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Abstract. The aim of this work is to show a non-sharp quantitative stability version
of the fractional isocapacitary inequality. In particular, we provide a lower bound for
the isocapacitary deficit in terms of the Fraenkel asymmetry. In addition, we provide
the asymptotic behaviour of the s-fractional capacity when s goes to 1 and the stability
of our estimate with respect to the parameter s.
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1. Introduction

The classical isocapacitary inequality states that among sets which share the same
amount of Lebesgue measure, balls minimize the electrostatic (Newtonian) capacity, that
is, for any measurable set Ω with finite measure, the following scale invariant inequality
holds true

(1.1) |Ω|(2−n)/ncap(Ω) ≥ |B|(2−n)/ncap(B).

Here | · | stands for the n−dimensional Lebesgue measure, n ≥ 3, B is any ball in Rn and
cap(·) is the standard electrostatic capacity in Rn, defined for compact sets as

(1.2) cap(Ω) := inf

{∫
Rn
|∇u|2 dx : u ∈ C∞c (Rn), u ≥ 1 in Ω

}
.
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We observe that (1.1) can be rephrased in terms of the isocapacitary deficit, by saying
that

(1.3) dcap(Ω) :=
|Ω|(2−n)/ncap(Ω)

|B|(2−n)/ncap(B)
− 1 ≥ 0.

It is well known that the isocapacitary inequality is rigid, in the sense that dcap(Ω) vanishes
if and only if Ω is equivalent to a ball up to a set of null Lebesgue measure. Thus, it
appears as a natural quest the attempt of obtaining a quantitative stability version of
(1.3). There are several possible geometric quantities that can properly measure the
difference between a generic set and a ball with the same volume. The most natural one
is the so-called Fraenkel asymmetry, first proposed by L. E. Fraenkel given by

A(Ω) = inf

{
|Ω∆B|
|Ω|

: B is a ball with |B| = |Ω|
}
.

The first attempts in this direction were made in the ’90s. In particular, in [HHW91]
stability inequalities of the form

dcap(Ω) ≥ CnA(Ω)n+1

were proved, restricting to the class of convex sets when n ≥ 31. Nevertheless, in [HHW91]
the optimal exponent was conjectured to be 2, that is

(1.4) dcap(Ω) ≥ C ′nA(Ω)2,

which is asymptotically sharp for small asymmetries. Inequality (1.4) was proved in
the planar case in [HN92, Corollary 2] (see also [AHN92] and [HN94] for related results
with other notions of deficiencies). As far as higher dimensions are concerned, (1.4) was
proved by Fraenkel in [Fra08] for starshaped sets, while in [FMP09] the authors provided
the inequality (1.4) with a suboptimal exponent but for general sets, i.e.

(1.5) dcap(Ω) ≥ C ′′nA(Ω)4.

The conjecture in its full generality was finally established in [dPMM21]. It is worth
stressing that to get this result the authors need to exploit the suboptimal inequality
(1.5). We finally mention [Muk21], where the author treated the case of the p-capacity
and proved the corresponding sharp inequality. We point out that the approach followed
in [dPMM21,Muk21], while leading to the sharp exponent 2, does not allow to work out
the explicit constant which multiplies the asymmetry. On the contrary, inequality (1.5)
is not sharp for small values of A(Ω) but comes with an explicit constant C ′′n > 0.

In this work we tackle the problem of quantification of the isocapacitary inequality in
the fractional framework.

Let s ∈ (0, 1) and let n > 2s. We consider the fractional generalization of the capacity,
defined for compact sets as follows

(1.6) caps(Ω) = inf
{

[u]2s : u ∈ C∞c (Rn), u ≥ 1 on Ω
}
,

where

[u]s :=

(∫
R2n

|u(x)− u(y)|2

|x− y|n+2s dx dy

) 1
2

1In the planar case the suitable capacity is the logarithmic capacity.
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denotes the fractional Gagliardo seminorm of order s. The definition of fractional capacity
of a general closed set Ω ⊆ Rn is given in Definition 2.1, which can be easily proved to
be equivalent to (1.6) when Ω is compact. As a straightforward consequence of the
fractional analogue of the Pólya-Szegö inequality (proved in [AL89, Theorem 9.2], see
also Proposition 2.10 below for an “extended” version) one can easily derive the fractional
isocapacitary inequality, stating that

(1.7) |Ω|(2s−n)/ncaps(Ω) ≥ |B|(2s−n)/ncaps(B),

for any closed Ω ⊆ Rn with finite measure and for any closed ball B. The aim of this
work is to quantify the fractional isocapacitary deficit

dcaps(Ω) :=
|Ω|(2s−n)/ncaps(Ω)

|B|(2s−n)/ncaps(B)
− 1

in terms of the asymmetry of Ω. We point out that, in view of the scaling properties of
the fractional capacity, the term

|B|(2s−n)/ncaps(B)

is a universal constant, not depending on the choice of the ball B. It is also worth
remarking that caps(·) can be defined, through (1.6), on open sets O and its value coincide
with caps(O).

The fractional Pölya-Szegö inequality entails the rigidity of inequality (1.7), in the
sense that the equality holds if and only if Ω is a ball in Rn, see [FS08, Theorem A.1].
We now present our main result, which amounts to a quantitative stability inequality for
the fractional capacity.

Theorem 1.1. Let s ∈ (0, 1) and n > 2s. There exists a constant Cn,s > 0, depending
only on n and s, such that for any closed set Ω ⊂ Rn with finite measure, there holds

(1.8) dcaps(Ω) =
|Ω|(2s−n)/ncaps(Ω)

|B|(2s−n)/ncaps(B)
− 1 ≥ Cn,sA

3
s (Ω).

Moreover the constant Cn,s can be explicitly computed, see Remark 3.5.

Our second result investigates the asymptotic behaviour of the function s 7→ caps(Ω)
when s → 1−, for a compact set Ω ⊆ Rn. In particular, we obtain that a suitable
normalization of caps behaves like the standard capacity as s → 1− (see (4.1) for the
precise definition of the classical notion of capacity).

Proposition 1.2. Let n ≥ 3, then for every Ω ⊂ Rn compact set, we have

(1.9) lim sup
s↗1

(1− s) caps(Ω) ≤ ωn
2

cap(Ω),

where ωn := |B1| and B1 denotes the unitary ball in Rn. If in addition Ω is the closure of
an open bounded set with Lipschitz boundary then

(1.10) lim
s↗1

(1− s) caps(Ω) =
ωn
2

cap(Ω).

We observe that the exponent 3/s appearing in (1.8) is likely not sharp,2. Nevertheless,
since the constant Cn,s in (1.8) can be explicitly computed (see Remark 3.5), together
with its limit as s → 1− (see Remark 4.1), our result entails an improvement of (1.5),

2The optimal exponent was conjectured to be 2 in the fractional case as well.
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asymptotically as s→ 1−. In particular, thanks also to Theorem 1.2 and Lemma 3.3, we
are able to state the following.

Corollary 1.3. Let n ≥ 3 and Ω ⊆ Rn be a closed set with finite measure. Then (1.8) is
stable as s→ 1− and there holds

dcap(Ω) ≥ CnA(Ω)3,

for some Cn > 0 depending only on n, whose explicit value can be found in Remark 4.1.

1.1. Strategy of the proof of Theorem 1.1. Our proof is inspired by that in [BCV20]
where the authors deal with the (non-sharp) quantitative stability of the first eigenvalue
of the fractional Laplacian with homogeneous Dirichlet exterior conditions. Such a result,
in turn, relies on ideas established in [FMP09,AHN92]. Here, we provide a sketch of these
arguments, starting with the classical case and then trying to emphasize the differences
occurring in the fractional framework.

It is well known that, for any closed Ω ⊆ Rn with finite measure, there exists a unique
function 0 ≤ uΩ ≤ 1, belonging to a suitable functional space, that achieves cap(Ω). Such
a function is called the capacitary potential of Ω. First, by means of the coarea formula
one gets

cap(Ω) ∼
∫
Rn
|∇uΩ|2 dx ∼

∫ 1

0

(∫
{uΩ=t}

|∇uΩ| dHn−1

)
dt.

The right-hand side of the latter equality, after some manipulation can be written in terms
of the perimeter of the superlevel sets {uΩ ≥ t}, i.e.

cap(Ω) ∼
∫ 1

0

P ({uΩ ≥ t})2f1(t) dt.

being f1 a suitably chosen real function depending only on the measure of {uΩ ≥ t}. The
idea is then to exploit the sharp quantitative isoperimetric inequality [FMP08, FMP10,
CL12]

dPer(E) ∼ |E|(n−1)/nP (E)− |B|(n−1)/nP (B) & A(E)2,

holding for any E ⊆ Rn in a suitable class and for any ball B ⊆ Rn. Plugging this into
the previous estimate, after some further manipulation, one gets

dcap(Ω) &
∫ 1

0

A({u ≥ t})2f2(t) dt,

where f2 is an explicit positive integrable function depending only on the size of the
superlevels of uΩ. Then we reason in the spirit of [AHN92]:

: heuristically, as long as t is close to ‖uΩ‖L∞(Rn) = 1 we expect the set {uΩ ≥ t} is close
to Ω in L1 and that A({uΩ ≥ t}) ∼ A(Ω), and then, the idea is to seek for a threshold T
such that at once

• A({u ≥ t}) ∼ A(Ω) as long as t ∈ (T, 1) and

• the quantity
∫ 1

T
f2(t) dt results proportional to a power of A(Ω).

The previous two properties lead directly to the sought inequality. A bit more precisely,
if the threshold T is such that 1 − T & A(Ω), then the above strategy works, while if
1−T . A(Ω), then the fact that the asymmetry is large (with respect to 1−T ) allows, by
a simple comparison argument, to get an asymptotically stronger inequality of the form

dcap(Ω) & A(Ω).
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In the fractional case the existence of a capacitary potential uΩ is guaranteed as well, see
Remark 2.2. However, the arguments described above cannot be directly implemented
in the fractional scenario, due to nonlocal effects. Indeed the very first step fails, since
a suitable coarea formula for non-integer Sobolev spaces is missing. A way to overcome
these difficulties is provided by the so called Caffarelli-Silvestre extension for functions
in fractional Sobolev spaces. Loosely speaking, this tool allows us to interpret nonlocal
energies of functions defined on Rn as local energies of functions depending on one more
variable. Namely, one can prove a characterization of the s-capacity in the fashion of

(1.11) caps(Ω) ∼ inf

{∫
Rn+1

+

z1−2s|∇U(x, z)|2 dx dz : U(x, 0) = uΩ(x)

}
,

where
Rn+1

+ := {(x, z) : x ∈ Rn, z > 0}
and U varies in a suitable functional space on Rn+1

+ . Moreover, one can prove that the
infimum in (1.11) is uniquely achieved by a function 0 ≤ UΩ ≤ 1. We refer to Section 2.2
for the precise setting and definitions. At this point, the above strategy may be applied
on every horizontal slice {(x, z) : x ∈ Rn} and with UΩ(·, z) in place of uΩ. This way, we
end up with

dcaps(Ω) &
∫ ∞

0

z1−2s

∫ 1

0

A({U(·, z) ≥ t})2fz(t) dt dz

where, again, fz is an explicit real-valued function depending on the measure of the
superlevels of U(·, z). Here it appears evident the extra inconvenience due to the presence
of the integral in the z−variable. To get rid of this latter problem, we adapt ideas
in [BCV20] to show the existence of a good interval (0, z0), for which the (asymmetries of
the) superlevels of UΩ(·, z) are close to (those of) the superlevels of uΩ, leading to

dcaps(Ω) &
∫ z0

0

z1−2s

∫ 1

0

A({UΩ(·, z) ≥ t})2fz(t) dt dz

∼
∫ 1

0

A({uΩ ≥ t})2fz(t) dt

and hence conclude similarly as in the classical local case.

2. Preliminaries

In this section we introduce some prerequisites that are necessary in order to prove our
main result.

2.1. The fractional capacity. First of all, we precisely define the functional setting we
work in. For any open set O ⊆ Rn, we consider the homogeneous fractional Sobolev space
Ds,2(O), defined as the completion of C∞c (O) with respect to the Gagliardo seminorm of
order s

[u]s =

(∫
R2n

|u(x)− u(y)|2

|x− y|n+2s dx dy

) 1
2

.

The spaceDs,2(O) is an Hilbert space, naturally endowed with the following scalar product

(u, v)Ds,2(Rn) :=

∫
R2n

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s dx dy.
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Moreover, by trivial extension we have that Ds,2(O) is continuously embedded in Ds,2(Rn).
We refer to [BS19] and [BGCV21] for more details concerning fractional homogeneous
spaces and their characterizations. We limit ourselves to recall the fractional Sobolev
inequality, which reads as follows:

(2.1) Sn,s ‖u‖2
L2∗s (Rn) ≤ [u]2s for all u ∈ Ds,2(Rn),

where

2∗s :=
2n

n− 2s
denotes the critical Sobolev exponent in the fractional framework and Sn,s > 0 denotes
the best constant in the inequality. In particular, this result ensures the continuity of the
embedding

Ds,2(Rn) ↪→ L2∗s(Rn)

and it provides the following characterization

(2.2) Ds,2(Rn) = {u ∈ L2∗s(Rn) : [u]s <∞}.
We refer to [CT04, Theorem 1.1] (see also [SV11, Theorem 7] in the Appendix) and
to [BGCV21, Theorem 3.1] for the proofs of (2.1) and (2.2), respectively.

We now introduce the definition of fractional capacity of a closed subset of Rn.

Definition 2.1. Let Ω ⊆ Rn be closed and let ηΩ ∈ C∞c (Rn) be such that ηΩ = 1 in an
open neighbourhood of Ω. We define the fractional capacity of order s (or s-capacity) of
the set Ω as follows:

caps(Ω) := inf{[u]2s : u ∈ Ds,2(Rn), u− ηΩ ∈ Ds,2(Rn \ Ω)}.

First of all, we point out that the above definition does not depend on the choice of
the cut-off function ηΩ. Indeed, if η̃Ω ∈ C∞c (Rn) satisfies η̃Ω = 1 in a neighbourhood of Ω,
then trivially

ηΩ +Ds,2(Rn \ Ω) = η̃Ω +Ds,2(Rn \ Ω).

We also observe that, if Ω ⊆ Rn is a compact set, then, by a simple regularization
argument, one can easily prove that

caps(Ω) = inf{[u]2s : u ∈ C∞c (Rn), u ≥ 1 in Ω}.
We also point out that it is not restrictive to assume that the admissible competitors u
in the definition of caps(Ω) satisfy

0 ≤ u ≤ 1, a.e. in Rn,

since
[u+ ∧ 1]s ≤ [u]s for all u ∈ Ds,2(Rn),

where u+ denotes the positive part of u and a ∧ b = min{a, b}. We refer to lemmas 2.6
and 2.7 in [War15] for the proofs.

Remark 2.2. By direct methods of the calculus of variations, it is easy to check that
caps(Ω) is uniquely achieved (when caps(Ω) < ∞) by a function u ∈ Ds,2(Rn) such that
u − ηΩ ∈ Ds,2(Rn \ Ω). Hereafter, we denote such function by uΩ and we call it the
s-capacitary potential (or simply the capacitary potential) associated to Ω. Moreover, it
is easy to observe that 0 ≤ uΩ ≤ 1 a.e. in Rn and that uΩ satisfies a variational equation,
that is

(uΩ, ϕ)Ds,2(Rn) = 0, for all ϕ ∈ Ds,2(Rn \ Ω).
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The notion of s-capacity of a set is in relation with the fractional Laplace operator of
order s, which is defined, for u ∈ C∞c (Rn), as follows

(−∆)su(x) : = 2 P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s dy

= 2 lim
r→0+

∫
{|x−y|>r}

u(x)− u(y)

|x− y|n+2s dy,

where P.V. means that the integral has to be seen in the principal value sense. It is natural
to extend the definition of fractional Laplacian applied to any function in Ds,2(Rn), in
a distributional sense. More precisely, given u ∈ Ds,2(Rn), we have that (−∆)su ∈
(Ds,2(Rn))∗ (with (Ds,2(Rn))∗ denoting the dual of Ds,2(Rn)) and it acts as follows

(Ds,2(Rn))∗〈(−∆)su, v〉Ds,2(Rn) = (u, v)Ds,2(Rn), for all v ∈ Ds,2(Rn).

Therefore, in view of Remark 2.2, we can say that the capacitary potential uΩ ∈ Ds,2(Rn)
weakly satisfies {

(−∆)suΩ = 0, in Rn \ Ω,

uΩ = 1, in Ω.

2.2. The extended formulation. The proof of our main result strongly relies on an
extension procedure for functions in fractional Sobolev spaces, first established in [CS07],
which, in some sense, allows to avoid some nonlocal issues and recover a local framework.
Such a procedure is commonly called Caffarelli-Silvestre extension. In this paragraph,
we introduce the functional spaces emerging in the extended formulation and we discuss
some of their properties, also in relation with the s-capacity of a set. We remark that,
being the Caffarelli-Silvestre extension a classical tool nowadays, the results we present
here can be regarded as folklore. But still, up to our knowledge, there are no explicit
proofs available in the literature, hence we decided to report them here.

For any closed set K ⊆ ∂Rn+1
+ ' Rn, we define the space D1,2(Rn+1

+ \K; z1−2s) as the

completion of C∞c (Rn+1
+ \K) with respect to the norm

‖U‖D1,2(Rn+1
+ \K;z1−2s)

:=

(∫
Rn+1

+

z1−2s |∇U |2 dx dz

) 1
2

.

However hereafter we simply write D1,2
z (Rn+1

+ \K) in place of D1,2(Rn+1
+ \K; z1−2s).

We have that D1,2
z (Rn+1

+ \K) is an Hilbert space with respect to the scalar product

(U, V )D1,2
z (Rn+1

+ \K)
:=

∫
Rn+1

+

z1−2s∇U · ∇V dx dz.

First of all we shot that the space D1,2
z (Rn+1

+ \K) is a well defined functional space, which
is not obvious. In order to prove that, it is sufficient to prove that it is the case for

D1,2
z (Rn+1

+ ), in view of the continuous embedding

D1,2
z (Rn+1

+ \K) ↪→ D1,2
z (Rn+1

+ ).



8 ELEONORA CINTI, ROBERTO OGNIBENE, AND BERARDO RUFFINI

To show this, we first recall by [DMV17, Proposition 3.3] the following weighted Sobolev
inequality
(2.3)(∫

Rn+1
+

z1−2s |U |2γ dx dz

) 1
2γ

≤ S ′n,s

(∫
Rn+1

+

z1−2s|∇U |2 dx dz

) 1
2

for all U ∈ D1,2
z (Rn+1

+ ),

where S ′n,s is a positive constant and γ := 1 + 2
n−2s

. In particular this inequality yields
the following continuous embedding

D1,2
z (Rn+1

+ ) ↪→ L2γ(Rn+1
+ ; z1−2s),

where

L2γ(Rn+1
+ ; z1−2s) :=

{
U ∈ L1

loc(Rn+1
+ ) :

∫
Rn+1

+

z1−2s |U |2γ dx dz <∞

}
.

We now provide a characterization of D1,2
z (Rn+1

+ ) as a concrete functional space.

Proposition 2.3. The space D1,2
z (Rn+1

+ ) is a functional space. In particular there holds

D1,2
z (Rn+1

+ ) =
{
U ∈ L2γ(Rn+1

+ ; z1−2s) : ‖U‖D1,2
z (Rn+1

+ )
< +∞

}
.

Proof. The fact that

D1,2
z (Rn+1

+ ) ⊆
{
U ∈ L2γ(Rn+1

+ ; z1−2s) : ‖U‖D1,2
z (Rn+1

+ )
< +∞

}
immediately follows from (2.3). We now prove the reverse inclusion. Namely, we show
that any function

(2.4) U ∈ L2γ(Rn+1
+ ; z1−2s)

such that

(2.5) ‖U‖D1,2
z (Rn+1

+ )
< +∞

can be approximated by functions in C∞c (Rn+1
+ ) in the topology induced by the norm

‖·‖D1,2
z (Rn+1

+ )
. First, suppose that U is compactly supported in Rn+1

+ and let

Ũ(x, z) :=

{
U(x, z), if z > 0,

U(x,−z), if z < 0.

Moreover, we let {ρε}ε>0 be a family of mollifiers3 in Rn+1 and we set

Uε = Ũ ? ρε ∣∣Rn+1
+

.

Clearly Uε pointwisely converge to U in Rn+1, as ε → 0. Moreover it is equibounded in

D1,2
z (Rn+1

+ ). Thus we easily conclude by means of the dominated convergence theorem. We
consider now the general case. Fix ε > 0 and let UR = UηR where ηR is the restriction to

Rn+1
+ of a radial, smooth cut-off function defined on Rn+1 such that ηR = 1 on BR, ηR = 0

on Rn+1 \ B2R and supRn+1 |∇ηR| ≤ 4R−1. Since, UR ∈ D1,2
z (Rn+1

+ ), by the previous step

3We call mollifier a smooth, symmetric decreasing, positive and compactly supported function, which
converges in distribution to a centered Dirac measure δ, as ε→ 0, and such that ‖ρε‖L1(Rn+1) = 1.
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there exists VR ∈ C∞c (Rn+1
+ ) such that ‖UR − VR‖D1,2

z (Rn+1
+ )
≤ ε/2, so that, by triangular

inequality

‖U − VR‖D1,2
z (Rn+1

+ )
≤ ‖U − UR‖D1,2

z (Rn+1
+ )

+
ε

2
.

We are left to show that UR → U in D1,2
z (Rn+1

+ ), as R→∞. In view of the properties of
ηR, we have that

‖U − UR‖2

D1,2
z (Rn+1

+ )
=

∫
Rn+1

+

z1−2s|∇U −∇(UηR)|2 dx dz

≤ 2

∫
Rn+1

+

z1−2s|∇U − ηR∇U |2 dx dz + 2

∫
Rn+1

+

z1−2s|U∇ηR|2 dx dz

≤ 2

∫
Rn+1

+ \B+
R

z1−2s|∇U |2 dx dz +
32

R2

∫
B+

2R\B
+
R

z1−2s |U |2 dx dz,

where B+
r := Br ∩ Rn+1

+ . Thanks to (2.5), the first term on the right-hand side in the
above inequalities is infinitesimal as R tends to infinity, so it can be chosen smaller than
ε/4. For what concerns the second term, by Hölder inequality we obtain that∫
B+

2R\B
+
R

z1−2s |U |2 dx dz ≤

(∫
B+

2R\B
+
R

z1−2s dx dz

)(γ−1)/γ (∫
B+

2R\B
+
R

z1−2s |U |2γ dx dz

)1/γ

.

By (2.4) we have that ∫
B+

2R\B
+
R

z1−2s |U |2γ dx dz → 0, as R→∞,

while, by an explicit computation, also recalling that γ = 1 + n
n−2s

one gets that

sup
R≥1

1

R2

(∫
B+

2R\B
+
R

z1−2s dx dz

)(γ−1)/γ

< +∞.

Hence we can choose R large enough so that

16

R2

∫
B+

2R\B
+
R

z1−2sU2 dx dz ≤ ε/4,

and conclude that

‖U − VR‖D1,2
z (Rn+1

+ )
≤ ε.

�

Another fundamental fact that relates the space D1,2
z (Rn+1

+ ) with Ds,2(Rn) is the exis-
tence of a trace map from the former to the latter. Before stating the precise result, we
recall the following classical Hardy inequality, whose proof can be found e.g. in [HLP52].

Lemma 2.4. Let p ∈ (1,∞) and a < 1. Then there exists a constant C(p, a) > 0 such
that ∫ ∞

0

ρa
∣∣∣∣1ρ
∫ ρ

0

f(t) dt

∣∣∣∣p dρ ≤ C(p, a)

∫ ∞
0

ρa |f(ρ)|p dρ,

for all f ∈ C∞c ([0,∞)).
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Proposition 2.5. There exists a linear and continuous trace operator

Tr: D1,2
z (Rn+1

+ )→ Ds,2(Rn)

such that Tr(U)(x) = U(x, 0) for every U ∈ C∞c (Rn+1
+ ).

Proof. Throughout the proof, we assume the space Ds,2(Rn) to be endowed with the
following norm

[u]s,# :=

(
n∑
i=1

[u]2s,i

) 1
2

.

where

[u]2s,i :=

∫ ∞
0

∫
Rn

|u(x+ ρei)− u(x)|2

ρ1+2s
dx dρ,

with ei denoting the unit vector in the positive xi variable. The norm [·]s,# is equivalent
to [·]s, as proved in [BCV20, Proposition B.1]. By density, it is sufficient to prove that
there exists C > 0 such that

(2.6) [U(·, 0)]s,# ≤ C ‖U‖D1,2
z (Rn+1

+ )
, for all U ∈ C∞c (Rn+1

+ ).

For U ∈ C∞c (Rn+1
+ ), x ∈ Rn and ρ > 0, we rewrite

U(x, 0) = U(x, ρ)−
∫ ρ

0

∂U

∂z
(x, t) dt,

U(x+ ρei, 0) = U(x+ ρei, ρ)−
∫ ρ

0

∂U

∂z
(x+ ρei, t) dt.

Therefore

|U(x+ ρei, 0)− U(x, 0)|2

ρ1+2s
≤ 2ρ1−2s |U(x+ ρei, ρ)− U(x, ρ)|2

ρ2

+ 2ρ1−2s

∣∣∣∣1ρ
∫ ρ

0

(
∂U

∂z
(x+ ρei, t)−

∂U

∂z
(x, t)

)
dt

∣∣∣∣2 .
If we integrate in the x variable we obtain∫

Rn

|U(x+ ρei, 0)− U(x, 0)|2

ρ1+2s
dx ≤ 2ρ1−2s

∫
Rn

∣∣∣∣∂U∂xi (x, ρ)

∣∣∣∣2 dx
+ 4ρ1−2s

∫
Rn

∣∣∣∣1ρ
∫ ρ

0

(
∂U

∂z
(x, t) dt

)∣∣∣∣2 dx,
where we used the fact that∫

Rn

|U(x+ ρei, ρ)− U(x, ρ)|2

ρ2
dx ≤

∫
Rn

∣∣∣∣∂U∂xi (x, ρ)

∣∣∣∣2 dx
for the first term and a change of variable for the second. By integration with respect to
ρ in (0,∞) and thanks to Lemma 2.4 (choosing p = 2 and a = 1− 2s) we infer

[U(·, 0)]2s,i ≤ 2

∫
Rn+1

+

ρ1−2s

∣∣∣∣∂U∂xi (x, ρ)

∣∣∣∣2 dx dρ+ C

∫
Rn+1

+

ρ1−2s

∣∣∣∣∂U∂z (x, ρ)

∣∣∣∣2 dx dρ,
for some constant C > 0 depending only on s. If we now sum for i = 1, . . . , n and take
the square root, we obtain (2.6), thus concluding the proof.
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�

The next step is to prove that the trace map introduced in the proposition above is
onto. We first introduce the Poisson kernel of the upper half-space Rn+1

+ , defined as

Pz(x) := cn,s
z2s

(|x|2 + z2)
n+2s

2

, for (x, z) ∈ Rn+1
+

where

(2.7) cn,s :=

(∫
Rn

1

(1 + |x|2)
n+2s

2

dx

)−1

= π−
n
2

Γ
(
n+2s

2

)
Γ(s)

,

is given in such a way that ∫
Rn
Pz(x) dx = 1, for all z > 0,

see [FMM11, Remark 2.2]. Essentially, a convolution with this kernel allows to extend
to the upper half-space Rn+1

+ functions that are defined on Rn. This is done first for
functions in C∞c (Rn) and then extended by density to the whole Ds,2(Rn). Namely, we
have the following.

Proposition 2.6. Let ϕ ∈ Ds,2(Rn). Then the function

(2.8) Uϕ(x, z) := (Pz ? ϕ)(x)

belongs to D1,2
z (Rn+1

+ ) and

(2.9) ‖Uϕ‖2

D1,2
z (Rn+1

+ )
= αn,s[ϕ]2s,

where

(2.10) αn,s :=
s(1− s)
π
n
2

Γ(1− s)Γ
(
n+2s

2

)
Γ(s)Γ(2− s)

> 0.

In particular the trace operator established in Proposition 2.5 is surjective.

Proof. For any ϕ ∈ C∞c (Rn), we let

(Eϕ)(x, z) := (Pz ? ϕ)(x).

It is easy to check that

(2.11) ‖Eϕ‖2

D1,2
z (Rn+1

+ )
=

∫
Rn+1

+

z1−2s |∇(Eϕ)|2 dx dz = αn,s[ϕ]2s.

For the computation of the explicit constant see e.g. [CS14, Remark 3.11]. Moreover, by
the weighted Sobolev inequality (2.3)∫

Rn+1
+

z1−2s |Eϕ|2γ dx dz <∞.

Hence, by Proposition 2.3, we have that Eϕ ∈ D1,2
z (Rn+1

+ ). Therefore the map

E: C∞c (Rn)→ D1,2
z (Rn+1

+ )

is linear and continuous, thus it can be uniquely extended in the whole Ds,2(Rn) and
(2.11) still holds. We now prove that Eϕ = Uϕ for any ϕ ∈ Ds,2(Rn). Let ϕ ∈ Ds,2(Rn)
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and (ϕi)i ⊆ C∞c (Rn) be such that ϕi → ϕ in Ds,2(Rn) as i → ∞. Thanks to (2.1), we
have that

ϕi → ϕ in L2∗s(Rn), as i→∞,
which, by definition, implies that

Eϕi = Uϕi → Uϕ pointwise in Rn+1
+ , as i→∞.

On the other hand Eϕi → Eϕ in D1,2
z (Rn+1

+ ) as i→∞; hence, up to a subsequence

Eϕi → Eϕ a.e. in Rn+1
+ , as i→∞.

Therefore Eϕ = Uϕ and the proof is complete.
�

The following corollary, in view of the previous results, tells us that there is an isome-

try between the space Ds,2(Rn) and the subspace of D1,2
z (Rn+1

+ ) containing the (unique)
minimizers of a certain functional.

Corollary 2.7. Let ϕ ∈ Ds,2(Rn). Then the minimization problem

min
U∈D1,2

z (Rn+1
+ )

{∫
Rn+1

+

z1−2s |∇U |2 dx dz : TrU = ϕ

}
admits a unique solution, which coincides with Uϕ as in (2.8). Moreover

−div(z1−2s∇Uϕ) = 0, in Rn+1
+ ,

Uϕ = ϕ, on Rn,

− lim
z→0+

z1−2s∂Uϕ
∂z

= αn,s(−∆)sϕ, on Rn,

in a weak sense, that is∫
Rn+1

+

z1−2s∇Uϕ · ∇V dx dz = αn,s(ϕ,TrV )Ds,2(Rn), for all V ∈ D1,2
z (Rn+1

+ ),

where αn,s > 0 is as in (2.10).

Proof. The proof is standard. For instance see [BCV20, Proposition 2.6] for the first part
and [CS07] for the second. �

Remark 2.8. In view of the extension procedure described above, we can relate the
notion of s-capacity with another notion of (weighted) capacity of sets in Rn+1. More
precisely, with a slight abuse of notation, we call D1,2

z (Rn+1) the completion of C∞c (Rn+1)
with respect to the norm

‖U‖D1,2
z (Rn+1) :=

(∫
Rn+1

|z|1−2s |∇U |2 dx dz
) 1

2

and, for any closed K ⊆ Rn+1, we let

capRn+1(K; |z|1−2s) := inf
{
‖U‖2

D1,2
z (Rn+1) : U ∈ D1,2

z (Rn+1), U − ζK ∈ D1,2(Rn+1 \K)
}
,

where ζK ∈ C∞c (Rn+1) is equal to 1 in a neighborhood of K. Thanks to (2.9), after an
even reflection in the z variable, one can see that

1

2
capRn+1(Ω; |z|1−2s) = αn,scaps(Ω).
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for any closed Ω ⊆ Rn. Moreover the unique function achieving capRn+1(Ω; |z|1−2s) coin-
cides with the even-in-z reflection of Pz ? uΩ, with uΩ ∈ Ds,2(Rn) denoting the capacitary
potential of caps(Ω), as in Remark 2.2.

Hereafter we denote by

UΩ(x, z) := (Pz ? uΩ)(x), for (x, z) ∈ Rn+1
+

the restriction to the upper half-space of the potential associated to cap(Ω; |z|1−2s). Hence,

UΩ ∈ D1,2
z (Rn+1

+ ) satisfies 0 ≤ UΩ ≤ 1 a.e. in Rn+1
+ and weakly solves

−div(z1−2s∇UΩ) = 0, in Rn+1
+ ,

UΩ = 1, on Ω,

− lim
z→0+

z1−2s∂UΩ

∂z
= 0, on Rn \ Ω,

in the sense that UΩ − ζΩ ∈ D1,2
z (Rn+1

+ \ Ω) and∫
Rn+1

+

z1−2s∇UΩ · ∇V dx dz = 0, for all V ∈ D1,2
z (Rn+1

+ \ Ω).

Thanks to [STV21, Theorem 1.1], we can observe that UΩ ∈ C∞(Rn+1
+ \ Ω). Hence, in

particular uΩ ∈ C∞(Rn \ Ω).

Remark 2.9. We emphasize a technical difference with respect to [BCV20]. Namely that
the functional setting we adopt here is tailored for the problem under investigation. In-
deed, being the s-capacity obtained by minimization of the (nonlocal) energy, it is natural
to expect the minimizer to have only finite seminorm [·]s, together with the possibility
of approximating it by means of smooth and compactly supported functions, at least for
compact Ω. Therefore, any other integrability assumption on the capacitary potential
appears as artificial. Observe that, differently from our Proposition 2.6 and Corollary 2.7,
in which the trace function ϕ needs just to belong to Ds,2(Rn), in the analogue extension
result Proposition 2.6 of [BCV20] an additional integrability assumption on ϕ is required.

2.3. Radial rearrangements and the isocapacitary inequality. This paragraph is
devoted to the isocapacitary inequality (1.7). The classical and simplest proof of the
(standard) isocapacitary inequality,

(2.12) |Ω|(2−n)/ncap(Ω) ≥ |B|(2−n)/ncap(B)

is by rearrangement: given any function u : Rn → R, its symmetric decreasing rearrange-
ment is the radial decreasing function u∗ : Rn → R such that |{u > t}| = |{u∗ > t}|. As
a consequence of the Pólya-Szegö inequality∫

Rn
|∇u|2 dx ≥

∫
Rn
|∇u∗|2 dx

applied to the capacitary potential of a closed Ω ⊆ Rn one can easily see that cap(Ω) ≥
cap(B) as long as |B| = |Ω| <∞, from which, by scaling (2.12) holds as well. Indeed, the
symmetric rearrangement of the capacitary potential of Ω coincides with the potential
of a ball with the same volume as Ω. Following this path, one can prove the fractional
isocapacitary inequality using symmetric rearrangements for the extended problem in
Rn+1

+ .
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As in [BCV20, FMM11], we define in Rn+1
+ the partial Schwartz symmetrization U∗ of

a nonnegative function U ∈ D1,2
z (Rn+1

+ ). By construction, the function U∗ is obtained by
taking for almost every z > 0, the n−dimensional Schwartz symmetrization of the map

x 7→ U(x, z).

More precisely: for almost every fixed z > 0, the function U∗(·, z) is defined to be the
unique radially symmetric decreasing function on Rn such that for all t > 0

|{U∗(·, z) > t}| = |{U(·, z) > t}|.

Proposition 2.10. Let ϕ ∈ Ds,2(Rn) be a nonnegative function and let Uϕ ∈ D1,2
z (Rn+1

+ )
as in (2.8). Then

U∗ϕ ∈ D1,2
z (Rn+1

+ )

and the following Pólya-Szegö type inequalities hold true∫
Rn+1

+

z1−2 s |∇U∗ϕ|2 dx dz ≤
∫
Rn+1

+

z1−2 s |∇Uϕ|2 dx dz,∫
Rn+1

+

z1−2 s |∂zU∗ϕ|2 dx dz ≤
∫
Rn+1

+

z1−2 s |∂zUϕ|2 dx dz.(2.13)

Moreover, we have Tr(U∗ϕ) = ϕ∗. In particular, we get∫
Rn+1

+

z1−2 s |∇U∗ϕ|2 dx dz ≥ αn,s[ϕ
∗]2Ds,2(Rn).

Proof. By density, it is enough to show the result for ϕ ∈ C∞c (Rn). In that case, the proof
follows directly by [BCV20, Proposition 3.2]. �

Now, a proof of the fractional isocapacitary inequality (1.7) can be obtained as a direct
consequence the previous result, applied to ϕ = uΩ, and Remark 2.8.

3. Proof of the main result

In this Section we give the proof of our main result. The idea consists in introducing
quantitative elements in the proof of the isocapacitary inequality established in the pre-
vious section. As already explained in the Introduction, the major inconvenience when
working with the extended problem in Rn+1

+ consists in the fact that we need to transfer in-
formation on the superlevel sets of the extension of the capacitary potential {UΩ(·, z) ≥ t}
for fixed z > 0, to information on the superlevel sets of its trace uΩ in Rn. This was done
in Section 4 of [BCV20] for a problem concerning the stability of the first eigenvalue of
the Dirichlet fractional Laplacian.

We start by recalling the following technical result, whose proof can be found in [BCV20,
Lemma 4.1].

Lemma 3.1. Let Ω, E be two measurable subsets of Rn of finite measure and such that

|Ω∆E|
|Ω|

≤ δ

3
A(Ω),

for some δ ∈ (0, 1). Then

A(E) ≥ CδA(Ω),
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where

(3.1) Cδ :=
3− 2δ

3 + 2δ
.

The following lemma corresponds to Proposition 2.6 of [BCV20]. Observe that, here,
the extension Uϕ(·, z) of a function ϕ ∈ Ds,2(Rn) does not belong to L2(Rn) for fixed
z ≥ 0; nevertheless, with the same computations as in [BCV20], we can show that it is
close enough (depending on z) in L2 to its trace u. We report a proof of the lemma for
the sake of completeness.

Lemma 3.2. For any ϕ ∈ Ds,2(Rn), denoting by Uϕ ∈ D1,2
z (Rn+1

+ ) its extension, there
holds

‖Uϕ(·, z)− ϕ‖L2(Rn) ≤
√
cn,s[ϕ]s z

s, for z > 0,

where cn,s is given in (2.7).

Proof. We first prove the following preliminary fact
(3.2)∫

Rn
Pz(y) ‖τyϕ− ϕ‖L2(Rn) dy ≤

√
cn,sz

s[ϕ]s <∞ for all ϕ ∈ Ds,2(Rn) and all z ≥ 0.

Indeed, multiplying and dividing by |y|(n+2s)/2 and applying Cauchy-Schwartz inequality
yields∫

Rn
Pz(y) ‖τyϕ− ϕ‖L2(Rn) dy ≤

(∫
Rn
Pz(y)2 |y|n+2s dy

) 1
2

(∫
Rn

∥∥∥∥τyϕ− ϕ|y|s
∥∥∥∥2

L2(Rn)

dy

|y|n

) 1
2

=

(∫
Rn
Pz(y)2 |y|n+2s dy

) 1
2

[ϕ]s,

where, in the last step, we used the fact that∫
Rn

∥∥∥∥τyϕ− ϕ|y|s
∥∥∥∥2

L2(Rn)

dy

|y|n
= [ϕ]2s.

The proof of (3.2) ends by observing that(∫
Rn
Pz(y)2 |y|n+2s dy

) 1
2

=
√
cn,sz

s.

Let us now consider ϕ ∈ Ds,2(Rn). By definition of Uϕ and Minkowski’s inequality we
have that

‖(Uϕ(·, z)− ϕ)χBR‖L2(Rn) ≤
∫
Rn
Pz(y) ‖τyϕ− ϕ‖L2(BR) dy,

for any R > 0, where χBR denotes the characteristic function of the ball BR. We conclude
the proof applying Fatou’s Lemma for R → ∞ and combining the resulting inequality
with (3.2). �

The following result allows us to focus on compact sets without loss of generality.
Therefore hereafter in this section we always assume Ω ⊆ Rn to be a compact set.
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Lemma 3.3 (Reduction to compact sets). Let Ω ⊆ Rn be a closed set with finite measure.
Then

lim
r→∞

caps(Ω ∩Br) = caps(Ω) and lim
r→∞
A(Ω ∩Br) = A(Ω),

where Br := {x ∈ Rn : |x| < r}.

Proof. The convergence of the capacity follows from the fact that, for any sequence of
closed sets Ωi ⊆ Rn such that Ωi ⊆ Ωi+1, there holds

caps(∪∞i=1Ωi) = lim
i→∞

caps(Ωi)

which, in turn, can be proved by following step by step the proof of [EG15, Theorem 4.15,
Point (viii)]. The rest of the proof is easy and can be omitted. �

Hereafter in this section, for 0 ≤ t ≤ 1 and z ≥ 0, we let

Ωt,z := {x ∈ Rn : UΩ(x, z) ≥ t} and Ωt := Ωt,0 = {x ∈ Rn : uΩ(x) ≥ t}.
We notice that, by the continuity of uΩ, it follows that |Ωt∆Ω| → 0, as t→ 1−. Moreover,
we set, respectively

µz(t) := |Ωt,z| and µ(t) := µ0(t) = |Ωt|.
We immediately observe that µ is left-continuous and non-increasing in (0, 1) and that

lim
t→0+

µ(t) = +∞ and lim
t→1−

µ(t) = |Ω|,

where the last equality is a consequence of the weak maximum principle. We now let

T = T (Ω, γ) = inf {0 ≤ t ≤ 1: |{uΩ ≥ t}| ≤ |Ω| (1 + γA(Ω))} ,(3.3)

= inf {0 ≤ t ≤ 1: µ(t) ≤ |Ω| (1 + γA(Ω))} ,
The constant γ is chosen in (0, 1/9) and will be settled later on. Notice that if A(Ω) > 0
then T < 1. In addition, in view of the left-continuity of µ, we know that

(3.4) µ(T ) ≥ |Ω| (1 + γA(Ω)).

The following proposition, which will be crucial in the proof of our main result, allows
to bound from below the asymmetry of the superlevel sets of UΩ(·, z) with the asymmetry
of Ω (for certain levels t and for z small enough).

Proposition 3.4. Let Ω be such that A(Ω) > 0, γ ∈ (0, 1/9), and let T ∈ (0, 1) as in

(3.3). Set also T̂ = 1− T . Then, letting cn,s be as in (2.7), if

T +
1

8
T̂ ≤ t ≤ T +

3

8
T̂ and 0 < z ≤ z0 :=

(
T̂

16

√
γA(Ω)|Ω|
cn,scaps(Ω)

) 1
s

,

we have

(3.5)

∣∣∣∣∣Ωt,z

∣∣− |Ω|∣∣∣
|Ω|

≤ 3γA(Ω),

and

(3.6) A
(
Ωt,z

)
≥ cγA(Ω),

where cγ = C3γ and C3γ is as in (3.1).
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Proof. Let τ = T + T̂
2
. First of all, we observe that, by triangle inequality

(3.7)

||Ωt,z| − |Ω||
|Ω|

≤|Ωt,z∆Ω|
|Ω|

=
|Ωt,z \ Ω|
|Ω|

+
|Ω \ Ωt,z|
|Ω|

≤
|Ωt,z \ Ω

T+ T̂
16

|

|Ω|
+
|Ω

T+ T̂
16

\ Ω|

|Ω|
+
|Ω \ Ωt,z|
|Ω|

≤
|Ωt,z \ Ω

T+ T̂
16

|

|Ω|
+ γA(Ω) +

|Ωτ \ Ωt,z|
|Ω|

.

where, in the last inequality we used the definition of T and the facts that T + T̂
16
> T

and Ω ⊆ Ωτ . For x ∈ Ωτ \ Ωt,z we have that

uΩ(x)− UΩ(x, z) ≥ τ − t ≥ T +
T̂

2
− (T +

3

8
T̂ ) =

1

8
T̂ ,

which shows that Ωτ \Ωt,z ⊂ {|uΩ−UΩ(·, z)| ≥ 1
8
T̂}. Hence, using Chebichev’s inequality

and Lemma 3.2 with ϕ = uΩ, it holds that

|Ωτ \ Ωt,z|
|Ω|

≤
|{|uΩ − UΩ(·, z)| ≥ 1

8
T̂}|

|Ω|

≤ 64

|Ω|T̂ 2
‖uΩ − UΩ(·, z)‖2

L2(Rn) ≤
64cn,s[uΩ]2

|Ω|T̂ 2
z2s ≤ γA(Ω),

as long as z ≤
(
T̂
8

√
γA(Ω)|Ω|
cn,scaps(Ω)

) 1
s

. Similarly, one can check that

|Ωt,z \ Ω
T+ T̂

16

|

|Ω|
≤ γA(Ω).

as long as z ≤
(
T̂
16

√
γA(Ω)|Ω|
cn,scaps(Ω)

) 1
s

. This, together with (3.7) entails that

||Ωt,z| − |Ω||
|Ω|

≤3γA(Ω),

which proves (3.5). Finally, applying Lemma 3.1 (with δ = 3γ and γ chosen to be in
(0, 1/6)), we deduce (3.6). �

We can now give the proof of our main result.

Proof of Theorem 1.1. By scaling invariance, we may assume |Ω| = 1. We also fix γ =
10−1 ∈ (0, 1/9) throughout the proof. We have to prove that

(3.8) caps(Ω)− caps(B) ≥ Ccaps(B)A(Ω)
3
s ,

for some C > 0, where B is a ball with unit volume.
We start by observing that if caps(Ω) > 2caps(B), then, since A(Ω) ≤ 2, we easily

deduce that

caps(Ω)− caps(B) > caps(B) =
caps(B)

2
3
s

2
3
s ≥ caps(B)

2
3
s

A(Ω)
3
s ,

which proves (3.8) with C = 2−
3
s .
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Thus, we can just consider the case in which

caps(Ω) ≤ 2caps(B).

We recall that in (3.3), we have defined the level T as

T = inf {0 ≤ t ≤ 1: µ(t) ≤ |Ω| (1 + γA(Ω))} .

Notice that by Lemma 3.1 as long as 1 ≥ t ≥ T it holds

A(Ωt) ≥ cγA(Ω),

for some cγ independent of t and Ω.
We now distinguish between two cases, in terms of the relation of T with A(Ω). More

precisely, we let

(3.9) λ :=
n− 2s

n
γ and κ :=

λ

4(1 + 2λ)
.

We consider the ranges

1− T ≥ κA(Ω) and 1− T < κA(Ω).

Case 1− T ≥ κA(Ω). In this case we argue as in the proof of Proposition 4.4 and of

Theorem 1.3 (case T > T0) in [BCV20]. The idea consists in introducing quantitative
elements in the proof of the Pólya-Szegö inequality by applying the quantitative isoperi-
metric inequality on each (horizontal) level set Ωt,z of the function UΩ(·, z).

First, we recall that

caps(Ω) = [uΩ]2Ds,2(Rn) = α−1
n,s

∫
Rn+1

+

z1−2 s |∇xUΩ|2 dx dz + α−1
n,s

∫
Rn+1

+

z1−2 s |∂zUΩ|2 dx dz.

For what concerns the z-derivative, from (2.13) we know that∫
Rn+1

+

z1−2 s |∂zUΩ|2 dx dz ≥
∫
Rn+1

+

z1−2 s |∂zU∗Ω|
2 dx dz.

For the x-derivative, we argue as in the local case. By the coarea formula, we have

(3.10)

∫
Rn+1

+

z1−2 s |∇xUΩ|2 dx dz

=

∫ +∞

0

z1−2s

(∫ +∞

0

(∫
{x∈Rn :UΩ(x,z)=t}

|∇xUΩ|2
dHn−1(x)

|∇xUΩ|

)
dt

)
dz

≥
∫ +∞

0

z1−2s


∫ +∞

0

P (Ωt,z)
2∫

{x∈Rn :UΩ(x,z)=t}

dHn−1(x)

|∇xUΩ|

dt

 dz

where P (Ωt,z) denotes the perimeter of the set Ωt,z, and in the last step we have used
Jensen’s inequality. Using the quantitative isoperimetric inequality, one can prove that

(3.11) P (Ωt,z)
2 ≥ P (Ω∗t,z)

2 + cnµz(t)
2(n−1)
n A(Ωt,z)

2,
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where

Ω∗t,z := {x ∈ Rn : U∗Ω(x, z) ≥ t},

and

cn := 2ω
2
n
n

(2− 2
n−1
n )3

(181)2n12
.

The proof of (3.11) can be easily carried out by following [BDP17, Lemma 2.9], see also
the proof of Proposition 4.4 in [BCV20]. By definition of symmetric rearrangement, we
have that

µz(t) =
∣∣Ω∗t,z∣∣ for a.e. t ∈ (0, 1)

and, from Lemma 3.2 and inequality (3.19) in [CF02] (see also (2.6) in [FMP08]), we know
that

−µ′z(t) =

∫
{x∈Rn : U∗Ω(x,z)=t}

dHn−1(x)

|∇xU∗Ω|
≥
∫
{x∈Rn :UΩ(x,z)=t}

dHn−1(x)

|∇xUΩ|
.

Therefore, combining (3.10) and (3.11) with this last inequality, we can estimate the
L2-norm of the x-gradient as follows∫

Rn+1
+

z1−2 s |∇xUΩ|2 dx dz ≥
∫ +∞

0

z1−2s

(∫ +∞

0

P (Ω∗t,z)
2

−µ′z(t)
dt

)
dz

+ cn

∫ +∞

0

z1−2 s

∫ +∞

0

(
µz(t)

n−1
n

)2

A(Ωt,z)
2

−µ′z(t)
dt

 dz

=

∫
Rn+1

+

z1−2 s |∇xU
∗
Ω|2 dx dz

+ cn

∫ +∞

0

z1−2 s

∫ +∞

0

(
µz(t)

n−1
n

)2

A(Ωt,z)
2

−µ′z(t)
dt

 dz.

Moreover, we have seen in the proof of Theorem 2.10 that

α−1
n,s

∫
Rn+1

+

z1−2 s |∇U∗Ω|2 dx dz ≥ caps(B).

Collecting all together, we obtain

caps(Ω) = α−1
n,s

∫
Rn+1

+

z1−2 s |∇xUΩ|2 dx dz + α−1
n,s

∫
Rn+1

+

z1−2 s |∂zUΩ|2 dx dz

≥ caps(B) + α−1
n,scn

∫ +∞

0

z1−2 s

∫ +∞

0

(
µz(t)

n−1
n

)2

A(Ωt,z)
2

−µ′z(t)
dt

 dz
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We use now Proposition 3.4, to pass from A(Ωt,z) to A(Ω). Let z0 =
(
T̂
16

√
γA(Ω)|Ω|
cn,scaps(Ω)

) 1
s

be as in Proposition 3.4. Set also T̂ = 1− T . We have

caps(Ω)− caps(B) ≥ α−1
n,scn

∫ +∞

0

z1−2 s

∫ +∞

0

(
µz(t)

n−1
n

)2

A(Ωt,z)
2

−µ′z(t)
dt

 dz

≥ α−1
n,scn

∫ z0

0

z1−2 s

∫ T+ 3
8
T̂

T+ T̂
8

A(Ωt,z)
2

(
µz(t)

n−1
n

)2

−µ′z(t)
dt

 dz

≥ α−1
n,scn c

2
γ A(Ω)2

∫ z0

0

z1−2 s

∫ T+ 3
8
T̂

T+ T̂
8

(
µz(t)

n−1
n

)2

−µ′z(t)
dt

 dz,

where, in the last inequality, we used (3.6). It remains to estimate the term

(3.12)

∫ z0

0

z1−2 s

∫ T+ 3
8
T̂

T+ T̂
8

(
µz(t)

n−1
n

)2

−µ′z(t)
dt dz.

First, we observe that, since γ < 1/9, using (3.5) and the fact that A(Ω) ≤ 2, we have

µz(t) ≥ 1− 3γA(Ω) ≥ 1

3
.

Hence, in order to estimate (3.12), it is enough to control from below the quantity∫ z0

0

z1−2 s

∫ T+ 3
8
T̂

T+ T̂
8

1

−µ′z(t)
dt dz.

By Jensen inequality and recalling the definition of µz, we have∫ T+ 3
8
T̂

T+ T̂
8

1

−µ′z(t)
dt ≥ T̂ 2

16

1∫ T+ 3
8
T̂

T+ T̂
8

−µ′z(t) dt
≥ T̂ 2

16

1

|Ω
T+ T̂

8
,z
| − |ΩT+ 3

8
T̂ ,z|

.

Using again (3.5), we deduce that

|Ω
T+ T̂

8
,z
| − |ΩT+ 3

8
T̂ ,z| ≤ 1 + 3γA(Ω)− (1− 3γA(Ω)) = 6γA(Ω).

We can now estimate (3.12) as follows

∫ z0

0

z1−2 s

∫ T+ 3
8
T̂

T+ T̂
8

(
µz(t)

n−1
n

)2

−µ′z(t)
dt dz ≥ C1

T̂ 2

A(Ω)

∫ z0

0

z1−2 s dz,

where C1 > 0 depends only on n and γ. This, in turn, yields the following estimate for
the capacity variation

caps(Ω)− caps(B) ≥ C2

αn,s
A(Ω)T̂ 2

∫ z0

0

z1−2 s dz,
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with C2 > 0 depending only on n and γ. Finally, recalling the definition of z0 (in

Proposition 3.4) and that we are in the ranges caps(Ω) ≤ 2caps(B) and T̂ = 1 − T ≥
κA(Ω), we obtain

caps(Ω)− caps(B) ≥ C3

αn,s

(
C4

cn,s

) 1
s
−1

1

(1− s)caps(B)
1
s

caps(B)A(Ω)
1
s T̂

2
s

≥ κ
2
sC3

αn,s

(
C4

cn,s

) 1
s
−1

1

(1− s)caps(B)
1
s

caps(B)A(Ω)
3
s ,

with C3, C4 > 0 depending on n and γ. In particular, given γ = 10−1 it is possible to see
that

(3.13) C3 =
5

35(181)2

(3ωn)
2
n

n12
(1− 2−

1
n )3.

Therefore (3.8) holds with

C =
κ

2
sC3

αn,s

(
C4

cn,s

) 1
s
−1

1

(1− s)caps(B)
1
s

.

Case 1− T < κA(Ω) In this case we get the quantitative inequality by means of a suitable
test function for the definition of caps. Let us define

wT = min
{

1,
uΩ

T

}
.

It is possible to see that wT is an admissible competitor for caps(ΩT ). Indeed, let ξk :=

ξ̃k ? ρ 1
2k

, where ρε denotes a standard mollifier in R and ξ̃k : R→ R is defined as follows

ξ̃k(σ) :=


0, if σ ≤ 1

k
,

k
k−2

(
σ − 1

k

)
, if 1

k
≤ σ ≤ 1− 1

k
,

1, if σ ≥ 1− 1
k
.

It is clear that ξk ∈ C∞(R) and that

ξk(σ)→ min{σ+, 1}, uniformly as k →∞.
Moreover, if we let wk := ξk ◦ wT , one can see that wk ∈ Ds,2(Rn) and, thanks to the
continuity of wT , that wk = 1 in an open Ωk ⊇ ΩT , thus implying that wk − ηΩT ∈
Ds,2(Rn \ ΩT ), being ηΩT ∈ C∞c (Rn) such that ηΩT = 1 in a neighbourhood of ΩT .
Finally, it is easy to check that wk → wT in Ds,2(Rn) as k → ∞, which means that
wT − ηΩT ∈ Ds,2(Rn \ ΩT ). Therefore, we have

caps(ΩT ) ≤ [wT ]2s ≤
1

T 2
[uΩ]2s =

1

T 2
caps(Ω).

From the previous inequality, the isocapacitary inequality (1.7) and (3.4) we obtain that

(3.14) caps(Ω) ≥ T 2caps(B)|ΩT |
n−2s
n ≥ T 2caps(B) (1 + γA(Ω))

n−2s
n .

By convexity, we know that

(3.15) T 2 ≥ 1− 2(1− T ) ≥ 1− 2κA(Ω)

and that

(3.16) (1 + γA(Ω))
n−2s
n ≥ 1 + λA(Ω),
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with λ as in (3.9). By the definition of λ and κ, as in (3.9), we derive that

(3.17) (1− 2κA(Ω))(1 + λA(Ω)) ≥ 1 +
λ

2
A(Ω) ≥ (1 + C5A(Ω)

3
s ),

with

C5 := 2−
3
sλ

Putting together (3.14) with (3.15), (3.16) and (3.17), we obtain (3.8) with C = C5, thus
concluding the proof.

�

Remark 3.5. By carefully scanning the proof of Theorem 1.1, one can explicitly find the
constant Cn,s appearing in (1.8), which amounts to

Cn,s = max

{
2−

3
s ,
κ

2
sC3

αn,s

(
C4

cn,s

) 1
s
−1

1

(1− s)caps(B)
1
s

}
,

where κ is as in (3.9), and C3, C4 depend only on n (indeed their dependence on γ stated
in the proof of Theorem 1.1 is actually pointless, being γ universally fixed in (0, 1/9),
see (3.13) for the explicit value of C3). The constants αn,s and cn,s are as in (2.10) and
(2.7), respectively, and they are uniformly bounded away from 0 and +∞ as s → 1−,
see [BCV20, Remark 2.7]. Moreover, it can be easily checked that this fact holds true for
the constant κ as well, by its definition, when n ≥ 3.

4. Asymptotics as s↗ 1

In this section we prove Thereom 1.2. We recall the definition of the standard (New-
tonian) capacity of a closed Ω ⊆ Rn for n ≥ 3, which is equivalent to (1.2) when Ω is a
compact set

(4.1) cap(Ω) = inf

{∫
Rn
|∇u|2 dx : u ∈ D1,2(Rn) and u− ηΩ ∈ D1,2(Rn \ Ω)

}
,

where ηΩ ∈ C∞c (Rn) is such that ηΩ = 1 in an open neighbourhood of Ω and, for any
open O ⊆ Rn, the space D1,2(O) is defined as the completion of C∞c (O) with respect to
the norm

u 7→
(∫
O
|∇u|2 dx

)1/2

.

We also recall that, when O is bounded, then the space D1,2(O) coincide with the usual
Sobolev space W 1,2

0 (O), thanks to the validity of the Poincaré inequality.

Proof of Proposition 1.2. Proof of (1.9). The first part of the statement follows easily
by a celebrated result by Bourgain-Brezis-Mironescu stating that

lim
s↗1

(1− s) [ϕ]2s =
ωn
2

∫
Rn
|∇ϕ|2 dx, for every ϕ ∈ C∞c (Rn).

Indeed, by taking a function ϕ ∈ C∞c (Rn) satisfying ϕ ≥ χΩ, we deduce that

lim sup
s↗1

(1− s) caps(Ω) ≤ lim
s↗1

(1− s) [ϕ]2s =
ωn
2

∫
Rn
|∇ϕ|2 dx.

Finally, (1.9) follows by taking the infimum over all admissible ϕ.
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Proof of (1.10). Let us fix s0 ∈ (0, 1) and let us denote by us,Ω the s-capacitary potential
of the set Ω. Since Ω is compact, there exists a ball BR0 which contains Ω. Hence, we
have that

us,Ω ≤ us,BR0
a.e. in Rn.

This can be easily proved by taking the Kelvin transform of the above functions and
applying the maximum principle as in [BV16, Theorem 3.3.2]. We can now take advantage
of the following precise decay rate of us,BR0

, established in [BMS16, Proposition 3.6]:

(4.2) us,Ω(x) ≤ us,BR0
(x) ≤ 2Rn−2s

0

|x|n−2s
, for |x| > R0.

Let us define an almost optimal function, given by a suitable truncation of us,Ω. For any
fixed ε > 0, we set

uεs,Ω :=
(us,Ω − ε)+

1− ε
.

We claim that uεs,Ω ∈ Ds,2(Rn) and uεs,Ω − ηΩ ∈ Ds,2(Rn \ Ω), with ηΩ ∈ C∞c (Rn) being

such that ηΩ = 1 in an open neighbourhood of Ω. Indeed, since us,Ω − ηΩ ∈ Ds,2(Rn \Ω),
there exists a sequence {vk}k ⊆ C∞c (Rn \ Ω) such that vk → us,Ω − ηΩ in Ds,2(Rn) as
k → ∞. If we now let uk := vk + ηΩ we have that uk ∈ C∞c (Rn) and uk = 1 in an open
Ωk ⊇ Ω. Now, if we consider the function

uεk :=
(uk − ε)+

1− ε
we have that uεk ∈ Ds,2(Rn) and uεk − ηΩ ∈ Ds,2(Rn \Ω). Moreover, uεk → uεs,Ω in Ds,2(Rn)
as k →∞, thus proving the claim. We also observe that the family {uεs,Ω}s∈(s0,1) satisfies
the following properties:

(1) there exists R̄ = R̄(ε) > 0, depending only on ε, such that

supp uεs,Ω ⊂ BR̄ for any s ∈ (s0, 1).

This follows by the upper bound (4.2): we choose R̄ >
(

2Rn−2s
0

ε

) 1
n−2

with R0 being

such that Ω ⊆ BR0 . In particular, this implies that uεs,Ω ∈ W̃
s,2
0 (BR̄), where, for

any open O ⊆ Rn we denote

W̃ s,2
0 (O) :=

{
u ∈ L1

loc(Rn) : [u]s <∞ and u = 0 in Rn \ O
}
,

which, in case O is bounded and has Lipschitz boundary, coincides with the space
Ds,2(O), see [BPS16, Proposition B.1];

(2) there holds

(4.3) (1− s)[uεs,Ω]2s ≤ (1− s) [us,Ω]2s
(1− ε)2

≤ C1,

for any ε > 0 and s ∈ (s0, 1), with C1 > 0 independent of ε and s. This is a direct
consequence of (1.9).

Hence we can apply [BPS16, Proposition 3.6] to the family {uεs,Ω}s∈(s0,1) to deduce that
there exists an increasing sequence sk ∈ (s0, 1) converging to 1 and a function uεΩ ∈
W 1,2

0 (BR̄) such that

lim
k→∞
‖uεsk,Ω − u

ε
Ω‖L2(BR̄) = 0.
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Analogously, being Ω a Lipschitz domain, we know that uεs,Ω − ηΩ ∈ W̃ s,2
0 (BR̄ \ Ω) and

that

(1− s)[uεs,Ω − ηΩ]2s ≤ C2

for all ε > 0 and s ∈ (s0, 1), with C2 > 0 independent of ε and s. Therefore, we can
apply [BPS16, Proposition 3.6] to the family {uεs,Ω−ηΩ}s∈(s0,1) as well, and this entails the

existence of a (not relabeled) subsequence sk ∈ (s0, 1) and of a function vεΩ ∈ W
1,2
0 (BR̄\Ω)

such that

lim
k→∞
‖uεsk,Ω − ηΩ − vεΩ‖L2(BR̄) = 0,

where the functions are trivially extended in Ω. As a consequence, we obtain that

uεΩ − ηΩ = vεΩ ∈ W
1,2
0 (BR̄ \ Ω),

which, in turn, implies that the trivial extension of uεΩ to the whole Rn is an admissible
competitor for cap(Ω). Hence we have

ωn
2

cap(Ω) ≤ ωn
2

∫
Rn
|∇uεΩ|2 dx ≤ lim inf

s↗1
(1− s)[uεs,Ω]2s

≤ 1

(1− ε)2
lim inf
s↗1

(1− s)[us,Ω]2s,

where in the second inequality we have used the Γ-convergence result by Brasco, Parini,
Squassina (more precisely, Proposition 3.11 in [BPS16]) and in the last one (4.3). Finally,
we conclude by letting ε→ 0. �

Remark 4.1. Thanks to Theorem 1.2 it is possible to explicitly compute the limit as
s → 1− of the constant Cn,s as in Theorem 1.1, which coincides with the constant Cn
appearing in Corollary 1.3. Indeed, from the definitions of αn,s and cn,s, given in (2.10)
and (2.7) respectively, and the property of the Gamma function, it is easy to see that

lim
s→1−

αn,s = lim
s→1−

cn,s = π−
n
2 Γ

(
n+ 2

2

)
.

Moreover, if B denotes the unitary ball in Rn, in view of Theorem 1.2 we have that

lim
s→1−

(1− s)caps(B) =
ωn
2

cap(B) =
n(n− 2)

2
ω2
n,

see e.g. [MZ97, Theorem 2.8, point (i)] for the explicit value of cap(B). Thanks to these
facts, Remark 3.5 and basic calculus, it is easy to see that

Cn = lim
s→1−

Cn,s = max

{
2−3,

κ2
1C3π

n
2

Γ
(
n+2

2

) 2

n(n− 2)ω2
n

}
,

where

κ1 :=
λ1

4(1 + 2λ1)
, with λ1 :=

n− 2

10n
,

and C3 as in (3.13).
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[BGCV21] L. Brasco, D. Gómez-Castro, and J. L. Vázquez, Characterisation of homogeneous
fractional Sobolev spaces, Calc. Var. Partial Differential Equations 60 no. 2 (2021), Paper
No. 60, 40. MR 4225499. https://doi.org/10.1007/s00526-021-01934-6.

[BMS16] L. Brasco, S. Mosconi, and M. Squassina, Optimal decay of extremals for the fractional
Sobolev inequality, Calc. Var. Partial Differential Equations 55 no. 2 (2016), Art. 23, 32.
MR 3461371. https://doi.org/10.1007/s00526-016-0958-y.

[BPS16] L. Brasco, E. Parini, and M. Squassina, Stability of variational eigenvalues for the frac-
tional p-Laplacian, Discrete Contin. Dyn. Syst. 36 no. 4 (2016), 1813–1845. MR 3411543.
https://doi.org/10.3934/dcds.2016.36.1813.

[BS19] L. Brasco and A. Salort, A note on homogeneous Sobolev spaces of fractional order, Ann.
Mat. Pura Appl. (4) 198 no. 4 (2019), 1295–1330. MR 3987216. https://doi.org/10.1007/
s10231-018-0817-x.

[BV16] C. Bucur and E. Valdinoci, Nonlocal diffusion and applications, Lecture Notes of the
Unione Matematica Italiana 20, Springer, [Cham]; Unione Matematica Italiana, Bologna,
2016. MR 3469920. https://doi.org/10.1007/978-3-319-28739-3.

[CS14] X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maxi-
mum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire 31
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Email address: eleonora.cinti5@unibo.it

Dipartimento di Ingegneria meccanica, energetica, gestionale e dei trasporti, Univer-
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