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Abstract. In this paper we discuss existence, uniqueness and some properties of a class
of solitons to the anisotropic mean curvature flow, i.e., graphical translators, either in the
plane or under an assumption of cylindrical symmetry on the anisotropy and the mobility.
In these cases, the equation becomes an ordinary differential equation, and this allows to
find explicitly the translators and describe their main features.
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1. Introduction

We consider the evolution of sets t 7→ Et in RN+1 governed by the geometric law

(1.1) ∂tp · ν(p) = −ψ(ν(p))Hϕ(p,Et),

where ν(p) is the exterior normal at p ∈ ∂Et, ψ is a norm representing the mobility, ϕ is
a norm representing the surface tension, and Hϕ(p) is the anisotropic mean curvature of
∂Et at p, see Definition 2.1. This evolution is the gradient flow for the anisotropic perimeter∫
∂E ϕ(ν)dHN (y) with respect to a weigthed L2 norm (depending on ψ) and it is an analogue of
the classical (isotropic) mean curvature flow, which corresponds to the case ϕ(x) = ψ(x) = |x|.
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2 GRAPHICAL TRANSLATORS

In this paper we are interested in a particular class of solutions to (1.1), which are the
graphical translators.

Definition 1.1. An entire graphical translator is a solution to (1.1) given by ∂Et = ∂E0 +
ct eN+1, where c ∈ R and ∂E0 is the graph of a function u : RN → R. In particular E0 solves

(1.2) ceN+1 · ν(p) = −ψ(ν(p))Hϕ(p,E0).

A complete graphical translator is a solution to (1.1) given by ∂Et = ∂E0 + ct eN+1, where
c ∈ R and ∂E0 is a complete hypersurface which solves (1.2) and is the graph of a function
u : Ω ⊆ RN → R, where Ω ⊂ RN is an open set.

In the isotropic case ϕ(p) = ψ(p) = |p| translating solutions have been intensively studied,
and there is a huge literature on the topic, since they arise as blow-up limits of type-II
singularities of the mean curvature flow. In every dimension there exist complete translating
graphs, and the first example is the so called grim reaper in R2. On the other hand entire
graphical translators in RN+1 exist only for N > 1 (see [17,24]), and one of the main examples
is the bowl soliton, which is the unique (up to translations) convex and radially symmetric
solution (see [9]). Finally we recall that in [22] Spruck and Xiao showed that every graphical
translator in R3 is convex and in [24] Wang proved that the bowl soliton is the only one,
whereas in RN+1 for N > 2 there are entire graphical translators which are convex but not
radially symmetric. In [17] all complete translating graphs in R3 have been classified.

In this paper we initiate the analysis of translating graphs for the anisotropic mean curvature
flow, and in particular we are interested in the description of grim reapers and bowl solitons.
Section 3 is devoted to grim reapers in R2 and in higher dimension, whereas in Section 4 we
assume that both the anisotropy and the mobility have a cylindrical symmetry, and we study
existence and qualitative properties of bowl solitons.

We construct our solutions assuming first that the anisotropy is regular, see assumption
(2.3), and then we treat the general case by approximation, using the stability result obtained
in [7]. We also discuss directly the construction and main properties of these soliton solutions,
in the case of purely crystalline anisotropy, see Remarks 3.4 and 4.4.

Finally we recall that other soliton solutions for the anisotropic mean curvature flow in
the graphical setting, namely the expanding self-similar solutions, have been studied by the
authors in [5] (see also [13] for a result in the case of crystalline curvature flow in the plane).

2. Definitions and preliminary results

We recall some definitions for anisotropies and related geometric flows (see for instance [3]).

Definition 2.1. Let ϕ : RN+1 → [0,+∞) be a positively 1-homogeneous convex map, such
that ϕ(p) > 0 for all p 6= 0. We associate to the surface tension the anisotropy ϕ0 : RN+1 →
[0+∞) defined as ϕ0(q) := supϕ(p)61 p·q, which is again convex and positively 1-homogeneous.
The anisotropic mean curvature of a set E at a point p ∈ ∂E is defined as

Hϕ(p,E) = divτ (∇ϕ(ν(p))),

when ϕ is regular, where ν(p) is the exterior normal vector to ∂E at p, and divτ is the
tangential divergence, whereas in the general case it is defined using the subdifferential,

Hϕ(p,E) ∈ divτ (∂ϕ(ν(p))).
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We define the Wulff shape as the convex compact set

Wϕ0 := {q ∈ RN+1 |ϕ0(q) 6 1}.
By using this definition, with some computation it is possible to check that (see [4])

(2.1) Hϕ(RWϕ0) =
N

R
.

We consider the geometric evolution law (1.1) under the following assumptions on mobility:
(2.2)
ψ : RN+1 → [0,+∞) is positively 1-homogeneous, convex and ψ(p) > 0 for all p 6= 0.

Some results will be first obtained assuming the following regularity assumption on the
anisotropy:

(2.3) ϕ ∈ C2(RN+1 \ {0}) and ϕ2 is uniformly convex,

and then extended by approximation, since the level set solutions we consider are stable with
respect to locally uniform convergence (see Theorem 2.3 and [7])

Remark 2.2. We collect some useful properties of ϕ, that will be useful in the following.
First of all for all p, p0 ∈ RN+1, by convexity we get

ϕ(p) > ϕ(p0) + ∂ϕ(p0) · (p− p0)
where ∂ϕ(p0) is the subdifferential. Moreover by convexity and positive 1-homogeneity, for
every p0 ∈ RN+1 we get

ϕ(p0) = ∂ϕ(p0) · p0.
Finally by positive 1-homogeneity of ϕ, for every λ ∈ R, λ 6= 0, we have that

∂ϕ(λp0) =
λ

|λ|
∂ϕ(p0).

We recall the following result about well posedness of the flow (1.1), in the level set sense.
In particular we introduce a uniformly continuous function U0 : RN+1 → R such that E0 =
{p ∈ RN+1 : U0(p) 6 0} and ∂E0 = {p ∈ RN+1 : U0(p) = 0}, and we consider the following
quasi-linear parabolic equation

(2.4)

{
Ut − ψ(∇U)div(∇ϕ(∇U)) = 0

U(p, 0) = U0(p).

Existence and uniqueness of the level set flow associated to (1.1) have been obtained for gen-
eral mobilities ψ and purely crystalline norms ϕ in [15,16], in the viscosity setting, whereas the
case of general norms ϕ with convex mobilities ψ has been treated in [6,7], in the distributional
setting.

Theorem 2.3. There exists a unique continuous solution U to (2.4). The solution is intended
in the distributional sense as in [6], and coincides with the locally uniform limit of viscosity
solutions to (2.4) when ϕ is locally uniformly approximated by ϕn which satisfy (2.3), see [7].
Therefore the level set flows defined as

E+
t := {p ∈ RN+1 : U(p, t) 6 0}

E−t := {p ∈ RN+1 : U(p, t) < 0}
provide a solution (in the distributional level set sense [7]) to (1.1).
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Moreover, if U0, V0 are two uniformly continuous functions such that U0 6 V0, then U(p, t) 6
V (p, t) for all t > 0 and p ∈ RN+1.

Moreover if E0 is the subgraph of an entire Lipschitz function, that is

(2.5) ∃u0 : RN → R, Lipschitz continuous such that E0 = {(x, z) ∈ RN+1 | z 6 u0(x)},

the level set flow satisfies E−t = E+
t = {(x, z) ∈ RN+1 | z 6 u(x, t)}, where u(x, t) is a

continuous function such that

|u(x, t)− u(y, s)| 6 ‖∇u0‖∞|x− y|+K
√
|t− s|

for some K > 0 depending only on the Lipschitz constant ‖∇u0‖∞ of u0.
When ϕ is regular, that is, (2.3) holds, then u is the viscosity solution to

(2.6)

{
ut + ψ(−∇u, 1)div(∇xϕ(−∇u, 1)) = 0

u(x, 0) = u0(x).

Note that the Definition 1.1 on E0 to be a graphical translator reads as a condition on the
function u, whose graph is ∂E0: in particular u(x) + ct has to solve, in appropriate sense,
(2.6), which means that u has to solve

(2.7) −div(∇xϕ(−∇u, 1)) =
c

ψ(−∇u, 1)
.

In order to construct translating solutions, it is sufficient to solve Equation (2.7). Note that
if we can solve the equation for c = 1, then up to a suitable dilations we obtain a solution to
(2.7) for every c 6= 0.

First of all, we observe that in the case of regular anisotropies there are no globally Lipschitz
translating solutions (with c 6= 0).

Proposition 2.4. Assume that (2.3) holds. Let E0 ⊆ RN+1 be the subgraph of a Lipschitz
continuous function u0, and assume that there exists c, for which Et = E0 + ct eN+1 is a
solution to (1.1). Then c = 0 and E0 is a half-space.

Proof. First of all we show that necessarily the speed c is equal to 0. Since E0 is the subgraph
of a Lipschitz continuous function u0, we can write Et as the subgraph of a function u(·, t).
By assumption we get that u(x, t) = u0(x) + ct is the solution to (2.6). On the other hand, by
Theorem 2.3, there holds that |u(x, t)− u0(x)| 6 K

√
t for a constant K, which implies c = 0.

It follows that u0 solves, in the viscosity sense,

div(∇ϕ(−∇u0, 1)) = 0 for all x ∈ RN .

By elliptic regularity theory for viscosity solutions (see [23]), this implies u0 ∈ C1,α(RN ) for
every α < 1, and then by a bootstrap argument u0 ∈ C∞(RN ).

Now, we observe that for every i, (u0)xi is a bounded solution to a uniformly elliptic equation
in RN , so that by [21, Theorem 5] there exists lim|x|→∞(u0)xi(x) = ci, and then, again by
[21, Theorem 4], we conclude that u0 is an affine function.

�

3. Grim reapers

In the isotropic case there exists only one possible complete translating graph in R2, up
to dilations and translations, which is called the grim reaper. In particular this implies that
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there are not entire graphical translators. We will show that the same result holds also in the
anisotropic setting.

Since we deal with complete but not entire translating graphs, we will not consider the
evolution of the subgraphs of the function (which is not well defined), but the evolution of
the boundary ∂E0, that is the graph of u, with normal vector at every (x, u(x)) given by
(−u′(x), 1).

We start with some technical lemmas, which hold in the regular case.

Lemma 3.1. Assume (2.3). Then there exist two constants 0 < c1 6 c2 such that
c1

ϕ(t, 1)3
6 ϕxx(t, 1) 6

c2
ϕ(t, 1)3

∀t ∈ R.

Moreover the function
h(t) := ϕ(t, 1)− ϕ(1, 0)|t|

satisfies

(1) h is convex and limt→±∞
h(t)
t = 0;

(2) h′(t) 6 0 for t > 0, h′(t) > 0 for t < 0 and 0 > h′+(0) = limt→0+ h
′(t) > −2ϕ(1, 0),

whereas 0 6 h′−(0) = limt→0− h
′(t) 6 2ϕ(1, 0);

(3) −ϕ(0, 1) 6 h(t) 6 h(0) = ϕ(0, 1) for all t ∈ R.

Proof. From (2.3) it follows that there exist 0 < c1 6 c2 such that

c1 6 det∇2

(
ϕ2

2

)
(x, z) 6 c2 ∀(x, z) ∈ R2.

Noting that ϕ(x, z) = |z|ϕ(x/z, 1) for all (x, z) with z 6= 0, a direct computation shows that

det∇2

(
ϕ2

2

)
(x, z) = ϕ

(x
z
, 1
)3
ϕxx

(x
z
, 1
)
,

which implies the first assertion.
Now, observe that by positive 1-homogeneity ϕ(−1, 0) = ϕ(1, 0), so we get for t 6= 0,

h(t)

t
=
|t|
t
ϕ

(
t

|t|
,

1

|t|

)
− |t|

t
ϕ(1, 0)→ 0 as t→ ±∞.

Now for t > 0, h′(t) = ϕx(t, 1)−ϕ(1, 0). First of all we observe that by Remark 2.2, ϕx(1, 0) =
ϕ(1, 0). Moreover by the first part of the proof, we have that ϕx(t, 1) is a monotone increasing
function, and moreover recalling Remark 2.2, for t 6= 0,

ϕx(t, 1) =
t

|t|
ϕx

(
1,

1

t

)
→

{
ϕx(1, 0) as t→ +∞
−ϕx(1, 0) as t→ −∞.

So, it follows that h′(t) 6 0 for t > 0 and h′(t) > 0 for t < 0. We get h′+(0) = ϕx(0, 1)−ϕx(1, 0).
Now observe that by convexity ϕ(1, 0) = ϕ(−1, 0) > ϕ(0, 1)−ϕx(0, 1)−ϕz(0, 1) = −ϕx(0, 1).
So we conclude h′+(0) = ϕx(0, 1)−ϕx(1, 0) > −2ϕ(1, 0). The argument for h′−(0) is completely
analogous.

Finally, by convexity, recalling Remark 2.2 and the fact that ϕx(1, 0) = ϕ(1, 0), we get for
t > 0

h(t) = ϕ(t, 1)− ϕx(1, 0)t > ϕ(1, 0) + ϕx(1, 0)(t− 1) + ϕz(1, 0)− ϕx(1, 0)t = ϕz(1, 0)
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whereas for t < 0 recalling that ϕx(−1, 0) = −ϕx(1, 0), and ϕ(−1, 0) = ϕ(1, 0),

h(t) = ϕ(t, 1) + ϕx(1, 0)t > ϕ(−1, 0)− ϕx(1, 0)(t+ 1)− ϕz(1, 0) + ϕx(1, 0)t = −ϕz(1, 0).

Again by convexity we conclude that

ϕ(0,−1) > ϕ(1, 0)− ϕx(1, 0)− ϕz(1, 0) = −ϕz(1, 0)

and then ϕz(1, 0) > −ϕ(0,−1) = −ϕ(0, 1). On the other hand also

ϕ(0, 1) > ϕ(1, 0)− ϕx(1, 0) + ϕz(1, 0) = ϕz(1, 0)

and therefore −ϕz(1, 0) > −ϕ(0, 1). The two inequalities give the conclusion. �

Lemma 3.2. Assume (2.3). Let I ⊆ R be an open bounded interval and u : I → R be a
convex C2 function such that limx→∂I u(x) = +∞ and

∃c > 0
(
ϕx(u′,−1)

)′
<

1

c
for every x ∈ I.

Then for every p′ ∈ {(x, z) |z > u(x)} such that (x, u(x)) ∈ ∂(p′ + cWϕ0) for some x ∈ I,
there holds that p′ + cWϕ0 ⊆ {(x, z) |z > u(x)}.

Proof. We may assume without loss of generality that c = 1, the other cases can be obtained
by rescaling. Let F = {(x, z) | z > u(x)} be the epigraph of u. Then by definition

Hϕ((x, u(x)), F ) =

(
ϕx

(
u′√

1 + (u′)2
,− 1√

1 + (u′)2

))′
=
(
ϕx(u′,−1)

)′
where the last equality comes from the fact that ϕ is a norm, so it is positively 1-homogeneous,
and then ϕx(tx, tz) = t

|t|ϕx(x, z) for all t 6= 0. Recalling (2.1), and using the assumptions,
we have that Hϕ(Wϕ0) = 1 > Hϕ((x, u(x)), F ). If (x, u(x)) ∈ ∂(p′ + Wϕ0) ∩ ∂F , then the
inequality on curvatures implies that there exists a neighborhood U of (x, u(x)) such that
p′ + Wϕ0 ∩ U ⊆ F ∩ U . Suppose by contradiction that this inclusion is not satisfied for
U = R2. Therefore there exists an interval (x − b′, x + b) such that (x − b′, x + b) ⊆ U ∩ I
and either (x + b, u(x + b)) ∈ ∂(p′ + Wϕ0) ∩ ∂F or (x − b′, u(x − b′)) ∈ ∂(p′ + Wϕ0) ∩ ∂F .
Assume that the first case is verified, the other case is completely analogous. Since Wϕ0 is a
convex C2 set, we may assume (eventually reducing b′), that ∂(p′ +Wϕ0)∩ (x− b′, x+ b)×R
coincides with the graph of a C2 convex function w : (x− b′, x+ b)→ R such that u 6 w for
all y ∈ (x− b′, x+ b).

In particular we get that u(x) = w(x), u′(x) = w′(x), u(x+ b) = w(x+ b), and(
ϕx
(
u′,−1

))′
<
(
ϕx
(
w′,−1

))′ for all y ∈ (x− b′, x+ b).

Integrating the previous inequality between x and y ∈ (x, x+ b), we get,

ϕx
(
u′(y),−1

)
< ϕx

(
w′(y),−1

)
which by Lemma 3.1 gives u′(y) < w′(y) for all y ∈ (x, x+ b), which is in contradiction with
the fact that u(x) = w(x) and u(x+ b) = w(x+ b). �

We prove existence of complete translating graph in R2. We start with the case of regular
anisotropies and then obtain the other cases by approximation.



GRAPHICAL TRANSLATORS 7

Theorem 3.3. There exists a complete graphical translating solution to (1.1) which is given
(up to dilations and translations) by ∂Et = ∂E + te2, where ∂E solves (1.2). In particular,
∂E is the graph of a convex function u : I → R , where I is an interval. If (2.3) holds, then
u is characterized as the unique solution to

(3.1)

{
ψ (−u′, 1)ϕxx (−u′, 1)u′′ = 1

u(0) = u′(0) = 0.

Proof. We fix c = 1 in (1.2), since the case c 6= 0 can be obtained by dilations.
We start considering the case in which (2.3) holds and then the general case will be obtained

by approximation. We observe that the equation (1.2) when ∂E is the graph of a function
u : Ω ⊆ R→ R reads

ψ
(
−u′, 1

) (
ϕx
(
−u′, 1

))
x

= −1 x ∈ Ω.

Up to translations we may also assume that u(0) = 0.
The function defined as

f(u′) := (1 + u′2)ψ
(
−u′, 1

)
ϕxx

(
−u′, 1

)
is continuous, and moreover by Lemma 3.1,

c1ψ

(
−u′√
1 + u′2

,
1√

1 + u′2

)
6 f(u′)ϕ3

(
−u′√
1 + u′2

,
1√

1 + u′2

)
6 c2ψ

(
−u′√
1 + u′2

,
1√

1 + u′2

)
so there exist two constants 0 < c̄1 6 c̄2 such that c̄1 6 f(u′) 6 c̄2.

We assume that u′(0) = 0 and we define v(x) = u′(x). Then v is a solution to

(3.2)

{
f(v(x))v′(x) = 1 + (v(x))2

v(0) = 0.

Note that v(x) is defined in a maximal interval I such that (−c̄1π, c̄1π) ⊆ I ⊆ (−c̄2π, c̄2π),
that v is strictly increasing and that

tan
x

c̄2
6 v(x) 6 tan

x

c̄1
.

In particular for every α the solution vα to (3.2) with initial data vα(0) = α is obtained as
vα(x) = v(x+ β) for some β ∈ R. This implies that, up to translations, we may assume that
u′(0) = 0.

Finally we observe that the length of the maximal interval I of existence for the solution
to (3.1) is actually bounded independently of the constants c1, c2 appearing in Lemma 3.1.
Assume that I = (a, b) and integrate (3.1) in (a, b), recalling that I is the maximal interval of
existence we obtain that

(3.3) 0 6 b− a = |I| =
∫ +∞

−∞
ψ(t,−1)ϕxx(−t, 1)dt 6 max

S1
ψ

∫ +∞

−∞

√
1 + t2ϕxx(−t, 1)dt.

Recalling the definition and the properties of the function h in Lemma 3.1 we get for M > 0,∫ M

0

√
1 + t2h′′(−t)dt = −

√
1 +M2h′(−M) + h′−(0)−

∫ 0

−M

t√
1 + t2

h′(t)dt

6 −
√

1 +M2h′(−M) + h′−(0) + h(0)− h(−M)

6
√

1 +M2h′(−M) + 2ϕ(1, 0) + 2ϕ(0, 1).
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Now we observe that asM → +∞,
√

1 +M2h′(−M)→ 0 since h′ > 0 in (−∞, 0), is increasing
and

∫ 0
−∞ h

′(t)dt < +∞. Therefore, in the previous inequality we obtain∫ +∞

0

√
1 + t2ϕxx(−t, 1)dt 6 2ϕ(1, 0) + 2ϕ(0, 1).

With a completely analogous argument we get also that∫ 0

−∞

√
1 + t2ϕxx(−t, 1)dt 6 2ϕ(1, 0) + 2ϕ(0, 1).

This implies by (3.3) that

(3.4) |I| 6 4(ϕ(1, 0) + ϕ(0, 1)) max
S1

ψ.

Assume now that (2.3) does not hold. Let ϕn be a sequence of norms which satisfy (2.3),
and such that ϕn → ϕ locally uniformly. By the previous arguments, for every n we get a
convex function un which solves (3.1) in an interval In. First of all we observe that by (3.4)
the intervals In are equibounded, and converge in Hausdorff sense, up to subsequences to a
limit interval I. Moreover, since ∂En is a solution to (1.2), we get that (recalling that the
normal vector is (−(un)′, 1)),

Hϕn(p,En) = − 1√
1 + ((un)′)2 ψ

(
−(un)′,√
1+((un)′)2

, 1√
1+((un)′)2

) > − 1

minS1 ψ
> −1

c

where 0 < c < minS1 ψ. Note that the set Fn = {(x, z) | x ∈ In, z > un(x)} is a convex set,
and moreover by the previous estimate, we get that at every p ∈ ∂Fn, Hϕn(p, Fn) < 1

c . In
particular this implies by Lemma 3.2 that if p′n ∈ Fn is such that p ∈ ∂(p′n + cW(ϕn)0) (so
in particular |p − p′n| 6 diam (cW(ϕn)0)) then p′n + c W(ϕn)0 ⊆ Fn. Recalling that ϕn → ϕ

locally uniformly, we get for arbitrary and now fixed c′ < c and n sufficiently large

p′n + c′ Wϕ0 ⊆ Fn
where p′n ∈ Fn is such that ∂(p′n + c W(ϕn)0) ∩ ∂Fn 6= ∅. In particular if we take p′n ∈ Fn
such that (0, 0) ∈ ∂(p′n + c W(ϕn)0), then, p′n → p′ up to subsequence and we get that for n
sufficiently large w.l.o.g. p′ + c′ Wϕ0 ⊆ Fn.

Note that Fn are epigraphs of convex functions such that (0, 0) ∈ ∂Fn, and the previous
estimates imply that the sequence of convex sets Fn are contained in the strips In × [0,+∞),
which converge to I× [0,+∞), and contain p′+ c′ Wϕ0 . This implies that up to subsequences,
the sets Fn converge locally in Hausdorff sense to a convex set F , such that F is contained in
the strip I × [0,+∞), and (0, 0) ∈ ∂F . Moreover F is the epigraph of a convex function u,
and un converges to u locally uniformly. By passing to the level set formulation and using the
stability with respect to locally uniform convergence of the distributional solutions to (2.4),
see [7], we get that ∂F solves (1.2).

�

Remark 3.4. In the purely crystalline case, that is, when Wϕ0 is a convex polygon in R2

and the mobility is the natural one, that is ψ = ϕ, we may construct directly a complete
translating solution ∂Et = ∂E0 + te2, with a similar argument as the one used in [13] to
construct self similar evolving crystals.

We fix ν1, . . . , νk as the ordered set of adjacent normal orientations of ∂Wϕ0 with νi · e2 < 0
and let ∆(νj) be the length of the edge of Wϕ0 having νj as exterior normal.
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We construct ∂E0 as a polygonal curve consisting of a finite union of segments S1, . . . , Sk
and two half-lines S0 = (0,+∞)e2, Sk+1 = Le1 + (L̂,+∞)e2, where L > 0 and L̂ ∈ R will
be chosen later. In particular, ∂E0 ∩ (0, L) × R is the graph of a convex piecewise linear
function u0 : (0, L)→ R, with u0(0) = 0, u0(L) = L̂. For every i ∈ {1, . . . , k} we require that
(−∇u0(x), 1)/

√
1 + |∇u0(x)|2 = −νi for all x such that (x, u0(x)) ∈ Si. Recalling Definition

2.1 (see also [13,15,16]) the crystalline curvature at every pi ∈ Si is given by

(3.5) Hϕ(pi, E0) = −∆(νi)

Li

where Li is the length of the segment Si.
Now we need to impose that the vertical speeds of the segments agree, i.e.,

ϕ(νj)Hϕ(pj , E0)

νj · e2
=
ϕ(νj−1)Hϕ(pj−1, E0)

νj−1 · e2
, 2 6 j 6 k.

Recalling (3.5), we then get

Lj =
ϕ(νj)∆(νj) νj−1 · e2
ϕ(νj−1)∆(νj−1) νj · e2

Lj−1, 2 6 j 6 k.

If we fix L1 = −ϕ(ν1)∆(ν1)/(ν1 · e2), by the previous equation the other lengths satisfy
Lj = −ϕ(νj)∆(νj)/(νj · e2) for all 2 6 j 6 k. Therefore, recalling (3.5), we get that ∂E0 is a
solution to (2.7) with c = 1 and this implies that ∂Et = ∂E0 + te2.

Finally, using the translating graphs obtained in Theorem 3.3, we can construct grim reaper
solutions, that is, translating hypersurfaces in RN asymptotic to two parallel hyperplanes.

Proposition 3.5. For every e ∈ SN−1 there exists a complete graphical translator ∂E for
(1.1) given by the graph of a function ve(x) := ue(x · e), where ue : I → R is a convex function
and I is an interval.

Proof. Assume first that (2.3) holds and define ϕe, ψe : R2 → R as the projections of ϕ,ψ, that
is ϕe(t, z) := ϕ(te, z), ψe(t, z) := ψ(te, z) for every t ∈ R, z ∈ R. Then, since also ϕe satisfies
(2.3), we can apply Theorem 3.3 with ϕe, ψe and obtain the convex function ue : I → R as
the unique solution to {

ψe (−u′, 1)ϕexx (−u′, 1)u′′ = 1

u(0) = u′(0) = 0.

We now define the function ve(x) := ue(x · e), and we observe that ∇ve(x) = u′e(x)e. In
particular, we have

−ψ(−∇ve, 1)div(∇xϕ(−∇ve, 1)) = ψe
(
−u′e, 1

)
ϕexx

(
−u′e, 1

)
u′′e = 1

and so ve is a solution to (2.7). This implies that its graph is a complete translating hyper-
surface for (1.1).

In the general case, we proceed by approximation as in Theorem 3.3. �

As in [17], up to a rotation of the coordinate system, from the solutions in Proposition 3.5
one can easily construct tilted grim reapers.

Proposition 3.6. For every e, t ∈ SN−1 and λ ∈ R there exists a complete graphical translator
∂E for (1.1) given by the graph of a function v(x) := u(x · e) + λx · t, where u : I → R is a
convex function depending on e, t, λ and I is an interval.
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4. Bowl solitons for cylindrical anisotropies and mobilities

In this section we consider the case in which the mobility and the anisotropy satisfy the
following assumption: There exist two functions F,G : [0,+∞) × [0,+∞) → [0,+∞) and a
norm ξ : RN → [0,+∞) such that

(4.1) ϕ(x, z) = F (ξ(x), z) and ψ(x, z) = G(ξ(x), z).

We can extend F,G to the whole of R2 by letting F (t, s) = F (−t, s) = F (t,−s) = F (−t,−s),
and similarly for G. Note that, by the properties of ϕ,ψ, the extended functions F,G are
norms on R2.

Under assumption (4.1), the Wulff shape associated to the anisotropy ϕ is cylindrical, in
the sense that all the sections of the Wulff shape along the eN+1-direction are homothetic.

Proposition 4.1. Let ϕ : RN+1 → [0,+∞) a norm which satisfies (4.1). Then ϕ0(x, z) =
F 0(ξ0(x), z), where F 0(t, s) = maxF (t′,s′)61(tt

′ + ss′) and ξ0(x) = maxξ(x′)61 x · x′.

Proof. Fix z ∈ R and denote F−1z the inverse of the function t ∈ [0,+∞)→ F (t, z).

ϕ0(x, z) = max
F (ξ(x′),|z′|)61

(x · x′ + zz′) = max
|z′|61,ξ(x′)6F−1

z′ (1)
(x · x′ + zz′)

= max
|z′|61,ξ(h)61

(h · xF−1z′ (1) + zz′) = max
|z′|61

(ξ0(x)F−1z′ (1) + zz′).(4.2)

Now observe that, if t, s > 0, then

F 0(t, s) = max
F (t′,s′)61,t′,s′>0

(tt′ + ss′) = max
06s′61,06t′6F−1

s′ (1)
(tt′ + ss′) = max

06s′61
(tF−1s′ (1) + ss′).

Therefore, taking t = ξ0(x) and s = z, and substituting in (4.2) we get

ϕ0(x, z) = F 0(ξ0(x), z).

�

Under assumption (4.1), the equation (2.7) for graphical translators reads as follows:

(4.3) −div (Ft(ξ(−∇u), 1)∇ξ(−∇u)) =
1

G(ξ(−∇u), 1)
.

We shall look for solutions having the same symmetries as the Wulff shape. Recalling from
Proposition 4.1 that ϕ0(x, z) = F 0(ξ0(x), z), then we look for solutions

u(x) = v(ξ0(x))

where v : [0,∞)→ R is a convex function.
Recalling that for t 6= 0, ξ(tx) = |t|ξ(x), we get ∇ξ(tx) = t

|t|∇ξ(x) and moreover since ξ
and ξ0 are dual norms we get that ξ(∇ξ0(x)) = 1 and ξ0(x)∇ξ(∇ξ0(x)) = x. For more details
we refer to [4, Section 2.1]. This implies that

ξ(−∇u(x)) = |v′(ξ0(x))|ξ(∇ξ0(x))) = |v′(ξ0(x))|

∇ξ(−∇u(x)) = − v′(ξ0(x))

|v′(ξ0(x))|
∇ξ(∇ξ0(x)) = − v′(ξ0(x))

|v′(ξ0(x))|
x

ξ0(x)
.

We substitute these formulas in (4.3) and obtain

div

(
Ft(|v′(ξ0(x))|, 1)

v′(ξ0(x))

|v′(ξ0(x))|
x

ξ0(x)

)
=

1

G(|v′(ξ0(x))|, 1)
.
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We compute the divergence, recalling that div( x
ξ0(x)

) = N−1
ξ0(x)

and that ∇ξ0(x) · x = ξ0(x), so
that

Ftt(|v′(ξ0(x))|, 1)v′′(ξ0(x)) + Ft(|v′(ξ0(x))|, 1)
v′(ξ0(x))

|v′(ξ0(x))|
N − 1

ξ0(x)
=

1

G(|v′(ξ0(x))|, 1)
.

and then, letting r = ξ0(x) and w = v′, we get

(4.4) w′(r) =
1

Ftt(|w(r)|, 1)

(
1

G(|w(r)|, 1)
− N − 1

r

w(r)

|w(r)|
Ft(|w(r)|, 1)

)
.

If F (t, s) = G(t, s) =
√
t2 + s2 and ξ(x) = |x|, we get exactly w′ =

(
1− N−1

r w
)

(1+w2) which
is the equation for radially symmetric graphical translators.

Note that by Lemma 3.1, if F 2 is uniformly convex and F ∈ C2(R2 \ 0), there exist
0 < c1 6 c2 such that

(4.5)
c1

F 3(α, 1)
6 Ftt(α, 1) 6

c2
F 3(α, 1)

∀α ∈ R.

Moreover since F (α, 1) is an even convex function, if F ∈ C2(R2 \ 0), we get that necessarily

(4.6) Ft(0, 1) = 0 and Ft(α, 1) > 0 ∀α > 0.

Lemma 4.2. Assume (4.1), with F 2, G2 uniformly convex , and F,G ∈ C2(R2 \ {0}). Then
there exists w ∈ C1(0,+∞), which is positive, increasing and solves

(4.7)

w′ =
Ft(w(r), 1)

Ftt(w(r), 1)

(
1

G(w(r),1)Ft(w(r),1)
− N−1

r

)
limr→0+ w(r) = 0.

Moreover limr→+∞
w(r)
r = 1

(N−1)G(1,0)F (1,0) .

Proof. We define for α > 0, the function

(4.8) f(α) :=
1

G(α, 1)Ft(α, 1)
f(·) : (0,+∞)→ (0,+∞)

and observe, recalling (4.5) and (4.6) (which holds also for G), that it is strictly decreasing
in (0,+∞), moreover that limα→0+ f(α) = +∞, since Ft(0, 1) = 0 and limα→+∞ f(α) = 0 by
positive 1-homogeneity of G and positive 0-homogeneity of Ft. So the equation f(α) = N−1

r
admits a unique positive solution

(4.9) α(r) := f−1
(
N − 1

r

)
α(·) : (0,+∞)→ (0,+∞).

It is easy to check that α(r) is strictly increasing, that limr→0+ α(r) = 0, whereas limr→+∞ α(r) =
+∞. By 1-homogeneity of G and 0-homogeneity of Ft, we get

lim
α→+∞

αf(α) = lim
α→+∞

α

αG(1, 1/α)Ft(1, 1/α)
=

1

G(1, 0)Ft(1, 0)
.

Therefore

(4.10) lim
r→+∞

α(r)

r
= lim

α→+∞

αf(α)

N − 1
=

1

(N − 1)G(1, 0)Ft(1, 0)
.

Finally, since F (t, s) = tFt(t, s) + sFs(t, s), we get that Ft(1, 0) = F (1, 0).
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As long as w(r) > 0, (4.4) can be written as

w′(r) =
Ft(w(r), 1)

Ftt(w(r), 1)
(f(w(r))− f(α(r))) .

Note that if 0 < w(r) < α(r), (which is equivalent to f(w)− N−1
r > 0) we get that w′(r) > 0,

whereas if w(r) > α(r), then w′(r) < 0. This implies that if w solves the ode in some interval
(ρ, ρ + s) for some ρ > 0 and 0 < w(ρ) < α(ρ), then 0 < w(r) 6 α(r) for all r > ρ, since in
the region w > α, we would get w′ < 0. Then we get a solution w defined for all r > ρ, which
is positive and increasing.

We fix ρ > 0 and consider the system{
w′(r) = 1

Ftt(w(r),1)

(
1

G(w(r),1) −
N−1
r Ft(w(r), 1)

)
w(ρ) = α(ρ)

2 .

Note that, by the previous discussion, the system admits a unique solution wρ which satisfies
0 < wρ(r) 6 α(r), for all r > ρ, and then is defined for all r > ρ and is strictly increasing.
Moreover, wρ ∼ r as r → +∞.

We define w(r) = limρ→0+ wρ(r). We get that the limit is locally uniform in C1, by Arzelá-
Ascoli Theorem, and moreover w is a solution to (4.7) which is positive, strictly increasing,
and satisfies w(r) 6 α(r).

Finally observe that w(r)→ +∞ as r → +∞ and by (4.5), we get that

w′(r) >
1

c1
Ft(w(r), 1)F 3(w(r), 1)(f(w(r))− f(α(r))).

So necessarily f(w(r))−f(α(r))→ 0 as r → +∞, since otherwise we would get w′(r) > kw3(r)
for r > r0 with suitable r0, k > 0, in contradiction with the fact that w(r) is defined for all
r > 0. This implies that as r → +∞, w(r) − α(r) → 0, which gives the desired asymptotic
behavior. �

Theorem 4.3. Assume (4.1). Then there exists an entire function u : RN → R whose graph
is a translating solution to (1.1). Moreover, u is convex and satisfies

u(x) =
ξ0(x)2

2(N − 1)G(1, 0)F (1, 0)
+ o(ξ0(x)2) for |x| → +∞.

Finally, if (2.3) holds, the u is unique up to dilations and translations.

Proof. We start considering the case in which F 2, G2 are uniformly convex and F,G ∈ C2(R2\
{0}). The general case will be obtained by approximation.

Let w the function constructed in Lemma 4.2, and define u(x) :=
∫ ξ0(x)
0 w(r)dr. Then,

u is a solution to (4.3), and moreover u is symmetric with respect to ξ0, convex, since w is
increasing, and has quadratic growth at infinity.

Now consider F,G generic, and define a sequence of norms Fn, Gn such that (Fn)2, (Gn)2

are uniformly convex, Fn, Gn ∈ C2(R2 \ {0}) and finally Fn → F , Gn → G locally uniformly.
We associate to every anisotropy Fn, with mobility Gn, a solution un to (4.3) as constructed
above.

Since F is a norm, we get that F (t, s) = tFt(t, s) + sFs(t, s) (where (Ft(t, s), Fs(t, s)) is
the subdifferential of F at (t, s)). Moreover F is positively 1-homogeneous, whereas Ft, Fs are
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positive 0-homogeneous, so for α > 0,

Ft(α, 1) =
F (α, 1)− Fs(α, 1)

α
= F

(
1,

1

α

)
− 1

α
Fs

(
α√

1 + α2
,

1√
1 + α2

)
and then Ft(α, 1) = Ft

(
α√
1+α2

, 1√
1+α2

)
→ F (1, 0) > 0 as α→ +∞.

Therefore, by locally uniform convergence of the convex functions Fn to F , there exist α0

and n0 such that Fnt (α, 1) = Fnt

(
α√
1+α2

, 1√
1+α2

)
> F (1,0)

2 > 0 for all n > n0 and α > α0.

Eventually enlarging n0, α0 we get that also Gn
(

α√
1+α2

, 1√
1+α2

)
> G(1,0)

2 > 0 for all n > n0

and α > α0. Recalling the definition (4.8), and using the 1-homogeneity and the locally
uniform convergence, this implies that there exists C > 0 and α0, n0 such that for all α > α0

and n > n0 there holds

fn(α) =
1

Gn(α, 1)Fnt (α, 1)
=

1√
1 + α2

1

Gn
(

α√
1+α2

, 1√
1+α2

)
Fnt (α, 1)

6
4

αG(1, 0)F (1, 0)
.

This implies, recalling that fn are strictly decreasing,

(fn)−1
(

4

αG(1, 0)F (1, 0)

)
6 α ∀α > α0, n > n0.

Recalling the definition of αn(r) in (4.9), there holds

αn(r) = (fn)−1
(
N − 1

r

)
6

4

(N − 1)G(1, 0)F (1, 0)
r ∀r > (N − 1)G(1, 0)F (1, 0)

4
α0, n > n0.

Therefore, since by Lemma 4.2 we get that wn(r) 6 αn(r), this implies that

0 6 un(x) =

∫ ξ0(x)

0
wn(r)dx 6

∫ ξ0(x)

0

4r

(N − 1)G(1, 0)F (1, 0)
dr =

2(ξ0(x))2

(N − 1)G(1, 0)F (1, 0)
.

Therefore, up to passing to a subsequence, recalling that un are convex functions, we get
that un → u locally uniformly. Therefore by stability properties with respect to uniform
convergence of solutions to (2.6), we get that u(x) + t solves (2.6), and then u is a solution to
(4.3).

Finally, if (2.3) holds, we prove uniqueness of the solution u constructed as above. Assume
there exists u1(x) =

∫ ξ0(x)
0 w1(r)dr, where w1(r) is another solution to (4.7) different from

w. Then by uniqueness of solution to the ode in (4.7), we get that necessarily either w(r) 6
w1(r) or w1(r) 6 w(r) for all r. Assume that the first inequality is true. This implies that
u(x) 6 u1(x) are both solutions to (4.3) and we may assume, up to adding a constant, that
u(x) 6 u1(x) and u(x0) = u1(x0) for some x0. So, for strong maximum principle, there holds
u1 = u. �

Remark 4.4. For the crystalline cases in which F (t, s) = |t| + |s| or F (t, s) = max(|t|, |s|),
with natural mobility F = G, we may describe explicitly the shape of the translating solutions
constructed in Theorem 4.3.

In the first case, ϕ(x, z) = ξ(x) + |z|, and then, recalling Proposition 4.1, we get that the
Wulff shape is the cylinder Wϕ0 = Wξ0 × [−1, 1], where Wξ0 is the Wulff shape associated to
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the norm ξ. In this case the system (4.7) reads: for some r0 > 0, to be appropriately chosen

(4.11)

{
div
(

x
ξ0(x)

)
= 1

1+w(ξ0(x))
ξ0(x) > r0

w(ξ0(x)) = 0 ξ0(x) ∈ [0, r0].

Recalling that div
(

x
ξ0(x)

)
= N−1

ξ0(x)
, this gives that w(r) = r

N−1 − 1 for r > r0, and then

u(x) =

{∫ ξ0(x)
r0

(
r

(N−1) − 1
)
dr =

ξ0(x)2−r20
2(N−1) − ξ

0(x) + r0 for ξ0(x) > r0

0 for 0 6 ξ0(x) 6 r0.

Now, the constant r0 has to be chosen in order to have that the subgraph of u, that is
E = {(x, z) | z 6 u(x)} solves (1.2) with c = 1. For p = (x, z) ∈ ∂E with z > 0 the
fact that (1.2) is satisfied is a consequence of the construction of the function u, using the
solution to system (4.11). So it is sufficient to choose r0 such that (1.2) is verified at every
p = (x, 0) ∈ ∂E, so with ξ0(x) 6 r0. Recalling that in this case ν(p) = eN+1 and also that
ϕ = ψ, (1.2) reads

Hϕ(p,E) = −1.

We denote F0 := {x ∈ RN | ξ0(x) 6 r0} and we have, by definition of crystalline mean
curvature, recalling that the Wulff shape is Wϕ0 = Wξ0 × [−1, 1],

Hϕ(p,E) =
1

|F0|

∫
F0

divτ (∂ϕ(ν(p)))dp = − 1

|F0|

∫
∂F0

ϕ(ν(p))dHN−1(p) = −Perϕ(F0)

|F0|
.

So, the condition on r0 is that Perϕ{x ∈ RN | ξ0(x) 6 r0} = |{x ∈ RN | ξ0(x) 6 r0}|.
In the second case ϕ(x, z) = max(ξ(x), |z|), and then, recalling Proposition 4.1, we get that

the Wulff shape is the double cone Wϕ0 = ∪|z|61((1− |z|)Wξ0 × {z}). In this case the system
(4.7) reads: for some r0 > 0, to be appropriately chosen (see below),

(4.12)

{
div
(

x
ξ0(x)

)
= 1

w(ξ0(x))
ξ0(x) > r0

w(ξ0(x)) = 1 0 < ξ0(x) < r0.

Arguing as before we get that w(r) = r
N−1 , for r > r0, so necessarily r0 > N − 1 and the

function u is given by

u(x) =

{∫ ξ0(x)
r0

r
N−1dr + r0 =

ξ0(x)2−r20
2(N−1) + r0 for ξ0(x) > r0

ξ0(x) for 0 6 ξ0(x) 6 r0.

For p = (x, z) ∈ ∂E with z > ξ0(x) the fact that (1.2) is satisfied is a consequence of the
construction of the function u, using the solution to system (4.12). At p = (x, ξ0(x)) ∈
∂E, there holds that ν(p) = (−∇ξ0(x),1)√

1+|∇ξ0(x)|2
, and ϕ(ν(p)) = 1√

1+|∇ξ0|2
max(ξ(∇ξ0(x)), 1) =

1√
1+|∇ξ0|2

. So (1.2) reads

Hϕ(p,E) = −1.

Observe that ∂E∩{z 6 ξ0(x)} coincides with half of r0∂Wϕ0(x). Recalling that Hϕ(r0Wϕ0) =
N
r0
, we get that r0 = N .
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