆ D follows from Proposition 2.4
and Lemmas 3.1 and 3.11. It remains to check the injectivity of (I + A,D). Let u ∈ D
satisfy u+Au = 0. Let ε ∈ (0, 1/2]. We compute

0 =

∫
Sε

|u|p +

∫
Sε

(Au)u|u|p−2 =

∫
Sε

|u|p + (p− 1)

∫
Sε

y|∇u|2|u|p−2

− β + 1

p

∫
RN
|u(x, ε)|pdx+

∫
RN

εDyu(x, ε)u|u|p−2(x, ε)dx.

The first boundary integral tends to 0 by Lemma 3.12. The last integral is estimated by∣∣∣∣∫
RN

εDyu(x, ε)u|u|p−2(x, ε)dx

∣∣∣∣ ≤ (∫
RN
|εDyu(x, ε)|pdx

) 1
p
(∫

RN
|u(x, ε)|pdx

) 1
p′

using Hölder’s inequality. It thus tends to 0 on a sequence εn → 0 because of Lemma 3.12
again. Letting εn → 0 in the previous identity, we obtain∫

S

|u|p + (p− 1)

∫
S

y|∇u|2|u|p−2χ{u6=0} = 0

which yields u = 0.
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Remark 3.14. There are boundary conditions hidden in the regularity properties of Dp

for −1 < β ≤ −1/p. In fact, Lemma 3.12 yields ‖u(·, ε)‖Lp(RN ) → 0 as ε → 0. Con-
cerning Dyu, Lemma 3.12 gives only lim infε→0 ε‖Dy(·, ε)‖Lp(RN ) = 0 but we actually have
limε→0 ε‖Dy(·, ε)‖Lp(RN ) = 0. This easily follows from identity (3.19)

yDyu− (β + 1)u = −
∫ y

0

g(x, t) dt

valid for u ∈ Dp, the Dirichlet condition on u, and (3.8).

The next example shows that Dp is not contained in Dreg for −1 < β ≤ −1/p.

Example 3.15. Let −1 < β ≤ −1/p. Take functions 0 6= ϕ ∈ C∞c (RN ) and ψ ∈ C∞([0, 1])
with ψ = 1 near {y = 0} and ψ(1) = 0. We set u(x, y) = yβ+1ϕ(x)ψ(y) on S. Note that
yβ+1 belongs to the kernel of the operator −yD2

y + βDy. It is easy to check that u is an
element of Dp. On the other hand, near y = 0 the functions Dyu, yD2

yu and u/y all behave

like yβϕ and are thus do not belong to Lp(S).

Finally, we establish that |∇xu| and y|D2
xyu| belong to Lp(S) also if −1 < β ≤ −1/p.

This a bit unexpected fact relies on the results recently proved in [20]. In order to explain
how our operator fits in the setting of [20], we recall from (3.1) the definition of

Lyw = −D2
yw + (β + 2)

Dyw

y
− (β + 2)

w

y2
,

on smooth functions w = w(y) and compute s1 = −β − 2, s2 = −1, according to the
definitions given in Section 4 of [20]. Set

D(Ly) =
{
w ∈ Lp(0,+∞) ∩W 2,p

loc (0,+∞)
∣∣Lyw ∈ Lp(0,+∞) and y−2θw ∈ Lp(0,+∞)

for every θ ∈ [0, 1] s.t. − β − 2 + 2θ < 1
p

}
(see Proposition 4.2 of [20]). By Theorem 8.8 of [20], the operator −A = ∆x −Ly endowed
with the domain

D(A) =
{
v ∈ Lp(RN+1

+ )
∣∣ v(·, y) ∈W 2,p(RN ) for a.a. y > 0, |∇xv|, |D2

xv| ∈ Lp(RN+1
+ ),

v(x, ·) ∈W 2,p
loc (0,+∞) for a.a. x ∈ RN ,Lyv, y−2θv ∈ Lp(RN+1

+ )

for every θ ∈ [0, 1] s.t. − β − 2 + 2θ < 1
p

}
(3.21)

generates a bounded analytic semigroup in Lp(RN+1
+ ). Under more restrictive assumptions

on the parameter β, which are fulfilled in our setting, it turns out that

D(A) =
{
v∈Lp(E)

∣∣ v(·, y) ∈W 2,p(RN ) for a.a. y > 0, |∇xv|, |D2
xv|,
|∇xv|
y

, |D2
xyv|∈Lp(E),

v(x, ·) ∈W 2,p
loc (0,+∞) for a.a. x ∈ RN , Lyv, y−2θv ∈ Lp(E)

for every θ ∈ [0, 1] s.t. − β − 2 + 2θ < 1
p

}
, (3.22)

see Theorem 8.9 of [20], where E = RN+1
+ .

We can now complete the description of Dp in the case −1 < β ≤ −1/p which cannot
be much improved in view of Example 3.15.
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Proposition 3.16. Let −1 < β ≤ −1/p and b = 0. Then the domain Dp is equal to

D0
par :=

{
u ∈ Den

∣∣ y|D2
xu|, |yD2

xyu|, |∇xu|, Dyu− (β + 1)u/y, −yD2
yu+ βDyu ∈ Lp(S)

}
.

Proof. Because of Proposition 3.13, we only have to show that Diu and yD2
iyu are contained

in Lp(S) for u ∈ Dp, i ∈ {1, . . . , N} and Di = Dxi . Set v = yu. We claim that v belongs
to the domain of A given by (3.21). We already know that v, |∇xv|, |D2

xv|, |Lyv| ∈ Lp(S)
(after truncating v near to y = 1 and then extending it smoothly in the whole halfspace).
It remains to show that y−2θv ∈ Lp(S) for every θ ∈ [0, 1] such that −β − 2 + 2θ < 1

p .

Recalling estimate (3.20), we have

y−2θp|v(x, y)|p = y(1−2θ)p|u(x, y)|p ≤ yp(β+2−2θ)

∫ 1

0

|f(x, t)|p dt
(∫ 1

y

t−(β+1)p′ dt

)p−1

.

The last integral is bounded if β < −1/p and grows logarithmically when β = −1/p. In
both cases, because of since p(β + 2 − 2θ) > −1 and the choice of θ, we have the desired

assertion. From (3.22) we infer that |Dxv|y and |D2
xyv| ∈ Lp(S). Thus, by computing it

explicitly, we infer that |∇xu| and yD2
xyu ∈ Lp(S) and the proof is complete.

4 Analyticity and the main result on the strip

In a first step we use the domain description to deduce analyticity of the semigroup for b = 0
from previous results in [9]. The analyticity then allows us to add the drift term b · ∇x to
our prototype operator on the strip.

Proposition 4.1. Let β ∈ R and b = 0. Then the semigroup (T (t))t≥0 from Proposition 2.4
is analytic.

Proof. We give the proof distinguishing the cases β > −1, β < −1 and β = −1.
1a) Assume that β > −1. First, let β > −1/p. In Theorem 2.10 of [9] it is shown

that the operator −A] = (−A,D]
reg) generates a strongly continuous analytic semigroup of

positive contractions in Lp(RN+1
+ ), where RN+1

+ = RN × (0,+∞) and

D]
reg =

{
u ∈ Lp(RN+1

+ ) ∩W 2,p
loc (RN+1

+ )
∣∣ |∇u|,√y|∇u|, y|D2u| ∈ Lp(RN+1

+ ), u(·, 0) = 0
}
.

We transfer this result to the spatial domain S, using the operator Ap, 12 = (A,Dp, 12
) with

ε = 1/2 according to our notation. Choose functions η1, η2 ∈ C∞(R) such that 0 ≤ η1, η2 ≤
1, supp η1 ⊆ (−1, 1), supp η2 ⊆ R \

(
− 1

3 ,
1
3

)
and η2

1 + η2
2 = 1. Fix f ∈ Lp(S) and take λ ∈ C

with Reλ ≥ 0. We define

R(λ)f = η1(λ+A])−1(η1f) + η2(λ+Ap, 12 )−1(η2f)

on S, where ηi = ηi(y) and the functions are restricted and extended by 0 appropriately.
Since R(λ)f ∈W 1,p

0 (S) and y|D2R(λ)f | ∈ Lp(S), the map R(λ)f is an element of D0
reg

and thus of Dp by Proposition 3.9. Moreover (λ+A)R(λ)f = f + S1(λ)f + S2(λ)f , where

S1(λ)f = [λ+A, η1](λ+A])−1(η1f), S2(λ)f = [λ+A, η2](λ+Ap, 12 )−1(η2f).

These functions are supported in
(

1
3 , 1
)
. Setting u1 = (λ+A])−1(η1f), one computes

S1(λ)f = −2yη′1Dyu1 − yη′′1u1 + βη′1u1.
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The estimates for ‖u1‖p and ‖√yDyu1‖p from Lemma 2.13 and Corollary 2.14 of [9] yield
positive constants C and r0 such that

‖S1(λ)f‖p ≤
C

|λ| 12
‖f‖p

for |λ| ≥ r0. A similar estimate can be derived for ‖S2(λ)f‖p. These facts imply that the
operator S1(λ)+S2(λ) has norm less than 1

2 and thus I+S1(λ)+S2(λ) is invertible, possibly
choosing a larger number r0. Denoting its inverse by V (λ), we infer that ‖V (λ)‖ ≤ 2 for
|λ| ≥ r0 and that the function u = R(λ)V (λ)f belongs to Dp = D0

reg and solves λu+Au = f .

The sectoriality of A] and Ap, 12 further imply the inequality ‖u‖p ≤ C|λ|−1‖f‖p, so that
−Ap generates an analytic semigroup.

1b) Let −1 < β ≤ −1/p and fix q < p < r such that β > − 1
q . By step 1a), the semigroup

on Lq(S) generated by −Aq = (−A,Dq) is analytic. On the other hand, −Ar is the generator
of a C0–semigroup on Lr(S) and the semigroups are consistent by Proposition 2.4. So the
Stein interpolation theorem shows that −Ap generates an analytic semigroup on Lp(S).

2) Assume β < −1. For every ε ∈ (0, 1/2], the adjoint of Ap,ε is given by A∗ =
−y∆ − (β + 2)Dy endowed with the domain Dp′,ε. Letting ε → 0, we infer that the

adjoint semigroup of (T (t))t≥0 is the semigroup (T ∗(t)) generated in Lp
′
(S) by (−A∗, Dp′),

according to Proposition 2.4. Since −(β + 2) > −1, the semigroup (T ∗(t))t≥0 is analytic by
part 1) and hence also (T (t))t≥0 is analytic, by duality.

3) Finally, assume β = −1. Here the operators A2,ε are self-adjoint in L2(Sε) for every
ε ∈ (0, 1/2]. By approximation, it follows that A2 is self-adjoint in L2(S). Since ω2 −A2 is
dissipative, we infer that A2 is sectorial. Therefore (T (t)) is analytic in L2(S). Again, the
Stein interpolation theorem implies that the semigroup (T (t)) is analytic in every Lp(S).

We can now add the gradient term b · ∇xu to the operator with b = 0 using a theorem
by Kalton and Weis on operator sums. This strategy was already used in [12]. Recall the
definition of Den in (2.6).

Theorem 4.2. Let β ∈ R and b ∈ RN . Then the operator −Ap = (−A,Dp) generates an
analytic semigroup on Lp(S). Its domain Dp is equal to

Dreg =
{
u ∈ Dmax ∩W 1,p(S)

∣∣ y|D2u| ∈ Lp(S)
}

if β ≤ −1,

D0
par =

{
u ∈ Den

∣∣ y|D2
xu|, y|D2

xyu|, |∇xu|, Dyu− β+1
y u, yD2

yu− βDyu ∈ Lp(S)
}

if − 1 < β ≤ − 1
p ,

D0
reg = {u ∈ Dreg |u(·, 0) = 0} if β > − 1

p .

Proof. 1) For b = 0 the result has been shown in Propositions 3.7, 3.9, 3.16 and 4.1.

2) Let b 6= 0. We split A defined on Dp(β, 0) into A0 = −y∆ + βDy and B = b · ∇x
with domain D(B) = {u ∈ Lp(S) |Bu ∈ Lp(S)}. By part 1) and Proposition 2.4, we know
Dp(β, 0) ⊆ D(B) and that (−A0, Dp(β, 0)) generates the analytic C0-semigroup (T0(t))t≥0

of positive contractions on Lp(S). Combined with Theorem 2.20 of [18], the corollary in
Paragraph 4d) of [24] now shows that (A0, Dp(β, 0)) is R-sectorial of angle smaller that π/2.
On the other hand, B generates the positive and contractive C0-group (S(t))t≥0 on Lp(S)
given by (S(t)f)(x, y) = f(x + bt, y). It thus has a bounded H∞–calculus of angle π/2 by
Theorem 10.7 of [18].
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The explicit formula for S(t) and part 1) imply that S(t)Dp(β, 0) ⊆ Dp(β, 0) and
A0S(t)u = S(t)A0u for u ∈ Dp(β, 0) and t ≥ 0. Therefore, (λ+A0)−1S(t) = S(t)(λ+A0)−1

for λ > 0 so that T0(t)S(t) = S(t)T0(t) because of the resolvent approximation formula
for T0(t) from Corollary III.5.5 in [5]. Paragraph II.2.7 of this monograph also shows
that the closure of (−(A0 + B), Dp(β, 0)) is the generator of the C0–semigroup given by
U(t) = T0(t)S(t).

Since the semigroups commute, the resolvents of A0 and B also commute. As the sum
of the above angles is less than π, Theorem 12.13 of [18] then shows that A = A0 + B is
closed on Dp(β, 0). Hence, (−A,Dp(β, 0)) generates (U(t))t≥0. We still have to prove that
(U(t))t≥0 coincides with the semigroup (T (t))t≥0 generated by (−A,Dp(β, b)) according to
Proposition 2.4. Let Sε(t) be the restriction of S(t) to Lp(Sε). As above one deduces the
identity Tε(t) = T0,ε(t)Sε(t), restricting A, A0 and B to Dp,ε. By Proposition 2.4 the
operators EεT0,ε(t)Pε and EεTε(t)Pε converge strongly to T0(t) and T (t) in Lp(S) as ε→ 0,
respectively. Therefore the product

EεTε(t)Pε = EεT0,ε(t)PεEεSε(t)Pε

also tends to T0(t)S(t) = U(t). We conclude U(t) = T (t) and thus Dp = Dp(β, b) = Dp(β, 0)
is given as in the statement.

3) It remains to check the analyticity in the case b 6= 0. By the open mapping theo-
rem, the graph norms of A and A0 are equivalent on Dp. Since (T0(t))t≥0 is analytic by
Proposition 4.1, we can thus estimate

‖AT (t)u‖p ≤ c (‖A0T0(t)S(t)u‖p + ‖T0(t)S(t)u‖p) ≤ c
t‖u‖p

for t ∈ (0, 1] and u ∈ Lp(S); i.e. (T (t))t≥0 is analytic.

In the following corollary we state explicitly some estimates that have been proved along
the proofs and will be needed in the next section to deal with operators having variables
coefficients.

Corollary 4.3. Let −1 < β ≤ − 1
p and b ∈ RN . Then there is a constant C > 0 such that

‖yD2
xu‖p + ‖yD2

xyu‖p + ‖∇xu‖p + ‖Dyu− (β + 1)uy ‖p + ‖yD2
yu− βDyu‖p ≤ C ‖Au‖p

for every u ∈ Dp.

We conclude the section by showing the generation result in a strip with arbitrary width.

Proposition 4.4. Let a > 0 and set Sa = RN × (0, a). Let β ∈ R and b ∈ RN . Then
the operator (−A,Da

p) generates an analytic semigroup on Lp(Sa), where the domain Da
p is

given as in Theorem 4.2 with S replaced by Sa.

Proof. Let T : Lp(Sa) → Lp(S) be defined by Tu(x, y) = u
(
x
a ,

y
a

)
. Then T−1AT en-

dowed with domain T−1Dp generates an analytic semigroup in Lp(Sa). By straightforward
computations T−1AT = a−1A and T−1Dp = Da

p , so that the statement follows.

5 Operators with variable coefficients

In this section we extend our results to operators on S with variable coefficients.
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5.1 Non-isotropic diffusion coefficients

Our investigation starts by considering operators with constant coefficients

Â = −y
N+1∑
i,j=1

aijDij + b · ∇x + βDy,

where aij = aji ∈ R b ∈ RN and β ∈ R. We assume

N+1∑
i,j=1

aijξiξj ≥ α|ξ|2

for some α > 0 and all ξ ∈ RN+1. Set Ma = max |aij |. The role of β in the previous section
is now played by the coefficient

γ = β a−1
N+1N+1.

We are mainly interested in the case where −1 < γ ≤ − 1
p , since in the remaining cases

the domain of the operator has full regularity and one can argue as in [9], see Theorem 6.4
below. Set

Dγ =
{
u ∈ Den

∣∣ y|D2
xu|, y|D2

xyu|, |∇xu|, Dyu− (γ + 1)uy , yD
2
yu− γDyu ∈ Lp(S)

}
(5.1)

and for any u ∈ Dγ

‖u‖Dγ = ‖yD2
xu‖p + ‖yD2

xyu‖p + ‖∇xu‖p + ‖yD2
yu− γDyu‖p + ‖Dyu− (γ + 1)uy ‖p.

The following theorem establishes the sectoriality of (−Â,Dγ).

Proposition 5.1. Assume −1 < γ ≤ − 1
p and the above hypotheses. Then there are con-

stants σ ∈ R and C > 0, depending on N , p, b, γ, Ma and α, such that for every Reλ > σ
and f ∈ Lp(S), there exists a unique solution u in Dγ of λu+ Âu = f . It satisfies

‖u‖p ≤ C|λ|−1‖f‖p

and
‖u‖Dγ ≤ C ‖Âu‖p ≤ C ‖f‖p. (5.2)

Proof. Let ϕ ∈ C2(RN+1). Let Q1 be a non-singular matrix such that
∑N+1
i,j=1 aijDijϕ(z) =

∆ψ(Q1z) whenever ϕ(z) = ψ(Q1z) with z = (x, y). Since the Laplacian is rotation invariant,
we may choose Q = PQ1 with P−1 = P ∗ in such a way that Q∗eN+1 = keN+1 for some
k > 0 and

N+1∑
i,j=1

aijDijϕ(z) = ∆ψ(Qz)

whenever ϕ(z) = ψ(Qz). This identity then yields k2aN+1N+1 = 1. Let Reλ > 0 and
f ∈ Lp(S) be fixed. Let z = (x, y) ∈ S and set Qz = (ξ, η) = ζ. Since the last row of Q
is k eN+1, we deduce that η = ky, therefore Qz ∈ RN × (0, k) = Sk. By a straightforward
computation, the equation λu(z) + Âu(z) = f(z) in S is equivalent to

λkv(ζ)− η∆v(ζ) + b1 · ∇ξv(ζ) + γDηv(ζ) = kf(ζ),
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in Sk for u(z) = v(Qz) and a suitable b1 ∈ RN . Proposition 4.4 yields a unique solution
v ∈ Den of this equation satisfying

η|D2
ξv|, η|D2

ξηv|, |∇ξv|, Dηv − (γ + 1)
v

η
, ηD2

ηv − γDηv ∈ Lp(Sk).

From the formula ∇u(z) = Q∗∇v(Qz) we deduce

Dxiu(z) = 〈∇v(Qz), Qei〉.

This function belongs to Lp(S) since the last component of Qei is zero and |∇ξv| ∈ Lp(Sk).
Analogously, we have

Dyu(z) = 〈∇v(Qz), QeN+1〉 = 〈∇ξv(Qz), q̄〉+ kDηv

where q̄ ∈ RN contains the first N components of QeN+1. It follows that

Dyu(z)− (γ + 1)
u

y
= 〈∇ξv(Qz), q̄〉+ k

(
Dηv − (γ + 1)

v

η

)
which yields Dyu(z) − (γ + 1)uy ∈ L

p(S). Next we compute the second order derivatives,

starting from the general formula D2u(z) = Q∗D2v(Qz)Q. Set Q = (qij). Recalling that
qN+1 i = 0 if i ≤ N and qN+1N+1 = k, we derive

yDxixju = k−1η

N∑
r,s=1

qri qsj Dξrξsv ∈ Lp(S),

yDxiyu = k−1η

N∑
r,s=1

qri qsN+1Dξrξsv + k−1η

N∑
r=1

qri kDξrηv ∈ Lp(S),

yD2
yu− γDyu = k−1η

N∑
r,s=1

qrN+1 qsN+1Dξrξsv + η

N∑
r=1

qrN+1Dξrηv

− γ〈∇ξv(Qz), q̄〉+ k
(
η Dηηv − γDηv

)
∈ Lp(S).

We have shown that there exists a unique solution u in Dγ of λu(z) + Âu(z) = f(z).
Proposition 4.4 also implies the asserted estimates.

Corollary 5.2. Assume −1 < γ ≤ − 1
p . Then there exist σ′, C > 0 such that for every

u ∈ Dγ and λ ∈ C with Reλ > σ′ we have

‖√y∇xu‖p + ‖y Dyu‖p ≤ C |λ|−1/2‖λu+ Âu‖p.

Proof. By Lemma 2.7 (iv) of [9] there exists a constant C > 0 such that

‖√y Dxiu‖Lp(S) ≤ η‖yD2
xiu‖Lp(S) +

C

η
‖u‖Lp(S) (5.3)

for every 0 < η < 1. So the estimates of Proposition 5.1 yield

‖√y Dxiu‖Lp(S) ≤ C η‖Âu‖p +
C

η
‖u‖p ≤ C η‖λu+ Âu‖p +

C

|λ|

(
η|λ|+ 1

η

)
‖λu+ Âu‖p

21



if Reλ > σ. Choosing η = |λ|−1/2, we get the first of the asserted estimates for any λ with
Reλ > σ′ = max{σ, 1}. For the second estimate, we start from the interpolative inequality

‖y Dyu‖Lp(S) ≤ η‖y2D2
yu‖Lp(S) +

C

η
‖u‖Lp(S)

which holds for any 0 < η < 1 and can be proved as (5.3). Then

‖yDyu‖Lp(S) ≤ η‖y(y D2
yu− γDyu)‖Lp(S) + η|γ|‖yDyu‖Lp(S) +

C

η
‖u‖Lp(S).

Since |γ| < 1, choosing η < 1/2 we infer

‖yDyu‖Lp(S) ≤ 2η ‖yD2
yu− γDyu‖Lp(S) +

2C

η
‖u‖Lp(S). (5.4)

We can now argue as before and conclude the proof.

5.2 Operators with x-dependent coefficients

As second step we consider operators of the form

Ã = −y
N+1∑
i,j=1

aij(x)Dij + b(x) · ∇x + β(x)Dy,

whose coefficients depend only on the tangential variables. This step is important to under-
stand the general case. We assume that

(H0) aij = aji, bi and β are bounded and uniformly continuous real functions on RN and
N+1∑
i,j=1

aij(x)ξiξj ≥ α|ξ|2 for some α > 0 and all ξ ∈ RN+1, x ∈ RN ;

(H1) there exists γ0 ∈
]
−1,− 1

p

]
such that β(x) = γ0 aN+1N+1(x) for every x ∈ RN , i.e., the

ratio
β(x)

aN+1N+1(x)
is constant in RN .

Set
Ma,b = max{‖aij‖∞, ‖bi‖∞}.

Proposition 5.3. Assume (H0) and (H1). Then there are constants σ1, C > 0 (depending
on N, p, γ0,Ma,b, α) such that for every Reλ > σ1 and f ∈ Lp(S) there exists a unique

solution u in Dγ0 of the equation λu+ Ãu = f . It satisfies

‖u‖p ≤ C|λ|−1‖f‖p and ‖u‖Dγ0 ≤ C‖f‖p.

Proof. The basic ideas of the proof are the same as Theorem 3.1 in [9] though we have to
take care since the domain of the operator is not a weighted Sobolev space anymore. For
the sake of clarity, we give the complete proof.

1) We first solve λu + Ãu = f . Let {B(xn, r)} be a countable family of balls in RN which
covers RN and such that at most cN among them overlap. To shorten the notation, in the
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sequel we simply write Bn instead of B(xn, r). Let {η2
n} be a partition of unity subordinate

to such a covering; i.e., every ηn is a C∞ function with support contained in Bn, 0 ≤ ηn ≤ 1,∑∞
n=1 η

2
n(x) = 1 for every x ∈ RN and supn∈N ‖ηn‖C2(RN ) < +∞. Let ε > 0 and choose

r > 0 such that

|aij(x)− aij(xn)|+ |bi(x)− bi(xn)| < ε if |x− xn| < r, (5.5)

for every n ∈ N. Set

Ân = −y
N+1∑
i,j=1

aij(xn)Dij + b(xn) · ∇x + β(xn)Dy

and notice that β(xn) a−1
N+1N+1(xn) = γ0 with γ0 defined in (H1). For every f ∈ Lp(S) and λ

with Reλ > σ, Proposition 5.1 then provides a unique un ∈ Dγ0 solving λun+ Ânun = ηnf .
It satisfies

‖un‖p ≤
C

|λ|
‖ηnf‖p and ‖un‖Dγ0 ≤ C‖Ânun‖p,

for some constant C depending on N , p, γ0, M and α, but not on n. Set

Rn(λ)f = ηnun.

Then vn = Rn(λ)f ∈ Dγ0 and

(λ+ Ã)Rn(λ)f = (λ+ Ân)vn + (Ã− Ân)vn = η2
nf + (Ã− Ân)vn + [Ân, ηn]un.

To estimate (Ã−Ân)vn, we add and subtract γ0(aN+1N+1(x)−aN+1N+1(xn))Dyvn. Recalling
(5.5), we thus obtain the pointwise bound

|(Ã− Ân)vn| ≤ C ε
(
|yD2

xvn|+ |yD2
xyvn|+ |∇xvn|+ |yD2

yvn − γ0Dyvn|
)

+
∣∣−γ0(aN+1N+1(x)− aN+1N+1(xn)) + (β(x)− β(xn))

∣∣|Dyvn|.
(5.6)

By (H1) we have

−γ0

(
aN+1N+1(x)− aN+1N+1(xn)

)
+ β(x)− β(xn) = 0

and therefore

‖(Ã−Ân)vn‖p≤ Cε
(
‖yD2

xun‖p+ ‖yD2
xyun‖p+ ‖∇xun‖p+ ‖yDyun‖p+‖yD2

yun−γ0Dyun‖p
)

≤Cε
(
‖Ânun‖p + ‖un‖p

)
≤ Cε

(
(|λ|+ 1)‖un‖p + ‖ηnf‖p

)
≤Cε‖f‖Lp(Bn×(0,1)). (5.7)

Notice that yDyun = y
(
Dyun − (γ0 + 1)uny

)
+ (γ0 + 1)un and therefore ‖yDyun‖p can be

estimated as well. Next, we compute

[Ân, ηn]un = −2y

N+1∑
i,j=1

aij(xn)DiηnDjun −
(
y

N+1∑
i,j=1

aij(xn)Dijηn + b(xn) · ∇xηn
)
un .

By Corollary 5.2 it follows that

‖[Ân, ηn]un‖p ≤
C

|λ|1/2
‖f‖Lp(Bn×(0,1)), (5.8)
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if Reλ > σ′. Set

R(λ)f =

+∞∑
n=1

vn, S(λ)f =

+∞∑
n=1

(
(Ã− Ân)vn + [Ân, ηn]un

)
.

From above we deduce that

(λ+ Ã)R(λ)f = f + S(λ)f. (5.9)

Estimates (5.7) and (5.8) imply that

‖S(λ)f‖p ≤
+∞∑
n=1

Cε‖f‖Lp((Bn×(0,1)) +

+∞∑
n=1

C

|λ|1/2
‖f‖Lp(Bn×(0,1)).

Since at most cN among the balls overlap, we get

‖S(λ)f‖p ≤ cNC
(
ε+

1

|λ|1/2

)
‖f‖p.

We can now choose ε > 0 sufficiently small and |λ| large enough to get ‖S(λ)‖ ≤ 1/2. Hence,
for some ω > 0 and all Reλ ≥ ω the operator I+S(λ) : Lp(S)→ Lp(S) is invertible and its
inverse V (λ) is bounded by ‖V (λ)‖ ≤ 2. Equation (5.9) with V (λ)f instead of f thus shows
that u = R(λ)V (λ)f ∈ Dγ0 solves the equation λu+ Ãu = f satisfying ‖u‖p ≤ C

|λ|‖f‖p.

2) We next show the injectivity of λ+ Ã. According to the notation introduced in the first
step, if u ∈ Dγ0 and Reλ > ω, we can write

Rn(λ)(λ+ Ã)u = η2
nu+ Fnu+Gnu,

where

Fnu = ηn
(
(λ+ Ân)−1(Ã− Ân)(ηnu)

)
, Gnu = ηn

(
(λ+ Ân)−1

(
[ηn, Ã]u

))
.

Summing over n, it turns out that

+∞∑
n=1

Rn(λ)(λ+ Ã)u = u+

+∞∑
n=1

(Fnu+Gnu),

for every u ∈ Dγ0 . Let u ∈ Dγ0 satisfy (λ+ Ã)u = 0. The expression above implies that

u = −
+∞∑
n=1

(
Fnu+Gnu

)
. (5.10)

We claim that u = 0. To prove this, we need to bound ‖u‖Dγ0 and ‖u‖p. It is useful to set

‖v‖p,n = ‖v‖Lp(Bn×(0,1)),

‖v‖γ0,n = ‖y D2
xv‖p,n + ‖y D2

xyv‖p,n + ‖∇xv‖p,n + ‖yD2
yv − γ0Dyv‖p,n

+ ‖Dyv − (γ0 + 1) vy‖p,n + ‖v‖p,n.
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We estimate Fnu and Gnu for every n ≥ 1. To simplify the notation, we define

fn = (Ã− Ân)(ηnu), gn = [ηn, Ã]u,

ϕn = (λ+ Ân)−1fn, ψn = (λ+ Ân)−1gn.

As a consequence, we can write Fnu = ηnϕn and Gnu = ηnψn. It is easily seen that

‖Fnu‖Dγ0 ≤ ‖ϕn‖γ0,n + C
(
‖ϕn‖p,n + ‖√y∇xϕn‖p,n + ‖yDyϕn‖p,n

)
. (5.11)

Estimates (5.2) and (5.6) imply

‖ϕn‖γ0,n ≤ C‖fn‖p ≤ Cε‖ηnu‖γ0,n,

‖ϕn‖p,n ≤
C

|λ|
‖fn‖p ≤

Cε

|λ|
‖ηnu‖γ0,n.

On the other hand, Corollary 5.2 yields

‖√y∇xϕn‖p,n + ‖yDyϕn‖p,n ≤
C

|λ|1/2
‖fn‖p ≤

Cε

|λ|1/2
‖ηnu‖γ0,n (5.12)

for |λ| ≥ 1. As

‖ηnu‖γ0,n ≤ ‖u‖γ0,n + C
(
‖u‖p,n + ‖∇xu‖p,n + ‖yDyu‖p,n

)
≤ ‖u‖γ0,n,

we finally obtain

‖Fnu‖Dγ0 ≤
(
Cε+

C

|λ|1/2

)
‖ηnu‖γ0,n ≤

(
Cε+

C

|λ|1/2

)
‖u‖γ0,n (5.13)

We also need a better estimate of the Lp norm of Fnu, namely,

‖Fnu‖p ≤
C

|λ|
‖fn‖p ≤

C

|λ|
‖u‖γ0,n, (5.14)

which easily follows from Proposition 5.1. Next, we consider the term Gnu. Observe that

‖gn‖p ≤ C(‖u‖p,n + ‖√y∇xu‖p,n + ‖y Dyu‖p,n).

Replacing ϕn and fn by ψn and gn, respectively, in (5.11)–(5.12), we then infer

‖Gnu‖Dγ0 ≤ C(‖u‖p,n + ‖√y∇xu‖p,n + ‖y Dyu‖p,n), (5.15)

and

‖Gnu‖p ≤
C

|λ|
‖gn‖p ≤

C

|λ|
‖u‖γ0,n. (5.16)

Formulas (5.10), (5.13) and (5.15) lead to

‖u‖Dγ0 ≤
+∞∑
n=1

(
Cε+

C

|λ|1/2

)
‖u‖γ0,n +

+∞∑
n=1

C(‖u‖p,n + ‖√y∇xu‖p,n + ‖y Dyu‖p,n)

≤ cNC
(
Cε+

C

|λ|1/2

)
‖u‖Dγ0 + cNC(‖u‖p + ‖√y∇xu‖p + ‖y Dyu‖p).
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We can now fix a sufficiently small ε > 0 and choose sufficiently large |λ| to obtain

‖u‖Dγ0 ≤ C(‖u‖p + ‖√y∇xu‖p + ‖y Dyu‖p).

The interpolative estimates (5.3) and (5.4) then yield

‖u‖Dγ0 ≤ C‖u‖p.

Moreover, from (5.10), (5.14) and (5.16) it follows that

‖u‖p ≤
C

|λ|
‖u‖Dγ0 .

Combining the last two estimates, we conclude

‖u‖Dγ0 ≤
C

|λ|
‖u‖Dγ0 .

Taking large |λ|, we arrive at u = 0. Therefore, λ+ A : Dγ0 → Lp(S) is bijective for every
λ ∈ C with sufficiently large real part. By step 1), the operator A is sectorial which also
implies last estimate in the statement.

As in Corollary 5.2 one obtains mixed estimates.

Corollary 5.4. Assume (H0) and (H1). Then there are constants σ′1, C > 0 such that for
every u ∈ Dγ0 and λ ∈ C with Reλ > σ′1 we have

‖√y∇xu‖p + ‖y Dyu‖p ≤ C |λ|−1/2‖λu+ Ãu‖p.

5.3 General operators

Finally we consider general operators

A = −y
N+1∑
i,j=1

aij(x, y)Dij + b(x, y) · ∇x + β(x, y)Dy,

under the following assumptions on the coefficients.

(Ha) aij = aji, bi, β are bounded, uniformly continuous real functions on RN × [0, 1] such

that
N+1∑
i,j=1

aij(x, y)ξiξj ≥ α|ξ|2 for some α > 0 and all ξ ∈ RN+1, x ∈ RN , y ∈ [0, 1];

(Hb) there exists γ0 ∈
]
−1,− 1

p

]
such that

β(x, 0) = γ0aN+1N+1(x, 0)

for every x ∈ RN , i.e., the ratio
β(x, 0)

aN+1N+1(x, 0)
is constant;

(Hc) there exists L > 0 such that sup
x∈RN

∣∣∣∣ β(x, y)

aN+1N+1(x, y)
− β(x, 0)

aN+1N+1(x, 0)

∣∣∣∣ ≤ L|y| for some

δ̄ > 0 and every y ∈ [0, δ̄].
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Set
M = max{‖aij‖∞, ‖bi‖∞, ‖β‖∞}.

Recall the definition of Dγ0 in (5.1).

Theorem 5.5. Assume (Ha), (Hb) and (Hc). Then there are constants σ2, C > 0 (depend-
ing on N, p, γ0,M, α) such that for every Reλ > σ2 and f ∈ Lp(S), there exists a unique
solution u in Dγ0 of the equation λu+Au = f . It satisfies

‖u‖p ≤ C|λ|−1‖f‖p and ‖u‖Dγ0 ≤ C‖f‖p.

Proof. We construct the solution by splitting the problem into one for the operator

Ã0 = −y
N+1∑
i,j=1

aij(x, 0)Dij + b(x, 0) · ∇x + β(x, 0)Dy

and one for the realization A0 of the nondegenerate operator A in Lp(RN×I2) with Dirichlet
boundary conditions. Let ε > 0. By (Ha) there exists δε > 0 such that

|aij(x, y)− aij(x, 0)|+ |bi(x, y)− bi(x, 0)| ≤ ε,

for every x ∈ RN and y with |y| < δε, for every i, j. Without loss of generality we assume
that δε < δ̄, where δ̄ is given in (Hc). Set I1 = (0, δε) and I2 = ( δε2 , 1). Choose functions

η1, η2 ∈ C∞(R) such that 0 ≤ η1, η2 ≤ 1, supp η1 ⊆ (−δε, δε), supp η2 ⊆ R \ (− δε2 ,
δε
2 ) and

η2
1 + η2

2 = 1. Fix f ∈ Lp(S) and define

R(λ)f = η1(λ+ Ã0)−1(η1f) + η2(λ+A0)−1(η2f)

on S, where ηi = ηi(y) and the functions are restricted and extended by 0 appropriately.
Then R(λ)f ∈ Dγ0 and, setting u1 = (λ+ Ã0)−1(η1f) and u2 = (λ+A0)−1(η2f), we get

(λ+A)R(λ)f = f + η1(A− Ã0)u1 + [A, η1]u1 + [A, η2]u2.

The proof then proceeds as that of Proposition 5.3. We explain the only change which
regards the estimate of (A− Ã0)u1 (see (5.6)) and in particular the coefficient of Dyu1. It
is now given by

c(x, y) = −γ0aN+1N+1(x, y) + β(x, y) = aN+1N+1(x, y)

(
β(x, y)

aN+1N+1(x, y)
− β(x, 0)

aN+1N+1(x, 0))

)
.

Thanks to assumption (Hc), the estimate

|c(x, y)| ≤ML |y|, and thus |c(x, y)Dyu1| ≤ Cy|Dyu1|,

holds true for any (x, y) ∈ RN × I1. As in (5.7) and using Corollary 5.4, we deduce

‖η1(A− Ã0)u1‖p ≤ C(ε‖f‖Lp(RN×I1) + ‖yDyu1‖Lp(RN×I1)) ≤ C
(
ε+

1

|λ|1/2
)
‖f‖Lp(RN×I1).

Moreover, as in (5.8) we estimate

‖[A, η1]u1‖p ≤
C

|λ|1/2
‖f‖Lp(RN×I1),

if |λ| is large enough. The term [A, η2]u2 is treated similarly, invoking classical estimates.
The remaining part of the proof can be performed adapting the ideas of Proposition 5.3.
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6 The localization procedure

Let Ω be a bounded open subset of RN+1 with boundary of class C2 and let % be a function
in C2(RN+1) such that

Ω = {% > 0}, ∂Ω = {% = 0} and ∇%(ξ) = ν(ξ), ξ ∈ ∂Ω.

Here, ν(ξ) is the inward unitary normal vector to ∂Ω at ξ. Such a function % can be
constructed by extending the distance function from the boundary of Ω. Let us introduce
the operator L defined as

L = −%(ξ)

N+1∑
i,j=1

aij(ξ)Dij +

N+1∑
i=1

bi(ξ)Di, ξ ∈ Ω. (6.1)

In the remainder of the section we shall assume the following conditions on the coefficients.

(H1) aij = aji are real–valued functions in C1(Ω) and satisfy the ellipticity condition

N+1∑
i,j=1

aij(ξ)ζiζj ≥ µ0|ζ|2

for some constant µ0 > 0 and all ξ ∈ Ω, ζ ∈ RN+1.

(H2) bi are real–valued functions in C1(Ω).

(H3) There exists m ∈ ]−1,− 1
p ] such that

m =
b(ξ) · ν(ξ)

〈a(ξ)ν(ξ), ν(ξ)〉

for all ξ ∈ ∂Ω, where b = (b1, . . . , bN+1).

Define
M = max

1≤i,j≤N+1
{‖aij‖∞, ‖bi‖∞}.

Let ξ0 ∈ ∂Ω be fixed. Following [9] and [10], in a neighborhood U = U(ξ0) of ξ0 we consider

functions θ1, . . . , θN ∈ C2(U) solving the equation

N+1∑
i=1

∂i%(ξ) ∂iθ(ξ) = 0, ξ ∈ U, (6.2)

such that ∇θ1(ξ0), . . . ,∇θN (ξ0) are linearly independent. We then define the transformation

J : U → RN+1, ξ 7→ (θ(ξ), %(ξ))

where θ(ξ) = (θ1(ξ), . . . , θN (ξ)). Due to (6.2), the Jacobian matrix of J at ξ0 is non–
singular. Therefore, possibly taking U smaller, we obtain that J is a C2–diffeormorphism
from U onto J(U). It further holds that

J(U ∩ Ω) = J(U) ∩ RN+1
+ J(U ∩ ∂Ω) = J(U) ∩ {y = 0}.
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So (U, J) is a local chart. We denote by H the inverse of J . We can cover ∂Ω by the finite
union V = U1∪· · ·∪Um of open sets of the above type. Thus, below we may always assume
that U(ξ0) ⊂ Ui for some of the Ui and that J and H are restrictions of the diffeomorphism
on Ui. Hence, all the derivatives of J and H up to the second order may be assumed to be
bounded by a constant independent of ξ0. To fix the notation, we suppose that

‖Jk‖∞ + ‖∇Jk‖∞ + ‖D2Jk‖∞ ≤ L,

‖Hk‖∞ + ‖∇Hk‖∞ + ‖D2Hk‖∞ ≤ L

for any k = 1, . . . , N + 1. Such local coordinates have the advantage of transforming all the
vectors ∇%(ξ) at points ξ ∈ U ∩ Ω into the normal direction at {y = 0} because of(

Jac J(ξ)
)
∇%(ξ) =

∣∣∇%(ξ)
∣∣2eN+1.

It follows that (
JacH(z)

)
eN+1 =

∇%(ξ)

|∇%(ξ)|2
(6.3)

for z = J(ξ). Define φ(z) = %(Hz), for z ∈ J(U) ∩ RN+1
+ . Using Taylor’s formula with

respect to the last variable, for z = (x, y) we find that

φ(z) = φ(x, y) = φ(x, 0) + ∂yφ(x, t) y

for some t ∈ (0, y). Recalling (6.3), we obtain

∂yφ(z) =
〈
∇%(Hz),

(
JacH(z)

)
eN+1

〉
= 1

with ξ = Hz. Therefore
φ(z) = y z ∈ J(U) ∩ RN+1

+ .

Given a function u : U ∩ Ω→ R, set

Tu = u ◦H on J(U) ∩ RN+1
+ .

Of course,
u ∈ Lp(U ∩ Ω) ⇐⇒ Tu ∈ Lp(J(U) ∩ RN+1

+ ).

If u ∈W 2,p
loc (U ∩ Ω), then one can check that ∇Tu = (JacH)∗(∇u) ◦H. Therefore

%|∇u| ∈ Lp(U ∩ Ω) ⇐⇒ y|∇Tu| ∈ Lp(J(U) ∩ RN+1
+ ).

Moreover, equality (6.3) yields

DyTu(z) = 〈∇Tu(z), eN+1〉 =
∇%(ξ) · ∇u(ξ)

|∇%(ξ)|2

for ξ = Hz which implies

DyTu(z)− (m + 1)
Tu(z)

y
=
∇%(ξ) · ∇u(ξ)

|∇%(ξ)|2
− (m + 1)

u(ξ)

%(ξ)
. (6.4)

By the definition of J we infer that(
Jac J(ξ)

)∗
eN+1 = ∇%(ξ)
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implying
〈(JacH)ei,∇%〉 = 〈ei, (JacH)∗∇%〉 = 〈ei, eN+1〉 = 0

for every i = 1, . . . , N . As Dxi(Tu)(z) = 〈∇u(ξ), (JacH)ei〉, we have

Dxi(Tu) ∈ Lp(J(U) ∩ RN+1
+ ) ⇐⇒ 〈∇u, τ〉 ∈ Lp(U ∩ Ω),

for any τ such that 〈τ,∇%(ξ)〉 = 0 for ξ ∈ U ∩ Ω. Concerning second order derivatives, we
first compute

D2
xixjTu =

〈
(D2u)(JacH)ei, (JacH)ej

〉
+

N+1∑
`=1

D`uDxixjH`.

Let u satisfy %|∇u| ∈ Lp(U ∩ Ω). Then

yD2
x(Tu) ∈ Lp(J(U) ∩ RN+1

+ ) ⇐⇒ %〈(D2u)τ, τ̃〉 ∈ Lp(U ∩ Ω),

for any τ and τ̃ such that 〈τ,∇%(ξ)〉 = 0 and 〈τ̃ ,∇%(ξ)〉 = 0, respectively, for ξ ∈ U ∩ Ω.
Notice that %|∇u| ∈ Lp(U ∩ Ω) follows if one supposes that the right hand side of (6.4)
belongs to Lp(U ∩ Ω) as well as 〈∇u, τ〉. Analogously,

yDxy(Tu) ∈ Lp(J(U) ∩ RN+1
+ ) ⇐⇒ %〈(D2u)τ,∇%〉 ∈ Lp(U ∩ Ω),

for any τ such that 〈τ,∇%(ξ)〉 = 0 for ξ ∈ U ∩ Ω. Finally, by the identity

yDyyTu−mDyTu =
%
〈
(D2u)∇%,∇%

〉
|∇%|4

−m
∇% · ∇u
|∇%|2

+

N+1∑
`=1

%D`uDyyH`

it holds

yDyyTu−mDyTu ∈ Lp(J(U)∩RN+1
+ ) ⇐⇒ %〈(D2u)∇%,∇%〉

|∇%|2
−m∇% ·∇u ∈ Lp(U ∩Ω).

Moreover, all the constants involved in these equivalences are independent of ξ0. We define
D(L) as follows.

Definition 6.1. A function u ∈ Lp(Ω) ∩W 2,p
loc (Ω) belongs to D(L) iff

〈∇u, τ〉 ∈ Lp(Ω) for any τ s.t. 〈τ,∇%〉 = 0,

∇% · ∇u
|∇%|2

− (m + 1)
u

%
∈ Lp(Ω),

%〈(D2u)∇%,∇%〉
|∇%|2

−m∇% · ∇u ∈ Lp(Ω), (6.5)

%〈(D2u)τ, τ̃〉 ∈ Lp(Ω), %〈(D2u)τ,∇%〉 ∈ Lp(Ω) for any τ, τ̃ s.t. 〈τ,∇%〉 = 0, 〈τ̃ ,∇%〉 = 0,

where m is given in (H3).

Remark 6.2. If u ∈ D(L) then %|∇u| ∈ Lp(Ω). This can be seen by the first requirement
of (6.5) and the second one after a multiplication by %.

The differential operator L is locally transformed into the operator L given by

L = −y
N+1∑
h,k=1

αhk(z)∂hk +

N+1∑
k=1

(
γk(z)− yβk(z)

)
∂k (6.6)
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with the coefficients

αhk(z) =

N+1∑
i,j=1

aij(Hz)∂ξjJh(Hz)∂ξiJk(Hz),

βk(z) =

N+1∑
i,j=1

aij(Hz)∂ξiξjJk(Hz),

γk(z) =

N+1∑
i=1

bi(Hz)∂ξiJk(Hz).

(6.7)

Notice that the sup–norms of all the coefficients of L are controlled by constants depending
on M, L, ‖D2%‖∞, but not on ξ0. In order to deal with the class of operators introduced in
§5.3, we shall verify that L satisfies assumptions (Hb) and (Hc). Since

γN+1(x, 0) = b(ξ) · ν(ξ)

αN+1N+1(x, 0) = 〈a(ξ)ν(ξ), ν(ξ)〉

for ξ ∈ ∂Ω ∩ U , (H3) yields that (Hb) is fulfilled with γ0 = m. Next, consider the ratio

γN+1(z)− yβN+1(z)

αN+1N+1(z)
=

γN+1(z)

αN+1N+1(z)
− y βN+1(z)

αN+1N+1(z)

and set

Ψ(z) =
γN+1(z)

αN+1N+1(z)
= Tψ,

where ψ = b·∇%
〈a∇%,∇%〉 . It follows that

DyΨ =
∇%(ξ) · ∇ψ(ξ)

|∇%(ξ)|2
=
∇%(ξ)

|∇%(ξ)|2
· ∇
(

b · ∇%
〈a∇%,∇%〉

)
and this function is bounded in a neighborhood of {y = 0} by the boundedness of the
coefficients aij , bi and their first order derivatives. Therefore the operator L verifies (Hc).
Eventually we are ready to state the main result of the section.

Theorem 6.3. Assume (H1), (H2) and (H3). The operator −L from (6.1) endowed with
the domain D(L) given in Definition 6.1 is sectorial in Lp(Ω).

Proof. We only sketch the proof. We cover Ω by the open sets U1, . . . , Um constructed
before and an open set Ω0 whose closure is contained in Ω. We construct a solution in
D(L) of the resolvent equation λu+Lu = f , for a given function f ∈ Lp(Ω), by solving the
equations λu+Lu = fηi in Ui for i = 1, . . . ,m and λu+Lu = fη0 in Ω0, where {η2

i }mi=0 is a
partition of unity subordinate to the covering {Ω0, U1, . . . , Um}. The equation λu+Lu = fη0

admits a unique solution u0 ∈ W 1,p
0 (Ω0) ∩W 2,p(Ω0), by classical results for nondegenerate

operators. For every i = 1, . . . ,m there exists a unique solution ui ∈ D(L) of the equation
λu+Lu = fηi, obtained by using the local chart constructed before and applying the results
of subsection 5.3 to the transformed operator. One then has to glue together the functions
u0, . . . , um as in the proof of Theorem 5.3. To this aim, we observe that the commutators
that turn out from the computations are first order operators involving the first order
derivatives multiplied by %. These terms are estimated by interpolative inequalities which
are obtained from those of Corollary 5.2 via local charts. The injectivity of λ+ L on D(L)
can be proved by similar arguments.
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For completeness, we also state the variants of the above result if β > −1/p or β ≤ −1
on the level of the model problem. We omit the proof since it can be carried out as in [9]
based on the domain descriptions in Theorem 4.2. As noted, these results have already been
proved in [9] and [23] by different methods. We use the function

q(ξ) =
b(ξ) · ν(ξ)

〈a(ξ)ν(ξ), ν(ξ)〉
, ξ ∈ ∂Ω,

and the domains

Dreg(L) = {u ∈W 2,p
loc (Ω) ∩W 1,p(Ω) | %D2u ∈ Lp(Ω)},

D0
reg(L) = {u ∈W 2,p

loc (Ω) ∩W 1,p
0 (Ω) | %D2u ∈ Lp(Ω)}.

Theorem 6.4. Assume (H1) and (H2). If also min
∂Ω

q > −1/p, then −L from (6.1) endowed

with the domain D0
reg(L) is sectorial in Lp(Ω). If max

∂Ω
q ≤ −1, then −L on Dreg(L) is

sectorial in Lp(Ω).

Example 6.5. Let us consider Ω = B1(0) in RN+1 and the operator

L = −(1− |ξ|2)∆ + c ξ · ∇

for c constant. Then % = 1− |ξ|2 and ∇% = −2ξ. Therefore

b · ∇%
〈a∇%,∇%〉

= − c
2

The above theorems then show:

• If 2
p ≤ c < 2 then −L generates an analytic semigroup in Lp(Ω) endowed with the

domain given in Definition 6.1.

• If c < 2
p then −L generates an analytic semigroup endowed with domain D0

reg(L).

• If c ≥ 2, then −L generates an analytic semigroup endowed with domain Dreg(L).
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