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1. Introduction

The study of models of viscoelastic materials with memory has a long history that goes
back to Boltzmann ([1] and [2]) and Volterra ([17] and [18]). Recent results on this subject
can be found in [8], [11], [12], and [15]. For particular values of the parameters, the Maxwell
model for viscoelastic materials is governed by the following system of partial differential
equations in Q := Ω×[0, T ] with a memory term:

:u(t)− divp(C + V)Eu(t)q + div
´

∫ t

0

eτ−tVEu(τ) dτ
¯

= `(t), (1.1)

where Ω ⊂ Rd is the reference configuration, [0, T ] is the time interval, u(t), Eu(t), and
:u(t) are the displacement at time t , the symmetric part of its gradient, and its second
derivative with respect to time, C and V are the elasticity and viscosity tensors, and `(t)
is the external load at time t .

In this paper we study problem (1.1) with a prescribed time dependent growing crack Γt ,
t ∈ [0, T ] , namely

:u(t)− divp(C + V)Eu(t)q + div
´

∫ t

0

eτ−tVEu(τ) dτ
¯

= `(t) in Qcr, (1.2)

where Qcr := {(x, t) : t ∈ [0, T ], x ∈ Ω \ Γt} . Problem (1.2) is complemented by initial
conditions at t = 0 for u and 9u and by boundary conditions on ∂Ω and Γt .

The existence of a solution of (1.2) is proved in [14]. Our first result (Theorem 2.7) is
the uniqueness of the solution under strong regularity assumptions on the sets Γt and on
their dependence on t . More precisely, we assume the same regularity conditions that were
used in [6] and [3] to prove the uniqueness of the solution in Qcr of the problem without
the memory term, i.e.,

:u(t)− divp(C + V)Eu(t)q = `(t) in Qcr. (1.3)

To prove our uniqueness result we write problem (1.2) in the equivalent form

:u(t)− divp(C + V)Eu(t)q = `(t)− divFu(t) in Qcr, (1.4)

where

Fu(t) :=

∫ t

0

eτ−tVEu(τ) dτ.

1
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This allows us to estimate u in terms of Fu using the energy inequality for the solution of
(1.3). Then we estimate Fu in terms of u using just the definition of Fu . Uniqueness is
obtained from the combined estimate.

Our second result (Theorem 4.1) is the continuous dependence of the solutions of (1.2)
on the cracks. More precisely, we consider a sequence Γnt of time dependent cracks and
the solutions un of problem (1.2) with Γt replaced by Γnt . Under suitable assumption on
the convergence of Γnt to Γt we prove that the sequence un converges to the solution u
of (1.2). Our assumptions of Γnt are similar to those considered in [6] and [3] to prove the
corresponding result for (1.3).

To prove the continuous dependence we write our problem in the form (1.4) and we
regard un as a fixed point for a suitable operator depending on n , which is a contraction
if T is small enough. Under this assumption the convergence of un is a consequence of a
general results on fixed points of contractions (Lemma 4.2). To show that its hypotheses
are satisfied, we use the continuous dependence on the cracks of the solutions of problem
(1.3) (see [6] and [3]) and we obtain the result if T is small enough. If T is large we divide
the interval [0, T ] into smaller intervals where we can apply the previous result.

2. Formulation of the problem

The reference configuration of our problem is a bounded open set Ω ⊂ Rd , d ≥ 1,
with Lipschitz boundary ∂Ω. We assume that ∂Ω = ∂DΩ∪∂NΩ, where ∂DΩ and ∂NΩ are
disjoint (possibly empty) Borel sets, on which we prescribe Dirichlet and Neumann boundary
conditions respectively.

For every x ∈ Ω the elasticity tensor C(x) and the viscosity tensor V(x) are prescribed
elements of the space L(Rd×dsym;Rd×dsym) of linear maps from Rd×dsym into Rd×dsym , where Rd×dsym

is the space of reald d × d symmetric matrices. The euclidean scalar product between
the matrices A and B is denoted by A : B . We assume that the functions C, V: Ω →
L(Rd×dsym;Rd×dsym) satisfy the following properties, for suitable constants α0 > 0 and M0 > 0:

(H1) (regularity) C is of class C1 and maxx∈Ω|C(x)|≤M0 ;

(H2) (symmetry) C(x)A : B = A : C(x)B for every x ∈ Ω and A, B ∈ Rd×dsym ;

(H3) (coerciveness) C(x)A : A ≥ α0|A|2 for every x ∈ Ω and A ∈ Rd×dsym ;

(H4) (regularity) V is of class C1 and maxx∈Ω|V(x)|≤M0 ;

(H5) (symmetry) V(x)A : B = A : V(x)B for every x ∈ Ω and A, B ∈ Rd×dsym ;

(H6) (coerciveness) V(x)A : A ≥ α0|A|2 for every x ∈ Ω and A ∈ Rd×dsym .

Throughout the paper we study the problem in the time interval [0, T ] , with T > 0. For
t ∈ [0, T ] the crack at time t is given by a subset Γt of the intersection between Ω and a
suitable d− 1 dimensional manifold Γ (regarded as the crack path). We assume that

(H7) Γ is a complete (d− 1)-dimensional C2 manifold with boundary;

(H8) Ω ∩ ∂Γ = Ø and Hd−1(Γ ∩ ∂Ω) = 0, where Hd−1 denotes the (d− 1)-dimensianal
Hausdorff measure;

(H9) for every x ∈ Γ ∩ ∂Ω there exists an open neighborhood Ux of x in Rd such that
Ux ∩ (Ω \ Γ) is the union of two non empty disjoint open sets U+

x and U−x with
Lipschitz boundary;

(H10) Γt is closed, Γt ⊂ Γ ∩ Ω for every t ∈ [0, T ] , and Γs ⊂ Γt for every s < t
(irreversibility of the fracture process).

Moreover we assume that there exist Φ,Ψ : [0, T ]×Ω→ Ω with the following properties:

(H11) Φ,Ψ are of class C2,1 ;

(H12) Ψ(t,Φ(t, y)) = y and Φ(t,Ψ(t, x)) = x for every x, y ∈ Ω;
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(H13) Φ(t,Γ) = Γ, Φ(t,Γ0) = Γt, and Φ(t, y) = y for every t ∈ [0, T ] and every y in a
neighborhood of ∂Ω;

(H14) Φ(0, y) = y for every y ∈ Ω;

(H15) | 9Φ(t, y)|2< mdet(Ψ)α0

Mdet(Ψ)K for every y ∈ Ω, where the dot denotes the derivative with

respect to t , mdet(Ψ) := min detDΨ, Mdet(Ψ) := max detDΨ. and K is the
constant in Korn’s inequality in Lemma 2.2 below.

We shall prove that our hypotheses imply that Korn’s inequality holds on Ω \ Γ. We
begin with the following technical lemma.

Lemma 2.1. Under hypotheses (H7)-(H9), the set Ω \ Γ is the union of a finite number of
connected open sets with Lipschitz boundary.

Proof. Since Γ is a C2 manifold of dimension d − 1, for every x ∈ Γ ∩ Ω there exists an
open neighborhood Ux of x in Rd such that Ux ∩ (Ω \ Γ) is the union of two non empty
disjoint open sets U+

x and U−x with Lipschitz boundary. By our hypothesis on Γ ∩ ∂Ω the
same property holds, more in general, for every x ∈ Γ ∩ Ω. Since Γ ∩ Ω is compact, there
exists a finite number of points x1, ..., xm ∈ Γ ∩ Ω such that Γ ∩ Ω ⊂ ∪mi=1Uxi .

Since Ω has Lipschitz boundary, for every y ∈ ∂Ω \ ∪mi=1Uxi ⊂ ∂Ω \ Γ there exists an
open neighborhood Vy of y in Rd such that Vy ∩ (Ω \ Γ) has Lipschitz boundary. By
compactness there exists a finite number of points y1, ..., yn ∈ ∂Ω \ ∪mi=1Uxi such that
∂Ω \ ∪mi=1Uxi

⊂ ∪nj=1Vyj .

Since Ω\(∪mi=1Uxi∪∪nj=1Vyj ) is compact and is contained in the open set Ω\Γ, there exists

an open set W with Lipschitz boundary such that Ω \ (∪mi=1Uxi
∪ ∪nj=1Vyj ) ⊂ W ⊂ Ω \ Γ.

Therefore

Ω \ Γ = W ∪
m⋃
i=1

U+
xi
∪

m⋃
i=1

U−xi
∪

n⋃
j=1

(Vyj ∩ (Ω \ Γ)).

Since every open sets with Lipschitz boundary is the union of a finite number of connected
open sets with Lipschitz boundary, the conclusion follows. �

For every u ∈ H1(Ω \Γ;Rd) Du denotes jacobian matrix in the sense of distributions on
Ω \ Γ and Eu is its symmetric part, i.e.,

Eu := 1
2 (Du+DuT ).

Lemma 2.2. Under hypotheses (H7)-(H9), there exists a constant K , depending only on Ω
and Γ , such that

‖Du‖2≤ K(‖u‖2+‖Eu‖2) (2.1)

for every u ∈ H1(Ω \ Γ;Rd) , where ‖·‖ denotes the L2 norm.

Proof. The result is a consequence of the second Korn’s inequality (see, e.g., [13, Theorem
2.4]), applied to the sets with Lipschitz boundary provided by Lemma 2.1. �

Remark 2.3. Under hypotheses (H7)-(H9), using a localization argument (see the proof
of Lemma 2.1) we can prove that the trace operator is well defined and continuous from
H1(Ω \ Γ;Rd) into L2(∂Ω;Rd).

We now introduce the function spaces that will be used in the precise formulation of
problem (1.2). We set

V := H1(Ω \ Γ;Rd) and H := L2(Ω;Rd). (2.2)

For every finite dimensional Hilbert space Y the symbols (· , ·) and ‖·‖ denote the scalar
product and the norm in the L2(Ω;Y ), according to the context. The space V is endowed
with the norm

‖u‖V := p‖u‖2+‖Du‖2q
1/2
. (2.3)
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For every t ∈ [0, T ] we define

Vt := H1(Ω \ Γt;Rd) and V Dt := {u ∈ Vt | u|∂DΩ= 0}, (2.4)

where u|∂DΩ denotes the trace of u on ∂DΩ. We note that Vt and V Dt are closed linear
subspaces of V .

We define

V := {v ∈ L2(0, T ;V ) ∩H1(0, T ;H) | v(t) ∈ Vt for a.e. t ∈ (0, T )}, (2.5)

which is a Hilbert space with the norm

‖v‖V := p‖v‖2L2(0,T ;V )+‖ 9v‖2L2(0,T ;H)q
1
2 , (2.6)

where the dot denotes the distibutional derivative with respect to t . Moreover we set

VD := {v ∈ V | v(t) ∈ V Dt for a.e. t ∈ (0, T )} (2.7)

and note that it is a closed linear subspace of V . Since H1(0, T ;H) ↪→ C0([0, T ];H) we
have V ↪→ C0([0, T ], H). In particular v(0) and v(T ) are well defined as elements of H ,
for every v ∈ V .

We set

H̃ := L2(Ω;Rd×dsym). (2.8)

On the forcing term `(t) of (1.2) we assume that

`(t) := f(t)− divF (t), (2.9)

where

f ∈ L2(0, T ;H) and F ∈ H1(0, T ; H̃) (2.10)

are prescribed function. As usual the divergence of a matrix valued function is the vector
valued function whose components are obtained taking the divergence of the rows.

As for the Dirichlet boundary condition on ∂DΩ, it is obtained by prescribing a function

uD ∈ H2(0, T ; H) ∩H1(0, T ; V0). (2.11)

We impose that for a.e. t ∈ [0, T ] the trace of the solution u(t) is equal to the trace uD(t)
on ∂DΩ, i.e., u(t)− uD(t) ∈ V Dt .

About the initial data we fix

u0 ∈ V0 and u1 ∈ H. (2.12)

Moreover, we assume the compatibility condition

u0 − uD(0) ∈ V D0 . (2.13)

We are now in a position to give the precise definition of solution of problem (1.2).

Definition 2.4 (Solution for visco-elastodynamics with cracks). We say that u is a weak
solution of problem (1.2) of visco-elastodynamics on the cracked domains Ω \ Γt , with
external load ` = f − divF , Dirichlet boundary condition uD on ∂DΩ, natural Neumann
boundary condition on ∂NΩ ∪ Γt , and initial conditions u0 and u1 , if

u ∈ V and u− uD ∈ VD, (2.14)

−
∫ T

0

( 9u(t), 9ϕ(t)) dt+

∫ T

0

((C + V)Eu(t), Eϕ(t)) dt−
∫ T

0

∫ t

0

eτ−t(VEu(τ), Eϕ(t)) dτdt

=

∫ T

0

(f(t), ϕ(t)) dt+

∫ T

0

(F (t), Eϕ(t)) dt for all ϕ ∈ VD with ϕ(0) = ϕ(T ) = 0, (2.15)

u(0) = u0 in H and 9u(0) = u1 in (V D0 )∗, (2.16)

where (V D0 )∗ denotes the topological dual of V Dt for t = 0.
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Remark 2.5. If u satisfy (2.14) and (2.15), it is possible to prove that 9u ∈ H1(0, T ; (V D0 )∗)
(see [14, Remark 4.6]), which implies 9u ∈ C0([0, T ]; (V D0 )∗). In particular 9u(0) is well defined
as an element of (V D0 )∗ .

Remark 2.6. Under suitable regularity assumptions, u is a solution in the sense of Defini-
tion 2.4 if and only if u(0) = u0 , 9u(0) = u1 , and for every t ∈ [0, T ]

:u(t)− divp(C + V)Eu(t)q + div
´

∫ t

0

eτ−tVEu(τ) dτ
¯

= f(t)− divF (t) in Ω \ Γt,

u(t) = uD(t) on ∂DΩ,
´

(C + V)Eu(t)−
∫ t

0

eτ−tVEu(τ) dτ
¯

ν = F (t)ν on ∂NΩ,

´

(C + V)Eu(t)−
∫ t

0

eτ−tVEu(τ) dτ
¯±
ν = F (t)±ν on Γt,

where ν is the unit normal and the symbol ± denotes suitable limits on each side of Γt .
The last two conditions represent the natural Neumann boundary conditions on ∂NΩ

and on the faces of Γt .

To describe the boundedness properties of the solutions of problem (2.14)-(2.16), we
introduce the space

V∞ := {v ∈ L∞(0, T ;V ) ∩W 1,∞(0, T ;H) | v(t) ∈ Vt for a.e. t ∈ (0, T )}, (2.17)

which is a Banach space with the norm

‖v‖V∞ := ‖v‖L∞(0,T ;V )+‖ 9v‖L∞(0,T ;H). (2.18)

As for the continuity properties, it is convenient to introduce the space of weakly continuous
functions with values in a Banach space X with topological dual X∗ , defined by

C0
w([0, T ];X) := {v : [0, T ]→ X | t 7→ 〈h, v(t)〉 is continuous for every h ∈ X∗}.

We are now in position to state one of the main results of the paper.

Theorem 2.7. Assume (H1)-(H15) and (2.10)-(2.13). Then there exists a unique solution
of problem (2.14)-(2.16). Moreover u ∈ V∞ , u ∈ C0

w([0, T ];V ) , and 9u ∈ C0
w([0, T ];H) .

The existence of a solution is proved in [14] under much weaker assumptions on the cracks
Γt . The uniqueness will be proved in the next section.

3. Uniqueness

In our proof of Theorem 2.7 we shall use some known results about existence and unique-
ness for the system of elastodynamics on cracked domains, where the memory terms is not
present. We set

A := C + V (3.1)

and we consider A as the elasticity tensor of the auxiliary problem defined below.

Definition 3.1 (Solution for elastodynamics with cracks). We say that v is a weak solution
of problem (1.3) of elastodynamics on the cracked domains Ω \ Γt , with external load
` = f − divF , Dirichlet boundary condition uD on ∂DΩ, natural Neumann boundary
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condition on ∂NΩ ∪ Γt , and initial conditions u0 and u1 , if

v ∈ V and v − uD ∈ VD, (3.2)

−
∫ T

0

( 9v(t), 9ϕ(t)) dt+

∫ T

0

(AEv(t), Eϕ(t)) dt =

∫ T

0

(f(t), ϕ(t)) dt

+

∫ T

0

(F (t), Eϕ(t)) dt for all ϕ ∈ VD with ϕ(0) = ϕ(T ) = 0, (3.3)

v(0) = u0 in H and 9v(0) = u1 in (V D0 )∗. (3.4)

The following technical lemma will be used in the proof of Theorem 3.3.

Lemma 3.2. Let v be a weak solution according to Definition 3.1 satisfying 9v(0) = 0 in
the sense of (V D0 )∗ . Then (3.3) holds for every ϕ ∈ VD such that ϕ(0) ∈ V D0 and ϕ(t) = 0
in a neighborhood of T , even if the condition ϕ(0) = 0 is not satisfied.

Proof. Let ϕ as in the statement. For every ε > 0, we define

ϕε(t) :=

{
t
εϕ(0) for t ∈ [0, ε],

ϕ(t− ε) for t ∈ (ε, T ].

Then ϕε ∈ VD and ϕε(0) = ϕε(T ) = 0, for ε small enough (3.3) holds for ϕε . We observe
that∫ T

0

( 9v(t), 9ϕε(t)) dt =
1

ε

∫ ε

0

( 9v(t), ϕ(0)) dt+

∫ T

ε

( 9v(t), 9ϕ(t− ε)) dt→
∫ T

0

( 9v(t), 9ϕ(t)) dt

as ε → 0, where we have used the initial condition in the first term and the continuity of
translations in the second one. In a similar way we can pass to the limit in the other terms
of equation (3.3). �

We are now in a position to state the existence and uniqueness result for the solutions of
elastodynamics with cracks.

Theorem 3.3. Assume (H1)-(H15) and (2.10)-(2.13). Then there exists a unique solution
v of problem (3.2)-(3.4). Moreover v ∈ V∞ , v ∈ C0

w([0, T ];V ) , and 9v ∈ C0
w([0, T ];H) .

Proof. In the case F = 0 the existence result, together with an energy bound, is proved in
[3] and [16] (a previous result in the scalar case is proved in [5]). When F is present, the
same proof can be repeated with obvious modifications (for instance it is enough to repeat
the arguments of [14] with V = 0).

As for uniqueness, it can be proved as in [7, Example 4.2 and Theorem 4.3]. Since in that
paper the initial conditions are given in a different sense, we have to replace [7, Proposition
2.10] by our Lemma 3.2. The uniqueness result and the existence of a solution with bounded
energy imply that the solution satisfies v ∈ V∞ . This fact, together with the continuity of
v in H and 9v ∈ (V D0 )∗ (Remark 2.5), implies that v ∈ C0

w([0, T ];V ) and 9v ∈ C0
w([0, T ];H)

(see, e.g., [10, Chapitre XVIII, §5, Lemme 6]). �

For every v ∈ C0
w([0, T ];V ), with 9v ∈ C0

w([0, T ];H), the energy of v is defined for every
t ∈ [0, T ] as

Ev(t) :=
1

2
‖ 9v(t)‖2+

1

2
(AEv(t), Ev(t)). (3.5)

Under the same assumption on v , when uD = 0 the work done by the external forces on
the displacement v in the time interval [0, t] ⊂ [0, T ] can be written as

Wv(t) :=

∫ t

0

(f(s), 9v(s)) ds−
∫ t

0

( 9F (s), Ev(s)) ds+ (F (t), Ev(t))− (F (0), Ev(0)), (3.6)

see for instance [14, Remarks 5.9 and 5.11].
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Theorem 3.4. Under the assumptions of Theorem 3.3, if uD = 0 , then the unique solution
v of problem (3.2)-(3.4) satisfies the energy inequality

Ev(t) ≤ Ev(0) +Wv(t) for all t ∈ [0, T ]. (3.7)

For a proof we refer to [7, Corollary 3.2] and [14, Remark 5.11].

Proposition 3.5. Under the assumptions of Theorem 3.3, suppose in addition that uD = 0
and u0 = 0 . Then there exists a positive constants A , depending on the constant K in
Korn’s inequality (2.1) and on the constant α0 in (H3), but not on T , f , F , and u1 , such
that the solution v of problem (3.2)-(3.4) satisfies

‖v‖V∞≤ A(1 + T )
´

‖u1‖+‖F‖L∞(0,T ;H̃)+T
1/2(‖ 9F‖L2(0,T ;H̃)+‖f‖L2(0,T ;H))

¯

. (3.8)

Proof. Under our assumption we have

Wv(t) :=

∫ t

0

(f(s), 9v(s))ds−
∫ t

0

( 9F (s), Ev(s)) ds+ (F (t), Ev(t)) and Ev(0) =
1

2
‖u1‖2.

Recalling (H3), (H6), and (3.7) we have

1

2
‖ 9v(t)‖2+

α0

2
‖Ev(t)‖2 ≤ T 1/2‖ 9F‖L2(0,T ;H̃)‖Ev‖L∞(0,T ;H̃)+‖F‖L∞(0,T ;H̃)‖Ev‖L∞(0,T ;H̃)

+ T 1/2‖f‖L2(0,T ;H)‖ 9v‖L∞(0,T ;H)+
1

2
‖u1‖2.

for all t ∈ [0, T ] . We set

S := sup
t∈[0,T ]

(‖ 9v(t)‖2+‖Ev(t)‖2)1/2.

From the previous inequality we obtain

min{1/2, α0/2}S ≤ T 1/2‖ 9F‖L2(0,T ;H̃)+‖F‖L∞(0,T ;H̃)+T
1/2‖f‖L2(0,T ;H)+‖u1‖. (3.9)

Since v(t) =
∫ t

0
9v(s) ds we have supt∈[0,T ]‖v(t)‖≤ TS . Using Korn’s inequality (2.1) we

obtain supt∈[0,T ]‖Dv(t)‖≤ K1/2S. Therefore

‖u‖V∞≤ S +K1/2S + TS,

which, together with (3.9), gives (3.8). �

Let L : V∞ −→ H1(0, T ; H̃) be the linear operator defined by

(Lu)(t) :=

∫ t

0

eτ−tVEu(τ) dτ (3.10)

for every u ∈ V∞ and t ∈ [0, T ] . Since

( 9
ŇLu)(t) = VEu(t)−

∫ t

0

eτ−tVEu(τ) dτ,

it is easy to check that L is bounded. Indeed we have

‖Lu‖L∞(0,T ;H̃)≤ T‖V‖∞‖u‖V∞ , (3.11)

‖ 9
ŇLu‖L2(0,T ;H̃)≤ (T 1/2 + T 3/2)‖V‖∞‖u‖V∞ . (3.12)

Corollary 3.6. Under the assumptions of Theorem 3.3 there exists a positive constant B ,
depending on the constant K in Korn’s inequality (2.1) and on the constant α0 in (H3),
but not on T and V , such that, if u satisfies (3.2)-(3.4) with u0 , u1 , uD , and f replaced
by zero and F replaced by Lu , then

‖u‖V∞≤ B(T + T 3)‖V‖∞‖u‖V∞ . (3.13)
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Proof. By Proposition 3.5, (3.11), and (3.12) we have

‖u‖V∞≤ A
´

(1 + T )T + (T 1/2 + T 3/2)2
¯

‖V‖∞‖u‖V∞ ,

which implies (3.13). �

We are now in a position to prove the uniqueness result.

Proof of Theorem 2.7. The existence result is obtained in [11] under more general hypothe-
ses. To prove uniqueness, we assume by contradiction that there exist two distinct solution
u1 and u2 of problem (2.14)-(2.16). Then u := u1 − u2 is a solution of the same problem
with u0 , u1 , uD , f , and F replaced by zero. Therefore u satisfies (3.2)-(3.4) with u0 ,
u1 , uD , and f replaced by zero and F replaced by Lu . By Theorem 3.3 this implies that
u ∈ Cw([0, T ];V ) and 9u ∈ Cw([0, T ];H).

We set

t0 := inf{t ∈ [0, T ] |u(t) 6= 0}.
Since u is not identically zero, we have t0 < T . We fix δ ∈ (0, T − t0) such that

B(δ + δ3)‖V‖∞< 1, (3.14)

where B is the constant in (3.13), and we define t1 := t0 + δ . In order to study the problem
on [t0, t1] we define the spaces VDt0,t1 and V∞t0,t1 as VD and V∞ (see (2.7) and (2.17)), with
0 and T replaced by t0 and t1 .

It is clear that u ∈ VDt0,t1 and since Eu(τ) = 0 for every τ ∈ [0, t0] we have

−
∫ t1

t0

( 9u(t), 9ϕ(t)) dt+

∫ t1

t0

(AEu(t), Eϕ(t)) dt−
∫ t1

t0

∫ t

t0

eτ−t(VEu(τ), Eϕ(t)) dτdt = 0

for every ϕ ∈ VDt0,t1 such that ϕ(t0) = ϕ(t1) = 0. Moreover, since u ∈ Cw([0, T ];V ),
9u ∈ Cw([0, T ];H), and u is identically zero on [0, t0] , we have that u(t0) = 0 and 9u(t0) = 0.
By (3.13), applied with 0 and T replaced by t0 and t1 , we have

‖u‖V∞
t0,t1
≤ B(δ + δ3)‖V‖∞‖u‖V∞

t0,t1
.

Using (3.14) we obtain u = 0 on [t0, t1] . This contradicts the definition of t0 and concludes
the proof. �

4. Continuous dependence on the data

In this section we consider a sequence {Γnt }t∈[0,T ] of time dependent cracks and we want
to study the convergence, as n → +∞ , of the solutions of the corresponding viscoelastic
problems. For completeness we assume that also the other data of the problem depend on n .

For every n ∈ N , let Cn, Vn: Ω → L(Rd×dsym;Rd×dsym), let Γn be a (d − 1)-dimensional C2

manifold, let {Γnt }t∈[0,T ] be a family of closed subsets of Γn , and let Φn, Ψn: [0, T ]×Ω→ Ω.
We assume that

(H16) Cn, Vn satisfy (H1)-(H6) with constants α0 and M0 independent of n ;

(H17) Γn and {Γnt }t∈[0,T ] satisfy (H7)-(H10);

(H18) Φn, Ψn satisfy (H11)-(H15) (with Γ and Γt replaced by Γn and Γnt ), the latter
with the constant K that appears in (4.7).

Let Rd×d be the space of d×d real matrices. For every pair of normed spaces X and Y let
L(X;Y ) be the space of linear and continuous maps between X and Y . For every x ∈ Ω
it is convenient to consider the extensions Ce(x), Ve(x), Cne (x), Vne (x) ∈ L(Rd×d;Rd×dsym) of
the linear maps C(x), V(x), Cn(x), Vn(x) defined as

Cne (x)[A] := Cn(x)[Asym] and Vne (x)[A] := Vn(x)[Asym] for all A ∈ Rd×d, (4.1)

Ce(x)[A] := C(x)[Asym] and Ve(x)[A] := V(x)[Asym] for all A ∈ Rd×d, (4.2)
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where Asym is the symmetric part of the matrix A . Moreover we set

Ane := Cne + Vne and Ae := Ce + Ve. (4.3)

For technical reasons we use a change of variable which maps Γn0 into Γ0 . This is done
by means of diffeomorphisms Θn, Ξn: Ω→ Ω such that

(H19) Θn and Ξn are of class C2,1 ;

(H20) Θn(Ξn(x)) = x and Ξn(Θn(x)) = x for every x ∈ Ω;

(H21) detDΘn(x) > 0 for every x ∈ Ω;

(H22) Θn(Γ ∩ Ω) = Γn ∩ Ω, and Θn(Γ0) = Γn0 ;

(H23) Θn(∂DΩ) = ∂DΩ and Θn(∂NΩ) = ∂NΩ.

We now introduce the function spaces that will be used in the formulation of the n -th

viscoelastic problem. For every n ∈ N and t ∈ [0, T ] let V n , V nt , and V n,Dt be defined
as V , Vt , and V Dt (see (2.2) and (2.4)) with Γ and Γt replaced by Γn and Γnt . Let Vn ,
Vn,D , and Vn,∞ be defined as V , VD , and V∞ (see (2.5), (2.7), and (2.17)) with Vt and

V Dt replaced by V nt and V n,Dt .
For every n ∈ N we fix

u0,n ∈ V n0 , u1,n ∈ H, unD ∈ H2(0, T ; H) ∩H1(0, T ; V n0 ), (4.4)

fn ∈ L2(0, T ;H), Fn ∈ H1(0, T ; H̃), (4.5)

and we suppose that u0,n and unD satisfy the compatibility condition

u0,n − unD(0) ∈ V n,D0 . (4.6)

Now we give the detailed regularity and convergence hypotheses on the data. First of all
we assume that there exists a constant K > 0 such that for every n ∈ N the following Korn
inequality is satisfied:

‖Dv‖2≤ K(‖v‖2+‖Ev‖2) for every v ∈ H1(Ω \ Γn;Rd). (4.7)

We set H = L2(Ω,Rd×d). Concernig the convergence of our data we assume that

‖Φn − Φ‖C2→ 0, ‖Ψn −Ψ‖C2→ 0, (4.8)

‖Cn − C‖C1→ 0, ‖Vn − V‖C1→ 0 (4.9)

‖unD − uD‖H2(0,T ;H)→ 0, ‖DunD −DuD‖H1(0,T ;H)→ 0, (4.10)

‖fn − f‖L2(0,T ;H)→ 0, ‖Fn − F‖H1(0,T ;H̃)→ 0, (4.11)

‖u0,n − u0‖→ 0, ‖Du0,n −Du0‖→ 0, ‖u1,n − u1‖→ 0, (4.12)

‖Θn − Id‖C2→ 0, ‖Ξn − Id‖C2→ 0. (4.13)

It follows from (H19)-(H21) and (4.13) that

mdet(Ψ
n)→ mdet(Ψ) and Mdet(Ψ

n)→Mdet(Ψ
n) as n→∞. (4.14)

For every n ∈ N we consider the solution un of the problem

un ∈ Vn and un − unD ∈ Vn,D, (4.15)

−
∫ T

0

( 9un(t), 9ϕ(t)) dt+

∫ T

0

((Cn + Vn)Eun(t), Eϕ(t)) dt

−
∫ T

0

∫ t

0

eτ−t(VnEun(τ), Eϕ(t)) dτdt =

∫ T

0

(fn(t), ϕ(t)) dt

+

∫ T

0

(Fn(t), Eϕ(t)) dt for all ϕ ∈ Vn,D with ϕ(0) = ϕ(T ) = 0, (4.16)

un(0) = u0,n in H and 9un(0) = u1,n in (V D,n0 )∗. (4.17)
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We also consider the solution vn of the problem

vn ∈ Vn and vn − unD ∈ Vn,D, (4.18)

−
∫ T

0

( 9vn(t), 9ϕ(t)) dt+

∫ T

0

(AnEvn(t), Eϕ(t)) dt =

∫ T

0

(fn(t), ϕ(t)) dt

+

∫ T

0

(Fn(t), Eϕ(t)) dt for all ϕ ∈ Vn,D with ϕ(0) = ϕ(T ) = 0, (4.19)

vn(0) = u0,n in H and 9vn(0) = u1,n in (V D,n0 )∗. (4.20)

The notion of convergence for un as n → ∞ can’t be given directly because they don’t
belong to the same space. To overcome this problem we need to embed V n into a common
space. This will be done using the standard embedding V n ↪→ H×H given by v 7→ (v, Dv),
where the distrubutional gradient Dv on Ω \ Γn is regarded as a function defined a.e. on
Ω, which belongs to H .

We are now in a position to state one the main result of this section.

Theorem 4.1. Assume (H1)-(H23), (2.10)-(2.13), and (4.4)-(4.13). Let u be the solution
of (2.14)-(2.16) and let (for every n ∈ N) un be the solution of (4.15)-(4.17). Then

(un(t), Dun(t), 9un(t))→ (u(t), Du(t), 9u(t)) in H ×H ×H
for every t ∈ [0, T ] . Moreover there exists a constant C > 0 such that

‖un(t)‖+‖Dun(t)‖+‖ 9un(t)‖≤ C
for every n ∈ N and t ∈ [0, T ] .

The proof is based on the following lemma.

Lemma 4.2. Let X a complete metric space, let Gn, G:X → X with n ∈ N be maps
with same contraction constant λ ∈ (0, 1) , and let xn, x be the corresponding fixed points.
Suppose that Gn(y)→ G(y) for every y ∈ X . Then xn → x .

Proof. We have d(xn, x) = d(Gn(xn), G(x)) ≤ d(Gn(xn), Gn(x)) + d(Gn(x), G(x))
≤ λd(xn, x)+d(Gn(x), G(x)), hence (1−λ)d(xn, x) ≤ d(Gn(x), G(x))→ 0, as n→ +∞ . �

In order to apply the previous lemma we will identify un and u with the fixed points of
suitable operators defined in the Banach space

W := L2((0, T );H ×H ×H), (4.21)

where on H ×H ×H we consider the Hilbert product norm defined by

‖(h1, h2, h3)‖H×H×H :=
´

‖h1‖2+‖h2‖2+‖h3‖2
¯1/2

(4.22)

for every (h1, h2, h3) ∈ H × H × H . In order to define the sequence of maps whose fixed
points are (un, Dun, 9un) and (u,Du, 9u), we consider the linear operators

T n :W −→ H1(0, T ; H̃) and T :W −→ H1(0, T ; H̃) (4.23)

defined as

(T nw)(t) :=

∫ t

0

eτ−tVnew2(τ) dτ and (T w)(t) :=

∫ t

0

eτ−tVew2(τ) dτ, (4.24)

where w(t) = (w1(t), w2(t), w3(t)) and Vne , Ve are as in (4.1) and (4.2). Arguing as in (3.11)
and (3.12) we get that

‖T w‖L∞(0,T ;H̃)≤ T
1/2‖V‖∞‖w‖W , (4.25)

‖ 9
ŊT w‖L2(0,T ;H̃)≤ (1 + T )‖V‖∞‖w‖W , (4.26)

and the same estimate holds for T nw with V replaced by Vn .
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Let G :W →W be the operator defined for every w ∈ W by

G(w) = (z,Dz, 9z), (4.27)

where z is the solution of problem (3.2)-(3.4) with F replaced by F + T w . From the
definition of G it follows that (u,Du, 9u) is a fixed point of map G if and only if u is the
solution of the problem considered in Theorem 4.1.

Similarly, let Gn :W →W be the operator defined for every w ∈ W by

Gn(w) = (zn, Dzn, 9zn), (4.28)

where zn is the solution of problem (4.18)-(4.20) with F replaced by Fn + T nw . From
the definition of Gn it follows that un is the solution of problem (4.15)-(4.17) if and only if
(un, Dun, 9un) is a fixed point of map Gn .

The following lemma provides a uniform Lipschitz estimate for the operators Gn .

Proposition 4.3. There exist a positive constants B , independent of n and T , such that

‖Gn(w1)− Gn(w2)‖W≤ B(T + T 3)‖w1 − w2‖W , (4.29)

for every w1, w2 ∈ W.

Proof. Let us fix w1, w2 ∈ W and set w := w1 − w2 . We observe that Gn(w1)− Gn(w2) =
(zn, Dzn, 9zn) where zn is the solution of problem (4.15)-(4.17) with Fn replaced by T nw
and unD , fn , u0,n , u1.n replaced by zero. From Theorem 3.5 and from the uniform bound
of the data there exists a positive constants A , independent of n and T , such that

‖zn‖V∞≤ A(1 + T )‖T nw‖L∞(0,T ;H̃)+A(T 1/2 + T 3/2)‖ 9
ŐT nw‖L2(0,T ;H̃). (4.30)

Using (4.25) and (4.26) we get

‖(zn, Dzn, 9zn)‖W≤ A
´

(1 + T )T + (T 1/2 + T 3/2)2
¯

‖Vn‖∞‖w‖W (4.31)

which gives (4.29) taking into account (4.9). �

To apply Lemma 4.2 we have to prove that

Gn(w)→ G(w) in W,

for every w ∈ W . In order to prove this we will use the results for the wave equation
developed in [4]. Unfortunately these results can not be applied directly because they are
obtained under the assumptions:

(a) Γn0 = Γ0 for all n ∈ N ,
(b) the forcing terms belong to L2(0, T ;H).

To overcome the difficulties due to (a) we need some preliminary results. The first one is an
uniform bound of the solution of problems (4.18)-(4.20).

Proposition 4.4. Assume (H1)-(H23), (4.4)-(4.10), and (4.12)-(4.13). Let let vn be the
solution of (4.18)-(4.20). Then the there exists a positive constant C such that

‖vn‖Vn,∞≤ C for every n ∈ N. (4.32)

Proof. We note that vn0 (t) := vn(t) − u0,n + unD(0) − unD(t) is the solution of (4.18)-(4.20)
with u0 replaced by 0, u1,n replaced by u1,n − 9unD(0), unD replaced by 0, fn replaced
by fn − :unD , and Fn replaced by Fn − AnEunD − AnE(un,0 − unD(0)). Then we can apply
Proposition 3.5 and (4.8)-(4.13) to obtain that ‖vn0 ‖Vn is equibounded. By (4.10) and (4.12)
we get (4.32). �

The next proposition deals with the case of solution of (4.18)-(4.20) when Fn is replaced
by 0.
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Proposition 4.5. Assume (H1)-(H23), (4.4)-(4.10), and (4.12)-(4.13). Given g ∈ L2(0, T ; H) ,
let vn be the solution of (4.18)-(4.20) with fn replaced by g and Fn replaced by 0 . Let
v be the solution in (3.2)-(3.4) with f replaced by g and F replaced by 0 . Then for every
t ∈ [0, T ] we have

(vn(t), Dvn(t), 9vn(t))→ (v(t), Dv(t), 9v(t)) in H ×H ×H. (4.33)

In order to prove this proposition it is convenient to use the following elementary result,
whose proof, based on a change of variables, is omitted (for a similar result see [6, Lemma
A.7]).

Lemma 4.6. For every n ∈ N let hn, h ∈ H and let Λn, Λ : Ω→ Ω be C1 diffeomorphisms.
Assume that hn → h in H and Λn → Λ in C1 . Assume also that detDΛn(x) > 0 and
detDΛ(x) > 0 for every x ∈ Ω and n ∈ N . Then hn ◦ Λn → h ◦ Λ as n→∞ in H .

Proof of Proposition 4.5. To overcome the difficulty due to the fact that we may have Γn0 6=
Γ0 , by a change of variables we transform our problem into a problem with new cracks Γ̂nt
satisfying Γ̂n0 = Γ0 for every n , to which we can apply the results of [3] and [4].

For every n and t we define Γ̂nt := Ξn(Γnt ) ⊂ Γ and observe that Γ̂nt satisfies (H10). The

vector spaces V̂ nt and V̂ n,Dt are defined as V nt and V n,Dt (see (2.4)) with Γt replaced by

Γ̂nt , while V̂n and V̂n,D are defined as Vn and Vn,D (see (2.5) and (2.7)) with Vt and V Dt
replaced by V̂ nt and V̂ n,Dt .

For every t ∈ [0, T ] let v̂n(t) := vn(t) ◦ Θn , ûnD(t) := unD(t) ◦ Θn , û0,n := u0,n ◦ Θn ,

û1,n := u1,n ◦Θn , and ĝn(t) := g(t) ◦Θn . It is easy to see that v̂n ∈ V̂n , v̂n − ûnD ∈ V̂n,D ,

v̂n(0) = û0,n, 9̂vn(0) = û1,n .

To write the equation satisfied by v̂n we introduce Ân: Ω→ L(Rd×d;Rd×d) defined as

Ân(y)[A] := Ane (Θn(y))rADΞn(Θn(y))s(DΞn(Θn(y)))T for all A ∈ Rd×d, (4.34)

where An is defined in (4.3). We note that Ân is of class C1 , with equibounded C1 norm.
Moreover it is symmetric on L(Rd×d,Rd×d).

Setting hn(x) := ∇[detDΞn(x)] , we introduce Ln: Ω→ L(Rd×d;Rd) defined as

Ln(y)[A] = Ane (Θn(y))rADΞn(Θn(y))shn(Θn(y)) detDΘn(y) for all A ∈ Rd×d.

Let ϕ ∈ V̂n,D with ϕ(0) = ϕ(T ) = 0. Using (ϕ(t) ◦ Ξn) detDΞn as test function in the
equation for vn(t) we get

−
∫ T

0

( 9̂vn(t), 9ϕ(t)) dt+

∫ T

0

(ÂnDv̂n(t), Dϕ(t)) dt+

∫ T

0

(LnDv̂n(t), ϕ(t)) dt =

∫ T

0

(ĝn(t), ϕ(t)) dt.

By Proposition (4.4) the sequence ||vn||Vn is bounded and in particular ‖Dvn(t)‖ is uni-
formly bounded with respect to n and t . By the definition of v̂n and (4.13) also ‖Dv̂n(t)‖
is uniformly bounded with respect to n and t . Since detDΞn → 1 in C1(Ω), we have
∇[detDΞn] → 0 in C0(Ω, Rd), which implies that Ln → 0 uniformly as n → +∞ . From
this fact and the uniform bound on ‖Dv̂n(t)‖ we get

‖LnDv̂n(t)‖→ 0 as n→ +∞, (4.35)

uniformly in t . Therefore, setting

f̂n := ĝn − LnDv̂n, (4.36)
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we conclude that

v̂n ∈ V̂n and v̂n − ûnD ∈ V̂n,D, (4.37)

−
∫ T

0

( 9̂vn(t), 9ϕ(t)) dt+

∫ T

0

(ÂnDv̂n(t), Dϕ(t)) dt =

∫ T

0

(f̂n(t), ϕ(t)) dt,

for all ϕ ∈ V̂n,D such that ϕ(0) = ϕ(T ) = 0, (4.38)

v̂n(0) = û0,n in H and 9̂vn(0) = û1,n in (V D0 )∗. (4.39)

In order to apply the results of [4] we define Φ̂n(t, y) := Ξn(Φn(t,Θn(y))), Ψ̂n(t, x) :=

Ξn(Ψn(t,Θn(x))). We observe that Φ̂n and Ψ̂n satisfy (H11)-(H14) with Γt replaced by

Γ̂nt . Since in general Ân[A] 6= Ân[Asym] for some A ∈ Rd×d , we cannot apply the results of
[3]. However it is possible to use the results of [4] which hold under more general assumptions
involving the tensor

B̂n(t, y)[A] := Ân(Φ̂n(t, y))[ADΨ̂n(t, Φ̂n(t, y))]DΨ̂n(t, Φ̂n(t, y))T

−A 9̂
Ψn(t, Φ̂n(t, y))⊗ 9̂

Ψn(t, Φ̂n(t, y)),

for all A ∈ Rd×d , t ∈ [0, T ] , y ∈ Ω. We claim that there exists two constants c0, c1 > 0
(independent of n) such that, for n large enough, we have

(B̂n(t)Dϕ, Dϕ) ≥ c0‖ϕ‖2V0
−c1‖ϕ‖2 (4.40)

for all ϕ ∈ V0 and t ∈ [0, T ] . This is the hypothesis on B̂n required in [4].
To prove the claim we use (H3), (H15), and (4.13) (which are satisfied uniformly in n)

and by standard computations (see, for instance, [4, Section 1.2]) we obtain

(B̂n(t)Dϕ, Dϕ) ≥
∫

Ω

|Dϕ(y)DΞn(Θn(y))DΨn(t,Φn(t,Θn(y)))|2ωn(t, y) dy

− α0 min
[0,T ]×Ω

{detDΞn detDΨn}
∫

Ω

|ϕ(Ξn(Ψn(t, y)))|2 dy (4.41)

where

ωn(t, y) :=
α0mdet(Ψ

n)

KMdet(Ψn)
min

Ω
{detDΞn}min

Ω
{detDΘn} − | 9Φn(t,Θn(y))|2,

while mdet(Ψ
n), Mdet(Ψ

n), α0 , and K are the constants that appear in (H15), (H16),
and (4.7). Since the inverse of the matrices DΞn(x)DΨn(t,Φn(t, x)) are bounded uniformly
with respect to n , t , and x , there exists a constant β > 0 such that∫

Ω

|Dϕ(y)DΞn(Θn(y))DΨn(t,Φn(t,Θn(y)))|2ωn(t, y) dy ≥ β
∫

Ω

|Dϕ(y)|2ωn(t, y) dy

for all n and t . Moreover by (4.8) and (4.13) there exists a constant γ > 0 such that

α0 min
[0,T ]×Ω

{detDΞn detDΨn}
∫

Ω

|ϕ(Ξn(Ψn(t, y)))|2 dy ≤ γ
∫

Ω

|ϕ(y)|2 dy

for all n and t . Therefore (4.41) gives

(B̂n(t)Dϕ, Dϕ) ≥ β
∫

Ω

|Dϕ(y)|2ωn(t, y) dy − γ
∫

Ω

|ϕ(y)|2 dy. (4.42)

To conclude the proof of the claim, we define

ω(t, y) :=
α0mdet(Ψ)

KMdet(Ψ)
− | 9Φ(t, y)|2.

By (4.8), (4.13) and (4.14), we have ωn → ω uniformly on [0, T ] × Ω. By (H15) and by
continuity there exists ε > 0 such that ω(t, y) ≥ 2ε for all (t, y) ∈ [0, T ] × Ω. By uniform
convergence there exists nε such that ωn(t, y) ≥ ε for all (t, y) ∈ [0, T ] × Ω and for all
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n > nε . This inequality together with (4.42) implies (4.40) and concludes the proof of the
claim.

By (4.8) and (4.13) we get Φ̂n → Φ and Ψ̂n → Ψ in C2 , while (4.34) and (4.13) give

Ân → A in C1 . Moreover applying Lemma 4.6 to the functions and their derivatives we can
prove that û0,n → u0 in V0 , û1,n → u1 in H , ûnD → uD in H2(0, T ;H)∩H1(0, T ;V0), and

ĝn → g in L2(0, T ;H). Using (4.35) and (4.36) we have that f̂n → g in L2(0, T ;H). We
are now in a position to apply [4, Theorem 1.4.1] to problem (4.37)-(4.39) and we obtain

(v̂n(t), Dv̂n(t), 9̂vn(t))→ (v(t), Dv(t), 9v(t)) in H ×H ×H
for every t ∈ [0, T ] . Since

vn(t, ·) = v̂n(t,Ξn(·)), Dvn(t, ·) = Dv̂n(t,Ξn(·))DΞn(·), 9vn(t, ·) = 9̂vn(t,Ξn(·)),
using Lemma 4.6 we get (4.33) for every t ∈ [0, T ] . �

To use Proposition 4.5 in the proof of the convergence Gn(w) → G(w) we need the
following approximation result.

Lemma 4.7. Let G ∈ H1((0, T ); H̃) . For every ε > 0 there exists a compact neighborhood

Kε of Γ ∩ Ω and Gε ∈ H1((0, T ); H̃) such that Gε(t) ∈ C∞c (Ω \ Kε; Rd×dsym) for every
t ∈ [0, T ] and

‖Gε −G‖L∞(0,T ;H̃)+‖ 9Gε − 9G‖L2(0,T ;H̃)< ε.

Remark 4.8. By (H22) and (4.13) for every ε > 0 there exists nε such that Γn ⊂ Kε , for
n > nε . From the properties of Gε follows that

(Gε(t), Ev) = −(divGε(t), v) (4.43)

for all t ∈ [0, T ] and for all v ∈ Vn , for n > nε .

Proof of Lemma 4.7. Given a partition of [0, T ] , we can consider the piecewise affine inter-
polation of the values of F at the nodes. It is well known that this interpolation converges
in H1(0, T ; H̃) to F as the fineness of the partition tends to zero. To conclude, it is enough

to approximate in H̃ the values of F at the nodes by elements of C∞c (Ω \ Γ; Rd×dsym) and to
consider the corresponding piecewise affine interpolation. �

Proposition 4.9. Assume (H1)-(H23) and (4.7)-(4.13). Let vn be the solution of (4.18)-
(4.20) and let v be the solution of (3.2)-(3.4). Then for every t ∈ [0, T ] we have

(vn(t), Dvn(t), 9vn(t))→ (v(t), Dv(t), 9v(t)) in H ×H ×H. (4.44)

Moreover
(vn, Dvn, 9vn)→ (v, Dv, 9v) in W = L2((0, T );H ×H ×H). (4.45)

Proof. Let ε > 0, let Gε the function in Lemma 4.7 with G = F . Let vnε solution of
(4.18)-(4.20) with fn and Fn replaced by f and Gε , let vε solution of (3.2)-(3.4) with F
replaced by Gε . By (4.11) there exists nε such that

‖fn − f‖L2(0,T ;H)+‖Fn −Gε‖L∞(0,T ;H̃)+‖ 9Fn − 9Gε‖L2(0,T ;H̃)< ε (4.46)

for every n > nε. The function vn − vnε is the solution of problem (4.18)-(4.20) with fn

and Fn replaced by fn − f and Fn −Gε and unD , fn , un,0 , u1.n replaced by zero. Then
by Proposition 3.5 there exists a constant C(T ) depending on T (independent of n and ε)
such that

‖vn − vnε ‖Vn,∞≤ C(T )ε. (4.47)

for every n > nε . Similarly we can prove

‖v − vε‖V∞≤ C(T )ε. (4.48)

Changing the value of nε , by (4.43) we have that vnε is the solution of (4.18)-(4.20) with
fn replaced by gε := f−divGε and Fn replaced by 0, while vε is the solution of (3.2)-(3.4)
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with f replaced by gε := f − divGε and F replaced by 0. By Proposition 4.5 for every
t ∈ [0, T ] we have

(vnε (t), Dvnε (t), 9vnε (t))→ (vε(t), Dvε(t), 9vε(t)) in H ×H ×H. (4.49)

Since

‖(vn(t), Dvn(t), 9vn(t))− (v(t), Dv(t), 9v(t))‖≤ ‖vn − vnε ‖Vn,∞

+ ‖(vnε (t), Dvnε (t), 9vnε (t))− (vε(t), Dvε(t), 9vε(t))‖+‖v − vε‖V∞ ,

by (4.47)-(4.49) we get

lim sup
n→+∞

‖(vn(t), Dvn(t), 9vn(t))− (v(t), Dv(t), 9v(t))‖≤ 2C(T )ε

for every t ∈ [0, T ] . By the arbitrareness of ε we obtain (4.44). Finally, using the estimate
in Proposition 4.4 and the Dominated Convergence Theorem we obtain (4.45). �

Corollary 4.10. Assume (H1)-(H23) and (4.7)-(4.13). Then for every w ∈ W we have

Gn(w)→ G(w) W.

Proof. By (4.9) we get T nw → T w in H1(0, T ; H̃) for every w ∈ W . The result follows
from Proposition 4.9 with Fn and F replaced by Fn + T nw and F + T w . �

As a consequence of Lemma 4.2, Proposition 4.3, and Corollary 4.10 we obtain the con-
tinuous dependence result when T is small enough.

Theorem 4.11. Assume that B(T + T 3) < 1 , where B is the constant in Proposition 4.3.
Then the conclusion of Theorem 4.1 holds.

Proof. By Corollary 4.10 Gn(w) → G(w) in W for every w ∈ W . By Proposition 4.3 the
maps Gn have the same contraction constant B(T + T 3) < 1. Then we are in a position to
apply Lemma 4.2 and we get

wn := (un, Dun, 9un)→ (u, Du, 9u) =: w in W = L2((0, T );H ×H ×H). (4.50)

From this convergence and (4.9), we obtain T nwn → T w in H1(0, T ; H̃) and we can apply
Proposition 4.9, with forcing term Fn and F replaced by Fn + T nwn and F + T w . Since
Fn + T nwn → F + T w in H1(0, T ; H̃) we get

(un(t), Dun(t), 9un(t))→ (u(t), Du(t), 9u(t)) in H ×H ×H

for every t ∈ [0, T ] . We can apply Proposition 4.4 with Fn replaced by Fn + T nwn and
we obtain that there exists a constant C > 0 such that

‖un(t)‖+‖Dun(t)‖+‖ 9un(t)‖≤ C

for every n ∈ N and t ∈ [0, T ] . �

We are now in a position prove Theorem 4.1 without additional assumptions on T .

Proof of Theorem 4.1. There exists k ∈ N such that T0 := T/k satisfies B(T0 + T 3
0 ) < 1.

By Theorem 4.11 we have

(un(t), Dun(t), 9un(t))→ (u(t), Du(t), 9u(t)) in H ×H ×H for all t ∈ [0, T0], (4.51)

(un, Dun, 9un)→ (u, Du, 9u) in L2((0, T0);H ×H ×H). (4.52)

If k = 1 the proof is finished, otherwise we consider the problem on the interval [T0, 2T0] .
Note that un(T0) ∈ V n and 9un(T0) ∈ H are well defined, because u ∈ C0

w([0, T0];V n) and
9u ∈ C0

w([0, T0];H). Since un(t) ∈ V nt for a.e. t ∈ (0, T0), it easy to see that un(T0) ∈ V nT0
.

In order to study the problem on [T0, 2T0] we define the spaces VT0,2T0 , VDT0,2T0
, V∞T0,2T0

,
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VnT0,2T0
, Vn,DT0,2T0

, Vn,∞T0,2T0
, and WT0.2T0

as V , VD , V∞ , Vn , Vn,D , Vn,∞ , and W with 0

and T replaced by T0 and 2T0 . For every t ∈ [T0, 2T0] we set

G(t) := F (t) +

∫ T0

0

eτ−tVEu(τ)dτ and Gn(t) := Fn(t) +

∫ T0

0

eτ−tVnEun(τ)dτ.

Let v be the solution of the problem

v ∈ VT0,2T0
and v − uD ∈ VDT0,2T0

,

−
∫ 2T0

T0

( 9v(t), 9ϕ(t)) dt+

∫ 2T0

T0

(AEv(t), Eϕ(t)) dt−
∫ 2T0

T0

∫ t

T0

eτ−t(VEv(τ), Eϕ(t)) dτdt

=

∫ 2T0

T0

(f(t), ϕ(t)) dt+

∫ 2T0

T0

(G(t), Eϕ(t)) dt for every ϕ ∈ VDT0,2T0
with ϕ(T0) = ϕ(2T0) = 0,

v(T0) = u(T0) in H and 9v(T0) = 9u(T0) in (V DT0
)∗.

For every n ∈ N let vn be the solution of the problem

vn ∈ VnT0,2T0
and vn − unD ∈ V

n,D
T0,2T0

,

−
∫ 2T0

T0

( 9vn(t), 9ϕ(t)) dt+

∫ 2T0

T0

(AnEvn(t), Eϕ(t)) dt−
∫ 2T0

T0

∫ t

T0

eτ−t(VnEvn(τ), Eϕ(t)) dτdt

=

∫ 2T0

T0

(fn(t), ϕ(t)) dt+

∫ 2T0

T0

(Gn(t), Eϕ(t)) dt for every ϕ ∈ Vn,DT0,2T0
with ϕ(T0) = ϕ(2T0) = 0,

vn(T0) = un(T0) in H and 9vn(T0) = 9un(T0) in (V n,DT0
)∗.

We note that, by the definition of G and Gn , the restrictions of u and un to [T0, 2T0]
satisfy the problems for v and vn . By uniqueness we have that v = u and vn = un on
[T0, 2T0] .

For every x ∈ Ω and [T0, 2T0] we define ΦT0(t, x) := Φ(t,Ψ(T0, x)), ΨT0(t, x) :=
Ψ(t,Φ(T0, x)) ΦnT0

(t, x) := Φn(t,Ψn(T0, x)) Ψn
T0

(t, x) := Ψn(t,Φn(T0, x)) which satisfy

(H11)-(H15), (4.8) with 0 and T replaced by T0 and 2T0 . For every x ∈ Ω we define
Θn
T0

(x) := Φn(T0,Θ
n(Ψ(T0, x))), ΞnT0

(x) := Φ(T0,Ξ
n(Ψn(T0, x))) and we observe that they

satisfy (H19)-(H23) and (4.13) with 0 and T replaced by T0 and 2T0 .
By (4.51) we have that (un(T0), Dun(T0), 9un(T0))→ (u(T0), Du(T0), 9u(T0)) in H×H×H

while (4.9), (4.11), and (4.52) give Gn → G in H1(0, T ; H̃). We are now in a position to
apply Theorem 4.11 on [T0, 2T0] to obtain

(un(t), Dun(t), 9un(t))→ (u(t), Du(t), 9u(t)) in H ×H ×H,

for all t ∈ [T0, 2T0] . Moreover there exists a constant C > 0 such that

‖un(t)‖+‖Dun(t)‖+‖ 9un(t)‖≤ C

for every n ∈ N and t ∈ [T0, 2T0] . The conclusion can be obtained by itarating this process
a finite number of times. �
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et les techniques. Vol. 8. (French) [Mathematical analysis and computing for science and technology.
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