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Abstract. A sharp quantitative version of the anisotropic isoperimetric inequal-
ity is established, corresponding to a stability estimate for the Wulff shape of
a given surface tension energy. This is achieved by exploiting mass transporta-
tion theory, especially Gromov’s proof of the isoperimetric inequality and the
Brenier-McCann Theorem. A sharp quantitative version of the Brunn-Minkowski
inequality for convex sets is proved as a corollary.

1. Introduction

1.1. Overview. One dimensional parametrization arguments have been used for
many years in the study of sharp inequalities of geometric-functional type. A
major example is the proof of the Brunn-Minkowski inequality by Hadwiger and
Ohmann [HO, Fe, Ga], where one dimensional monotone rearrangement plays a key
role. The more direct generalization of this construction to higher dimension is
that of the Knothe map [Kn], but alternative arguments, leading to maps with a
more rigid structure, are also known. Starting from the Brenier map [Br], the the-
ory of (optimal) mass transportation provides several results in this direction. All
these maps can be used with success in establishing sharp inequalities of various
kind [Vi, Chapter 6]. Here we shall be concerned with Gromov’s striking proof of
the anisotropic isoperimetric inequality [MS]. Our main result is a sharp estimate
about the stability of optimal sets in this inequality, established via a quantitative
study of transportation maps.

1.2. Anisotropic perimeter. The anisotropic isoperimetric inequality arises in
connection with a natural generalization of the Euclidean notion of perimeter. In
dimension n ≥ 2, we consider an open, bounded, convex set K of R

n containing
the origin. Starting from K, we define a weight function on directions through the
Euclidean scalar product

‖ν‖∗ := sup {x · ν : x ∈ K} , ν ∈ Sn−1 , (1.1)

where Sn−1 = {x ∈ R
n : |x| = 1}, and |x| is the Euclidean norm of x ∈ R

n. Let E be
an open subset of R

n, with smooth or polyhedral boundary ∂E oriented by its outer
unit normal vector νE , and let Hn−1 stand for the (n − 1)-dimensional Hausdorff
measure on R

n. The anisotropic perimeter of E is defined as

PK(E) :=

∫

∂E

‖νE(x)‖∗dHn−1(x) . (1.2)

This notion of perimeter obeys the scaling law PK(λE) = λn−1PK(E), λ > 0, and it
is invariant under translations. However, at variance with the Euclidean perimeter,
PK is not invariant by the action of O(n), or even of SO(n), and in fact it may even
happen that PK(E) 6= PK(Rn \ E), provided K is not symmetric with respect to



the origin. When K is the Euclidean unit ball B = {x ∈ R
n : |x| < 1} of R

n then
‖ν‖∗ = 1 for every ν ∈ Sn−1, and therefore PK(E) coincides with the Euclidean
perimeter of E.

Apart from its intrinsic geometric interest, the anisotropic perimeter PK arises
as a model for surface tension in the study of equilibrium configurations of solid
crystals with sufficiently small grains [Wu, He, Ty], and constitutes the basic model
for surface energies in phase transitions [Gu]. In both settings, one is naturally led to
minimize PK(E) under a volume constraint. This is, of course, equivalent to study
the isoperimetric problem

inf

{

PK(E)

|E|1/n′
: 0 < |E| <∞

}

, (1.3)

where |E| is the Lebesgue measure of E and n′ = n/(n − 1). As conjectured by
Wulff [Wu] back to 1901, the unique minimizer (modulo the invariance group of
the functional, which consists of translations and scalings) is the set K itself. In
particular the anisotropic isoperimetric inequality holds,

PK(E) ≥ n|K|1/n|E|1/n′

, if |E| <∞ . (1.4)

Dinghas [Di] showed how to derive (1.4) from the Brunn-Minkowski inequality

|E + F |1/n ≥ |E|1/n + |F |1/n , ∀E,F ⊆ R
n . (1.5)

The formal argument is well known. Indeed, (1.5) implies that

|E + εK| − |E|
ε

≥ (|E|1/n + ε|K|1/n)n − |E|
ε

, ∀ε > 0 .

As ε → 0+, the right hand side converges to n|K|1/n|E|1/n′

, while, if E is regular
enough, the left hand side has PK(E) as its limit.

From a modern viewpoint, the natural framework for studying the isoperimetric
inequality (1.4) is the theory of sets of finite perimeter. If E is a set of finite perimeter
in R

n [AFP] then its anisotropic perimeter is defined as

PK(E) :=

∫

FE

‖νE(x)‖∗dHn−1(x) , (1.6)

where FE denotes the reduced boundary of E and νE : FE → Sn−1 is the measure-
theoretic outer unit normal vector field to E (see Section 2.1). Whenever E has
smooth or polyhedral boundary the above definition coincides with (1.2). Existence
and uniqueness of minimizers for (1.3) in the class of sets of finite perimeter were
first shown by Taylor [Ty], and later, with an alternative proof, by Fonseca and
Müller [FM]. In [MS], Gromov deals with the functional version of (1.4), proving
the anisotropic Sobolev inequality

∫

Rn

‖ −∇f(x)‖∗dx ≥ n|K|1/n‖f‖Ln′(Rn) , (1.7)

for every f ∈ C1
c (R

n). Inequality (1.7) is equivalent to (1.4). Moreover, despite the
fact that (1.7) is never saturated for f ∈ C1

c (R
n), it turns out that, with the suitable

technical tools from Geometric Measure Theory at hand, Gromov’s argument can be
adapted to obtain the characterization of the equality cases in (1.4) in the framework
of sets of finite perimeter. This was done by Brothers and Morgan in [BM].

Alternative proofs of (1.4), that shall not be considered here, are also known.
In particular, we mention the recent paper on anisotropic symmetrization by Van



Schaftingen [VS], and the proof by Dacorogna and Pfister [DP] (limited to the two
dimensional case).

1.3. Stability of isoperimetric problems. Whenever 0 < |E| <∞, we introduce
the isoperimetric deficit of E,

δ(E) :=
PK(E)

n|K|1/n|E|1/n′
− 1 .

This functional is invariant under translations, dilations and modifications on a set
of measure zero of E. Moreover, δ(E) = 0 if and only if, modulo these operations,
E is equal to K (this is a consequence of the characterization of equality cases
of (1.4), cf. Theorem A.1). Thus δ(E) measures, in terms of the relative size of the
perimeter and of the measure of E, the deviation of E from being optimal in (1.4).
The stability problem consists in quantitatively relating this deviation to a more
direct notion of distance from the family of optimal sets. To this end we introduce
the asymmetry index1 of E,

A(E) := inf

{ |E∆(x0 + rK)|
|E| : x0 ∈ R

n , rn|K| = |E|
}

, (1.8)

where E∆F denotes the symmetric difference between the sets E and F . The
asymmetry is invariant under the same operations that leave the deficit unchanged.
We look for constants C and α, depending on n and K only, such that the following
quantitative form of (1.4) holds true:

PK(E) ≥ n|K|1/n|E|1/n′

{

1 +

(

A(E)

C

)α}

, (1.9)

i.e., A(E) ≤ C δ(E)1/α. This problem has been thoroughly studied in the Euclidean
case K = B, starting from the two dimensional case, considered by Bernstein [Be]
and Bonnesen [Bo]. They prove (1.9) with the exponent α = 2, that is optimal
concerning the decay rate at zero of the asymmetry in terms of the deficit. The
first general results in higher dimension are due to Fuglede [Fu], dealing with the
case of convex sets. Concerning the unconstrained case, the main contributions are
due to Hall, Hayman and Weitsman [HHW, Ha]. They prove (1.9) with a constant
C = C(n) and exponent α = 4. It was, however, conjectured by Hall that (1.9)
should hold with the sharp exponent α = 2. This was recently shown in [FMP1]
(see also the survey [Ma]).

A common feature of all these contributions is the use of quantitative symmetriza-
tion inequalities, that is clearly specific to the isotropic case. If K is a generic convex
set, then the study of uniqueness and stability for the corresponding isoperimetric
inequality requires the employment of entirely new ideas. Indeed, the methods devel-
oped in [HHW, FMP1] are of no use as soon asK is not a ball. Under the assumption
of convexity on E, the problem has been studied by Groemer [Gr2], while the first
stability result for (1.4) on generic sets is due to Esposito, Fusco, and Trombetti
in [EFT]. Starting from the uniqueness proof of Fonseca and Müller [FM], they
show the validity of (1.9) with some constant C = C(n,K) and for the exponent

α(2) =
9

2
, α(n) =

n(n + 1)

2
, n ≥ 3 .

1Also known as the Fraenkel asymmetry of E in the Euclidean case K = B.



This remarkable result leaves, however, the space for a substantial improvement con-
cerning the decay rate at zero of the asymmetry index in terms of the isoperimetric
deficit. Our main theorem provides the sharp decay rate.

Theorem 1.1. Let E be a set of finite perimeter with |E| <∞, then

PK(E) ≥ n|K|1/n|E|1/n′

{

1 +

(

A(E)

C(n)

)2
}

, (1.10)

or, equivalently,

A(E) ≤ C(n)
√

δ(E) . (1.11)

Here and in the following the symbols C(n) and C(n,K) denote positive constants
depending on n, or on n and K, whose value is (generally) not specified. Concerning
Theorem 1.1, we show that we may consider the value C(n) = C0(n) defined as

C0(n) =
181n7

(2 − 21/n′)3/2
. (1.12)

Therefore C0(n) has polynomial growth in n as n→ ∞.
Our proof of Theorem 1.1 is based on a quantitative study of certain transportation

maps between E and K, through the bounds that can be derived from Gromov’s
proof of the isoperimetric inequality. These estimates provide control, in terms of the
isoperimetric deficit, and modulo scalings and translations, on the distance between
such a transportation map and the identity. There are several directions in which
one may develop this idea, and the strategy we have chosen requires to settle various
purely technical issues that could obscure the overall simplicity of the proof. For
these reasons we spend the next three sections of this introduction motivating our
choices and describing our argument, adopting for the sake of clarity a quite informal
style of presentation.

1.4. Gromov’s proof of the isoperimetric inequality. Although Gromov’s proof [MS]
was originally based on the use of the Knothe map M between E and K, his ar-
gument works with any other transport map having suitable structure properties,
such as the Brenier map. This is a well-known, common feature of all the proofs of
geometric-functional inequalities based on mass transportation [CNV, Vi]. It seems
however that, in the study of stability, the Brenier map is more efficient. We now
give some informal explanations on this point, which could also be of interest in the
study of related questions.

The Knothe construction, see Figure 1.1, depends on the choice of an ordered
orthonormal basis of R

n. Let us use, for example, the canonical basis of R
n, with

coordinates x = (x1, x2, ..., xn), and for every x ∈ E, y ∈ K and 1 ≤ k ≤ n − 1, let
us define the corresponding (n− k)-dimensional sections of E and K as

E(x1,...,xk) = {z ∈ E : z1 = x1 , ..., zk = xk} ,
K(y1,...,yk) = {z ∈ K : z1 = y1 , ..., zk = yk} .

We define M(x) = (M1(x1),M2(x1, x2), ...,Mn(x)) by setting

|{z ∈ E : z1 < x1}|
|E| =

|{z ∈ K : z1 < M1}|
|K| ,
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x2

x1

x

E

M1(x1)

K

M(x)M2(x)

Figure 1.1. The construction of the Knothe map. The vertical section

Ex1 of E is sent into the vertical section KM1(x1) of K, where M1(x1) is

chosen so that the relative measure of {z ∈ E : z1 < x1} in E equals the

relative measure of {z ∈ K : z1 < M1(x1)} in K. The same idea is used to

displace Ex1 along KM1(x1): the point x = (x1, x2) is placed in KM1(x1) at

the height M2(x) such that the relative H1-measure of {z ∈ Ex1 : z2 < x2}
in Ex1 equals the relative H1-measure of {z ∈ KM1(x1) : z2 < M2(x)} in

KM1(x1).

and, if 1 ≤ k ≤ n− 1,

Hn−k({z ∈ E(x1,...,xk) : zk+1 < xk+1})
Hn−k(E(x1,...,xk))

=
Hn−k({z ∈ K(M1,...,Mk) : zk+1 < Mk+1})

Hn−k(K(M1,...,Mk))
.

The resulting map has several interesting properties, that are easily checked at a
formal level. Its gradient ∇M is upper triangular, its diagonal entries (the partial
derivatives ∂Mk/∂xk) are positive on E, and their product, the Jacobian of M , is
constantly equal to |K|/|E|, i.e.,

det∇M =

n
∏

k=1

∂Mk

∂xk
=

|K|
|E| . (1.13)

By the arithmetic-geometric mean inequality (which in turn implies the Brunn-
Minkowski inequality (1.5) on n-dimensional boxes), we find

n(det∇M)1/n ≤ divM on E . (1.14)

By (1.13), (1.14) and a formal application of the Divergence Theorem,

n|K|1/n|E|1/n′

=

∫

E

n(det∇M)1/n ≤
∫

E

divM =

∫

∂E

M · νE dHn−1 . (1.15)

Let us now define, for every x ∈ R
n,

‖x‖ = inf
{

λ > 0 :
x

λ
∈ K

}

.

Note that this quantity fails to define a norm only because, in general, ‖x‖ 6= ‖−x‖
(indeed, K is not necessarily symmetric with respect to the origin). The set K can
be characterized as

K = {x ∈ R
n : ‖x‖ < 1} . (1.16)



Hence, ‖M‖ ≤ 1 on ∂E as M(x) ∈ K for x ∈ E. Moreover,

‖ν‖∗ = sup{x · ν : ‖x‖ = 1} ,
which gives the following Cauchy-Schwarz type inequality

x · y ≤ ‖x‖‖y‖∗ , ∀x, y ∈ R
n . (1.17)

From (1.15), (1.17) and (1.16),

n|K|1/n|E|1/n′ ≤
∫

∂E

‖M‖‖νE‖∗ dHn−1 ≤ PK(E) ,

and the isoperimetric inequality is proved.
As mentioned earlier, this argument could be repeated verbatim if the Knothe map

is replaced by the Brenier map. The Brenier-McCann Theorem furnishes a transport
map between E and K, which is analogous to the Knothe map, but enjoys a much
more rigid structure. Postponing a rigorous discussion to the proof of Theorem 2.3,
we recall that Brenier-McCann Theorem [Br, McC1, McC2] ensures the existence of
a convex, continuous function ϕ : R

n → R, whose gradient T = ∇ϕ pushes forward

the probability density |E|−11E(x)dx into the probability density |K|−11K(y)dx. In
particular, T takes E into K and

det∇T =
|K|
|E| on E .

Since T is the gradient of a convex function and has positive Jacobian, then ∇T (x)
is a symmetric and positive definite n × n tensor, with n-positive eigenvalues 0 <
λk(x) ≤ λk+1(x), 1 ≤ k ≤ n− 1, such that

∇T (x) =
n
∑

k=1

λk(x)ek(x) ⊗ ek(x) ,

for a suitable orthonormal basis {ek(x)}n
k=1 of R

n. The inequality n(det∇T )1/n ≤
div T is once again implied by the arithmetic-geometric mean inequality for the λk’s,
and the formal version of Gromov’s argument presented above can be repeated with
T in place of M .

1.5. Uniqueness: a comparison between Knothe and Brenier map. Con-
cerning the determination of equality cases, and still arguing at a formal level, one
can readily see some differences in the use of the two constructions. Let us consider,
for example, a connected open set E having the same barycenter and measure as
K, so that ∇M = Id or ∇T = Id would imply E = K. If we assume E to be
optimal in the isoperimetric inequality, then we derive from Gromov’s argument the
conditions n(det∇M)1/n = divM , and n(det∇T )1/n = div T , respectively.

From n(det∇M)1/n = divM we find that the partial derivatives ∂Mk/∂xk are all
equal on E. Since det∇M = 1, it must be

∂Mk

∂xk
= 1 on E. (1.18)

As ∇M is upper triangular, this is not sufficient to conclude ∇M = Id . However, we
can still prove that E = K starting from (1.18) by means of the following argument:
let v(t) = Hn−1({x ∈ E : x1 = t}) and u(t) = Hn−1({x ∈ K : x1 = t}). As
∂M1/∂x1 = 1 on E, and having assumed that E and K have the same barycenter,
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Figure 1.2. A quantitative analysis based on any Knothe map con-

structed on starting from the direction νH , leads to control the measure

of the dashed zone E ∩ H in terms of
√

δ(E), see (1.19). Unless K has

polyhedral boundary, this argument has to be repeated for infinitely many

directions in order to control all of |E \ K|, finally leading to a non-sharp

estimate.

it follows that u = v. In particular {u > 0} = {v > 0} is an open interval (α, β),
and we find

|E ∩ {x ∈ R
n : x1 ∈ R \ (α, β)}| = 0 .

If we now fix a direction ν ∈ Sn−1, complete it into an orthonormal basis, apply the
above argument to the corresponding Knothe map, and repeat this procedure for
every direction ν, we find that |E \K| = 0, and therefore E = K (since |E| = |K|).

Though the use of infinitely many Knothe maps is harmless when proving unique-
ness (and presents in fact an interesting analogy with the use of infinitely many
Steiner symmetrizations in the uniqueness proof for the Euclidean case [DG]), it un-
avoidably leads to lose optimality in the decay rate of the asymmetry index in terms
of the isoperimetric deficit when trying to prove (1.11). Indeed, it can be shown
that if H is an half space disjoint from K such that ∂H is a supporting hyperplane
to K, then, by looking at a Knothe map M constructed starting from the direction
νH and on exploiting the bounds on ∇M − Id that can be derived from Gromov’s
proof, we have

|E ∩H| ≤ C(n,K)
√

δ(E) , (1.19)

see Figure 1.2. To control all of |E \K| one has to repeat this argument for every
normal direction to K, a process that, in general, takes infinitely many steps, thus
leading to a loss of optimality in the decay rate. This remark also gives a reasonable
explanation for the non-optimal exponent α(n) found in [EFT], where arguments
related to the Knothe construction are implicitly used.

The Brenier map allows us to avoid all these difficulties: since det∇T = 1 on E
and ∇T is symmetric, the optimality condition n(det∇T )1/n = div T immediately
implies ∇T = Id , thus E = K.

1.6. Trace and Sobolev-Poincaré inequalities on almost optimal sets. We
now discuss how the bounds on the isoperimetric deficit contained in Gromov’s proof
adapted to the Brenier map may be used in proving Theorem 1.1. If we assume
|E| = |K| and let T be the Brenier map between E and K, then from (1.15), with



Figure 1.3. A set can have arbitrarily small isoperimetric deficit but

degenerate Sobolev-Poincaré constant, either because it is not connected or

because ∂E contains outward cusps (the picture is relative to the Euclidean

case K = B).

M replaced by T , we find

n|K|δ(E) ≥
∫

∂E

(1 − ‖T‖)‖νE‖∗dHn−1 , (1.20)

|K|δ(E) ≥
∫

E

{

div T

n
− (det∇T )1/n

}

. (1.21)

As seen before, δ(E) = 0 forces ∇T = Id a.e. on E, therefore it is not surprising to
derive from (1.21) the estimate

C(n)|K|
√

δ(E) ≥
∫

E

|∇T − Id | , (1.22)

where we have endowed the space of n × n tensors with the trace norm |A| =
√

trace(AtA). If we could apply the Sobolev-Poincaré inequality on E, we may

control, up to a translation of E, the Ln′

norm of T (x) − x over E, and therefore,
in some form, the size of |E∆K|. But, of course, there is no reason for the set E
to be connected, let alone to have the necessary boundary regularity for a Sobolev-
Poincaré inequality to hold true! It turns out that, provided the set E is almost
optimal, i.e., that δ(E) ≤ δ(n) for some suitably small δ(n), one can identify a
maximal “critical subset” of E for the validity of the Sobolev-Poincaré inequality,
where the measure of this region is controlled by the isoperimetric deficit. So, up to
a simple reduction argument one could directly assume that the Sobolev-Poincaré
inequality holds true on E, i.e., that

∫

E

‖ − ∇f(x)‖∗dx ≥ γ(n) inf
c∈R

(
∫

E

|f(x) − c|n′

dx

)1/n′

, ∀f ∈ C1
c (R

n) , (1.23)

for a positive constant γ(n) that is independent of E. Therefore, modulo a translation
of E we find

C(n,K)
√

δ(E) ≥
(
∫

E

‖T (x) − x‖n′

dx

)1/n′

. (1.24)

It remains to control |E∆K| by the right hand side of (1.24). As a first step in this
direction it is not difficult to find a non-sharp estimate like

A(E) ≤ C(n,K)δ(E)1/4 . (1.25)



Indeed, as T takes values in K we have

‖T (x) − x‖ ≥ inf {‖z − x‖ : z ∈ K} , for x ∈ E. (1.26)

Thus, for every ε ∈ (0, 1), we find

|K|A(E) ≤ |E∆K| = 2|E \K|
≤ 2 {|E \ (1 + ε)K| + |(1 + ε)K \K|}

≤ C(n)

{

1

ε

∫

E

‖T (x) − x‖dx+ ε|K|
}

≤ C(n,K)

{

1

ε

√

δ(E) + ε

}

,

and a simple optimization over ε leads to (1.25).
The reasoning leading from (1.24) to (1.25) is clearly non-optimal. Indeed, it only

uses the information that the Brenier map T moves points of E that have distance
ε from K at least by a distance of order ε ≈ δ(E)1/4. In fact, by monotonicity,
the Brenier map has to move points also into a suitably larger zone inside E. This
consequence of monotonicity can be clearly visualized on the Knothe map (see Fig-
ure 1.4): however, it does not seem easy to translate this intuition into an explicit
estimate for the asymmetry.
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Figure 1.4. The set E is such that A(E) = ε2. Knothe map (with

respect to the canonical basis of R
2) differs from the identity only in the

dashed zone. In this zone, of measure ε, we have that ‖M(x) − x‖ is of

order ε. In particular
∫

E ‖M(x) − x‖dx and A(E) have the same size.

The argument that allows us to prove Theorem 1.1 is based on a stronger reduction
step. Namely, we show the following. If E has small deficit, up to the removal of a
maximal critical subset, there exists a positive constant τ(n) independent of E such
that the following trace inequality holds true:
∫

E

‖ −∇f(x)‖∗dx ≥ τ(n) inf
c∈R

∫

∂E

|f(x) − c|‖νE(x)‖∗dHn−1(x) , ∀f ∈ C1
c (R

n) ,

see Theorem 3.4. Hence we can apply the trace inequality together with (1.22) to
deduce that

C(n,K)
√

δ(E) ≥
∫

∂E

‖T (x) − x‖‖νE‖∗ dHn−1(x) (1.27)



up to a translation of E. Since ‖T (x)‖ ≤ 1 on ∂E we have

|1 − ‖x‖| ≤ |1 − ‖T (x)‖ | + ‖T (x) − x‖ = (1 − ‖T (x)‖) + ‖T (x) − x‖ ,
for every x ∈ ∂E. Thus, by adding (1.20) and (1.27) we find

C(n,K)
√

δ(E) ≥
∫

∂E

|1 − ‖x‖| ‖νE‖∗ dHn−1(x) . (1.28)

As shown in Lemma 3.5, this last integral controls |E \ K| = |E∆K|/2 (see Fig-
ure 1.5), and thus we achieve the proof of Theorem 1.1 (indeed, although the constant
C in (1.28) depends on K, we will see that C can be bounded independently of K).

|‖x‖ − 1|

K

x

E
x/‖x‖

0

Figure 1.5. The term
∫

∂E |‖x‖−1| ‖νE‖∗ dHn−1(x) is sufficient to bound

|E \ K|.

1.7. The Brunn-Minkowski inequality on convex sets. Whenever E and F are
open bounded convex sets, equality holds in the Brunn-Minkowski inequality (1.5)

|E + F |1/n ≥ |E|1/n + |F |1/n ,

if and only if there exist r > 0 and x0 ∈ R
n such that E = x0 + rF . Theorem 1.1

implies an optimal result concerning the stability problem with respect to the relative

asymmetry index of E and F , defined as

A(E,F ) = inf

{ |E∆(x0 + rF )|
|E| : x0 ∈ R

n , rn|F | = |E|
}

. (1.29)

To state this result it is convenient to introduce the Brunn-Minkowski deficit of E
and F ,

β(E,F ) :=
|E + F |1/n

|E|1/n + |F |1/n
− 1 ,

and the relative size factor of E and F , defined as

σ(E,F ) := max

{ |F |
|E| ,

|E|
|F |

}

. (1.30)

Theorem 1.2. If E and F are open bounded convex sets, then

|E + F |1/n ≥ (|E|1/n + |F |1/n)

{

1 +
1

σ(E,F )1/n

(

A(E,F )

C(n)

)2
}

, (1.31)

or, equivalently,

C(n)
√

β(E,F )σ(E,F )1/n ≥ A(E,F ) . (1.32)



An admissible value for C(n) in (1.32) is C(n) = 2C0(n), where C0(n) is the
constant defined in (1.12). Moreover, we will show by suitable examples that the
decay rate of A in terms of β and σ provided in (1.32) is sharp.

Refinements of the Brunn-Minkowski inequality such as (1.31) were already known
in the literature. The role of the relative asymmetry A(E,F ) is there played by
its counterpart based on the Hausdorff distance in the works of Diskant [Dk] and
Groemer [Gr1], and on the Sobolev distance between support functions in the work
of Schneider [Sc]. Although these results allow to derive controls on the relative
asymmetry A(E,F ), they do not seem sufficient to derive the sharp lower bound
expressed in (1.31). When the convexity assumption on E and F is dropped the
problem becomes significantly more difficult. Some results were, however, obtained
by Rusza [Ru].

In [FiMP] we prove Theorem 1.2 by a direct mass transportation argument that
avoids the use of Theorem 1.1 and of any sophisticated tool from Geometric Measure
Theory. However, that simpler approach has the drawback of producing a value of
C(n) in (1.31) that diverges exponentially as n→ ∞.

1.8. Further links with Sobolev inequalities. As previously mentioned, Gro-
mov’s argument was originally developed to prove the anisotropic Sobolev inequal-
ity (1.7). A sharp quantitative version of this inequality has been proved in [FMP2],
where the suitable notion of Sobolev deficit of a function f ∈ BV (Rn) is shown to
control the Ln′

-distance of f from the set of optimal functions in (1.7) (this set
amounts to the non-zero multiples, scalings and translations of 1K). In a compan-
ion paper, we combine Gromov’s argument with the theory of symmetric decreasing
rearrangements to improve this stability result. More precisely, we show that the
Sobolev deficit of f actually controls the total variation of f on a suitable super-
level set. This kind of gradient estimate is the analogous in the BV -setting to the
striking result obtained by Bianchi and Egnell [BE] for the (Euclidean) L2-Sobolev
inequality.

Concerning Lp-Sobolev inequalities, Gromov’s proof has inspired a recent im-
portant contribution by Cordero-Erausquin, Nazaret and Villani. Indeed, in [CNV]
they present a mass transportation proof of the (anisotropic) Lp-Sobolev inequalities,
which provides a new (and more direct) way to deduce the classical characterization
of equality cases [Au, Ta]. In [CFMP], the proof from [CNV] has been exploited in
combination with the theory of symmetric decreasing rearrangements to extend to
the (Euclidean) Lp-Sobolev inequalities the above mentioned result from [FMP2].
This has been done with non-sharp decay rates. The methods developed in this
paper may help to employ, in a more efficient way, the argument from [CNV] in
order to obtain the sharp decay rates that are missing in [CFMP], and, possibly, to
prove a Bianchi-Egnell-type result for the Lp-Sobolev inequalities.

1.9. Organization of the paper. Section 2 contains a rigorous justification of
Gromov’s argument (applied to the Brenier map) in the framework of sets of finite
perimeter, together with some bounds on the isoperimetric deficit in terms of the
Brenier map. Section 3 is devoted to the proof of Theorem 1.1, and in particular
to the reduction step to sets with a good trace inequality. In Section 4 we consider
the Brunn-Minkowski inequality, proving Theorem 1.2 and showing two examples
concerning its sharpness. Finally, in the appendix we briefly discuss how the char-
acterization of equality cases for the isoperimetric inequality can be derived from



Gromov’s proof in connection with the notion of indecomposability for sets of finite
perimeter.

2. Brenier map and the isoperimetric inequality

2.1. Some preliminaries on functions of bounded variation. We will use some
tools from the theory of sets of finite perimeter and of functions of bounded variation.
We gather here some results that are particularly useful in our analysis, referring
the reader to the book [AFP] for a detailed exposition.

2.1.1. Reduced boundary, density points, traces and the Divergence Theorem. If µ is
a R

n-valued Borel measure on R
n we shall define its (Euclidean) total variation as

the non-negative Borel measure |µ| defined on the Borel set E by the formula

|µ|(E) = sup

{

∑

h∈N

|µ(Eh)| : Eh ∩ Ek = ∅ ,
⋃

h∈N

Eh ⊆ E

}

.

Given a measurable set E, we say that E has finite perimeter if the distributional
gradient D1E of its characteristic function 1E is a R

n-valued Borel measure on R
n

with finite total variation on R
n, i.e., with |D1E|(Rn) < ∞. If, for example, E is

a bounded open set with smooth boundary ∂E and outer unit normal vector field
νE, one can prove, starting from the Divergence Theorem, that E is a set of finite
perimeter, with D1E = −νE dHn−1⌊∂E and |D1E|(Rn) = Hn−1(∂E).

In general, we define the reduced boundary FE of the set of finiter perimeter E as
follows: FE consists of those points x ∈ R

n such that |D1E|(B(x, r)) > 0 for every
r > 0 and

lim
r→0+

D1E(Br(x))

|D1E|(Br(x))
exists and belongs to Sn−1 , (2.1)

where we have defined Br(x) = x+ rB. For every x ∈ FE we denote by −νE(x) the
limit in (2.1), and call the Borel vector field νE : FE → Sn−1 the measure theoretic

outer unit normal to E (the minus sign is due to obtaining the outer, instead of the
inner, unit normal). The importance of the reduced boundary is clarified by the
following result (cf. [AFP, Theorem 3.59]). Here we use the L1

loc convergence of sets,
defined by saying that Eh → E if 1Eh

converges to 1E in L1
loc.

Theorem 2.1 (De Giorgi Rectifiability Theorem). Let E be a set of finite perimeter

and let x ∈ FE. Then

(E − x)

r
−→ {y ∈ R

n : νE(x) · (y − x) < 0} , (2.2)

as r → 0+. Moreover, the following representation formulas hold true:

D1E = −νE dHn−1⌊FE , |D1E|(Rn) = Hn−1(FE) . (2.3)

Starting from (2.3) and the distributional Divergence Theorem (see [AFP, Theo-
rem 3.36 and (3.47)]), one finds that, if E is a set of finite perimeter, then

∫

E

div T (x)dx =

∫

FE

T (x) · νE(x)dHn−1(x) , (2.4)

for every vector field T ∈ C1
c (R

n; Rn). We shall need a refinement of this result,
relative to the case of a vector field T ∈ BV (Rn; Rn), and stated in (2.18) below.



If E is a Borel set and λ ∈ [0, 1], we denote by E(λ) the set of points x of R
n

having density λ with respect to E, i.e., x ∈ E(λ) if

lim
r→0

|E ∩ Br(x)|
|Br(x)|

= λ .

We use the notation ∂1/2E for E(1/2), and introduce the essential boundary ∂∗E of

E by setting ∂∗E = R
n \ (E(0) ∪E(1)). A theorem by Federer [AFP, Theorem 3.61]

relates the reduced boundary FE to the set of points of density 1/2 and to the
essential boundary, ensuring that, if E is a set of finite perimeter, then

FE ⊆ ∂1/2E ⊆ ∂∗E ,

and that, in fact, these three sets are Hn−1-equivalent. In particular

Hn−1(Rn \ (E(1) ∪E(0) ∪ FE)) = 0 , (2.5)

Hn−1(FE∆∂1/2E) = 0 . (2.6)

Let now E and F be sets of finite perimeter. By [AFP, Proposition 3.38, Example
3.68, Example 3.97], E ∩ F is a set of finite perimeter and, if we let

JE,F = {x ∈ FE ∩ FF : νE(x) = νF (x)} , (2.7)

then, up to Hn−1-null sets,

F(E ∩ F ) = JE,F ∪ [FE ∩ F (1)] ∪ [FF ∩ E(1)] . (2.8)

Moreover, at Hn−1-a.e. x ∈ F(E ∩ F ) we find

νE∩F (x) =







νE(x) , if x ∈ FE ∩ F (1) ,
νF (x) , if x ∈ FF ∩ E(1) ,
νE(x) = νF (x) , if x ∈ JE,F .

(2.9)

In the particular case that F ⊆ E, (2.8) and (2.9) reduce to

FF = [FF ∩ FE] ∪ [FF ∩ E(1)] , (2.10)

νF (x) = νE(x) , for Hn−1-a.e. x ∈ FF ∩ FE , (2.11)

where (2.10) is valid up to Hn−1-null sets. We shall also use the following lemma
concerning the union of two sets of finite perimeter:

Lemma 2.2. Let E and F be sets of finite perimeter with |E ∩ F | = 0. Then

νE∪F dHn−1⌊F(E ∪ F ) = νE dHn−1⌊(FE \ FF ) + νF dHn−1⌊(FF \ FE) , (2.12)

and νE(x) = −νF (x) at Hn−1-a.e. x ∈ FE ∩ FF .

Proof. As |E ∩ F | = 0, we have 1E∪F = 1E + 1F . Therefore, by (2.3),

νE∪F dHn−1⌊F(E ∪ F ) = D1E∪F = D1E +D1F

= νE dHn−1⌊FE + νF dHn−1⌊FF .
(2.13)

Since ∂1/2E∩∂1/2F ⊆ (E∪F )(1), we have Hn−1(F(E∪F )∩FE∩FF ) = 0 by (2.6).
In particular, (2.12) follows from (2.13). Moreover,

0 =

∫

C

νE + νF dHn−1 , for every Borel set C ⊆ FE ∩ FF ,

i.e., νE = −νF at Hn−1-a.e. point in FE ∩ FF . �



Let us now recall that we have endowed the space of n× n tensors R
n×n with the

metric |A| =
√

trace(AtA). In particular, if T ∈ L1
loc(R

n; Rn) and DT is its R
n×n-

valued distributional derivative, then we denote by |DT |(C) the total variation of
DT on the Borel set C defined with respect to this metric. We let BV (Rn; Rn) be
the space of L1(Rn; Rn) vector fields T such that |DT |(Rn) < ∞. In this case we
denote by ∇T the density of DT with respect to Lebesgue measure, and by DsT
the corresponding singular part, so that DT = ∇T dx+DsT .

Let us denote by Div T the distributional divergence of T , and consider the case
when DT takes values in the set of n × n tensors that are symmetric and positive
definite. Then Div T is a non-negative Radon measure on R

n, which is bounded
above and below by the total variation of T : for every Borel set C in R

n,

1√
n

Div T (C) ≤ |DT |(C) ≤ Div T (C) , (2.14)

as a consequence of n−1/2
∑n

i=1 λi ≤ (
∑n

i=1 λ
2
i )

1/2 ≤ ∑n
i=1 λi whenever λi ≥ 0.

Moreover, if we set div T (x) = trace(∇T (x)), then

Div T = div T dx+ (Div T )s , (Div T )s = trace(DsT ) ≥ |DsT | . (2.15)

Note that, as a consequence of (2.15), DivT − div T dx is a non-negative Radon
measure.

Whenever T ∈ BV (Rn; Rn) and E is a set of finite perimeter, for Hn−1-a.e. x ∈
FE there exists a vector tr E(T )(x) ∈ R

n such that

lim
r→0

1

rn

∫

Br(x)∩{y:(y−x)·νE(x)<0}

|T (y) − tr E(T )(x)|dy = 0 , (2.16)

called the inner trace of T on E, see [AFP, Theorem 3.77]. Note that, as a by-
product of (2.2) we have in fact

lim
r→0

1

rn

∫

Br(x)∩E

|T (y) − tr E(T )(x)|dy = 0 . (2.17)

Moreover, as a consequence of [AFP, Example 3.97] (applied to the pair of functions
T and 1E) the Divergence Theorem holds true in the form

Div T (E(1)) =

∫

FE

tr E(T ) · νE dHn−1 , (2.18)

whenever T ∈ BV (Rn; Rn) and E is a set of finite perimeter.

2.1.2. Anisotropic perimeter. If µ is a R
n-valued Borel measure, its anisotropic total

variation ‖µ‖∗ is the non-negative Borel measure defined on the Borel set E as

‖µ‖∗(E) = sup

{

∑

h∈N

‖µ(Eh)‖∗ : Eh ∩ Ek = ∅ ,
⋃

h∈N

Eh ⊆ E

}

.

If Ω is an open set in R
n then we have

‖µ‖∗(Ω) = sup

{
∫

Rn

T · dµ : T ∈ C1
c (Ω;K)

}

.

The anisotropic total variation of f ∈ L1
loc(R

n) is defined as

TVK(f) := sup

{
∫

Rn

div T (x)f(x)dx : T ∈ C1
c (R

n;K)

}

. (2.19)



If f ∈ BV (Rn) then TVK(f) = ‖ − Df‖∗(Rn). Note that, when K = B, then
TVK(f) = |Df |(Rn) is the total variation over R

n of the distributional gradient Df
of f . In particular, sinceK is a bounded open set containing the origin, TVK(f) <∞
if and only if |Df |(Rn) < ∞. If E is a set of finite perimeter and 1E denotes its
characteristic function, then TVK(1E) = PK(E), while, if f ∈ C1

c (Rn),

TVK(f) =

∫

Rn

‖ − ∇f(x)‖∗dx . (2.20)

The reason why −∇f(x) appears in (2.20) is that it is parallel to the outer normal
direction to {f > f(x)}. In this way,

PK(E) = lim
ε→0

∫

Rn

‖ − ∇fε(x)‖∗dx ,

where fε = 1E ∗ ρε and ρε is an ε-scale convolution kernel (i.e., ρε(z) = ε−nρ(z/ε)
for ρ ∈ C∞

c (B; [0,∞)),
∫

Rn ρ = 1). If E is a Borel set and Ω is open, the anisotropic

perimeter of E relative to Ω is defined by

PK(E|Ω) = ‖ −D1E‖∗(Ω) = sup

{
∫

E

div T (x)dx : T ∈ C1
c (Ω;K)

}

.

Therefore, E 7→ PK(E|Ω) is lower semicontinuous with respect to the local con-
vergence of sets. Moreover, this definition agrees with (1.6) when Ω = R

n, and in
general

PK(E|Ω) =

∫

Ω∩FE

‖νE‖∗dHn−1 .

Relative perimeters appear in the Fleming-Rishel Coarea Formula for the anisotropic
total variation on Ω of a function f ∈ C1(Rn) ∩ BV (Rn). Namely, under these
assumptions we have that

∫

Ω

‖ − ∇f(x)‖∗dx =

∫

R

PK({f > t}|Ω)dt . (2.21)

More generally, if f ∈ BV (Rn) and ψ : R
n → [0,∞] is a Borel function, then

∫

Rn

ψ d‖ −Df‖∗ =

∫

R

dt

∫

F{f>t}

ψ‖ν{f>t}‖∗dHn−1 . (2.22)

Starting from (2.21), and arguing as in the analogous proof for the Euclidean perime-
ter, it can be shown that for every set of finite perimeter E one can find a sequence
Eh of open bounded set, with polyhedral or smooth boundary, such that

|Eh∆E| → 0 , PK(Eh) → PK(E) . (2.23)

In particular, A(Eh) → A(E) and δ(Eh) → δ(E).

2.1.3. A technical remark. In the proof of Theorem 1.1 we use some non-trivial
results from the theory of sets of finite perimeter, as the generalized form of the
Divergence Theorem stated in (2.18). This can be avoided, but only up to a certain
extent, if one relies on the regularity theory for the Monge-Ampere equation by
Caffarelli and Urbas. Indeed, when proving Theorem 1.1, one may assume without
loss of generality that E is a bounded open set with smooth boundary (thanks to
the approximation given in (2.23)), and derive from [Ca] that the Brenier map T
belongs to C∞(E,K). However, in the proof of Theorem 1.1 we will need to apply
Gromov’s proof not to E but to the set G provided by Theorem 3.4 (see Section 3.5).



Since there is a priori no (simple) reason for the set G provided by Theorem 3.4 to
be open, the use of (2.18) seems unavoidable.

2.2. The isoperimetric inequality. We come now to a rigorous justification of
Gromov’s argument.

Theorem 2.3. Whenever |E| <∞, we have

PK(E) ≥ n|K|1/n|E|1/n′

.

Proof. We may assume E has finite perimeter and, by a simple scaling argument,
that |E| = |K|. The Brenier-McCann Theorem [Br, McC1], suitably modified by
taking into account that K is bounded (see, for example, [MV, Section 2.1]), ensures
the existence of a convex, continuous function ϕ : R

n → R such that, if we set
T = ∇ϕ, then T (x) belongs to K for a.e. x ∈ R

n and T#(1E(x)dx) = 1K(y)dy, i.e.,
∫

K

h(y)dy =

∫

E

h(T (x))dx , (2.24)

for every Borel function h : R
n → [0,∞]. As T is the gradient of convex function, its

distributional derivative DT takes values in the set of symmetric and non-negative
definite n× n-tensors. Therefore, (see e.g. [AA, Proposition 5.1]) T ∈ BV (Rn;K),
and (2.14) and (2.15) are in force. Moreover, a localization argument starting
from (2.24) proves that

det∇T (x) = 1 , for a.e. x ∈ E ,

see [McC2]. Since ∇T (x) is a positive semi-definite symmetric tensor for a.e. x ∈
R

n, we can define measurable functions λk : R
n → [0,∞) and ek : R

n → Sn−1,
k = 1, ..., n, such that

0 < λk ≤ λk+1 , ei · ej = δi,j , ∇T =

n
∑

k=1

λkek ⊗ ek .

The arithmetic-geometric mean inequality implies that, for a.e. x ∈ E,

n = n(det∇T (x))1/n = n

(

n
∏

k=1

λk(x)

)1/n

≤
n
∑

k=1

λk(x) = div T (x) . (2.25)

By (2.25), (2.15) and by the general version of the Divergence Theorem (2.18)

n|K|1/n|E|1/n′

= n|E| =

∫

E

n(det∇T (x))1/n dx

≤
∫

E

div T (x)dx =

∫

E(1)

div T (x) dx (2.26)

≤ Div T (E(1)) =

∫

FE

tr E(T ) · νE dHn−1 , (2.27)

By (2.16), since T takes values inK, we find ‖tr E(T )(x)‖ ≤ 1 for Hn−1-a.e. x ∈ FE.
The Cauchy-Schwarz inequality (1.17) allows therefore to conclude that

n|K|1/n|E|1/n′ ≤
∫

FE

‖tr E(T )‖ ‖νE‖∗dHn−1 ≤
∫

FE

‖νE‖∗dHn−1 = PK(E) , (2.28)

as desired. �



A characterization of the equality cases for the isoperimetric inequality could be
directly derived from the above proof. However, the argument is slightly technical,
and we are going to prove the stronger stability result of Theorem 1.1 without relying
on this characterization. Thus, we postpone the details of the equality case to the
appendix.

We now exploit Gromov’s proof to deduce some bounds on the distance of the
Brenier map from a translation, in terms of the size of the isoperimetric deficit.

Corollary 2.4. Let E be a set of finite perimeter with |E| = |K|, and let T be the

Brenier map of E into K. If δ(E) ≤ 1, then

n|K|δ(E) ≥
∫

FE

(1 − ‖tr E(T )‖)‖νE‖∗ dHn−1 , (2.29)

9n2|K|
√

δ(E) ≥
∫

E

|∇T (x) − Id |dx+ |DsT |(E(1)) = |DS|(E(1)) , (2.30)

where S(x) = T (x) − x.

The proof of the corollary is based on the following elementary lemma.

Lemma 2.5. Let 0 < λ1 ≤ . . . ≤ λn be positive real numbers, and set

λA :=
1

n

n
∑

k=1

λk , λG :=

(

n
∏

k=1

λk

)1/n

. (2.31)

Then

7n2(λA − λG) ≥ 1

λn

n
∑

k=1

(λk − λG)2 . (2.32)

Proof of Lemma 2.5. By the inequality

log(s) ≤ log(t) +
s− t

t
− (s− t)2

2 max{s, t}2
, s, t ∈ (0,∞) ,

we find that

log(λG) =
1

n

n
∑

k=1

log(λk) ≤
1

n

n
∑

k=1

{

log(λA) +
λk − λA

λA
− (λk − λA)2

2λ2
n

}

= log(λA) − 1

2nλ2
n

n
∑

k=1

(λk − λA)2 = log(λA) − z ,

i.e., λG ≤ λAe
−z. Clearly z ∈ [0, 1/2], and 1−e−t ≥ 3t/4 for every t ∈ [0, 1/2]. Thus

λA − λG ≥ λA(1 − e−z) ≥ 3

8n2λn

n
∑

k=1

(λk − λA)2

where we have also kept into account that nλA ≥ λn. We conclude by noticing that,
since 2n ≤ n2,

n
∑

k=1

(λk − λG)2 ≤ 2

n
∑

k=1

(λk − λA)2 + 2n(λA − λG)2

≤ 16

3
n2λn(λA − λG) + 2nλn(λA − λG) ≤ 7n2λn(λA − λG) .

�



We now come to the proof of the corollary.

Proof of Corollary 2.4. Inequality (2.29) follows immediately from (2.28). We de-
duce similarly from (2.26), (2.27) and (2.15) that

|K|δ(E) ≥
∫

E

{

div T (x)

n
− (det∇T (x))1/n

}

dx+
|DsT |(E(1))

n

=

∫

E

(λA − λG)dx+
|DsT |(E(1))

n
.

(2.33)

With the same notation as in the proof of Theorem 2.3, as λG = 1, we have

∫

E

|∇T (x) − Id |dx =

∫

E

√

√

√

√

n
∑

k=1

(λk − 1)2 ≤
√

‖λn‖L1(E)

√

√

√

√

∫

E

n
∑

k=1

(λk − λG)2

λn

≤
√

7n2‖λn‖L1(E)|K|δ(E) ,

(2.34)

where we have applied Lemma 2.5, Hölder inequality and (2.33). By (2.34) we can
derive the required upper bound on ‖λn‖L1(E). Indeed, we have |λn−1| ≤ |∇T−Id |,
and moreover, δ(E) ≤ 1. Thus, by (2.34),

‖λn‖L1(E) ≤ |K| +
√

7n
√

‖λn‖L1(E)|K| ≤ |K| +
√

7n

{

ε

2
‖λn‖L1(E) +

|K|
2ε

}

.

Choosing ε = 1/
√

7n we easily deduce that ‖λn‖L1(E) ≤ 8n2|K|, so that
∫

E

|∇T (x) − Id |dx ≤
√

56n2|K|
√

δ(E) , (2.35)

thanks to (2.34). As
√

56 + 1 ≤ 9, (2.33) and (2.35) imply (2.30). �

3. Stability for the isoperimetric inequality

In this section we prove Theorem 1.1. The proof is split into several lemmas. We
shall often refer to the constants mK and MK , defined as

mK := inf{‖ν‖∗ : ν ∈ Sn−1} , MK := sup{‖ν‖∗ : ν ∈ Sn−1} . (3.1)

We note that, for every x ∈ R
n,

|x|
MK

≤ ‖x‖ ≤ |x|
mK

. (3.2)

3.1. Trace inequalities. We start with a brief review on trace and Sobolev-Poincaré
type inequalities on domains of R

n. This topic is developed in great detail in the
book of Maz’ja [Mz], especially in relation with the notion of relative perimeter. For
technical reasons we propose here a slightly different discussion. Given a set of finite
perimeter E with 0 < |E| <∞, we consider the constant

τ(E) = inf

{

PK(F )
∫

FF∩FE
‖νE‖∗dHn−1

: F ⊆ E , 0 < |F | ≤ |E|
2

}

,

see Figure 3.1. By (2.11), τ(E) ≥ 1. When τ(E) > 1 a non-trivial trace inequality
holds on E, as shown in the following result.



E
E

FhF

Figure 3.1. The trace constant τ(E). When τ(E) = 1 we have a triv-
ial Sobolev-Poincaré trace inequality (3.3). This happens, for example, if
E has multiple connected components (choose F to be any of these com-
ponents with |F | ≤ |E|/2) or if E contains an outward cusp (consider a
sequence Fh converging towards the tip of the cusp).

Lemma 3.1. For every function f ∈ BV (Rn) ∩ L∞(Rn) and for every set of finite

perimeter E with |E| <∞ we have

‖ −Df‖∗(E(1)) ≥ mK

MK
(τ(E) − 1) inf

c∈R

∫

FE

tr E(|f − c|)‖νE‖∗dHn−1 . (3.3)

Proof. For every t ∈ R, let Ft = E ∩ {f > t}. There exists c ∈ R such that

|Ft| ≤
|E|
2
, ∀t ≥ c , |E \ Ft| ≤

|E|
2
, ∀t < c .

It is convenient to introduce the following notation:

u1(t) = max{t− c, 0} , u2(t) = max{c− t, 0} , ∀t ∈ R .

We start by considering g = u1 ◦ f = max{f − c, 0} and set Gs = E ∩ {g > s}. By
the Coarea Formula (2.22) we have that

‖ −Dg‖∗(E(1)) =

∫ ∞

0

ds

∫

E(1)∩F{g>s}

‖ν{g>s}‖∗dHn−1 . (3.4)

Moreover, by (2.8) and (2.9) we find that E(1) ∩ F{g > s} is Hn−1-equivalent to
E(1) ∩FGs, and that νGs = ν{g>s} at Hn−1-a.e. point in E(1) ∩FGs. Hence, thanks
to (2.10), (2.11) and the definition of τ(E), we find
∫

E(1)∩F{g>s}

‖ν{g>s}‖∗dHn−1 =

∫

E(1)∩FGs

‖νGs‖∗dHn−1

=

∫

FGs

‖νGs‖∗dHn−1 −
∫

FE∩FGs

‖νGs‖∗dHn−1

≥ (τ(E) − 1)

∫

FE∩FGs

‖νGs‖∗dHn−1

= (τ(E) − 1)

∫

FE∩FGs

‖νE‖∗dHn−1 .

(3.5)

We now remark that, by Fubini Theorem,
∫

FE

tr E(g)‖νE‖∗dHn−1 =

∫ ∞

0

ds

∫

FE∩{tr E(g)>s}

‖νE‖∗dHn−1 .

We claim that, up to Hn−1-null sets,

FE ∩ {tr E(g) > s} ⊆ FE ∩ ∂1/2Gs .



Indeed, by (2.5) it suffices to show that Hn−1(FE∩{tr E(g) > s}∩ [G
(1)
s ∪G(0)

s ]) = 0.

As G
(1)
s ∩ ∂1/2E = ∅, by (2.6) we find Hn−1(FE ∩G(1)

s ) = 0. Moreover, if x ∈ G
(0)
s ,

lim
r→0

1

|Br(x)|

∫

Br(x)∩Gs

g(y)dy ≤ ‖g‖L∞(Rn) lim
r→0

|Br(x) ∩Gs|
|Br(x)|

= 0 .

Therefore, there is no x ∈ FE ∩ {tr E(g) > s} ∩G(0)
s , as otherwise, by (2.17),

s < tr E(g)(x) = lim
r→0

1

|Br(x)|

∫

Br(x)∩E

g(y)dy

= lim
r→0

(

1

|Br(x)|

∫

Br(x)∩E∩{g≤s}

g(y)dy +
1

|Br(x)|

∫

Br(x)∩Gs

g(y)dy

)

≤ s ,

a contradiction. Thanks to (2.5) and (2.6) our claim is proved. In particular we find
that

∫

FE

tr E(g)‖νE‖∗dHn−1 ≤
∫ ∞

0

ds

∫

FE∩FGs

‖νE‖∗dHn−1 , (3.6)

and the combination of (3.4), (3.5) and (3.6) leads to

‖ −D(u1 ◦ f)‖∗(E(1)) ≥ (τ(E) − 1)

∫

FE

tr E(u1 ◦ f)‖νE‖∗dHn−1 . (3.7)

Now, the choice of c allows to repeat the above argument with max{c−f, 0} in place
of max{f − c, 0}, thus finding

‖D(u2 ◦ f)‖∗(E(1)) ≥ (τ(E) − 1)

∫

FE

tr E(u2 ◦ f)‖νE‖∗dHn−1 . (3.8)

Observing now that

‖y‖∗ ≤
MK

mK
‖ − y‖∗ , ∀y ∈ R

n , (3.9)

on gathering (3.7), (3.8) and (3.9), and by taking into account the linearity of the
trace operator as well as that u1(t) + u2(t) = |t− c| for every t ∈ R, we have proved
that

2
∑

k=1

‖ −D(uk ◦ f)‖∗(E(1)) ≥ (τ(E) − 1)
mK

MK

∫

FE

tr E(|f − c|)‖νE‖∗dHn−1 .

We will conclude the proof by showing that, for every open set Ω in R
n

2
∑

k=1

‖ −D(uk ◦ f)‖∗(Ω) ≤ ‖ −Df‖∗(Ω) . (3.10)

Indeed, let Ω be fixed. Then we can find a sequence {fh}h∈N ⊆ C∞(Ω) such that
fh → f in L1(Ω) and

∫

Ω
‖−∇fh(x)‖∗dx→ ‖−Df‖∗(Ω) as h→ ∞. As ∇fh = 0 at

a.e. x ∈ f−1
h ({c}) and

∑2
k=1 |u′k(t)| = 1 for every t 6= c, we clearly have that

2
∑

k=1

∫

Ω

‖ −∇(uk ◦ fh)‖∗dx ≤
∫

Ω

2
∑

k=1

|u′k(fh)|‖ − ∇fh‖∗dx =

∫

Ω

‖ −∇fh‖∗dx .

Letting h → ∞, since uk ◦ fh → uk ◦ f in L1(Ω), by lower semicontinuity of the
anisotropic total variation on open sets we come to (3.10), and achieve the proof of
the lemma. �



3.2. Maximal critical sets. Here we show the existence of a maximal critical set
for the trace inequality.

Lemma 3.2 (Existence of a maximal critical set). Let E be a set of finite perimeter

with 0 < |E| <∞, and let λ > 1. If the family of sets

Γλ =

{

F ⊆ E : 0 < |F | ≤ |E|
2
, PK(F ) ≤ λ

∫

FF∩FE

‖νE‖∗dHn−1

}

is non-empty, then it admits a maximal element with respect to the order relation

defined by set inclusion up to sets of measure zero.

Proof. We define by induction a sequence of sets Fh in Γλ. We let F1 be any element
of Γλ and, once Fh has been defined for h ≥ 1, we consider

Γλ(h) = {F ∈ Γλ : Fh ⊆ F} .
We let Fh+1 be any element of Γλ(h) such that

|Fh+1| ≥
|Fh| + sh

2
, where sh = sup

F∈Γλ(h)

|F | .

It is clear that {Fh}h∈N is an increasing sequence of sets, and we denote by F∞ its
limit. We claim that F∞ ∈ Γλ and that F∞ is a maximal element in Γλ.

Clearly, |F∞| = suph∈N |Fh| ≤ |E|/2. Moreover, by lower semicontinuity of the
perimeter we have

PK(F∞) ≤ lim inf
h→∞

PK(Fh) ≤ λ lim inf
h→∞

∫

FFh∩FE

‖νE‖∗dHn−1 . (3.11)

Since Fh ⊆ Fh+1 ⊆ F∞ ⊆ E, we find

(∂1/2Fh ∩ ∂1/2E) ⊆ (∂1/2Fh+1 ∩ ∂1/2E) ⊆ (∂1/2F∞ ∩ ∂1/2E) , (3.12)

therefore, by (3.11) and (2.6), F∞ ∈ Γλ. We are left to show that F∞ is maximal.
Indeed, let H be a subset of E, disjoint from F∞, such that F∞ ∪ H ∈ Γλ. By
construction F∞ ∪H ∈ Γλ(h), so that

sh ≥ |F∞ ∪H| ≥ |Fh+1| + |H| ≥ |Fh| + sh

2
+ |H| ,

i.e., |H| ≤ (sh − |Fh|)/2. Since sh − |Fh| ≤ 2|Fh+1 \ Fh| → 0 as h → ∞, we have
found |H| = 0, thus proving the maximality of F∞. �

3.3. Critical sets in almost optimal sets. Here we show that, provided E is
almost optimal, every set F ⊆ E that makes τ(E) − 1 small enough has small
volume (in terms of the isoperimetric deficit) with respect to E.

We consider the strictly concave function Ψ : [0, 1] → [0, 21/n − 1] defined by

Ψ(s) := s1/n′

+ (1 − s)1/n′ − 1 , s ∈ [0, 1] ,

and notice that

Ψ(s) ≥ (2 − 21/n′

)s1/n′

, s ∈ [0, 1/2] . (3.13)

Set

k(n) =
2 − 21/n′

3
, (3.14)

see Figure 3.2. Then we have the following lemma.
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Ψ(s)

3k(n)s1/n′

21/n − 1

Figure 3.2. The constant k(n) is defined so that 3k(n)s1/n′ ≤ Ψ(s) for

every s ∈ [0, 1/2], with equality for s ∈ {0, 1/2}.

Lemma 3.3 (Removal of a critical set). Let E and F be two sets of finite perimeter,

with F ⊆ E such that

0 < |F | ≤ |E|
2

<∞ , PK(F ) ≤
(

1 +
mK

MK
k(n)

)
∫

FF∩FE

‖νE‖∗dHn−1 .

Then

|F | ≤
(

δ(E)

k(n)

)n′

|E| , PK(E \ F ) ≤ PK(E) ,

and in particular, provided δ(E) ≤ k(n),

δ(E \ F ) ≤ 3

k(n)
δ(E) .

Proof. Let us set for the sake for brevity λ = 1 + (mK/MK)k(n) and G = E \ F .
Thanks to (2.10) and (2.11),

PK(F ) =

∫

FF∩FE

‖νE‖∗dHn−1 +

∫

E(1)∩FF

‖νF‖∗dHn−1 ,

PK(G) =

∫

FG∩FE

‖νE‖∗dHn−1 +

∫

E(1)∩FG

‖νG‖∗dHn−1 .

It is easily seen that ∂1/2F∩∂1/2G∩∂1/2E = ∅. Moreover, ∂1/2F∩E(1) = ∂1/2G∩E(1),

and, by Lemma 2.2, νG = −νF at Hn−1-a.e. point of ∂1/2F ∩ E(1). Gathering these
remarks, and taking into account (3.9), we find that

PK(E) =

∫

FG∩FE

‖νE‖∗dHn−1 +

∫

FF∩FE

‖νE‖∗dHn−1

≥ PK(G) + PK(F ) −
(

1 +
MK

mK

)
∫

E(1)∩FF

‖νF‖∗dHn−1 .

(3.15)

By our assumptions on F ,
∫

E(1)∩FF

‖νF‖∗dHn−1 ≤ (λ− 1)

∫

FF∩FE

‖νE‖∗dHn−1 ≤ (λ− 1)PK(F ) .



G

E

Figure 3.3. The set G is obtained by cutting away from E a maximal
critical subset F∞ for the Sobolev-Poincaré trace inequality (see also Fig-
ure 3.1). If G = E \ F∞ and δ(E) is small enough, then |E \ G| and δ(G)
are bounded from above by δ(E), while τ(G)− 1 is bounded from below in
terms of n and K only.

As (1 + (MK/mK))(λ − 1) ≤ 2k(n), by (3.15) and thanks to the isoperimetric
inequality (1.4) we derive that

PK(E) ≥ PK(G) + (1 − 2k(n))PK(F )

≥ n|K|1/n{|G|1/n′

+ (1 − 2k(n))|F |1/n′} .
(3.16)

Let us consider t = |F |/|E|, so that t ∈ (0, 1/2]. By definition of Ψ and of k(n),

δ(E) ≥ Ψ(t) − 2k(n)t1/n′ ≥ k(n)t1/n′

,

and it follows that |F | ≤ (δ(E)/k(n))n′|E|. Since k(n) ≤ 1/2 we also deduce
from (3.16) that PK(G) ≤ PK(E). Finally, if δ(E) ≤ k(n), as

t ≤ min{1/2, δ(E)/k(n)}
we find

δ(G) =
PK(G)

n|K|1/n|G|1/n′
− 1 ≤ PK(E)

n|K|1/n|E|1/n′(1 − t)1/n′
− 1

≤ PK(E)

n|K|1/n|E|1/n′
(1 + 2t) − 1 = δ(E) + 2t(δ(E) + 1) ≤ 3

k(n)
δ(E) .

This completes the proof of the lemma. �

3.4. Reduction to a better set. We next show that an almost optimal set can
be replaced (to the end of proving Theorem 1.1) by a set that satisfies the trace
inequality with a constant bounded from below in terms of n and mK/MK only.

Theorem 3.4. Let E be a set of finite perimeter, with 0 < |E| < ∞ and δ(E) ≤
k(n)2/8. Then there exists G ⊆ E, having finite perimeter, such that

|E \G| ≤ δ(E)

k(n)
|E| , δ(G) ≤ 3

k(n)
δ(E) , (3.17)

and

τ(G) ≥ 1 +
mK

MK
k(n) . (3.18)



Proof. We consider the family Γλ introduced in Lemma 3.2, and take

λ = 1 +
mK

MK
k(n) .

Let F∞ be the maximal set constructed in Lemma 3.2, and let G = E \ F∞. Since
F∞ ∈ Γλ, by Lemma 3.3 we deduce the validity of (3.17). It remains to show that
τ(G) ≥ λ. Let otherwise H be a subset of G such that

0 < |H| ≤ |G|
2
, PK(H) < λ

∫

FH∩FG

‖νG‖∗dHn−1 . (3.19)

We will prove that F∞∪H ∈ Γλ, thus violating the maximality of F∞. By Lemma 3.3
we find

|H| ≤ δ(G)

k(n)
|G| ≤ 3

δ(E)

k(n)2
|E| ,

and likewise, since δ(E) ≤ k(n)2/8,

|F∞ ∪H| = |F∞| + |H| ≤ δ(E)

k(n)
|E| + 3

δ(E)

k(n)2
|E| ≤ 4

δ(E)

k(n)2
|E| ≤ |E|

2
.

We are thus left to show that

PK(F∞ ∪H) ≤ λ

∫

F(F∞∪H)∩FE

‖νE‖∗dHn−1 ,

or equivalently that
∫

F(F∞∪H)∩E(1)

‖νF∞∪H‖∗dHn−1 ≤ mK

MK

k(n)

∫

F(F∞∪H)∩FE

‖νE‖∗dHn−1 . (3.20)

To this end, we remark that by Lemma 2.2
∫

F(F∞∪H)∩E(1)

‖νF∞∪H‖∗dHn−1

=

∫

[FF∞\FH]∩E(1)

‖νF∞
‖∗dHn−1 +

∫

[FH\FF∞]∩E(1)

‖νH‖∗dHn−1 .

(3.21)

Since (∂1/2H \ ∂1/2F∞) ∩E(1) ⊆ G(1), by (2.5) and (2.6),

∫

[FH\FF∞]∩E(1)

‖νH‖∗dHn−1 ≤
∫

FH∩G(1)

‖νH‖∗dHn−1

≤ mK

MK

k(n)

∫

FH∩FG

‖νH‖∗dHn−1 ,

(3.22)

where we have also used (3.19). By Lemma 2.2, νF∞
= −νH at Hn−1-a.e. point of

FF∞ ∩ FH . Therefore, due to (3.9),

∫

FH∩FG∩E(1)

‖νH‖∗dHn−1 ≤ MK

mK

∫

FH∩FF∞∩E(1)

‖νF∞
‖∗dHn−1 . (3.23)



Combining (3.21), (3.22) and (3.23) we find that
∫

F(F∞∪H)∩E(1)

‖νF∞∪H‖∗dHn−1

≤
∫

[FF∞\FH]∩E(1)

‖νF∞
‖∗dHn−1

+
mK

MK

k(n)

{
∫

FH∩FG∩E(1)

‖νH‖∗dHn−1 +

∫

FH∩FG∩FE

‖νH‖∗dHn−1

}

≤
∫

FF∞∩E(1)

‖νF∞
‖∗dHn−1 +

mK

MK
k(n)

∫

FH∩FG∩FE

‖νH‖∗dHn−1

≤ mK

MK
k(n)

{
∫

FF∞∩FE

‖νF∞
‖∗dHn−1 +

∫

FH∩FG∩FE

‖νH‖∗dHn−1

}

≤ mK

MK

k(n)

∫

F(F∞∪H)∩FE

‖νF∞∪H‖∗dHn−1 ,

where in the last step we have applied again Lemma 2.2. This proves (3.17) and
concludes the proof of the theorem. �

3.5. Proof of Theorem 1.1. Before coming to the proof of the theorem, we are
left to show a last estimate, the one explained in Figure 1.5.

Lemma 3.5. If E is a set of finite perimeter in R
n with |E| <∞, then

∫

FE

|‖x‖ − 1| ‖νE(x)‖∗dHn−1(x) ≥ mK

MK
|E \K| . (3.24)

Proof. Let us set for simplicity of notation Kt = tK for every t > 0, and consider
the convex function u : R

n → [0,∞) defined by u(x) = ‖x‖, so that Kt = {u < t}
and u−1{t} = ∂Kt. Since u is sub-additive it is easily seen that (3.2) implies

1

MK

≤ |∇u(x)| ≤ 1

mK

, (3.25)

for a.e. x ∈ R
n. By a simple approximation argument [Ty, Theorem 3.1] it suffices

to prove (3.24) in the case that K is uniformly convex and has smooth boundary.
Correspondingly, we have that u ∈ C∞(Rn \ {0}). We notice that if x ∈ ∂Kt for
some t > 0 then

νKt(x) =
∇u(x)
|∇u(x)| ,

and due to the convexity of K the mean curvature Ht(x) of ∂Kt at x satisfies

Ht(x) = div

( ∇u(x)
|∇u(x)|

)

≥ 0 . (3.26)

Finally, we notice that Hn−1(FE ∩ ∂Kt) = 0 for a.e. t > 0. Therefore, again by an
approximation argument we can directly assume that

Hn−1(FE ∩ ∂K) = 0 . (3.27)



We are now in the position to prove (3.24). By (3.25) we have

|E \K| ≤MK

∫

E\K

|∇u| = MK

∫

E\K

∇(u− 1) · ∇u
|∇u|

= MK

∫

E\K

div

(

(u− 1)
∇u
|∇u|

)

− (u− 1)div

( ∇u
|∇u|

)

.

(3.28)

By the Coarea Formula and by (3.26) we find that
∫

E\K

(u− 1)div

( ∇u
|∇u|

)

=

∫ ∞

1

(t− 1) dt

∫

E∩∂Kt

Ht
dHn−1

|∇u| ≥ 0 .

Hence (3.28) and the Divergence Theorem imply

|E \K| ≤MK

∫

F(E\K)

(u− 1)
∇u
|∇u| · νE\K dHn−1 . (3.29)

By a suitable variant of Lemma 2.2 and by (3.27) we readily see that

νE\KHn−1⌊F(E \K) = νEHn−1⌊[(FE) \K] − νK Hn−1⌊(E1 ∩ ∂K) .

Since ∂K = {u = 1}, we conclude from (3.29) that

|E \K| ≤MK

∫

(FE)\K

(u− 1)
∇u
|∇u| · νE dHn−1

≤MK

∫

(FE)\K

(u− 1) dHn−1 ≤ MK

mK

∫

(FE)\K

|u− 1| ‖νE‖∗ dHn−1 ,

that is (3.24). �

We are finally ready for the proof of the main theorem.

Proof of Theorem 1.1. Step one: We prove that

A(E) ≤ C0(n,K)
√

δ(E) ,

where

C0(n,K) =
181n3

(2 − 21/n′)3/2

(

MK

mK

)4

.

Without loss of generality, due to (2.23), we can assume that E is bounded. Since
A(E) ≤ 2, if δ(E) ≥ k(n)2/8, then

A(E) ≤ 2 ≤ 4
√

2

k(n)

√

δ(E) ≤ C0(n,K)
√

δ(E) .

Therefore we assume that δ(E) ≤ k(n)2/8 and apply Theorem 3.4 to find G ⊆ E
such that (3.17) and (3.18) hold true. We dilate E and G by the same factor, so
that |G| = |K|. Of course, this operation leaves unchanged the validity of (3.17)
and (3.18). We let T be the Brenier map between G and K, let S(x) := T (x) − x,
and denote by S(i) its i-th component of S, for 1 ≤ i ≤ n. By Corollary 2.4 and by
Lemma 3.1, up to a translation, we have

9n2|K|
√

δ(G) ≥ 1

MK
‖ −DS(i)‖∗(G(1)) ≥ m2

K

M3
K

k(n)

∫

FG

∣

∣tr G(S(i))
∣

∣ ‖νG‖∗dHn−1 .



Adding up over i = 1, ..., n, as
∑n

i=1 |yi| ≥ |y| ≥ mK‖y‖, we find that

9n3

k(n)

(

MK

mK

)3

|K|
√

δ(G) ≥
∫

FG

‖tr G(S)‖‖νG‖∗dHn−1 . (3.30)

Once again by Corollary 2.4 we have that

n|K|δ(G) ≥
∫

FG

(1 − ‖tr G(T )‖)‖νG‖∗ dHn−1 ,

so that (3.30) and Lemma 3.5 give

10n3

k(n)

(

MK

mK

)3

|K|
√

δ(G) ≥
∫

FG

|1 − ‖x‖| ‖νG‖∗dHn−1 ≥ mK

MK
|G \K| .

As |K|A(G) ≤ |G∆K| = 2|G \K|, we come to

A(G) ≤ 20n3

k(n)

(

MK

mK

)4
√

δ(G) .

Let us now set rE = (|E|/|K|)1/n and let xG ∈ R
n be such that

|K|A(G) = |G∆(xG +K)| .
Since |K∆(rEK)| = |E| − |K| = |E \G| = |E∆G|, we obtain

|E|A(E) ≤ |E∆(xG + rEK)| ≤ |E∆G| + |G∆(xG +K)| + |K∆(rEK)|
= 2|E \G| + |G|A(G) .

We divide by |E| and take into account (3.17), (3.14) and the fact that |G| ≤ |E|,
to find that

A(E) ≤ 6 δ(E)

2 − 21/n′
+

60n3

2 − 21/n′

(

MK

mK

)4
√

9 δ(E)

2 − 21/n′

≤ 181n3

(2 − 21/n′)3/2

(

MK

mK

)4
√

δ(E) .

This concludes the proof of this step.

Step two: We complete the proof of the theorem by showing that

A(E) ≤ C0(n)
√

δ(E) . (3.31)

Here C0(n) is the constant defined in (1.12), i.e.,

C0(n) =
181n7

(2 − 21/n′)3/2
,

and we can assume once again by (2.23) that E has smooth boundary. By John’s
Lemma [J, Theorem III] there exists an affine map L0 on R

n such that

B1 ⊂ L0(K) ⊂ Bn , detL0 > 0 .

Thus we can find r > 0 and an affine map L on R
n such that

Br ⊂ L(K) ⊂ Brn , detL = 1 .

By step one we have that

A(L(E), L(K)) ≤ C0(n, L(K))

√

PL(K)(L(E))

n|L(K)|1/n|L(E)|1/n′
− 1 ,



where A(L(E), L(K)) is the relative asymmetry between L(E) and L(K) as intro-
duced in (1.29). By construction

ML(K)

mL(K)

≤ n ,

and moreover, as detL = 1, we have A(L(E), L(K)) = A(E,K), therefore

A(E,K) ≤ C0(n)

√

PL(K)(L(E))

n|K|1/n|E|1/n′
− 1 .

As E has smooth boundary

PK(E) = lim
ε→0+

|E + εK| − |E|
ε

= lim
ε→0+

|L(E + εK)| − |L(E)|
ε

= lim
ε→0+

|L(E) + ε L(K)| − |L(E)|
ε

= PL(K)(L(E)) ,

and we have therefore achieved the proof of the theorem. �

4. Stability for the Brunn-Minkowski inequality on convex sets

In this section we prove Theorem 1.2 and discuss its sharpness. To this end we
follow the standard derivation of the Brunn-Minkowski inequality for convex sets
from the anisotropic isoperimetric inequality [HO]. Note first that whenever E
and F are open bounded convex sets containing the origin and G is a set of finite
perimeter, then

PE(G) + PF (G) = PE+F (G) . (4.1)

This is easily verified by starting from the definition of E+F and of ‖ · ‖∗, see (1.1).
As E + F is an open bounded convex set containing the origin, by (4.1) and the
anisotropic isoperimetric inequality we infer

n|E + F | = PE+F (E + F ) = PE(E + F ) + PF (E + F )

≥ n|E|1/n|E + F |1/n′

+ n|F |1/n|E + F |1/n′

,

that is the Brunn-Minkowski inequality |E + F |1/n ≥ |E|1/n + |F |1/n for E and F .
Before coming to the details of the proof, let us recall that whenever E,F and G

are sets of finite measure, then

A(E,F ) ≤ A(E,G) + A(G,F ) . (4.2)

Indeed, by scaling and translation invariance of the relative asymmetry, it may be
assumed that |E| = |F | = |G| = 1 and A(E,G) = |E∆G|, A(G,F ) = |G∆F |.
Therefore,

A(E,F ) ≤ |E∆F | ≤ |E∆G| + |G∆F | = A(E,G) + A(G,F ) ,

by the triangle inequality.

Proof of Theorem 1.2. Let E and F be open bounded convex sets. By translation
invariance of β, σ and A, we may assume that both E and F contain the origin. By



Theorem 1.1 we have that

PE(E + F ) ≥ n|E|1/n|E + F |1/n′

{

1 +

(

A(E + F,E)

C0(n)

)2
}

,

PF (E + F ) ≥ n|F |1/n|E + F |1/n′

{

1 +

(

A(E + F, F )

C0(n)

)2
}

.

Adding up the two inequalities, thanks to (4.1) and the fact that PE+F (E + F ) =
n|E + F |, we find that

β(E,F ) ≥ |E|1/n

|E|1/n + |F |1/n

(

A(E + F,E)

C0(n)

)2

+
|F |1/n

|E|1/n + |F |1/n

(

A(E + F, F )

C0(n)

)2

≥ A(E + F,E)2 + A(E + F, F )2

2C0(n)2σ(E,F )1/n
≥ [A(E + F,E) + A(E + F, F )]2

4C0(n)2σ(E,F )1/n
.

Thus we have 2C0(n)
√

β(E,F )σ(E,F )1/n ≥ A(E,F ), due to (4.2). �

We now discuss the sharpness of

C(n)
√

β(E,F )σ(E,F )1/n ≥ A(E,F ) (4.3)

in the regimes β(E,F ) → 0+ or σ(E,F ) → +∞. More precisely, we exhibit two

sequences of open, bounded, convex sets {E(1)
h }h∈N and {E(2)

h }h∈N such that

{

limh→∞ β(E
(1)
h , B) = 0 ,

limh→∞ σ(E
(1)
h , B) = 1 ,

lim sup
h→∞

√

β(E
(1)
h , B)σ(E

(1)
h , B)1/n

A(E
(1)
h , B)

<∞ , (4.4)

and
{

limh→∞ β(E
(2)
h , Q) = 0 ,

limh→∞ σ(E
(2)
h , Q) = +∞ ,

lim sup
h→∞

√

β(E
(2)
h , Q)σ(E

(2)
h , Q)1/n

A(E
(2)
h , Q)

<∞ , (4.5)

where Q = {x ∈ R
n : 0 < xk < 1 , for 1 ≤ k ≤ n}. We note that (4.4) implies that

the factor β1/2 in (4.3) can not be replaced by βα for any exponent α > 1/2. In the
same way, (4.5) implies that in (4.3) the factor σ1/2n can not be replaced by σα for
any α < 1/2n.

Proof of (4.4). Let us consider, for λ ∈ (1, 2), the deformations Tλ : R
n → R

n

defined by Tλ(x) = (λx1, x̂), where we have decomposed x ∈ R
n as x = (x1, x̂) ∈

R × R
n−1. Let Eλ = Tλ(B), i.e., Eλ is the ellipsoid characterized as

Eλ = {x ∈ R
n : fλ(x) < 1} , fλ(x) =

x2
1

λ2
+ x̂2 .

We will show that

A(Eλ, B) ≥ c(n)(λ− 1) , (4.6)

β(Eλ, B)σ(Eλ, B)1/n ≤ C(n)(λ− 1)2 , (4.7)

for c(n), C(n) ∈ (0,∞). Then (4.4) will follow from (4.6) and (4.7) on taking

E
(1)
h = Eλh

for any sequence {λh}h∈N such that λh → 1+.



The set Eλ is symmetric with respect to the coordinate hyperplanes, with |Eλ| =
λ|B| = |Bλ1/n |. By [Ma, Lemma 5.2],

A(E,B) ≥ |Eλ∆Bλ1/n |
3

≥ c(n)(λ− 1) ,

and (4.6) is proved. We now prove (4.7). As σ(Eλ, B) = λ ≤ 2, we only need to
show that

|Eλ +B|1/n −
(

|Eλ|1/n + |B|1/n
)

≤ C(n)(λ− 1)2 . (4.8)

Let us consider the set Fλ = (Id + Tλ)(B). By construction Fλ ⊂ (Eλ +B), and

|Fλ|1/n −
(

|Eλ|1/n + |B|1/n
)

= |B|1/n
(

(1 + λ)1/n2(n−1)/n − λ1/n − 1
)

= |B|1/nϕ(λ) ,

where ϕ(λ) = (1 + λ)1/n2(n−1)/n − λ1/n − 1. Since ϕ(1) = ϕ′(1) = 0 we have
ϕ(λ) ≤ C(n)(λ − 1)2 for every λ ∈ (1, 2). Therefore, in order to prove (4.8) we are
left to show that

|Eλ +B|1/n − |Fλ|1/n ≤ C(n)(λ− 1)2 . (4.9)

Now, for every y ∈ ∂(Eλ+B) there exists a unique s(y) > 1 such that s(y)−1y ∈ ∂Fλ.
Let us set σ = λ− 1 for the sake of brevity. By showing that

s(y) = 1 +O(σ2) , ∀y ∈ ∂(Eλ +B) , (4.10)

we will infer the validity of (4.9). In order to prove (4.10), we note that Fλ can be
characterized as

Fλ = {x ∈ R
n : gλ(x) < 1} , gλ(x) =

x2
1

(1 + λ)2
+
x̂2

4
.

Thus, for every y ∈ ∂(Eλ +B) we have

s(y)2 =
y2

1

(2 + σ)2
+
ŷ2

4
=
y2

4
− y2

1

4
σ +O(σ2) . (4.11)

On the other hand, for every y ∈ ∂(Eλ +B) there exists a unique x ∈ ∂Eλ such that

y = x+ νEλ
(x) , (4.12)

see Figure 4.1. Let us note that if x ∈ ∂Eλ then 1 = fλ(x) = (1−2σ)x2
1 + x̂2+O(σ2).

y

RB

Eλ +B

Eλ

R
n−1

λ1

x
νEλ

(x)

Figure 4.1. For every y ∈ ∂(Eλ +B) there exists x ∈ ∂Eλ such that

y = x+ νEλ
(x).



Therefore

x2 = 1 + 2x2
1σ +O(σ2) . (4.13)

Moreover, the outer unit normal vector νEλ
(x) to Eλ at x is parallel to ∇fλ(x), and

thus to
(x1

λ2
, x̂
)

=
(

x1(1 − 2σ +O(σ2)), x̂
)

= x− 2(x1, 0)σ +O(σ2) . (4.14)

By (4.14) and (4.13) we find
∣

∣

∣

(x1

λ2
, x̂
)
∣

∣

∣

2

= x2 − 4x2
1σ +O(σ2) = 1 − 2x2

1σ +O(σ2) , (4.15)

and so by (4.14) and (4.15) we get

νEλ
(x) =

(λ−2x1, x̂)

|(λ−2x1, x̂)|
= (1 + x2

1σ)
(

x− 2(x1, 0)σ
)

+O(σ2)

= x+m(x)σ +O(σ2) ,

(4.16)

where m(x)=x2
1 x−2(x1, 0). Hence, combining (4.11) with (4.12) and (4.16) we find

s(y)2 =
|2x+m(x)σ|2

4
− (2x1 +m1(x)σ)2

4
σ +O(σ2)

= x2 + (x ·m(x) − x2
1)σ +O(σ2) = 1 + (x ·m(x) + x2

1)σ + O(σ2) ,

where in the last equality we have used (4.13). By using the explicit formula for
m(x) in (4.16), and again due to (4.13), we conclude that

x ·m(x) + x2
1 = x2

1(x
2 − 1) = 2x4

1σ +O(σ2) .

This gives s(y) = 1 +O(σ2) and concludes the proof.

Proof of (4.5). It suffices to define E
(2)
h = Bεh

for any sequence {εh}h∈N such that
εh → 0+. Indeed, for every ε > 0 we have that |Bε +Q| = |Q|+Hn−1(∂Q)ε+ o(ε) =
1 + 2nε+ o(ε), therefore

β(Bε, Q)σ(Bε, Q)1/n =

{

(1 + 2nε+ o(ε))1/n

1 + ε|B|1/n
− 1

}

1

ε|B|1/n
=

(

2

|B|1/n
− 1

)

+
o(ε)

ε
.

As we have A(Bε, Q) = A(B,Q) = c(n) for some positive constant c(n) depending
on the dimension n only, we immediately deduce (4.5).

Appendix A. Characterization of isoperimetric sets

In this appendix we wish to discuss the following theorem, originally proved in [Ty,
FM, BM]. As in the work of Brothers and Morgan, Gromov’s original argument is
developed in the framework of Geometric Measure Theory. In the present case we
take further advantage from the use of the Brenier map. In this way we avoid the
use of infinitely many Knothe maps, and present a more direct proof.

Theorem A.1. Let E be a set of finite perimeter with 0 < |E| <∞. Then PK(E) =
n|K|1/n|E|1/n′

if and only if |E∆(x0 + rK)| = 0 for some x0 ∈ R
n and r > 0.

The stability result proved in Theorem 1.1 implies of course Theorem A.1 (note
that, conversely, we have not used Theorem A.1 in proving Theorem 1.1!). Here we
show how to directly derive Theorem A.1 from Gromov’s argument.



A set of finite perimeter E is said indecomposable if for every F ⊆ E having finite
perimeter and such that

Hn−1(FE) = Hn−1(FF ) + Hn−1(F(E \ F )) , (A.1)

we have that min{|F |, |E \ F |} = 0. Indecomposability plays the role of connect-
edness in the theory of sets of finite perimeter, see [ACMM]. We shall need the
following lemma, that is stated without proof in [DM, Proposition 2.12].

Lemma A.2. Let E be an indecomposable set and let f ∈ BV (Rn). If |Df |(E(1)) =
0, then there exists c ∈ R such that f(x) = c for a.e. x ∈ E.

Proof. Let Ft = E ∩{f > t}. As E is indecomposable, it suffices to show that (A.1)
holds with F = Ft for a.e. t ∈ R. In fact, it is enough to prove that

Hn−1(FE) ≥ Hn−1(FFt) + Hn−1(F(E \ Ft)) , (A.2)

for a.e. t ∈ R, as the converse inequality follows from the subadditivity of the dis-
tributional perimeter [AFP, Proposition 3.38 (d)]. To this end we start by noticing
that

{f ≤ t}(1) = {f > t}(0) , ∂1/2{f > t} = ∂1/2{f ≤ t} , (A.3)

Hn−1(F{f > t}∆F{f ≤ t}) = 0 , Hn−1(JE,{f>t} ∩ JE,{f≤t}) = 0 , (A.4)

where (A.3) is trivially checked, and where (A.4) follows from (A.3), Lemma 2.2
and (2.6). We now come to the proof of (A.2). By (2.8), as E \ Ft = E ∩ {f ≤ t},
we have that, up to Hn−1-null sets,

FFt = JE,{f>t} ∪ [E(1) ∩ F{f > t}] ∪ [FE ∩ {f > t}(1)] , (A.5)

F(E \ Ft) = JE,{f≤t} ∪ [E(1) ∩ F{f ≤ t}] ∪ [FE ∩ {f ≤ t}(1)] , (A.6)

being JE,F as in (2.7). Hence, by the Coarea Formula (2.22) (applied to the Euclidean
total variation) we get

0 = |Df |(E(1)) =

∫

R

Hn−1(E(1) ∩ F{f > t})dt ,

i.e., Hn−1(E(1) ∩ F{f > t}) = 0 for a.e. t ∈ R. By (A.4), we also have

Hn−1(E(1) ∩ F{f ≤ t}) = 0

for a.e. t ∈ R. Therefore, thanks to (A.3), from (A.5) and (A.6) we deduce

Hn−1(FFt) + Hn−1(F(E \ Ft)) =Hn−1(JE,{f>t}) + Hn−1(JE,{f≤t})

+ Hn−1(FE ∩ [{f > t}(1) ∪ {f > t}(0)]) .
(A.7)

Since (A.4) implies that

Hn−1(JE,{f>t}) + Hn−1(JE,{f≤t}) ≤ Hn−1(FE ∩ F{f > t}) ,
(A.2) follows from (2.5) and (A.7). �

We now derive Theorem A.1 from the proof of Theorem 2.3.

Proof of Theorem A.1. We only need to show that, if PK(E) = n|K|1/n|E|1/n′

, then
E = x0 + rK for some x0 ∈ R

n and r > 0.



To this end, we start by proving that E is indecomposable. Indeed, let F be a
set of finite perimeter contained in E and such that (A.1) holds true. The usual
considerations based on (2.5), (2.6) and (2.8) serves to show that

Hn−1(FF ) = Hn−1(FF ∩ E(1)) + Hn−1(FE ∩ FF ) ,

Hn−1(F(E \ F )) = Hn−1(FF ∩ E(1)) + Hn−1(FE \ FF ) .

Thus, by (A.1), we deduce Hn−1(FF ∩E(1)) = 0. In particular

PK(F ) + PK(E \ F ) =

∫

FF∩FE

‖νE‖∗dHn−1 +

∫

FF∩E(1)

‖νF‖∗dHn−1

+

∫

FE\FF

‖νE‖∗dHn−1 +

∫

FF∩E(1)

‖ − νF‖∗dHn−1

=

∫

FF∩FE

‖νE‖∗dHn−1 +

∫

FE\FF

‖νE‖∗dHn−1 = PK(E) .

By the isoperimetric inequality (1.4)

PK(E) = PK(F ) + PK(E \ F ) ≥ n|K|1/n(|F |1/n′

+ |E \ F |1/n′

)

≥ n|K|1/n(|F | + |E \ F |)1/n′

= PK(E) ,

and so by strict concavity min{|F |, |E \ F |} = 0, that is E is indecomposable.
We now assume without loss of generality that |E| = |K|, and repeat the proof of

Theorem 2.3. As PK(E) = n|K|1/n|E|1/n′

, we deduce in particular that the Brenier
map T between E and K satisfies

0 =

∫

E

{

div T (x)

n
− (det∇T (x))1/n

}

dx+
(Div T )s(E

(1))

n
.

In particular T ∈W 1,1(Rn;K). As det∇T (x) = 1 a.e. on E, we find that ∇T (x) =
Id at a.e. x ∈ E, therefore DT (C) =

∫

C
Id dx for every Borel set C ⊆ E(1). If we

let S(x) = T (x) − x, then S ∈ W 1,1(Rn; Rn), with |DS|(E(1)) = 0. Thus, applying
Lemma A.2 to each component of the vector field S we deduce the existence of
x0 ∈ R

n such that T (x) = x − x0 for a.e. x ∈ E(1). As T (x) ∈ K for a.e. x ∈ E,
we deduce that E(1) is a subset of x0 +K, and since |K| = |E| = |E(1)| we conclude
the proof. �
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14 (1973), 669–673, 696.

[DG] E. De Giorgi, Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi
frontiera orientata di misura finita. (Italian) Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis.
Mat. Nat. Sez. I (8) 5 1958 33–44.

[DM] G. Dolzmann & S. Müller, Microstructures with finite surface energy: the two-well problem.
Arch. Rational Mech. Anal. 132 (1995), no. 2, 101–141.

[EFT] L. Esposito, N. Fusco & C. Trombetti, A quantitative version of the isoperimetric inequality:
the anisotropic case. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), no. 4, 619–651.

[FiMP] A. Figalli, F. Maggi & A. Pratelli, A refined Brunn-Minkowski inequality for convex sets.
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