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Abstract. We prove a sharp quantitative version of the p-Sobolev inequality for any 1 < p < n, with
a control on the strongest possible distance from the class of optimal functions. Surprisingly, the sharp
exponent is constant for p ≤ 2, while it depends on p for p > 2.

1. Introduction

Motivated by important applications to problems in the calculus of variations and evolution PDEs,
recently, there has been a growing interest in understanding quantitative stability for functional and
geometric inequalities. For instance, there have been several works investigating the stability of Sobolev
and Sobolev-type inequalities [3, 2, 9, 29, 10, 31, 8, 25, 37, 6, 26, 35, 36], isoperimetric inequalities
[30, 24, 11, 22, 27], and the Brunn-Minkowski inequality [23, 18, 19, 32, 33], with a variety of applications
[20, 7, 12, 14, 21, 15]. The interested reader may also look at [17, 28, 4] for further bibliography, also
related to the stability of other inequalities.

Following this line of research, in this paper we shall investigate the stability of minimizers to the
classical Sobolev inequality.

1.1. The Sobolev inequality. The question of quantitative stability for the Sobolev inequality was
first raised by Brezis and Lieb [5]. Before describing the problem and the state of the art, we first
introduce some useful definitions.

Given n ≥ 2 and 1 < p < n, denote by Ẇ 1,p(Rn) the closure of C∞c (Rn) with respect to the norm

‖u‖Ẇ 1,p(Rn) =

(∫
Rn
|Du|p dx

) 1
p

.

The Sobolev inequality guarantees the existence of a positive constant S = S(n, p) such that

‖Du‖Lp(Rn) ≥ S‖u‖Lp∗ (Rn),

where p∗ = np
n−p . We call the largest constant S satisfying this property the optimal Sobolev constant.

Let M be the (n+ 2)-dimensional manifold of all functions of the form

va,b,x0(x) :=
a(

1 + b|x− x0|
p
p−1

)n−p
p

, a ∈ R \ {0}, b > 0, x0 ∈ Rn.

As shown in [1, 39, 13], M coincides with the space of all weak solutions to the equation

−∆pv = Sp‖v‖p−p
∗

Lp∗ (Rn)
|v|p∗−2v in Rn (1.1)

that do not change sign. Here, S is the optimal Sobolev constant and

−∆pv = div(|Dv|p−2Dv).
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It is also proven that M coincides with the set of all the extremal functions in the Sobolev inequality;
in particular,

‖Dv‖Lp(Rn) = S‖v‖Lp∗ (Rn) ∀ v ∈M.

1.2. The stability question: the generalized Brezis-Lieb’s problem. To formulate our stability
problem, we introduce the notion of p-Sobolev deficit:

δ(u) :=
‖Du‖Lp(Rn)

‖u‖Lp∗ (Rn)

− S ∀u ∈ Ẇ 1,p(Rn). (1.2)

Note that δ ≥ 0, and it vanishes only on M.

In [5], Brezis and Lieb asked whether, for p = 2, the deficit can be estimated from below by some
appropriate distance between u and M, together with a suitable decay. This problem was settled few
years later by Bianchi and Egnell [3]: they showed the existence of a constant c = c(n) > 0 such that

δ(u) ≥ c inf
v∈M

(‖Du−Dv‖L2(Rn)

‖Du‖L2(Rn)

)2

∀u ∈ Ẇ 1,2(Rn).

This estimate is optimal both in terms of the strength of the distance from M, and in terms of the
exponent 2 appearing in the right hand side.

After this work, it became immediately of interest understanding whether Brezis-Lieb’s question
could be solved also for general values of p. Unfortunately, Bianchi-Egnell’s method heavily depended
on the Hilbert structure of Ẇ 1, 2(Rn), so new ideas and techniques were needed.

Almost 20 years later, in [10], Cianchi, Fusco, Maggi, and Pratelli proved a stability version for every
p ∈ (1, n) with distance given by

inf
v∈M

(‖u− v‖Lp∗ (Rn)

‖u‖Lp∗ (Rn)

)α
∀u ∈ Ẇ 1,p(Rn), (1.3)

together with the explicit decay exponent α = αCFMP :=
[
p∗
(

3 + 4p− 3p+1
n

)]2
. Although most likely

the result was not sharp, this was the first stability result valid for the full range of p. In addition, their
proof introduced in this problem a beautiful combination of techniques coming from symmetrization
theory and optimal transport.

These technique were further developed by Figalli, Maggi, and Pratelli in [25] to provide a sharp
stability result —both in terms of the notion of distance and of the decay exponent— in the special
case p = 1 (for this case, see also the earlier results [9, 28, 29]).

Still, until few years ago, it remained a major open problem whether the p-Sobolev deficit could
control the closeness to M at the level of the gradients (i.e., the strongest distance that one may hope
to control with δ(u)), as in the case of Bianchi and Egnell.

A first answer to this question was given by Figalli and Neumayer in [26] in the case p > 2, where

they developed in Ẇ 1,p(Rn) a suitable analogue of the strategy in [3] to prove the existence of a constant
c = c(n, p) > 0 such that

δ(u) ≥ c inf
v∈M

(‖D(u− v)‖Lp(Rn)

‖Du‖Lp(Rn)

)α
∀u ∈ Ẇ 1,p(Rn), (1.4)

where α = pαCFMP with αCFMP as above. The appearance of the exponent αCFMP comes from the fact
that, in one of the steps in the proof, the authors need to rely on the result in [10].

Very recently, in [36], Neumayer extended (1.4) to the full range 1 < p < n. While her proof is much
simpler than the one in [26], it relies heavily on the result in [10] and her strategy cannot give the sharp
exponent in (1.4), even if one could prove (1.3) with a sharp exponent. In particular, her approach
provides the same exponent as the one in [26] when p > 2, while it gives (1.4) with α = p

p−1αCFMP when

p ∈ (1, 2).



SHARP GRADIENT STABILITY FOR THE SOBOLEV INEQUALITY 3

Despite all these developments, the stability exponent appearing in all these previous results was far
from optimal. The aim of this paper is to give a final answer to this problem by proving (1.4) for all
1 < p < n with a sharp exponent.

Here is our theorem:

Theorem 1.1. Let 1 < p < n, and define δ( · ) as in (1.2). There exists a constant c = c(n, p) > 0
such that (1.4) holds with α = max{2, p}.

Remark 1.2. The decay exponent α = max{2, p} is sharp, as we now explain.
Fix v = v1,1,0 ∈M and consider first ui := v(Aix), where Ai ∈ Rn×n denotes the diagonal matrix

Ai = diag

(
1, . . . , 1, 1 +

1

i

)
.

It is not difficult to check that δ(ui) behaves as i−2, while the right hand side of (1.4) behaves as i−α,
hence (1.4) cannot hold with α < 2.
On the other hand, fix ϕ ∈ C∞c (B1) a nontrivial function, and consider now ũi := v + ϕ(xi + ·), where
xi ∈ Rn is a sequence of points converging towards ∞. One can check that

‖Dũi‖pLp(Rn) = ‖Dv‖pLp(Rn) + ‖Dϕ‖pLp(Rn) + ri,1

and

‖ũi‖p
∗

Lp∗ (Rn)
= ‖v‖p

∗

Lp∗ (Rn)
+ ‖ϕ‖p

∗

Lp∗ (Rn)
+ ri,2,

with |ri,1| + |ri,2| ≤ C
(
v(xi) + |Dv(xi)|

)
≤ Cv(xi) → 0 as i → ∞. Hence, choosing a sequence εi → 0

such that v(xi)� εi � 1, the functions ûi := v + εiϕ(xi + ·) satisfy

‖Dûi‖pLp(Rn) = ‖Dv‖pLp(Rn) + εpi ‖Dϕ‖
p
Lp(Rn) + o(εpi )

and

‖ûi‖p
∗

Lp∗ (Rn)
= ‖v‖p

∗

Lp∗ (Rn)
+ εp

∗

i ‖ϕ‖
p∗

Lp∗ (Rn)
+ o(εp

∗

i ).

Thanks to these facts, one easily deduces that δ(ûi) behaves as εpi , while the right hand side of (1.4)
behaves as εαi . Thus (1.4) cannot hold with α < p.

1.3. Strategy of the proof. As in [26], the beginning of the proof follows [3].
More precisely, given u close to M, one chooses v ∈ M close to u and set ϕ := u−v

‖∇u−∇v‖Lp(Rn)
and

ε := ‖∇u − ∇v‖Lp(Rn), so that u can be written as v + εϕ. Then one expands δ(u) in ε, and aims to
use this expansion to control ∇ϕ in Lp.

When p = 2, as shown in [3], the expansion of δ(u) gives

δ(v + εϕ) = ε2Qv[ϕ] + o
(
ε2‖Dϕ‖2L2(Rn)

)
,

where Qv[ · ] is a quadratic form depending on v. In addition, if ϕ is orthogonal to TvM in the weighted
space L2(Rn; v2∗−2), spectral analysis shows that Qv[ϕ] controls ‖Dϕ‖2L2 from above, thus

δ(v + εϕ) ≥ cε2‖Dϕ‖2L2(Rn) + o
(
ε2‖Dϕ‖2L2(Rn)

)
.

Hence the result follows for ε� 1, provided orthogonality can be ensured. In the case p = 2, this can
be easily guaranteed by choosing v which minimizes

M 3 v 7→ ‖∇u−∇v‖L2(Rn),

completing the proof.

For p > 2, in [26] the authors tried to mimic the strategy of [3]. More precisely, the expansion of
δ(u) gives

δ(v + εϕ) = ε2Qv[ϕ] + o
(
ε2‖Dϕ‖2Lp(Rn)

)
,
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where Qv[ · ] is a quadratic form depending on v and p. Again, if ϕ is orthogonal to TvM in the weighted
space L2(Rn; vp

∗−2), spectral analysis shows that Qv[ϕ] controls the weighted norm ‖Dϕ‖2L2(Rn;|Dv|p−2)

from above, thus
δ(v + εϕ) ≥ cε2‖Dϕ‖2L2(Rn;|Dv|p−2) + o

(
ε2‖Dϕ‖2Lp(Rn)

)
.

Unfortunately, now this argument is not sufficient, since for p > 2 the Lp norm of Dϕ may not be
controllable by its weighted L2 norm. Furthermore, finding the correct orthogonality condition in this
non-Hilbertian context requires new ideas. All this creates a series of challenges that were overcome in
[26] by relying also on the Lp

∗
stability result of [10], as explained in detail in [26, Section 2].

In this paper, to handle the general case 1 < p < n and prove a stability estimate with sharp exponent,
we need to face several new difficulties. The idea is again to expand the deficit δ(v+ εϕ). However, the
argument in [26] shows that, for p 6= 2, a standard Taylor expansion creates error terms that cannot
be controlled. Even worse, a second order expansion of the deficit naturally leads to a quadratic form
consisting of a weighted Ẇ 1,2 and a weighted L2 norm. However, when p < 2, the Ẇ 1,p norm is weaker
than any weighted Ẇ 1,2 norm, so we cannot expand the deficit at order 2 (this was the main reason
why [26] could only deal with the case p ≥ 2). In addition, when p ≤ 2n

n+2 (equivalently p∗ ≤ 2), the

Lp
∗

norm is not sufficient to control any weighted L2 norms, and this creates even further challenges.
For all these reasons, our arguments are different in the three regimes p ∈ (1, 2n

n+2 ], p ∈ ( 2n
n+2 , 2), and

p ∈ [2, n).
To briefly explain the main ideas in the proof, let us focus on the case p ∈ (1, 2n

n+2 ] (note that this

set is nonempty only for n ≥ 3). As mentioned above, a first problem consists in understanding how
to expand the deficit. With no loss of generality, we can assume that v > 0.

Our first new tool is provided by the following inequalities: for any κ > 0 there exists C1 > 0 such
that, for ε sufficiently small,

‖Dv + εDϕ‖pLp(Rn) ≥
∫
Rn
|Dv|p dx+ εp

∫
Rn
|Dv|p−2Dv ·Dϕdx

+
ε2p(1− κ)

2

(∫
Rn
|Dv|p−2|Dϕ|2 + (p− 2)|w|p−2

(
|Du| − |Dv|

ε

)2

dx

)
and

‖v + εϕ‖p
Lp∗ (Rn)

≤ ‖v‖p
Lp∗ (Rn)

+ ‖v‖p−p
∗

Lp∗ (Rn)

(
εp

∫
Rn
vp
∗−1ϕdx+ ε2

(
p(p∗ − 1)

2
+
pκ

p∗

)∫
Rn

(v + C1|εϕ|)p
∗

v2 + |εϕ|2
|ϕ|2 dx

)
,

where w = w(Dv,Du) is obtained by taking a suitable combination of Dv and Du (depending on their
respective sizes) as in Lemma 2.1.

Combining these inequalities and using (1.1), one gets

C(n, p)δ(u) ≥ ε2p(1− κ)

2

(∫
Rn
|Dv|p−2|Dϕ|2 + (p− 2)|w|p−2

(
|Du| − |Dv|

ε

)2

dx

)
− ε2‖v‖p−p

∗

Lp∗ (Rn)
Sp
(
p(p∗ − 1)

2
+
pκ

p∗

)∫
Rn

(v + C1|εϕ|)p
∗

v2 + |εϕ|2
|ϕ|2 dx, (1.5)

so the result would be proved if we could show that, under some suitable orthogonality relation between

v and ϕ, the right hand side above controls ‖εDϕ‖max{2,p}
Lp(Rn) for ε � 1. Unfortunately this is false for

p < 2, since

ε2|Dv|p−2|Dϕ|2 + (p− 2)|w|p−2
(
|Du| − |Dv|

)2 ∼ ε|Dv|p−1|Dϕ| for |Dv| ≤ ε|Dϕ|
(cp. (2.2)), and in general this weighted W 1,1 norm of ϕ is not enough to control the last term in (1.5).
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Hence, our second goal consists in showing that we can improve the expansion of ‖Dv+ εDϕ‖pLp(Rn)

(see Lemma 2.1), so that we can add the extra term

c0

∫
Rn

min
{
εp|Dϕ|p, ε2|Dv|p−2|Dϕ|2

}
dx (1.6)

to the right hand side of (1.5). With this extra term at our disposal, we now want to use the right

hand side of (1.5) to control ‖εDϕ‖max{2,p}
Lp(Rn) .

The main idea behind the proof of this fact consists of two steps:
(a) show that the result is true if one replaces the two integrands in the right hand side of (1.5) by
their limit as ε→ 0;
(b) prove that the result holds also for ε sufficiently small.

The argument for Step (a) is relatively standard (although delicate), and it boils down to proving
a compact embedding and performing a Sturm-Liouville analysis with singular weights, see Proposi-
tions 3.2 and 3.6 and Appendix B.

On the other hand, Step (b) turns out to be highly challenging. A key difficulty comes from the fact
that the integrand appearing in the last term of (1.5) behaves like vp

∗−2|ϕ|2 when |ϕ| � v
ε , and like

εp
∗−2|ϕ|p∗ otherwise. Analogously, the integrand inside the extra term (1.6) behaves like ε2|Dv|p−2|Dϕ|2

when |Dϕ| ≤ |Dv|ε , and like εp|Dϕ|p otherwise. These substantial changes of behavior, and the fact that
a change in size of the gradients does not necessarily correspond to a change in size of the functions,
make the proofs of several estimates (in particular the ones in Lemma 3.4 and Proposition 3.8) very
involved.

Finally, once all these difficulties have been solved, in Section 4 we introduce a new minimization
principle to select v so to guarantee orthogonality and conclude the proof.

1.4. Structure of the paper. In Section 2, we prove a series of new vectorial inequalities that play
a crucial role in the expansion of the deficit. In Section 3, we prove the compactness and spectral gaps
estimates required for the proof of Theorem 1.1, which is then postponed to Section 4. Finally, we
collect some technical estimates in two appendices.

Notation. In our estimates we often write positive constants as C(·) and c(·), with the parentheses
including all the parameters on which the constant depends. Usually we use C to denote a constant
larger than 1, and c for a constant less than 1. We simply write C or c if the constant is absolute. The
constant C(·) may vary between appearances, even within a chain of inequalities. The notation a ∼ b
indicates that both inequalities a ≤ Cb and b ≤ Ca hold. We denote the closure of a set A ⊂ Rn by A.
Finally, the Euclidean ball centered at x with radius r is denoted by B(x, r).

Acknowledgments. The second author would like to thank Herbert Koch for several discussions about
this problem during his stay at the Hausdorff Center for Mathematics in Bonn. Both authors are
grateful to Federico Glaudo and Robin Neumayer for useful comments on a preliminary version of this
manuscript. Both authors are supported by the European Research Council under the Grant Agreement
No. 721675 “Regularity and Stability in Partial Differential Equations (RSPDE).”

2. Sharp vector inequalities in Euclidean spaces

We start with the following sharp inequalities on vectors, which improve the ones in [26, Section 3.2].
The basic idea behind these inequalities is the following: to apply the strategy described in Section 1.3,
for fixed x ∈ Rn we would like to find a non-negative quadratic expression in y that controls |x+ y|p −
|x|p + p|x|p−2x · y from below, and that for |y| � 1 behaves like the Hessian of z 7→ |z|p at x (this is
needed in order to exploit later Proposition 3.6). Unfortunately this is impossible, so we introduce a
weight |w| = |w(x, x+y)| that depends on the sizes of |x| and |x+y| and modulates the quadratic-type
expression appearing in the right hand side of our estimates. Analogously, in Lemma 2.4(i) we need to
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consider a weighted expression in front of |b|2 in order to obtain a sufficiently precise expansion. We
note that, as explained in Section 1.3, the extra term (the one multiplied by c0) appearing in Lemma 2.1
will be crucial to prove our main theorem.

Lemma 2.1. Let x, y ∈ Rn. Then, for any κ > 0, there exists a constant c0 = c0(p, κ) > 0 such that
the following holds:
(i) For 1 < p < 2,

|x+ y|p ≥ |x|p + p|x|p−2x · y +
1− κ

2

(
p|x|p−2|y|2 + p(p− 2)|w|p−2

(
|x| − |x+ y|

)2)
+ c0 min

{
|y|p, |x|p−2|y|2

}
,

where

w = w(x, x+ y) :=


(

|x+y|
(2−p)|x+y|+(p−1)|x|

) 1
p−2

x if |x| < |x+ y|
x if |x+ y| ≤ |x|

.

(ii) For p ≥ 2,1

|x+ y|p ≥ |x|p + p|x|p−2x · y +
1− κ

2

(
p|x|p−2|y|2 + p(p− 2)|w|p−2

(
|x| − |x+ y|

)2)
+ c0|y|p,

where

w = w(x, x+ y) :=

 x if |x| ≤ |x+ y|(
|x+y|
|x|

) 1
p−2

(x+ y) if |x+ y| ≤ |x|
.

Remark 2.2. Note that the constant c0 appearing in the statement above is said to depend on p and
κ, but not on the dimension n. The reason is that, to prove the inequality, one can always restrict to
the 2-dimensional plane generated by x and y, therefore the dimension n of the ambient space plays no
role.

Remark 2.3. One may be tempted to define directly the weight w̃ := |w|p−2 with w as above, and then
use w̃ in place of |w|p−2 everywhere. However our notation has the advantage that w → x as y → 0.
Not only this emphasizes better the similarities with a Taylor expansion, but it will also be convenient
in the proof of Proposition 3.8.

Proof. We split the proof in several steps.

• Proof of (i): the case 1 < p < 2. By approximation we can assume that |x| 6= 0.

- Step (i)-1: we show that

|x+ y|p ≥
(

1− 1

2
p

)
|x|p +

1

2
p|x|p−2|x+ y|2 +

1

2
p(p− 2)|w|p−2

(
|x| − |x+ y|

)2
. (2.1)

To prove this, we set z = x+ y and distinguish two cases.

In the case |z| < |x| we set t := |z|
|x| . Then (2.1) is equivalent to proving that

h(t) := tp −
(

1− 1

2
p

)
− 1

2
pt2 − 1

2
p(p− 2)(1− t)2 ≥ 0, ∀ 0 < t < 1.

For this, it suffices to notice that h(1) = h′(1) = 0, and that

h′′(t) = p
(
(p− 1)tp−2 − 1 + (2− p)

)
≥ 0 ∀ 0 < t < 1

as 1 < p < 2. So (2.1) holds for |z| < |x|.

1Since for p = 2 the coefficient p(p− 2) vanishes, the exact definition of w is irrelevant in this case.
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On the other hand, in the case |z| ≥ |x| we set t := |x|
|z| and we claim that

h(t) := 1−
(

1− 1

2
p

)
tp − 1

2
ptp−2 − 1

2
p(p− 2)

1

(2− p) + (p− 1)t
tp−2(t− 1)2 ≥ 0, ∀ 0 < t ≤ 1.

Since h(1) = 0 and

h′(t) =
1

2
p(p− 2)

[
tp−1 − tp−3 + 2(1− t)tp−2[(2− p) + (p− 1)t]−1

+(2− p)tp−3(t− 1)2[(2− p) + (p− 1)t]−1 + (p− 1)tp−2(t− 1)2[(2− p) + (p− 1)t]−2
]

=
1

2
p(p− 2)(t− 1)tp−3

[
t+ 1− 2t

(2− p) + (p− 1)t
+

(p− 2)(1− t)
(2− p) + (p− 1)t

− (p− 1)t(1− t)
((2− p) + (p− 1)t)2

]
=− 1

2
p(2− p) tp−2

(2− p) + (p− 1)t
(p− 1)(t− 1)2

[
1 +

1

(2− p) + (p− 1)t

]
≤ 0 ∀ 0 ≤ t ≤ 1,

we deduce that h(t) ≥ h(1) = 0, concluding the proof of (2.1).

- Step (i)-2: we prove that, for any x 6= 0, the function

G(x, y) := p|x|p−2|y|2 + p(p− 2)|w|p−2
(
|x| − |x+ y|

)2
satisfies the lower bound

G(x, y) ≥ c(p) |x|
|x|+ |y|

|x|p−2|y|2, for some c(p) > 0. (2.2)

Indeed, when |x+ y| < |x|, by the triangle inequality and the fact that 1 < p < 2 we get

G(x, y) = p|x|p−2
(
|y|2 − (2− p)

(
|x| − |x+ y|

)2) ≥ p|x|p−2
(
|y|2 − (2− p)|y|2

)
= p(p− 1)|x|p−2|y|2,

which implies (2.2). On the other hand, when |x+ y| ≥ |x| > 0 we have

|w|p−2 =
|x+ y|

(2− p)|x+ y|+ (p− 1)|x|
|x|p−2.

Therefore, using again the triangle inequality we obtain

G(x, y) ≥ p
(
|x|p−2|y|2 + (p− 2)|w|p−2|y|2

)
= p|x|p−2|y|2 (p− 1)|x|

(2− p)|x+ y|+ (p− 1)|x|
≥ p|x|p−2|y|2 (p− 1)|x|

(2− p)|y|+ |x|
,

and (2.2) follows.

- Step (i)-3: conclusion. As a consequence of (2.2), we know that G(x, y) ≥ 0 and it vanishes only if
y = 0 (by assumption x 6= 0). Thanks to this fact and recalling (2.1), we get the following: for any
κ > 0 and x 6= 0, the inequality

|x+ y|p ≥ |x|p + p|x|p−2x · y +
1− κ

2

(
p|x|p−2|y|2 + p(p− 2)|w|p−2

(
|x| − |x+ y|

)2)
holds, and equality is attained if and only if y = 0.

We now prove the inequality in the statement of the lemma by contradiction: If the inequality is
false, there exist sequences xi and yi such that

|xi + yi|p ≤ |xi|p + p|xi|p−2xi · yi +
1− κ

2

(
p|xi|p−2|yi|2 + p(p− 2)|wi|p−2

(
|xi| − |xi + yi|

)2)
+

1

i
min

{
|yi|p, |xi|p−2|yi|2

}
, (2.3)
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where wi corresponds to xi and xi + yi. By homogeneity (rescaling both xi and yi by the same factor
1
|xi|) we may assume that |xi| = 1, and up to passing to a subsequence we can assume that xi → x̄ as

i→∞.
Note that, when |yi| is large enough, the left hand side in (2.3) behaves like |yi|p while the right hand

side is bounded by C(p)|yi| + 1
i |yi|

p. This implies that the sequence yi is uniformly bounded, and up
to a subsequence yi converges to ȳ. Hence, taking the limit in (2.3) we deduce that

|x̄+ ȳ|p ≤ |x̄|p + p|x̄|p−2x̄ · ȳ +
1− κ

2

(
p|x̄|p−2|ȳ|2 + p(p− 2)|w̄|p−2

(
|x̄| − |x̄+ ȳ|

)2)
,

which is possible only if ȳ = 0. This means that yi → 0. However, for |x| = 1 and |y| � 1, it follows
from a Taylor expansion that

|x+ y|p −
[
|x|p + p|x|p−2x · y +

1− κ
2

(
p|x|p−2|y|2 + p(p− 2)|w|p−2

(
|x| − |x+ y|

)2)] ≥ κ

3
|y|2,

which is incompatible with (2.3) when i � 1. This leads to a contradiction and proves the lemma for
1 < p < 2.

• Proof of (ii): the case p ≥ 2. By approximation we can assume that |x+ y| 6= 0 and |x| 6= 0.

- Step (ii)-1: we show that

|x+ y|p ≥ |x|p + p|x|p−2x · y +
1

2

(
p|x|p−2|y|2 + p(p− 2)|w|p−2

(
|x| − |x+ y|

)2)
. (2.4)

Setting z = x+ y, this is equivalent to proving that

|z|p ≥
(

1− 1

2
p

)
|x|p +

1

2
p|x|p−2|z|2 +

1

2
p(p− 2)|w|p−2

(
|x| − |z|

)2
.

Set f(z) := |z|p and

g(z) :=

(
1− 1

2
p

)
|x|p +

1

2
p|x|p−2|z|2 +

1

2
p(p− 2)|w|p−2

(
|x| − |z|

)2
.

In the case |z| ≥ |x| we note that f = g and Df = Dg on ∂B(0, |x|). Also,

D2f(z)
z

|z|
· z
|z|

= p(p− 1)|z|p−2 ≥ p(p− 1)|x|p−2 = D2g(z)
z

|z|
· z
|z|

∀ |z| ≥ |x|.

Hence, integrating the Hessian of f − g along the segment
[
|x|
|z|z, z

]
, we obtain that f(z) ≥ g(z) for

|z| ≥ |x|.
On the other hand, in the case |z| < |x|, our aim is to prove that

|z|p ≥
(

1− 1

2
p

)
|x|p +

1

2
p|x|p−2|z|2 +

1

2
p(p− 2)

|z|
|x|
|z|p−2

(
|x| − |z|

)2
.

Setting t := |x|
|z| , this is equivalent to saying that

h(t) := 1−
(

1− 1

2
p

)
tp − 1

2
ptp−2 − 1

2
p(p− 2)

(t− 1)2

t
≥ 0 ∀ t ≥ 1.

Since p ≥ 2, a direct computation shows that, for t ≥ 1,

h′(t) = −
(

1− 1

2
p

)
ptp−1 − 1

2
p(p− 2)tp−3 − p(p− 2)t−1(t− 1) +

1

2
p(p− 2)t−2(t− 1)2

=
1

2
p(p− 2)

[
tp−1 − tp−3 − 2t−1(t− 1) + t−2(t− 1)2

]
=

1

2
p(p− 2)

t− 1

t2
[
tp−1(t+ 1)− 2t+ (t− 1)

]
=

1

2
p(p− 2)

t− 1

t2
(tp−1 − 1)(t+ 1) ≥ 0.
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This implies that h(t) ≥ h(1) = 0 for t ≥ 1, concluding the proof of (2.4).

- Step (ii)-2: conclusion. Thanks to Step (ii)-1 we deduce that, for any κ > 0 and x 6= 0, the inequality

|x+ y|p ≥ |x|p + p|x|p−2x · y +
1− κ

2

(
p|x|p−2|y|2 + p(p− 2)|w|p−2

(
|x| − |x+ y|

)2)
becomes an equality if and only if y = 0 (note that, since p ≥ 2, the last term above is trivially positive
for y 6= 0). So, if the statement of the lemma does not hold, we can find sequences xi and yi such that

|xi + yi|p ≤ |xi|p + p|xi|p−2xi · yi +
1− κ

2

(
p|xi|p−2|yi|2 + p(p− 2)|wi|p−2

(
|xi| − |xi + yi|

)2)
+

1

i
|yi|p,

where wi corresponds to xi and xi + yi. As before, by homogeneity we may assume that |xi| = 1, and
that xi → x̄ as i → ∞. Also, for |yi| � 1, the left hand side above behaves like |yi|p while the right

hand side is bounded by (1 − κ)p(p−1)
2 |yi|2 + 1

i |yi|
p. Hence, since κ > 0 and p ≥ 2, we deduce that yi

cannot go to ∞. This implies that yi are uniformly bounded, and as in the previous case we deduce
that the only possibility is that yi → 0. However, since

|x+ y|p −
[
|x|p + p|x|p−2x · y +

1− κ
2

(
p|x|p−2|y|2 + p(p− 2)|w|p−2

(
|x| − |x+ y|

)2)] ≥ κ

3
|y|2,

for |x| = 1 and |y| � 1, this leads to a contradiction when i is sufficiently large. �

We end this section with the following simple lemma.

Lemma 2.4. (i) Let 1 < p ≤ 2n
n+2 . For any κ > 0 there exists C1 = C1(p∗, κ) > 0 such that, for every

a, b ∈ R with a 6= 0, we have

|a+ b|p∗ ≤ |a|p∗ + p∗|a|p∗−2ab+

(
p∗(p∗ − 1)

2
+ κ

)
(|a|+ C1|b|)p

∗

|a|2 + |b|2
|b|2.

(ii) Let 2n
n+2 < p < n. For any κ > 0 there exists C1 = C1(p∗, κ) > 0 such that, for every a, b ∈ R with

a 6= 0, we have

|a+ b|p∗ ≤ |a|p∗ + p∗|a|p∗−2ab+

(
p∗(p∗ − 1)

2
+ κ

)
|a|p∗−2|b|2 + C1|b|p

∗
.

Proof. Note that (ii) follows from [26, Lemma 3.2], so we only need to show (i). Observe that in this
case p∗ ≤ 2.

Setting t := b
a , our statement is equivalent to proving that

|1 + t|p∗ − 1− p∗t−
(
p∗(p∗ − 1)

2
+ κ

)
(1 + C1|t|)p

∗

1 + |t|2
|t|2 ≤ 0 (2.5)

for any t ∈ R and some C1 > 0.
First of all, by a Taylor expansion,

|1 + t|p∗ = 1 + p∗t+
p∗(p∗ − 1)

2
|t|2 + o(|t|2) ∀ |t| � 1.

Also, by the concavity of t 7→ t
1
p∗ we have

1 +
1

p∗
|t|2 ≥ (1 + |t|2)

1
p∗ ∀ |t| ≤ 1.

Therefore there exists t0 = t0(p∗) > 0 small such that, for any C1 ≥ 1
p∗ ,

|1 + t|p∗ − 1− p∗t ≤
(
p∗(p∗ − 1)

2
+ κ

)
(1 + C1|t|)p

∗

1 + |t|2
|t|2 ∀ t ∈ [−t0, t0].
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On the other hand, for |t| > t0 we can rewrite (2.5) as[(
(1 + |t|2)

|1 + t|p∗ − 1− p∗t(
p∗(p∗−1)

2 + κ
)
|t|2

) 1
p∗

− 1

]
|t|−1 ≤ C1. (2.6)

Since the left-hand side of (2.6) is bounded as |t| → +∞, the existence of a constant C1 < +∞ such
that (2.6) holds on R \ (−t0, t0) follows by compactness. �

3. Spectral gaps

Let v = va,b,x0 ∈ M. The goal of this section is to study some embedding/compacteness theorems
and spectral gaps for weighted Sobolev/Orlicz-type spaces, where the weights depend on v. Throughout
this section we assume that a0 > 0, b = 1, and x0 = 0, that is

v(x) =
a0(

1 + |x|
p
p−1

)n−p
p

.

Also, we assume that a0 > 0 is such that 1
2 ≤ ‖v‖Lp∗ ≤ 2.

Given Ω ⊂ Rn, q ≥ 1, and a non-negative locally integrable function g0 : Rn → R, we define the
Banach space Lq(Ω; g0) as the space of measurable functions ϕ : Ω→ R whose norm

‖ϕ‖Lq(Ω; g0) :=

(∫
Ω
|ϕ|q g0(x) dx

) 1
q

is finite. Also, given g1 ∈ L1
loc(Rn \ {0}) non-negative, we denote by C1

c,0(Rn) the space of compactly

supported functions of class C1 that are constant in a neighborhood of the origin, and we define
Ẇ 1,q(Rn; g1) as the closure of C1

c,0(Rn) with respect to the norm

‖ϕ‖Ẇ 1,q(Rn; g1) :=

(∫
Rn
|Dϕ|q g1(x) dx

) 1
q

.

Remark 3.1. It is important for us to consider weights that are not necessarily integrable at the origin,

since |Dv|p−2 ∼ |x|
p−2
p−1 6∈ L1(B1) for p ≤ n+2

n+1 . This is why, when defining weighted Sobolev spaces, we

consider the space C1
c,0(Rn), so that gradients vanish near 0. Of course, replacing C1

c (Rn) by C1
c,0(Rn)

plays no role in the case p > n+2
n+1 .

3.1. Compact embedding. The following embedding theorem generalizes [26, Corollary 6.2].

Proposition 3.2. Let 1 < p < n. The space Ẇ 1,2(Rn; |Dv|p−2) compactly embeds into L2(Rn; vp
∗−2).

To prove this result, we first show an intermediate estimate that will be useful also later.

Lemma 3.3. Let 1 < p < n, and ϕ ∈ Ẇ 1,2(Rn; |Dv|p−2) ∩ L2(Rn; vp
∗−2). Then∫

Rn
vp
∗−2|ϕ|2 dx ≤ C(n, p)

∫
Rn
|Dv|p−2|Dϕ|2 dx. (3.1)

Also, there exists ϑ = ϑ(n, p) > 0 such that, for any ρ ∈ (0, 1), we have∫
B(0,ρ)

vp
∗−2|ϕ|2 dx ≤ C(n, p)ρϑ

∫
Rn
|Dv|p−2|Dϕ|2 dx (3.2)

and ∫
Rn\B(0,ρ−1)

vp
∗−2|ϕ|2 dx ≤ C(n, p)

| log ρ|2

∫
Rn
|Dv|p−2|Dϕ|2 dx. (3.3)
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Proof. To prove (3.1), we can assume by approximation that ϕ ∈ C1
c,0(Rn) (see Remark 3.1).

We note that, thanks to Fubini’s theorem and using polar coordinates,∫
Rn
vp
∗−2|ϕ|2 dx ≤ C(n, p)

∫
Sn−1

∫ ∞
0

rn−1(1 + r
p
p−1 )

−n(p−2)
p
−2|ϕ(rθ)|2 dr dθ

≤ C(n, p)

∫
Sn−1

∫ ∞
0

rn−1(1 + r
p
p−1 )

−n(p−2)
p
−2
∫ ∞
r
|ϕ(tθ)||Dϕ(tθ)| dt dr dθ

≤ C(n, p)

∫
Sn−1

∫ ∞
0

∫ t

0
|ϕ(tθ)||Dϕ(tθ)|rn−1(1 + r

p
p−1 )

−n(p−2)
p
−2
dr dt dθ

≤ C(n, p)

∫
Sn−1

∫ ∞
0
|ϕ(tθ)||Dϕ(tθ)|tn(1 + t

p
p−1 )

−n(p−2)
p
−2
dt dθ.

Thus, by Cauchy-Schwarz inequality we get∫
Rn
vp
∗−2|ϕ|2 dx ≤ C(n, p)

(∫
Sn−1

∫ ∞
0
|Dϕ(tθ)|2tn+1(1 + t

p
p−1 )

−n(p−2)
p
−2
dt dθ

)1/2

·

·
(∫

Sn−1

∫ ∞
0

tn−1(1 + t
p
p−1 )

−n(p−2)
p
−2|ϕ(tθ)|2 dt dθ

)1/2

,

and since the last term in the right hand side coincides with ‖ϕ‖L2(Rn;vp∗−2) (up to a multiplicative

constant), we conclude that∫
Rn
vp
∗−2|ϕ|2 dx ≤ C(n, p)

∫
Sn−1

∫ ∞
0
|Dϕ(tθ)|2tn+1(1 + t

p
p−1 )

−n(p−2)
p
−2
dt dθ

≤ C(n, p)

∫
Rn
|Dϕ(x)|2|x|2(1 + |x|

p
p−1 )

−n(p−2)
p
−2
dx.

(3.4)

We now observe that

|x|2 ∼ |x|1+ 1
p−1 |Dv|p−2 ≤ C(n, p) |Dv|p−2 when |x| ∈ (0, 1],

and

|x|2(1 + |x|
p
p−1 )

−n(p−2)
p
−2 ∼ |x|−

p
p−1 |Dv|p−2 ≤ C(n, p) |Dv|p−2 when |x| ∈ (1, ∞),

so (3.1) follows from (3.4).

To prove (3.2), we apply (3.1) and the Sobolev inequality with radial weights (see e.g. [34, Section
2.1]). More precisely, since |Dv|p−2 ≥ c(n, p)|x| inside B(0, 1),∫

Rn
|Dv|p−2|Dϕ|2 dx ≥ c(n, p)

∫
Rn

(
vp
∗−2|ϕ|2 + |Dv|p−2|Dϕ|2

)
dx

≥ c(n, p)
∫
B(0,1)

(
|ϕ|2 + |x| |Dϕ|2

)
dx ≥

(∫
B(0,1)

|ϕ|q dx
) 2
q

,

where q = q(n) > 2. Thus, by Hölder inequality, for any ρ ∈ (0, 1) we get∫
B(0,ρ)

vp
∗−2|ϕ|2 dx ≤ C(n, p)

∫
B(0,ρ)

|ϕ|2 dx

≤ C(n, p)ρ
n
(

1− 2
q

)(∫
B(0,ρ)

|ϕ|q dx
) 2
q

≤ C(n, p)ρ
n
(

1− 2
q

) ∫
Rn
|Dv|p−2|Dϕ|2 dx,

as desired.
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To prove (3.3), we define

χρ(x) :=


0 for |x| < ρ−1/2

2 log |x|−| log ρ|
| log ρ| for ρ−1/2 ≤ |x| ≤ ρ−1

1 for ρ−1 ≤ |x|

and we apply (3.4) to the function φρ := χρϕ:∫
Rn\B(0,ρ−1)

vp
∗−2|ϕ|2 dx ≤

∫
Rn
vp
∗−2|φρ|2 dx ≤ C(n, p)

∫
Rn
|x|2(1 + |x|

p
p−1 )

−n(p−2)
p
−2|Dφρ|2 dx

≤ C(n, p)

∫
Rn
|x|2(1 + |x|

p
p−1 )

−n(p−2)
p
−2
χ2
ρ |Dϕ|2 dx

+ C(n, p)

∫
Rn
|x|2(1 + |x|

p
p−1 )

−n(p−2)
p
−2|Dχρ|2ϕ2 dx

≤ C(n, p)

∫
Rn\B(0,ρ−1/2)

|x|2(1 + |x|
p
p−1 )

−n(p−2)
p
−2|Dϕ|2 dx

+ C(n, p)| log ρ|−2

∫
B(0,ρ−1)\B(0,ρ−1/2)

(1 + |x|
p
p−1 )

−n(p−2)
p
−2
ϕ2 dx

≤ C(n, p)ρ
p
p−1

∫
Rn\B(0,ρ−1)

|Dv|p−2|Dϕ|2 dx

+ C(n, p)| log ρ|−2

∫
B(0,ρ−1)\B(0,ρ−1/2)

|v|p∗−2ϕ2 dx

≤ C(n, p)| log ρ|−2

∫
Rn
|Dv|p−2|Dϕ|2 dx,

where the last inequality follows from (3.1). �

Proof of Proposition 3.2. Let ϕi be a sequence of functions in Ẇ 1,2(Rn; |Dv|p−2) with uniformly bounded
norm. It follows by (3.1) that their L2(Rn; vp

∗−2) norm is uniformly bounded as well.
Since both |Dv|p−2 and vp

∗−2 are locally bounded away from zero and infinity in Rn\{0}, by Rellich-
Kondrachov Theorem and a diagonal argument we deduce that, up to a subsequence, ϕi converges to
some function ϕ both weakly in Ẇ 1,2(Rn; |Dv|p−2)∩L2(Rn; vp

∗−2) and strongly in L2
loc(Rn\{0}; vp

∗−2).
Also, (3.2) and (3.3) imply that, for any ρ ∈ (0, 1),∫

Rn\B(0,ρ)
vp
∗−2|ϕi|2 dx ≤ C(n, p)ρϑ,

∫
Rn\B(0,ρ−1)

vp
∗−2|ϕi|2 dx ≤

C(n, p)

| log ρ|2
.

We conclude the proof considering the compact set Kρ := B(0, ρ−1) \ B(0, ρ) and applying the strong
convergence of ϕi inside Kρ, together with the arbitrariness of ρ (that can be chosen arbitrarily small).

�

As we shall see, the previous result allows us to deal with the case p > 2n
n+2 . However, when

1 < p ≤ 2n
n+2 , we will need a much more delicate compactness result that we now present.

Lemma 3.4. Let 1 < p ≤ 2n
n+2 , and let φi be a sequence of functions in Ẇ 1,p(Rn) satisfying∫

Rn

(
|Dv|+ εi|Dφi|

)p−2|Dφi|2 dx ≤ 1, (3.5)

where εi ∈ (0, 1) is a sequence of positive numbers converging to 0. Then, up to a subsequence, φi
converges weakly in Ẇ 1,p(Rn) to some function φ ∈ Ẇ 1,p(Rn)∩L2(Rn; vp

∗−2). Also, given any constant
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C1 ≥ 0 it holds2 ∫
Rn

(v + C1εiφi)
p∗

v2 + |εiφi|2
|φi|2 dx→

∫
Rn
vp
∗−2|φ|2 dx as i→∞. (3.6)

Proof. Up to replacing φi by |φi|, we can assume that φi ≥ 0. Note that p < p∗ ≤ 2 under our
assumption.

Observe that, by Hölder inequality,∫
Rn
|Dφi|p dx ≤

(∫
Rn

(
|Dv|+ εi|Dφi|

)p−2|Dφi|2 dx
) p

2
(∫

Rn

(
|Dv|+ εi|Dφi|

)p
dx

)1− p
2

≤ C(n, p)

(∫
Rn

(
|Dv|+ εi|Dφi|

)p−2|Dφi|2 dx
) p

2
(

1 + εpi

∫
Rn
|Dφi|p dx

)1− p
2

,

that combined with (3.5) gives(∫
Rn
|Dφi|p dx

) 2
p

≤ C(n, p)

∫
Rn

(
|Dv|+ εi|Dφi|

)p−2|Dφi|2 dx ≤ C(n, p). (3.7)

Thus, up to a subsequence, φi converges weakly in Ẇ 1,p(Rn) and also a.e. to some function φ ∈
Ẇ 1,p(Rn). Hence, to conclude the proof, we need to show that φ ∈ L2(Rn; vp

∗−2) and the validity of
(3.6).

We first prove these facts under the assumption that εiφi ≤ ζv, with ζ = ζ(n, p, C1) ∈ (0, 1) a small
constant to be determined. Later, we will remove this assumption.

• Step 1: proof of (3.6) when εiφi ≤ ζv. Since εiφi is bounded by ζv ≤ v, we have that
(

1 + εiφi
v

)
≤ 2,

thus ∫
Rn

(v + εiφi)
p∗−2|φi|2 dx ≤

∫
Rn
vp
∗−2

(
1 +

εiφi
v

)p∗−2

|φi|2 dx

≤ 2p
∗−p

∫
Rn
vp
∗−2

(
1 +

εiφi
v

)p−2

|φi|2 dx.

Recall that

v ∼ (1 + |x|
p
p−1 )

1−n
p and |Dv| ∼ (1 + |x|

p
p−1 )

−n
p |x|

1
p−1 , (3.8)

where the constants depend only on p and n. Moreover, the following Hardy-Poincaré inequality
holds [38]3: For any p > 1 and γ ≥ 1, and any compactly supported function ξ ∈W 1, p(Rn), one has∫

Rn
|ξ|p

[(
1 + |x|

p
p−1

)p−1
]γ−1

dx ≤ C(n, p, γ)

∫
Rn
|Dξ|p

[(
1 + |x|

p
p−1

)p−1
]γ

dx.

By approximation, we can apply this inequality with

γ = 1 +
(2− p∗)

(
n
p − 1

)
p− 1

and ξ =

(
1 +

εiφi
v

) p−2
p

|φi|
2
p .

2As already noticed in the introduction, the expression appearing in the left hand side of (3.6) behaves like vp
∗−2|φi|2

when |φi| � v
εi

, and like εp
∗−2
i |φi|p

∗
otherwise. Analogously, the expression in (3.5) behaves like |Dv|p−2|Dφi|2 when

|Dφi| � |Dv|
εi

, and like εp−2
i |Dφi|p otherwise. These substantial changes of behavior, and the fact that the change in size

of the gradients does not necessarily correspond to a change in size of the functions, make the proof particularly delicate.
3More precisely, the case γ > 1 is stated in [38, Theorem 3.1], while the case γ = 1 follows from the classical Hardy

inequality (see for instace [38, Theorem 4.1]).
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Thus, since vp
∗−2 ∼

[(
1 + |x|

p
p−1

)p−1
]γ−1

, we get∫
Rn

(v + εiφi)
p∗−2|φi|2 dx ≤ C(n, p)

∫
Rn
vp
∗−2

(
1 +

εiφi
v

)p−2

|φi|2 dx

≤ C(n, p)

∥∥∥∥(1 +
εiφi
v

) p−2
p

|φi|
2
p

∥∥∥∥p
Ẇ 1,p

(
Rn;vp∗−2

(
1+|x|

p
p−1
)p−1)

≤ C(n, p)

∫
Rn
vp
∗−2

(
1 + |x|

p
p−1

)p−1
·

·
[(

1 +
εiφi
v

)−2

|φi|2
(
εiφi|Dv|
v2

+
εi|Dφi|
v

)p
+

(
1 +

εiφi
v

)p−2

|φi|2−p|Dφi|p
]
dx

≤ C(n, p)

∫
Rn
vp
∗−2

(
1 + |x|

p
p−1

)p−1
[
|φi|2

(
ζ|Dv|
v

+
εi|Dφi|
v

)p
+ |φi|2−p|Dφi|p

]
dx,

(3.9)

where, in the last inequality, we used that 0 ≤ εiφi
v ≤ ζ < 1.

We now apply (C.2) to the last integrand in (3.9) with ε = εi, r = |x|, a = |φi|, b = |Dφi|. In this way,
thanks to (3.9) and since v + εiφi ≤ 2v, we deduce that for any ε0 > 0 there exists ζ = ζ(ε0) ∈ (0, 1)
such that∫

Rn
vp
∗−2|φi|2 dx ≤ 22−p∗

∫
Rn

(v + εiφi)
p∗−2|φi|2 dx

≤ C(n, p)

∥∥∥∥(1 +
εiφi
v

) p−2
p

|φi|
2
p

∥∥∥∥p
Ẇ 1,p

(
Rn;vp∗−2

(
1+|x|

p
p−1
)p−1)

≤ C(n, p)ε0

∫
Rn
vp
∗−2|φi|2 dx+ C(ε0, n, p)

∫
Rn

(
|Dv|+ εi|Dφi|

)p−2|Dφi|2 dx.

Thus, fixing ε0 small enough so that C(n, p)ε0 ≤ 1
2 , it follows from (3.5) and the inequality above that∫

Rn
vp
∗−2|φi|2 dx+

∥∥∥∥(1 +
εiφi
v

) p−2
p

|φi|
2
p

∥∥∥∥p
Ẇ 1,p

(
Rn;vp∗−2

(
1+|x|

p
p−1
)p−1)

≤ C(n, p)

∫
Rn

(
|Dv|+ εi|Dφi|

)p−2|Dφi|2 dx ≤ C(n, p). (3.10)

In particular, the sequence
(

1 + εiφi
v

) p−2
p |φi|

2
p is uniformly bounded in Ẇ 1,p

loc (Rn) ⊂ Lp
∗

loc(R
n). Since(

1 + εiφi
v

)
∼ 1, this implies that |φi|

2
p ∈ Lp

∗

loc(R
n). Combining this higher integrability estimate with

the a.e. convergence of φi to φ, by dominated convergence we deduce that, for any R > 1,∫
B(0,R)

(v + C1εiφi)
p∗

v2 + |εiφi|2
|φi|2 dx→

∫
B(0,R)

vp
∗−2|φ|2 dx as i→∞ (3.11)

(recall that εi → 0).
Also, since 1 < p ≤ 2n

n+2 it follows that n ≥ 3, and therefore

−np+ 2n− 2p

p− 1
+ n =

n− 2p

p− 1
> 0.

This allows us to apply Lemma A.1 to φi with

α =
np− 2n+ 2p

p− 1
,
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and similarly to (3.9) we obtain (recall (3.8))∫
Rn\B(0,R)

(v + C1εiφi)
p∗

v2 + |εiφi|2
|φi|2 dx

≤ C(n, p, C1)

∫
Rn\B(0,R)

vp
∗−2

(
1 +

εiφi
v

)p−2

|φi|2 dx

≤ C(n, p, C1)

∫
Rn\B(0,R)

|x|
−np+2n−2p

p−1
+p ·

·
[(

1 +
εiφi
v

)−2

|φi|2
(
εiφi|Dv|
v2

+
εi|Dφi|
v

)p
+

(
1 +

εiφi
v

)p−2

|φi|2−p|Dφi|p
]
dx

≤ C(n, p, C1)

∫
Rn\B(0,R)

|x|
−np+2n−2p

p−1
+p
[
|φi|2

(
ζ|Dv|
v

+
εi|Dφi|
v

)p
+ |φi|2−p|Dφi|p

]
dx.

Then, applying (C.1) to the last term above with ε = εi, r = |x|, a = |φi|, b = |Dφi|, we obtain that for
any ε′0 > 0 there exists ζ = ζ(ε′0) ∈ (0, 1) such that∫

Rn\B(0,R)

(v + C1εiφi)
p∗

v2 + |εiφi|2
|φi|2 dx ≤ C(n, p, C1)ε′0

∫
Rn\B(0,R)

vp
∗−2|φi|2 dx

+ C(ε′0, n, p, C1)R
− p
p−1

∫
Rn\B(0,R)

(
|Dv|+ εi|Dφi|

)p−2|Dφi|2 dx

≤ C(n, p, C1)ε′0

∫
Rn\B(0,R)

(v + C1εiφi)
p∗

v2 + |εiφi|2
|φi|2 dx

+ C(ε′0, n, p, C1)R
− p
p−1

∫
Rn\B(0,R)

(
|Dv|+ εi|Dφi|

)p−2|Dφi|2 dx.

Thus, by fixing ε′0 so that C(n, p, C1)ε′0 ≤ 1
2 , it follows that∫

Rn\B(0,R)

(v + C1εiφi)
p∗

v2 + |εiφi|2
|φi|2 dx ≤ C(n, p, C1)R

− p
p−1

∫
Rn

(
|Dv|+ εi|Dφi|

)p−2|Dφi|2 dx ≤ C(n, p)R
− p
p−1 .

Combining this bound with (3.10) and (3.11), by the arbitrariness ofR we conclude that φ ∈ L2(Rn; vp
∗−2)

and that (3.6) holds. This concludes the proof under the assumption that εiφi ≤ ζv with ζ =
ζ(n, p, C1) > 0 sufficiently small.

• Step 2: proof of (3.6) in the general case. Throughout this part, we assume that ζ = ζ(n, p, C1) > 0
is a small constant so that Step 1 applies.

Observe that, by (1.1), ζv is a supersolution for the operator

Lv[ψ] := −div
((
|Dv|+ |Dψ|

)p−2
Dψ + (p− 2)

(
|Dv|+ |Dψ|

)p−3|Dψ|Dψ
)
,

namely Lv[ζv] ≥ 0. Therefore, multiplying Lv[ζv] ≥ 0 by (εiφi − ζv)+ and integrating by parts, we get∫
Rn

(
|Dv|+ ζ|Dv|

)p−2
ζDv ·D(εiφi − ζv)+ dx

+ (p− 2)

∫
Rn

(
|Dv|+ ζ|Dv|

)p−3
ζ2|Dv|Dv ·D(εiφi − ζv)+ dx ≥ 0. (3.12)

Also, by the convexity of

Rn 3 z 7→ Ft(z) := (t+ |z|)p−2|z|2, t ≥ 0,
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we have
Ft(z) +DFt(z) · (z′ − z) ≤ Ft(z′) ∀ z, z′ ∈ Rn, t ≥ 0.

Hence, applying this inequality with t = |Dv|, z = ζDv, and z′ = εiDφi, it follows by (3.12) that

c(n, p)ε−2
i

∫
{εiφi>ζv}

|Dv|p dx ≤ ε−2
i

∫
{εiφi>ζv}

(
|Dv|+ ζ|Dv|

)p−2
ζ2|Dv|2 dx

≤ ε−2
i

∫
{εiφi>ζv}

(
|Dv|+ ζ|Dv|

)p−2
ζ2|Dv|2 dx

+ ε−2
i

∫
{εiφi>ζv}

(
|Dv|+ ζ|Dv|

)p−2
ζDv ·D(εiφi − ζv)+ dx

+ ε−2
i (p− 2)

∫
{εiφi>ζv}

(
|Dv|+ ζ|Dv|

)p−3
ζ2|Dv|Dv ·D(εiφi − ζv)+ dx

≤
∫
{εiφi>ζv}

(
|Dv|+ εi|Dφi|

)p−2|Dφi|2 dx.

(3.13)

We now write φi = φi,1 + φi,2, where

φi,1 := min

{
φi,

ζv

εi

}
, φi,2 := φi − φi,1.

Note that, as a consequence of (3.5) and (3.13),∫
Rn

(
|Dv|+ εi|Dφi,1|

)p−2|Dφi,1|2 dx+

∫
Rn

(
|Dv|+ εi|Dφi,2|

)p−2|Dφi,2|2 dx

≤ C(n, p)

∫
Rn

(
|Dv|+ εi|Dφi|

)p−2|Dφi|2 dx ≤ C(n, p). (3.14)

Hence, it follows by the analogue of (3.7) that∫
Rn
|Dφi,1|p dx+

∫
Rn
|Dφi,2|p dx ≤ C(n, p). (3.15)

In particular we deduce that φi,2 ⇀ 0 in Ẇ 1,p(Rn) (as |{εiφi > ζv} ∩B(0, R)| → 0 for any R > 1) and

that, up to a subsequence, both φi and φi,1 converge weakly in Ẇ 1,p(Rn) and also a.e. to the same

function φ ∈ Ẇ 1,p(Rn).
Let η = η(n, p) > 0 be a small exponent to be fixed. We analyze two cases.

- Case 1. If∫
{εiφi>ζv}

|φi,1|p
∗
dx > ε−ηi

∫
{εiφi>ζv}

(
φi −

ζv

εi

)p∗
+

dx = ε−ηi

∫
{εiφi>ζv}

|φi,2|p
∗
dx,

since φ is also the limit of φi,1, we can apply Step 1 to φi,1 to deduce that φ ∈ L2(Rn; vp
∗−2) and∫

Rn

(v + C1εiφi)
p∗

v2 + |εiφi|2
|φi|2 dx =

(
1 +O(εηi )

) ∫
Rn

(v + C1εiφi,1)p
∗

v2 + |εiφi,1|2
|φi,1|2 dx→

∫
Rn
vp
∗−2|φ|2 dx,

which proves (3.6).

- Case 2. Assume now that ∫
{εiφi>ζv}

|φi,1|p
∗
dx ≤ ε−ηi

∫
{εiφi>ζv}

|φi,2|p
∗
dx. (3.16)

We claim that

εp
∗−2
i

∫
Rn
|φi,2|p

∗
dx = O(εηi ). (3.17)
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To prove this, denote Ai := {εiφi > ζv} and define

Ei :=

{
|Dφi,2| ≤

|Dv|
εi

}
∩Ai, Fi :=

{
|Dφi,2| >

|Dv|
εi

}
∩Ai.

Then, since |Dv|+ εi|Dφi,2| ≤ 2|Dv| inside Ei, it follows by Hölder inequality that∫
Rn
|Dφi,2|p dx =

∫
Ei

|Dφi,2|p dx+

∫
Fi

|Dφi,2|p dx

≤
(∫

Ei

|Dv|p−2|Dφi,2|2 dx
) p

2
(∫

Ei

|Dv|p dx
)1− p

2

+

∫
Fi

|Dφi,2|p dx

≤
(

22−p
∫
Ei

(
|Dv|+ εi|Dφi,2|

)p−2|Dφi,2|2 dx
) p

2
(∫

Ei

|Dv|p dx
)1− p

2

+

∫
Fi

|Dφi,2|p dx

≤ C(n, p)

(∫
Ei

(
|Dv|+ εi|Dφi,2|

)p−2|Dφi,2|2 dx
) p

2
(∫

Ei

|Dv|p dx
)1− p

2

+

∫
Fi

|Dφi,2|p dx.

(3.18)

Also, using (3.8) and (3.16) together with Hölder inequality (note that, since 1 < p ≤ 2n
n+2 , we have

n ≥ 3) we get∫
Ei

|Dv|p dx ≤ C(n, p)

∫
Ei

(1 + |x|
p
p−1 )−n|x|

p
p−1 dx

≤ C(n, p)

(∫
Ei

(
(1 + |x|

p
p−1 )−n+1|x|

p
p−1

) n
n−2

dx

)1− 2
n
(∫

Rn
(1 + |x|

p
p−1 )−

n
2 dx

) 2
n

≤ C(n, p)

(∫
Ai

(
εiφi
ζv

)p∗ (
(1 + |x|

p
p−1 )−n+1|x|

p
p−1

) n
n−2

dx

)1− 2
n

≤ C(n, p)

(
εp
∗

i

∫
Ai

|φi|p
∗
dx

)1− 2
n

≤ C(n, p)

(
εp
∗−η
i

∫
Ai

|φi,2|p
∗
dx

)1− 2
n

,

(3.19)

where we used that np
2(p−1) > n (since p ≤ 2n

n+2 < 2) and that

v−p
∗
(

(1 + |x|
p
p−1 )−n+1|x|

p
p−1

) n
n−2 ≤ C(n, p).

Therefore, introducing the notation

Ni,2 :=

∫
Ei

(
|Dv|+ εi|Dφi,2|

)p−2|Dφi,2|2 dx,

by Sobolev inequality, (3.18), and (3.19), we deduce that

εp
∗−2
i

∫
Rn
|φi,2|p

∗
dx ≤ C(n, p)εp

∗−2
i

(∫
Rn
|Dφi,2|p dx

) p∗
p

≤ C(n, p)εp
∗−2
i

[
N

p∗
2
i,2

(∫
Ei

|Dv|p dx
) (2−p)p∗

2p

+

(∫
Fi

|Dφi,2|p dx
) p∗

p
]

≤ C(n, p)εp
∗−2
i

[
N

p∗
2
i,2

(
εp
∗−η
i

∫
Ai

|φi,2|p
∗
dx

) (2−p)(n−2)
2(n−p)

+

∫
Fi

|Dφi,2|p dx
]
,

(3.20)

where in the last inequality we used (3.15) and the fact that p∗

p ≥ 1.
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Suppose first that ∫
Fi

|Dφi,2|p dx ≥ N
p∗
2
i,2

(
εp
∗−η
i

∫
Ai

|φi,2|p
∗
dx

) (2−p)(n−2)
2(n−p)

.

Then, since |Dv| ≤ εi|Dφi,2| ∼ εi|Dφi| inside Fi (recall that ζ < 1), (3.5) and (3.20) yield

εp
∗−2
i

∫
Rn
|φi,2|p

∗
dx ≤ C(n, p)εp

∗−2
i

∫
Fi

|Dφi,2|p dx

= C(n, p)εp
∗−p
i

∫
Fi

(
εi|Dφi,2|

)p−2|Dφi,2|2 dx

≤ C(n, p)εp
∗−p
i

∫
Fi

(
|Dv|+ εi|Dφi,2|

)p−2|Dφi,2|2 dx,

(3.21)

which proves (3.17) choosing η ≤ p∗ − p (recall (3.14)).
Consider instead the case∫

Fi

|Dφi,2|p dx < N
p∗
2
i,2

(
εp
∗−η
i

∫
Ai

|φi,2|p
∗
dx

) (2−p)(n−2)
2(n−p)

,

and set θ := (2−p)(n−2)
2(n−p) , so that (3.20) yields

εp
∗−2
i

∫
Rn
|φi,2|p

∗
dx ≤ C(n, p)εp

∗−2
i N

p∗
2
i,2

(
εp
∗−η
i

∫
Ai

|φi,2|p
∗
dx

)θ
= C(n, p)ε

p∗−2+(2−η)θ
i N

p∗
2
i,2

(
εp
∗−2
i

∫
Ai

|φi,2|p
∗
dx

)θ
.

Since θ < 1, recalling the definition of Ni,2 and (3.14), this gives

εp
∗−2
i

∫
Rn
|φi,2|p

∗
dx ≤ C(n, p)ε

p∗−2+(2−η)θ
1−θ

i

(∫
Ei

(
|Dv|+ εi|Dφi,2|

)p−2|Dφi,2|2 dx
) p∗

2(1−θ)

≤ C(n, p)εηi

∫
Ei

(
|Dv|+ εi|Dφi,2|

)p−2|Dφi,2|2 dx,
(3.22)

where the last inequality follows by choosing η > 0 sufficiently small (notice that p∗ − 2 + 2θ > 0 and
p∗

2(1−θ) > 1). This proves (3.17) also in this case.

Now, combining (3.16) and (3.17), we finally get∣∣∣∣∫
Rn

(v + C1εiφi)
p∗

v2 + |εiφi|2
|φi|2 dx−

∫
Rn

(v + C1εiφi,1)p
∗

v2 + |εiφi,1|2
|φi,1|2 dx

∣∣∣∣
≤ C(n, p, C1)

(
εp
∗−2
i

∫
Ai

|φi,2|p
∗
dx+ ε2i

∫
Ai

(v + C1ζv)p
∗

v2 + |ζv|2
|ζv|2 dx

)
= o(1).

Thanks to this estimate, and since φ is also the limit of φi,1, applying Step 1 to φi,1 we conclude the
proof of the lemma. �

An important consequence of the proof of Lemma 3.4 is the following Orlicz-type Poincaré inequality:

Corollary 3.5. Let 1 < p ≤ 2n
n+2 . There exists ε0 = ε0(n, p) > 0 small such that the following holds:

For any ε ∈ (0, ε0) and any φ ∈ Ẇ 1,p(Rn) ∩ Ẇ 1,2(Rn; |Dv|p−2) with∫
Rn

(
|Dv|+ ε|Dφ|

)p−2|Dφ|2 dx ≤ 1,
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we have ∫
Rn

(v + εφ)p
∗−2|φ|2 dx ≤ C(n, p)

∫
Rn

(
|Dv|+ ε|Dφ|

)p−2|Dφ|2 dx. (3.23)

Proof. As in the proof of Lemma 3.4, it suffices to consider the case φ ≥ 0. Also, let ζ ∈ (0, 1) be the
small constant provided in the proof of Lemma 3.4 with C1 = 1.

Write φ = φ1 + φ2, where

φ1 := min

{
φ,

ζv

ε

}
, φ2 := φ− φ1.

Since εφ1 ≤ ζv we have v ∼ v + εφ1, so (3.23) for φ1 follows from the analogue of (3.10).
For φ2 we discuss two cases.

If ∫
{εφ>ζv}

|φ1|p
∗
dx >

∫
{εφ>ζv}

(
φ− ζv

ε

)p∗
+

dx =

∫
{εφ>ζv}

|φ2|p
∗
dx,

then ∫
Rn
εp
∗−2|φ2|p

∗
dx ≤ C(n, p)

∫
Rn
vp
∗−2|φ1|2 dx.

Thus, applying (3.23) to φ1, we conclude that∫
Rn

(v + εφ)p
∗−2|φ|2 dx ≤ C(n, p)

∫
Rn
vp
∗−2|φ1|2 dx

≤ C(n, p)

∫
Rn

(
|Dv|+ ε|Dφ1|

)p−2|Dφ1|2 dx

≤ C(n, p)

∫
Rn

(
|Dv|+ ε|Dφ|

)p−2|Dφ|2 dx,

where the last step follows from the analogue of (3.14).

On the other hand, when ∫
{εφ>ζv}

|φ1|p
∗
dx ≤

∫
{εφ>ζv}

|φ2|p
∗
dx,

we can repeat the proofs of (3.21) and (3.22) with η = 0 to deduce the validity of (3.23) for φ2.

Thus, by (3.14) for φ, and (3.23) for φ1 and φ2, we eventually obtain∫
Rn

(v + εφ)p
∗−2|φ|2 dx ≤ C(n, p)

∫
Rn
vp
∗−2|φ1|2 dx+ C(n, p)

∫
Rn
εp
∗−2|φ2|p

∗
dx

≤ C(n, p)

∫
Rn

(
|Dv|+ ε|Dφ1|

)p−2|Dφ1|2 dx+ C(n, p)

∫
Rn

(
|Dv|+ ε|Dφ2|

)p−2|Dφ2|2 dx

≤ C(n, p)

∫
Rn

(
|Dv|+ ε|Dφ|

)p−2|Dφ|2 dx,

which concludes the proof of the corollary. �

3.2. Spectral gap. Let v = va0,1,0 be as in the previous section, and recall that

TvM := span {v, ∂bv, ∂x1v, . . . , ∂xnv} ,
which is a subspace of L2(Rn; vp

∗−2).
Consider the linearized p-Laplacian operator

Lv[ϕ] := −div
(
|Dv|p−2Dϕ+ (p− 2)|Dv|p−4(Dv ·Dϕ)Dv

)
on the space L2(Rn; vp

∗−2), and observe that this operator has a discrete spectrum for any 1 < p < n,
thanks to Proposition 3.2.
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In [26, Proposition 3.1] it is proved that, for p > 2, TvM generates the first and the second eigenspaces
corresponding to Lv. As shown in Appendix B, thanks to Proposition 3.2 and a modification of the
arguments in [26, Section 6.2], this fact holds in the full range 1 < p < n.

As a consequence, functions orthogonal to TvM enjoy a quantitative improvement in the Poincaré
inequality induced by Lv. More precisely, the following holds:

Proposition 3.6. Given 1 < p < n, and any function ϕ ∈ L2(Rn; vp
∗−2) orthogonal to TvM, there

exists a constant λ = λ(n, p) > 0 so that∫
Rn
|Dv|p−2|Dϕ|2 + (p− 2)|Dv|p−4|Dv ·Dϕ|2 dx ≥

(
(p∗ − 1)Sp + 2λ

)
‖v‖p−p

∗

Lp∗ (Rn)

∫
Rn
vp
∗−2|ϕ|2 dx,

where S = S(n, p) is the optimal Sobolev constant.

In our proof, it will be important to give a meaning to the notion of “orthogonality to TvM” for
functions which are not necessarily in L2(Rn; vp

∗−2).

Definition 3.7. Observe that, for any ξ ∈ TvM, it holds vp
∗−2ξ ∈ L

p∗
p∗−1 (Rn) =

(
Lp
∗
(Rn)

)′
. Hence, by

abuse of notation, for any function ψ ∈ Lp∗(Rn) we say that ψ is orthogonal to TvM in L2(Rn; vp
∗−2)

if ∫
Rn
vp
∗−2ξ ψ dx = 0 ∀ ξ ∈ TvM.

Note that, by Hölder inequality, Lp
∗
(Rn) ⊂ L2(Rn; vp

∗−2) if p∗ ≥ 2. Hence, the notion of orthogo-
nality introduced above is relevant only when p∗ < 2 (equivalently, p < 2n

n+2). We also observe that, by
Sobolev embedding, the previous remark gives a meaning to the orthogonality to TvM for functions in
Ẇ 1,p(Rn).

The main result of this section is the following spectral gap-type estimate.

Proposition 3.8. Let S = S(n, p) be the optimal Sobolev constant, and let λ = λ(n, p) > 0 be as in
Proposition 3.6. For any γ0 > 0 and C1 > 0 there exists δ̄ = δ̄(n, p, γ0, C1) > 0 such that the following
holds:

Let ϕ ∈ Ẇ 1,p(Rn) be orthogonal to TvM in L2(Rn; vp
∗−2), with

‖ϕ‖Ẇ 1,p(Rn) ≤ δ̄.

Then:
(i) when 1 < p ≤ 2n

n+2 , we have∫
Rn
|Dv|p−2|Dϕ|2 + (p− 2)|w|p−2

(
|D(v + ϕ)| − |Dv|

)2
+ γ0 min

{
|Dϕ|p, |Dv|p−2|Dϕ|2

}
dx

≥
(
(p∗ − 1)Sp + λ

)
‖v‖p−p

∗

Lp∗ (Rn)

∫
Rn

(v + C1|ϕ|)p
∗

v2 + |ϕ|2
|ϕ|2 dx,

where w : Rn → Rn is defined in analogy to Lemma 2.1:

w =


(

|D(v+ϕ)|
(2−p)|D(v+ϕ)|+(p−1)|Dv|

) 1
p−2

Dv if |Dv| < |D(v + ϕ)|
Dv if |D(v + ϕ)| ≤ |Dv|

;

(ii) when 2n
n+2 < p < 2, we have∫

Rn
|Dv|p−2|Dϕ|2 + (p− 2)|w|p−2

(
|D(v + ϕ)| − |Dv|

)2
+ γ0 min

{
|Dϕ|p, |Dv|p−2|Dϕ|2

}
dx

≥
(
(p∗ − 1)Sp + λ

)
‖v‖p−p

∗

Lp∗ (Rn)

∫
Rn
vp
∗−2|ϕ|2 dx,
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where w : Rn → Rn is defined in analogy to Lemma 2.1:

w =


(

|D(v+ϕ)|
(2−p)|D(v+ϕ)|+(p−1)|Dv|

) 1
p−2

Dv if |Dv| < |D(v + ϕ)|
Dv if |D(v + ϕ)| ≤ |Dv|

;

(iii) when p ≥ 2, we have∫
Rn
|Dv|p−2|Dϕ|2 + (p− 2)|w|p−2

(
|D(v+ϕ)|− |Dv|

)2
dx ≥

(
(p∗− 1)Sp +λ

)
‖v‖p−p

∗

Lp
∗

(Rn)

∫
Rn
vp
∗−2|ϕ|2 dx,

where w : Rn → Rn is defined in analogy to Lemma 2.1:

w =

 Dv if |Dv| < |D(v + ϕ)|(
|D(v+ϕ)|
|Dv|

) 1
p−2

D(v + ϕ) if |D(v + ϕ)| ≤ |Dv|
.

Proof. We can assume that ‖v‖Lp∗ (Rn) = 1, as the general case follows by a scaling. Also, as in the
proof of Lemma 3.4, it suffices to consider the case ϕ ≥ 0.

We argue by contradiction in all three cases.

• The case 1 < p ≤ 2n
n+2 . Suppose the inequality does not hold. Then there exists a sequence 0 6≡ ϕi → 0

in Ẇ 1,p(Rn), with ϕi orthogonal to TvM, such that∫
Rn
|Dv|p−2|Dϕi|2 + (p− 2)|wi|p−2

(
|D(v + ϕi)| − |Dv|

)2
+ γ0 min

{
|Dϕi|p, |Dv|p−2|Dϕi|2

}
dx

<
(
(p∗ − 1)Sp + λ

) ∫
Rn

(v + C1ϕi)
p∗

v2 + |ϕi|2
|ϕi|2 dx, (3.24)

where wi corresponds to ϕi as in the statement.
Let

εi :=

(∫
Rn

(
|Dv|+ |Dϕi|

)p−2|Dϕi|2 dx
) 1

2

,

and set ϕ̂i := ϕi
εi
. Since p < 2 it holds∫

Rn

(
|Dv|+ |Dϕi|

)p−2|Dϕi|2 dx ≤
∫
Rn
|Dϕi|p−2|Dϕi|2 dx =

∫
Rn
|Dϕi|p dx→ 0,

and hence εi → 0.
For any R > 1, set

Ri := {2|Dv| ≥ |Dϕi|}, Si := {2|Dv| < |Dϕi|},

Ri,R :=
(
B(0, R) \B(0, 1/R)

)
∩ Ri, Si,R :=

(
B(0, R) \B(0, 1/R)

)
∩ Si.

Since the integrand in the left hand side of (3.24) is nonnegative (see (2.2)), we deduce that∫
B(0,R)\B(0,1/R)

|Dv|p−2|Dϕ̂i|2 + (p− 2)|wi|p−2

(
|Dv +Dϕi| − |Dv|

εi

)2

+ γ0 min
{
εp−2
i |Dϕ̂i|p, |Dv|p−2|Dϕ̂i|2

}
dx ≤

(
(p∗ − 1)Sp + λ

) ∫
Rn

(v + C1ϕi)
p∗

v2 + |ϕi|2
|ϕ̂i|2 dx (3.25)
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for any R > 1. Also, by (2.2),

|Dv|p−2|Dϕ̂i|2 + (p− 2)|wi|p−2

(
|Dv +Dϕi| − |Dv|

εi

)2

≥ c(p) |Dv|
|Dv|+ |Dϕi|

|Dv|p−2|Dϕ̂i|2 ≥ c(p)|Dv|p−2|Dϕ̂i|2 on Ri,R.

Thus, combining this bound with (3.25), we get

c(p)

∫
Ri,R

|Dv|p−2|Dϕ̂i|2 dx+ γ0

∫
Si,R

εp−2
i |Dϕ̂i|p dx

≤
∫
B(0,R)\B(0,1/R)

|Dv|p−2|Dϕ̂i|2 + (p− 2)|wi|p−2

(
|Dv +Dϕi| − |Dv|

εi

)2

+ γ0 min
{
εp−2
i |Dϕ̂i|p, |Dv|p−2|Dϕ̂i|2

}
dx

≤
(
(p∗ − 1)Sp + λ

) ∫
Rn

(v + C1ϕi)
p∗

v2 + |ϕi|2
|ϕ̂i|2 dx.

(3.26)

In particular, this implies that

1 = ε−2
i

∫
Rn

(
|Dv|+ |Dϕi|

)p−2|Dϕi|2 dx

≤ C(p)

[∫
Ri

|Dv|p−2|Dϕ̂i|2 dx+

∫
Si

εp−2
i |Dϕ̂i|p dx

]
≤ C(n, p, γ0)

(
(p∗ − 1)Sp + λ

) ∫
Rn

(v + C1ϕi)
p∗

v2 + |ϕi|2
|ϕ̂i|2 dx. (3.27)

Furthermore, thanks to Corollary 3.5, for i large enough (so that εi ≤ ε0) we have∫
Rn

(v + C1ϕi)
p∗

v2 + |ϕi|2
|ϕ̂i|2 dx ≤ C(n, p, C1)

∫
Rn

(v + |ϕi|)p
∗−2|ϕ̂i|2 dx

≤ C(n, p, C1)

∫
Rn

(
|Dv|+ |Dϕi|

)p−2|Dϕ̂i|2 dx ≤ C(n, p, C1). (3.28)

Hence, combining (3.26) with (3.28), by the definition of Si,R we get

ε−2
i

∫
Si,R

|Dv|p dx ≤ εp−2
i

∫
Si,R

|Dϕ̂i|p dx ≤ C(n, p, C1),

and since |Dv| is uniformly bounded away from zero inside B(0, R) \B(0, 1/R), we conclude that

|Si,R| → 0 as i→∞, ∀R > 1. (3.29)

Now, according to Lemma 3.4, we have that ϕ̂i converges weakly in Ẇ 1,p(Rn) to some function ϕ̂ ∈
Ẇ 1,p(Rn) ∩ L2(Rn, vp∗−2), and∫

Rn

(v + C1ϕi)
p∗

v2 + |ϕi|2
|ϕ̂i|2 dx→

∫
Rn
vp
∗−2|ϕ̂|2. (3.30)

Also, using again (3.26) and (3.28),∫
Ri,R

|Dv|p−2|Dϕ̂i|2 dx ≤ C(n, p, C1),

therefore (3.29) and the weak convergence of ϕ̂i to ϕ̂ in Ẇ 1,p(Rn) imply that, up to a subsequence,

Dϕ̂iχRi,R ⇀ Dϕ̂χB(0,R)\B(0,1/R) in L2(Rn,Rn), ∀R > 1.
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In particular, ϕ̂ ∈ Ẇ 1,2
loc (Rn \ {0}). In addition, letting i → ∞ in (3.27) and (3.28), and using (3.30),

we deduce that

0 < c(n, p, γ0) ≤ ‖ϕ̂‖L2(Rn;vp∗−2) ≤ C(n, p, C1). (3.31)

Let us write

ϕ̂i = ϕ̂+ ψi, with ψi := ϕ̂i − ϕ̂,
so that

ψi ⇀ 0 in Ẇ 1,p(Rn) and DψiχRi ⇀ 0 in L2
loc(Rn \ {0},Rn).

We now look at the left hand side of (3.25).

The strong Ẇ 1,p(Rn) convergence of ϕi to 0 implies that, up to a subsequence, |wi| → |Dv| a.e.
Also, we can rewrite(
|Dv +Dϕi| − |Dv|

εi

)2

=

([∫ 1

0

Dv + tDϕi
|Dv + tDϕi|

dt

]
·Dϕ̂i

)2

=

([∫ 1

0

Dv + tDϕi
|Dv + tDϕi|

dt

]
·
(
Dϕ̂+Dψi

))2

.

Hence, if we set

fi,1 :=

[∫ 1

0

Dv + tDϕi
|Dv + tDϕi|

dt

]
·Dϕ̂, fi,2 :=

[∫ 1

0

Dv + tDϕi
|Dv + tDϕi|

dt

]
·Dψi,

since Dv+tDϕi
|Dv+tDϕi| →

Dv
|Dv| a.e., it follows from Lebesgue’s dominated convergence theorem that

fi,1 →
Dv

|Dv|
·Dϕ̂ strongly in L2

loc(Rn \ {0}), fi,2χRi ⇀ 0 weakly in L2
loc(Rn \ {0}).

Thus, we can control the first two terms of the left hand side of (3.25) from below as follows:∫
Ri,R

|Dv|p−2|Dϕ̂i|2 + (p− 2)|wi|p−2

(
|Dv +Dϕi| − |Dv|

εi

)2

=

∫
Ri,R

|Dv|p−2
(
|Dϕ̂|2 + 2Dψi ·Dϕ̂

)
+ (p− 2)|wi|p−2

(
f2
i,1 + 2fi,1fi,2

)
+

∫
Ri,R

|Dv|p−2|Dψi|2 + (p− 2)|wi|p−2f2
i,2

≥
∫
Ri,R

|Dv|p−2
(
|Dϕ̂|2 + 2Dψi ·Dϕ̂

)
+ (p− 2)|wi|p−2

(
f2
i,1 + 2fi,1fi,2

)
,

(3.32)

where the last inequality follows from the nonnegativity of |Dv|p−2|Dψi|2 + (p − 2)|wi|p−2f2
i,2 (thanks

to (2.2) and the fact that f2
i,2 ≤ |Dψi|2).

Then, combining the convergences

DψiχRi ⇀ 0, fi,1 →
Dv

|Dv|
·Dϕ̂, fi,2χRi ⇀ 0 in L2

loc(Rn \ {0}),

|wi| → |Dv| a.e., | (B(0, R) \B(0, 1/R)) \ Ri,R| → 0,

with the fact that

|wi|p−2 ≤ C(p)|Dv|p−2,

by Lebesgue’s dominated convergence theorem we deduce that the last term in (3.32) converges to∫
B(0,R)\B(0,1/R)

|Dv|p−2|Dϕ̂|2 + (p− 2)|Dv|p−2

(
Dv

|Dv|
·Dϕ̂

)2

dx.
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Recalling (3.25) and (3.30), since R > 1 is arbitrary and the integrand is nonnegative, this proves that∫
Rn
|Dv|p−2|Dϕ̂|2 + (p− 2)|Dv|p−2

(
Dv

|Dv|
·Dϕ̂

)2

dx ≤
(
(p∗ − 1)Sp + λ

) ∫
Rn
vp
∗−2|ϕ̂|2 dx. (3.33)

On the other hand, ϕ̂ being the weak limit of ϕ̂i in Ẇ 1,p(Rn), it follows that ϕ̂i ⇀ ϕ̂ in Lp
∗
(Rn). Hence,

thanks to Definition 3.7, the orthogonality of ϕi (and so of ϕ̂i) implies that also ϕ̂ is orthogonal to
TvM. Since ϕ̂ ∈ L2(Rn; vp

∗−2), (3.31) and (3.33) contradict Proposition 3.6, concluding the proof.

• The case 2n
n+2 < p < 2. The proof is very similar to the previous case, except for some small changes

and a couple of different estimates.
If the statement fails, then there exists a sequence 0 6≡ ϕi → 0 in Ẇ 1,p(Rn), with ϕi orthogonal to

TvM, such that∫
Rn
|Dv|p−2|Dϕi|2 + (p− 2)|wi|p−2

(
|D(v + ϕi)| − |Dv|

)2
+ γ0 min

{
|Dϕi|p, |Dv|p−2|Dϕi|2

}
dx

<
(
(p∗ − 1)Sp + λ

) ∫
Rn
vp
∗−2|ϕi|2 dx, (3.34)

where wi corresponds to ϕi as in the statement.
As in the case p ≤ 2n

n+2 , we define

εi :=

(∫
Rn

(
|Dv|+ |Dϕi|

)p−2|Dϕi|2 dx
) 1

2

, ϕ̂i =
ϕi
εi
,

and we split B(0, R) \B(0, 1/R) = Ri,R ∪ Si,R.
Then, the analogues of (3.26) and (3.27) hold also in this case, with the only difference that the last

term in both equations now becomes
(
(p∗ − 1)Sp + λ

) ∫
Rn v

p∗−2|ϕ̂i|2 dx.
We now observe that, thanks to Hölder inequality, we have∫
Rn
|Dϕ̂i|p dx ≤

(∫
Rn

(
|Dv|+ |Dϕi|

)p−2|Dϕ̂i|2 dx
) p

2
(∫

Rn

(
|Dv|+ |Dϕi|

)p
dx

)1− p
2

=

(∫
Rn

(
|Dv|+ |Dϕi|

)p
dx

)1− p
2

≤ C(p)

[(∫
Rn
|Dv|pdx

)1− p
2

+ ε
p(2−p)

2
i

(∫
Rn
|Dϕ̂i|pdx

)1− p
2
]
,

from which it follows that ∫
Rn
|Dϕ̂i|p dx ≤ C(n, p). (3.35)

Thus, up to a subsequence, ϕ̂i → ϕ̂ weakly in Ẇ 1,p(Rn) and strongly in L2
loc(Rn) (note that now p∗ > 2).

In addition, Hölder and Sobolev inequalities, together with (3.35), yield∫
Rn\B(0,ρ)

vp
∗−2|ϕ̂i|2 dx ≤

(∫
Rn\B(0, ρ)

vp
∗
dx

)1− 2
p∗
(∫

Rn\B(0, ρ)
|ϕ̂i|p

∗
dx

) 2
p∗

≤
(∫

Rn\B(0, ρ)
vp
∗
dx

)1− 2
p∗
(∫

Rn
|Dϕ̂i|p dx

) 2
p

∀ ρ ≥ 0.

Combining this bound with (3.35) and the strong convergence of ϕ̂i to ϕ̂ in L2
loc(Rn), we conclude that

ϕ̂i → ϕ̂ strongly in L2(Rn; vp
∗−2).

In particular, letting i→∞ in the analogue of (3.27), we obtain

0 < c(n, p) ≤ ‖ϕ̂‖L2(Rn;vp∗−2).
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Similarly, the analogue of (3.26) implies that

|Si,R| → 0 and

∫
Ri,R

|Dv|p−2|Dϕ̂i|2 dx ≤ C(n, p) ∀R > 1.

So, it follows from the weak convergence of ϕ̂i to ϕ̂ in Ẇ 1,p(Rn) that, up to a subsequence,

Dϕ̂iχRi,R ⇀ Dϕ̂χB(0,R)\B(0,1/R) in L2(Rn, Rn), ∀R > 1.

Thanks to this bound, we can split

ϕ̂i = ϕ̂+ ψi, with ψi := ϕ̂i − ϕ̂,
and the very same argument as in the case p ≤ 2n

n+2 allows us to deduce that

lim inf
i→∞

∫
Ri,R

|Dv|p−2|Dϕ̂i|2 + (p− 2)|wi|p−2

(
|Dv +Dϕi| − |Dv|

εi

)2

≥
∫
B(0,R)\B(0,1/R)

|Dv|p−2|Dϕ̂|2 + (p− 2)|Dv|p−2

(
Dv

|Dv|
·Dϕ̂

)2

dx.

Recalling (3.34), since R > 1 is arbitrary and the integrands above are nonnegative, this proves
that (3.33) holds, a contradiction to Proposition 3.6 since ϕ̂ is orthogonal to TvM (being the strong
L2(Rn; vp

∗−2)-limit of ϕ̂i).

• The case p ≥ 2. The argument is similar to the case 1 < p < 2, but simpler.
If the statement of the lemma fails, then there exists a sequence 0 6≡ ϕi → 0 in Ẇ 1,p(Rn), with ϕi

orthogonal to TvM, such that∫
Rn
|Dv|p−2|Dϕi|2 +(p−2)|wi|p−2

(
|D(v+ϕi)|− |Dv|

)2
dx <

(
(p∗−1)Sp+λ

) ∫
Rn
vp
∗−2|ϕi|2 dx, (3.36)

where wi corresponds to ϕi as in the statement.
Let

εi := ‖ϕi‖Ẇ 1,2(Rn;|Dv|p−2), ϕ̂i =
ϕi
εi
.

Note that, since p ≥ 2, it follows by Hölder inequality that∫
Rn
|Dv|p−2|Dϕi|2 dx ≤

(∫
Rn
|Dv|p dx

)1− p
2
(∫

Rn
|Dϕi|p dx

) p
2

→ 0,

hence εi → 0.
Since 1 = ‖ϕ̂i‖Ẇ 1,2(Rn;|Dv|p−2), Proposition 3.2 implies that, up to a subsequence, ϕ̂i → ϕ̂ weakly in

Ẇ 1,2
loc (Rn; |Dv|p−2) and strongly in L2(Rn; vp

∗−2). Also, since p ≥ 2, it follows from (3.36) that

1 =

∫
Rn
|Dv|p−2|Dϕ̂i|2 ≤

(
(p∗ − 1)Sp + λ

) ∫
Rn
vp
∗−2|ϕ̂i|2 dx,

so we deduce that
‖ϕ̂‖L2(Rn;vp∗−2) ≥ c(n, p) > 0.

In addition, since the integrand in the left hand side of (3.36) is nonnegative, we get∫
B(0,R)\B(0,1/R)

|Dv|p−2|Dϕ̂i|2 + (p− 2)|wi|p−2

(
|Dv +Dϕi| − |Dv|

εi

)2

dx

≤
(
(p∗ − 1)Sp + λ

) ∫
Rn
vp
∗−2|ϕ̂i|2 dx (3.37)

for any R > 1.
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Note now that, because

0 < c(R) ≤ |Dv| ≤ C(R) inside B(0, R) \B(0, 1/R) ∀R > 1,

writing
ϕ̂i = ϕ̂+ ψi, with ψi := ϕ̂i − ϕ̂

we have
ψi ⇀ 0 in Ẇ 1,2

loc (Rn \ {0}).
Then we look at the left hand side of (3.37), and exactly as in the case 2n

n+2 < p < 2 we deduce that

lim inf
i→∞

∫
B(0,R)\B(0,1/R)

|Dv|p−2|Dϕ̂i|2 + (p− 2)|wi|p−2

(
|Dv +Dϕi| − |Dv|

εi

)2

≥
∫
B(0,R)\B(0,1/R)

|Dv|p−2|Dϕ̂|2 + (p− 2)|Dv|p−2

(
Dv

|Dv|
·Dϕ̂

)2

dx. (3.38)

Recalling (3.37) and since R > 1 is arbitrary, this proves that (3.33) holds, which contradicts Proposition
3.6 due to the orthogonality of ϕ̂ to TvM. �

4. Proof of Theorem 1.1

Thanks to the preliminary estimates performed in the previous sections, we can now follow the
compactness strategy of [3, 26].

By scaling, we can assume ‖u‖Lp∗ (Rn) = 1. Also, since the right hand side of (1.4) is trivially bounded

by 2, it suffices to prove the result for δ(u)� 1.

It follows by concentration-compactess that for any ε̂ > 0 there exists a constant δ̂ = δ̂(n, p, ε̂) such
that the following holds: if

‖Du‖Lp(Rn) − S ≤ δ̂,
then there exists v̂ ∈ M which minimizes the right-hand side of (1.4), v̂ satisfies 3

4 ≤ ‖v̂‖Lp∗ ≤
4
3 , and

‖Du − Dv̂‖Lp(Rn) ≤ ε̂. Also, up to a translation and a rescaling that preserve the Lp
∗
-norm, we can

assume that v̂ = va,1,0 with a > 0.
As explained in the introduction, the basic idea would be to expand u around v̂. Unfortunately,

with our choice of v̂ we do not have the desired orthogonality needed to use the spectral properties
proved in the previous section. Hence, we need the following result (recall Definition 3.7 for the notion
of orthogonality when a function is in Lp

∗
(Rn)):

Lemma 4.1. Let ‖u‖Lp∗ (Rn) = 1, and assume that ‖Du −Dv̂‖Lp(Rn) ≤ ε̂ with v̂ = va,1,0 ∈ M. There

exist ε′ = ε′(n, p) > 0 and a modulus of continuity ω : R+ → R+ such that the following holds: If ε̂ ≤ ε′
then there exists v ∈M such that u− v is orthogonal to TvM and ‖Du−Dv‖Lp(Rn) ≤ ω(ε̂).

Proof. Given u as in the statement, we consider the minimization of the functional

M 3 v 7→ Fu[v] :=
1

p∗

∫
Rn
|v|p∗ dx− 1

p∗ − 1

∫
Rn
|v|p∗−2v u dx. (4.1)

Assume first that u = v̂ ∈M. We claim that the minimizer of (4.1) is unique and coincides with u.
To prove this we note that, by Hölder inequality,

Fu[v] ≥ 1

p∗

∫
Rn
|v|p∗ dx− 1

p∗ − 1

(∫
Rn
|u|p∗ dx

) 1
p∗
(∫

Rn
|v|p∗ dx

) p∗−1
p∗

≥ − 1

p∗(p∗ − 1)

∫
Rn
up
∗
dx, (4.2)

where the second inequality follows from the fact that the function

(0,+∞) 3 s 7→ 1

p∗
sp
∗ − 1

p∗ − 1
Asp

∗−1



SHARP GRADIENT STABILITY FOR THE SOBOLEV INEQUALITY 27

is uniquely minimized at s = A. Noticing that the last term in (4.2) coincides with Fu[u], and that
equality holds in both inequalities of (4.2) if and only if v = u, the claim follows.

Now, if u is close to v̂ = va,1,0 in Ẇ 1,p(Rn)-norm, it follows by compactness that the minimum of
the function

R× (0,+∞)× Rn 3 (a, b, x0) 7→ Fu[va,b,x0 ]

is attained at some values (a′, b′, x′0) close to (a, 1, 0), hence ‖Dva′,b′,x′0 −Dv̂‖Lp(Rn) � 1. Thus, since

by assumption u and v̂ are Ẇ 1,p(Rn)-close, we deduce that

‖Du−Dva′,b′,x′0‖Lp(Rn) → 0 as ‖Du−Dv̂‖Lp(Rn) → 0,

which proves the existence of a modulus of continuity ω as in the statement.
Finally, it is immediate to check that if v ∈M is close to va,1,0 and minimizes Fu, then

0 =
d

dt

∣∣∣
t=0

Fu[v + tξ] =

∫
Rn
vp
∗−2ξ (v − u) dx ∀ ξ ∈ TvM.

This concludes the proof. �

Thanks to Lemma 4.1, given u as at the beginning of the section with δ(u) sufficiently small, we
can find v ∈ M close to u such that u − v is orthogonal to TvM. More precisely, u can be written
as u = v + εϕ, where ε ≤ ω(ε̂) with ε̂ ≤ ε′, ‖Dϕ‖Lp(Rn) = 1, and ϕ is orthogonal to TvM (see
Definition 3.7). Furthermore, up to a further small translation and rescaling, we can assume that
v = va0,1,0 with 1

2 ≤ ‖v‖Lp∗ ≤ 2 so that all the statements in Section 3 hold.
Observe that, for δ(u) small,

δ(u) = ‖Du‖Lp(Rn) − S ≥ c(n, p)
(
‖Du‖pLp(Rn) − S

p
)
. (4.3)

In the following argument several parameters will appear, and these parameters depend on each other.
To simplify the notation we shall not explicit their dependence on n and p, but we emphasize how the
parameters depend on each other, at least until they have been fixed.

• The case 1 < p ≤ 2n
n+2 . Let κ > 0 be a small constant to be fixed later. By Lemma 2.1 we have

‖Du‖pLp(Rn) =

∫
Rn
|Dv + εDϕ|p dx

≥
∫
Rn
|Dv|p dx+ εp

∫
Rn
|Dv|p−2Dv ·Dϕdx

+
ε2p(1− κ)

2

(∫
Rn
|Dv|p−2|Dϕ|2 + (p− 2)|w|p−2

(
|Du| − |Dv|

ε

)2

dx

)
+ c0(κ)

∫
Rn

min
{
εp|Dϕ|p, ε2|Dv|p−2|Dϕ|2

}
dx,

where w corresponds to u and v as in Lemma 2.1. On the other hand, by Lemma 2.4 and the concavity

of t 7→ t
p
p∗ ,

1 = ‖u‖p
Lp∗ (Rn)

=

(∫
Rn
|v + εϕ|p∗ dx

) p
p∗

≤ ‖v‖p
Lp∗ (Rn)

+ ‖v‖p−p
∗

Lp∗ (Rn)

(
εp

∫
Rn
vp
∗−1ϕdx+ ε2

(
p(p∗ − 1)

2
+
pκ

p∗

)∫
Rn

(v + C1(κ)|εϕ|)p∗

v2 + |εϕ|2
|ϕ|2 dx

)
.

Since, by (1.1),

εp

∫
Rn
|Dv|p−2Dv ·Dϕdx = ‖v‖p−p

∗

Lp∗ (Rn)
Spεp

∫
Rn
vp
∗−1ϕdx,
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and ‖Dv‖Lp(Rn) = S‖v‖Lp∗ (Rn), we then immediately conclude that

C(n, p)δ(u) ≥ ‖Du‖pLp(Rn) − S
p‖u‖p

Lp∗ (Rn)

≥ ε2p(1− κ)

2

(∫
Rn
|Dv|p−2|Dϕ|2 + (p− 2)|w|p−2

(
|Du| − |Dv|

ε

)2

dx

)
+ c0(κ)

∫
Rn

min
{
εp|Dϕ|p, ε2|Dv|p−2|Dϕ|2

}
dx

− ε2‖v‖p−p
∗

Lp∗ (Rn)
Sp
(
p(p∗ − 1)

2
+
pκ

p∗

)∫
Rn

(v + C1(κ)|εϕ|)p∗

v2 + |εϕ|2
|ϕ|2 dx.

Now, for δ(u) ≤ δ′ = δ′(ε, κ, γ0) small enough, Proposition 3.8 allows us to reabsorb the last term
above: more precisely, we have

C(n, p)δ(u)

≥ pε2
(

(1− κ)

2
−

(p∗ − 1) + 2
p∗κ

2(p∗ − 1) + 2λS−p

)(∫
Rn
|Dv|p−2|Dϕ|2 + (p− 2)|w|p−2

(
|Du| − |Dv|

ε

)2

dx

)
+

(
c0(κ)− γ0

p
[
(p∗ − 1) + 2

p∗κ
]

2(p∗ − 1) + 2λS−p

)∫
Rn

min
{
εp|Dϕ|p, ε2|Dv|p−2|Dϕ|2

}
dx,

and choosing first κ = κ(n, p) > 0 small enough so that

(1− κ)

2
−

(p∗ − 1) + 2
p∗κ

2(p∗ − 1) + 2λS−p
≥ 0,

and then γ0 = γ0(n, p) > 0 small enough so that

c0

2
≥ γ0

p
[
(p∗ − 1) + 2

p∗κ
]

2(p∗ − 1) + 2λS−p
,

we eventually arrive at

C(n, p)δ(u) ≥ c0

2

∫
Rn

min
{
εp|Dϕ|p, ε2|Dv|p−2|Dϕ|2

}
dx. (4.4)

Observe that, since p < 2, it follows by Hölder inequality that(∫
{ε|Dϕ|<|Dv|}

|Dϕ|p dx
) 2
p

≤
(∫
{ε|Dϕ|<|Dv|}

|Dv|p dx
) 2
p
−1 ∫

{ε|Dϕ|<|Dv|}
|Dv|p−2|Dϕ|2 dx

≤ C(n, p)

∫
{ε|Dϕ|<|Dv|}

|Dv|p−2|Dϕ|2 dx.

Hence, since ‖Dϕ‖Lp(Rn) = 1, we get∫
Rn

min
{
εp|Dϕ|p, ε2|Dv|p−2|Dϕ|2

}
dx

=

∫
{ε|Dϕ|≥|Dv|}

εp|Dϕ|p dx+

∫
{ε|Dϕ|<|Dv|}

ε2|Dv|p−2|Dϕ|2 dx

≥
∫
{ε|Dϕ|≥|Dv|}

εp|Dϕ|p dx+ c

(∫
{ε|Dϕ|<|Dv|}

εp|Dϕ|p dx
) 2
p

≥ c
(∫

Rn
εp|Dϕ|p dx

) 2
p

, (4.5)

where c = c(n, p) > 0.
Combining (4.4) and (4.5), we conclude the proof of (1.4) with α = 2.
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• The case 2n
n+2 < p < 2. The proof is very similar to the previous case, with very small changes.

By Lemma 2.1 we have∫
Rn
|Du|p dx−

∫
Rn
|Dv|p dx− εp

∫
Rn
|Dv|p−2Dv ·Dϕdx

≥ ε2p(1− κ)

2

(∫
Rn
|Dv|p−2|Dϕ|2 + (p− 2)|w|p−2

(
|Du| − |Dv|

ε

)2

dx

)
+ c0(κ)

∫
Rn

min
{
εp|Dϕ|p, ε2|Dv|p−2|Dϕ|2

}
dx,

where w corresponds to u and v as in Lemma 2.1, while by Lemma 2.4∫
Rn
|u|p∗ dx ≤ 1 + εp∗

∫
Rn
vp
∗−1ϕdx+ ε2

(
p∗(p∗ − 1)

2
+ κ

)∫
Rn
vp
∗−2|ϕ|2 dx+ εp

∗
C1(κ)

∫
Rn
|ϕ|p∗ dx.

Hence, arguing as in the case 1 < p ≤ 2n
n+2 , it follows from (1.1), Proposition 3.8, and (4.5) that, by

choosing first κ > 0 and then γ0 > 0 small enough, for δ(u) sufficiently small we have∫
Rn
|Du|p dx−

∫
Rn
|Dv|p dx ≥ c

(∫
Rn
εp|Dϕ|p dx

) 2
p

− εp∗C1p

p∗

∫
Rn
|ϕ|p∗ dx.

Since p∗ > 2 and 1 = ‖Dϕ‖Lp(Rn) ≥ S‖ϕ‖Lp∗ (Rn), the result follows by the Sobolev inequality, provided
ε is sufficiently small.

• The case p ≥ 2. By Lemma 2.1 we have∫
Rn
|Du|p dx−

∫
Rn
|Dv|p dx− εp

∫
Rn
|Dv|p−2Dv ·Dϕdx

≥ ε2p(1− κ)

2

(∫
Rn
|Dv|p−2|Dϕ|2 + (p− 2)|w|p−2

(
|Du| − |Dv|

ε

)2

dx

)
+ εpc0(κ)

∫
Rn
|Dϕ|p dx,

where w corresponds to u and v as in Lemma 2.1, while by Lemma 2.4∫
Rn
|u|p∗ dx ≤ 1 + εp∗

∫
Rn
vp
∗−1ϕdx+ ε2

(
p∗(p∗ − 1)

2
+ κ

)∫
Rn
vp
∗−2|ϕ|2 dx+ εp

∗
C1(κ)

∫
Rn
|ϕ|p∗ dx.

Hence, arguing again as in the case p ≤ 2n
n+2 , it follows from (1.1) and Proposition 3.8 that, by choosing

κ > 0 small enough,∫
Rn
|Du|p dx−

∫
Rn
|Dv|p dx ≥ εpc0

∫
Rn
|Dϕ|p dx− εp∗C1p

p∗

∫
Rn
|ϕ|p∗ dx.

Since 1 = ‖Dϕ‖Lp(Rn) ≥ S‖ϕ‖Lp∗ (Rn), this implies (1.4) with α = p when ε is sufficiently small,
concluding the proof of Theorem 1.1. �

Appendix A. A Hardy-Poincare inequality

Lemma A.1. Let α < n and let u ∈ Ẇ 1, p
(
Rn; |x|−α

)
. Then, for any R > 1, we have∫

Rn\B(0,R)
|u|p|x|−α dx ≤ C(n, p, α)

∫
Rn\B(0,R)

|Du|p|x|−α+p dx.
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Proof. Since R ≥ 1 and α < n, thanks to Fubini’s Theorem and using polar coordinates we get∫
Rn\B(0,R)

|u|p|x|−α dx

≤ C(n, p)

∫
Sn−1

∫ ∞
R
|u(rθ)|pr−α+n−1 dr dθ

≤ C(n, p)

∫
Sn−1

∫ ∞
R

∫ ∞
r
|u(tθ)|p−1|Du|(tθ)r−α+n−1 dt dr dθ

≤ C(n, p)

∫
Sn−1

∫ ∞
R

∫ t

1
|u(tθ)|p−1|Du|(tθ)r−α+n−1 dr dt dθ

≤ C(n, p, α)

∫
Sn−1

∫ ∞
R
|u(tθ)|p−1|Du|(tθ)t−α+n dt dθ

≤ C(n, p, α)

(∫
Sn−1

∫ ∞
R
|u(tθ)|pt−α+n−1 dt dθ

) p−1
p

·

·
(∫

Sn−1

∫ ∞
R
|Du|p(tθ)t−α+n−1+p dt dθ

) 1
p

≤ C(n, p, α)

(∫
Rn\B(0,R)

|u(x)|p|x|−α dx
) p−1

p
(∫

Rn\B(0,R)
|Du|p(x)|x|−α+p dx

) 1
p

where we applied Hölder inequality in the penultimate step. This implies the lemma. �

Appendix B. Spectral analysis

In this appendix we discuss the spectral properties of the operator

Lv[ϕ] := −div
(
|Dv|p−2Dϕ+ (p− 2)|Dv|p−4(Dv ·Dϕ)Dv

)
on the space L2(Rn; vp

∗−2). As shown in this Proposition 3.2, this operator has a discrete spectrum for
any 1 < p < n.

Note that eigenfunctions belong to the closure of C1
c,0(Rn) with respect to the Ẇ 1,2(Rn; |Dv|p−2)

norm (see the beginning of Section 3, in particular Remark 3.1), and eigenfunctions corresponding to
different eigenvalues are orthogonal in L2(Rn; vp

∗−2).
One easily verifies that v is an eigenfunction of Lv with eigenvalue (p− 1)Sp, and that ∂bv and ∂xiv

are eigenfunctions with eigenvalue (p∗− 1)Sp. Furthermore, since v > 0, it follows that (p− 1)Sp is the
first eigenvalue, which is simple.

To prove that TvM generates the first and the second eigenspaces corresponding to Lv, we must show
that (p∗−1)Sp is the second eigenvalue and verify that there are no other eigenfunctions corresponding
to this eigenvalue. As in the proof of [26, Proposition 3.1], both of these facts follow from separation
of variables and Sturm-Liouville theory.

Indeed, given an eigenfunction of the form ϕ(x) = Y (θ)f(r), where Y : Sn−1 → R and f : R → R,
the eigenvalue problem corresponds to the following system:

0 = ∆Sn−1Y (θ) + µY (θ) on Sn−1, (B.1)

0 = (p− 1)|v′|p−2f ′′ +
(p− 1)(n− 1)

r
|v′|p−2f ′ − µ

r2
|v′|p−2f

+(p− 1)(p− 2)|v′|p−4v′v′′f ′ + αvp
∗−2f

on [0,∞). (B.2)

The eigenvalues and eigenfunctions of (B.1) are the spherical harmonics, and the eigenvalues are well-
known and nonnegative. In particular, as noted in the proof of [26, Proposition 3.1], what matters for
us is that µ1 = 0 and µ2 = n− 1.
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Multiplying by the integrating factor rn−1, the ordinary differential equation (B.2) takes the form of
the Sturm-Liouville eigenvalue problem

Lf + αf = 0 on [0,∞), (B.3)

where

Lf =
1

w
[(Pf ′)′ −Qf ]

with

P (r) = (p− 1)|v′|p−2rn−1, Q(r) = µrn−3|v′|p−2, w(r) = vp
∗−2rn−1, (B.4)

and the eigenfunctions belong to the closure of C1
c,0([Rn])Hilbert space

H :=
{
g : [0,∞)→ R : g ∈ L2([0,∞);w), g′ ∈ L2[0,∞);P )

}
. (B.5)

Remark B.1. It is clear that eigenfunctions of L are smooth on (0,∞). It is interesting to observe that
they are actually continuous up to the origin.

Indeed, since |Dv|p−2 ∼ |x|
p−2
p−1 ∈ L1(B1) for p > n+2

n+1 , as in [26] one can easily check that the operator Lv
is degenerate elliptic with ellipticity matrix that defines an A2-Muckenhoupt weight. This implies that
its eigenfunctions are locally Hölder continuous [16], hence eigenfunctions of L are Hölder continuous
near the origin.

On the other hand, we note that P (r) ∼ r
p−2
p−1

+n−1 ≥ 1 on [0, 1] for p ≤ n+1
n . In particular, since

eigenfunctions of L belong to H (see (B.5)), it follows by Sobolev’s embedding that

∞ >

∫ 1

0
P |f ′|2 dr ≥ c

∫ 1

0
|f ′|2 dr ⇒ f ∈ C0,1/2([0, 1]),

that is, eigenfunctions of L are Hölder continuous on [0, 1] for p ≤ n+1
n .

Since n+1
n > n+2

n+1 , this shows that eigenfunction of L are continuous on [0,∞) for any 1 < p < n.

Remark B.2. As noted above, eigenfunctions of Lv corresponding to different eigenvalues are orthogonal
L2(Rn; vp

∗−2). This implies that if f1 and f2 are two eigenfunctions of L corresponding to different
eigenvalues, then ∫ ∞

0
wf1f2 dr = 0.

As shown in the proof of [26, Proposition 3.1], to conclude the argument it suffices to prove the
validity of the following:

Lemma B.3. Consider the Sturm-Liouville problem (B.3).

(1) If f1 and f2 are two eigenfunctions corresponding to the same eigenvalue α, then f1 = cf2 for
some c ∈ R.

(2) The i-th eigenfunction of L has i− 1 interior zeros.

Proof. We begin by noticing that [26, Lemma 6.6] applies verbatim in our situation, and it shows that
eigenfunctions of L satisfy the following decay estimates:

|f(r)| ≤ Cr−β, |f ′(r)| ≤ Cr−β−1 for r � 1, for any 0 < β <
n− p
p− 1

. (B.6)

We can now prove the two desired properties.

• Proof of (1). Given f1, f2 two eigenfunctions for the same eigenvalue α, as shown in the proof of [26,
Lemma 6.4] it holds

(PW )′ = 0 on (0,∞), with W := f1f
′
2 − f2f

′
1. (B.7)
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We claim that PW ≡ 0. Indeed, since P (r) ∼ r
n−1
p−1 for r � 1, thanks to (B.6) with β = 3(n−p)

4(p−1) it holds

|Pf ′1f2|+ |Pf ′2f1| ≤ Cr
n−1
p−1
−2β−1

= Cr
− n−p

2(p−1) → 0 as r →∞. (B.8)

This implies that (PW )(r)→ 0 as r →∞, so the claim follows from (B.7).

Once the claim is proven, the proof of (1) follows as in [26, Lemma 6.4].

• Proof of (2). Suppose that f1 and f2 are eigenfunctions of L corresponding to eigenvalues α1 and α2

respectively, with α1 < α2.
Assume first that f1 has two consecutive zero at r1 and r2, with r2 ∈ (r1,∞]. Thanks to (B.6) we

can apply the argument in the proof [26, Lemma 6.4] to show that f2 must have a zero inside (r1, r2).
Assume now that r1 is the first interior zero of f1, and suppose by contradiction that f2 has no zero

in (0, r1). Assuming with no loss of generality that both f1 and f2 are non-negative on [0, r1], thanks
to Remark B.2, [26, Equation (6.16)], and (B.8), we get

0 > (α1 − α2)

∫ r1

0
wf1f2 dr = −(α1 − α2)

∫ ∞
r1

wf1f2 dr = PW (r1)− lim
r→∞

(PW )(r) = PW (r1).

Thus 0 > (PW )(r1) = P (r1)f ′1(r1)f2(r1), a contradiction since P ≥ 0, f ′1(r1) ≤ 0, and f2(r1) ≥ 0.
We can now conclude the proof of (2) as in [26, Lemma 6.4]. �

Appendix C. A numerical inequality

Lemma C.1. Let 1 < p ≤ 2n
n+2 . Given ε0 > 0, there exists ζ = ζ(ε0) small enough so that the following

inequality holds for any nonnegative numbers ε, r, a, b satisfying ε ∈ (0, 1) and εa ≤ ζ
(
1 + r

p
p−1
)1−n

p :(
1 + r

p
p−1
)(1−n

p

)
(p∗−2)+p−1

[
a2ζpr

p
p−1
(
1 + r

p
p−1
)−p

+ a2εpbp
(
1 + r

p
p−1
)n−p

+ a2−pbp
]

≤ ε0
(
1 + r

p
p−1
)(1−n

p

)
(p∗−2)

a2 + C(ε0, n, p)(1 + r)
− p
p−1

((
1 + r

p
p−1
)−n

p r
1
p−1 + εb

)p−2
b2 (C.1)

≤ ε0
(
1 + r

p
p−1
)(1−n

p

)
(p∗−2)

a2 + C(ε0, n, p)
((

1 + r
p
p−1
)−n

p r
1
p−1 + εb

)p−2
b2. (C.2)

Proof. Note that (C.2) immediately follows from (C.1), so it suffices to prove (C.1). We distinguish
several cases.

• Case 1: 0 ≤ r ≤ 1. In this case, up to changing the values of ε0 and ζ by a universal constant, (C.1)
is equivalent to

a2ζpr
p
p−1 + a2εpbp + a2−pbp ≤ ε0a2 + C(ε0, n, p)

(
r

1
p−1 + εb

)p−2
b2. (C.3)

Note that:

- if εb ≤
(
ε0
3

) 1
p r

1
p−1 then a2εpbp ≤ ε0

3 a
2;

- if εb >
(
ε0
3

) 1
p r

1
p−1 then, since εa ≤ ζ

(
1 + r

p
p−1
)1−n

p ≤ 2ζ,

a2εpbp ≤ 4ζ2εp−2bp ≤ C(ε0, n, p)
(
r

1
p−1 + εb

)p−2
b2.

Similarly:

- if b ≤
(
ε0
3

) 1
p a then a2−pbp ≤ ε0

3 a
2;

- if
(
ε0
3

) 1
p a < b < ε−1r

1
p−1 then

a2−pbp ≤ C(ε0, n, p)b
2 ≤ C(ε0, n, p)r

p−2
p−1 b2 ≤ C(ε0, n, p)

(
r

1
p−1 + εb

)p−2
b2;

- if b ≥ ε−1r
1
p−1 then, since εa ≤ ζ

(
1 + r

p
p−1
)1−n

p ≤ 2ζ,

a2−pbp ≤ 42−pζ2−pεp−2bp ≤ C(ε0, n, p)
(
r

1
p−1 + εb

)p−2
b2.
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Thus, choosing ζp ≤ ε0
3 , (C.3) holds in all cases.

• Case 2: r > 1. In this case, (C.1) is equivalent to

r
p−n
p−1

(p∗−2)
a2ζp + r

p−n
p−1

(p∗−2−p)+p
apεpbp + a2−pbpr

p−n
p−1

(p∗−2)+p

≤ ε0r
p−n
p−1

(p∗−2)
a2 + C(ε0, n, p)r

− p
p−1
(
r

1−n
p−1 + εb

)p−2
b2. (C.4)

Again:

- if b ≤
(
ε0
3

) 1
p r

1−n
p−1 ε−1 then

r
p−n
p−1

(p∗−2−p)+p
a2εpbp ≤ ε0

3
r
p−n
p−1

(p∗−2)
a2;

-if b >
(
ε0
3

) 1
p r

1−n
p−1 ε−1, we apply the inequality εa ≤ ζ

(
1 + r

p
p−1
)1−n

p ≤ 2ζr
p−n
p−1 to conclude

r
p−n
p−1

(p∗−2−p)+p
a2εpbp ≤ 4r

− p
p−1 ζ2εp−2bp ≤ C(ε0, n, p)r

− p
p−1
(
r

1−n
p−1 + εb

)p−2
b2.

On the other hand:

- if b ≤
(
ε0
3

) 1
p ar−1 then

a2−pbpr
p−n
p−1

(p∗−2)+p ≤ ε0
3
r
p−n
p−1

(p∗−2)
a2;

- if
(
ε0
3

) 1
p ar−1 < b < ε−1r

1−n
p−1 then

a2−pbpr
p−n
p−1

(p∗−2)+p ≤ C(ε0, n, p)b
2r

p−n
p−1

(p∗−2)+2

= C(ε0, n, p)r
− p
p−1 r

1−n
p−1

(p−2)
b2 ≤ C(ε0, n, p)r

− p
p−1
(
r

1−n
p−1 + εb

)p−2
b2;

- if b ≥ ε−1r
1−n
p−1 then we apply the inequality εa ≤ ζ

(
1 + r

p
p−1
)1−n

p ≤ 2ζr
p−n
p−1 to get

a2−pbpr
p−n
p−1

(p∗−2)+p ≤ 22−pr
− p
p−1 ζ2−pεp−2bp ≤ C(ε0, n, p)r

− p
p−1
(
r

1−n
p−1 + εb

)p−2
b2.

This proves (C.4) whenever ζp ≤ ε0
3 , concluding the proof of (C.1). �
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[1] T. Aubin, Problémes isopérimétriques et espaces de Sobolev. (French) J. Differential Geometry 11 (1976), no. 4,
573–598.

[2] T. Bartsch, T. Weth, M. Willem, A Sobolev inequality with remainder term and critical equations on domains with
topology for the polyharmonic operator. Calc. Var. Partial Differential Equations 18 (2003), 253–268.

[3] G. Bianchi, H. Egnell, A note on the Sobolev inequality. J. Funct. Anal. 100 (1991), no. 1, 18–24.
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