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A MATRIX HARNACK INEQUALITY FOR SEMILINEAR HEAT EQUATIONS

GIACOMO ASCIONE, DANIELE CASTORINA, GIOVANNI CATINO, AND CARLO MANTEGAZZA

ABSTRACT. We derive a matrix version of Li & Yau–type estimates for positive solutions
of semilinear heat equations on Riemannian manifolds with nonnegative sectional cur-
vatures and parallel Ricci tensor, similarly to what R. Hamilton did in [4] for the standard
heat equation. We then apply these estimates to obtain some Harnack–type inequalities,
which give local bounds on the solutions in terms of the geometric quantities involved.

1. INTRODUCTION

We are interested in positive classical solutions of semilinear heat equations ut =
∆u + up, in Rn or in a complete Riemannian manifold (M, g) without boundary, where
p > 1.

In their celebrated paper [6], Li and Yau showed how a Harnack inequality for the
classical heat equation on a manifold with nonnegative Ricci tensor can be derived from
a differential inequality for the logarithm of a solution. Subsequently, in the case of
a manifold with nonnegative sectional curvatures and parallel Ricci tensor, Hamilton
in [4] proved that the Harnack estimate of Li and Yau can actually be obtained as the
trace of a full matrix inequality, under some more restrictive geometric assumptions.
In some cases these inequalities can be useful in proving triviality of eternal solutions,
see [1], moreover, “geometric” versions of them appear naturally and play a key role
in the analysis of mean curvature flow and of Ricci flow (which are described by much
more complicated systems of parabolic PDEs), see [3, 5].

Our aim is to extend to the semilinear setting the matrix Harnack estimate of Li &
Yau–type for the heat equation developed by Hamilton in [4].

We set some definitions and notations. In all of the paper, the Riemannian manifolds
(M, g) will be smooth, complete, connected and without boundary. We will denote with
∇ the Levi–Civita connection of (M, g) and ∆ the associated Laplace–Beltrami operator
and we assume that (M, g) has nonnegative sectional curvatures and parallel Ricci ten-
sor, that is,∇Ric = 0. Finally, all the solutions we will consider are classical (C2 in space
and C1 in time, at least).

Remark 1.1. The hypothesis that M has parallel Ricci tensor and nonnegative sectional
curvatures is satisfied on a torus or a sphere or a complex projective space, or a product
of such, or a quotient of a product by a finite group of isometries.
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Definition 1.2. A quintuple of real numbers (a, b, c, d, θ) is admissible, if the following
inequalities

d ≥ a > c > 0

θ > b ≥ 0

(a− c)2θ2 − a(θ − b)[(2θ + na)(a− c) + a(n− 1)(θ − b)] ≥ 0

(1.1)

are satisfied.

The above system turns out to have actually solutions.

Proposition 1.3. There exists a nonempty cone C of admissible quintuples of parameters.

We can then state our main result.

Theorem 1.4. Suppose (M, g) is a complete, n–dimensional Riemannian manifold without
boundary, with nonnegative sectional curvatures and parallel Ricci tensor. Let f = log u, where
u is a positive classical solution of

∂tu = ∆u+ up (1.2)

in M × (0, T ). Then, for any (a, b, c, d, θ) ∈ C there exists a constant ε > 0 such that

t
(
θfij + a∆fgij + bfifj + c|∇f |2gij + de(p−1)fgij

)
≥ −1

ε
gij, (1.3)

in the sense of tensors in M × (0, T ), for all 1 < p < 1 +G(a, b, c, d, θ), where

G(a, b, c, d, θ) = min{G1(b, d, θ), G2(a, b, c, d, θ)}, (1.4)

given

G1(b, d, θ) =
4d(θ − b)

θ2

and G2(a, b, c, d, θ) the positive solution of

(d− a)θ2x2 + (d− c)θ2x− 4cd(θ − b) = 0. (1.5)

Taking the trace with the metric g in inequality (1.3), we get a scalar Li & Yau–type
inequality (which is actually weaker than the analogous one proved in [1])

t
[
(θ + na)∆f + (b+ nc)|∇f |2 + nde(p−1)f

]
≥ −n

ε
(1.6)

and substituting u = ef ,

(θ/n+ a)∆u+ (b/n+ c− θ/n− a)
|∇u|2

u
+ dup ≥ − u

εt

in M × (0, T ).

Remark 1.5. As we mentioned, inequalities like (1.3) and (1.6) are relevant for ancient
(and eternal) solutions u, that is, solutions defined in M × (−∞, T ) for some T ∈ R ∪
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{+∞}, since by a standard argument (see [1, Section 3], for instance) choosing suitable
intervals for their application, they imply

θuij + a∆ugij + (b− θ)uiuj
u

+ (c− a)
|∇u|2

u
gij + dupgij ≥ 0

in the sense of tensors and

(θ/n+ a)∆u+ (b/n+ c− θ/n− a)
|∇u|2

u
+ dup ≥ 0

in M × (−∞, T ).

It is possible to have an explicit bound for the function G defined in Theorem 1.4 only
in terms of the dimension n of the manifold, as shown in the next proposition, hence
giving a lower bound for the range of exponents p for which the results hold.

Proposition 1.6. There holds

sup
(a,b,c,d,θ)∈C

G(a, b, c, d, θ) ≥ G̃(n)

where
G̃(n) =

4

(k(n) + 1)2

(
1 +

1

z(n)

)
,

and

k(n) = 3
√
n cos

(1

3
arccos

(
1/
√
n
))
,

z(n) =
k2(n)− 3n+

√
k4(n)− 6nk2(n)− 6nk(n)

3n
.

In particular, for any c > 0(
(z(n) + 1)c, k(n)c, c, (z(n) + 1)c, (k(n) + 1)c

)
∈ C

and
G̃(n) = G((z(n) + 1)c, k(n)c, c, (z(n) + 1)c, (k(n) + 1)c).

In the next sections we show these results, while in the last one we derive, along the
lines of [6] (and [4]), some consequent Harnack–type local estimates for the solutions.

2. PROOF OF THEOREM 1.4

We follow the line of Hamilton in [4] and, by simplicity and clarity, we show the
proof when (M, g) is Rn with its canonical metric. In the general case of a complete
n–dimensional Riemannian manifold, the extra curvature terms which appear in the
computations because of the operations of interchanging covariant derivatives “have
the right sign” in the final inequality, since we assumed nonnegative sectional cur-
vatures and parallel Ricci tensor. Furthermore, thanks to standard localization argu-
ments (as explicitly shown in [1], see also [3]), in applying the maximum principle –
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on which the proof is based – we can argue as if we were in a compact case (all the
maximum/minimum points there exist).

Let u : M × [0, T ) → R be a positive solution of ut = ∆u + up. Setting f = log u, we
have

|∇f | = |∇u|
u

∆f =
∆u

u
− |∇u|

2

u2
=

∆u

u
− |∇f |2

ft =
ut
u

=
∆u

u
+ up−1 = ∆f + |∇f |2 + ef(p−1).

Moreover, by equation (1.2), we also have the following relations:

(∂t −∆)f = |∇f |2 + e(p−1)f

(∂t −∆)fi = 2fikfk + (p− 1)e(p−1)ffi

(∂t −∆)(fifj) = 2fikfkfj + 2fjkfkfi + 2(p− 1)e(p−1)ffifj − 2fikfjk

(∂t −∆)|∇f |2 = 4flkflfk + 2(p− 1)e(p−1)f |∇f |2 − 2|∇2f |2

(∂t −∆)fij = 2fikjfk + 2fikfjk + (p− 1)2e(p−1)ffifj + (p− 1)e(p−1)ffij

(∂t −∆)∆f = 2(∆f)kfk + 2|∇2f |2 + (p− 1)2e(p−1)f |∇f |2 + (p− 1)e(p−1)f∆f

(∂t −∆)e(p−1)f = 2(p− 1)e(p−1)f |∇f |2 − p(p− 1)e(p−1)f |∇f |2 + (p− 1)e2(p−1)f .

Let (a, b, c, d, θ) ∈ C and define the symmetric two–tensor

Fij = t
(
θfij + a∆fgij + bfifj + c|∇f |2gij + de(p−1)fgij

)
.

Observe that

Fij;kfk
t

= θfijkfk+a(∆f)kfkgij +b(fikfkfj +fjkfkfi)+2cflkflfkgij +d(p−1)e(p−1)f |∇f |2gij

and, by a simple computation,

(∂t −∆)Fij =
Fij
t

+ 2
Fij;kfk
t

+ tQij,

where

Qij = (p− 1)e(p−1)f Fij
t

+ (p− 1) [b+ (p− 1)θ] e(p−1)ffifj

+ (p− 1) [c+ a(p− 1)− dp] e(p−1)f |∇f |2gij
+ 2(θ − b)fikfjk + 2(a− c)|∇2f |2gij.

(2.1)

Define
◦
fij := fij − (∆f/n)gij to be the tracefree part of the Hessian of f . Since

|
◦
fij|2 = |∇2f |2 − 1

n
(∆f)2,
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we have

2(θ − b)fikfjk + 2(a− c)|∇2f |2gij

=
2(θ − b)
θ2

(θfik + a∆fgik) (θfjk + a∆fgjk) + 2(a− c)|∇2f |2gij

− 4a(θ − b)
θ

∆ffij −
2a2(θ − b)

θ2
(∆f)2gij

=
2(θ − b)
θ2

(θfik + a∆fgik) (θfjk + a∆fgjk) + 2(a− c)|
◦
fij|2gij

− 4a(θ − b)
θ

∆f
◦
fij −

2

nθ2

[
a(θ − b)(2θ + na)− (a− c)θ2

]
(∆f)2gij

=
2(θ − b)
θ2

(Fik
t
− bfifk − c|∇f |2gik − de(p−1)fgik

)
·
(Fjk
t
− bfjfk − c|∇f |2gjk − de(p−1)fgjk

)
+ 2(a− c)|

◦
fij|2gij

− 4a(θ − b)
θ

∆f
◦
fij +

2

nθ2

[
(a− c)θ2 − a(θ − b)(2θ + na)

]
(∆f)2gij.

(2.2)

In order to estimate the last three terms, we use the algebraic inequality for traceless
symmetric two–tensor

◦
fij ≤

◦
ρgij ≤

√
n− 1

n
|

◦
fij|gij,

where ◦
ρ = max{|λi| : λi eigenvalue of

◦
fi,j} denotes the spectral radius of

◦
fij . By Young’s

inequality, for every K > 0, one has

2∆f
◦
fij ≤ 2

√
n− 1

n
∆f |

◦
fij|gij ≤

√
n− 1

n

[
K(∆f)2 +

1

K
|

◦
fij|2

]
gij. (2.3)

We set

K :=

√
n− 1

n

a(θ − b)
θ(a− c)

,

where K > 0, by the first two inequalities of (1.1) since (a, b, c, d, θ) ∈ C. Using inequal-
ity (2.3) to estimate the last three terms of equation (2.2) we achieve

2(a− c)|
◦
fij|2gij −

4a(θ − b)
θ

∆f
◦
fij +

2

nθ2

[
(a− c)θ2 − a(θ − b)(2θ + na)

]
(∆f)2gij

≥ 2

nθ2(a− c)
{

(a− c)2θ2 − a(θ − b) [(2θ + na)(a− c)

+a(n− 1)(θ − b)]} (∆f)2gij ≥ 0,
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where the last inequality follows from the third inequality in (1.1) and since (a, b, c, d, θ) ∈
C. The computation above yields

2(θ − b)fikfjk + 2(a− c)|∇2f |2gij

≥ 2(θ − b)
θ2

(Fik
t
− bfifk − c|∇f |2gik − de(p−1)fgik

)
·
(Fjk
t
− bfjfk − c|∇f |2gjk − de(p−1)fgjk

)
=

2(θ − b)
θ2

[F 2
ij

t2
− b

t
(Fijfjfk + Fjkfifk)−

2c

t
|∇f |2Fij

− 2d

t
e(p−1)fFij + b(b+ 2c)|∇f |2fifj

+ 2bd e(p−1)ffifj + c2|∇f |4gij

+ 2cd e(p−1)f |∇f |2gij + d2e2(p−1)fgij

]
.

(2.4)

Now we claim that there exists ε > 0 such that if Fij ≤ 0 then

θ2Qij ≥
F 2
ij

εt2
, (2.5)

where F 2
ij = Fik Fkj . Thus, let us suppose that Fij ≤ 0. Combining the estimate (2.4)

with the definition of Qij given in (2.1) we get

θ2Qij ≥ (p− 1)θ2e(p−1)f Fij
t

+ (p− 1)θ2 [b+ (p− 1)θ] e(p−1)ffifj

+ (p− 1)θ2 [c+ a(p− 1)− dp] e(p−1)f |∇f |2gij

+ 2(θ − b)
[F 2

ij

t2
− b

t
(Fijfjfk + Fjkfifk)−

2c

t
|∇f |2Fij

− 2d

t
e(p−1)fFij + b(b+ 2c)|∇f |2fifj

+ 2bd e(p−1)ffifj + c2|∇f |4gij

+ 2cd e(p−1)f |∇f |2gij + d2e2(p−1)fgij

]
≥ 2(θ − b)

F 2
ij

t2
+
[
(p− 1)θ2 − 4d(θ − b)

]
e(p−1)f Fij

t

+
{

(p− 1)θ2 [c+ a(p− 1)− dp] + 4cd(θ − b)
}
e(p−1)f |∇f |2gij

+ 2d2(θ − b)e2(p−1)fgij.

Recalling that for (a, b, c, d, θ) ∈ C there holds (θ − b) > 0, we only have to show that{
(p− 1)θ2 − 4d(θ − b) ≤ 0

(p− 1)θ2 [c+ a(p− 1)− dp] + 4cd(θ − b) ≥ 0
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Setting x = p− 1 ≥ 0, we can recast the previous inequalities as{
xθ2 − 4d(θ − b) ≤ 0

(d− a)θ2x2 + (d− c)θ2x− 4cd(θ − b) ≤ 0
(2.6)

Being 4cd(θ− b) > 0, (d−a)θ2 > 0 and (d−c)θ2 > 0, equation (1.5) admits two solutions,
of which only one is positive. Hence, defining G1(b, d, θ) and G2(a, b, c, d, θ) as in the
statement of the Theorem andG(a, b, c, d, θ) as in (1.4), the fact that 0 ≤ x ≤ G(a, b, c, d, θ)
implies that x satisfies both the inequalities in (2.6). Thus, equation (2.5) is satisfied with
ε = 1

2(θ−b) .
The application of maximum principle (see for example Theorem C.1.3 in [7] or Lemma
8.2 in [2]) concludes the proof. �

3. PROOF OF PROPOSITION 1.3

First of all, observe that if (a, b, c, d, θ) is admissible and λ > 0 is a constant, then
(λa, λb, λc, λd, λθ) is still admissible. Thus, if we show that an admissible quintuple of
parameters exists, then we have a cone of admissible parameters. Let us consider a
quintuple of the form (a, b, c, a, θ) where a− c > 0 and θ− b > 0. We want to find a, b, c, θ
such that the third inequality of (1.1) is satisfied. To do this, let us set a− c = δ for some
δ > 0. Then, the third inequality of (1.1) becomes

δ2θ2 − δ(θ − b)[(2θ + nδ + nc)δ + δ(n− 1)(θ − b) + c(n− 1)(θ − b)]
− c(θ − b)[(2θ + nδ + nc)δ + δ(n− 1)(θ − b) + c(n− 1)(θ − b)] ≥ 0.

Now let us assume that θ − b = c and b = kc for some k > 0 to achieve

−nδ3c+ (k2 − 3n)δ2c2 − (3n+ 2k)δc3 − c4(n− 1) ≥ 0.

Being c > 0, we can set z = δ
c

and recast the previous inequality as

−nz3 + (k2 − 3n)z2 − (3n+ 2k)z − (n− 1) ≥ 0.

Let us set
H(z, k) := −nz3 + (k2 − 3n)z2 − (3n+ 2k)z − (n− 1).

We want to find some suitable values for z and k such that H(z, k) ≥ 0. First of all, let
us determine some necessary conditions on k in such a way that H(·, k) admits positive
roots.

Proposition 3.1. There always exists a negative number z− < 0 such that H(z−, k) = 0. If
there exist two positive numbers z1, z2 > 0 such that H(zi, k) = 0, then k >

√
3n.

Proof. Let us observe that H(0, k) = −(n − 1) < 0 and limz→−∞H(z, k) = +∞, hence
we obviously have z−. Moreover, let us observe that, by Descartes’ rule of the signs,
the maximum number of positive solutions of the equation H(z, k) = 0 for fixed k is
0 if k2 − 3n ≤ 0 and 2 if k2 − 3n > 0, thus, if two positive solutions z1, z2 exist, then
k >
√

3n. �
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We can use the previous necessary condition to achieve a necessary and sufficient con-
dition on the existence of two positive roots

Proposition 3.2. Fix n ≥ 2. Then H(z, k) admits two (possibly equal) positive roots if and
only if k ≥ k(n), where

k(n) = 3
√
n cos

(1

3
arccos

(
1/
√
n
))
.

Proof. As we have shown before, a necessary condition to have two positive roots is that
k >
√

3n. On the other hand, let us observe that

H(−z, k) = nz3 + (k2 − 3n)z2 + (3n+ 2k)z − (n− 1)

hence, by Descartes’ rule of the signs we know that H(·, z) admits at most one negative
root. Moreover, since H(0, k) = −(n−1) < 0 and limz→−∞H(z, k) = +∞, then we know
that H(z, k) admits exactly one negative root for any k >

√
3n. Thus, if H(z, k) admits

three real roots, two of them have to be positive.
The discriminant of H(·, k) is given by

∆H(k) = −18n(n− 1)(k2 − 3n)(3n+ 2k) + 4(n− 1)(k2 − 3n)3

+ (k2 − 3n)2(3n+ 2k)2 − 4n(3n+ 2k)3 − 27n2(n− 1)2

= 4(1 + k)3n
(
k3 − 27

4
kn− 27

4
n
)
.

We have that ∆H(k) ≥ 0 if and only if P1(k) := k3− 27
4
kn− 27

4
n ≥ 0. P1(k) is a depressed

cubic polynomial with p1(n) = q1(n) = −27
4
n. By Descartes’ rule of the signs and the

fact that P1(0) = −27
4
n < 0 we know that P1(k) always admits a unique positive root.

The discriminant of P1(k) is given by

∆1(n) = −
(
− 273

42
n3 +

273

42
n2
)

=
273

16
n2(n− 1) > 0,

thus P1(k) admits three real roots. Since we are under the casus irreducibilis, we have to
provide trigonometric solutions to recognize what is the real solution we are interested
in. To do this, we will use Viéte’s procedure. Consider the equation P1(k) = 0 and set
k = u cos(θ) to achieve

u3 cos3(θ)− 27

4
nu cos(θ)− 27

4
n = 0.

Multiplying everything by 4
u3

we get

4 cos3(θ)− 27

u2
n cos(θ)− 27

u3
n = 0.

Now set 27n
u2

= 3, that is to say u = 3
√
n, to achieve

4 cos3(θ)− 3 cos(θ)− 1√
n

= 0.
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Recalling that 4 cos3(θ)− 3 cos(θ) = cos(3θ), we get

cos(3θ) = 1/
√
n

and then

θ =
1

3
arccos

(
1/
√
n
)

+
2πj

3
,

where j = 0, 1, 2. Finally, we get the three real roots of P1(k) as

kj = 3
√
n cos

(1

3
arccos

(
1/
√
n
)

+
2πj

3

)
, j = 0, 1, 2.

However, we know that P1(k) admits only one positive root. Being

0 ≤ 1

3
arccos

(
1/
√
n
)
≤ π

3
,

we have that k0 > 0 is the solution we are searching for. Thus, let us relabel

k(n) := 3
√
n cos

(1

3
arccos

(
1/
√
n
))

to conclude that P1(k) ≥ 0 if and only if k ≥ k(n). �

Now we can conclude the proof of Proposition 1.3. Indeed, let us consider k > k(n),
in such a way that ∆H(k) > 0. For such fixed k, H(·, k) admits two positive roots
0 < z1 < z2. Consider any z ∈ [z1, z2]. Setting, without loss of generality, c = 1, we then
know that the quintuple (z + 1, k, 1, z + 1, k + 1) is admissible.

4. PROOF OF PROPOSITION 1.6

To prove Proposition 1.6, we want to exhibit an admissible quintuple (a, b, c, d, θ) such
that G(a, b, c, d, θ) can be explicitly calculated. To do this, let us consider again a quin-
tuple of the form (z + 1, k, 1, z + 1, k + 1) where k ≥ k(n). Moreover, let us consider
z(k, n) to be a positive local maximum point of H(z, k), for fixed k ≥ k(n), such that
H(z(k, n), k) ≥ 0. If k > k(n), then this maximum always exists, by a simple applica-
tion of Rolle’s theorem on the interval [z1, z2], together with the fact that both z1, z2 are
simple roots. If k = k(n), then z1 = z2 and it coincides with such local maximum of the
polynomial H(z, k(n)). Let us evaluate it explicitly.

Proposition 4.1. For fixed n ≥ 2 and k >
√

3n, H(z, k) admits two (eventually equal) critical
points if and only if these critical points are positive and k ≥ k0(n) where

k0(n) = 2
√

2n cos
[1

3
arccos

( 3

2
√

2n

)]
.

If k > k0(n), the local maximum point is given by

z(k, n) =
k2 − 3n+

√
k4 − 6nk2 − 6nk

3n
.

In particular, k0(n) ≤ k(n) and, if k ≥ k(n), there holds H(z(k, n), k) ≥ 0.
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Proof. Let us first observe that

H ′(z, k) :=
∂

∂ z
H(z, k) = −3nz2 + 2(k2 − 3n)z − (3n+ 2k). (4.1)

Since k >
√

3n, Descartes’ rule of the signs tells us that, if the solutions exist, they must
be positive. Hence we have only to show that the discriminant is nonnegative. Let us
determine the discriminant of the polynomial (4.1):

∆z(k) = 4((k2 − 3n)2 − 3n(3n+ 2k)) = 4k(k3 − 6nk − 6n). (4.2)

Being k > 0, ∆z(k) ≥ 0 if and only if

P2(k) := k3 − 6nk − 6n ≥ 0.

Let us first show that this polynomial admits a unique positive root. Observe that
P2(0) = −6n < 0 and limk→+∞ P2(k) = +∞, thus P2(k) admits a positive root k0(n).
Moreover, Descartes’ rule of the signs tells us that P2(k) admits at most one positive
root, hence k0(n) is the unique positive root.
Now let us determine k0(n). First of all, let us observe that, since P2(k) is a depressed
cubic polynomial, its discriminant is given by

∆k = −(−4 · 63n3 + 27 · 62n2) = 108n2(8n− 9) > 0

since n ≥ 2. Thus we know P2(k) admits three different roots. Since we are under the
casus irreducibilis, we have to provide trigonometric solutions to recognize what is the
real solution we are interested in. Arguing again by Viéte’s procedure and selecting the
unique positive root, we get

k0(n) = 2
√

2n cos
[1

3
arccos

( 3

2
√

2n

)]
.

Hence, as k > k0(n), we can find two solutions to equation H ′(z, k) = 0. Being H(·, k) a
polynomial with H(0, k) = −(n− 1) and limz→−∞H(z, k) = +∞, we know that H(z, k)
is decreasing as z ≤ 0. Thus, the first critical point has to be a local minimum and the
second critical point a local maximum. Therefore, writing explicitly the second solution
of H ′(z, k) = 0, we get

z(k, n) =
k2 − 3n+

√
k4 − 6nk2 − 6nk

3n
. (4.3)

Finally, observe that, by Rolle’s theorem, if k > k(n), then the interval [z1, z2] has to
admit one of the two critical points. Moreover, since H(z, k) > 0 as z ∈ (z1, z2) and
H(z1, k) = H(z2, k) = 0, then such critical point is the local maximum and H(z(k, n), k)
is positive. If k = k(n), then z1 = z2 is a double root and H(z1, k(n)) = H(z2, k(n)) = 0.
BeingH(z, k(n)) ≤ 0 for any z ≥ 0 (since the other simple root is negative), we have that
z1 = z2 = z(k(n), n) and H(z(k(n), n), k(n)) = 0. This also obviously implies k0(n) <
k(n). �

Next, we want to evaluate G on the quintuple (z(k, n) + 1, k, 1, z(k, n) + 1, k + 1) as
k ≥ k(n). To do this, we first need to exploit a simple property of z(k, n).
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Proposition 4.2. For any k ≥ k(n) there holds z(k, n) ≥ 2.

Proof. By equation (4.3), we have that z(k, n) ≥ 2 if and only if
√
k4 − 6nk2 − 6nk ≥ 9n− k2. (4.4)

Being k ≥ k(n), we already know that the quantity under the square root is nonnegative.
On the other hand, if k ≥ 3

√
n, then inequality (4.4) holds true. Let us consider k(n) ≤

k < 3
√
n. Then inequality (4.4) is equivalent to

k4 − 6nk2 − 6nk ≥ 81n2 − 18nk2 + k4

that is to say
4k2 − 2k − 27n ≥ 0.

Since k(n) > 0, the previous inequality is verified as

k ≥ 1 +
√

1 + 108n

4
=: k1(n) >

1

2
.

To conclude the proof, we have to show that k1(n) ≤ k(n). Being k0(n) ≤ k(n), this is
obvious if k1(n) ≤ k0(n), thus let us suppose k1(n) > k0(n).
Let us consider the function g(k) := H(z(k, n), k) for k ≥ k0(n). Being z(k, n) a local
maximum of H , there holds ∂ H

∂ z
(z(k, n), k) = 0. Thus, we have

g′(k) = 2kz2(k, n)− 2z(k, n) = 2z(k, n)(kz(k, n)− 1).

In particular g′(k) ≥ 0 if and only if kz(k, n) ≥ 1. The latter holds if and only if

k
√
k4 − 6nk2 − 6nk ≥ 3n+ 3nk − k3 = −∆z(k)

4k
− 3n(1 + k), (4.5)

where ∆z(k) is defined in equation (4.2). Being k ≥ k0(n), we have that ∆z(k) ≥ 0 and
then inequality (4.5) is verified. This implies, in particular, that g(k) is increasing as
k ≥ k0(n). Moreover, by definition of k(n), there holds g(k(n)) ≥ 0. On the other hand,
being z(k1(n), n) = 2 and k1(n) > 1

2
, we get

g(k1(n)) = H(2, k1(n)) = −2k1(n) + 1 < 0.

Hence, we have k1(n) < k(n), concluding the proof. �

With this property in mind, we can evaluate G(z(k, n) + 1, k, 1, z(k, n) + 1, k + 1). To do
this, let us first observe that

G1(k, z(k, n) + 1, k + 1) =
4(z(k, n) + 1)

(k + 1)2
.

Concerning G2(z(k, n) + 1, k, 1, z(k, n) + 1, k + 1), it is the unique solution of

z(k, n)(k + 1)2x− 4(z(k, n) + 1) = 0

that is to say

G2(z(k, n) + 1, k, 1, z(k, n) + 1, k + 1) =
4(z(k, n) + 1)

z(k, n)(k + 1)2
.



DR
AF
T

12 GIACOMO ASCIONE, DANIELE CASTORINA, GIOVANNI CATINO, AND CARLO MANTEGAZZA

Hence, we have

G(z(k, n) + 1, k, 1, z(k, n) + 1, k + 1) =
4(z(k, n) + 1)

(k + 1)2
min

{
1,

1

z(k, n)

}
.

However, being z(k, n) ≥ 2 by the previous proposition, there holds

min
{

1,
1

z(k, n)

}
=

1

z(k, n)

then
G(z(k, n) + 1, k, 1, z(k, n) + 1, k + 1) =

4

(k + 1)2

(
1 +

1

z(k, n)

)
.

Now we want to optimize on k ≥ k(n). To do this, let us show the following Proposition.

Proposition 4.3. The function k 7→ z(k, n) is increasing on [k(n),+∞).

Proof. Just observe that

z′(k) =
1

3n

(
2k +

2k3 − 6nk − 3n√
k4 − 6nk2 − 6nk

)
=

1

3n

(
2k +

∆z(k)

4k
√
k4 − 6nk2 − 6nk

+
k3 + 3n√

k4 − 6nk2 − 6nk

)
≥ 0,

being ∆z(k) ≥ 0 by the fact that k ≥ k(n) ≥ k0(n). �

The previous proposition implies that the function k 7→ G(z(k, n)+1, k, 1, z(k, n)+1, k+
1) is decreasing as k ≥ k(n), thus it achieve its maximum value as k = k(n). Setting

G̃(n) := G(z(k(n), n) + 1, k(n), 1, z(k(n), n) + 1, k(n) + 1), n ≥ 0,

we conclude the proof of Proposition 1.6.

5. MATRIX HARNACK INEQUALITIES

We begin the section with the following technical lemma.

Lemma 5.1. There exists a cone C ′ of an admissible quintuples (a, b, c, d, θ) such that a = d and
b− a+ c < 0.

Proof. Let us consider k ≥ k(n) with k(n) defined in Proposition 1.6 and let (z(k, n) +
1, k, 1, z(k, n) + 1, k + 1) ∈ C with z(k, n) defined in (4.3). The condition b − a + c < 0
becomes k < z(k, n), i.e.

3nk − k2 + 3n <
√
k4 − 6nk2 − 6nk.

This is obviously true if

k >
3n+

√
9n2 + 12n

2
.

With this choice of k we conclude the proof. �

Remark 5.2. It is easy to see that if (a, b, c, d, θ) ∈ C then also (a, b, c, a, θ) ∈ C.
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We will now derive some Harnack–type inequalities as a consequence of Theorem 1.4.

Proposition 5.3. Let (M, g) be an n–dimensional complete Riemannian manifold with non-
negative sectional curvatures as well as parallel Ricci tensor. Consider (a, b, c, a, θ) ∈ C ′ and
1 < p < 1 +G(a.b, c, a, θ). Let u : M × [0, T )→ R be a classical positive solution of the equa-
tion ut = ∆u+ up, then there exists ε = ε(n, p, a, b, c, θ) such that, given any 0 < t1 < t2 ≤ T
and x1, x2 ∈M , the following inequality holds

u(x1, t1) ≤ u(x2, t2)
(t2
t1

)1/ε

exp(ψ(x1, x2, t1, t2)),

where

ψ(x1, x2, t1, t2) := inf
γ∈Γ(x1,x2)

∫ 1

0

[ a|γ̇(s)|2

4(a− b− c)(t2 − t1)

+
θ(t2 − t1)

a
ρ(γ(s), (1− s)t2 + st1)

]
ds,

with Γ(x1, x2) given by all the paths in M parametrized by [0, 1] joining x2 to x1, f = log u and
ρ = max{|λi| : λi eigenvalue of fij}.

Proof. By Theorem 1.4 we know that there exists ε such that

θfij + a∆fgij + bfifj + c|∇f |2gij + ae(p−1)fgij +
1

εt
gij ≥ 0.

Recalling that f satisfies

ft = ∆f + |∇f |2 + e(p−1)f ,

we get

−ft gij ≤
θ

a
fij +

b

a
fifj −

a− c
a
|∇f |2gij +

1

aεt
gij. (5.1)

Since ρ is the spectral radius of fij we get fij ≤ ρgij . On the other hand the matrix fifj
has rank one and the only nonzero eigenvalue is |∇f |2, then fifj ≤ |∇f |2gij . Plugging
these inequalities into (5.1) we obtain

−ft gij ≤
(θ
a
ρ− a− c− b

a
|∇f |2 +

1

aεt

)
gij. (5.2)

Now let us consider any γ ∈ Γ(x1, x2) as well as η : [0, 1] → M × [t1, t2] defined as
η(s) = (γ(s), (1− s)t2 + st1). Evaluating (5.2) in η(s) and applying it to γ̇(s) we see that

−ft(η(s))|γ̇(s)|2 ≤
(θ
a
ρ(η(s))− a− c− b

a
|∇f(η(s))|2 +

1

aε((1− s)t2 + st1)

)
|γ̇(s)|2.
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Noticing that η(0) = (x2, t2) and η(1) = (x1, t1), we have

f(x1, t1)−f(x2, t2) =

∫ 1

0

( d
ds
f(η(s))

)
ds

=

∫ 1

0

[〈∇f(η(s)), γ̇(s)〉 − (t2 − t1)fs(η(s))] ds

≤
∫ 1

0

[
|∇f(η(s))||γ̇|+ (t2 − t1)

( 1

aε[(1− s)t2 + st1]

−a− c− b
a

|∇f(η(s))|2 +
θ

a
ρ(η(s))

)]
ds

=

∫ 1

0

t2 − t1
aε[(1− s)t2 + st1]

ds+

∫ 1

0

[
|∇f(η(s))||γ̇(s)|

− (a− c− b)(t2 − t1)

a
|∇f(η(s))|2 +

θ(t2 − t1)

a
ρ(η(s))

]
ds

≤ 1

aε
log
(t2
t1

)
+

∫ 1

0

[ a|γ̇(s)|2

4(a− b− c)(t2 − t1)
+ (t2 − t1)

θ

a
ρ(η(s))

]
ds.

Being γ ∈ Γ(x1, x2) arbitrary, we conclude the proof. �

With the same strategy we can also prove the following variant.

Proposition 5.4. Let (M, g) be an n–dimensional complete Riemannian manifold with non-
negative sectional curvatures as well as parallel Ricci tensor. Consider (a, b, c, a, θ) ∈ C ′ and
1 < p < 1 +G(a.b, c, a, θ). Let u : M × [0, T )→ R a classical positive solution of the equation
ut = ∆u+ up, then there exists ε = ε(n, p, a, b, c, θ) such that, given any 0 < t1 < t2 ≤ T and
x1, x2 ∈M , the following inequality holds

u(x1, t1) ≤ u(x2, t2)
(t2
t1

)1/ε

exp(ψ(x1, x2, t1, t2)),

where

ψ(x1, x2, t1, t2) := inf
γ∈Γ(x1,x2)

∫ 1

0

[ na|γ̇(s)|2

4(na− nb− nc+ θ)(t2 − t1)

+
θ(t2 − t1)

a
◦
ρ(γ(s), (1− s)t2 + st1)

]
ds,

with Γ(x1, x2) given by all the paths in M parametrized by [0, 1] joining x2 to x1, f = log u,
◦
fij = fij − ∆f

n
gij and ◦

ρ = max{|λi| : λi eigenvalue of
◦
fij}.

Finally, we also have another one coming from the scalar (trace) version of the Li &
Yau inequality (1.6). We underline that it holds up to an exponent p lower than the
analogous one for the Harnack inequality obtained in [1], moreover, this latter holds
also without the hypothesis of parallel Ricci tensor.
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Proposition 5.5. Let (M, g) be an n–dimensional complete Riemannian manifold with non-
negative sectional curvatures as well as parallel Ricci tensor. Consider (a, b, c, a, θ) ∈ C and
1 < p < 1 +G(a.b, c, a, θ). Let u : M × [0, T )→ R a classical positive solution of the equation
ut = ∆u+ up, then there exists ε = ε(n, p, a, b, c, θ) such that, given any 0 < t1 < t2 ≤ T and
x1, x2 ∈M , the following inequality holds

u(x1, t1) ≤ u(x2, t2)
(t2
t1

)1/ε

exp(ψ(x1, x2, t1, t2)),

where

ψ(x1, x2, t1, t2) := inf
γ∈Γ(x1,x2)

∫ 1

0

[ (θ + na)|γ̇(s)|2

4(na− nc+ θ − b)(t2 − t1)

− θ

θ + na
up−1(γ(s), (1− s)t2 + st1)

]
ds,

with Γ(x1, x2) given by all the paths in M parametrized by [0, 1] joining x2 to x1.

Proof. Let f = log u, by Theorem 1.4 we know that there exists ε > 0 such that inequal-
ity (1.6) holds, then the proof proceeds as in Proposition 5.3. �
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