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1 Setting and model problems

The environment where our problems will be set will consist of a graph composed of a set
of nodes L with connections E ; i.e., a symmetric subset of L × L.

We will deal with

(a) (portions of) regular lattices: e.g., given Ω ⊂ Rd, we consider Ω ∩ Zd and a set E
of connections between these points. The model case is that of nearest-neighbour
connections, or connections up to some given range;

(b) stochastic lattices, in which the positions of the nodes and/or the connections are
random, so that we have to confront with a less regular geometry of the environment;

(c) dense graphs, where the cardinality of E is of the order of the cardinality of L × L.
In this case the geometry will be less important, and combinatoric arguments will be
more relevant.

(a ) (b) (c)

Figure 1: different types of graphs.

Our model problem is that of the minimal cut of a graph; that is, the subdivision of L
into two subsets of given cardinality so as to minimize the number of connections between
the two sets. This problem can be described as an energy minimization of the functional
depending on sets A defined by

E(A) = #{(i, j) ∈ E , i ∈ A, j 6∈ A}.

Equivalently, we may rewrite this problem as defined on spin functions; that is, functions
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u : L → {−1, 1}.1 In this case, with an abuse of notation, the energy can be written as

E(u) =
∑

i,j∈L:(i,j)∈E

(ui − uj)2.

The value E(u) corresponds to the value E(A), where A = {i ∈ L : u(i) = 1} and ui = u(i);
that is, ui = 1 if i ∈ A and ui = −1 if i 6∈ A, up to a factor 8. This factor is due to the
fact that (ui − uj)2 ∈ {0, 4} and that if (i, j) ∈ E , then (j, i) ∈ E .2

We are interested in describing approximately such a minimal-cut problem as the num-
ber of nodes diverges; i.e., #L >> 1. This will be done by constructing approximate
continuum problems by a Γ-convergence approach (and will heavily depend on some char-
acteristics of the set E related to L). The scopes of this process are many; in particular

• on the one hand connect discrete problems with a PDE formulation for which we
may use techniques characteristic of continuum problems;

• on the other hand “validate” continuum models by “molecular” or “atomistic” argu-
ments.

A further illustrative problem in this framework is connected to Image Processing. The
target function u represents a black and white image with the value −1 corresponding
to white and 1 to black at a given pixel, identified with a point i ∈ L = Ω ∩ Z2. The
connections are given by nearest neighbours; that is,

E = {(i, j) : i, j ∈ Ω ∩ Z2, ‖i− j‖ = 1},

and the problem is to minimize the energy given by∑
i,j∈L:(i,j)∈E

(ui − uj)2 + λ
∑
i∈L
|ui − gi|2,

1The choice of {−1, 1} as parameters comes from Statistical Mechanics and is coherent with a more
general notation involving vector spin functions. Equivalently (and some times more handy) we might
consider u : L → {0, 1} making the connection between functions and (characteristic functions of) sets
more evident. Energies defined on spin functions are often referred to as Ising systems.

2Note that the choice of the square is arbitrary since only the values at ui ∈ {±1} are considered.
Equivalently we could use

E(u) = 2
∑

i,j∈L:(i,j)∈E

|ui − uj |.

Again, the way of writing E is due to traditional choices and the fact that developing squares is easier.
Note that (ui−uj)2 = 2(1−uiuj) so that if Ω is bounded, up to a constant the energy can be rewritten as

E(u) = −
∑

i,j∈L:(i,j)∈E

uiuj ,

which is the usual way of writing Ising systems.
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where λ is a real parameter and g : L → [−1, 1] is a given input function representing a
corrupted black and white image to be reconstructed. Here, we do not have a cardinality
constraint but we minimize with a perturbation given by an L2-distance from a given
datum.

2 Limits on regular lattices and sets of finite perimeter

We first consider the case when L is a (portion of a) Bravais lattice in Rd. It will not be
restrictive to suppose that the reference lattice be Zd.

2.1 Scaling

In order to describe the limit of energies as #L >> 1, we use a scaling parameter. Let
Ω ⊂ Rd be an open set.

• Modeling of the lattice L. We introduce a space scale ε > 0 (where ε is a “small”
parameter) and consider the scaled lattice

Lε = Lε(Ω) = Ω ∩ εZd,

whose cardinality is of the order 1
εd

.

Figure 2: error due to missing interactions at the boundary.

• Scaling of the energies. We consider as a model case that of interactions between
nearest neighbors only; that is,

E = Eε = {(i, j) : εi, εj ∈ Lε, ‖i− j‖ = 1}. (1)

We use the notation 〈i, j〉 to indicate pairs in Zd such that (i, j) ∈ E . The energies are
then scaled according to a “surface scaling”; namely,

Eε(u) =
∑
〈i,j〉

εd−1 (ui − uj)2

8
, (2)
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where u : Lε → {−1, 1} and ui = u(εi). Note (again) the factor 1
8 .

Up to an “error” close to the boundary of Ω (see Figure 2) the value of Eε(u) can be
interpreted as the perimeter of the set

Aε(u) :=
⋃
εi∈Lε
ui=1

([
− ε

2
,
ε

2

]d
+ εi

)
, (3)

which is determined by the spin function u.
For a general Bravais lattice L in Rd generated by independent vectors v1, . . . , vd, we

can give the corresponding identification of spin functions u defined on εL with sets Aε(u)
upon taking the elementary cell

C =
{ d∑
j=1

tjvj : |tj | ≤
1

2

}
(4)

in the place of [−1
2 ,

1
2 ]d.

The surface scaling guarantees the equicoerciveness of the energies, in the sense that if
{uε} is a family of functions such that Eε(uε) ≤ C, then for all Ω′ regular open subset of Rd
with Ω′ ⊂⊂ Ω, for ε small enough the perimeter of Ω′ ∩Aε(uε) is equibounded. This gives
precompactness of such sets thanks to the properties of sets of equibounded perimeter as
explained in the following section.

2.2 Sets of finite perimeter

As we have seen, functions taking two values (i.e., spin functions) can be identified with
characteristic functions and then with sets. We then recalls the notion of sets of finite
perimeter, which is particularly useful when dealing with energies that can be interpreted
as surface energies on sets and provide compactness properties.

A good notion of perimeter of a set from the standpoint of the Calculus of Variations
is the maximal extension of the usual notion of perimeter for polytopes (polyhedral sets in
d dimension) lower semicontinuous with respect to the convergence in measure.

Definition 1 (perimeter). If A is a polytope in Rd, then the perimeter of A, denoted by
Per(A), is elementarily defined.

Let A ⊂ Rd; the perimeter of A is defined by

Per(A) = inf
{

lim inf
n

Per(An) : |An4A| → 0, An polytope
}
.

The set A is a set of finite perimeter if Per(A) < +∞.
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Remark 2 (distributional definition of the perimeter).

(i) An alternative way to define the perimeter of A is in a distributional way as

Per(A) = sup
{∫

A
divϕdx : ϕ ∈ C∞0 (Rd;Rd), ‖ϕ‖∞ ≤ 1

}
,

which states that the characteristic function of A is a function of bounded variation.
This characterization allows to prove functional-analytic properties of the space of
sets of finite perimeter.

(ii) If A is a “regular” subset of Rd whose surface element is denoted by dΣ, then∫
∂A〈ϕ, νA〉 dΣ = −

∫
A divϕdx for any ϕ ∈ C∞0 (Rd;Rd). Taking ϕ equal to (an

approximation of) −ν on ∂A we obtain its surface area; hence, the definition of the
perimeter is an extension of the usual definition.

Remark 3 (perimeter in Ω). The notion of perimeter can be localized on open subsets Ω
of Rd, setting

Per(A; Ω) = sup
{∫

E
divϕdx : ϕ ∈ C∞0 (Ω;Rd), ‖ϕ‖∞ ≤ 1

}
.

Sets A such that Per(A; Ω) < +∞ will be called sets of finite perimeter in Ω. If Ω is regular
then sets of finite perimeter can be locally approximated by polytopes in Ω.

The following theorem summarizes the main structure properties of sets of finite perime-
ter. We denote by Hd−1 the d − 1-dimensional Hausdorff measure (which generalizes the
notion of surface area).

Theorem 4 (reduced boundary and inner normal). If A ⊂ Rd has finite perimeter in Ω,
then there exists a set ∂∗A ⊆ ∂A, called the reduced boundary of A, such that

• the total variation of the distributional derivative of the characteristic function χA is
given by Hd−1 ∂∗A; in particular,

Per(A) = Hd−1(∂∗A);

• ∂∗A is rectifiable; that is, there exists N ⊂ Rd with Hd−1(N) = 0 such that

∂∗A ⊂
⋃
h∈N

Γh ∪N

where (Γh) is a sequence of compact subsets of C1-hypersurfaces.
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Moreover (by the implicit-function theorem) there exists ν, the (inner) normal to ∂∗A,
defined Hd−1-almost everywhere on ∂∗A (corresponding to the (common) normal to the
hypersurfaces Γh).

Remark 5 (blow up). From the result above we deduce that there exists a function
νA : ∂∗A → Sd−1, the inner normal to A (coinciding almost everywhere with ν defined
above), such that

lim
ρ→0+

|B+
ρ (x, νA(x)) \A|

ρd
= 0 ∀x ∈ ∂∗A,

where B+
ρ (x, ν) := {y ∈ Rd : ‖y − x‖ < ρ, 〈y − x, ν〉 > 0}.

As a consequence if A is a set of finite perimeter, then for Hd−1-almost all x0 ∈ ∂∗A
we have the convergence of the blown-up sets

1

%
(A− x0)→ {x ∈ Rd : 〈x, ν〉 ≥ 0} in L1

loc(Rd) as %→ 0.

The introduction of the sets of finite perimeter is motivated by the following compact-
ness theorem.

Theorem 6 (compactness). Let {An} be a sequence of sets of finite perimeter such that
supn∈N Per(An; Ω) < +∞. Then there exists a subsequence {Ank} (locally) converging in
measure to a set A of finite perimeter; that is, for any Ω′ ⊂⊂ Ω

|(Ank4A) ∩ Ω′| → 0 as k → +∞.

3 Asymptotic description of the energies Eε: discrete-to-
continuum Γ-convergence

The compactness theorem for sets of finite perimeter allows to deduce a compactness
property for the discrete energies Eε defined in (2).

Remark 7 (compactness of Eε). Let {uε} be a family of spin functions defined on Lε such
that Eε(uε) ≤ C. Then, for any Ω′ ⊂⊂ Ω

Hd−1(Ω′ ∩Aε(uε)) ≤ Eε(uε) ≤ C

for ε small enough. By Theorem 6 we obtain that there exist a subsequence (again denoted
by {uε}) and a set of finite perimeter A such that

Aε(uε)→ A in L1
loc(Ω).
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Now we can give a definition of convergence for spin functions.

Definition 8 (convergence of discrete sets and of spin functions). For all ε > 0 let uε be
a spin function defined on Lε, and let A be a subset of Rd. Then

uε → A ⇔ Aε(uε)→ A in L1
loc(Rd). (5)

Correspondingly, we say that a sequence of discrete sets Aε ⊂ εZd converges to A if uε =
2χAε − 1→ A (i.e., the interpolations of Aε converge to A in L1

loc(Rd).
An analogous definition can be given for spin functions on arbitrary Bravais lattices

with sets constructed starting from the elementary cells defined in (4).

We can now specialize the definition of Γ-convergence to the discrete setting as follows.

Definition 9 (discrete-to-continuum Γ-convergence). For any ε > 0, let Eε be a functional
defined on the set {u : Lε → {−1; 1}}, and F be a functional defined on the family of sets of
finite perimeter. The sequence {Eε} Γ-converges to F at A with respect to the convergence
defined in (5) if and only if

(i) (liminf inequality) for all uε converging to A we have F (A) ≤ lim inf
ε→0

Eε(uε);

(ii) (existence of a recovery sequence) there exist uε converging to A such that3 F (A) =
lim
ε→0

Eε(uε) (a such family {uε} is called a recovery sequence for F (A)).

If this holds for any A of finite perimeter, we say that F is the Γ-limit of Eε and write

F = Γ- lim
ε→0

Eε.

Remark 10. Using the fundamental theorem of Γ-convergence we may prove that problems
for energies Eε can be approximated using analogous continuum problems related to the
limit energy F . If Eε Γ-converge to F , then

• the minimal cut problems for the energies Eε with the constraint εd#{ui = 1} = mε

converge to the constrained minimum problem

min{F (A) : |A| = m},

where m = lim
ε→0

mε;

3Note that if (i) holds, in order to prove (ii) it suffices to show that for all η > 0 there exists uηε converging
to A such that F (A) ≥ lim supε→0Eε(u

η
ε)− η. Indeed by a diagonal argument then we obtain a sequence

uε converging to A that satisfies F (A) ≥ lim supε→0Eε(uε), which is a recovery sequence by (i).
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• the minimum problem for Eε(u)+λ
∑

i∈L ε
d|ui−gi|2 converge to the minimum prob-

lem

min{F (A) + λ

∫
Ω

(χA − g)2 dx}.

Theorem 4 allows to define perimeter functionals as integrals on the reduced boundary
as in the following definition. Such perimeters will be obtained as limits of energies Eε
under general conditions. Note that the usual perimeter is obtained by taking the constant
1 as ϕ.

Definition 11 (perimeter functionals). Let Ω be an open subset of Rd and let X =
{A : A of finite perimeter in Ω}. A functional F : X → R is a (homogeneous) perimeter
functional if it is given by

F (A) =

∫
Ω∩∂∗A

ϕ(ν(x)) dHd−1(x), (6)

where ν(x) is the inner normal to ∂∗A at x and ϕ : Sd−1 → [0,+∞) is a continuous function.

Since Γ-limits are lower semicontinuous with respect to the convergence in which they
are computed, we may restrict our analysis to lower-semicontinuous functionals, character-
ized in the following theorem.

Theorem 12 (semicontinuity of perimeter functionals). The (homogeneous) perimeter
functional F defined in (6) is lower semicontinuous with respect to the L1

loc convergence if
and only if ϕ defines a norm; i.e., (the one-homogeneous extension of) ϕ is convex; that
is, the function (again denoted by ϕ) defined in Rd by

ϕ(z) =

{
‖z‖ϕ

(
z
‖z‖
)

if z 6= 0

0 if z = 0

is convex. Furthermore, if Ω is a Lipschitz set then for all A there exists a sequence of
polytopes Ak such that F (Ak)→ F (A).

Remark 13 (representation of perimeter functionals; Wulff shapes). Let ϕ : Sd−1 → R be
such that ϕ ≥ c > 0, extended to Rd by one-homogeneity.
• We can characterize the perimeter functional F given by (6) by the set

Bϕ = {z ∈ Rd : ϕ(z) ≤ 1},

which is a convex set if F is lower semicontinuous. Identifying F with Bϕ is a handy way
to describe the limit energies in a pictorial way.
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• Another equivalent characterization of F is the identification with a Wulff shape of
ϕ; that is, a (convex) set Wϕ maximizing4

max{|A| : F (A) ≤ 1}.

The sets Wϕ van be obtained from Bϕ by a duality argument. Note that minimizers Wϕ

satisfy F (A) = 1 by the homogeneity of F . If ϕ is even; that is, ϕ(ν) = ϕ(−ν), then we
can choose uniquely Wϕ by centering it at 0.

Example 14 (Γ-limit of nearest neighbour energies). We consider the discrete energies
defined in (2) and compute the Γ-limit with respect to the convergence (5).

• Optimization of the lower bound. Let {uε} be such that Eε(uε) is equibounded. The
compactness ensures that (up to subsequences) uε → A where A is a set of finite perimeter.
We note that for ε small enough

Eε(uε) ≥ Hd−1(Ω′ ∩ ∂Aε(uε)), (7)

for all Ω′ ⊂⊂ Ω. We may optimize lower estimate (7) by observing that the inner normal
to ∂Aε(uε), denoted by νε, may only take the values ±ek, k = 1, . . . , d, and then, for all
Ω′ ⊂⊂ Ω, we have

Eε(uε) ≥
∫

Ω′∩∂Aε(uε)
ϕ(νε) dHd−1, (8)

for every norm ϕ such that ϕ(ek) ≤ 1 for all k = 1, . . . , d. The largest such norm is

‖ν‖1 :=
d∑

k=1

|νk|, ν = (ν1, . . . , νd).

Hence, thanks to (8) and the lower semicontinuity of the perimeter functionals, we have

lim inf
ε→0

Eε(uε) ≥ sup
Ω′⊂⊂Ω

∫
Ω′∩∂∗A

‖ν‖1 dHd−1 =

∫
Ω∩∂∗A

‖ν‖1 dHd−1. (9)

• Upper bound by density. As for the Γ-lim sup inequality, it is sufficient to construct
a recovery sequence for a polytope A; indeed, by Theorem 12, they are (strongly) dense in
the space of characteristic functions of sets of finite perimeter, and we can use a diagonal
argument.

4Equivalently, we may define Wulff shapes as Wϕ = B/(F (B))
1

d−1 , where B is a solution of min{F (B) :

|B| ≥ 1}. Conversely, minimizers of this last problem are given by Wϕ/|Wϕ|
1
d . The equivalence of the two

problems is obtained by using the fact that Hd−1 is positively d− 1-homogeneous as set function.
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We now construct a recovery sequence for a polytope A. Note that by localization we
can consider separately any edge of the polytope. The sequence {uε} defined by uε(εi) :=
−1 + 2χA(εi) can be chosen as a recovery sequence, since

lim
ε→0

Eε(uε) =

∫
Ω∩∂A

‖ν‖1 dHd−1.

Hence, we have

Γ- lim
ε→0

Eε(A) =

∫
Ω∩∂∗A

‖ν‖1 dHd−1. (10)

The functional F (A) =
∫

Ω∩∂∗A ‖ν‖1 dH
d−1 is the so-called 1-crystalline perimeter of A.

The Wulff shape of the 1-crystalline norm is the d-dimensional coordinate cube with
measure 1.

4 A class of pairwise ferromagnetic homogeneous systems

With Example 14 in mind, we study the asymptotic behaviour of functionals of the form

Eε(u) =
∑

εi,εj∈Lε

εd−1 aij(ui − uj)2, (11)

where Lε = Lε(Ω) = εZd ∩ Ω, u : εZd → {−1, 1}, ui = u(εi) and aij is a family of non-
negative coefficients describing the set E of the connections, each considered with a possible
weight. In particular, we consider the following problem:

• in which conditions on aij the Γ-limit is a perimeter functional of the form (6).

As an example, we can consider the set of connections in Z2 given by the nearest and
next-to-nearest neighbours; that is,

E = {(i, j) : ‖i− j‖ ≤
√

2}.

The set of such connections is indicated by 〈〈i, j〉〉. This corresponds in (11) to the choice
aij = 1 if ‖i−j‖ ≤

√
2, and aij = 0 otherwise. The network of interactions is represented in

Fig. 3, where, in the picture on the right-hand side, we have highlighted the sites interacting
with a given site.

We assume that the coefficients aij in (11) satisfy the following hypotheses.

• (ferromagnetic energies) aij ≥ 0 for any i, j; this corresponds to having uniform
ground states; i.e., u identically 1 or −1;

• (coerciveness of nearest-neighbour interactions) aij ≥ c > 0 if ‖i− j‖ = 1;
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Linea 0.05

Punti vuoti

Figure 3: square lattice with next-to-nearest neighbour interactions and connections of a
given point.

• (homogeneity) aij = αi−j = αj−i for any i, j; note that the symmetry can be assumed

without loss of generality by possibly choosing coefficients
aij+aji

2 .

Moreover, we suppose (as a working condition) that the coefficients aij be uniformly of
finite range; that is,

• (finite range) there exists R > 0 such that aij = 0 if ‖j − i‖ > R.

Remark 15 (coerciveness and domain of the Γ-limit). If a sequence (uε) is such that
Eε(uε) ≤ C, then the coerciveness of the nearest-neighbour interactions ensures that the
corresponding sets Aε(uε) have equibounded perimeter, so that they are precompact thanks
to Theorem 6. Up to subsequences, we can assume that uε → A for a set A of finite
perimeter. Since the coefficients are of finite range, by choosing uε = −1 + 2χA on εZd we
obtain limε→0Eε(uε) ≤ CRHd−1(Ω ∩ ∂A); hence, the domain of the Γ-limit of Eε is the
family of sets with finite perimeter.

Linea 0.05

Punti vuoti

Figure 4: decomposition of a square lattice with next-to-nearest neighbour interactions.

S Computation of the Γ-limit by “superposition”

We start with a “pictorial” example to describe the superposition of lattices. Again, we
consider the lattice Z2 with the set of connections given by the nearest and next-to-nearest
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interactions. This corresponds to assuming that the range of aij is R =
√

2. We can
decompose the lattice in three lattices as pictured in Fig. 4.

We separately estimate the contribution of the energy on the different sublattices of
the decomposition, noting that the restriction of converging sequences on the whole lattice
still converge to the same limit when considered on each such sublattice.

α β α β

αβ α β

α

β

α

β

α

β

α

β

ui=+1

u j=−1

kB

Figure 5: coerciveness of next-to-neighbour interactions.

Remark 16 (coerciveness and convergence on sublattices). Let {uε} be an equibounded
sequence. We can assume that Aε := Aε(uε) → A, noting that the convergence is strong
and that the perimeters of Aε are equibounded. If L̃ is a sublattice of Zd, whose elementary
cell is denoted by C, we define ũε as the restriction of uε to Ω ∩ εL̃, and let Ãε denote the
set corresponding by interpolation to ũε in Ω ∩ εL̃ (see definition (3) with C in the place
of [−1

2 ,
1
2 ]d). We omit the dependence on Ω in the following notation. Then

Ãε → A strongly.

Indeed, Hd−1(Ω∩ Ãε) ≤ CHd−1(Ω∩ ∂∗Aε), since to a change of sign of ũε between i and j
corresponds (at least) a change of sign of uε along a path joining i and j (see Fig. 5); then
Ãε strongly converges to a set of finite perimeter Ã.

Moreover, by an argument of “weak-strong” convergence, we note that

Ãε ∩ εL̃⇀ cL̃χÃ and Aε ∩ εL̃⇀ cL̃χA,

where cL̃ is a positive constant depending on the lattice. Since Ãε ∩ εL̃ = Aε ∩ εL̃, we

deduce that Ã = A.

Now we compute the Γ-limit of the sequence Eε.

• (lower bound) We can write Eε as the sum of functionals depending on a parameter
k ∈ Zd; that is,

Eε(u) =
∑
k∈Zd

∑
εi∈Lε

εd−1αk(ui+k − ui)2 =:
∑
k∈Zd

Ekε (u).
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α β α β

αβ α β

α

β

α

β

α

β

α

β

ui=+1

u j=−1

kB

Figure 6: the elementary cell of Lk.

For a fixed k ∈ Zd we consider a lattice Lk obtained by using k and a basis of the
orthogonal space (B denotes the corresponding cell in this d − 1 subspace, as pictured in
Fig. 6), and define the functional

EL
k

ε (u) =
∑

i∈Lk∩ 1
ε

Ω

εd−1αk(ui+k − ui)2,

which is a nearest-neighbour energy in the lattice Lk, where all the interactions in the
directions orthogonal to k have coefficient equal to 0. Recalling Remark 16, we have that if
uε → A then the restriction of uε to the sublattice εLk∩Ω (again denoted by uε) converges
strongly to the same A. Denoting the interpolation set of uε on the sublattice εLk ∩ Ω by
Akε(uε), we can write for any open set Ω′ ⊂⊂ Ω and for ε small enough

EL
k

ε (uε) ≥
4

Hd−1(B)

∫
Ω′∩∂Akε (uε)

αk

∣∣∣〈 k

‖k‖
, ν
〉∣∣∣ dHd−1 =

4

|Ck|

∫
Ω′∩∂Akε (uε)

αk|〈k, ν〉| dHd−1,

where Ck is the fundamental cell of Lk as in (4). By lower semicontinuity we then obtain

lim inf
ε→0

EL
k

ε (uε) ≥
4

|Ck|

∫
Ω′∩∂∗A

αk|〈k, ν〉| dHd−1.

Taking the supremum over all sets Ω′ compactly contained in Ω, we get

lim inf
ε→0

EL
k

ε (uε) ≥ F k(A) :=
4

|Ck|

∫
Ω∩∂∗A

αk|〈k, ν〉| dHd−1.

Now, we have to count how many different (translated) lattices we have with one side of
the elementary cell equal to k; we note that Zd contains |Ck| disjoint copies of the lattice
Lk; hence, going back to the functionals Ekε

lim inf
ε→0

Ekε (uε) ≥ 4

∫
Ω∩∂∗A

αk|〈k, ν〉| dHd−1,
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since the sum of the lim inf is lower than the lim inf of the sum. We conclude that

lim inf
ε→0

Eε(uε) = lim inf
ε→0

∑
k∈Zd

Ekε (uε) ≥ 4
∑
k∈Zd

αk

∫
Ω∩∂∗A

|〈k, ν〉| dHd−1.

Note that the factor 4 (instead of 8) is due to the fact that the vectors k and −k are both
accounted for.

The “candidate” limit energy density is then

ϕ(ν) = 4
∑
k∈Zd

αk|〈k, ν〉|. (12)

• (upper bound) Note that in general the Γ-limit of a sum does not coincide with the
sum of the Γ-limits, since the recovery sequences can be different. In the present case, we
obtain the upper inequality by noting that the same recovery sequence can be used for all
k. As in the case of nearest-neighbour interactions, we prove the lim sup inequality for a
polytope A and conclude by using a density argument.

If A is a polytope, then locally it is a portion of a half-space, with boundary orthogonal
to a direction ν. Then, by choosing uε = −1 + 2χA∩εZd , we obtain that the restriction to
each εLk is a recovery sequence for |Ck|F k(A). Indeed, if we consider these restrictions;
that is, we limit the interactions to the sublattice εLk, we have that the measure of the
boundary of the set Akε(uε) is the measure of the projection on the hyperplane orthogonal
to ν, and then proportional to |〈k, ν〉|. This implies that {uε} is a recovery sequence for
all sequences of functionals Ekε of the decomposition, and we have an upper bound with
the same ϕ.

Remark 17. Following the proof above, we note that we can drop the hypothesis of finite
range: if the range of the coefficients is not finite, but∑

k∈Zd
αk‖k‖ < +∞, (13)

the same proof can be repeated (almost) word for word. Indeed, we can estimate Eε(uε)
from below by the same energy limited to the interactions with range less than R; that is,

‖i− j‖ ≤ R, indicated by E
(R)
ε (uε). Since E

(R)
ε is of finite range, the sequence Γ-converges

to F (R)(A) =
∫

Ω∩∂∗A ϕR(ν) dHd−1, where

ϕR(ν) = 4
∑
‖k‖≤R

αk|〈k, ν〉|.

Noting that ϕR(ν) increasingly converges to ϕ(ν), the lower bound can be optimized by
taking the supremum over R > 0, obtaining

lim inf
ε→0

Eε(uε) ≥ sup
R

lim inf
ε→0

E(R)
ε (uε) ≥ sup

R

∫
Ω∩∂∗A

ϕR(ν) dHd−1 =

∫
Ω∩∂∗A

ϕ(ν) dHd−1.
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As for the upper bound, the same recovery sequence {uε} as in the finite-range case can
still be used, since the infinite sum

∑
k∈Zd E

k
ε (uε) is uniformly convergent by hypothesis

(for A a portion of a half-space, it is bounded by the perimeter of the boundary of A times
4
∑

k∈Zd αk‖k‖).

Remark 18 (crystalline norms). Note that if the range of αk is finite, then Bϕ = {z :
ϕ(z) ≤ 1} is a polytope, since it is the intersection of half-spaces and the vectors k for
which αk 6= 0 span Zd. Since the coefficients are symmetric, Bϕ is symmetric with respect
to the origin. Then, also the Wulff shape Wϕ is a polytope symmetric with respect to the
origin. A norm ϕ such that Wϕ satisfies this property is called a crystalline norm.

If the range is not finite, we can have energy densities ϕ that are not crystalline; in
particular, suitably choosing the coefficients we may obtain ϕ constant (i.e., the limit
perimeter proportional to the euclidean one).

Bφ

v1

v2v3v4

W φ

1

u

1−1/n

Figure 7: Bϕ and Wϕ for next-to-nearest systems.

Example 19 (next-to-nearest neighbours in Z2). We apply this result to the case of nearest
and next-to-nearest interactions in Z2 with weighted coefficients; that is, we fix

αk =


α if k ∈ {±e1,±e2}
β if k ∈ {±(e1 + e2),±(e1 − e2)}
0 otherwise.

with α, β > 0. The energy density is

ϕ(ν) = 8
(
α(|〈e1, ν〉|+ |〈e2, ν〉|) + β(|〈e1 + e2, ν〉|+ 〈e1 − e2, ν〉)

)
= 8(α‖ν‖1 + 2β‖ν‖∞).

The Wulff shape Wϕ is an octagon as in Fig. 7.
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Remark 20 (interactions on general Bravais lattices). The Γ-convergence result can be
generalized by considering a general (d-dimensional) Bravais lattice L in Rd. In this case,
the limit energy density depends on the volume of the cell of the lattice; we have

ϕ(ν) = 4cL
∑
k∈Zd

αk|〈k, ν〉|, (14)

where cL = |C|−1 and C is the fundamental cell of the lattice L as in (4).

W φBφ

v1

v2v3

v
1

v
2

v
3

Bφ W φ

(0, 1/2) (0, 1/12)

(0, 1/2) (0, 1/12)

Figure 8: Bϕ and Wϕ for the triangular lattice.

Example 21 (Nearest-neighbour interactions on the triangular lattice). As an example
we consider a triangular lattice in 2 dimensions. Let vn =

(
cos((n − 1)π3 ), sin((n − 1)π3 )

)
for n = 1, 2, 3, and let L be the Bravais lattice given by

L = Zv1 + Zv2.

We consider the nearest-neighbour interactions; that is, the coefficients aij are given by

aij =

{
1 if i− j ∈ {±v1,±v2,±v3}
0 otherwise.

Since cL = 2√
3
, by (14) we get

ϕ(ν) =
8√
3

3∑
n=1

|〈ν, vn〉|.

The corresponding Wulff shape is an hexagon as in Fig. 8.
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5 Homogenization of ferromagnetic energies

We now consider non-homogeneous systems; i.e., energies with interaction coefficients aij
that are not invariant by a common translation of the indices. In this section we consider
periodic arrangements of aij of period K. This gives an invariance by εK translations
of the energies at a discrete level, and eventually homogeneous (i.e., translation-invariant)
perimeter functionals in the limit. This process (the derivation of homogeneous functionals
from non-homogeneous, possibly periodic, energies) is called homogenization.

α β α β

αβ α β

α

β

α

β

α

β

α

β

ui=+1

u j=−1

kB

Figure 9: two non-homogeneous systems in Z2.

The homogenization process is already interesting when we have only nearest-neighbour
interactions. In Fig. 9 we picture two two-dimensional nearest-neighbour systems with aij
taking only the values α and β. On the left-hand side picture the connections are located in
series, on the right-hand side picture in parallel. While the connections are in equal number
their geometrical properties are different; in particular, in the systems on the left-hand side
connections with strength β form isolated loops (if β > α such loops are sometime called
hard inclusions). Both systems have the property of being periodic of period 2 in each
direction.

We now formalize the hypothesis on the system of coefficients. Let Ω ⊂ Rd be an open
set, and Lε = Ω ∩ εZd; we consider, as in Section 4, the family of energies given by

Eε(u) =
∑

εi,εj∈Lε

εd−1aij(ui − uj)2, (15)

with aij satisfying the following hypotheses

• (ferromagnetic interactions) aij ≥ 0 (and symmetric);

• (coerciveness on nearest-neighbour interactions) aij ≥ c > 0 if ‖i− j‖ = 1.

As for homogeneous energies, we make the working assumption that the range of the
interactions is finite; that is,
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• (finite range) there exists R > 0 such that aij = 0 if ‖i− j‖ > R.

The hypothesis of homogeneity is substituted by the following

• (periodicity) there exists a period K ∈ N such that for any i, j ∈ Zd

aij = ai+Ken j+Ken for any n = 1, . . . , d.

Note that if K = 1 we have homogeneity.

As for the homogeneous energies, the hypothesis of coerciveness of the nearest-neighbour
interactions gives the compactness of sequences with equibounded energies. This condition
and the finite-range assumption ensure that also in this case the domain of the Γ-limit
(which exists up to subsequences) is given by sets of finite perimeter. Moreover, the Γ-
limit is bounded from above and from below by (multiples of) the perimeter, so that we
can conjecture that it is concentrated on the reduced boundary of A.

More precisely, we face the problem whether there exists a homogeneous limit energy
density ϕhom such that

Eε
Γ−→

∫
∂∗A∩Ω

ϕhom(ν) dHd−1 as ε→ 0

if the hypothesis of homogeneity of the coefficients aij is replaced by the hypothesis of
periodicity.

Figure 10: discretization of a half-space and a corresponding recovery sequence.

The arguments used in the proof of the Γ-convergence result for homogeneous net-
works do not work for non-homogeneous energies. This can be checked in the systems
of interactions represented in Fig. 9, where recovery sequences follow least-energy paths.
While in the right-hand side example the Γ-limit is a 1-crystalline perimeter with coeffi-
cient (α+β)/2, corresponding to the trivial recovery sequences obtained by discretizing the
target set, the hard-inclusion system on the left-hand side leads to a 1-crystalline perimeter
with coefficient α (if α < β), with recovery sequences avoiding the stronger β-connections
(see Fig. 10).
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To prove a Γ-convergence result for energies (15) we use the so-called blow-up method
introduced by Fonseca and Müller. In general, this method is used to prove a lower-bound
inequality for energies Fε, showing that if uε → u then

lim inf
ε→0

Fε(uε) ≥ F (u) =

∫
Ω
f(x) dλ,

for some f that can be characterized in terms of local quantities depending on u only (e.g.,
u(x) or ∇u(x), etc.). The idea is to interpret Fε(uε) as a sequence of (total variations
of) equibounded measures (the sequence uε being fixed); that is, Fε(uε) = λε(Ω). Since

λε(Ω) ≤ C, we get that up to subsequences λε
∗
⇀ µ. Then, to prove the lower estimate it

is sufficient to show that

dµ

dλ
(x) ≥ f(x) for λ-almost all x ∈ Ω

and then integrate with respect to the measure λ.
Now we specialize this abstract method to the case of the discrete energies Eε, where

the measure λ is Hd−1 restricted to the reduced boundary of the limit A of uε, and f(x) is
ϕhom(ν(x)).

A lower bound by blow-up

Let {uε} be a sequence with equibounded energy, and uε → A as ε → 0. We define the
sequence of measures {µε} given by

µε =
∑
εi∈Ω

( ∑
εj∈Ω

εd−1aij(u
ε
i − uεj)2

)
δεi,

where δx is the Dirac measure concentrated at x; that is, for a Borel set B

µε(B) =
∑
εi∈B

∑
εj∈Ω

εd−1aij(u
ε
i − uεj)2.

The value µε(B) takes into account of interactions between nodes in B and nodes in the
whole Ω, but, due to the finite-range hypothesis indeed the latter can be limited to an
εR-neighbourhood of B.

Since µε(Ω) = Eε(uε), the measures are equibounded and up to subsequences we can
assume

µε
∗
⇀ µ.

We want to show that there exists a function ϕhom such that

dµ

dHd−1 ∂∗A
(x0) ≥ ϕhom(ν(x0)) for Hd−1-almost every x0 ∈ ∂∗A. (16)

21



Indeed, if (16) holds for some ϕhom (independent of the subsequence and of Ω) we obtain
the lower bound for the Γ-limit, since

lim inf
ε→0

Eε(uε) = lim inf
ε→0

µε(Ω) ≥ µ(Ω) ≥
∫
∂∗A∩Ω

dµ

dHd−1 ∂∗A
(x0) dHd−1

≥
∫
∂∗A∩Ω

ϕhom(ν(x0)) dHd−1.

Recalling Remark 5, we have that for almost all x0 ∈ ∂∗A the blown-up sets converge to
the half space Πν = {x ∈ Rd : 〈x, ν〉 ≥ 0}; that is,

1

%
(A− x0)→ Πν for Hd−1-almost every x0 ∈ ∂∗A. (17)

We restrict to points x0 ∈ ∂∗A such that the measure-theoretical derivative of the limit
measure µ with respect to Hd−1 ∂∗A exists, and (17) holds. To obtain a lower estimate
of the derivative of the measure µ, we note that we can write

dµ

dHd−1 ∂∗A
(x0) = lim

%→0

µ(Qν%(x0))

%d−1
,

where Qν%(x0) is a d dimensional cube with center x0, a face orthogonal to ν and side length
%. For any % > 0 such that µ(∂Qν%(x0)) = 0 (hence, for all % except a countable number)
we have that µε(Q

ν
%(x0))→ µ(Qν%(x0)), which implies

dµ

dHd−1 ∂∗A
(x0) = lim

%→0
lim
ε→0

µε(Q
ν
%(x0))

%d−1
.

Hence, we can choose a sequence %ε → 0 as ε→ 0 such that %ε >> ε, and

A ε
ϱε

(uε)
Πν

ν

x
0

1

ε
ϱε

Figure 11: scaling to a cube of side-length 1.
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dµ

dHd−1 ∂∗A
(x0) = lim

%→0

µ(Qν%(x0))

%d−1
= lim

ε→0

µε(Q
ν
%ε(x0))

%d−1
ε

.

The problem is now to estimate
µε(Qν%ε (x0))

%d−1
ε

by using the definition of Eε (up to now,

we have only used the fact that the measures µε are equibounded). The idea is to obtain a
lower bound by minimizing the effect of the sequence (uε) with the given condition of being
“close to a hyperplane orthogonal to ν”. We start by re-scaling the cube Qν%ε(x0) to a cube
with side length 1 (see Fig. 11). From now on, we make some simplifying assumptions (not
restrictive): we suppose that x0 = 0 and ν = ed, and set Qν% = Qν%(0). Since the coefficients
aij are positive, for the lower bound we can consider only the interactions between points
inside the cube, and we obtain

µε(Q
ν
%ε)

%d−1
ε

≥
∑

ε
%ε
i, ε
%ε
j∈Qν1

εd−1

%d−1
ε

aij(u
ε
i − uεj)2.

We make now another simplification, supposing that we have only nearest-neighbour in-
teractions; that is, aij = 0 if ‖i − j‖ > 1. This assumption allows to represent easier the
interactions, which for nearest neighbour correspond to interfaces on the reference lattice.
Note that we can generalize the proof to the case of finite-range interactions with some
additional technical arguments.

Since giving a boundary condition is easier to handle than that of “being close to Πν”,
we show that we can modify the sequence {uε} near the boundary of the cube Qν1 without
essentially modifying the energies.

Lemma 22 (variation of boundary data). There exists ũε such that A ε
%ε

(ũε) ∩ ε
%ε
Zd =

Πν ∩ ε
%ε
Zd close to ∂Qν1, and the corresponding energy is not larger than the energy of uε

up to a term which goes to 0 as ε→ 0.

C
1

C
k̂ C

N

b

A

A η

Figure 12: an illustration of Remark 23.
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Remark 23 (a discrete coarea argument). The proof of Lemma 22 relies on a discrete
coarea argument, which we briefly describe in a simple case in dimension d = 2. Let
R ⊂ R2 be a coordinate rectangle and b denote the length of the basis. Let A be a subset
of R given by the union of coordinate squares with side length η and centered at points of
ηZ2. We consider the columns of squares in A such that the centers have the same first
coordinate, and indicate them by C1, . . . , CN with N = b bη c − 1 (see Fig. 12).

For any k = 1, . . . , N we have that

H1(∂Ck) ≤ #(ηZ2 ∩ Ck)4η ≤ 4|Ck|
η

.

Since
∑N

k=1 |Ck| ≤ |A|, there exists an index k̂ such that |C k̂| ≤ |A|N , hence

H1(∂C k̂) ≤ C |A|
b
.

Proof of Lemma 22. We set ηε = ε
%ε

. Let Aε := Aηε(uε), and Πν
ε denote the set given by

the union of cubes Qνηε(x) with x ∈ ηεZd∩Πν . We define the set Ãε (and the corresponding
discrete function ũε) by setting

Ãε =

{
Aε in Qν(2k+1)ηε

Πν
ε otherwise in Qν1

where k ∈ N is such that 1−2δ
2ηε
− 1

2 < k < 1
2ηε
− 1

2 and δ ∈ (0, 1
4).

C
1

C
k̂ C

N

b

A

A η

0 0

Πε
ν

(2 k̂+1)ηε

1

ρ Aε

Aε Ãε

δ

Πν

Figure 13: modification of Aε close to the boundary of Qν1 .
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We estimate the energy Eε(ũε) inside the cube Qν1 , obtaining∑
ηεi,ηεj∈Qν1

ηd−1
ε aij(ũ

ε
i − ũεj)2 ≤

∑
ηεi,ηεj∈Qν1

ηd−1
ε aij(u

ε
i − uεj)2 + Cδ + r(ε, k)

where Cδ estimates the contribution of the boundary of Πν in Qν1 \ Qν1−2δ and r(ε, k) is

the contribution of the additional boundary of Ãε in ∂Qν(2k+1)ηε
(see Fig. 13). To prove

that we can choose k such that this term is infinitesimal as ε→ 0, we use a discrete coarea
argument as described in Remark 23 with d = 2. Setting

Ck = (Qν(2k+1)ηε
\Qν(2k−1)ηε

) ∩Aε

for all admissible k, which are less than δ
ηε

, we have that there exists k̂ such that

|C k̂| ≤ ηε
δ
|Aε4Πν

ε |.

As in Remark 23 applied to Aε4Πν
ε , we deduce that

Hd−1
(
Aε ∩ ∂Qν(2k̂+1)ηε

)
≤ C#(ηεZd ∩ C k̂)ηd−1

ε ≤ C |C
k̂|
ηε
≤ C

δ
|Aε4Πν

ε |,

where C is a positive constant depending on d. Hence, by choosing k = k̂, we obtain∑
ηεi,ηεj∈Qν1

ηd−1
ε aij(ũ

ε
i − ũεj)2 ≤

∑
ηεi,ηεj∈Qν1

ηd−1
ε aij(u

ε
i − uεj)2 + Cδ +

C

δ
|Aε4Πν

ε |;

since |Aε ∩Πν
ε | → 0 as ε→ 0 and δ is arbitrarily small, we get

lim inf
ε→0

µε(Q
ν
%ε)

%d−1
ε

≥ lim inf
ε→0

∑
ε
%ε
i, ε
%ε
j∈Qν1

( ε
%ε

)d−1
aij(ũ

ε
i − ũεj)2. (18)

concluding the proof.

Remark 24 (finite-range interactions). If we consider the general case of interactions
beyond the nearest neighbours, the proof of Lemma 22 can be repeated with some modi-
fications. Indeed, in the estimate of the contribution of the interactions due to additional
interfaces, we can apply a variant of Remark 23 considering the sum of the interfaces on
the boundary of a finite number of consecutive cubic annuli, instead of only one. Note
moreover that in the proof we can choose k̂ greater than a fixed k0 > R, where R is the
range of the interactions. Hence the boundary data are fixed in a ηεR-neighbourhood of
the boundary of the cube Qν1 .
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Now, thanks to (18) and to Remark 24, we can estimate (up to an infinitesimal term
as ε→ 0)

µε(Q
ν
%ε)

%d−1
ε

≥ min
{ ∑

ε
%ε
i, ε
%ε
j∈Qν1

( ε
%ε

)d−1
aij(vi − vj)2 : v = −1 + 2χΠν in Qν1 \Qν1−2 ε

%ε
R

v :
ε

%ε
Zd ∩Qν1 → {−1,+1}

}
where R is the range of the interactions. Note that the minimum problem above in principle
depends on the choice of the point x0, which we have supposed for simplicity to be 0. By
the perioditicity, the problems are invariant by translations in εKZd. We now set

ϕhom(ν) = lim inf
η→0

min
{ ∑
ηi,ηj∈Qν1

ηd−1aij(vi − vj)2 : v = −1 + 2χΠν in Qν1 \Qν1−2ηR,

v : ηZd ∩Qν1 → {−1,+1}
}

= lim inf
T→+∞

1

T d−1
min

{ ∑
i,j∈QνT

aij(vi − vj)2 : v = −1 + 2χΠν in QνT \QνT−2R,

v : Zd ∩QνT → {−1,+1}
}

where we have re-scaled by setting T = 1
η . By the invariance by εKZd translations, we

can replace the cube QνT by any cube QνT (xT ) for arbitrary xT ∈ Rd up to translating also
the boundary conditions. The definition of ϕhom, corresponding to a minimization over all
oscillations close to a flat interface orthogonal to ν, does not depend on the subsequence
and on the choice of the center of the cube, and depends only on the normal ν.

We then have a lower bound for the energies Eε

lim inf
ε→0

Eε(uε) ≥
∫

Ω∩∂∗A
ϕhom(ν) dHd−1. (19)

The asymptotic homogenization formula

We now prove the existence of the limit in the definition of ϕhom; that is,

ϕhom(ν) = lim
T→+∞

1

T d−1
min

{ ∑
i,j∈QνT

aij(vi − vj)2 : v = −1 + 2χΠν in QνT \QνT−2R,

v : Zd ∩QνT → {−1,+1}
}
.

(20)
To that end, we define

g(T, ν) = min
{ ∑
i,j∈QνT

aij(vi − vj)2 : v = −1 + 2χΠν in QνT \QνT−2R,

v : Zd ∩QνT → {−1,+1}
}

26



and show that there exists the limit

lim
T→+∞

g(T, ν)

T d−1
.

To prove the existence of the limit we use a subadditivity argument. Given an optimal
set AT (corresponding to a minimizer vT ) in the cube QνT , we want to construct an almost
optimal set in a larger cube QνS , with S >> T .

T

S

Πν

ν

1

K

Figure 14: a pictorial proof of the homogenization formula.

Note that we have translational invariance of the optimal set if we move the cube QνT
by any vector Kw, where K is the period and w ∈ Zd. The elements of KZd are referred
to as admissible translations. The translation moving QνT to an adjacent cube sharing a
d− 1 face and centered on the hyperplane orthogonal to ν is in general not admissible for
arbitrary ν and T . However, we can find an admissible translation such that the distance of
the center of the translated cube from the hyperplane ∂Πν is of order K and the distance
between the centers of the cubes is of order T + K, as pictured (for d = 2) in Fig. 14.
Then the distance between the cubes is uniformly bounded by a constant C, and the same
holds for the distance of the centers from ∂Πν . We repeat this construction by “invading”
∂Πν ∩QνS with non overlapping cubes until the distance of the translated cubes from the
boundary of QνS is less than 2T , and define a set given by the translation of AT in each of
these cubes, and by the discretization of the half-space Πν otherwise in QνS . Hence, since
the number of the cubes is less than (ST )d−1 we have

g(S, ν)

Sd−1
≤ 1

Sd−1

(Sd−1

T d−1
g(T, ν) +

Sd−1

T d−1
CT d−2 + (Sd−1 − (S − 2T )d−1)

)
,
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where the term CT d−2 estimates the additional interface close to each translated cube with
side length T , and the last term in the sum estimates the additional interface close to the
boundary of QνS . By taking the lim sup as S → +∞ we obtain

lim sup
S→+∞

g(S, ν)

Sd−1
≤ g(T, ν)

T d−1
+
C

T

since Sd−1 − (S − 2T )d−1 = o(Sd−1)S→+∞; now, taking the lim inf as T → +∞, it follows
that

lim sup
S→+∞

g(S, ν)

Sd−1
≤ lim inf

T→+∞

g(T, ν)

T d−1

which implies that the lim inf in the definition of ϕhom is in fact a limit.

Upper bound

We note that the construction of the test set in QνS used to prove the existence of the limit
is in fact the construction of a recovery sequence for the Γ-limit of Eε for a half-space.
Indeed, let vT denote the minimizer of the energies in the cube QνT with vT = −1 + 2χΠν

close to the boundary of QνT ; that is,

g(T, ν) =
∑

i,j∈QTν

aij(v
T
i − vTj )2.

We indicate by ṽT the function constructed by translating the cube QνT , as in the proof of
the existence of the limit, to “almost invade” the whole hyperplane ∂Πν , which corresponds
to letting S go to +∞. If A is a polytope, we localize the construction of the recovery
sequence by considering A as a portion of a half-space with boundary orthogonal to ν (we
leave to the reader the details of the construction for a general polytope, noting that close
to the boundary of each face this construction can not be performed, and the recovery
sequence can be simply taken as the discretization of the polytope itself). We define uε by
setting uεi = uε(εi) = ṽTi . Then

lim sup
ε→0

Eε(u
ε) = lim sup

ε→0

∑
εi,εj∈Lε

εd−1aij(u
ε
i − uεj)2

≤ lim sup
ε→0

εd−1Hd−1(Ω ∩ ∂A)

εd−1T d−1
(g(T, ν) + CT d−2)

≤ Hd−1(Ω ∩ ∂A)ϕhom(ν) + o(1)T→+∞,

which shows that uε is a recovery sequence up to a term arbitrarily small. As we noticed
in the definition of Γ-convergence, this is sufficient to give an upper bound for the Γ-limit.
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We can use again the density of polyhedral sets to conclude that for any A with finite
perimeter

Γ- lim
ε→0

Eε(A) ≤
∫

Ω∩∂∗A
ϕhom(ν) dHd−1.

This concludes the proof of the following result.

Theorem 25 (Homogenization of periodic networks). The sequence of functionals Eε
defined in (15) Γ-converges with respect to the convergence (5) to the functional F defined
on sets of finite perimeter by

F (A) =

∫
Ω∩∂∗A

ϕhom(ν) dHd−1,

where ϕhom satisfies the asymptotic formula (20).

6 A discrete-to-continuum localization method

We now consider the (more) general case allowing to obtain a non-homogeneous energy
density in the limit.

We start by describing a one-dimensional model example. Note that for d = 1 sets of
finite perimeter are simply (sets equivalent to) finite unions of intervals, whose endpoints are
the (reduced) boundary. In this case the dependence on the normal is trivial, which makes
it more convenient to use functions as parameters instead of sets, and the corresponding
notation for the convergence. Given a sequence of spin functions uε : εZ → {−1,+1}
converging to a set of finite perimeter A in the sense of (5), we say that uε converges to
u = −1 + 2χA, and instead of ∂∗A we use the notation S(u); that is, S(u) is the set of
discontinuity points of the piecewise-constant function u.

Example 26 (Non-homogeneous limit energies). Let a : R → [0,+∞) be a continuous
function such that a(x) ≥ c > 0 for any x ∈ R. We fix Ω = R, and consider a discretization
of the function a; that is, we consider interaction coefficients given by

a
(εi+ εj

2

)
=: aεij .

We define the nearest-neighbour energies

Eε(u) =
∑
|i−j|=1

aεij(ui − uj)2.

The hypothesis a(x) ≥ c > 0 gives compactness; hence, if Eε(uε) is equibounded there
exists u : R→ {−1, 1} such that uε → u. For any x ∈ S(u), where there is a change of sign
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Figure 15: discretization of piecewise constant u.

of the limit function, for ε small enough there is also a change of sign of uε at some i = iε
with εiε → x, which gives a contribution to the discrete energy of 8aεi i+1 = 8a(x)+o(1)ε→0

by the continuity of a, as pictured in Figure 15. Hence, we have that

Γ- lim
ε→0

Eε(u) = 8
∑

x∈S(u)

a(x),

which is a one-dimensional version of a non-homogeneous perimeter functional.
This elementary case shows that even in a simple discretization argument we have to

introduce coefficients depending on ε.

The general case of non-homogeneous energies can be then formalized as follows. We
fix Ω ⊂ Rd and look at energies given by

Eε(u) =
∑

εi,εj∈Lε

εd−1aεij(ui − uj)2 (21)

where Lε = εZd ∩ Ω, u : Lε → {−1,+1}.
The problem is now to give conditions on the coefficients aεij such that, as in Example

26, the sequence Eε defined in (21) Γ-converge (possibly up to subsequences) to an integral
functional of the form

F (A) =

∫
Ω∩∂∗A

ϕ(x, ν) dHd−1

for some ϕ : Ω× Sd−1 → [0,+∞).

We now formalize the hypotheses on the family of the coefficients aεij , keeping in mind
the conditions already taken into account for homogeneous and for periodic systems. We
consider the following assumptions:

(H1) (ferromagnetic energies) aεij ≥ 0 (and the non-restrictive symmetry condition aεij =
aεji). This ensures that ground states are the constant states −1 and 1;

(H2) (uniform coerciveness of nearest-neighbours interactions) there exists c such that
aεij ≥ c > 0 if ‖i − j‖ = 1. This condition implies that the domain of the Γ-limit is
included in the family of sets of finite perimeter.
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As in the homogeneous and periodic case, if we want the limit to be finite on sets of finite
perimeter, we have to (locally) test the energies on half-spaces and require a bound, which
in this case has to be uniform. We assume that

(H3) (finiteness condition) there exists c > 0 such that for any ε > 0 and for any i ∈ Zd∩ 1
εΩ∑

j∈Zd∩ 1
ε

Ω

aεij‖i− j‖ ≤
1

c
.

By using the trivial recovery sequence, we get that the Γ-limit is finite on the in-
tersection of half-spaces and bounded sets, hence on polyhedral sets, and then by
density on sets of finite perimeter.

Hypothesis (H3) is not sufficient to ensure that the limit be local, as shown by the following
example.

Example 27 (A non-local Γ-limit). Let d = 1, Ω = R and the family aεij be defined by

aεij =


1 if |i− j| = 1

ε if |i− j| = b1
εc

0 otherwise.

(22)

By separating the interactions between points at distance ε and points at distance of order
1, we write the energy as

Eε(u) =
∑
|i−j|=1

(ui − uj)2 + 2ε
∑
i∈Z

(
u
(
εi+ ε

⌊1

ε

⌋)
− u(εi)

)2
.

Note that the second sum can be interpreted as the integral of the piecewise-constant
interpolations of u, and it continuously converges to the (continuum) functional

2

∫
R

(u(x+ 1)− u(x))2 dx.

Since Γ-convergence is stable under continuously converging perturbations, the Γ-limit is
given by

F (u) = 8#S(u) + 2

∫
R

(u(x+ 1)− u(x))2 dx,

which is the sum of a perimeter functional and a non-local term. This example implies
that condition (H3) is not sufficient to ensure that the limit is local, since the finiteness
assumption is satisfied by the coefficients aεij defined in (22). Indeed, for any ε > 0 and
i ∈ Z, ∑

j∈Z
aεij |i− j| = 2 + 2ε

⌊1

ε

⌋
≤ 4.
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To ensure the locality of the limit, we have to require that the “tails” of the sums of
interactions are uniformly small. We assume:

(H4) (locality) for any δ there exist Rδ > 0 and εδ > 0 such that for any i ∈ Z ∩ 1
εΩ and

for any 0 < ε < εδ ∑
{j∈Zd∩ 1

ε
Ω:‖i−j‖≥Rδ}

aεij‖i− j‖ < δ.

Note that in Example 27 this assumption is not satisfied; indeed, the term εb1
εc is always

of order 1; more precisely, for any R > 1 we have
∑
{j:‖i−j‖≥R} a

ε
ij‖i− j‖ ≥ 1− ε for any ε

such that b1
εc ≥ R.

Theorem 28 (Compactness and integral representation). Let Ω be a Lipschitz subset of
Rd. If (H1)–(H4) hold, then for any εj → 0 there exists a subsequence εjk and a Borel
function ϕ : Ω× Sd−1 → [0,+∞) such that Eεjk Γ-converge to the functional F given by

F (A) =

∫
Ω∩∂∗A

ϕ(x, ν) dHd−1.

We are not going to give the proof of this theorem in all the details, which can be
achieved by using the localization method of Γ-convergence. Before giving a hint of the
proof we make a comparison with an analog result on Sobolev spaces.

Remark 29 (Comparison with the compactness and representation result for integral
functionals). We consider functionals defined by

Fε(u) =

∫
Ω
fε(x,∇u) dx

in the Sobolev space W 1,p(Ω), with fε Borel functions. A general condition on the family
fε to have a compactness and integral representation theorem are the following

c|ξ|p − 1

c
≤ fε(x, ξ) ≤

1

c
(|ξ|p + 1), (23)

which we can compare with the hypotheses of Theorem 28. The bound (with a constant)
from below is equivalent to the positiveness assumption (H1) on the coefficients aεij , and
the p-growth condition from below in the gradient variable, ensuring the coerciveness in
W 1,p(Ω), corresponds to hypothesis (H2). The estimate from above with the gradient
variable is a locality condition as (H4), and the p-growth assumption from above ensures
that the limit is finite on W 1,p(Ω), which corresponds in our case to the finiteness condition
(H3). If (23) holds, then (up to subsequences) the functionals Fε Γ-converge to an integral
functional of the form

F (u) =

∫
Ω
f(x,∇u) dx
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for some f .
Note that in the Sobolev case it can be proven that a necessary and sufficient condition

for the lower semicontinuity of the integral functional is that the function f(x, ·) be convex
for almost all x ∈ Ω (or quasi-convex in the vector case u ∈ W 1,p(Ω;Rn)). Necessary and
sufficient conditions on the limit density ϕ in Theorem 28 are more delicate since surfaces
of dimension d−1 are involved in the energies. In order not to overburden the notes we do
not give general characterizations of the energy density ϕ, which anyhow will not be used
in the sequel.

Outline of the proof of Theorem 28. The proof follows a localization method introduced by
De Giorgi, adapted to the discrete-to-continuum framework. The idea is to introduce in
the energies the dependence on a set variable; that is, for all U ⊂ Ω we define

Eε(u;U) =
∑

εi,εj∈εZd∩U

εd−1aεij(ui − uj)2. (24)

The steps of the discrete-to-continuum localization method are the following.

1. (Compactness) For any εj , there exists a (not-relabelled) subsequence such that

Eεj (· ;U)
Γ→ F (· ;U)

for any U in a countable dense class U of open Lipschitz subsets of Ω. Since the
family of the sets U is countable, this first step just relies on the compactness of the
Γ-convergence on separable metric spaces and on a diagonal argument.

2. (Inner regularity and measure criterion) For any A set of finite perimeter in Ω, we
define a set-function µA on the open sets of Ω by inner approximation with sets in
U , setting

µA(U) = sup{F (A;V ) : V ⊂⊂ U, V ∈ U}.
We prove that the set-function µA is the restriction of a finite Borel measure to
the family of open sets of Ω by an application of the De Giorgi-Letta Criterion for
measures. Note that condition (H4) in particular ensures the additivity of µA on sets
with positive distance.

3. (Representation) Since µA is a measure, by using localization and density arguments
based on the properties of sets finite perimeter, we prove that there exists ϕ such
that for any A of finite perimeter

µA(U) =

∫
U∩∂∗A

ϕ(x, ν) dHd−1.

Moreover, by inner regularity on Lipschitz sets

µA(U) = F (A;U)

for any open Lipschitz subset of Ω, and this concludes the proof by choosing U = Ω.
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Figure 16: “non-subadditive” interactions through the boundary.

The method is the same as the one used to prove the compactness and representation
theorem in the case of Sobolev functions, with some difference in the technical details.
We note only that while for integral functionals the subadditivity is immediate, here the
functionals Eε(u, ·) defined in (24) are not subadditive. Indeed, if we consider disjoint U1, U2

such that Hd−1(∂∗U1 ∩ ∂∗U2) > 0, then the energy Eε(u, U1 ∪ U2) may take into account
the interactions across the common boundary, and Eε(u, U1 ∪U2) > Eε(u, U1) +Eε(u, U2)
(see Fig. 16). This fact justifies the requirement for Ω to be a Lipschitz set, which allows
to avoid the interactions crossing the boundary.

After examining the role of hypotheses (H3) and (H4), in particular their necessity in
order to have a local limit, we turn to hypotheses (H1) and (H2).

If (H1) does not hold, we allow aεij < 0 for some values of i, j. In this case, we have
non-constant ground states; the minimization can favour alternating values, giving rise
to “microstructures”, and in general it is not possible to directly give the description of
the limit in terms of sets of finite perimeter. Systems governed by energies with negative
coefficients are called antiferromagnetic systems. We give some examples in which we can
provide a limit description. Such examples do not involve ε-depending coefficients, so that
they can be also considered as examples for the homogeneous and the periodic case.
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Figure 17: checkerboards with different parity.
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Example 30 (Ground states for antiferromagnetic energies in dimension d = 2). We
consider some discrete energies in the lattice Z2 with negative coefficients, and look at their
ground states. Since we are interested in the shape of the minimizers, we can consider the
non-scaled functionals with ε = 1.

• (Nearest neighbours) We set aij = −1 for any i, j nearest neighbours, and 0 otherwise;
that is, we consider energies E = E1 given by

E(u) = −
∑
〈i,j〉

(ui − uj)2.

Minimizers alternate the values 1 and −1 for any pair of points at distance 1, so that
we have two possible ground states given by ui = (−1)i1+i2 (where i = (i1, i2)) and
by the translated checkerboard ui = −(−1)i1+i2 , as pictured in Fig. 17.
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Figure 18: stripes with different orientations and parities.

• (Nearest and next-to-nearest neighbours) Given α > 0, we set aij = −1 for any i, j
nearest neighbours, aij = −α if ‖i − j‖ =

√
2 and 0 otherwise; that is, we consider

energies given by

E(u) = −
∑
〈i,j〉

(ui − uj)2 −
∑

‖i−j‖=
√

2

α(ui − uj)2.

If α is large enough, the “diagonal bonds” are stronger, and the minimizers alternate
the values 1 and−1 for any pair (i, j) such that ‖i−j‖ =

√
2; hence, the corresponding

minimizing sets are horizontal and vertical stripes, with two different parities each
one (see Fig. 18), and we have four different ground states.

In the cases of the example above the Γ-limit can be described using the ground states
themselves as parameters, with a representation in terms of partitions into sets of finite
perimeter. This can be done when only a finite number of periodic ground states are
present. Note that for arbitrary distributions of negative coefficients aij , the number of the
ground states can be arbitrarily high, and their arrangements can be very complex. The
representation in terms of partitions is not always possible, since some energies possess
infinitely many (non-periodic) ground states as in the following example.
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Example 31 (Antiferromagnetic energy on the triangular lattice: frustration). Let L = T
be the triangular lattice in R2 defined in Remark 21; that is, let T be the Bravais lattice
given by

T = Zv1 + Zv2

where v1 = (1, 0) and v2 = (cos(π3 ), sin(π3 )). We consider the antiferromagnetic nearest-
neighbour interaction given by

aij =

{
−1 if ‖i− j‖ = 1

0 otherwise.

In this case, any distribution of spins u is forced to have in any triplet of nearest neighbours

+1

−1

??

Figure 19: two minimizers in the triangular lattice.

at least a pair of sites with the same value, and hence not minimizing separately the energy.
Such sites are called frustrated interactions. As a consequence of frustration, configurations
minimizing the energy may have an almost arbitrary arrangement of −1 and 1 (see Fig. 19).
Note that letting ε→ 0 any function u with u(x) ∈ [−1

3 ,
1
3 ] can be obtained as a weak limit

of piecewise-constant interpolations of minimal configurations.

Now we turn to the coerciveness hypothesis (H2); that is, aεij ≥ c > 0 for any i, j such
that ‖i− j‖ = 1 and for any ε > 0. We consider two examples in dimension one where this
condition does not hold.

Example 32.

• (decoupled media) Let Ω = R, and set aij = 1 if |i − j| = 2, and 0 otherwise; that
is, the points of the lattice εZ interact only with second neighbours. As pictured in

+1

−1

??

ε

Figure 20: decoupled lattices.
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Fig. 20, we have nearest-neighbour interactions on the lattice 2εZ (even lattice) and
on the translated lattice ε+2εZ (odd lattice), and they are independent. Applying the
compactness argument for nearest-neighbour interactions separately on both lattices,
we obtain that if a sequence (uε) has equibounded energy then uε converge to a pair
of piecewise-constant functions (ue, uo), in the sense that the restrictions of uε to
the even and odd lattice converge to ue and uo, respectively. The functionals Eε
Γ-converge to

F (ue, uo) = 8(#S(ue) + #S(uo))

with the two functions completely independent.

• (double porosity) Let Ω = R, and modify the coefficients of the previous example by
introducing a “weak” interaction between nearest neighbours as follows

aεij =


ε if |i− j| = 1

1 if |i− j| = 2

0 otherwise.

Note that (H2) is still not satisfied, since the coefficient are strictly positive, but not
uniformly strictly positive. The energies can be written as

Eε(u) =
∑
|i−j|=2

(ui − uj)2 + 2
∑
i

ε(ui − ui−1)2

=
∑
|i−j|=2

(ui − uj)2 + 2

∫
R

(uεe − uεo)2 dx,

where uεe and uεo are the discretizations of u on the even and odd lattice, respectively.
The integral term continuously converges to 2

∫
R(ue − uo)2 dx; hence, the Γ-limit is

F (ue, uo) = 8(#S(ue) + #S(uo)) + 2

∫
R

(ue − uo)2 dx.

Note that in these examples the limit depends on a vector (the pair (ue, uo)) and not on
a single function. The second example describes mixtures of media with highly different
properties, the so-called high-contrast media. We note that similar problems can be seen
also in the continuous framework, but in that case we can mimick the role of the two
disjoint lattices only in dimension greater than 3, taking two unbounded disjoint connected
components as a continuous equivalent of the lattices.
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Figure 21: examples of coercive systems not satisfying (H2).

Extensions

Generalization of (H2). We can replace (H2) with the following condition

there exists R > 0 such that for any i ∈ Zd

the set {k ∈ Zd ∩B0(R), ai i+k ≥ c > 0} generates Zd (with coefficients in Z),

since in this case the strictly positive contribution to the energy due to nearest neighbours
with u of changing sign can be recovered using a cycle in the set above. In Fig. 21 some
examples of this condition are pictured.

r R

α

β

εi0

ε j0

εiM ε jM

i j

z

i j

Figure 22: a “disordered” lattice.

“Disordered” lattices. A minimal requirement on the lattice L in order to have a compact-
ness and representation theorem is to be not too “sparse” and not too “dense”, while the
precise geometric structure of L is not essential to prove those results. Indeed, instead of
Zd (or a periodic lattice), we can consider a lattice L such that:

(a) there exist R > 0 and c > 0 such that for any x ∈ Rd

c ≤ #(L ∩QR(x)) ≤ 1

c
,

where QR(x) is any cube centered in x with side length R;
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(b) there exists r > 0 such that ‖x− y‖ ≥ r for any x, y ∈ L

(see Fig. 22). If L satisfies these properties, it is possible to repeat the steps of the
localization method and prove the theorem. The only point to be precised is the notion of
nearest neighbours in this setting. To this end, for any i ∈ L we define the set

Ci = {x ∈ Rd : ‖x− i‖ ≤ ‖x− j‖ ∀j ∈ L}.

These sets are called Voronoi cells of the lattice.

d R

Figure 23: nearest neighbours in a “disordered” lattice.

Two points i and j in L are nearest neighbours if the corresponding Voronoi cells share
a d− 1-dimensional face; that is, Hd−1(∂Ci ∩ ∂Cj) > 0 (see Fig. 23).

Many-body interactions. We can enlarge the class of energies Eε to functionals of the form

Eε(u) =
∑
i∈Lε

εd−1φεi ({uj}),

where φεi describes the way a point i interacts with all the other points in the lattice. In
the energies considered above

φεi ({uj}) =
∑
j∈Lε

aεij(ui − uj)2.

In this way, we can look at the possibility to extend the compactness and representation
theorem to energies with a very general form of the interaction term φεi ({uj}), up to
generalizing the assumptions (H1)-(H4) to this abstract setting. This approach allows, for
instance, to include the analysis of interactions of many-body type.

Example 33 (Three-point interactions). We consider in R2 the triangular lattice T as
in Example 31, and a generic triangular cell with vertices in T labelled as i, j and k.
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Figure 24: three-point interactions.

Given a spin function u : T→ {−1, 1} such that the values ui, uj , uk on the vertices of the
(considered) triangle are not all equal, we can assume that the two equal values are ui and
uj and we have two possibilities, i− j = ±e1 or i− j 6= ±e1.

Now, we define a function ψ depending on the set {ui, uj , uk} by setting

ψ({ui, uj , uk}) =


0 if ui = uj = uk

α if ui = uj 6= uk and i− j 6= ±e1

β if ui = uj 6= uk and i− j = ±e1

where 0 < α < β and we assume, as above, that the two equal values in the second and third
cases are labelled as i and j (see Fig. 24). This interaction cannot be immediately written
as a sum of two-point interactions; it can be proven, in fact, that it is not equivalent
to a pairwise interaction. If we consider energies defined by functions ψεi involving the
interaction term ψ, we note that the configurations where the two coinciding values are on
the horizontal side of the triangle are penalized, since β > α, and this corresponds in the
limit to a penalization of the horizontal interfaces.

+1

−1

??

ε

ψ=0 ψ=α ψ=β

W φ

Figure 25: Wulff shape for three-point interactions.

It can be proven that the Γ-limit of these energies is given by∫
Ω∩∂∗A

ϕ(ν) dH1,
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where the Wulff shape Wϕ is a rhombus, as pictured in Fig. 25. Note that Wϕ differs from
the hexagonal Wulff shape corresponding to the nearest-neighbour interactions since in its
boundary we cannot have horizontal edges.

Different ranges of interactions. Conditions (H3) and (H4) ensure that essentially (up to
asymptotically negligible terms) the range of the interactions is finite. Anyway, also for
some families of energies with long-range interactions we can prove a compactness result
and obtain in the limit a perimeter functional, as in the following one-dimensional example.

Example 34 (Coarse graining in dimension one). Let Ω = R and consider an energy of
the form

Gε(u) =
∑

|i−j|≤Rε

(ui − uj)2

where the sum is over i, j ∈ Z and Rε satisfies the asymptotic properties

Rε → +∞, εRε → 0 as ε→ 0.

Note that (H4) holds by the second condition, while (H3) does not hold since Rε → +∞.
Now, we look for a scaling of Gε such that in the limit we may have an interfacial energy.
If we consider a discretization uε of the function u = −1 + 2χ(0,+∞), the energy Gε(uε) is

i

i i+k i+k '

i+k

i+k '

i

i+k

i+k '

ε
ε Rε /4

I k
ε

U
ε ,η

∼Rε

0

Figure 26: estimate of the energy of an interface.

of order R2
ε, since each point interacts with all points at a distance less than Rε, and we

have to take into account an εRε-neighbour of 0; that is, a number of interacting points of
order Rε (see Fig. 26). Hence, to obtain equibounded energies for sequences approximating
a jump, we scale Gε by a factor 1

R2
ε

and define

Eε(u) =
∑

|i−j|≤Rε

1

R2
ε

(ui − uj)2;
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Figure 27: coarse graining of the lattice εZ.

the Γ-limit is then finite on piecewise-constant u even though condition (H3) is not satisfied.
In order to prove that the Γ-limit is finite exactly on this set of functions, we have to show
a compactness result, and this can be done by a coarse-graining argument.

We subdivide the domain R in intervals Iεk, parametrized by k ∈ Z, such that each
interval contains a number of order Rε of points of the lattice εZ. Since we want all points
in each interval to interact with all points in the nearest intervals, we fix εRε

4 as the size of
Iεk (see Fig. 27).
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U
ε ,η

∼Rε

0

Figure 28: a coarse-grained function.

Let uε be such that Eε(u
ε) ≤ c < +∞. We fix η > 0 and define a coarse-grained

function U ε,η : Z→ {−1, 0, 1} by setting

U ε,η(k) = U ε,ηk =



1 if
4

Rε

∑
εi∈Iεk

uεi > 1− η

−1 if
4

Rε

∑
εi∈Iεk

uεi < −1 + η

0 otherwise

(25)

(see Fig. 28). Note that if U ε,ηk = 0 then there exists a positive constant Cη such that∑
εi,εj∈Iεk

1

R2
ε

(uεi − uεj)2 ≥ Cη;

hence, the equiboundedness of Eε(u
ε) gives the estimate

#{k ∈ Z : U ε,ηk = 0} ≤ supεEε(u
ε)

Cη
≤ C ′η. (26)
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Moreover, if η < 1
2 we have that if U ε,ηk = 1 and U ε,ηk+1 = −1 (and conversely, by exchanging

1 and −1) then ∑
εi,εj∈Iεk∪I

ε
k+1

1

R2
ε

(uεi − uεj)2 ≥ C

for some C > 0 independent on ε and η. Again using the uniform bound on Eε(u
ε), we

get the estimate

#
{
k ∈ Z : U ε,ηk , U ε,ηk+1 ∈ {−1,+1} and U ε,ηk 6= U ε,ηk+1

}
≤ C ′. (27)

Estimates (26) and (27) ensure that, up to subsequences,

U ε,η → Uη as ε→ 0,

where Uη is a piecewise-constant function assuming only the values −1 and +1, with a
finite number of jump points. By using the definition of U ε,ηk as the average of uε in Iεk (up
to a finite number of intervals), it follows that for any T > 0∫

[−T,T ]
|U ε,η − uε| dx ≤ O(εRε)ε→0 + cTη, (28)

since the total size of the union of the intervals where U ε,η vanishes is of order εRε, and
in each one of the other intervals the integral is less than εRε

8 η. In order to deduce the
convergence of uε in L1

loc(R), we have to prove that in fact the limit Uη does not depend on
η. Indeed, if we choose η′ < η, by the definition of U ε,η we get the following monotonicity
properties for the limit functions Uη and Uη

′

{Uη′ = 1} ⊆ {Uη = 1} and {Uη′ = −1} ⊆ {Uη′ = −1}. (29)

Since both {Uη′ = 1} ∪ {Uη′ = −1} and {Uη′ = 1} ∪ {Uη = 1} are equal to the whole R,
then the inclusions in (29) are in fact equalities; that is, Uη

′
= Uη = U . This allows to

deduce by (28) that (up to subsequences) uε → U , concluding the proof of the compactness.
To compute the Γ-limit, let uε → u and consider, for any r ∈ N, r ≤ Rε the restrictions

of uε to the r disjoint sublattices Lk,rε = εk + εrZ, for k = 1, . . . , r. We localize the
energies in a (sufficiently small) neighbourhood I(x) of a point x ∈ S(u), and note that for
r ≤ Rε (up to an arbitrary small fraction, less than δRε for an arbitrarily small δ > 0) the
restrictions of uε to the lattices εk + εrZ have a change of sign. Hence

Eε(u
ε; I(x)) ≥ 1

R2
ε

∑
r≤Rε

r
∑

εi,εj∈Lk,rε ∩I(x)

(uεi − uεj)2 ≥ 1

R2
ε

∑
r≤Rε

(8r)− cδ ≥ 4− cδ.

Then
lim inf
ε→0

Eε(u
ε) ≥ 4#S(u).

The upper estimate can be proven by using the restriction to εZ of u = −1 + 2χ(x,+∞) as
a recovery sequence.
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The model described in Example 34 can be extended to dimension d and to more general
coefficients. We give only the statement of the result.

Remark 35 (Coarse graining in dimension d). Let a : Rd → [0,+∞) be a continuous
function and Rε > 0 be such that

Rε → +∞, εRε → 0 as ε→ 0.

Noting that the right scaling of the energies in dimension d is 1
Rd+1
ε

, we define

Eε(u) =
∑

‖i−j‖≤Rε

εd−1aεij(ui − uj)2, where aεij =
1

Rd+1
ε

a
( i− j
Rε

)
. (30)

the sum taken over i, j ∈ Zd ∩ Ω. The Γ-limit is an integral functional given by

4

∫
Ω∩∂∗A

∫
Rd
a(ξ)|〈ξ, ν〉| dξ dHd−1.

The limit density

ϕ(ν) = 4

∫
Rd
a(ξ)|〈ξ, ν〉| dξ

generalizes the formula we have seen in the homogeneous case, where ϕ(ν) = 4
∑

k∈Zd αk|〈k, ν〉|;
in this case, the effect of long-range interactions gives in the limit an integral term instead
of a sum. Note that the corresponding Wulff shape may be not crystalline. In particular
it is not crystalline in the case when a = χB1 , for which ϕ equals the constant

τ := 4

∫
B1

|ξ1| dξ

and the limit is simply τ Hd−1(Ω ∩ ∂∗A).

7 Optimal design by homogenization

We consider the set V = {e1, . . . , ed} ⊂ Zd, and we fix α and β with 0 < α < β. We will
consider systems of coefficients aεij , which are assumed to satisfy the design constraint

aεi i+el ∈ {α, β}

for all i ∈ Zd and l = 1, . . . , d. Note that the systems are not assumed to be periodic, so
that we have arbitrary mixtures of two types of nearest-neighbour connections.
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Up to subsequences, we can suppose that for every l = 1, . . . , d the percentage of β-
connections has a weak limit θl ∈ L1(Ω) (that we call the limit percentage of β-connections);
that is, the measures

µlε =
∑
i∈Ilε

εdδεi , where I lε =
{
i ∈ Zd ∩ 1

ε
Ω : aεi i+el = β

}
, (31)

converge weakly∗ to a limit measure µl, which is absolutely continuous with respect to the
Lebesgue measure, with a density which we denote by θl. Constraints on the percentage of
β-connections (and hence of α-connections) can be translated into constraints on θl. Using
Theorem 28 we can state the design problem as follows.

• Design problem: determine all the energy densities ϕ = ϕ(x, ν) that can be obtained
as limits of nearest-neighbour energies

Eε(u) :=
∑
〈i,j〉

εd−1aεij(ui − uj)2 , (32)

where as usual 〈i, j〉 denotes the set of pair of nearest neighbours in Zd ∩ 1
εΩ, with given

limit percentages θl of β-connections for all el ∈ V .
We call this a ‘design problem’ in that it requires to design optimal geometries that

generate a given ϕ which we think itself is optimal for some problem that has to be solved
under a global design constraint.

The solution of this problem requires some technical results on the limit of perimeter
energies on the continuum that are beyond the scope of these notes. We are going to state
the result only, remarking the arguments that rely on the lattice structure. The key point
is that the analysis can be reduced locally to periodic systems.

Let aij be a system of periodic coefficients with period K and such that aij = 0 if
‖i− j‖ > 1. Moreover, we assume that ai i+el ∈ {α, β} for all i ∈ Zd and l = 1, . . . , d. We
define the volume fraction of β-bonds and the total volume fraction of β-bonds by setting

θl({ai i+el}) =
1

Kd
#{i ∈ Zd : i ∈ {1, . . . ,K}d, ai i+el = β},

θ({ai i+el}) =
1

d

d∑
l=1

θl({ai i+el}),
(33)

respectively. Now, given θl ∈ [0, 1] for all el ∈ V , we define the set H({θl}) as the closure
of the limits of periodic systems with percentages of β-connections tending to θl. More
precisely, we give the following definition.
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Definition 36. Let θl ∈ [0, 1] be given for all l = 1, . . . , d. The set of homogenized energy
densities of mixtures of α and β bonds corresponding to V = {e1, . . . , ed} with volume
fractions θl (of β bonds) is defined as

H({θl}) =
{
ϕ : Rd → [0,+∞) : there exist θkl → θl, ϕ

k → ϕ and {akij} periodic

such that θl({akij}) = θkl and ϕkhom homogenized energy density of {akij}
}
.

Correspondingly, we define the set of homogenized energy densities of mixtures of α and β
bonds corresponding to V with volume fraction θ (of β bonds), denoted by H(θ).

The first result is a localization theorem that characterizes the bounds of the energy
densities in the design problem.

Theorem 37 (a “Dal Maso-Kohn localization principle”). Let {aεij} be given, with limit

percentages of β-connections θl ∈ L1(Ω) for all l = 1, . . . , d. Then we have ϕ(x, ·) ∈
H({θl(x)}) for almost every x ∈ Ω and for all l = 1, . . . , d.

The main argument in the proof of this result is noting that the minimum problems
in the blow-up formula giving ϕ(x0, ν) can be interpreted as those in a homogenization
formula related to a periodic discrete lattice with percentage of β-connections close to
θl(x0) for almost every x0.

The following theorem gives bounds on the elements of the set H({θl}).

Theorem 38 (bounds). The elements of the set H({θl}) are even and convex positively
homogeneous functions of degree one ϕ : Rd → [0,+∞) such that

d∑
l=1

α|〈ν, el〉| ≤ ϕ(ν) ≤
d∑
l=1

(θlβ + (1− θl)α)|〈ν, el〉|. (34)

d R

α

β

εi0

ε j0

εiM ε jM

i j

z

i j

Figure 29: the lattice Z (cross nodes) and the identification of z and the segment [i, j]⊥.
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We will give a description of the arguments in a two-dimensional setting, where the
proofs are easier to visualize and formalize since we can characterize the homogenized
energy density ϕhom defined in (20) by a path-minimization formula. We postpone the
proof after introducing the necessary notation.

Noting that each pair of nearest neighbours (i, j) ∈ Z2 × Z2 can be identified with the
midpoint i+j

2 , we consider the dual lattice of size 1√
2

given by

Z =
{ i+ j

2
: i, j ∈ Z2 such that ‖i− j‖ = 1

}
. (35)

We also identify z ∈ Z with the closed unit segment centered at z and orthogonal to j − i,
denoted by [i, j]⊥ (see Fig. 29). Now we give the definition of path in the scaled lattice εZ.

d R

α

β

εi 0

ε j0

ε iL ε jL

i j

z

i j

Figure 30: a path in εZ.

Definition 39 (paths in εZ). A path in εZ is a finite union

σ = {εzl} =
L⋃
l=1

ε[il, jl]⊥

of segments with length ε parametrized by a sequence of points zl ∈ Z (equivalently, by a
sequence of pairs of nearest neighbours (il, jl) ∈ Z2×Z2), such that the segment labelled by
l has a common endpoint with the one labelled by l+1. The points εz0 and εzL are referred
to as the endpoints of the path (see Fig. 30). If ε = 1, we say that σ is a path in Z.

It is useful to define a projection from R2 to the lattice Z, which is a Bravais lattice
generated by e1+e2

2 and e2−e1
2 . In general, given a Bravais lattice L = Zv1 + Zv2 we define

the half-open cells corresponding to L by setting

CLk = k +
{
tv1 + sv2 : t, s ∈

[
−1

2
,
1

2

)}
, k ∈ L

as in (4). Moreover, we define the projection on a Bravais lattice L as follows. Given
x ∈ R2, πL(x) denotes the (unique) k ∈ L such that x ∈ CLk ; we say that πL(x) is the
projection of x on L.
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Remark 40 (A path-minimization formula for d = 2). In dimension 2, in the definition
of ϕhom given in (20) we can consider only functions v : Z2 ∩ QνT → {−1,+1} such that
v = −1 + 2χHν in QνT \QνT−2R and such that both the sets

A =
⋃

{i:vi=1}

(
i+
[
−1

2
,
1

2

]2)
and its complement are connected. Hence, the boundary of A in the interior of the square
QνT is (the restriction of) a path in Z. Since the boundary condition corresponds to the
fact that the endpoints of the path are the projections of −T

2 ν
⊥ and T

2 ν
⊥ on Z, we can

minimize over such paths, and get

ϕhom(ν) = lim
T→+∞

8

T
min

{ L∑
l=1

azl : {zl} path in Z with endpoints

πZ
(
− T

2 ν
⊥), πZ(T2 ν⊥);L ∈ N

} (36)

where az = aij if z ∈ Z corresponds to the pair (i, j).

Proof of Theorem 38 in dimension two. We have to show that an element ϕ ∈ H({θ1, θ2})
satisfies

ϕ(ν) ≤ 8(θ1β + (1− θ1)α)|〈ν, e1〉|+ 8(θ2β + (1− θ2)α)|〈ν, e2〉|, (37)

the lower bound being trivial.
Let ϕhom be the homogenized energy density of a K-periodic system of coefficients aij

satisfying the design constraint; then the averages on horizontal and vertical bond are given
by

θ1β + (1− θ1)α =
1

K2

K∑
k=1

∑
z∈[0,K)2∩Z
〈z,e2〉=k

az and θ2β + (1− θ2)α =
1

K2

K∑
k=1

∑
z∈[0,K)2∩Z
〈z,e2〉=k

az,

respectively. Let n1, n2 ∈ {1, . . . ,K} be such that, setting

zk1 =
(
n1 −

1

2
, k
)
, zk2 =

(
k, n2 −

1

2

)
,

we have

1

K

K∑
k=1

azk1
≤ 1

K2

K∑
k=1

∑
z∈[0,K)2∩Z
〈z,e2〉=k

az and
1

K

K∑
k=1

azk2
≤ 1

K2

K∑
k=1

∑
z∈[0,K)2∩Z
〈z,e1〉=k

az.

Recalling (36), the upper bound for ϕhom is then obtained by considering only sets whose
boundary lies in (n1 − 1

2 , n2 − 1
2) +KZ2, and hence give minimal paths in Z.
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The following result states that Theorem 37 is sharp.

Theorem 41 (design theorem). For all l = 1, . . . , d let θl : Ω → [0, 1] be measurable and
let ϕ : Ω×Rd → [0,+∞) be positively 1-homogeneous and even in the second variable, such
that the bounds (34) are satisfied for almost all x ∈ Ω, and the functional F given by

F (A) =

∫
Ω∩∂∗A

ϕ(x, ν(x))dHd−1

is lower semicontinuous. Then, there exist {aεij} such that Eε in (32) Γ-converge to F
given by and θl({aεij}) converge to θl as ε→ 0 for all l = 1, . . . , d.

Note that this result is the same as the optimality of the bounds in Theorem 38 if the
function x 7→ ϕ(x, ν) and the limit percentages θl are constant.

8 Homogenization of random networks

In this section we compute the Γ-limit of an energy where we randomly mix coefficients.
To this end we have to introduce some notions of Percolation Theory for what is called the
bond-percolation model (i.e., when the random choice is thought to be performed on the
connections). As a result we will consider coefficients aij = aωij on Zd ×Zd that depend on
the realization of a random variable. A different model, that can be treated similarly, is the
site-percolation model. In our intuition it would correspond to choosing weak and strong
nodes – and to define a weak connection as a connection between two nodes of which at
least one is a weak node.

8.1 Random mixtures

From now on we will restrict to the two-dimensional case d = 2. We recall the definition
of the dual lattice of Z2 given in (35)

Z =
{ i+ j

2
: i, j ∈ Z2 such that ‖i− j‖ = 1

}
.

We identify each point z = i+j
2 ∈ Z with the pair (i, j) ∈ Z2 × Z2 or with the segment

[i, j]⊥ orthogonal to [i, j] and with middle point z.
Let 0 < α < β < +∞. We consider the simplest case of two kinds of nearest-neighbour

connections with weights α and β. A choice of connections between nodes of Z2 is a
function

ω : Z → {α, β}.

We set Σ = {α, β}Z . For any ω ∈ Σ we then define the coefficients

aωij = ω
( i+ j

2

)
.
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Let Ω be an open bounded and Lipschitz subset of R2, and consider for any ε > 0 the
lattice Lε = εZ2 ∩ Ω. For any ω ∈ Σ we define the energies

Eωε (u) =
∑
〈i,j〉

εaωij(ui − uj)2 (38)

where as usual 〈i, j〉 indicates the set of pairs in Z2 such that εi, εj ∈ Lε and ‖i− j‖ = 1.
We will consider ω with the property that

ω
( i+ j

2

)
= aωij =

{
α with probability 1− p
β with probability p

(39)

with p ∈ [0, 1]. This can be done rigorously by introducing some ‘independent identically
distributed’ random variables. For our presentation it suffices to describe the ‘almost-sure’
properties of such ω.

Remark 42. For a fixed realization ω of the random variable, the functionals Eωε are
exactly of the form which we considered in the corresponding deterministic setting. Hence,
by the representation theorem we obtain that there exists a subsequence (εk) such that

Γ- lim
k→+∞

Eωεk(A) = Fω(A) :=

∫
Ω∩∂∗A

ϕω(x, ν) dH1. (40)

Since ω ∈ {α, β}Z and the probabilities of α and β-connections are 1−p and p, respectively,
it follows that, with the notation of Section 7 (see Definition 36),

ϕω(x, ·) ∈ H(p) for H1-almost all x ∈ ∂∗A,

where the local density θ(x) of β is almost surely equal to the constant value p.
We are going to improve this description showing that the function ϕω itself is almost

surely depending only on p and is homogeneous.

Now, we want to prove a more precise statement about the Γ-limit of the energies
defined in (38).

Theorem 43 (First-passage percolation). Let aωij = ω( i+j2 ) with ω, α, β and p as in (39).
Then, setting

mω(x, y) = 8 min
{ L∑
l=1

aωzl : {zl} path in Z joining πZ(x), πZ(y);L ∈ Z
}
, (41)

almost surely in ω there exists the limit

lim
T→+∞

mω(0, T ν⊥)

T
:= ϕω(ν)
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and

Γ- lim
ε→0

Eωε (A) =

∫
Ω∩∂∗A

ϕω(ν) dH1

on sets A of finite perimeter. Moreover, almost surely ϕω depends only on p.

The formula defining ϕω is usually called first-passage percolation formula of the system.

To prove Theorem 43, in order to characterize almost surely the limit energy density
we will use the following percolation result, which ensures the existence of the limit energy
density ϕω.

Theorem 44. Let aωij = ω( i+j2 ) with ω, α, β and p as in (39). Then the function mω

defined in (41) satisfies the following properties:

(a) almost surely there exists the limit

lim
T→+∞

mω(0, T ν⊥)

T
=: ϕω(ν);

(b) (translation invariance) almost surely there exists the limit

ϕω(ν) = lim
T→+∞

mω(xT , xT + Tν⊥)

T
(42)

for any sequence (xT ) such that ‖xT ‖ ≤ T 2;

(c) (the limit is deterministic) there exists a function ϕp such that almost surely

ϕω(·) = ϕp(·)

independently of ω.

Here and in the following, we only give a hint of the main arguments behind Percolation
results and to differences and correspondences with the periodic setting, referring to the
literature for more details (see the last section of these notes). As for the result above,
we only mention that the existence of the limit comes from a stationarity property of the
function mω seen as a subadditive “point process”, for which a number of asymptotic
results hold. Indeed, we have

mω(x, y) ≤ mω(x, z) +mω(z, y)

for any x, y, z ∈ R2. Note that subadditivity is a key property also in the proof of the
existence of the limit in the periodic homogenization case.

Note that translation invariance is different from the periodic case. Indeed, in that case
it is clearly possible to translate by a (multiple of the) period, and we can approximate
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any translation with an error of the order of the period, then negligible when T diverges.
Hence, the invariance holds without constraints on the growth of ‖xT ‖. In the case of
random coefficients, the same invariance property may not be true for any choice of xT .
A heuristic argument is that for any T there is a positive probability of having a large set
where all connections are α-connections. Then, if we translate the minimum problem for
mω(0, T ν⊥) to that set by a suitable xT , we obtain α‖ν‖1 as minimum value. The same
holds for β-connections, which contradicts translation invariance. The statement says that
we may suppose almost surely that these sets be “far away” from 0.

Finally, the fact that the limit ϕω is in fact deterministic depends on the ergodicity
property of the point process mω.

Now, we can give the proof of the Γ-convergence result of Theorem 43.

Proof of Theorem 43. We divide the proof in two steps, showing a lower and an upper
estimate.

Lower bound by blow up at x0 ∈ ∂∗A. We prove the lower estimate by applying the blow-up
method as in Section 5. Let {uε} be such that Eωε (uε) is equibounded and converges to
a set A of finite perimeter, and such that the corresponding sequence of measures {µωε }
weak∗ converge to a measure µω. We restrict to points x0 ∈ ∂∗A suitable for the blow up
of A and such that the measure-theoretical derivative of the limit measure µω with respect
to H1 ∂∗A exists, and follow the steps of the blow-up procedure in the case of periodic
energies, obtaining

lim
ε→0

µωε (Qν%ε(x0))

%ε
≥ lim inf

ε→0

8

%ε
min

{ L∑
l=1

εaωzl : {εzl} path in εZ joining

πεZ
(
x0 −

%ε
2
ν⊥
)

and πεZ
(
x0 −

%ε
2
ν⊥
)
; L ∈ Z

}
(with points z ∈ Z identified with segments in the definition of a path), where πεZ denotes
the projection of R2 on εZ and aωz = aωij if z = i+j

2 ∈ Z. We used the fact that in
dimension 2 the lower bound can be described by optimizing over paths with endpoints
close to x0± %ε

2 ν
⊥. Note that there exists a scale %ε → 0 such that in the blow-up procedure

we can choose any infinitesimal sequence %ε satisfying %ε ≥ %ε.
By scaling %ε to Tε = %ε

ε , we get

lim
ε→0

µε(Q
ν
%ε(x0))

%ε
≥ lim inf

ε→0

mω(xε, xε + Tεν
⊥)

Tε
(43)

where xε = x0
ε −

Tε
2 ν
⊥ = Tε

%ε
− Tε

2 ν
⊥ and mω is defined in (41).

Until this point, we used only the blow-up method and the fact that we can see the
minimum problem with Dirichlet boundary conditions as a minimum problem over paths
in Z with fixed endpoints. In order to characterize almost surely the limit energy density,
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we apply the percolation result of Theorem 44 to the sequence mω(xε,xε+Tεν⊥)
Tε

to obtain a
lower bound. Note that in the blow-up procedure we can choose the infinitesimal sequence
%ε large enough so as to have

‖xε‖ = Tε
‖x0‖
%ε
≤ T 2

ε .

Hence, by Theorem 44 we get that almost surely there exists the limit

lim
ε→0

mω(xε, xε + Tεν
⊥)

Tε
= ϕp(ν).

By (43), we obtain the lower bound

lim
ε→0

µωε (Qν%ε(x0))

%ε
≥ ϕp(ν) for H1 a.a. x0 ∈ ∂∗A ∩ Ω

for a set of ω with probability 1. Concluding the blow-up procedure by integrating, we
deduce that for a set of realizations ω with probability 1 the following estimate holds

lim inf
ε→0

Eωε (uε) ≥
∫

Ω∩∂∗A
ϕp(ν) dH1.

Upper bound. By density, it is sufficient to construct the recovery sequence for a polyhedral
set A.

We first assume that Ω ∩ ∂A = L, where L is a segment. Let ν be the normal to ∂A
on L. Note that to apply Theorem 44(b) we have to take into account a boundedness
requirement on the centres of the involved squares. Hence, differently from the periodic
case, it is more convenient to subdivide the construction of the recovery sequence in two
steps.

A

ρ

A

ρ

ν

A
ρ

Figure 31: construction of the recovery sequence.
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First, we fix % > 0 and consider a finite number of squares with side-length % covering
the segment L except for a small neighbourhood of the endpoints. We define a recovery
sequence u%ε by considering in each square Qν%(x%r), r = 1, . . . , R%, (the scaling of) a solution

of the minimum problem for mω(x
%
r
ε −

%
2εν
⊥, x

%
r
ε + %

2εν
⊥). In the neighbourhood of the

endpoints we set u%ε as the discretization of A. By construction it follows that

Eωε (u%ε) = %
R%∑
r=1

mω(x
%
r
ε −

%
2εν
⊥, x

%
r
ε + %

2εν
⊥)

%
ε

+ c%

= H1(L)ϕp(ν) + c%+ o(1)ε→0.

If A is an arbitrary polyhedral set, then we can repeat the construction for each of
its sides (see Fig. 31), obtaining a family of spin functions again denoted by u%ε . The
characteristic functions of the union of the corresponding sets Aε(u

%
ε) converge (up to

subsequences) to some A%. For any fixed % > 0 we get

Γ- lim sup
ε→0

Eωε (A%) ≤
∫

Ω∩∂A
ϕp(νA) dH1 + o(1)%→0.

This gives an upper bound for the upper Γ-limit on A%.
Now, we let %→ 0. By semicontinuity, since A% → A as %→ 0, we get the same upper

bound on A, and then conclude by density for sets of finite perimeter.

Remark 45. We can extend the result of Theorem 43 to the case where the coefficients
aωij are allowed to take values not only in {α, β}, but in the interval [α, β]. In this case, the
notation becomes more complex since the result depends on the probability distribution
and not only on the value p.

8.2 Extreme cases: rigid and dilute spin systems

In order to treat the cases when α = 0 or β = +∞ we need some more refined geometric
properties of path-connected sets of connections from Percolation Theory.

Given α and β such that 0 ≤ α < β ≤ +∞, a realization ω ∈ {α, β}Z and the
corresponding system of coefficients aωij , we use the notation

Zγ =
⋃
aωij=γ

[i, j]⊥ (44)

for γ ∈ {α, β}. We again identify the segment [i, j]⊥ with its center z = i+j
2 ∈ Z, so that

Zα and Zβ can be viewed as subsets of Z.
We will use the following result on the connected components of Zα and Zβ related to

the cases p < 1
2 and p > 1

2 , respectively (the case p = 1
2 will not be dealt with explicitly).
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Figure 32: a grid of paths in the weak (or strong) cluster.

Theorem 46 (bond percolation).

(a) If p < 1
2 , then almost surely (in ω) there exists a unique infinite connected component

of the set Zα, which is denoted by Wω (called the weak cluster).

If p > 1
2 , then almost surely (in ω) there exists a unique infinite connected component

of the set Zβ, which is denoted by Sω (called the strong cluster).

(b) If p < 1
2 , there exist T0 and η such that for any T > T0 and for any square QνT (xT )

such that ‖xT ‖ ≤ T 2 there exist ηT disjoint paths in QνT (xT ) ∩Wω connecting pairs
of opposite sides of QνT (xT ) (see Fig. 32).

The corresponding result hold if p > 1
2 in QνT (xT ) ∩ Sω.

This result ensures that, almost surely, if we consider a large enough square QνT (xT )
then we can think of the weak cluster (or the strong cluster if p > 1

2) as a “grid” that we
can use, in a sense, as a generalization of the grid given by the regular square lattice.

8.2.1 Random rigid spin systems

As in the previous case, we consider nearest-neighbour connections with weights α and β
with independently assigned probability, but here we let the value β to be “very large”
and α normalized to 1. Instead of assuming β = +∞, which can be read as a constraint
in the lattice, we introduce a dependence on ε allowing to consider “very large” - finite
or infinite - values of the strong coefficients; that is, for fixed p ∈ [0, 1] we assume for i, j
nearest neighbours in Z2

aωij = aε,ωij =

{
α = 1 with probability 1− p
β = βε with probability p,

(45)
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and 0 otherwise, with βε ∈ [1,+∞] such that βε → +∞ as ε → 0. We call this a rigid
system.

We now consider the energies defined by

Eωε (u) =
∑
〈i,j〉

εaωij(ui − uj)2, (46)

with the coefficients aωij as in (45). We use the convention that 0 · +∞ = 0, so that, if
aωij = βε, the choice βε = +∞ forces ui = uj in order to have a bounded energy Eωε (u).

In order to apply the blow-up method to obtain a lower bound for these energies, we
define a pseudometric by considering only paths which lie in the weak cluster. We set

mω
weak(x, y) = 8 min

{ M∑
l=1

aωzl : {zl}Ml=1 path in Z joining πw(x) and πw(y); M ∈ N
}

= 8 min
{
M : {zl}Ml=1 path in Wω joining πw(x) and πw(y)

}
, (47)

where aωz = aωij if z = i+j
2 , and πw is the projection on

(
(1

2 ,
1
2) + Z2

)
∩Wω, where the

weak cluster is understood as a union of segments. Note that this is the projection on the
endpoints of the elements in Wω. Moreover, we let L(γ) = M for a path γ = {zl}Ml=1. The
following result holds.

Theorem 47 (existence of the asymptotic chemical distance). There exists a function
ϕ = ϕp such that almost surely

ϕp(ν) = lim
T→+∞

mω
weak(xT , xT + Tν⊥)

T
(48)

if ‖xT ‖ ≤ T 2. This function is called the asymptotic chemical distance.

Now, we can state the Γ-convergence result for rigid spin systems.

Theorem 48 (Γ-convergence for rigid spin systems). Let Eωε be defined as in (46) with
the coefficients aωij = aε,ωij given by (45), and let βε → +∞ as ε→ 0. Then

• if p > 1
2 , almost surely we have that

Γ- lim
ε→0

Eωε (A) =

{
0 if A = ∅ or A = Ω

+∞ otherwise;
(49)

• if p < 1
2 , almost surely we have that

Γ- lim
ε→0

Eωε (A) =

∫
Ω∩∂∗A

ϕp(ν) dH1,

where ϕp is the asymptotic chemical distance defined in (48).
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We only give a sketch of the proof of Theorem 48, considering separately the two cases
p > 1

2 and p < 1
2 , since we deal with different geometries.

Case p > 1
2 . In this case, we expect to have only isolated sets with finite energy; indeed,

if βε = +∞ we have an infinite connected component of bonds with value +∞, and we
show that if these sets have equibounded perimeters they necessarily converge to a set with
perimeter equal to 0, so that the Γ-limit is finite (and it is equal to 0) only if A = ∅ or A = Ω.
In the general case, we consider a set of finite perimeter A such that H1(Ω ∩ ∂∗A) 6= 0.
Theorem 46(b) gives an estimate on the number of disjoint paths in the strong cluster
intersecting the boundary of the set A in a square. Hence, the blow-up method gives the
estimate

lim
ε→0

µε(Q
ν
%ε(x0))

%ε
≥ lim inf

ε→0

1

Tε
η
%ε
ε
βε = lim

ε→0
ηβε = +∞,

which gives the claim.

Case p < 1
2 . If βε = +∞, we note that the strong connections are never used in an optimal

path, so that mω(x, y) = mω
weak(x, y). Hence, we can exactly repeat the blow-up procedure

obtaining the lower estimate by Theorem 47. The upper estimate can be given exactly as
in the proof of Theorem 43. If the strong connections have a finite value βε < +∞, in the
minimization of the energy it could be in principle more convenient to have a “short-cut”
path containing some segment [i, j]⊥ such that aωij = βε instead of a longer path of weak
connections. To show that this does not happen, we have to use another Percolation result.

Lemma 49. For any δ > 0 there exist η > 0 and T0 such that for any T > T0 and xT
satisfying ‖xT ‖ ≤ T 2 the following property holds: if γ is a path between xT and xT +Tν⊥

with 8L(γ) < (ϕp(ν)− δ)T , then there exist ηT strong connections in γ.

Now, we apply the blow-up procedure at a suitable x0 ∈ ∂∗A. We fix δ > 0 and assume
by contradiction that

lim inf
ε→0

µε(Q
ν
%ε(x0))

%ε
< ϕp(ν)− δ.

If we consider a sequence of paths γε such that

lim inf
ε→0

8L(γε)

%ε
≤ lim inf

ε→0

µε(Q
ν
%ε(x0))

%ε
,

scaling as usual %ε to Tε = %ε
ε , the result of the lemma above ensures that in each (scaled)

path there are at least η %εε strong connections with coefficient βε. Then the energy of each
path γε is again greater than ηβε, giving a contradiction.
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8.2.2 Random dilute spin systems

For a fixed realization ω of the random variable, we consider the nearest-neighbour energies
defined in (46) with coefficients aωij given by

aωij =

{
0 with probability 1− p
1 with probability p.

(50)

The energies are defined as usual on the set of spin functions u : εZ2 ∩Ω→ {−1, 1}, where
Ω is a bounded Lipschitz subset of R2.

With the choice α = 0 it is particularly important to examine the geometry of the
connections, since this allows to understand whether we have coerciveness or not. In this
context, we say that a subset of Z is connected if the union of the corresponding segments
is connected. With the notation 44, the weak cluster Wω given by Theorem 46 is a subset
of Z0, and the strong cluster Sω is a subset of Z1.

The following Γ-convergence result holds.

Theorem 50 (Γ-convergence for dilute spin systems). Let Eωε be defined as in (46) with
the coefficients aωij given by (50). Then

• if p < 1
2 , almost surely we have that for all A set of finite perimeter

Γ- lim
ε→0

Eωε (A) = 0;

• if p > 1
2 , almost surely we have that

Γ- lim
ε→0

Eωε (A) =

∫
Ω∩∂∗A

ϕp(ν) dH1,

where ϕp is given by the first-passage percolation formula in Theorem 44.

δ

ρ

x
0

Figure 33: construction of a recovery sequence in a square in the dilute case.
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Also in this case we only give a sketch of the proof, considering the two cases p < 1
2 and

p > 1
2 separately, highlighting the arguments where we overcome the lack of coerciveness

issues.

Case p < 1
2 . We will use the geometric properties of the weak cluster stated in Theorem 46.

In particular, from a slight generalization of the second claim of Theorem 46 we deduce
that, for a fixed rectangle with controlled centre and sides, we can always find a path
with energy equal to 0; that is, there exists a spin function u such that the interface in
the rectangle between the regions where u = 1 and u = −1 has energy 0. This allows to
construct a recovery sequence for a square Q. Indeed, we can construct a path γε in the
weak cluster contained in a small neighbourhood of the boundary of the scaled square; the
recovery sequence is then given by uε = −1 + 2χAε , where Aε is the sequence of connected
sets whose boundary is γε (see Fig. 33). Hence, the energy of each uε vanishes, and uε → Q.
Since the energies are positive, the Γ-limit of Eωε is 0 for any square, and hence for any
finite union of squares. Then, by density, the claim follows.

Case p > 1
2 . In this case, once the compactness is proved, the proof of the Γ-convergence

result can be given exactly as in the case α > 0 for random mixtures in Theorem 43.

Coerciveness in the case p > 1
2

We note that Theorem 43 in the case p > 1
2 must be complemented with a coerciveness

result. We again use Theorem 46, in this case describing the geometry of the strong cluster.
Since α = 0, we do not have coerciveness on the nearest-neighbour interactions. We already
noticed in Section 6 that if aij = 0 for a pair (i, j) of nearest neighbours we can recover
coerciveness if we can find a path (with controlled length) joining i and j such that the
bonds along this path have strictly positive coefficients. We can look at the problem of the
asymptotic behaviour of energies Eωε by considering its deterministic counterpart; that is,
the corresponding problem in the periodic framework.

We recall some definitions. Given a set A ⊂ Z2, we say that it is connected if for
i, j ∈ A there exists a path of nearest neighbours in A joining i and j; that is, there exist
i0, i1, . . . , in ∈ A such that i0 = i, in = j and ‖ik − ik−1‖ = 1 for any k = 1, . . . , n. The
boundary of A is defined as

∂A = {i ∈ A : dist(i,Z2 \ A) = 1}.

Moreover, we define the external boundary ∂extA as the boundary of its complement.

Remark 51 (Perforated domains in the periodic framework in Z2: compactness). We
consider the energies given by

Eε(u) =
∑
〈i,j〉

εaij(ui − uj)2,
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with the (symmetric) coefficients aij assuming values 0 and 1 and periodic with a period
K. We set

L = {i ∈ Z2 : j ∈ Z2 exists such that ‖i− j‖ = 1 and aij = 1}

and assume that L is connected and infinite. Note that in dimension d = 2 this implies
that each connected component of the complement is finite.

The lattice L satisfies our definition of disordered lattice, and we could analyze the
problem by using the notion of convergence of spin function given by the Voronoi cells
of the lattice; that is, identify a spin function u defined on L with its piecewise-constant
interpolation on the corresponding Voronoi cells. In this case, we prefer to use a different
approach, which is more suitable for generalizations. The idea is to consider the missing
connections as “holes” inside the domain, and, given a sequence {uε} with equibounded
energy, to modify the sequence in the holes in such a way that we can prove compactness,
and such that the energy is controlled by the energies of {uε}.

Let {uε} be such that Eε(u
ε) is equibounded. We consider, in the set of the connected

components of the complement of εL, the connected components where uε is not constant
in the external boundary; let C0

ε denote the set of such components, and K0
ε = #C0

ε . We
modify uε outside εL by setting ũεi = 1 if εi belongs to a connected component such that
uε is identically equal to 1 in the external boundary, and ũεi = −1 otherwise. With this
definition, the energy does not increase. Now we show that the perimeters of the sets Aε(ũ

ε)
are equibounded. Indeed, it is sufficient to estimate K0

ε . For each C ∈ C0
ε there exist εi, εj

in the external boundary of C such that uεi 6= uεj . Since L is connected, up to enlarging

the period we can assume that each pair of points in L ∩ [0,K]2 is connected by a path
contained in L∩ [−K, 2K]2. Hence, for each C ∈ C0

ε there exist i′, j′ nearest neighbours in
the path connecting i and j with ai′j′(u

ε
i − uεj)2 = 4, shared with an equibounded number

of other such connected components. We then obtain K0
ε ≤ cEε(u

ε). Since the additional
contribution of each connected component C is at most 4εK2, we get

H1(Aε(ũ
ε)) ≤ Eε(uε) + c′K2Eε(u

ε) ≤ c′′.

This implies that, up to subsequences, the convergence of ũε to a set A with finite perimeter.

In the random case we can proceed similarly to the periodic case, but, since the con-
nected components in the complement of the strong cluster may have arbitrarily large size,
we have to provide a more refined estimate.

We introduce the set

Lω = {i ∈ Z2 : j ∈ Z2 exists such that [i, j]⊥ ⊂ Sω},

and consider the connected components of the complement of Lω. Since p > 1
2 , we have

that almost surely in ω each of these connected components is finite.
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Now, let {uε} be such that Eωε (uε) ≤ S < +∞ for all ε, where the energies are
computed for nearest-neighbour pairs in the bounded Lipschitz open set Ω. As in the
periodic framework, if we change the values of uε by setting ũε = 1 in each connected
component of the complement of εLω such that uε = 1 on its boundary, and −1 otherwise
in the complement of εLω, we do not change the values on εLω and the energy does not
increase. Hence, we can assume that uε is constant on each such connected component.

Step 1. Estimate on the number of the maximal connected components of the set {i : uεi = 1}
and of the set {i : uεi = −1}. For each maximal connected component I of {i : uεi = 1} or
of {i : uεi = −1}, there exist j in the external boundary ∂extI and i ∈ I such that aωij = 1.
Otherwise, we would have either a connected component of the complement of εLω where
the constant value on the external boundary is different from the internal value, or a pair
(i, j) of nearest neighbours in the same connected component of the complement of εLω
with different values of uε. Hence, by the equiboundedness of the energies, we get the
estimate

#M+
ε ≤

S

ε
, #M−ε ≤

S

ε

where M±ε denotes the number of the maximal connected components where uεi = ±1.

Step 2. Estimate for components with size less than 1
ε . Identifying as usual a subset of εZ2

with the union of the corresponding ε-squares, we show that the total measure of the union
of the connected component with size (i.e. number of nodes) less than 1

ε is negligible as
ε→ 0. We fix δ > 0 and note that each component of size O(ε−1+δ) has measure O(ε1+δ),
so that the total measure of such components is O(εδ). As for the components with size
much larger than ε−1+δ and not greater than 1

ε , we use a well-known fact from Percolation
Theory; that is, the fact that each connected set of points z ∈ Z with aωz = 0 has size at
most O(| log ε|). Noting that the set of the boundary connections of such a component is of

size much larger than ε−
1
2

+ δ
2 , we then deduce that the energy contribution is much larger

than
ε

1
2

+ δ
2 | log ε|−1.

This gives an upper estimate on the total number of the components with size much larger
than ε−1+δ. Since we are considering components with size at most 1

ε , the measure of each
such component is at most ε, and the measure of their union is less than

S| log ε|ε
1
2
− δ

2 ,

so that it is negligible as ε→ 0.
Hence, as the L1-convergence of uε is concerned, we can assume that all connected

components in the sets {uε = 1} and {uε = −1} have size at least 1
ε .

Step 3. Estimate of the energy for components with size greater than 1
ε . To conclude, we

have to estimate the perimeter of the “large” connected components. To this end, we will
use the following Percolation result, which we state without proof.
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Lemma 52 (percolation animal). Fixed M > 0, almost surely there exist a deterministic
positive constant κ and ε0 = ε0(ω) > 0 such that for all connected sets contained in the

square
[
−M

ε ,
M
ε

]2
and of size larger than ε−

1
2 with ε < ε0, the proportion of strong links

(such that aωij = 1) in each such a set is at least κ.

Lemma 52 ensures that for each Ω′ ⊂⊂ Ω we have

H1(∂Aε(u
ε) ∩ Ω′) ≤ 1

κ
Eωε (uε),

which gives the compactness of {uε} (restricted to the strong cluster), concluding the proof.

9 Random lattices: Poisson clouds

In this section we consider an example of homogenization on random lattices not satisfying
the definition of disordered lattice given in Section 6. Namely, we consider a Poisson
random set L with intensity λ in R2, defined on a probability space (O,F ,P), characterized
by the properties:
• for any bounded Borel set B ⊂ R2 the number of points in B ∩ L has a Poisson law

with parameter λ|B|; i.e.,

P({#(B ∩ L) = n}) = e−λ|B|
(λ|B|)n

n!
;

• for any collection of bounded disjoint Borel subsets in R2 the random variables defined
as the number of points of L in these subsets are independent.

We do not enter in the details of the definition of such a random set. As a technical
note, the probability space O is equipped with a dynamical system Tx : O 7→ O, for x ∈ R2,
such that for any bounded Borel set B and any x ∈ R2 we have #

(
(B+x)∩L

)
(ω) = #

(
B∩

L
)
(Txω). We suppose that Tx is a group of measurable measure-preserving transformations

in O and is ergodic.

As usual, we define the ferromagnetic energy of L as

EL(u) =
∑
〈i,j〉

(u(i)− u(j))2,

for u : L → {−1, 1}, where 〈i, j〉 denotes nearest-neighbour pairs in the sense of the Voronoi
cells. The corresponding scaled energies are given by

ELε (u) =
∑
〈i,j〉

ε(ui − uj)2, (51)

for u : εL → {−1, 1}, where ui = u(εi).
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We note that, contrary to a disordered lattice as defined in Section 6,
• L is isotropic since the properties of Poisson random sets are invariant under (trans-

lations and) rotations;
• L is not regular: we have pairs of points of L arbitrarily close, and squares of arbitrary

size not containing points of L.

As a consequence, given a family of Voronoi cells in L, it is not possible to estimate
the perimeter of its union by the number of edges, which is the underlying argument to
prove compactness properties for sequences uε with equibounded energies. Nevertheless,
compactness properties are possible through the use of the following Percolation lemma,
which uses a covering of Voronoi cells by polyominos (unions of squares). If P is a finite
connected union of Voronoi cells of L we set

A(P ) = {z ∈ Z2 : (z + (0, 1)2) ∩ P 6= ∅}.

Lemma 53 (polyomino lemma). Let R > 0 and γ > 0. Then there exists a deterministic
constant C such that for almost all ω there exists ε0 = ε0(ω) > 0 such that if P is a finite
connected union of Voronoi cells of L and ε < ε0 satisfy

P ∩ R
ε

(−1, 1)2 6= ∅, max
{

#{i : Ci ⊂ P},#A(P )
}
≥ ε−γ

then we have
1

C
#{i : Ci ⊂ P} ≤ #A(P ) ≤ C #{i : Ci ⊂ P}.

This lemma states that a large connected family of Voronoi cells can be identified with
a union of a comparable number of unit squares. It can be used to prove compactness
properties for sequences uε with equibounded ELε (uε) as follows. Let

Vε(u
ε) =

⋃
{i:uεi=1}

εCi.

Then the argument is that we can write

Vε(u
ε) = (Aε ∪B′ε) \B′′ε ,

where |B′ε|+ |B′′ε | → 0 (using either an isoperimetric argument or the Polyomino Lemma),
and {Aε} is a family of sets with equibounded perimeter.

Lemma 54 (compactness of Voronoi sets). Let uε be such that supεEε(u
ε) < +∞. Then

there exists a set of finite perimeter A such that χVε(uε) converge to χA in L1
loc(R).
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Proof. Since we reason locally, we may asume that all Vε(u
ε) are contained in a fixed cube.

We fix γ > 0 small enough. We subdivide ∂Vε(u
ε) into its connected components. We

denote by Cγ,+ε the family of such connected components S with

#{i ∈ L : uεi = 1, εCi ∩ S 6= ∅} ≥ ε−γ . (52)

Note that each such connected component can be identified with the set

P = P (S) =
⋃{

Ci : uεi = 1, εCi ∩ S 6= ∅
}
. (53)

We denote by Cγ,−ε the family of the remaining connected components.
The first step will be to identify the small sets B′ε and B′′ε as the ‘interior’ of contours

in Cγ,−ε where the inner trace of χVε(uε) is 0 and 1, respectively. In this way the remaining

set will have a boundary only composed of ‘large’ components from Cγ,+ε .
For each S ∈ Cγ,−ε , let P be defined from S by (53). We have two cases, whether εP is

interior to S or not. We denote by Cγ,−1,ε the first family, by Cγ,−2,ε the second one, and define

Bε as the union of the εCi in the interior of S for some S ∈ Cγ,−1,ε and such that uεi = 1, and

B′′ε as the union of the εCi in the interior of S for some S ∈ Cγ,−2,ε and such that uεi = −1.
If we set

Vε = (Vε(u
ε) \Bε) ∪B′′ε

then ∂Vε consists only of components in Cγ,+ε , and |Bε ∪B′′ε | ≤ Cε1−2γ .
We now write Vε = Aε ∪A′ε, where

Aε =
⋃
{(εz + εQ) : εz + εQ ⊂ Aε}, and A′ε = Vε \Aε.

By Lemma 53 we have

H1(∂A(P (S))) ≤ C#{i ∈ L : uεi = 1, εCi ∩ S 6= ∅}

Summing up over all S ∈ Cγ,+ε we obtain

H1(∂Aε) ≤ C Eε(uε).

Hence, {Aε} is a family of sets with equibounded perimeter, and the functions χAε are
locally precompact in L1(R2). Again by Lemma 53 we have

|A′ε| ≤ Cε2
∑

S∈Cγ,+ε

#A(P (S)) ≤ CεEε(uε).

This shows that |A′ε| → 0, and proves the claim, upon setting B′ε = A′ε ∪Bε.
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This lemma defines a convergence uε → A; moreover, it gives the first variational ingre-
dient in order to prove the existence of the Γ-limit; the second one regards the possibility
to change boundary values in order to prove a homogenizion formula. To this end we would
like to use a discrete coarea argument. In general again this is not possible since from an
estimate on the length of an interface we cannot deduce an estimate on the energy of such
an interface (since L is not regular we can have arbitrarily small edges of Voronoi cells).
However, we can prove that we can limit our interfaces to lie on the boundary of regular
Voronoi cells defined as follows.

For α > 0 we set

L0
α =

{
i ∈ L : Ci contains a ball of radius α, diamCi ≤

1

α
,#edges of Ci ≤

1

α

}
(54)

the family of regular Voronoi cells with parameter α. The following lemma describes some
geometrical features of regular Voronoi tessellations.

Lemma 55 (a channel property of L0
α). Let δ > 0. For every T ∈ R, ν ∈ S1 and x ∈ R2

we define

RνT,δ(x) =
{
x : |〈x− xi, νi〉| ≤ δT, |〈x− xi, ν⊥i 〉| ≤

1

2
T
}
.

Then there exist α0, Cδ > 0 such that a.s. there exists T0(ω) > 0 such that for all T > T0(ω)
the rectangle RνT,δ(x) contains at least CδT disjoint paths of Voronoi cells Ci with i ∈ L0

α

connecting the two opposite sides of RνT,δ(x) parallel to ν. This property is uniform as x/T

vary on a bounded set of R2.

This lemma can be proven using combinatoric arguments that allow to use well-known
results for the Bernoulli bond-percolation model. Its use allows to fix boundary values
in the blow-up argument, which, in this two-dimensional setting involves minimal-path
problems. To that end we first let L∗ denote the dual lattice to L; i.e., the set of all
endpoints of edges of Voronoi cells, and let

π0(x) = closest point of L∗ to x.

For almost all x this point is uniquely defined. For the remaining points we choose one of
the closest points of L∗ to x.

By the isotropy of the Poission set it is sufficient to characterize the limit surface tension
when the normal is e.g. ν2.

Proposition 56 (surface tension). Almost surely there exists the limit

τ = lim
t→+∞

1

t
min{#{ei} : {ei}i path of edges of Voronoi cells

with endpoints π0(0, 0) and π0(t, 0)}

and is a deterministic quantity.
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Note that τ depends on λ, and a scaling argument allows to conclude that τ =
√
λ τ1 (τ1

being the surface tension for a Poisson random set with intensity 1). The homogenization
theorem reads as follows.

Theorem 57 (homogenization on random Poisson sets in the plane). Let L be a Poisson
random set in R2 with intensity λ and let ELε be defined by (51). Then almost surely ELε
Γ-converges to 8

√
λτ1H1(∂∗A) with τ1 the deterministic constant given by Proposition 56

when λ = 1.

In the following remark we note that we can also treat interactions depending on the
distance of points in the lattice L. Note that the corresponding ferromagnetic energies
cannot be directly compared with the nearest-neighbour energies.

Remark 58 (an extension: finite-range systems). We can use the properties of Lα and
the arguments leading to the theorem above to prove that for R > 0 large enough (corre-
sponding to α small enough) the energies

EL,Rε (u) =
∑

{i,j:‖i−j‖≤R}

ε(ui − uj)2

almost surely Γ-converge to an isotropic energy τR
√
λH1(∂∗A).

10 Graphons

We now consider the minimal-cut problem in arbitrary (abstract) graphs as the number of
nodes diverges.

Given a sequence of graphs
Gk = (Nk, Ek),

where Nk denotes the set of nodes and Ek is the set of the connections; i.e., a symmetric
subset of Nk×Nk. In order to quantify the density of a sequence of graphs, as a parameter
we use the number of connections with respect to the total number of possible connections
(which is of order (#Nk)2). We are interested in the case #Nk → +∞ as k → +∞.

Definition 59 (dense and sparse (sequences of) graphs). Let {Gk} be a sequence of graphs
with Gk = (Nk, Ek) and #Nk → +∞ as Nk → +∞. The sequence is dense (or the graphs
are dense) if

lim inf
k→+∞

#Ek
(#Nk)2

≥ c > 0.

Otherwise, the sequence is sparse (or the graphs are sparse).
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ε ε1/2

1

−1

Figure 34: connections of nearest neighbours and points at distance 1√
ε
.

In the following example we study the ferromagnetic energies on a sequence of sparse
graphs in Z whose limit is not described by a sharp interface, but by a parameter taking
all values in [−1, 1]. Correspondingly, optimal sequences exhibit microscopic “diffuse”
interfaces.

Example 60 (a diffuse interface for a sparse graph sequence). We consider the set of nodes
given by Nε = [0, 1] ∩ εZ and the set of connections Eε given by nearest neighbours and
pairs of points at distance b 1√

ε
c; that is,

Eε =
{

(εi, εj) ∈ Nε ×Nε : ‖i− j‖ = 1 or ‖i− j‖ =
⌊ 1√

ε

⌋}
,

as pictured in Fig. 34. Without loss of generality, we can suppose 1√
ε
∈ N.

We consider the energies

Eε(u) =
αε
8

∑
(εi,εj)∈Eε

(ui − uj)2

defined for u : Nε → {−1, 1}, where the scaling factor αε is to be determined such that
interfaces have finite (and non-vanishing) energy; i.e., the limit is finite on piecewise-
constant functions. We test the energies on u = −1 + 2χ[0,+∞). The number of interacting

pairs giving a contribution to the energy is 1√
ε

+ 1, hence, if uε denotes the discretization

of u, we have

Eε(u
ε) = αε

( 1√
ε

+ 1
)

which is equibounded if αε is of order
√
ε. Then, the energies we consider are scaled as

Eε(u) =
1

8

∑
(εi,εj)∈Eε

√
ε(ui − uj)2. (55)

We are going to ‘lift’ the energies to Z2. For all u : [0, 1] ∩ εZ → {−1, 1} we define a
corresponding function

vu : [0, 1]2 ∩
√
εZ2 → {−1, 1}
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given by

vu(
√
ε i1,
√
ε i2) =

{
u(
√
ε i1 + εi2) if i2 <

1√
ε

vu(
√
ε i1, 0) = u(

√
ε i1) if

√
ε i2 = 1.

Note that the definition in the second line above allows to identify the upper and lower sides
of the square [0, 1]2. In this way the ‘lifted energy’ can be thought of as a nearest-neighbour
energy taking into account a periodic vertical extension. We define Gε(vu) = Eε(u), which
is a nearest-neighbour energy in Z2.

The sequence {Gε} Γ-converges as ε→ 0 to the crystalline perimeter given by

G(A) =

∫
[0,1]2∩∂∗(A#)

‖ν‖1 dH1

with respect to the convergence in L1
loc of the piecewise-constant extensions of the spin

functions. In this formula, given A ⊂ [0, 1] × [0, 1), A# denotes the periodic extension of
A to [0, 1]× R.

Let {uε} be a sequence with equibounded energy, and let u be the L∞-weak∗ limit of uε

(which we can assume exists up to subsequences). The corresponding functions vε = vuε

converge, up to subsequences, to a set A of finite perimeter. In order to characterize u in
terms of A we modify the sequence uε so that the limit u is the same and the corresponding
v̂ε converge to a set Â which is the subgraph of u, writing u(x) =

∫ 1
0 v(x, y) dy, where

v = −1 + 2χ
Â

. Hence, u ∈ BV (0, 1).

Note that G(Â) ≤ G(A), so that it suffices to rewrite G(Â) in terms of u in order to
obtain a lower bound. The crystalline perimeter of Â can be written as

E(u) = 2H1({−1 < u(x) < 1}) + |Du|(0, 1).

In order to check this, it suffices to consider the case in which Â is a polyrectangle, in which
case the horizontal segments of the boundary give the first term and the vertical segments
correspond to the second one.

ε ε1/2

1

−1

u u
ε vu

1

c

ε1/2

1

−1

ε1/2

Figure 35: diffuse interface.

As for the construction of a recovery sequence, we only consider a constant function
u(x) = c with c ∈ (−1, 1). A general u can be then approximated by piecewise-constant
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functions so that the total variations converge. For such approximating uε for any interval
[
√
ε (k−1),

√
ε k) we have an interface in εZ (see Fig. 35), which can be viewed as a diffuse

interface.

(b)(a )

F

G G

Figure 36: two examples of immersions of a cycle of order 4.

Example 60 highlights that the choice of the “natural” framework where to embed a
graph is in a sense connected to the dimension of “cycles” of interactions (or edges) between
nodes of the graph. In that case, even though we deal with a one-dimensional set of nodes
Z, the graph contains cycles of order 4. This shows that a more “natural” setting for the
same graph is Z2, with nearest-neighbour connections.

(b)(a )

F

G G

(c)

G

Figure 37: a cycle of order 4 in the graph of Example 60.

In Fig. 36 possible embeddings of a cycle of order 4, denoted by F , in the graph given
by Z2 with nearest-neighbour connections and next-to-nearest neighbour connections are
pictured in figure (a) and (b), respectively. In Fig. 37 we picture a cycle of order 4 in the
one-dimensional graph of Example 60.

The problem of embedding an arbitrary graph (nodes and edges) in a proper d-dimension-
al space with a metric structure is not of a simple solution, and makes sense for graphs
with “few” connections. For dense graph sequences the analysis of cycles (or simple graphs)
embedded in a given graph leads to a notion of topological convergence, that we briefly
describe.
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Given F = (N (F ), E(F )) and G = (N (G), E(G)) graphs, we consider the set hom(F,G)
of the homomorphisms of F on G; that is, the set of functions Φ: N (F ) → N (G) which
are adjacency-preserving. The structure of a graph G can be examined by considering the
density of the homomorphisms of simple graphs F on G; we introduce the quantity

t(F,G) =
#hom(F,G)

(#N (G))#N (F )
, (56)

noting that (#N (G))#N (F ) is the number of all possible functions between the set of nodes
of F and the set of nodes of G.

Definition 61 (left convergence for sequence of graphs). A sequence of graphs Gk is said
to be left convergent if there exists

lim
n→+∞

t(F,Gk)

for any F simple graph.

Note that this definition is meaningful only for dense sequences of graphs, otherwise
the limit is always 0.

As dense graph sequences are concerned, the structure of d-dimensional Enclidean
spaces for the description of the geometry of edges is abandoned, and the problem of
the asymptotic behaviour of the associated energies is set in dimension 1. As we will see,
this makes the choice of the labelling of graphs essential.

Given a graph G = (N , E), we define the energy of G by setting

EG(u) =
1

#N
∑
i,j∈N

aij(ui − uj)2 (57)

for u : N → {−1, 1}, where

aij =

{
1 if (i, j) ∈ E
0 if (i, j) ∈ E .

The matrix A = (aij) is called the adjacency matrix of the graph.
Let n = #N ; then, we can use the set Nn = {1, . . . , n} as the set of nodes, with a

slight abuse of notation. Correspondingly, we will write the graph as Gn = (Nn, En) and the
adjacency matrix as An = (anij). Now, in view of analyzing the asymptotic behaviour of the

energies EGn as n→ +∞, we introduce a “pixel representation” of the adjacency matrices
on a common set of parameters [0, 1]×[0, 1]. To that end, we consider the piecewise-constant
adjacency function of the matrix An; that is, the function an : [0, 1]× [0, 1]→ {0, 1} defined
as

an(x, y) = anij if (x, y) ∈ Ini × Inj , (58)
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where In1 = [0, 1
n ] and Ink = (k−1

n , kn ] for k = 2, . . . , n.
Note that for a sparse sequence of graphs the adjacency functions an defined in (58)

always converge to 0 strongly in L1. The following examples show that the representation
of the adjacency matrices and the corresponding weak limits are highly dependent on the
choice of the labelling.
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Figure 38: labelling of a graph, adjacency matrix and “pixel representation”.
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Figure 39: one-dimensional representation of the graph in Fig. 38.

Example 62 (parametrization of a graph and adjacency matrix). Let G be the graph
pictured in Fig. 38(a). The adjacency matrix A = (aij) corresponding to the labelling
is represented in Fig. 38(b), and the corresponding adjacency function a given by (58) is
pictured in Fig. 38(c). Note the different position of the origin in the representation of a
and in the corresponding matrix. The same graph can be represented in dimension 1. In
Fig. 39 it is pictured together with the corresponding connections.
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Figure 40: different labellings of the complete bipartite graph.
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Example 63 (different labellings of the complete bipartite graph). We consider the com-
plete bipartite graph with 2N nodes divided in two families of N nodes each, highlighting
the dependence of the adjacency matrix on the choice of the labelling. In Fig. 40 two
different parametrizations for N = 3 are pictured. The corresponding adjacency matrices
are

Ã =



0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

 and Â =



0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0


for (a) and (b) respectively.
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Figure 41: different pixel representations of the complete bipartite graph.

Now, we associate to each parametrization the corresponding “pixel representation”
defined in (58) and analyze the asymptotic behaviour as the number of nodes diverges. Let
ã2N and â2N denote the piecewise-constant representations of the adjacency matrices Ã2N

and Â2N generalizing Ã and Â to the graphs with 2N nodes, respectively (see Fig. 41).
We have that ã2N is actually constant, and equal to

ã(x, y) =

0 in
[
0,

1

2

]2
∪
[1

2
, 1
]2

1 otherwise,

while â2N ∗
⇀ â(x, y) = 1

2 in L∞.

Contrary to the case studied until now, where the limit is represented as a local func-
tional in Rd starting from a lattice graph in εZd with essentially finite range connections,
here we embed arbitrary graphs in one-dimensional lattices in 1

nZ, and in order to analyze
the asymptotic behaviour of the energies defined on dense sequences of graphs, we give
the definition of graphon. This concept extends the notion of (parametrized) graph, iden-
tified with its adjacency function a, to a “continuous” set of nodes given by [0, 1], and a
corresponding notion of norm.
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Definition 64 (graphons and cut norm). A graphon is a bounded measurable function
W : [0, 1]× [0, 1]→ R that is symmetric. The cut norm of a graphon W is defined as

‖W‖� = sup
T,S⊂(0,1)

∣∣∣ ∫
S

∫
T
W (x, y) dx dy

∣∣∣ (59)

where the sup is taken over all measurable subsets of (0, 1).

Note that in the definition of graphon we consider R-valued functions, and not only
taking values in [0, 1], since we need to use the linear structure of the space.

Remark 65. An equivalent definition of the cut norm is given by

‖W‖� = sup
{∣∣∣ ∫

(0,1)

∫
(0,1)

W (x, y)f(x)g(y) dx dy
∣∣∣ : f, g : [0, 1]→ [0, 1] measurable

}
. (60)

Remark 66 (cut norm and parametrizations of a graph). Let G be a graph. By using the
definition of the adjacency function a(x, y) in (58), to each parametrization of G we can
associate a graphon WG by setting

WG(x, y) = a(x, y). (61)

Note that if WG and W ′G are associated to different parametrizations of the same G, then
in general ‖WG − W ′G‖� 6= 0. If we consider the bipartite graph described in Example

63, and denote by W̃2N and Ŵ2N the graphons associated to parametrizations (a) and (b)

respectively, we get ‖W̃2N − Ŵ2N‖� = 1
2 > 0.

Remark 67 (cut norm convergence, L1-strong and L1-weak convergence).

(a) Let {Wn} be a sequence of graphons such that ‖Wn‖� → 0 as n → +∞. Then, if
{fn} and {gn} are equibounded sequences of measurable functions, it follows that

lim
n→+∞

∫
(0,1)

∫
(0,1)

Wn(x, y)fn(x)gn(y) dx dy = 0. (62)

If fn and gn are positive, then the result follows by the (equivalent) definition of cut norm
in (60) since the sequences are equibounded. Otherwise, we can write fngn as the difference
of products of positive functions

fngn =
1

2
(‖fn‖∞ + fn)(‖gn‖∞ + gn) +

1

2
(‖fn‖∞ − fn)(‖gn‖∞ − gn)− ‖fn‖∞‖gn‖∞

and conclude.
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(b) The convergence in the cut norm is stronger than the weak-L1 convergence. Indeed,
if ‖Wn −W‖� → 0 as n→ +∞, then Wn ⇀W in L1((0, 1)× (0, 1)) by using (60), which
is uniform. Note that the weak convergence of Wn is not sufficient to have (62) which
will be a key property to analyze the convergence of energies on graphs. On the contrary,
the L1-strong convergence implies the convergence in the cut norm, but does not provide
sufficient compactness properties.

We now introduce a notion of metric on the set of graphons which is independent of the
parametrizations. A map φ : [0, 1] → [0, 1] is measure preserving if φ−1(A) is measurable
for all measurable A ⊂ [0, 1], and |φ−1(A)| = |A|, where | · | denotes the 1-dimensional
Lebesgue measure. Note that measure-preserving maps are a generalizations of relabelling
of nodes of a graph, in the sense that a permutation in the set of nodes (and hence in the
set of the intervals Ink ) corresponds to a measure-preserving transformation of [0, 1].

Let W be a graphon. For each measure-preserving map φ we define a corresponding
graphon Wφ by setting

Wφ(x, y) = W (φ(x), φ(y)). (63)

Definition 68 (cut metric). Let W,W ′ be graphons. The cut distance between W and W ′

is defined as
δ�(W,W ′) = inf

φ,ψ
‖Wφ −W ′ψ‖�,

where the inf is taken over all measure-preserving maps of [0, 1], and Wφ,W
′
ψ are defined

as in (63).

Note that, by definition, the cut distance is independent of the parametrization.

We introduce the set W0 of the graphons with image in [0, 1]; that is,

W0 = {W : [0, 1]2 → [0, 1] measurable and symmetric}.

Note that W0 is in fact the set of limits of graphs.
The topological properties of the cut metric and the cut norm, and their link with the

left convergence, are widely studied. In particular, a fundamental theorem ensures some
properties which will be important for the asymptotic analysis of the energies on graphs. In
the following statements, Wn denotes the graphon associated to the parameterized graph
Gn.

(a) (completeness) Let {Wn} be a sequence of graphons which is a Cauchy sequence
with respect to the metric δ�; then, there exists W ∈ W0 such that δ�(W,Wn)→ 0.

(b) (existence of the parameterization) Let {Wn} be a sequence of graphons and W ∈
W0 such that δ�(W,Wn) → 0, for all n there exists a measure preserving map φn such

that, setting W̃n = (Wn)φn ,

‖W̃n −W‖� → 0.
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(c) (compactness) The convergence induced by the cut metric is compact.

It would be convenient to have a constructive way to choose the parameterization in
(b), whose existence is only proved in abstract terms in the literature.s

Remark 69 (Left convergence and convergence in the cut metric). The cut norm trans-
lates in analytical terms the notion of topological convergence of graphs; that is, the left
convergence. The relation with the convergence in the cut metric is given by the following
result.

Let {Gn} be a sequence of parametrized graphs with #N (Gn) = n, and let {Wn} be the
sequence of corresponding graphons given by (61). Then:

(a) the sequence {Wn} is a Cauchy sequence with respect to the metric δ� if and only
if the sequence {Gn} is left convergent;

(b) if W ∈ W0 is such that δ�(W,Wn)→ 0, then for any simple graph F = (N (F ), E(F ))

t(F,Gn)→
∫

[0,1]k

∏
(i,j)∈E(F )

W (xi, xj) dx1 . . . dxk,

where N (F ) = {1, . . . , k}.

Now, we go back to the asymptotic analysis of the energies on graphs. Let Gn =
(Nn, En) be a parametrized graph such that #Nn = n, with the set of nodes parametrized
as Nn = {1, . . . , n}. For each u : 1

nZ→ {−1, 1}, we define the energy by

En(u) =
1

n2

n∑
i,j=1

anij(ui − uj)2,

where ui = u( in) and (anij)ij is the adjacency matrix of the graph Gn. If we extend the spin
function u to a piecewise-constant function by setting

u(x) = ui if x ∈ Ini ,

the energies can be written as

En(u) =

∫
(0,1)

∫
(0,1)

an(x, y)(u(x)− u(y))2 dx dy,

where an is defined in (58) and u ∈ Xn defined as

Xn = {u : [0, 1]→ {−1, 1} : u constant in each Ini }.

We now consider the Γ-limit of the sequence En, the convergence of the corresponding
graphons in the cut norm describing the asymptotic behaviour of the underlying environ-
ment.
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Theorem 70 (Γ-convergence and volume constraint). Let {Gn} be a sequence of parametrized
graphs such that the corresponding graphons Wn converge to a graphon W with respect to
the cut norm. Then, the sequence {En} Γ-converges, with respect to the L∞-weak∗ conver-
gence, to the functional F defined by

F (u) =

2

∫
(0,1)

∫
(0,1)

W (x, y)(1− u(x)u(y)) dx dy if ‖u‖∞ ≤ 1

+∞ otherwise in L∞(0, 1).

Moreover, if λn → λ with λn ∈ [−1, 1] ∩ 2
nZ, and

Eλnn (u) =

En(u) if

∫
(0,1)

u dx = λn

+∞ otherwise,

then the sequence {Eλnn } Γ-converges to the functional F λ given by

F λ(u) =

F (u) if

∫
(0,1)

u dx = λ

+∞ otherwise.

Proof. Lower bound. Let un
∗
⇀ u. Since ‖Wn−W‖� → 0, we apply Remark 67(a) obtaining

lim
n→+∞

∫
(0,1)

∫
(0,1)

(Wn(x, y)−W (x, y))un(x)un(y) dx dy = 0. (64)

Since un(x) ∈ {−1, 1}, it follows that (un(x)− un(y))2 = 2− 2un(x)un(y), so that

lim inf
n→+∞

En(un) = 2 lim inf
n→+∞

∫
(0,1)

∫
(0,1)

Wn(x, y)(1− un(x)un(y)) dx dy

= 2

∫
(0,1)

∫
(0,1)

W (x, y)(1− un(x)un(y)) dx dy,

where we used (64) and the convergence∫
(0,1)

∫
(0,1)

Wn(x, y) dx dy →
∫

(0,1)

∫
(0,1)

W (x, y) dx dy,

obtained by using as test functions f(x) = g(x) ≡ 1. Since

vn(y) =

∫
(0,1)

W (x, y)un(x) dx→ v(y) =

∫
(0,1)

W (x, y)u(x) dx
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strongly in L1(0, 1) and un
∗
⇀ u in L∞(0, 1), it follows that

lim inf
n→+∞

∫
(0,1)

∫
(0,1)

W (x, y)un(x)un(y) dx dy = lim inf
n→+∞

∫
(0,1)

vn(y)un(y) dy

=

∫
(0,1)

∫
(0,1)

W (x, y)u(x)u(y) dx dy,

concluding the proof of the lower estimate.

Upper bound. Let u : (0, 1) → [−1, 1] and nh = h2 for any h ∈ N. We consider a partition
of (0, 1) in intervals with length 1

h , so that the scale is larger than 1
nh

= 1
h2

. We set

Jhk = (k−1
h , kh) and define

ũh = chk = h

∫
Jhk

u(x) dx in Jhk .

We define the recovery sequence unh by setting, in each interval Jhk ,

unh(x) =

1 if x ∈
(k − 1

h
,
k − 1

h
+
thk
h2

)
−1 otherwise in Jhk ,

where thk = h
2 (chk + 1). This is a good definition since u(x) ∈ [−1, 1] implies 1 ≤ thk ≤ h,

and, up to a small error, we can assume that thk is an integer.
The sequence (unh) weak∗ converges to u in L∞(0, 1). By using (64), we have

lim
h→+∞

Enh(unh) = 2 lim
h→+∞

∫
(0,1)

∫
(0,1)

W (x, y)(1− unh(x)unh(y)) dx dy,

and again by an argument of strong-weak convergence as in the proof of the lower bound
we obtain

lim
h→+∞

Enh(unh) = 2

∫
(0,1)

∫
(0,1)

W (x, y)(1− u(x)u(y)) dx dy.

Finally, we note that a slight variation of the construction of the recovery sequence is
compatible with the volume constraint.

Example 71 (minimal-cut problem for the half-graph). Let G2k be the half-graph with 2k
nodes, with the “natural” labelling of the nodes described in Fig. 42(a). The corresponding
sequence of graphons W2k is pictured in Fig. 42(b). Since W2k strongly converges in
L1((0, 1)× (0, 1)) to the function

W (x, y) =

0 if |x− y| ≤ 1

2
1 otherwise in (0, 1)2,
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Figure 42: the half-graph with 12 nodes and its pixel representation.

it follows that ‖W2k −W‖� → 0 as k → +∞. Fixing λ2k = 0 for all k, we can apply
Theorem 70 and obtain that the sequence of the energies converges to the functional

F 0(u) = 2

∫ 1
2

0

∫ 1

1
2

+x
(1− u(x)u(y)) dx dy + 2

∫ 1

1
2

∫ x− 1
2

0
(1− u(x)u(y)) dx dy. (65)

We consider the minimal-cut problem for the limit functional F ; that is,
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Figure 43: minimal cut of the half-graph.

min
{
F 0(u) : u : (0, 1)→ [−1, 1] such that

∫ 1

0
u(x) dx = 0

}
.

It can be proven that the minimum is attained at a function u such that u(x) ∈ {−1, 1};
then, it follows that a minimizer is given by

u(x) =

1 in
[
0,

1

6

]
∪
[1

2
,
5

6

]
−1 otherwise.
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In Fig. 43 we give a pictorial representation of the corresponding discrete solution of the
minimal-cut problem in the case k = 6.

11 A minimal bibliography

A review of interfacial problems on networks can be found in [10]. We also refer to the forth-
coming book [2] and to the lecture notes [20]. We only provide some essential bibliography
for the content of these notes, to which we refer for further information.

Section 2. An account of the properties of sets of finite perimeter can be found in [7]
and [6].

Section 3. Classical references for Γ-convergence are [8] and [23]. Functionals on sets
of finite perimeter have been studied in [5]. The study of spin systems is a classical subject
in Statistical Mechanics, even though the types of problems somewhat differ from the ones
studied here; a first treatment of spin systems by variational methods in the spirit of these
notes is in [21], followed by [1].

Section 4. The results on spin systems actually can be seen as a particular case of
earlier results on systems with bulk and surface parts [12]. Here we simplify the proof in
the case without bulk part. More examples in the planar case can be found in [20].

Section 5. The homogenization of ferromagnetic energies has been performed in [16].
Here we give a different proof based on the Fonseca-Müller blow-up method [24] adapted
to homogenization [14].

Section 6. A compactness and integral-representation result for ferromagnetic energies
is found in [3]. Antiferromagnetic energies on a square lattice are dealt with in [1]. Coarse-
graining has been analyzed in [19].

Section 7. The design of networks is the subject of [13]. The Dal Maso-Kohn principle
refers to an unpublished result showing the analog for mixtures of quadratic energies (see
also [9]). The homogenization method for shape optimization is the subject of the book
[4] (see also [31]).

Section 8. The homogenization of networks with random positive coefficients is per-
formed in [16], for hard inclusions in [30] (see also [15]), for dilute systems in [17]. A
classical reference for Percolation Theory is [26]. In random homogenization problems an
important tool are results of sudadditive processes [27]. The analysis of dilute system is
an active research topic [22].

Section 9. The homogenization of Poisson random sets in the plane is contained in
[18]. The polyomino lemma is due to Pimentel [29].

Section 10. Minimal-cut problems for dense-graph sequences are studied in [11]. For
the theory of graphons we refer to [25] and [28].
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