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1. Introduction

In the last years, much attention has been given to the study of properties of A-free maps u, i.e. maps u
that verify

A(u) = 0,
for a linear differential operator A. The properties one can expect from A-free maps are strongly related to
the form of A. If it is elliptic, for instance

A(u) = ∆u,
one can show smoothness of solutions. If A is not elliptic one cannot expect in general any improvement
in the regularity of u. For example, if A = curl, the best one can infer on an A-free map u is that it can
be locally expressed as the gradient of a map v. In this case, more subtle questions arise: for instance,
understanding the structure of the singular part of curl-free measures leads to the celebrated rank-one
theorem of Alberti, [1], see also [15,31]. In this paper, we shall focus on non-elliptic operators.

Classically, the most studied non-elliptic operator is A = curl, and we refer the reader to [32] for an account
of the theory. A rich literature is also available in the case A = div, see for instance [17, 18, 22, 34, 39].
Typical questions in this context concern fine qualitative properties of measures µ satisfying A(µ) = 0, see
[2, 15], higher order estimates and regularity, see [3, 10, 18, 23, 39, 44], semicontinuity of functionals defined
on A-free maps, see [4, 17,20,35,40], and structural results on Young measures generated by sequences of
A-free maps, see [16,20,29].

This paper is devoted to the study of the s-state problem for general linear operators A, that we state now.
Fix an open set Ω ⊂ Rm and a linear differential operator A : C∞(Ω,Rn)→ C∞(Ω,RN ) of order k and
consider its associated wave cone, ΛA ⊂ Rn, see (3.3) for the definition. It is well-known that if a, b ∈ Rn
satisfy

a− b ∈ ΛA,
then one can find a non-constant oscillatory solution u to{

u(x) ∈ {a, b}, a.e. on Ω
A(u) = 0, in the sense of distributions.
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Without further constraints, this can be achieved by the so-called simple laminate construction, see the
beginning of Section 4.1. The question becomes more challenging when we add the constraint

a− b /∈ ΛA.
Therefore, the s-state problem precisely asks whether there exists a non-constant solution to

u(x) ∈ {a1, . . . , as}, a.e. on Ω
A(u) = 0, in the sense of distributions
ai − aj /∈ ΛA, if i 6= j, 1 ≤ i, j ≤ s.

(1.1)

System (1.1) has already received much attention, and we give now an account of the literature.

Problem (1.1) was first studied for A = curl. In that context, J. M. Ball and R. D. James in [6]
have shown that if s = 2, the problem is rigid, i.e. the only solution to (1.1) is the constant one. The same
rigidity holds if s = 3, and is sometimes attributed to K. Zhang as in [9,41] and sometimes to V. Šverák, as
in [32, Section 2.4]. Rigidity still holds for s = 4, as proved in [9] by Kirchheim and M. Chlebík. Finally,
for s = 5, the problem becomes flexible, i.e. one can find a non-constant map u that takes precisely 5 states
and solves (1.1). This construction is due to Kirchheim and Preiss and appears in [27, Section 4.3]. Similar
results are known also for A = div. For this operator, rigidity for the s-state problem (1.1) was proved by
A. Garroni and V. Nesi in [22] and by M. Palombaro and M. Ponsiglione in [34], in the case s = 2 and
s = 3 respectively. To the best of our knowledge, nothing is known for s ≥ 4. Some results concerning
rigidity for linear operators A of order one also appeared in [7]. For general operators A, rigidity for s = 2
was proved by E. Chiodaroli, E. Feiresl, O. Kreml and E. Wiedemann in [8] for operators of order one, and
by G. De Philippis, L. Palmieri and F. Rindler in [14] for operators of arbitrary order. Some interesting
results concerning rigidity and flexibility of inclusions of the form (1.1) (with or without the requirement
ai − aj /∈ ΛA), can also be found in [26,36–38].

Our main theorem fits in this list of results, since it asserts that the four-state problem is flexible:

Theorem. There exists an operator A such that problem (1.1) with s = 4 admits a non-constant solution.

Our main result should be compared with [14, Theorem 1.2(A)]. In particular, it states that a result in
the generality of [14, Theorem 1.2(A)] is not possible if s ≥ 4. The case s = 3 remains open. For such s,
the only known result is the rigidity for operators of order one, that can be inferred from the rigidity result
for A = div of [34], as we will prove in Proposition A.1. The operator of our counterexample is of degree
eleven, hence it leaves open the question of what happens for operators of order one and s = 4. Therefore,
we can list here the following open questions on the problem:

Open Question 1. Is problem (1.1) rigid for operators of order 2 or higher if s = 3?

Open Question 2. Is problem (1.1) rigid for operators of order 1 if s = 4?

Together with the study of exact solutions to (1.1), one may consider rigidity and flexibility of approximate
solutions to (1.1), i.e. classify limit points of sequence un equibounded in L∞ and satisfying{

d(un(x), {a1, . . . , as})→ 0, strongly in L1 as n→∞,
A(un) = 0,∀n, in the sense of distributions,

(1.2)

coupled once again with the requirement ai−aj /∈ ΛA if i 6= j. If A = curl, problem (1.2) is rigid, i.e. (un)n
converges strongly in L1 to a constant if s = 2, 3, see [6, 41], but it is flexible if s = 4, due to the existence
of Tartar’s T4, see for instance [32, Lemma 2.6]. In [8], the same rigidity is shown for general operators
of order one and in [14, Theorem 1.2(B)] for operators of arbitrary order if s = 2. This is sharp, since in
[22, Lemma 4.1] the authors show flexibility of approximate solutions for the operator A by producing a T3
configuration for the operator A = div.
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Let us outline the strategy we adopt to show our main theorem. We recall that in [21], Förster and
Székelyhidi gave the definition of large T5 configuration, that generalizes Kirchheim and Preiss construction
of [27]. Every large T5 configuration is a five-point set K ⊂ Rn that fulfills some geometric constraints and
has the property that the 5-state problem for K with A = curl is non-rigid. Firstly, we extend this notion
in a natural way for general linear operators, see the Definition 5.1 of large ΛA-T4 configurations. Instead
of fixing a particular operator A and then trying to find a large ΛA-T4 configuration, we consider a set
K = {a1, a2, a3, a4} that satisfies suitable geometric constraints and then we find an operator A such that
K is a large ΛA-T4 configuration for that particular operator. In order for this plan to work, we will need
to prove that, as in [21], large A-T4 configurations yield non-constant solutions of (1.1). A large part of
this proof comes from the convex integration framework introduced essentially by Müller and Šverák in
[33] in the case of the curl operator. The reason why Müller and Šverák develop these methods is to find
counterexamples to regularity of critical points of quasiconvex energies. Since then, these techniques have
been successfully applied in various contexts and for various operators, compare [11,13,42], and they still
are one of the main tools for trying to build counterexamples, see [12,25,30]. Müller and Šverák’s theory is
systematically developed only for the curl operator, and we extend it to homogeneous linear operators of
constant rank. One of the main ingredients we will use is the notion of potential introduced by B. Raiţă in [35].

Let us end this introduction by giving an outline of the paper. In Sections 2 and 3, we introduce
the notation and collect some preliminaries on linear operators. Section 4 is devoted to develop all the
tools of Müller and Šverák’s approach to convex integration in the case of general linear operators that
admit a potential. In Section 5 we define large ΛA-T4-configurations and we show our main theorem by
finding a counterexample to the four state-problem. Finally, in the Appendix we will show the rigidity of
the three-state problem for operators of order 1.

Acknowledgements. The authors wish to thank Federico Stra for suggesting to use the second method
explained in Proposition 5.2, Filip Rindler for pointing out to us references [36–38] and Emil Wiedemann
for [8]. The authors have been supported by the SNF Grant 182565.

2. Notation

We defineM(d,m) to be the space of multi-indexes I = (α1, . . . , αm) ∈ Nm with |α1|+|α2|+· · ·+|αm| = d.
PH(d,m) defines the vector space of homogeneous polynomials of degree d in Rm. With the notation above,
an element p ∈ PH(d,m) can be written as

p(x) =
∑

I∈M(d,m)

aIx
I ,

where for x = (x1, . . . , xm) ∈ Rm the notation xI means

xI = xα1
1 xα2

2 . . . xαmm .

We also introduce P(d,m), the vector space of polynomials of degree d in Rm.

Ω ⊂ Rm will always be used to denote an open bounded set. A function f : Ω → R is said to be
piecewise a polynomial of degree d if there exists a countable family of pairwise disjoint open sets {Ωn}n
such that ∣∣∣∣∣Ω \⋃

n

Ωn

∣∣∣∣∣ = 0

and, on Ωn, every component of f is a polynomial of degree d. The definition of piecewise smooth is
analogous. Throughout the paper, |E| denotes the Lebesgue measure of a measurable E ⊂ Rm.
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We will say that E ⊂ Rm is essentially open in Ω if |∂E ∩ Ω| = 0. Here, ∂E is the topological boundary of
E. E denotes the closure of E. We denote by Bε(E) the ε-neighbourhood of the set E and by co(E) the
convex hull of E. For two elements a, b ∈ Rn, we will use the notation [a, b] for co({a, b}).

The set of probability measures compactly supported in U ⊂ Rn is denoted by P(U). We let ν̄ .=
�
Rn xdν(x)

be the barycentre of ν ∈ P(U).

3. Preliminaries on general linear operators

Let A be a differential operator acting on vector-valued functions v ∈ C∞(Ω;Rn), where Ω ⊂ Rm is an
open set, namely

Av .=
k∑
`=1

∑
α∈M(`,d)

Aα∂
αv +Av + C(x), (3.1)

here, Aα, A ∈ RN×n are constant matrices and C ∈ L2
loc(Ω;RN ). Note that the equation Av = 0 is actually

a system of N equations. We will use the notation op(k,m, n,N) to denote these operators, but we will
actually always consider homogeneous differential operators, i.e. C(x) ≡ 0 and A = 0, Aα = 0, if |α| < k in
(3.1). The set of homogeneous operators will be denote by opH(k,m, n,N).

Let A ∈ opH(k,m, n,N). For each ξ ∈ Rm, we consider the linear maps A(ξ) : Rn → RN defined
as

A(ξ)(η) .=
∑

α∈M(k,m)

ξαAαη, ∀η ∈ Rn. (3.2)

Define the wave cone associated to A as:

ΛA
.=

⋃
ξ∈Rm\{0}

Ker(A(ξ)) = {η ∈ Rn : ∃ξ ∈ Rm \ {0} s.t. A(ξ)(η) = 0}. (3.3)

In what follows, we will only consider operators A ∈ opH(k,m, n,N) with constant rank, namely

ξ 7→ rank(A(ξ)) is constant.

This class of operators will be denoted with the symbol oprH(k,m, n,N). We will exploit [35, Theorem 1],
that asserts that the homogeneous operator A is of constant rank if and only if it admits a potential (of
constant rank), meaning that there exists B ∈ opH(k′,m, n′, n) such that

Ker(A(ξ)) = Im(B(ξ)), ∀ξ ∈ Rm \ {0}. (3.4)

For technical reasons, in Section 4 we will need to restrict ourselves to balanced operators, that we now
introduce.

3.1. Balanced Operators. In addition to the constant rank condition, we require an additional property
on the linear differential operator A.

Definition 3.1. We say that the wave cone ΛA is balanced if

span(ΛA) = Rn, (3.5)

and we say that an operator A ∈ opH(k,m, n,N) is balanced if the associated wave cone ΛA is balanced.

The heuristic idea for which we need to consider balanced operators stems from the fact that on
span(ΛA)⊥, the operator is, in some sense elliptic, compare [24, Equation (4)]. This can be seen clearly in
the extreme case span(ΛA) = {0}, in which one has

A(u) = 0⇒ u ∈ C∞(Ω,Rn).
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Since we are interested in constructing irregular solutions via convex integration, the images of these will
surely avoid directions contained in span(ΛA)⊥. However, the requirement that A is balanced is mainly
made for simplicity of exposition and is in fact not restrictive. Indeed we have the following simple result:

Proposition 3.2. Let A ∈ opH(k,m, n,N). Let π .= span(ΛA) and let d ≥ 1 be its dimension. Fix an
orthonormal basis e1, . . . , ed for π. Then, if we define A′ ∈ opH(k,m, d,N) as

A′(u) .= A
(

d∑
i=1

uiei

)
, if u =

 u1
...
ud

 , (3.6)

the following hold:
• A′ is balanced;
• A has constant rank if and only if A′ has.

The proposition tells us that we may study wild solutions of the balanced operator A′ instead of studying
those of A, and by (3.6) these will be also solutions to A(u) = 0. We omit the proof of Proposition 3.2
since the verifications are simple.

The fact that A is balanced yields the following:

Proposition 3.3. Let A ∈ oprH(k,m, n,N) be balanced, and let B ∈ opH(k′,m, n′, n) be a potential for A.
Then, the map T : (PH(k′,m))n′ → Rn defined as T (q) .= B(q) is surjective.

Proof of Proposition 3.3. The proof is by contradiction: suppose T is not surjective. Fix ξ ∈ Rm and
a ∈ Rn′ . We choose the polynomial

p(x) .=
∑

I∈M(k′,m)

ξI

|I|
xI

and define q(x) .= p(x)a ∈ (PH(k′,m))n′ . A direct computation shows that

T (q) = B(ξ)(a).

This yields
Im(B(ξ)) ⊂ Im(T ), ∀ξ ∈ Rm. (3.7)

In particular, since T is linear and not surjective, we find a non-zero vector v ∈ Rn such that

v ⊥ Im(T ),

and, using (3.7),
v ⊥ Im(B(ξ)), ∀ξ ∈ Rm.

Since B is the potential of A, by definition (3.4) holds, and we find a contradiction with the definition of A
being balanced. �

Remark 3.4. Notice that our set of assumptions, namely that A is of constant rank and balanced, are the
same assumptions of [23].

4. Convex integration for general differential operators of constant rank

Throughout the section, we will consider a fixed balanced operator A ∈ oprH(k,m, n,N), with a given
potential B ∈ opH(k′,m, n′, n).

Aim of this part of the work is to develop the convex integration scheme essentially due to Müller
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and Šverák in the case of the curl operator, see for instance [33, Sections 2,3]. The final goal is to being
able to show the existence of a non-constant solution u ∈ L∞(Ω,Rn) to the following system:{

u(x) ∈ K, a.e. in Ω,
A(u) = 0,

(4.1)

where A ∈ oprH(k,m, n,N), Ω is a given open, bounded, convex set, and K ⊂ Rn is a compact set without
ΛA connections, i.e. for any a, b ∈ K we have that b− a /∈ ΛA. In the case of the four-state problem that
we will treat in Section 5, K is the four-point set of the admissible states. In particular, our aim is to show
that the existence of a A-in-approximation {Un}n of K, see Definition 4.12, yields the existence of a (in
fact, many) non-constant solutions to (4.1).

Due to the technical nature of some proofs of this section, it is probably better to briefly explain our
strategy. First, in Subsection 4.1, we introduce the building blocks of this convex integration scheme,
the simple A-laminates. Roughly speaking, these are highly oscillatory solutions of (4.1) that can be
constructed starting from two vectors a, b ∈ Rn with b− a ∈ ΛA. Their properties are listed in Proposition
4.3. Subsequently, we define A-laminates of finite order, and describe their main properties, see Definition
4.4 and Proposition 4.5. Then, we move on to A-laminates, see Subsection 4.2, and we quote a result of
[27] that asserts the weak-∗ density of A-laminates of finite order in the space of A-laminates, compare
Theorem 4.10. We will use this result in Section 4.3 to show the preliminary Proposition 4.11 and finally
Theorem 4.13, that asserts the existence of exact solutions to (4.1) once we are given a A-in-approximation.

4.1. Simple laminates. The building block is given by the simple A-laminate construction. Let a, b ∈ Rn
be such that

b− a = c ∈ Ker(A(ξ0)) ⊂ ΛA.
It is simple to check that for any profile h ∈ L∞(R), the map

v(x) .= h((x, ξ0))c

solves A(v) = 0. Here and in the following, (x, y) denotes the standard scalar product of Rm. This
observation can be refined as follows. Let λ ∈ (0, 1) be arbitrary, e .= λa+ (1− λ)b, and choose

h(t) .=
{
λ, if t ∈ [0, 1− λ)
−(1− λ), if t ∈ [1− λ, 1],

(4.2)

and its 1-periodic extension outside [0, 1]. If we let

vε,ξ0,a,b,λ(x) .= e+ h

(
(x, ξ0)
ε

)
c, (4.3)

one can check that, given any bounded open set Ω ⊂ Rm, vε,ξ0,a,b,λ enjoys the following properties
(1) A(vε,ξ0,a,b,λ) = 0, ∀ε > 0;
(2) |{x : vε,ξ0,a,b,λ(x) = a}| → λ|Ω| and |{x : vε,ξ0,a,b,λ(x) = b}| → (1− λ)|Ω| as ε→ 0+;
(3) vε,ξ0,a,b,λ

∗
⇀ e in L∞ as ε→ 0+.

In other words, every element of the ΛA-cone c gives rise to a family of highly oscillatory solutions to
the PDE defined by A. The oscillating behaviour is due to the choice of a periodic profile h, and yields to
the fact that these solutions do not converge strongly, as can be easily seen from (2)-(3).

Using the theoretical potential B, we can find a potential for vε,ξ0,a,b,λ. Indeed, since A(ξ0)(c) = 0,
by (3.4), there exists c′ ∈ Rn′ such that

B(ξ0)(c′) = c. (4.4)
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Furthermore, we consider the unique 1-periodic function H ∈ Ck′−1 ∩W k′,∞(R) such that H(k′) = h, a.e.
and in the sense of distributions in R and H(0) = 0. Here and in the following, H(`) denotes the `-th
derivative of H and H(0) = H. Finally we choose any qe ∈ P(k′,m)n′ such that

B(qe) = e, everywhere on Rm.

By Proposition 3.3, there exists at least one vector of polynomials with this property. If we define

Vε,ξ0,a,b,λ(x) .= qe(x) + εk
′
H

(
(x, ξ0)
ε

)
c′,

then we see by construction that

B(Vε,ξ0,a,b,λ)(x) = e+ h

(
(x, ξ0)
ε

)
B(ξ0)(c′) = e+ h

(
(x, ξ0)
ε

)
c = vε,ξ0,a,b,λ(x),

almost everywhere and in the sense of distributions. Notice that by construction Vε,ξ0,a,b,λ is, for every
ε > 0, a vector of piecewise polynomials of degree k′. This discussion allows us to prove the following:

Lemma 4.1. Let Ω ⊂ Rm be an open and bounded set. Let a, b ∈ Rn, b−a = c ∈ ΛA and e = λa+(1−λ)b,
for some λ ∈ (0, 1). Fix any element qe ∈ P(k′,m)n′ with the property that B(qe) = e everywhere in Rm.
Then, for all α > 0, there exists Vα ∈ W k′,∞ ∩ Ck′−1(Ω,Rn′), and two disjoint open sets Ω1

α, Ω2
α with

|Ω| = |Ω1
α ∪ Ω2

α| such that
(1) the W k′,∞ ∩ Ck′−1 norm of Vα only depends on diam(Ω), |a|, |b| and |Dk′qe|;
(2) Vα = qe, together with all its derivatives of order ` < k′, on ∂Ω;
(3) Every component of Vα is piecewise a polynomial of degree k′,
(4) Let vα(x) .= B(Vα)(x). The sets Aα = {x ∈ Ω1

α : vα(x) = a}, Bα = {x ∈ Ω1
α : vα(x) = b},

Ω1
α
.= Aα ∪Bα and Ω2

α
.= (Ωα1 )c are essentially open in Ω, , and

|Aα| ≥ (1− α)λ|Ω| and |Bα| ≥ (1− α)(1− λ)|Ω|.

(5) |Ω2
α| ≤ α|Ω|;

(6) ‖Vα − qe‖Ck′−1 ≤ α;
(7) vα(x) ∈ Bα([a, b]) a.e. in Ω.

Proof. Fix α > 0. Choose an open set Ω′ compactly contained in Ω with |Ω \ Ω′| ≤ α
2 |Ω|, Ω \ Ω′ essentially

open in Ω, and let ϕ be a fixed smooth cut-off function with values in [0, 1] such that ϕ(x) = 1, ∀x ∈ Ω′.
With the notation introduced before the statement of the lemma, we define

Wε(x) .= qe(x) + εk
′
ϕ(x)H

(
(x, ξ0)
ε

)
c′.

We wish to take Ω1
α
.= Ω′, Ω2

α as the interior of Ω \ Ω1
α and Vα

.= Wε for ε > 0 sufficiently small, and up
to a correction on the small set Ω2

α in order to make every component piecewise polynomial. With these
choices (2) and (4) are immediate, once ε is chosen sufficiently small, and (5) is a consequence of (4). As
ε → 0, the boundedness in L∞ of H yields the strong convergence in L∞ of Wε to qe. To see that the
convergence is in the Ck′−1 topology, it is sufficient to show the equiboundedness in W k′,∞(Ω,Rn′). To see
the latter, it is sufficient to take a derivative of order k′ of

W ′ε(x) .= εk
′
ϕ(x)H

(
(x, ξ0)
ε

)
.

Let then I ∈M(k′,m). ∂IW ′ε(x) can be estimated by a sum of terms of the form

ε`∂I′ϕ(x)H(k′−`)
(

(x, ξ0)
ε

)
, (4.5)
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where I ′ ∈M(`,m). It is then easy to see that if ε = ε(α) is sufficiently small, we may estimate the latter
by ‖h‖L∞ , and hence conclude that (1) holds. A similar computation shows (6). Finally, with computations
analogous to the ones of (4.5), one can estimate:∣∣∣∣B(Wε)(x)− e− ϕ(x)h

(
(x, ξ0)
ε

)
c

∣∣∣∣ ≤ Cε, (4.6)

for some constant C > 0 at a.e. x ∈ Ω. Since

e+ ϕ(x)h
(

(x, ξ0)
ε

)
c ∈ [a, b],

from (4.6) we further deduce (7). The map Wε satisfies all the properties listed in the statement of the
lemma, except for (3). It is simple to see, from the definition of Wε, that on Ωα1 every component of Wε is
piecewise a polynomial of degree k′ and that it is globally a piecewise smooth map. Therefore, we may
subdivide Ω2

α into pairwise disjoint, compactly supported and open cubes Qj on each of which Wε is a
smooth map up to the boundary. By Lemma 4.2 below, we see that, on every Qj , Wε can be substituted
with a map Wε,j whose components are piecewise polynomials of order k′ with Wε,j = Wε on ∂Qj and
arbitrarily small ‖Wε −Wε,j‖Ck(Ω). It is simple to check that if this norm is taken sufficiently small, then
(1)-(2)-(3)-(4)-(5)-(6) still hold for the map defined as Wε,j on Qj and Wε everywhere else. This defines
the map Vα. �

We now show Lemma 4.2, that was used in the previous proof. This states that any map u ∈ Ck(Ω) can
be finely approximated by functions v ∈ Ck(Ω) that are piecewise polynomials of order k. This was done
in [27, Proposition 3.3] in the case k = 2.

Lemma 4.2. Let Ω be open and u ∈ Ck′(Ω). Then, for all ε > 0, there exists a function vε ∈ Ck
′(Ω) such

that
(1) ‖u− vε‖Ck′ (Ω) ≤ ε;
(2) vε is piecewise a polynomial of order k′;
(3) vε = u together with all of its derivatives of order 0 ≤ ` ≤ k′ on ∂Ω, ∀ε > 0.

Proof. Fix ε > 0. We obtain vε as the limit of a sequence vn defined inductively. Set εn = ε
2n . We claim

that, given a function vn with the following properties:
(a) vn is Ck′ up to the boundary of Ω;
(b) Ω1

n ⊂ {x : vn is piecewise a polynomial of order k′ in a neighborhood of x} and Ω2
n = (Ω1

n)c are essen-
tially open sets in Ω with |Ω2

n| ≤
∏n
j=1 εj |Ω|;

(c) vn = u together with all of its derivatives of order 0 ≤ ` ≤ k′ on ∂Ω;
then it is possible to find vn+1 such that
(A) vn+1 is Ck′ up to the boundary of Ω;
(B) ‖vn+1 − vn‖Ck′ ≤ εn+1;
(C) Ω1

n+1 ⊂ {x : vn+1 is piecewise a polynomial of order k′ in a neighborhood of x} and Ω2
n+1 = (Ω1

n+1)c

are essentially open sets in Ω such that |Ω2
n+1| ≤

∏n+1
j=1 εj |Ω| and Ω2

n+1 ⊂ Ω2
n;

(D) vn+1 = u together with all of its derivatives of order 0 ≤ ` ≤ k′ on ∂Ω.
If this inductive step holds, then we start with v0

.= v, working with the convention that
0∑
j=1

εj = 0 and
0∏
j=1

εj = 1.

Since {vn}n is a Cauchy sequence with respect to the Ck′ topology by (B), we can define vε
.= limn vn. It

is then easy to see that this function vε has the required properties.

To show the inductive step, we consider Ω2
n and we first subdivide it in countably many, compactly
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contained, pairwise disjoint open cubes such that |Ω2
n \
⋃
r Qr| = 0. On Qr, all the derivatives of vn are

uniformly continuous and hence we can find δ > 0 such that if x, y ∈ Qr and |x− y| ≤ δ, then
k′∑
j=0
|Djvn(x)−Djvn(y)| ≤ γεn+1, (4.7)

where γ > 0 is a dimensional constant that will be fixed later. Now further subdivide Qr as a finite union
of cubes Qr,s with diam(Qr,s) ≤ δ. Fix a compactly contained open set Sr,s ⊂ Qr,s with

|Qr,s \ Sr,s| ≤ εn+1|Qr,s|. (4.8)

Finally, fix a smooth cut-off function ψ ∈ C∞c (Qr,s) such that ψ ≡ 1 on Sr,s, with

‖D`ψ‖L∞ ≤
c

diam(Qr,s)`
, ∀` ≥ 0, (4.9)

where c > 0 is a dimensional constant. We modify vn on Qr,s by replacing it with

(1− ψ(x))vn(x) + ψ(x)Pr,s(x),

where Pr,s is the k′-th order Taylor polynomial centred in the center of Qr,s. This operation defines
vn+1. Now (A)-(D) are immediate to check. (C) follows by construction and (4.8), noticing that Ω1

n+1 =
Ω1
n ∪

⋃
r,s Sr,s. We only need to show (B). We check (B) separately on every Qr,s. For all x ∈ Qr,s, we

have, for every multi-index I ∈M(`,m), 0 ≤ ` ≤ k′:

|∂I(vn+1 − vn)(x)| = |∂I((1− ψ(x))vn(x) + ψ(x)Pr,s(x)− vn(x))| = |∂I(ψ(x)(Pr,s(x)− vn(x)))|.

With a triangle inequality, it is easy to see that the latter can be estimated with a sum of terms of the form

|∂I′ψ(x)∂I′′(Pr,s(x)− vn(x)))|,

with I ′ ∈M(`′,m) and I ′′ ∈M(`− `′,m). Now (4.9), (4.7) and the choice of Pr,s yield

|∂I′ψ(x)∂I′′(Pr,s(x)− vn(x)))| ≤ cγεn+1

and hence conclude the proof, provided we choose γ sufficiently small depending only on k′, m and c. �

The basic laminate construction as the one of Lemma 4.1 has already appeared in the literature in
various contexts and for various operators, see for instance [13, Proposition 3.2] and [11, Lemma 3.3]. We
will now refine it by showing that the map Vα can be chosen to take values in Bα(a) ∪Bα(b) instead of
Bα([a, b]). Closely related results appeared in [27, Proposition 3.3-3.4] and [5, Lemma 2.1], when studying
laminations for the curl operator in the space of symmetric matrices.

Proposition 4.3. Let Ω ⊂ Rm be an open and bounded set. Let a, b ∈ Rn, b − a = c ∈ ΛA and
e = λa+ (1− λ)b, for some λ ∈ (0, 1). Fix any element qe ∈ P(k′,m)n′ with the property that B(qe) = e

everywhere in Rm. Then, for all β > 0, there exists a map Vβ ∈W k′,∞ ∩ Ck′−1(Ω,Rn′) such that
(1) the W k′,∞ ∩ Ck′−1 norm of Vβ only depends on diam(Ω), |a|, |b| and |Dk′qe|;
(2) Vβ = qe, together with all its derivatives of order ` < k′, on ∂Ω;
(3) every component of Vβ is piecewise a polynomial of degree k′;
(4) ‖Vβ − qe‖Ck′−1(Ω) ≤ β;
(5) if vβ(x) .= B(Vβ), |{x ∈ Ω : vβ(x) ∈ Bβ(a)}| = λ|Ω| and |{x ∈ Ω : vβ ∈ Bβ(b)}| = (1− λ)|Ω|.

Proof. Fix 0 < β ≤ 1
2 |a− b| and 0 < σ < min

{
β

2|a−b| , β
}
. We inductively construct a sequence of maps

{Vn}n that in the limit will give us a map Vβ,σ. Let vβ,σ
.= B(Vβ,σ). Vβ,σ will have all the required

properties, except for (5) that will be replaced by:

|Ω| = |{x ∈ Ω : vβ,σ ∈ Bβ(a)} ∪ {x ∈ Ω : vβ,σ ∈ Bβ(b)}| (4.10)
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and
|{x ∈ Ω : vβ,σ ∈ Bβ(a)}| ≥ (1− σ)λ|Ω| and |{x ∈ Ω : vβ,σ ∈ Bβ(b)}| ≥ (1− σ)(1− λ)|Ω|. (4.11)

We will deal with (5) in a second moment.

Step 1: the inductive setup:

At step 0, we choose V0 = Vα for α = σ
2 < β

2 and Ω0
.= Ωα

2 as in Lemma 4.1. By Lemma 4.1, Ω0

is essentially open in Ω. Define εn
.= σ

2n+2 . Suppose we are given a map Vn ∈W k′,∞ whose components
are piecewise polynomials of degree k′ that satisfies the following properties
(a) Vn = qe together with all of its derivatives of order ` < k′ on ∂Ω;
(b) let vn

.= B(Vn). There exists Ωn, essentially open in Ω, with |Ωn| ≤ εn|Ω| and such that
Ωn ⊇ {x : vn /∈ B∑n

j
εj

(a) ∪B∑n

j
εj

(b)};

(c) vn(x) ∈ B∑n

j
εj

([a, b]).

We claim it is possible to find a new map Vn+1 ∈W k′,∞∩Ck′−1 whose components are piecewise polynomials
of degree k′ and with ‖Vn+1‖Wk′,∞∩Ck′−1 ≤ max{‖Vn‖Wk′,∞∩Ck′−1 , L}, where L only depends on |a|, |b|
and |D(k)qe|, and fulfilling the following properties:
(A) Vn+1 = qe, together with all of its derivatives of order ` < k′, on ∂Ω;
(B) let vn+1

.= B(Vn+1). There exists Ωn+1, essentially open in Ω, with |Ωn+1| ≤ εn+1|Ω| and such that
Ωn+1 ⊇ {x : vn+1 /∈ B∑n+1

j
εj

(a) ∪B∑n+1
j

εj
(b)};

(C) vn+1(x) ∈ B∑n+1
j

εj
([a, b]).

(D) Vn+1 = Vn on Ωcn;
(E) ‖Vn+1 − Vn‖Ck′−1 ≤ εn+1;
Suppose for a moment the claim holds. First, Lemma 4.1 tells us that V0 satisfies (a)-(b)-(c) for n = 0.

By (E), we can define the Ck′−1 limit
Vβ,σ = lim

n
Vn.

Moreover, we have that ‖vn‖L∞ is equibounded and, by the strong convergence of Vn in L∞, we infer the
weak-∗ convergence in L∞ of vn to vβ,σ = B(Vβ,σ). Since Vn and Vn+1 differ only on Ωn and |Ωn| → 0, we
see that Vn and vn converge in measure to Vβ,σ and vβ,σ, respectively. Now it is easy to deduce from the
properties of Vn and Vn+1 that vβ,σ and Vβ,σ enjoys properties (1)-(2)-(3)-(4) listed in the statement of
the proposition together with (4.10)-(4.11). We now prove the inductive step.

Step 2: the inductive step.

Suppose we are given Vn and Ωn as above. Split Ωn =
⋃
q Ω′q, with Ω′q open, in such a way that on

Ω′q, every component of Vn is a polynomial of order k′. We modify Vn on Ω′q in the following way. By (c),
we know that

vn(x) ∈ B∑n

j
εj

([a, b]), ∀x ∈ Ω,

but from the definition of Ωn we also know that
vn(x) ∈ B∑n

j
εj

([a, b]) \B∑n

j
εj

(a) ∪B∑n

j
εj

(b), ∀x ∈ Ω′q. (4.12)

Observe that vn(x) is constant on Ω′q, since Vn is a vector of polynomials of order k′ there. We will then
call e′q

.= vn(x). We infer from (4.12) that there exists hq with |hq| <
∑n
j=1 εj and µq ∈ (0, 1) such that

e′q = hq + µqa+ (1− µq)b = µq(a+ hq) + (1− µq)(b+ hq).
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We use Lemma 4.1 with a+ hq, b+ hq, e
′
q, µq, Pq instead of a, b, e, λ, qe, where Pq is the unique element of

P(k′,m)n′ that extends Vn|Ω′q , to find a map Vρ,q with the properties listed in the statement of Lemma
4.1, for any 0 < ρ < εn+1. We then replace Vn on Ω′q by Vρ,q. Call Vn+1 the map that coincides with Vn
outside of Ωn and is defined as Vρ,q in Ω′q. Notice that we can check the inductive step separately on each
subdomain Ω′q. The fact that

‖Vn+1‖Wk′,∞ ≤ max{‖Vn‖Wk′,∞ , L}
stems from the definition of Vn+1 and property (1) of Vρ,q stated in Lemma 4.1. Furthermore, (A)-(D) are
immediate by construction and (2) of Lemma 4.1. (E) is a consequence of the choice ρ < εn+1 and (6)
of Lemma 4.1. Using (7) of Lemma 4.1 and the estimates ρ < εn+1 and |hq| <

∑n
j=1 εj , (C) also follows.

Finally, exploiting again the estimates on |hq| and ρ, we also have (B), by (4)-(5) of Lemma 4.1. This
concludes the proof of the inductive step.

Step 3: proof of (5).

This step is analogous to the same step of Lemma [5, Lemma 2.1] and we repeat it for the conve-
nience of the reader. Up to now, we have found a map Vβ,σ with properties (1)-(2)-(3)-(4) of the statement
of the proposition and with (5) replaced by (4.10)-(4.11), namely:

|Ω| = |{x ∈ Ω : vβ,σ(x) ∈ Bβ(a)} ∪ {x ∈ Ω : vβ,σ(x) ∈ Bβ(b)}|,

and
|{x ∈ Ω : vβ,σ ∈ Bβ(a)}| ≥ (1− σ)λ|Ω| and |{x ∈ Ω : vβ,σ ∈ Bβ(b)}| ≥ (1− σ)(1− λ)|Ω|.

Since the inductive statement worked for any domain Ω, we now work on a cube1 Q ⊂ Rm instead of Ω,
and we come back to the general bounded open set Ω of the statement of the proposition later on. We can
suppose, without loss of generality that

λ|Q| > |{x ∈ Q : vβ,σ ∈ Bβ(a)}| ≥ (1− σ)λ|Q|.

Now choose any s such that σ < s < min
{

β
2|a−b| , 1− λ

}
and set

a′
.= a+ s(b− a).

Let µ = λ
1−s > λ and write

e = µa′ + (1− µ)b.
Since s < 1− λ, µ ∈ (0, 1). We can repeat the previous steps of the proof with a′, b, λ and qe in place of
a, b, µ and qe, to obtain a map V ′β,σ with properties (1)-(2)-(3)-(4) of the statement of the Proposition and
with (5) replaced by

|Q| = |{x ∈ Q : v′β,σ(x) ∈ B β
2
(a′)} ∪ {x ∈ Q : vβ,σ(x) ∈ B β

2
(b)}|, (4.13)

and

|{x ∈ Q : v′β,σ(x) ∈ B β
2
(a′)}| ≥ (1− σ)µ|Q| and |{x ∈ Q : v′β,σ(x) ∈ B β

2
(b)}| ≥ (1− σ)(1− µ)|Q|. (4.14)

Here, as usual, v′β,σ = B(V ′β,σ). Since s < β
2|a−b| , we see that

B β
2
(a′) ⊂ Bβ(a),

and hence (4.14) implies

|{x ∈ Q : v′β,σ(x) ∈ Bβ(a)}| ≥ (1− σ)µ|Q| and |{x ∈ Q : v′β,σ(x) ∈ Bβ(b)}| ≥ (1− σ)(1− µ)|Q|. (4.15)

1In fact, any open set Q with |∂Q| = 0 would serve for our purpose.
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We now come back to the domain Ω of the statement of the proposition. We split Ω into two open sets Ω1
and Ω2 with |Ω1| = t|Ω|, |Ω2| = (1− t)|Ω|, t ∈ (0, 1) to be fixed. We subdivide Ω1 in cubes and fill it with
rescaled and translated copies of Vβ,σ of the form

Vβ,σ,r,x0(x) .= rk
′
Vβ,σ

(
x− x0

r

)
,

and Ω2 with rescaled and translated copies of V ′β,σ of the same form. The map Vβ is exactly given by the
resulting map, for the correct choice of t. Indeed, it is simple to see that Vβ inherits properties (1)-(2)-(3)-(4)
of the Lemma, and also (4.10)-(4.13), in the sense that

|Ω| = |{x ∈ Ω : vβ(x) ∈ Bβ(a)} ∪ {x ∈ Ω : vβ(x) ∈ Bβ(b)}|.

Notice that, by our choice β < 1
2 |a− b|, the sets {x ∈ Ω : vβ(x) ∈ Bβ(a)} and {x ∈ Ω : vβ(x) ∈ Bβ(b)} are

disjoint, thus it suffices to check that there exists t ∈ (0, 1) such that
|{x ∈ Ω : vβ(x) ∈ Bβ(a)}| = λ|Ω|

to conclude the proof. To see the latter, we write
|{x ∈ Ω : vβ(x) ∈ Bβ(a)}| = |{x ∈ Ω1 : vβ(x) ∈ Bβ(a)}|+ |{x ∈ Ω2 : vβ(x) ∈ Bβ(a)}|

= |{x ∈ Q : vβ,σ(x) ∈ Bβ(a)}| |Ω1|
|Q|

+ |{x ∈ Q : v′β,σ(x) ∈ Bβ(a)}| |Ω2|
|Q|

= t|{x ∈ Q : vβ,σ(x) ∈ Bβ(a)}| |Ω|
|Q|

+ (1− t)|{x ∈ Q : v′β,σ ∈ Bβ(a)}| |Ω|
|Q|

.

Since σ < s, µ = λ
1−s ,

|{x ∈ Q : vβ,σ(x) ∈ Bβ(a)}| < λ|Q| and |{x ∈ Q : v′β,σ(a) ∈ Bβ(a)}| ≥ (1− σ)µ|Q| > λ|Q|,

it is then clear that there exists t ∈ (0, 1) such that
t|{x ∈ Q : vβ,σ(x) ∈ Bβ(a)}|+ (1− t)|{x ∈ Q : v′β,σ(a) ∈ Bβ(a)}| = λ|Q|.

This choice of t fixes Vβ and concludes the proof. �

It is convenient to introduce some measure theoretic concept alongside with the simple laminates
construction, compare [33, Section 2], [27, Introduction]. For instance, given a, b as in Lemma 4.1, we
consider2

ν = λδa + (1− λ)δb.
Now, after having split the barycentre e into a and b as e = λa+(1−λ)b, one may split b as b = µA+(1−µ)B,
for µ ∈ (0, 1) and B −A ∈ ΛA. After this operation, we consider the new measure

ν′ = λδa + (1− λ)µδA + (1− λ)(1− µ)δB .
Notice that the barycentre of ν′ is the same as the one of ν. Generalizing this simple example, we give the
following:

Definition 4.4. Let ν, ν′ ∈ P(U), U ⊂ Rn open. Let ν =
∑r
i=1 λiδai . We say that ν′ can be obtained via

elementary splitting from ν if for some i ∈ {1, . . . , r}, there exist b, c ∈ U , λ ∈ [0, 1] such that
b− c ∈ ΛA, [b, c] ⊂ U, ai = sb+ (1− s)c,

for some s ∈ (0, 1) and
ν′ = ν + λλi(−δai + sδb + (1− s)δc).

2The measure we associate is the so-called Young measure generated by the sequence of maps defined in Lemma 4.1. We
will only use particular Young measures, namely laminates, and hence we will not introduce them in full generality. For a
comprehensive introduction, see for instance [32, Chapter 3].
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A measure ν =
∑r
i=1 λiδai ∈ P(U) is called an A-laminate of finite order if there exists a finite number of

measures ν1, . . . , νr′ ∈ P(U) such that
ν1 = δX , νr′ = ν

and νj+1 can be obtained via elementary splitting from νj , for every j ∈ {1, . . . , N − 1}.

Using the definition of A-laminate of finite order and a simple iterative procedure that exploits Proposition
4.3 at every splitting, one may prove the following result. We refer the interested reader to [33, Lemma 3.2]
for a proof in the case A = curl.

Proposition 4.5. Let ν =
∑r
i=1 λiδai ∈ P(U) be an A-laminate of finite order, and let e = ν̄. Fix any

element qe ∈ P(k′,m)n′ with the property that B(qe) = e everywhere in Rm. Then, given an open set Ω, for
every ε > 0 there exists Vε ∈W k′,∞ ∩ Ck′−1(Ω,Rn′) enjoying the following properties:

(1) the W k′,∞ ∩ Ck′−1 norm of Vε only depends on diam(Ω),maxi |ai| and |Dk′qe|;
(2) Vε = qe, together with all its derivatives of order ` < k′, on ∂Ω;
(3) Every component of Vε is piecewise a polynomial of degree k′;
(4) ‖Vε − qe‖Ck′−1(Ω) ≤ ε;
(5) if vε(x) .= B(Vε)(x), then |{x ∈ Ω : vε(x) ∈ Bε(ai)}| = λi|Ω|,∀i ∈ {1, . . . , r}.

4.2. Laminates. In this section we give the definition of A-laminate. In [27, Section 4], Kirchheim develops
all the useful tools concerning A-laminates, thus extending [33, Section 2] from the case A = curl to the case
of general linear differential operators. In this subsection, we simply recall the definitions and the results of
[27]. Let us point out that in [27] the notation D is used instead of ΛA and the name D-prelaminates is
used instead of A-laminates of finite order.

Definition 4.6. Let O ⊂ Rn be an open set. We say that f : O → R is ΛA-convex in O if f is convex on
every ΛA segment contained in O, i.e.

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b),
for any a, b ∈ Rn such that a− b ∈ ΛA. If f is ΛA-convex in Rn, we will simply say that f is ΛA-convex.

Definition 4.7. Let E ⊂ Rn. We say that ν ∈ P(E) is an A-laminate if�
Rn×m

f(X)dν ≥ f
(�

Rn
Xdν

)
= f(ν̄), (4.16)

for every ΛA-convex function f in Rn. We define
PΛA(K) .= {ν ∈ P(K) : ν is an A-laminate}.

We give now the definition of ΛA-convex hull of a compact or open subset of Rn. In the case A = curl,
this is the so called rank-one convex hull, Erc, compare [33, Section 6].

Definition 4.8. Let K ⊂ Rn be a compact set. We define the ΛA convex hull KΛA as the set of
KΛA .= {X : X is the barycenter of a A-laminate ν in K},

For an open set U ,
UΛA .=

⋃
K⊂U :K compact

KΛA .

We collect in the next proposition some useful properties of the objects we just introduced:

Proposition 4.9. The following hold:
(1) For any compact set K ⊂ Rn,

KΛA = {X : f(X) ≤ 0, for every ΛA-convex f with max
Y ∈K

f(Y ) ≤ 0};

(2) If U ⊂ Rn is open, then UΛA is open;
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(3) Let O ⊂ Rn be an open and bounded, and let f : O → R be ΛA-convex. Then f is locally Lipschitz.

For the proof of (1) we refer the reader to [27, Corollary 4.11]. (2) follows from the simple fact that the
translation of a laminate is still a laminate. Finally, the proof of (3) can be found in [28, Lemma 2.3].

Notice that if ν is a A-laminate of finite order, then (4.16) holds for every ΛA-convex function f . Since every
ΛA-convex function is locally Lipschitz continuous, (4.16) also holds for every weak-∗ limit of sequences
{νn}n of A-laminates of finite order supported in a fixed bounded open set. Therefore, the weak-∗ closure
of the space of A-laminates of finite order is contained in the space of A-laminates. Müller and Šverák
actually managed to prove the converse in the case of the wave cone induced by the operator A = curl,
compare [33, Theorem 2.1]. [27, Theorem 4.12] extends this result to the case of general operators:

Theorem 4.10. Let K ⊂ Rn be a compact set and let ν ∈ PΛA(K). Let U be an open set such that
KΛA ⊂ U . Then there exists a sequence {νj}j ⊂ P(U) of laminates of finite order such that νj = ν for
each j and {νj}j converges weakly-∗ to ν in the sense of measures.

4.3. In-approximations and exact solutions. In this subsection we exploit the theory developed in
Section 4.1 and Section 4.2 to construct solutions of (4.1), and in particular we prove Theorem 4.13. We
start with the following preliminary result.

Proposition 4.11. Let U ⊂ Rn and Ω ⊂ Rm be open and bounded sets and let W ∈W k′,∞∩Ck′−1(Ω,Rn′)
be a map whose components are piecewise polynomials of order k′ such that

B(W ) ∈ UΛA in Ω.

Then, for every δ > 0, there exists a map Vδ ∈ W k′,∞ ∩ Ck′−1(Ω,Rn′) whose components are piecewise
polynomials of order k′ with the following properties:

(1) the W k′,∞ ∩ Ck′−1 norm of Vδ only depends on diam(Ω), diam(U) and ‖W‖Ck′ ;
(2) Vδ = W , together with all of its derivatives of order ` < k′, on ∂Ω;
(3) ‖Vδ −W‖Ck′−1 ≤ δ;
(4) vδ

.= B(Vδ), then vδ ∈ U a.e. in Ω.

Proof. By definition, there exist countably many open and disjoint Ωn such that Ω =
⋃
n Ωn and, on Ωn,

W is a vector of polynomials of order k′. We work on each Ωn separately, and hence fix now n ∈ N.

By definition, since e .= B(W |Ωn) ∈ UΛA , there exists a compact set C ⊂ U such that
e ∈ CΛA .

By Proposition 4.9, we infer the existence of a A-laminate ν supported in C with barycentre e. Therefore,
we can apply Theorem 4.10 with UΛA instead of U . This is possible since UΛA is open, see (2) of Proposition
4.9. Thus, we can find a A-laminate of finite order

µ =
r∑
i=1

λiδai

supported in UΛA , and satisfying
µ(U) ≥ 1

2ν(U) = 1
2 (4.17)

the latter coming from the lower semi-continuity on open sets of the total variation of probability measure
with respect to the weak-∗ convergence, see [19, Theorem 1.40(ii)]. We apply Proposition 4.5 with µ and
with qe ∈ P(k′,m) chosen to be the unique extension to Rm of the polynomial W |Ωn . Hence, fixed β > 0,
we know that we can find a map V nβ ∈W k′,∞ ∩Ck′−1(Ω,Rn′) whose components are piecewise polynomials
of degree k′ such that:

(1) the W k′,∞ ∩ Ck′−1 norm of V nβ is bounded by diam(Ω),diam(U) and |Dk′qe| ≤ ‖W‖Wk′,∞ ;
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(2) ‖V nβ −W‖Ck′−1(Ωn,Rn′ ) ≤ β;
(3) V nβ (x) = W , together with all of its derivatives of order ` < k′, on ∂Ωn;
(4) if vnβ

.= B(V nβ ), then |{x ∈ Ωn : d(vnβ , {a1, . . . , ar}) ≥ β}| = 0
(5) |{x ∈ Ωn : d(vnβ , ai) ≤ β}| = λi|Ωn|,∀i ∈ {1, . . . , r}.

By (4.17), we have

µ(U) =
∑
i:ai∈U

λi ≥
1
2 .

We then choose β > 0 so that Bβ(ak) ⊂ UΛA , ∀k = 1, . . . , r, and if ak ∈ U , then also Bβ(ak) ⊂ U . This is
possible since U is open and we have a finite number of ak. Therefore, (5) of the previous list tells us that

|{x ∈ Ωn : B(V nβ ) /∈ U}| ≤ |Ωn|2 . (4.18)

Now we can define V1 on Ω by setting V1
.= V nβ on Ωn. V1 is a map with the required regularity and whose

components are all piecewise polynomials of order k′. Moreover V1 = W on ∂Ω, together with all of its
derivatives of order ` < k′,

‖V1 −W‖Ck′−1 ≤ β, |{x ∈ Ω : B(V1) /∈ U}| ≤ |Ω|2 . (4.19)

Now one iterates this reasoning, considering V1 instead of W and {x ∈ Ω : B(V1) /∈ U} instead of Ω. After
this step, one gets a map V2 with properties similar to the ones of (4.19) with the last one replaced by

|{x ∈ Ω : B(V2) /∈ U}| ≤ |{x ∈ Ω : B(V1) /∈ U}|
2 ≤ |Ω|22 .

Iterating this reasoning infinitely many times, one gets a sequence of maps {Vq}q that are easily seen to
converge to a map Vδ with the required properties. �

We now give the definition of A-in-approximation.

Definition 4.12. We say that K ⊂ Rn admits a A-in-approximation if there exists a sequence of open
and equibounded sets Un ⊂ Rn such that

Un ⊂ UΛA
n+1, (4.20)

and for every sequence (Xn)n with Xn ∈ Un,

{Xn}n can only have limit points in K. (4.21)

In the sequel, we will simply write Un → K for a sequence of open sets having property (4.21).

We are now ready to use the proposition above and the concept of A-in-approximation to construct
exact solutions of (4.1).

Theorem 4.13. Let Ω ⊂ Rm be an open and bounded set and K ⊂ Rn be a compact set that admits a
A-in-approximation {Un}n. Then, for every W ∈ Ck′(Ω,Rn′) such that

B(W ) ∈ U1 in Ω,

and for every ε > 0, there exists a map Vε ∈W k′,∞ ∩ Ck′−1(Ω,Rn′) such that:
(1) the W k′,∞ ∩ Ck′−1 norm only depends on maxn{diam(Un),diam(K)};
(2) Vε = W , together with all its derivatives of order ` < k′, on ∂Ω;
(3) ‖Vε −W‖Ck′−1(Ω,Rn′ ) ≤ ε;
(4) B(Vε) ∈ K, in Ω.
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Proof. Let W ∈ Ck′(Ω,Rn′). The first thing we do is to replace W with a map W ′ whose components are
piecewise polynomials of degree k′ that well approximates W in the Ck′ norm and has the same boundary
datum. To do so, we define for every j ∈ N

Ωj
.= {x ∈ Ω : d(x, ∂Ω) ≥ 2−j}.

Up to considering Ωj+j0 for some j0 ∈ N, we can assume without loss of generality that Ω0 is non-empty.
Furthermore, again without loss of generality, we can assume that

0 < ε < min
x∈Ω0

d(B(W )(x), ∂U1)

and from now on we fix ε > 0. Consider a decreasing sequence {cj}j of positive numbers such that c1 < ε
2

and
d(B(W )(x), ∂U1) ≥ cj+1, ∀x ∈ Ωj+1 \ Ωj . (4.22)

Applying Lemma 4.2 we can find a map W ′ ∈ Ck′(Ω,Rn′) whose components are piecewise polynomials of
order k′ such that

‖W ′ −W‖Ck′ (Ω,Rn′ ) ≤
ε

2 , ‖W ′ −W‖
Ck′ (Ωj+1\Ωj ,Rn′ ) ≤

cj+1

2 ,∀j, (4.23)

and
W ′|∂Ω = W. (4.24)

Now (4.22), (4.23), the openness of U1 and the fact that B is an operator of order k′ imply that
B(W ′) ∈ U1, in Ω.

We now come to the main part of the proof. First, we exploit the property Un ⊂ UΛA
n+1 inductively in the

following way. We start with V1 = W ′. Then, we can apply Proposition 4.11 with Ui+1, Vi instead of U,W
and δi+1 > 0 to find a map Vi+1 ∈W k′,∞ ∩ Ck′−1(Ω,Rn′) whose components are piecewise polynomials of
degree k′ such that:

(i) the W k′,∞ ∩ Ck′−1 norm is equibounded by maxn{diam(Un),diam(K)};
(ii) W = Vi = Vi+1 together with all the derivatives of order ` < k′, on ∂Ω;
(iii) ‖Vi+1 − Vi‖Ck′−1 ≤ δi+1;
(iv) B(Vi+1) ∈ Ui+1.

The sequence {δi}i is chosen inductively: given Vi and δi, we choose suitably δi+1, and thus also Vi+1 by
Proposition 4.11. Using the notation ‖ · ‖1,i

.= ‖ · ‖L1(Ωi,Rn′ ), we find 0 < εi < min{2−i, εi−1} such that

‖B(Vi)− B(Vi) ? ρεi‖1,i ≤
1
i
. (4.25)

In the last equation, we denoted with B(Vi) ? ρε the mollification of B(Vi) with the standard even, smooth,
compactly supported mollification kernel ρε. Now we choose

δi+1
.= ε

εi
C2i+1 , (4.26)

where C > 1 is a universal constant depending only on the choice of the convolution kernel ρ. After having
made the choice (4.26), we continue the iteration. By (iii), we find that {Vi}i is a Cauchy sequence in
Ck
′−1. This implies that there exists a limit in the Ck′−1 topology Vε = limi Vi. The fact that Vε fulfills

(1)-(2) is an immediate consequence of (i)-(ii). Furthermore, (i) and (iv) imply that B(Vi) is equibounded
in L∞, and thus the sequence B(Vi) is converging weakly-∗ in L∞ to B(Vε). We will now prove that

B(Vε) ∈ K, in Ω. (4.27)
The crucial point is that the choice of the sequence {δi}i yields strong L1

loc convergence of B(Vi) to B(V ).
Once we show this, we can pass to a subsequence that converges pointwise a.e. and use hypothesis (4.21)
to conclude (4.27). To prove strong L1

loc convergence, we fix i0 ∈ N and, for all i > i0, we write:
‖B(Vi)−B(Vε)‖1,i0 ≤ ‖B(Vi)−B(Vi)?ρεi‖1,i0 +‖B(Vi)?ρεi−B(Vε)?ρεi‖1,i0 +‖B(Vε)−B(Vε)?ρεi‖1,i0 . (4.28)
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The first term of the previous sum is converging to 0 by (4.25), while the latter is converging to 0 since
B(Vε) is an L1 function. It only remains to estimate the middle term of the right hand side of (4.28). Since
B is an operator of order k′, for the same constant C > 1 appearing in (4.26), we can write:

‖B(Vi) ? ρεi − B(Vε) ? ρεi‖1,i0 ≤ C
‖Vi − Vε‖Ck′−1(Ω,Rn′ )

εi
≤ C

εi

∞∑
j=i
‖Vj+1 − Vj‖Ck′−1

(iii)
≤ C

εi

∞∑
j=i

δj+1.

By our choice (4.26), we estimate:
C

εi

∞∑
j=i

δj+1 ≤
ε

2i .

Therefore, the right hand side of (4.28) converges to 0 as i→∞. Since i0 was arbitrary and Ωi0 ↗ Ω, (4)
is proven and it only remains to show (3):

‖Vε −W‖Ck′−1(Ω,Rn′ ) ≤ ‖W
′ −W‖Ck′−1 + ‖Vε −W ′‖Ck′−1

(4.23)
≤ ε

2 +
∞∑
i=1
‖Vi+1 − Vi‖Ck′−1 ≤

ε

2 + ε

2 = ε.

This concludes the proof. �

5. The four state problem

In this section, we study the inclusion{
v(x) ∈ K .= {a1, a2, a3, a4} ⊂ Rn, a.e. in B1,
A(v) = 0, in the sense of distributions,

(5.1)

with v ∈ L∞(B1,Rn
′), B1 ⊂ Rm being the ball of radius 1 centred at 0, and ai − aj /∈ ΛA if i 6= j. We

wish to exploit Theorem 4.13 to solve (5.1). In order to do so we need to find a A-in-approximation for K.
In [21, Definition 2.6], Förster and Székelyhidi introduced the notion of large T5 in order to find a solution
to (5.1) in the case A = curl and five states. We give the analogous definition in our case.

Definition 5.1. Let S ⊂ Rn be arbitrary. We say that an ordered set of elements (a1, a2, a3, a4) are in
S-T4 configuration if there exist p ∈ Rn, c1, c2, c3, c4 ∈ S ⊂ Rn and k1, k2, k3, k4 ∈ (1,+∞) such that

a1 = p+ k1c1

a2 = p+ c1 + k2c2

a3 = p+ c1 + c2 + k3c3

a4 = p+ c1 + c2 + c3 + k4c4

c1 + c2 + c3 + c4 = 0.

(5.2)

We say that {a1, a2, a3, a4} form a large S-T4 configuration if there exist 3 distinct permutations σ1, σ2, σ3 :
{1, 2, 3, 4} → {1, 2, 3, 4} such that the ordered set of vectors (aσi(1), aσi(2), aσi(3), aσi(4)) is in S-T4 configu-
ration, i.e. it fulfills 

aσi(1) = pσi + kσi1 c
σi
1

aσi(2) = pσi + cσi1 + kσi2 c
σi
2

aσi(3) = pσi + cσi1 + cσi2 + kσi3 c
σi
3

aσi(4) = pσi + cσi1 + cσi2 + cσi3 + kσi4 c
σi
4

cσi1 + cσi2 + cσi3 + cσi4 = 0.

(5.3)

for vectors pσi , kσi` , cσi` , for 1 ≤ i ≤ 3, 1 ≤ ` ≤ 4, and moreover the vectors cσ1
σ−1

1 (`), c
σ2
σ−1

2 (`), c
σ3
σ−1

3 (`) ∈ ΛA are
linearly independent for every fixed ` ∈ {1, 2, 3, 4}.
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Definition 5.1 becomes meaningful when S = ΛA for some A ∈ opH(k,m, n,N) with potential B ∈
opH(k′,m, n′, n). In this case, ΛA-T4 configurations are the most studied example of sets without ΛA that
display flexibility for approximate solutions. Indeed given a ΛA-T4 configuration K = {a1, a2, a3, a4} as in
(5.2) one can find a sequence of equibounded maps {un}n ⊂ L∞ such that

d(un,K)→ 0, strongly in L1

un
∗
⇀ P, as n→∞,

A(un) = 0, ∀n ∈ N,

where P ∈ P(k′,m) is such that B(P ) = p everywhere on Rm. This stems from the fact that p ∈
Br({a1, a2, a3, a4})ΛA for all r > 0 and hence Proposition 4.11 applies. For an introduction to Λcurl-T4
configurations, that are simply called T4 configurations in the literature, see [32, Lemma 2.6].

While ΛA-T4 are related to the existence of approximate solutions, large ΛA-T4 configurations yield
the existence of A-in approximations of K and hence through Theorem 4.13 exact solutions. This was
noticed first in [21]. The fact that the existence of a large ΛA-T4 configuration {a1, a2, a3, a4} implies the
existence of a A-in-approximation is analogous to the proof of the same fact for the curl operator given in
[21], and will be sketched in Subsection 5.1.

If S is not (a subset of) a cone ΛA, Definition 5.1 has a purely algebraic meaning, and we chose to
give it in that way for improving the clarity of our exposition. Indeed, in our strategy, we will first find a
set {a1, a2, a3, a4} and write it as a large Rn-T4 configuration. At this level, this only means computing the
values pσ, kσi` , c

σi
` for which the algebraic condition (5.2) are satisfied for the three permutations σ1, σ2, σ3,

and the additional requirement on the linear independence of
{
cσi
σ−1
i

(`), 1 ≤ i ≤ 3
}
for all 1 ≤ ` ≤ 4. Note

that this is always possible. Subsequently, we find an operator A for which {cσi` , 1 ≤ i ≤ 3, 1 ≤ ` ≤ 4} ⊂ ΛA,
thus proving that {a1, a2, a3, a4} is a large ΛA-T4 configuration. More precisely, we construct an operator
A for which

{cσi` : 1 ≤ i ≤ 3, 1 ≤ ` ≤ 4} ⊂ ΛA (5.4)

and
ai − aj /∈ ΛA, ∀i 6= j. (5.5)

In order to guarantee that cσ1
σ−1

1 (`), c
σ2
σ−1

2 (`), c
σ3
σ−1

3 (`) are linearly independent, for fixed ` ∈ {1, 2, 3, 4}, we need
to have n ≥ 3, and hence we fix n = 3. We then choose the following vectors:

a1 =

 0
0
0

 , a2 =

 1
0
0

 , a3 =

 0
1
0

 , a4 =

 0
0
1

 . (5.6)

The three permutations σ1, σ2, σ3 and the elements pσi , kσi` , cσi` , for 1 ≤ ` ≤ 4, 1 ≤ i ≤ 3 for which
{a1, a2, a3, a4} form a large Rn-T4 configuration will be given in Subsection 5.2. From now on, we treat all
of these values as fixed, explicit values.

Let us now examine requirement (5.5). We can rewrite (5.5) as:

ai − aj /∈ Ker(A(ξ)) = Im(B(ξ)), ∀ξ ∈ Rm,

if, as usual, B ∈ opH(k′,m, n′, n) denotes the potential of A. Heuristically, (5.5) has more chances to
be satisfied once ΛA =

⋃
ξ∈Rm Im(B(ξ)) is chosen as small as possible. It is therefore natural to ask

n′,m < n = 3, and indeed we fix n′ = 1 and m = 2. Notice anyway that (5.4) is asking that ΛA contains
at least the 12 vectors cσi` , and in order to achieve this, we will use our last degree of freedom k′. Given the
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constraints n′ = 1,m = 2, we have that, for q1, q2, q3 ∈ PH(k′, 2) that will be chosen later,

B(ξ) =

 q1(ξ)
q2(ξ)
q3(ξ)

 . (5.7)

We identify the linear application B(ξ) with its associated matrix. It only remains to deal with (5.4).
Each qi ∈ P(k′, 2) has k′ + 1 coefficients. (5.4) is now equivalent to asking the existence of twelve vectors:
(ξσi1 , ξσi2 ), (ξσi3 , ξσi4 ), (ξσi5 , ξσi6 ), (ξσi7 , ξσi8 ) ∈ R2 , for 1 ≤ i ≤ 3, such that

B((ξσi2`−1, ξ
σi
2` )) = cσi` , ∀1 ≤ i ≤ 3,∀1 ≤ ` ≤ 4. (5.8)

We randomly generate the vectors (ξσi2`−1, ξ
σi
2` ) ∈ R2, see Subsection 5.2 for the explicit values. Recall that

also the 12 vectors cσi` ∈ R3 are fixed, and thus (5.8) becomes a linear system of 36 equations that can be
solved using the coefficients of q1, q2, q3. The right number of variables is therefore 36, that amounts to ask

3(k′ + 1) = 36,
or k′ = 11. This last choice fixes all the degrees of freedom of B ∈ opH(11, 2, 1, 3). Of course, we should
now find an operator A ∈ opH(k, 2, 3, N) whose potential is B. We define our candidate A by writing its
symbols A(ξ). First, we choose

k = 11 and N = 3,
and set, for all ξ ∈ R2,

A(ξ) .=

 0 −q3(ξ) q2(ξ)
−q3(ξ) 0 q1(ξ)
−q2(ξ) q1(ξ) 0

 . (5.9)

In order to apply the convex integration methods of the previous section, we need the operator A to be
of constant rank and balanced. Furthermore, we need to find a way to verify (5.5). This will be done in
Theorem 5.4. First, we collect our set of assumptions in the following:

Proposition 5.2. Let a1, a2, a3, a4 be as in (5.6), and pσi , kσi` , cσi` , (ξσi2`−1, ξ
σi
2` ) for 1 ≤ ` ≤ 4, 1 ≤ i ≤ 3

as in Subsection 5.2. Then, there are unique polynomials q1, q2, q3 ∈ PH(11, 2) such that (5.8) is feasible.
Furthermore:

(1) (5.3) holds for all σi, 1 ≤ i ≤ 3;
(2) cσ1

σ−1
1 (`), c

σ2
σ−1

2 (`), c
σ3
σ−1

3 (`) are linearly independent for all fixed ` ∈ {1, 2, 3, 4};
(3) qi and qj have no common zero on S1, for all i 6= j;
(4) qi + qj has no common zero with qk on S1, for all i, j, k such that {i, j, k} = {1, 2, 3};

Proof. All of the above checks have been made using Maple 2020 using symbolic calculus and the frac-
tional representation of rational numbers, hence they are formally justified. We will now explain how
to perform these computations on a computer in such a way that the result is rigorous, especially (3) and (4).

We use coordinates ξ = (x, y) in R2. First, (1)-(2) are simple computations that could be potentially done
by hand. Next, one checks that (5.8) has a solution. Since the solution is unique and the coefficients are
particularly lengthy, we do not write them here explicitly. Notice that, since (5.8) is a linear system with
rational entries, the solution is also rational. Thus, every coefficient of q1, q2, q3 can be exactly represented
as a fraction. Furthermore, using the explicit form of q1, q2, q3, one can easily check the following, for all
1 ≤ i, j ≤ 3:

the coefficient of x11 of qi(x, y) and of qi(x, y) + qj(x, y) is non-zero. (5.10)
Now we turn to (3)-(4). Let us define rk(ξ) .= qi(ξ) + qj(ξ), for i, j, k such that {i, j, k} = {1, 2, 3}. By
homogeneity, we have, for all i ∈ {1, 2, 3} and y 6= 0,

qi(x, y) = y11qi

(
x

y
, 1
)
, ri(x, y) = y11ri

(
x

y
, 1
)
. (5.11)
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Therefore, we can associate to every qi and ri a polynomial of one variable, Qi(z) and Ri(z), defined as

Qi(z)
.= qi(z, 1), Ri(z)

.= ri(z, 1).

By (5.10) and (5.11), zeroes of qi and ri are in bijective correspondence with the ones of Qi, Ri, in the
sense that qi(x0, y0) = 0 if and only if Qi

(
x0
y0

)
= 0, and analogously for ri. (3)-(4) then become equivalent

to the following:
(i) Qi and Qj have no common zero, for all i 6= j;
(ii) Ri has no common zero with Qi, for all i ∈ {1, 2, 3}.

Given the explicit forms of the Qi and Ri, there are two ways to check (i)-(ii).

The first starts by computing the zeroes of the six polynomials Q1, Q2, Q3, R1, R2, R3 numerically. Of
course, this does not yield a rigorous proof, but then one only uses the numerical values to find (small)
intervals with rational endpoints around those numerical zeroes, in such a way to have that the polynomial
evaluated at the two endpoints has two different signs. Notice that the evaluation at the endpoints again
gives an exact value, as the polynomial is rational and the endpoints have been chosen to be rational. By
continuity it follows that a zero of the polynomial lies inside this interval. Now, instead of having different
zeroes, we may simply try to find disjoint intervals, which would suffice to show (i)-(ii).

The second way to check (i)-(ii) is much quicker in terms of computations, and it is the method we employed.
This simply consist in computing the GCD of every couple Qi, Qj and Qi, Ri, varying 1 ≤ i 6= j ≤ 3. If the
GCD of these couples is a constant, then clearly they can have no common zero, and this turns out to be the
case in our particular example. Since the polynomials depend only on one variable, we can use the Euclidean
algorithm to compute the GCD among the couples of polynomials we are interested in. Using the built-in
gcd function of Maple 2020, we have checked that GCD(Qi, Ri) = GCD(Qi, Qj) = 1,∀1 ≤ i 6= j ≤ 3, and
hence (i)-(ii) hold. �

Corollary 5.3. Let a1, a2, a3, a4 be as in (5.6), and pσi , kσi` , cσi` , (ξσi2`−1, ξ
σi
2` ) for 1 ≤ ` ≤ 4, 1 ≤ i ≤ 3 as

in Subsection 5.2. Finally, let q1, q2, q3 be the only solution of (5.8) and define the two operators A as in
(5.9) and B as in (5.7). Then:

• ai − aj /∈ ΛA,∀1 ≤ i < j ≤ 4;
• B is a potential for A in the sense of (3.4);
• A has constant rank and is balanced;

Proof. Fix 1 ≤ i < j ≤ 4. To see that ai − aj /∈ ΛA we notice that, by (5.6), ai − aj either has two zeroes,
or it has a zero component while the other two are 1 and -1. In the first case, i.e. when ai − aj has two
zeroes, ai − aj /∈ ΛA stems from (3) of Proposition 5.2, while in the second, ai − aj /∈ ΛA is a consequence
of (4) of Proposition 5.2.

We show now that B is a potential for A. For all ξ ∈ R2, it holds

Im(B(ξ)) ⊂ Ker(A(ξ)),

that shows rank(A(ξ)) ≤ 2 since B(ξ) 6= 0,∀ξ ∈ R2 \ {0} by (3) of Proposition 5.2. The principal 2 × 2
minors of A(ξ) read as −q2

3(ξ), q2
2(ξ),−q2

1(ξ) and thus again by property (3) of Proposition 5.2, we find
that rank(A(ξ)) = 2 for all ξ ∈ R2 \ {0}. It also follows that

Im(B(ξ)) = Ker(A(ξ)).

This shows that A has constant rank and B is the potential of A in the sense of (3.4). Finally, we show that
A is balanced. By (5.8) and (2) of Proposition 5.2 Im(B(ξ)) contains three linearly independent vectors.
Since Im(B(ξ)) ⊂ ΛA for all ξ ∈ R2, it follows span(ΛA) = R3 and the proof is finished. �
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Now we can finally prove the main result of this paper, namely the existence of a nontrivial solution of
(5.1).

Theorem 5.4. Let a1, a2, a3, a4 be as in (5.6), q1, q2, q3 ∈ PH(11, 2) be defined by (5.8) for the values
(ξσi2`−1, ξ

σi
2` ) and cσi` given in Subsection 5.2. Finally define the two operators A as in (5.9) and B as in

(5.7). Then, there exists a non-constant solution v ∈ L∞(B1,R3) of
v(x) ∈ K .= {a1, a2, a3, a4}, a.e. in B1,
A(v) = 0, in the sense of distributions,
ai − aj /∈ ΛA, ∀i 6= j.

Furthermore, v takes all four values of K, and v admits a potential, i.e. there exists V ∈W 11,∞ ∩C10(B1)
such that a.e. on Ω

v = B(V )
and V coincides with a polynomial of order 11 on the boundary of ∂B1.

Proof. By (1)-(2) of Proposition 5.2, we find that {a1, a2, a3, a4} form a large ΛA-T4 configuration. Moreover,
Corollary 5.3 yields that ai − aj /∈ ΛA,∀1 ≤ i < j ≤ 4. By Theorem 5.7, there exists a A-in-approximation
{Un}n of K. Since by Corollary 5.3 A is a balanced and of constant rank with potential B, we are in position
to apply Theorem 4.13. Now fix any polynomial r ∈ P(11, 2) such that B(r) ∈ U1 everywhere on R2. This
exists by Proposition 3.3. Using the existence of three linearly independent direction c1, c2, c3 ∈ ΛA, that is
(2) of Proposition 5.2, in combination with Proposition 4.5, it is not difficult to build a map W ∈ C11(B1)
such that W (x) = r(x), on ∂B1, B(W )(x) ∈ U1, ∀x ∈ B1

span{Im(B(W ))} is not contained in an affine subspace of R3 of dimension ≤ 2. (5.12)

Now, by Theorem 4.13 we find a family Vε of maps that are equibounded in W 11,∞ ∩ C10(B1) such that
Vε = r on ∂B1, B(Vε) ∈ K a.e. and Vε → W as ε→ 0+. This yields the weak-∗ convergence of B(Vε) to
B(W ) in L∞, and hence the weak convergence in L2. If, by contradiction, for all ε > 0, B(Vε) belonged to
a proper subset of K, say to {a1, a2, a3}, then

B(Vε) ∈ co({a1, a2, a3}), ∀ε > 0.
By Mazur Lemma we would find that B(W )(x) ∈ co({a1, a2, a3}), for all x ∈ B1, and this is in contradiction
with (5.12). This concludes the proof of the Theorem. �

5.1. Large ΛA-T4 configurations and in-approximations. In this subsection, we collect the main
results concerning large ΛA-T4 configurations that we used in the previous section. We will always work
with the operator A defined in (5.9) and use the objects and the notation introduced in the previous section.
Most of the theory immediately follows from the results of [21] with minor modifications. Thus, some
proofs will be omitted and precise reference to the corresponding results of [21] will be provided. Let us
start with the following:

Lemma 5.5. Let {a1, a2, a3, a4} ⊂ R3 be defined as in (5.6), and let σi, 1 ≤ i ≤ 3 be the three permutations
of (5.13) for which the ordered sets (aσi(1), aσi(2), aσi(3), aσi(4)) are in ΛA-T4 configuration. Define Ai

.=
(aσi(1), aσi(2), aσi(3), aσi(4)) ⊂ (R3)4. Then, the following hold for all 1 ≤ i ≤ 3:

(1) there exists ε > 0 such that all points X = (x1, x2, x3, x4) ∈ Bε(Ai) are in ΛA-T4 configuration;
(2) there exists ε > 0 such that all points X = (x1, x2, x3, x4) ∈ Bε(A1) form a large ΛA-T4 configuration

with the same permutations (5.13);
(3) write X = (x1, x2, x3, x4) ∈ Bε(A1) as in (5.3) for vectors pσi(X), kσi` (X), cσi` (X), for 1 ≤ i ≤ 3,

1 ≤ ` ≤ 4. Then the maps Φσi : Bε(A1)→ (R3)4 defined as
Φσ(X) .= (cσi1 (X), cσi2 (X), cσi3 (X), cσi4 (X))

are well-defined and smooth.
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Here we cannot argue as in [21, Lemma 2.4] since it relies heavily on the characterization of T4
configurations for the curl operator shown in [43], and hence we explain the proof in detail.

Proof. Clearly, (2) follows from Definition 5.1 and (1). To show (1)-(3), we rely on the implicit function
theorem and the inverse function theorem. Throughout the proof, we fix 1 ≤ i ≤ 3. First, we use the
implicit function theorem to show that the map Ψ defined as

Ψi(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8) = v(ξ1, ξ2) + v(ξ3, ξ4) + v(ξ5, ξ6) + v(ξ7, ξ8)
has a non-degenerate set of zeroes in a neighbourhood of Ξσi .= (ξσi1 , ξσi2 , ξσi3 , ξσi4 , ξσi5 , ξσi6 , ξσi7 , ξσi8 ), for the
explicit values ξσi` of Subsection 5.2. To do so, it is sufficient to compute the determinants of the matrix

(∂2v(ξσi5 , ξσi6 )|∂1v(ξσi7 , ξσi8 )|∂2v(ξσi7 , ξσi8 ))
and see that they are all non-zero. This can be easily checked with the use of a computer. We infer that in
a small neighbourhood D of (ξσi1 , ξσi2 , ξσi3 , ξσi4 , ξσi5 , ξσi6 , ξσi7 , ξσi8 ),

Ψi(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8) = 0
if and only if

ξ` = ξ`(ξ1, ξ2, ξ3, ξ4, ξ5), ∀6 ≤ ` ≤ 8,
for some smooth maps ξ` defined in a small neighbourhood of (ξσi1 , ξσi2 , ξσi3 , ξσi4 , ξσi5 ). Define D′ .= π(D),
where π is the projection on the first 5 coordinates. Observe that D′ is open. Now finally define

Fi : R3 × R4 ×D′ → R12,

as

Fi(p, k1, k2, k3, k4, ξ̄)
.=


p+ k1v(ξ1, ξ2)

p+ v(ξ1, ξ2) + k2v(ξ3, ξ4)
p+ v(ξ1, ξ2) + v(ξ3, ξ4) + k3v(ξ5, ξ6(ξ̄))

p+ v(ξ1, ξ2) + v(ξ3, ξ4) + v(ξ5, ξ6(ξ̄)) + k4v(ξ7(ξ̄), ξ8(ξ̄))

 ,

where we used the short hand notation ξ̄ .= (ξ1, ξ2, ξ3, ξ4, ξ5). Now we apply the inverse function theorem
at the point defined by the exact values of Subsection 5.2:

(pσi , kσi1 , k
σi
2 , k

σi
3 , k

σi
4 , ξ

σi
1 , ξσi2 , ξσi3 , ξσi4 , ξσi5 ),

Notice that the derivatives of ξ`(ξ̄) at the point (ξσi1 , ξσi2 , ξσi3 , ξσi4 , ξσi5 ) are explicitly provided by the implicit
function theorem applied in the first part of this proof. Again with the help of a computer, one can check
that

det(DFi(pσi , kσi1 , k
σi
2 , k

σi
3 , k

σi
4 , ξ

σi
1 , ξσi2 , ξσi3 , ξσi4 , ξσi5 )) 6= 0,

and hence that Fi is a diffeomorphism around (pσi , kσi1 , k
σi
2 , k

σi
3 , k

σi
4 , ξ

σi
1 , ξσi2 , ξσi3 , ξσi4 , ξσi5 ). This shows (1)-(3)

and concludes the proof. �

The proof of the following Proposition is analogous to the one of [21, Proposition 2.7], and uses Lemma
5.5.

Proposition 5.6. Let {a1, a2, a3, a4} ⊂ R3 be defined as in (5.6), and denote A1
.= (a1, a2, a3, a4). Then,

there exists δ > 0 and for all 1 ≤ ` ≤ 4 smooth maps
π` : (−δ, δ)3 ×Bδ(A1)→ R3

with the following properties
• the map t 7→ π`(t,X) is an embedding for each X = (x1, x2, x3, x4) ∈ Bδ(A1);
• π`(t,X) ∈ {x1, x2, x3, x4}ΛA for all t ∈ [0, δ)3, X = (x1, x2, x3, x4) ∈ Bδ(A1);
• π`(0, X) = x`, for all X = (x1, x2, x3, x4) ∈ Bδ(A1).

With the help of the previous proposition, one can show the following result, see [21, Theorem 2.8].
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Theorem 5.7. Let {a1, a2, a3, a4} ⊂ R3 be defined as in (5.6). Then, there exists a A-in-approximation
of {a1, a2, a3, a4} for the operator A defined in (5.9).

5.2. Exact values. In this section we give all the exact values needed to see that the set {a1, a2, a3, a4}
of (5.6) forms a large R3-T4 configuration in the sense of Definition 5.1 and that (5.8) is uniquely solvable.

The permutations σi, 1 ≤ i ≤ 3 are:
(σ1(1), σ1(2), σ1(3), σ1(4)) = (1, 2, 3, 4),
(σ2(1), σ2(2), σ2(3), σ2(4)) = (4, 1, 2, 3),
(σ3(1), σ3(2), σ3(3), σ3(4)) = (3, 4, 1, 2).

(5.13)

The values pσi for 1 ≤ i ≤ 3 are:

pσ1 = 1
15

 2
4
8

 pσ2 = 1
65

 18
27
8

 pσ3 = 1
175

 64
27
36

 .

The values cσi` for 1 ≤ ` ≤ 4 and 1 ≤ i ≤ 3 are:

cσ1
1 = 1

15

 −1
−2
−4

 cσ1
2 = 1

15

 7
−1
−2

 cσ1
3 = 1

15

 −4
7
−1

 cσ1
4 = 1

15

 −2
−4
7

 ,

cσ2
1 = 1

65

 −6
−9
19

 cσ2
2 = 1

65

 −4
−6
−9

 cσ2
3 = 1

65

 19
−4
−6

 cσ2
4 = 1

65

 −9
19
−4

 ,

cσ3
1 = 1

175

 −16
37
−9

 cσ3
2 = 1

175

 −12
−16
37

 cσ3
3 = 1

175

 −9
−12
−16

 cσ3
4 = 1

175

 37
−9
−12

 .

The values kσi` are kσi` = i+ 1 for any 1 ≤ ` ≤ 4 and 1 ≤ i ≤ 3.

The values (ξσi2`−1, ξ
σi
2` ) ∈ R2, for 1 ≤ ` ≤ 4 and 1 ≤ i ≤ 3 are given by:(

ξσ1
1
ξσ1
2

)
=
(
−14

5

) (
ξσ1
3
ξσ1
4

)
=
(

19
−8

) (
ξσ1
5
ξσ1
6

)
=
(

11
−14

) (
ξσ1
7
ξσ1
8

)
=
(
−4
−17

)
,

(
ξσ2
1
ξσ2
2

)
=
(
−7
−3

) (
ξσ2
3
ξσ2
4

)
=
(

6
16

) (
ξσ2
5
ξσ2
6

)
=
(

2
−17

) (
ξσ2
7
ξσ2
8

)
=
(
−18

2

)
,

(
ξσ3
1
ξσ3
2

)
=
(
−7
−14

) (
ξσ3
3
ξσ3
4

)
=
(
−9
19

) (
ξσ3
5
ξσ3
6

)
=
(

6
18

) (
ξσ3
7
ξσ3
8

)
=
(
−20
−9

)
.

Appendix A. The three state problem for operators of order 1

Here we show how to infer the rigidity of the three state problem (1.1) from the rigidity of the three
state problem of the divergence proved in [34]. We are indebted to Guido De Philippis for making us realize
that in many cases the study of operators of order one reduces to the study of the divergence operator,
thus greatly simplifying our original proof of the following result.

Proposition A.1. Let A ∈ opH(1,m, n,N) and let u be a solution to (1.1) on the open connected set Ω
for s = 3. Then, u is constant.
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Proof. Consider v .= u − a1. Then, v solves (1.1) with {a1, a2, a3} replaced by {0, b1, b2}, with b1 =
a2 − a1, b2 = a3 − a1, b1 − b2 = a2 − a3 /∈ ΛA. Now consider the operator A′ ∈ opH(1,m, 2, N) defined as

A′(z1, z2) .= A(z1b1 + z2b2)
for all zi ∈ L∞(Ω), i = 1, 2. Defining w .= (χE1 , χE2), Ei

.= {x ∈ Ω : u(x) = bi} and e1 = (1, 0), e2 = (0, 1),
it is easy to see that w solves

w(x) ∈ {0, e1, e2}, a.e. on Ω
A′(w) = 0, in the sense of distributions,
e1, e2, e1 − e2 /∈ ΛA′ ,

(A.1)

and that u is constant if and only if w is constant. Since A′ ∈ opH(1,m, 2, N), by Definition 3.1 it admits a
representation of the form

A′(z1, z2) = MDz1 +NDz2 = div(Mz1 +Nz2),
for M,N ∈ RN×m and all bounded (z1, z2). The latter and the fact that e1, e2, e1 − e2 /∈ ΛA′ easily imply
that (A.1) is equivalent to the fact that Z(x) = Mw1 +Nw2 solves:

Z(x) ∈ {0,M,N}, a.e. on Ω
div(Z) = 0, in the sense of distributions,
M,N,M −N /∈ Λdiv.

By [34], we know that Z is constant, and hence also w and u must be constant. �
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