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Abstract

Let Ω ⊂ R3 be an open and bounded set with Lipschitz boundary and outward unit normal ν. For
1 < p <∞ we establish an improved version of the generalized Lp-Korn inequality for incompatible tensor
fields P in the new Banach space

W 1, p, r
0 (dev sym Curl; Ω,R3×3)

={P ∈ Lp(Ω;R3×3) | dev sym CurlP ∈ Lr(Ω;R3×3), dev sym(P × ν) = 0 on ∂Ω}

where

r ∈ [1,∞),
1

r
≤ 1

p
+

1

3
, r > 1 if p =

3

2
.

Specifically, there exists a constant c = c(p,Ω, r) > 0 such that the inequality

‖P‖Lp(Ω,R3×3) ≤ c
(
‖symP‖Lp(Ω,R3×3) + ‖dev sym CurlP‖Lr(Ω,R3×3)

)
holds for all tensor fields P ∈ W 1, p, r

0 (dev sym Curl; Ω,R3×3). Here, devX := X − 1
3

tr(X) 1 denotes
the deviatoric (trace-free) part of a 3 × 3 matrix X and the boundary condition is understood in a
suitable weak sense. This estimate also holds true if the boundary condition is only satisfied on a rela-
tively open, non-empty subset Γ ⊂ ∂Ω. If no boundary conditions are imposed then the estimate holds
after taking the quotient with the finite-dimensional space KS,dSC which is determined by the condi-
tions symP = 0 and dev sym CurlP = 0. In that case one can replace ‖dev sym CurlP‖Lr(Ω,R3×3) by
‖dev sym CurlP‖W−1,p(Ω,R3×3). The new Lp-estimate implies a classical Korn’s inequality with weak
boundary conditions by choosing P = Du and a deviatoric-symmetric generalization of Poincaré’s in-
equality by choosing P = A ∈ so(3).

The proof relies on a representation of the third derivatives D3P in terms of D2 dev sym CurlP com-
bined with the Lions lemma and the Nečas estimate.

We also discuss applications of the new inequality to the relaxed micromorphic model, to Cosserat
models with the weakest form of the curvature energy, to gradient plasticity with plastic spin and to
incompatible linear elasticity.
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1 Introduction

1.1 Overview

Korn’s second inequality provides an Lp-estimate of a gradient vector field (modulo a constant) in terms of
the symmetric part of the derivative. This can be generalized to general fields P if one adds a term in CurlP
on the right hand side [104, 103, 125]. For recent refined estimates which involve only the deviatoric part of
symP and CurlP , see [101, 11, 102].

Here, we show that P can be estimated in dimension n = 3 in terms of symP and sym CurlP or even
symP and dev sym CurlP . The difference is that we need to subtract not only constants but also certain affine
or quadratic skew-symmetric fields in the kernel of the operators sym Curl and dev sym Curl, respectively.

To set the stage we recall the notation for the relevant Lie groups used in this paper and their Lie algebras
and indicate how our new inequalities relate to (infinitesimal) conformal invariance. We denote the space
of (n × n)-matrices by Rn×n and we denote the groups of proper orthogonal matrices, and matrices with
determinant 1 by

SO(n) = {Q ∈ Rn×n | QTQ = 1}, SL(n) = {B ∈ Rn×n | detB = 1}. (1.1a)

The corresponding Lie algebras of skew-symmetric and trace-free matrices are denoted by

so(n) = {A ∈ Rn×n | AT = −A}, sl(n) = {D ∈ Rn×n | trD = 0}. (1.1b)

Let Ω ⊂ R3 be open, bounded and simply connected. A C1-map ϕ : Ω→ R3 is conformal if its differential
preserves the scalar product up to dilations, i.e., if for all x there exist λ(x) ≥ 0 and Q(x) ∈ SO(3) such
that Dϕ(x) = λ(x)Q(x). It is well-known that conformal maps are smooth and the non-constant conformal
maps form a finite-dimensional manifold. The vector fields in the tangent space of the identity map are called
conformal Killing fields (or infinitesimally conformal maps) and are characterized by the condition

dev sym Du = 0. (1.2)

In fact the solutions u of (1.2) are certain quadratic polynomials, see (1.10) below for an explicit formula.
In the Cosserat theory, the curvature expression

‖dev sym CurlA‖2 for A : Ω→ so(3) (1.3a)

can be expressed equivalently as
‖dev sym Daxl(A)‖2. (1.3b)

and the latter expression has been termed “conformal curvature”, consistent with (1.2) for u = axl(A).
Therefore, we call the generalized curvature expression

‖dev sym CurlP‖2 (1.3c)

conformal dislocation energy. Upon restricting P ∈ so(3) we recover (1.3b), see also (1.41).

1.2 The classical Korn’s inequalities

First inequalities of this type were identified by Arthur Korn more than hundred years ago, cf. [86, 87, 88],
where they were derived for applications in linear elasticity. It is worth mentioning that after his graduation
in 1890 Korn studied in Paris under the supervision of Henri Poincaré. For Korn’s biography including his
pioneering work in telephotography we refer to [105, 89] but also [134, p. 182f].

We start by summarizing the inequalities which bear Korn’s name. In the following, let n ≥ 2 and Ω ⊂ Rn
be a bounded Lipschitz domain. Korn’s first inequality (in Lp) with vanishing boundary values1 reads

‖Du‖Lp(Ω,Rn×n) ≤ c ‖sym Du‖Lp(Ω,Rn×n) ∀u ∈W 1, p
0 (Ω,Rn). (1.4)

1In fact, the estimate is also true for functions with vanishing boundary values on a relatively open (non-empty) subset of
the boundary.
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It can be deduced from Korn’s second inequality (in Lp), which does not require boundary conditions:

‖u‖W 1, p(Ω,Rn) ≤ c
(
‖u‖Lp(Ω,Rn) + ‖sym Du‖Lp(Ω,Rn×n)

)
∀u ∈W 1, p(Ω,Rn). (1.5)

From the latter inequality also the following version follows

inf
A∈so(n)

‖Du−A‖Lp(Ω,Rn×n) ≤ c ‖sym Du‖Lp(Ω,Rn×n) ∀u ∈W 1, p(Ω,Rn). (1.6)

For n ≥ 3 these inequalities can be improved to inequalities which only require the trace-free part of sym Du
on the right hand side. One has

‖Du‖Lp(Ω,Rn×n) ≤ c ‖devn sym Du‖Lp(Ω,Rn×n) ∀u ∈W 1, p
0 (Ω,Rn), (1.7)

where devnX := X − 1
n tr(X) · 1 denotes the deviatoric (trace-free) part of the square matrix X ∈ Rn×n.

Moreover,

‖u‖W 1, p(Ω,Rn) ≤ c
(
‖u‖Lp(Ω,Rn) + ‖devn sym Du‖Lp(Ω,Rn×n)

)
∀u ∈W 1, p(Ω,Rn), (1.8)

as well as

‖u−Πu‖W 1, p(Ω,Rn×n) ≤ c ‖devn sym Du‖Lp(Ω,Rn×n) ∀u ∈W 1, p(Ω,Rn) (1.9)

where Π is an arbitrary projection from W 1, p(Ω,Rn) onto the space of conformal Killing vectors (or in-
finitesimal conformal mappings), i.e., the finite-dimensional kernel of devn sym D, which is given by quadratic
polynomials of the form

ϕC(x) =
〈
a, x
〉
x− 1

2
a‖x‖2 +Ax+ β x+ b, with A ∈ so(n), a, b ∈ Rn and β ∈ R, (1.10)

cf. [136, 123, 81, 37, 137, 145]. The situation is quite different in the planar case n = 2, since the condition
dev2 sym Du ≡ 0 becomes the system of Cauchy-Riemann equations and the corresponding kernel is infinite-
dimensional, so that an adequate quantitative version of the trace-free classical Korn’s inequality does not
hold true. However, in [61] it is proved that

‖Du‖Lp(Ω,R2×2) ≤ c ‖dev2 sym Du‖Lp(Ω,R2×2) ∀u ∈W 1, p
0 (Ω,R2),

but this result ceases to be valid if the homogeneous Dirichlet conditions are prescribed only on a part of the
boundary, cf. the counterexample in [11, sec. 6.6].

For the limiting cases p = 1 and p =∞ Korn-type inequalities fail, since from the counterexamples traced
back in [33, 97, 131, 111] it follows that

∫
Ω
‖sym Du‖ dx does not dominate each of the quantities

∫
Ω
|∂iuj |dx

for any vector field u ∈ W 1, 1
0 (Ω,Rn). Nevertheless, Poincaré-type inequalities estimating certain integral

norms of the deformation u in terms of the total variation of the symmetric strain tensor sym Du are still
true. For Poincaré-type inequalities for functions of bounded deformation involving only the deviatoric part
of the symmetrized gradient we refer to [59].

These Korn inequalities are crucial for a priori estimates in linear elasticity and fluid mechanics, so that
they are cornerstones for well-posedness results in linear elasticity (L2-setting) and the Stokes-problem (Lp-
setting), cf. [80] and [29] for a modern elaboration, whereas the trace-free equivalents found applications in
micropolar Cosserat-type models [82, 123, 81, 61] and general relativity [37].

The Korn inequalities generalize to many different settings, including the geometrically nonlinear coun-
terpart [57, 100], mixed growth conditions [32], incompatible fields (also with dislocations) [114, 125, 11, 104,
103, 101, 62, 34, 68] and trace-free infinitesimal strain measures [37, 81, 136, 137, 61, 145, 11, 101, 102].
For trace-free Korn’s inequalities in pseudo-Euclidean space see [153] and for trace-free Korn inequalities on
manifolds see [37, 79]. It is also possible to consider tangential boundary conditions, cf. [38, 142, 12, 13, 41].
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Other generalizations are applicable to Orlicz-spaces [60, 19, 18, 26, 58] and SBD functions with small jump
sets [54, 25, 55], thin domains [99, 70, 76, 112] as well as the case of non-constant coefficients [116, 91, 126,
135]. Moreover Korn-type inequalities are valid on Hölder and John domains, see [83, 42, 39, 3, 107, 40] and
also the recent monograph [2] which relates those Korn inequalities to the existence of a right inverse of the
divergence operator, to the Stokes equations and other inequalities. Piecewise Korn-type inequalities subordi-
nate to a FEM-mesh and involving jumps across element boundaries have also been investigated, see e.g. [21,
98]. In the recent paper [146] the authors established a Korn inequality involving the BMO-seminorms which
is valid on all bounded domains and with a constant depending only on the dimension. Here we focus on
inequalities for general tensor fields.

1.3 Korn-type inequalities for incompatible tensor fields

Classical Korn’s inequalities require compatibility, i.e., a gradient Du (the Jacobian matrix). Generalizations
of such estimates to general fields P then need a control of the distance of P to a gradient by adding
the incompatibility measure (the dislocation density tensor) CurlP . The matrix Curl operation is to be
understood as row-wise application of the classical curl to vectors. Even though the usual Curl operation on
R3 has a natural extension to all dimensions, the case n = 3 deserves our special attention, not only from the
viewpoint of modeling but also since the matrix Curl then returns a square matrix in three dimensions. As
direct generalization of Korn’s first inequality (1.4) we have for all P ∈W 1, p

0 (Curl; Ω,R3×3)

‖P‖Lp(Ω,R3×3) ≤ c
(
‖symP‖Lp(Ω,R3×3) + ‖CurlP‖Lp(Ω,R3×3)

)
, (1.11)

cf. [125] for p = 2 and [104] for all p > 1. Furthermore, the version (1.6) generalizes to

inf
Ã∈so(3)

‖P − Ã‖Lp(Ω,R3×3) ≤ c
(
‖symP‖Lp(Ω,R3×3) + ‖CurlP‖Lp(Ω,R3×3)

)
(1.12)

for all P ∈ W 1, p(Curl; Ω,R3×3), cf. [104]. These estimates also hold true in all dimensions n ≥ 2 with
an adequate understanding of the matrix Curl, [103]. However, in two dimensions even stronger estimates
hold true, cf. [62] and its nonlinear counterpart in [114], so especially, for fields P ∈ L1(Ω,R2×2) with
CurlP ∈ L1(Ω,R2) it follows that P ∈ L2(Ω,R2×2) and

‖P‖L2(Ω,R2×2) ≤ c
(
‖symP‖L2(Ω,R2×2) + ‖CurlP‖L1(Ω,R2)

)
(1.13)

under the normalization condition
∫

Ω
skewP dx = 0, cf. [62]. However, this is essentially a result for the

divergence, since Div is a rotated Curl in two dimensions.2 Indeed, the authors of [62] make use of the fact
that a vector field u ∈ L1(Ω,R2) satisfying div u ∈ H−2(Ω) belongs to H−1(Ω) with

‖u‖H−1(Ω,R2) ≤ c (‖u‖L1(Ω,R2) + ‖div u‖H−2(Ω)) (1.14)

which follows from [22]. For the geometrically nonlinear counterpart of (1.13) in a mixed-growth setting in
two dimensions we refer the reader to [66] and higher-dimensional analogues can be found in [92, 34].

Improvements of the Korn inequalities for incompatible tensor fields (1.11) and (1.12) towards the trace-
free cases are also valid. For all P ∈W 1, p

0 (Curl; Ω,R3×3), where

W 1, p
0 (Curl; Ω,R3×3) := {P ∈ Lp(Ω,R3×3) | CurlP ∈ Lp(Ω,R3×3), P × ν = 0 on ∂Ω} (1.15)

one has

‖P‖Lp(Ω,R3×3) ≤ c
(
‖dev symP‖Lp(Ω,R3×3) + ‖dev CurlP‖Lp(Ω,R3×3)

)
, (1.16)

2The Babuška-Aziz theorem implies that over a planar Lipschitz domain Ω ⊂ R2 it holds

‖Du‖L2(Ω,R2×2) ≤ c ‖div u‖L2(Ω,R)

for all u ∈ H1
0 (Ω,R2) such that

∫
Ω div u dx = 0, cf. [80, Section 6].
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cf. [11] for p = 2 and [101] for all p > 1. Moreover, we have

inf
T∈KdS,dC

‖P − T‖Lp(Ω,R3×3) ≤ c
(
‖dev symP‖Lp(Ω,R3×3) + ‖dev CurlP‖Lp(Ω,R3×3)

)
(1.17)

for all P ∈W 1, p(Curl; Ω,R3×3), cf. [101], where the kernel on the right hand side is given by

KdS,dC = {T : Ω→ R3×3 | T (x) = Anti
(
Ã x+ β x+ b

)
+
(〈

axl Ã, x
〉

+ γ
)

1,

Ã ∈ so(3), b ∈ R3, β, γ ∈ R} , (1.18)

where Anti : R3 → so(3) is the canonical identification (consistent with the vector product) of R3 and the
vectorspace of skew-symmetric matrices so(3) and axl : so(3) → R3 is its inverse. The appearance of the
dev Curl operator on the right hand side would suggest to extend the Banach space W 1, p(Curl; Ω,R3×3) to
p-integrable tensor fields P with p-integrable dev CurlP , but this would not be a new space. Indeed, in [101]
the authors showed that for all P ∈ D ′(Ω,R3×3) and all m ∈ Z one has

CurlP ∈Wm, p(Ω,R3×3) ⇔ dev CurlP ∈Wm, p(Ω,R3×3). (1.19)

Note, that the estimates (1.16) and (1.17) are strictly restricted to the case of three dimensions since the
deviatoric operator acts on square matrices and only in the three-dimensional setting the matrix Curl op-
erator returns again a square matrix. On the other hand, the corresponding weaker estimates in terms of
‖devn symP‖Lp + ‖CurlP‖Lp hold true in all dimensions n ≥ 3, cf. [11] for p = 2 and [102] for all p > 1.

For compatible P = Du we get back from (1.11), (1.12), (1.16) and (1.17) the corresponding classical
Korn inequalities. Recently, Gmeineder and Spector [68] extended inequality (1.11) to the case where symP
is generalized to any linear operator A(P ) such that A(Du) is a first order elliptic operator, thus including
also one result of [101] with dev symP .

The objective of the present paper is to further improve on estimate (1.11) by showing that it already
suffices to consider the symmetric or even the trace-free symmetric part of the Curl. More precisely, for all
P ∈W 1, p, r

0 (dev sym Curl; Ω,R3×3) where

W 1, p, r
0 (dev sym Curl; Ω,R3×3) :=

{P ∈ Lp(Ω;R3×3) | dev sym CurlP ∈ Lr(Ω;R3×3), dev sym(P × ν) = 0 on ∂Ω}
and

r ∈ [1,∞),
1

r
≤ 1

p
+

1

3
, r > 1 if p =

3

2

there exists a constant c = c(p,Ω, r) > 0 such that one has

‖P‖Lp(Ω,R3×3) ≤ c
(
‖symP‖Lp(Ω,R3×3) + ‖dev sym CurlP‖Lr(Ω,R3×3)

)
. (1.20)

If no boundary conditions are imposed then we show

inf
T∈KS,dSC

‖P − T‖Lp(Ω,R3×3) ≤ c
(
‖symP‖Lp(Ω,R3×3) + ‖dev sym CurlP‖Lr(Ω,R3×3)

)
, (1.21)

where the kernel is given by

KS,dSC = {T : Ω→ R3×3 | T (x) = Anti
(
Ã x+ β x+ b+

〈
d, x
〉
x− 1

2
d‖x‖2

)
,

Ã ∈ so(3), b, d ∈ R3, β ∈ R} . (1.22)

Remark 1.1. The right-hand side of (1.20) provides a norm on smooth, compactly supported functions
P ∈ C∞0 (Ω,R3×3). Indeed, symP ≡ 0 implies P = A ∈ C∞0 (Ω, so(3)), so that by Nye’s formula (1.26)1 the
condition dev sym CurlA ≡ 0 reads already dev sym Da ≡ 0 with a := axlA ∈ C∞0 (Ω,R3), where
axl : so(3)→ R3 associates to a skew-symmetric matrix A ∈ so(3) the vector axlA := (−A23, A13,−A12)T .
The trace-free Korn’s inequality (1.7) then gives Da ≡ 0. Hence, a = axlA is a constant vector field, P = A
is a constant skew-symmetric matrix field, and with the boundary condition we obtain P ≡ 0.
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Remark 1.2. On the other hand, there are no such estimates in terms of

‖devP‖+ ‖sym CurlP‖, ‖dev symP‖+ ‖sym CurlP‖ or ‖dev symP‖+ ‖dev sym CurlP‖

due to the example P = ζ ·1 for which CurlP = −Anti(∇ζ), so that the corresponding right-hand sides
would vanish, since here we have devP = dev symP = 0 and also sym CurlP = dev sym CurlP = 0.

1.4 Proof ideas for Korn inequalities

There exist many different proofs of the classical Korn’s inequalities, cf. the discussions in [28, 125, 5, 85,
128, 69, 77, 78, 56, 49, 50, 48, 14, 133, 84, 149, 23, 148, 150, 139] as well as [29, Sect. 6.15] and the references
contained therein. A rather concise and elegant argument, see [63, 43, 38, 67] and also advocated by P.
G. Ciarlet and his coworkers [28, 29, 30, 27, 31] uses the Lions lemma resp. Nečas estimate, the compact
embedding W 1, p ⊂⊂ Lp and the well-known representation of the second distributional derivatives of the
displacement u by a linear combination of the first derivatives of the symmetrized gradient Du, namely

∂i∂juk = ∂j(sym Du)ik + ∂i(sym Du)jk − ∂k(sym Du)ij , (1.23a)

i.e.

D2u = L(D sym Du) with a constant coefficient linear operator L. (1.23b)

Also the trace-free Korn’s inequalities can be deduced in such a way, relying on the “higher order” analogues
of the differential relation (1.23):

D∆u = L(D2 devn sym Du), (1.24)

cf. [37] for the case p = 2 and [145] for all p > 1.
The first and the last author used a similar reasoning in their series of papers [104, 103, 101, 102] to

obtain the Korn inequalities for incompatible tensor fields mentioned above. In particular, the gradient of a
skew-symmetric matrix field A can be expressed as linear combination of the entries of the matrix Curl:

DA = L(CurlA), (1.25)

which in three dimensions reads exactly as Nye’s formula [129, eq.(7)]:

CurlA = tr(DaxlA) 1− (DaxlA)T , resp. DaxlA =
1

2
(tr[CurlA])1− (CurlA)T . (1.26)

Furthermore, the second derivatives of a skew-symmetric matrix field A are given by linear combinations of
the entries of the derivative of the deviatoric matrix Curl:

D2A = L(D dev CurlA) (1.27)

which was used in the proof of the trace-free case [101]. The expression (1.26)1 admits a counterpart on the
group of orthogonal matrices O(3) and even in higher spatial dimensions, see e.g. [124]. Note in passing, that
the representation of the kernel of sym Du ≡ 0 can either be deduced from (1.23) or (1.26) and yields the
class RM of infinitesimal rigid motions

RM := {Ã x+ b | Ã ∈ so(3), b ∈ R3}. (1.28)

Indeed, assuming sym Du ≡ 0

• (1.23) implies that D2u ≡ 0, so that u has to be affine with u ∈ RM, equivalently,

• since Du = A(x) with a skew-symmetric matrix field A, we obtain CurlA = Curl Du ≡ 0, so that by
(1.26) we deduce DaxlA ≡ 0 and hence A ≡ const, i.e., again u ∈ RM.
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Summarizing, the following differential relations connecting higher order derivatives have been used in the
distributional sense for

• classical Korn: D2u = L(Dsym Du) cf. [30, 63, 43]

• trace-free classical Korn: D∆u = L(D2 devn sym Du) cf. [37, 145]

• incompatible Korn: DA = L(CurlA) cf. [104, 103]

• trace-free incompatible Korn: D2A = L(Ddev CurlA) cf. [101]

D2(A+ ζ · 1) = L(DCurl(A+ ζ · 1)) cf. [101, 102]

D3(A+ ζ · 1) = L(D2 dev Curl(A+ ζ · 1)) cf. [101]

• symmetrized incompatible Korn: D2A = L(Dsym CurlA)
present paper

• conformally invariant incompatible Korn: D3A = L(D2 dev sym CurlA)

denoting by u a displacement vector field, by A a skew-symmetric tensor field, by ζ a scalar field and by L a
corresponding linear operator with constant coefficients. Moreover, we have by [101] for a general field P

DCurlP = L(Ddev CurlP ) . (1.29)

1.5 Motivation for Korn type estimates for incompatible tensor fields

Korn type inequalities for incompatible tensor fields originally motivated from infinitesimal gradient plasticity
with plastic spin as well as in the linear relaxed micromorphic elasticity, see e.g. [44, 47, 118, 115, 120, 122,
121, 45, 46, 138, 117, 119, 65, 132, 109, 72, 73, 74, 51, 154, 11] and the references contained therein.

1.5.1 Application to the relaxed micromorphic model

The relaxed micromorphic model is a novel micromorphic framework [120, 118] that allows e.g. the description
of microstructure-related frequency band-gaps [36] through a homogenized linear model. The goal is to find
the displacement u : Ω ⊆ R3 → R3 and the non-symmetric micro-distortion field P : Ω ⊆ R3 → R3×3

minimizing ∫
Ω

W (Du, P,CurlP ) +
〈
f, u
〉
dx , such that (u, P ) ∈ H1(Ω)×H(Curl),

where the energy W is defined as

W =
1

2

〈
Ce sym (Du− P ) , sym (Du− P )

〉
R3×3 +

1

2

〈
Cmicro sym P, sym P

〉
R3×3

+
1

2

〈
Cc skew (Du− P ) , skew (Du− P )

〉
R3×3 +

µL2
c

2

〈
LCurlP,CurlP

〉
R3×3 .

(1.30)

Here, Ce, Cmicro : Sym(3)→ Sym(3) are classical 4th order elasticity tensors, Cc : so(3)→ so(3) is a 4th order
rotational coupling tensor, Lc ≥ 0 is a characteristic length scale, µ is a typical effective shear modulus and
L : R3×3 → R3×3. The associated Euler-Lagrange equations read

Div [Ce sym (Du− P ) + Cc skew (Du− P )] = f,

Ce sym (Du− P ) + Cc skew (Du− P )− Cmicro sym P − µL2
c Curl[LCurl P ] = 0.

(1.31)

The generalized moment balance (1.31)2 can be seen as a tensorial Maxwell problem due to the Curl[LCurlP ]
operation, cf. [20]. The most general quadratic representation of the curvature energy is given by〈

LCurlP,CurlP
〉

(1.32)

where L : R3×3 → R3×3 is a non-standard fourth order tensor with 45 independent entries acting on the
non-symmetric second order tensor CurlP ∈ R3×3. Since CurlP transforms as a second order tensor under
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rotations of the coordinate system, cf. [115, 117], assuming a certain degree of anisotropy allows one to reduce
the complexity of L. Notably, the most general isotropic quadratic expression of the curvature energy is given
by

α1‖dev sym CurlP‖2 + α2‖skew CurlP‖2 +
α3

3
tr2(CurlP ), (1.33)

with three free parameters α1, α2, α3 ∈ R+. Here we have used the orthogonal decomposition of R3×3 into
orthogonal pieces, namely

R3×3 = [sl(3) ∩ Sym(3)]⊕ so(3)⊕ R · 1 (1.34a)

so that for any square matrix X ∈ R3×3 we have

X = dev symX + skewX +
1

3
tr(X) · 1, (1.34b)

where dev sym, skew, tr are orthogonal projections on the vector space sl(3)∩Sym(3) of symmetric trace free
matrices, the space so(3) of skew-symmetric matrices, and the space R · 1 of spherical tensors, respectively.

In order to reduce complexity in the model one might be tempted to replace (1.32) with〈
L̂ sym CurlP, sym CurlP

〉
(1.35)

where L̂ : Sym(3) → Sym(3) is now a classical positive definite fourth order elasticity tensor, whose repre-
sentation for all anisotropy classes is completely known. A weak formulation of the static problem

Div [Ce sym (Du− P ) + Cc skew (Du− P )] = f,

Ce sym (Du− P ) + Cc skew (Du− P )− Cmicro sym P − µL2
c Curl[L̂ sym Curl P ] = 0 ,

(1.36)

is naturally formulated in the space H(sym Curl; Ω,R3×3) := {P ∈ L2(Ω,R3×3) | sym CurlP ∈ L2(Ω,R3×3)}
and our new result shows that this problem is well-posed for a suitable prescription of tangential boundary
data. Returning to (1.33), the problem may be even further “relaxed” by requiring only to control

‖dev sym CurlP‖2. (1.37)

In this case, the natural space to consider is the Hilbert space H(dev sym Curl; Ω,R3×3) := {P ∈ L2(Ω,R3×3) |
dev sym CurlP ∈ L2(Ω,R3×3)} and our result (1.20) implies that the weak formulation is still well-posed.

Remark 1.3 (Nothing new in plane strain). Note, that due to the structure of the three-dimensional matrix
Curl operator in plain strain, i.e., assuming that

P̂ (x, y, z) =

P̂11(x, y) P̂12(x, y) 0

P̂21(x, y) P̂22(x, y) 0
0 0 0

 , Curl P̂ =

0 0 ∗
0 0 ∗
0 0 0

 (1.38)

the operation sym or dev sym is not leaving the classical H(Curl; Ω,R3×3) space, since

‖dev3 sym Curl P̂‖2 = ‖sym Curl P̂‖2 =
1

2
‖Curl P̂‖2. (1.39)

Hence, new properties to be discovered are strictly three-dimensional in nature.

1.5.2 Cosserat model with weakest curvature energy – conformally invariant curvature

The use of the dislocation density tensor CurlP in the relaxed micromorphic model allows a smooth transition
in the modeling to the classical linear Cosserat model. Indeed, letting formally Cmicro → ∞ in the relaxed
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micromorphic model (1.30), i.e., assuming P = A ∈ so(3) is skew-symmetric, the (isotropic) elastic Cosserat
free energy can be written as∫

Ω

µ‖sym Du‖2+µc‖skew(Du−A)‖2 +
λ

2
tr2(Du)

+ α1‖dev sym CurlA‖2 + α2‖skew CurlA‖2 +
α3

3
tr2(CurlA) dx → min .

(1.40)

In [122, 121] it has been shown that choosing α1 > 0, α2 = α3 = 0 is mandatory for offering bounded stiffness
in bending and torsion for arbitrary small specimen. This corresponds to the conformally invariant curvature
case

‖dev sym CurlA‖2 = ‖dev sym Daxl(A)‖2 . (1.41)

Well-posedness results are then based on the trace-free Korn’s inequality [121].
Finally, letting the Cosserat couple modulus µc → ∞ in (1.40), one obtains the so-called modified inde-

terminate couple stress model [123, 65]∫
Ω

µ‖sym Du‖2 +
λ

2
tr2(Du) + α1 ‖dev sym Dcurlu‖2︸ ︷︷ ︸

=‖sym Dcurlu‖2
conformally invariant curvature3

dx → min . (1.42)

In [123] this curvature energy has been obtained by a passage from a discrete model to a continuum model-
ing, invoking a “micro-randomness” assumption, which introduces an additional invariance property beyond
isotropy.

1.5.3 Application to gradient plasticity with plastic spin

Experiments with differently sized specimens have revealed a pronounced size-effect in elasto-plastic transfor-
mations [51, 72, 73, 74] which cannot be described with classical phenomenological elasto-plasticity models.
For the sake of simplicity we assume in the following the additive decomposition of the displacement gradient
Du into non-symmetric elastic (recoverable) and non-symmetric plastic (permanent) distortions e and P ,
respectively:

Du = e+ P, ε := sym Du = sym e+ symP = εe + εp , (1.43)

under the side condition of plastic incompressibility tr(P ) = tr(εp) ≡ 0. A simplified framework for size-
independent plasticity can be sketched, based on the introduction of the total free energy, which consist of
elastic contributions and local hardening

W (Du, P ) =

∫
Ω

〈
Ce sym (Du− P ) , sym (Du− P )

〉
R3×3︸ ︷︷ ︸

elastically stored energy

+
〈
Chard sym P, sym P

〉
R3×3︸ ︷︷ ︸

local hardening

+
〈
f, u
〉

dx

=

∫
Ω

〈
Ce (ε− εp) , (ε− εp)

〉
R3×3 +

〈
Chard εp, εp

〉
+
〈
f, u
〉

dx, (1.44)

where Ce, Chard are classical positive definite fourth order tensors acting on symmetric arguments. We
are working here in a phenomenological modeling context. A variational approach to single crystals with
dislocations, different from out presented phenomenological viewpoint, has been explored in [144, 143] based
on [113]. Our term

〈
Chard sym P, sym P

〉
gives rise to the usual Prager-type backstress term (linear kinematic

hardening) which appears ubiquitous in the literature. The appearance of sym(Du− P ) and symP instead
of Du− P and P alone is dictated by linearized frame indifference of the model. Equilibrium of forces

DivCe sym(Du− P ) = DivCe(ε− εp) = f (1.45)

3tr(sym Dcurlu) = tr(Dcurlu) = div curlu ≡ 0.
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appears from variation of (1.44) with respect to the displacement u. It remains to postulate a “flow rule”,
i.e., an evolution for the plastic variable P . This equation appears as gradient flow with respect to P in the
form

Ṗ = F (−DPW (Du, P )) = F (Ce sym(Du− P )− Chard sym P ) (1.46)

together with suitable initial conditions for P and boundary conditions for u, where F : R3×3 → R3×3 is
monotone, i.e.,

〈
F (X) − F (Y ), X − Y

〉
R3×3 ≥ 0 and maps symmetric arguments to trace-free symmetric

arguments, the increment Ṗ is determined to be trace-free symmetric and (1.46) can be therefore recast as

ε̇p = F (Ce (ε− εp)− Chard εp) , tr(εp) = 0 . (1.47)

In order to extend the modeling framework to incorporate size-dependence, let us focus on the introduction
of energetic length scales. In this case, one augments the total energy (1.44) by some terms involving space
derivatives of the plastic distortion P or the plastic strain εp := symP , for simplicity

‖DP‖2 or ‖Dεp‖2 . (1.48)

Accordingly, based on (1.48)1, the evolution law (1.46) needs to be adapted to

Ṗ = F (−DPW (Du, P, DP )) = F (Ce sym(Du− P )− Chard sym P + ∆P ) (1.49)

and suitable boundary conditions for the plastic distortion P , here Dirichlet clamping P|∂Ω ≡ 0, cf. [75]. For
initial condition P (0) ∈ Sym(3) (1.49) can again be recast into4

ε̇p = F (Ce (ε− εp)− Chard εp + ∆εp) , εp|∂Ω
= 0. (1.50)

Such a model is already able to predict that smaller samples are relatively stiffer. However, the simple
gradient terms in (1.48) lack a microscopical justification. However, ∆P can be seen as regularization term
as in [53]. Since plasticity is mediated by dislocation movements it inspires that a physically more suitable
description is given by considering the dislocation density tensor CurlP and, in first approximation, a simple
quadratic function thereof to replace (1.48). Hence, the total stored energy can be written∫

Ω

〈
Ce sym (Du− P ) , sym (Du− P )

〉
+
〈
Chard sym P, sym P

〉
+
〈
CurlP,CurlP

〉
+
〈
f, u
〉

dx . (1.51)

Since Curl is self-adjoint with suitable tangential boundary conditions P × ν|∂Ω = 0, the evolution law turns
into

Ṗ = F (Ce sym(Du− P )− Chard sym P − Curl CurlP ) . (1.52)

Note that (1.52) is necessarily an evolution for a non-symmetric plastic distortion P since the contribution
Curl CurlP does not have any symmetry properties. Such models are called gradient plasticity models with
plastic spin or distortion gradient plasticity, cf. [45, 44, 46, 47, 109, 114, 117, 138, 154].

A closer look at (1.51) reveals that the energy provides a uniform control over〈
Chard sym P, symP

〉
+ ‖CurlP‖2 ≥ c

(
‖symP‖2 + ‖CurlP‖2

)
(1.53)

where Chard is assumed to be positive definite. That the right-hand side of (1.53) provides a norm on
smooth, compactly supported functions P ∈ C∞0 (Ω,R3×3) was first noted in [117]. Indeed, symP ≡ 0 implies
P = A ∈ C∞0 (Ω, so(3)), so that using Nye’s formula (1.26)2 we deduce from CurlA ≡ 0 that DaxlA ≡ 0.
Hence, axlA is a constant vector field, P = A is a constant skew-symmetric matrix field, and with the
boundary condition we obtain P ≡ 0. Thus, controlling the plastic strain symP in L2 and the dislocation
density tensor CurlP ∈ L2, together with suitable tangential boundary conditions5 P × ν = 0 on ∂Ω one

4Laplace component-wise and observe that ∆εp ∈ Sym(3) for εp ∈ Sym(3).
5In the context of gradient plasticity, the boundary conditions P × ν = 0 postulates “no flux of the Burgers vector across the

boundary surface” and is referred to as “micro-hard”, cf. [74].
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controls the full plastic distortion P ∈ L2. The result led to a sequel of well-posedness results in gradient
plasticity with plastic spin in H(Curl), cf. [45, 44, 46, 47, 117].

However, choosing a simple quadratic energy in CurlP in (1.51) is, for many situations, not suitable.
A major scientific question is therefore, how to replace ‖CurlP‖2 in order to capture important physical
features. Let us write G(CurlP ) for this extension. Experimental evidence suggests to use G with sub-
quadratic growth and where the behavior at zero can be differentiable or not. Indeed, in [154] it is argued to
consider the one-homogeneous expression G(CurlP ) = ‖CurlP‖ or G(CurlP ) = ‖CurlP‖ · log‖CurlP‖, see
also [132, 35, 130].

It is furthermore possible to extract some geometrical information from the dislocation density tensor (on
the mesoscale). The indices i and j of (CurlP )ij determine the orientation of the Burger’s vector and the
dislocation line, respectively. The diagonal components of CurlP describe screw dislocations and the off-
diagonal components describe edge dislocations. For an overview on dislocations in the framework of different
types of generalized continua we refer the reader to [94, 1, 96] and the references therein. Lazar [93, 95], see
also [119], has used the decomposition of the dislocation density tensor into SO(3)-irreducible pieces

CurlP = dev sym CurlP︸ ︷︷ ︸
“tentor”

+ skew CurlP︸ ︷︷ ︸
“trator”

+
1

3
tr(CurlP ) · 1︸ ︷︷ ︸

“axitor”

(1.54)

i.e., the orthogonal decomposition (1.34). So, the axitor corresponds to the sum of all possible screw
dislocations, the trator to “skew-symmetric” edge dislocations and the tentor describes a combination of
“symmetric” edge-dislocations and single screw-dislocations, cf. [119]. In addition, for compatible X = Du
the decomposition (1.34) reads

Du = dev sym Du︸ ︷︷ ︸
shear

anti-conformal part,

shape-change

+ skew Du︸ ︷︷ ︸
= 1

2 Anti(curlu)

rotation

+
1

3
tr(Du)︸ ︷︷ ︸
= div u

· 1

volumetric part︸ ︷︷ ︸
conformal part,

no shape change

. (1.55)

The introduced nomenclature coming from the fact that dev sym Du = 0 implies that u = ϕC is an infinites-
imal conformal mapping, see (1.10).6

R · 1 + so(3), “conformal”

(R · 1 + so(3))⊥ = sl(3) ∩ Sym(3), “anti-conformal”

dev3 symDu = 0 ⇔ Du ∈ R · 1 + so(3) ⇔ u = φC

Figure 1: Orthogonal decomposition and infinitesimal conformal mappings, see (1.10).

For improved transparency in the physical modeling, we may now assume an additively decomposed ansatz

6Note, that besides the divergence and the curl of a vector field also the term dev sym Du has a physical interpretation,
namely as the shear, since for “a cube of moving fluid, the shear [of the velocity of that fluid] represents the rate at which each
side is deviating from a square, and the nature of that deviation”, cf. [140] where the authors also make use of the “natural”
decomposition (1.55), cf. [140, eq. (6)].
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for G:

G(CurlP ) = G(dev sym CurlP + skew CurlP +
1

3
tr(CurlP ) · 1)

= G1(dev sym CurlP ) + G2(skew CurlP ) + G3(tr(CurlP ) · 1)

= α1‖dev sym CurlP‖q1 + α2‖skew CurlP‖q2 +
α3

3
|tr(CurlP )|q3

(1.56)

where in the last step we considered a simple isotropic example. Our novel result (1.20) shows that under
the conditions α1 > 0, α2 = α3 ≥ 0, q1 > 1 one can control the plastic distortion P in Lq1 .

1.5.4 Incompatible linear elasticity

Instead of the classical linear elasticity problem∫
Ω

〈
Ce sym Du, sym Du

〉
+
〈
DivG︸ ︷︷ ︸
f

, u
〉

dx → min u ∈ H1(Ω,R3), 7 (1.57)

that is
DivCe sym Du = DivG, u|Γ = ũ ∈ H1(Ω,R3), (1.58)

we may consider the corresponding incompatible nonlinear elasticity problem∫
Ω

〈
Ce sym e, sym e

〉
−
〈
G, e

〉
+ µLrc ‖dev sym Curl e‖r dx → min e ∈W 1, 2, r(dev sym Curl; Ω,R3×3),

(1.59a)
in other words the strong form of the second order Euler-Lagrange equations formally reads

Ce sym e+ r µLrc Curl

(
dev sym Curl e

‖dev sym Curl e‖r−2

)
= G, tr(Ce sym e) = tr(G), 8 (1.59b)

under the (consistent) symmetrized tangential boundary condition

dev sym(e× ν)|Γ = dev sym(Dũ× ν) (1.59c)

where 1 < r ≤ 2, ũ ∈ H1(Ω,R3) and G ∈ H1
0 (Ω,R3×3) are prescribed and ν is the outward unit

vector field to ∂Ω. According to our Theorem 3.5, the solution to (1.59) is unique with respect to the
non-symmetric elastic distortion e ∈ W 1, 2, r(dev sym Curl; Ω,R3×3). Note that for 6

5 ≤ r ≤ 2 it holds
W 1, 2, r(dev sym Curl; Ω,R3×3) % W 1, 2(Ω,R3×3). The formulation (1.59) might therefore be useful in prob-
lems with fracture. Furthermore, the stored energy in (1.59) is always bounded above by the corresponding
energy in (1.57) for the compatible case. Replacing e = Du and taking the divergence, recovers (1.58)1.

In the same spirit, in [10] the authors have considered the non-variational second-order problem

Ce sym e+ 2µL2
c inc (sym e) = G, inc (sym e) ν = 0 on ∂Ω, (1.60)

which also looks for a “relaxation” of linear elasticity and determines a unique solution sym e ∈ L2(Ω),
inc (sym e) ∈ L2(Ω), where incP := Curl[(CurlP )T ] and further properties of the inc operator will be
discussed below. Replacing sym e = sym Du and taking the divergence would also recover (1.58)1.

7div(GTu) =
〈

DivG, u
〉
R3 +

〈
G,Du

〉
R3×3 , to fix notation.

8Since tr(CurlS) = 0 for S ∈ Sym(3).
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2 Notations and technical preliminaries

Let n ≥ 2. For vectors a, b ∈ Rn we consider the scalar product
〈
a, b
〉

:=
∑n
i=1 ai bi ∈ R, the (squared)

norm ‖a‖2 :=
〈
a, a
〉

and the dyadic product a⊗ b := (ai bj)i,j=1,...,n ∈ Rn×n. Similarly, the scalar product for

matrices P,Q ∈ Rn×n is given by
〈
P,Q

〉
:=
∑n
i,j=1 Pij Qij ∈ R and the (squared) Frobenius-norm by ‖P‖2 :=〈

P, P
〉
. Moreover, PT := (Pji)i,j=1,...,n stands for the transposition of the matrix P = (Pij)i,j=1,...,n. We

make use of the orthogonal decomposition of the latter into the symmetric part symP := 1
2

(
P + PT

)
and the

skew-symmetric part skewP := 1
2

(
P − PT

)
. We denote by sl(n) := {X ∈ Rn×n | tr(X) = 0} the Lie-algebra

of trace-free matrices, with Sym(n) := {X ∈ Rn×n | XT = X} and by so(n) := {A ∈ Rn×n | AT = −A} the
Lie-Algebra of skew-symmetric matrices. For the identity matrix we write 1, so that the trace of a squared
matrix P is trP :=

〈
P,1

〉
. The deviatoric (trace-free) part of P is given by devn P := P − 1

n tr(P ) 1 and in
three dimensions we will suppress its index, i.e., we write dev instead of dev3.

By D ′(Ω) we denote the space of distributions on a bounded Lipschitz domain Ω ⊂ Rn and by W−k, p(Ω)

the dual space of W k, p′

0 (Ω), where p′ = p
p−1 is the dual Hölder exponent to p.

2.1 The three-dimensional case

In R3 we further make use of the vector product × : R3 × R3 → R3. For a fixed vector a ∈ R3 the cross
product a× . is linear in the second component, so that there exists a unique matrix Anti(a) such that

a× b =: Anti(a) b ∀ b ∈ R3. (2.1)

Direct computations show that for a = (a1, a2, a3)T the matrix Anti(a) is of the form

Anti(a) =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 , (2.2)

so that with Anti : R3 → so(3) we have a canonical identification of R3 with the vector space of skew-
symmetric matrices so(3). This algebraic approach to the cross product facilitates some of the traditional
proofs of vector algebra, cf. [152, 141, 106, 71]. Indeed, also the notations Ta, W (a) or even [a]× are used
for Anti(a), but the latter emphasizes that we deal with a skew-symmetric matrix. Furthermore, the vector
product can be written as

a× b = Anti(a) b = −b× a = −Anti(b) a = (aT Anti(b))T ∀ a, b ∈ R3. (2.3)

The inverse of Anti will be called axl : so(3) → R3 and it associates to a skew-symmetric matrix A ∈ so(3)
the (axial) vector axlA := (−A23, A13,−A12)T , so that

Ab = axl(A)× b ∀ b ∈ R3. (2.4)

The identification of the vector product with a suitable matrix product allows us to generalize the vector
product in R3 to a vector product of a vector b ∈ R3 and a matrix P ∈ R3×3 from the left and from the right:

b× P := Anti(b)P and P × b := P Anti(b), (2.5)

Thus, b× P is given by a column-wise vector multiplication

b× P = Anti(b)
(
P e1 | P e2 | P e3

)
=
(

Anti(b)P e1 | Anti(b)P e2 | Anti(b)P e3

)
=
(
b× (P e1) | b× (P e2) | b× (P e3)

)
,

(2.6)

13



whereas in P × b we have a row-wise vector multiplication

P × b =

(PT e1)T

(PT e2)T

(PT e3)T

Anti(b) =

(PT e1)T Anti(b)
(PT e2)T Anti(b)
(PT e3)T Anti(b)

 (2.3)
=

((PT e1)× b)T
((PT e3)× b)T
((PT e3)× b)T

 . (2.7)

For the identity matrix we obtain

1× b = 1 Anti(b) = Anti(b) ∀ b ∈ R3. (2.8)

Formally, Nye’s formula (1.26) is a consequence of the following algebraic identity9:

Anti(a) Anti(b) = (Anti(a))× b = b⊗ a−
〈
b, a
〉

1 = b⊗ a− tr(b⊗ a) 1 ∀ a, b ∈ R3 (2.9)

and the second identity (1.26)1 comes from the converse expression

b⊗ a = (Anti(a))× b+
〈
b, a
〉

1 = (Anti(a))× b− 1

2
tr((Anti(a))× b) 1 (2.10)

where we have used

tr((Anti(a))× b)) = tr(Anti(a) Anti(b)) =
〈
Anti(a) Anti(b),1

〉
= −

〈
Anti(a),Anti(b)

〉 (2.2)
= −2

〈
a, b
〉
. (2.11)

In addition, for all b ∈ R3 we obtain

Anti(b) Anti(b)
(2.5)
= Anti(b)× b (2.9)

= b⊗ b− ‖b‖21 , (2.12)

so that

Anti(b) Anti(b) Anti(b)
(2.12)

=
(2.5)

(
b⊗ b− ‖b‖21

)
× b = −‖b‖2 Anti(b) . (2.13)

Consequently, for a symmetric matrix S we have tr(S × b) = 0 for any b ∈ R3, since

tr(S × b) =
〈
S × b,1

〉 (2.5)
=
〈
S Anti(b),1

〉
=
〈

Anti(b), ST
〉 S∈Sym(3)

= 0 , (2.14)

and similarly

tr((S × b)× b)T × b) =
〈
(S × b)× b)T × b,1

〉 (2.5)
=
〈

Anti(b) Anti(b)SAnti(b),1
〉

= −
〈
S,Anti(b) Anti(b) Anti(b)

〉 (2.13)
= ‖b‖2

〈
S,Anti(b)

〉 S∈Sym(3)
= 0 . (2.15)

Furthermore, we can consider the vector multiplication on both sides:

b× P × b = Anti(b)P Anti(b) . (2.16)

However, from the viewpoint of application it is more convenient to look at

(P × b)T × b = (P Anti(b))T Anti(b) = −Anti(b)PT Anti(b) = −b× PT × b. (2.17)

In particular, for a skew-symmetric matrix A ∈ so(3) and a symmetric matrix S ∈ Sym(3) we have

(A× b)T × b = b×A× b and (S × b)T × b = −b× S × b . (2.18)

Observation 2.1. For a, b ∈ R3 we have

1

2
‖a‖2‖b‖2 ≤ ‖dev sym(Anti(a)× b)‖2 ≤ 2

3
‖a‖2‖b‖2. (2.19)

9This algebraic relation is already contained in [141, p. 691 (ii)].
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Proof. Considering the dev sym parts on both sides of (2.9) we obtain

dev sym(Anti(a)× b) (2.9)
= dev sym(b⊗ a) = sym(a⊗ b)− 1

3
tr(b⊗ a) · 1 = sym(a⊗ b)− 1

3

〈
a, b
〉
· 1. (2.20)

Since,

‖sym(a⊗ b)‖2 =
1

4
‖a⊗ b+ b⊗ a‖2 =

1

2
‖a⊗ b‖2 +

1

2

〈
a⊗ b, b⊗ a

〉
=

1

2
‖a‖2‖b‖2 +

1

2

〈
a, b
〉2
, (2.21)

taking the squared norm on both sides of (2.20) we obtain

‖dev sym(Anti(a)× b)‖2 (2.20)
= ‖sym(a⊗ b)‖2 +

1

9

〈
a, b
〉2‖1‖2 − 2

3

〈
a, b
〉〈

sym(a⊗ b),1
〉

(2.22)

(2.21)
=

1

2
‖a‖2‖b‖2 +

1

2

〈
a, b
〉2

+
1

3

〈
a, b
〉2 − 2

3

〈
a, b
〉2

=
1

2
‖a‖2‖b‖2 +

1

6

〈
a, b
〉2
.

The right hand side is bounded from above by 2
3‖a‖2‖b‖2 and from below by 1

2‖a‖2‖b‖2. These bounds are
sharp if a is parallel to b and if a is perpendicular to b, respectively. �

Remark 2.2. Due to the identification of skew-symmetric matrices with vectors in R3 the relation (2.19)
reads also

1

8
‖A‖2‖Ã‖2 ≤ ‖dev sym(AÃ)‖2 ≤ 1

6
‖A‖2‖Ã‖2 ∀A, Ã ∈ so(3). (2.23)

Indeed, setting a := axlA and ã := axl Ã, we have AÃ = Anti(a)× ã, so that the estimate follows from (2.19)

in combination with the identities ‖A‖2 = 2‖a‖2 and ‖Ã‖2 = 2‖ã‖2. The bounds in (2.23) are sharp. The

upper bound is achieved for A = Ã and the lower bound is achieved, e.g., for A = Anti(e1) = e3⊗e2−e2⊗e3

and Ã = Anti(e2) = e1 ⊗ e3 − e3 ⊗ e1.

In [101] we used moreover for P ∈ R3×3 and b ∈ R3 the relation

dev(P × b) = 0 ⇔ P × b = 0. (2.24)

Here, we use a similar equivalence.

Observation 2.3. For P ∈ R3×3 and b ∈ R3 we have

dev sym(P × b) = 0 ⇔ sym(P × b) = 0 . (2.25)

Remark 2.4. Surely, (2.25) is not equivalent to the condition P × b = 0, cf. the example in (2.8).

Proof of Observation 2.3. We decompose P into its symmetric and skew-symmetric part, i.e.,

P = S + Anti(a), for some S ∈ Sym(3), a ∈ R3.

and obtain

dev sym(P × b) = sym(P × b)− 1

3
tr(P × b) 1

(2.14)
= sym(P × b)− 1

3
tr(Anti(a)× b) 1

(2.11)
= sym(P × b) +

2

3

〈
a, b
〉

1. (2.26)

Moreover, for any matrix P ∈ R3×3 it holds

(P × b) b (2.5)
= P Anti(b) b

(2.3)
= P (b× b) = 0 . (2.27)
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Thus, we obtain〈
b,dev sym(P × b) b

〉 (2.26)
=

〈
b,
(

sym(P × b) +
2

3

〈
a, b
〉
1
)
b
〉 (2.27)

=
2

3

〈
a, b
〉
‖b‖2, (2.28)

and the statement follows from the identity

‖b‖2 sym(P × b) (2.26)
= ‖b‖2 dev sym(P × b)− 2

3
‖b‖2

〈
a, b
〉

1

(2.28)
= ‖b‖2 dev sym(P × b)−

〈
b,dev sym(P × b) b

〉
1 . (2.29)

Applying the Cauchy-Bunyakovsky-Schwarz inequality on the right hand side of (2.29) we obtain

‖dev sym(P × b)‖ ≤ ‖sym(P × b)‖
(2.29)

≤
(

1 +
√

3
)
‖dev sym(P × b)‖ . (2.30)

�

2.2 Considerations from vector calculus

The vector differential operator ∇ behaves algebraically like a vector, so that, formally, the derivative, the
divergence and the curl of a vector field a ∈ D ′(Ω,R3) can be expressed as

Da = a⊗∇ = (∇⊗ a)T , div a =
〈
a,∇

〉
=
〈

Da,1
〉

= tr(Da) and curl a = a× (−∇) = ∇× a. (2.31)

Formally, the Laplace operator behaves like a scalar with ∆ = ‖∇‖2.
More generally, we can use multilinear expressions to define differential operators as follows. Let V and

W be finite-dimensional vectorspaces and let Lin(V,W ) denote the space of linear maps from V to W . Let
M : Rd× . . .×Rd → Lin(V,W ) be a multilinear map and denote by Mi1...ir := M(ei1 , . . . , eir ) the coeffiencts
of M with respect to the standard basis e1, . . . , ed of Rd. We define a differential operator DM by

DM =
∑

i1,...,ir

Mi1...ir∂i1 . . . ∂ir

where each index ij runs from 1 to d. Let Ω ∈ Rd be open. Then DM maps a distribution f ∈ D ′(Ω, V ) to
a distribution DMf ∈ D ′(Ω,W ). The following simple observation allows us to transfer algebraic identities
into identities of vector calculus. We have

∀ b ∈ Rd M(b, . . . , b) = 0 ⇐⇒ ∀ f ∈ D ′(Ω, V ) DMf = 0. (2.32)

Indeed, since ∂i∂j = ∂j∂i in the sense of distributions, both assertions are equivalent to the statement that
the symmetrized coefficients of M vanish. For example, the algebraic identity tr((a × b) ⊗ b) = 0 for all
a, b ∈ R3 translates into the identity div curl f = 0 for all f ∈ D ′(Ω,R3). Since M is multilinear we often use
the notation

M(∇, . . . ,∇) := DM (2.33)

With this notation, (2.32) asserts that we can formally compute as if ∇ was a vector in Rd.
Of special interest is the operator curl and its row-wise extension to a matrix-valued operator Curl. Thus,

formally,
CurlP := P × (−∇) = −P Anti(∇) (2.34)

for P ∈ D ′(Ω,R3×3) where the vector product acts row-wise, cf. (2.7). Surely, ∇× P or −∇× P would also
be interesting candidates to consider, but, among them, only the matrix Curl from (2.34) kills the derivative
of a general vector field a ∈ D ′(Ω,R3), i.e., Curl Da ≡ 0. For symmetric tensor fields S ∈ D ′(Ω,Sym(3)) we
obtain by (2.14)

tr(CurlS) ≡ 0 . (2.35)
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Moreover, it holds for ζ ∈ D ′(Ω,R) and a ∈ D ′(Ω,R3)

Curl(ζ · 1) = −Anti(∇ζ) and Curl Anti(a) = div a · 1− (Da)T . (2.36)

Note in passing that in three dimensions the matrix Curl returns again a square matrix. Furthermore, we
make use of the incompatibility operator

incP := Curl([CurlP ]T ) = (P ×∇)T ×∇ (2.17)
= −∇× PT ×∇ = −Anti(∇)PT Anti(∇). (2.37)

The last expression shows, in particular, that the incompatibility operator preserves symmetry:

(incP )T = inc (PT ), inc symP = sym incP and inc skewP = skew incP . (2.38)

Moreover, the incompatibility operator annihilates the symmetric displacement gradient since

inc (sym Da) = −∇× sym Da×∇ = −1

2
∇× (∇⊗ a+ a⊗∇)×∇

= −1

2
[(∇×∇︸ ︷︷ ︸

=0

)⊗ a×∇+∇× a⊗ (∇×∇︸ ︷︷ ︸
=0

)] ≡ 0 . (2.39)

Note that this formal calculation was already carried out in Lagally’s monograph on vector calculus from 1928
[90, Ziff. 191]. The action of the incompatibility operator on spherical tensors and antisymmetric tensors is
given by

inc (ζ · 1) = ∆ζ · 1−D2ζ ∈ Sym(3) and inc (Anti(a)) = −Anti(∇div a) ∈ so(3) , (2.40)

respectively. For symmetric tensor fields S we obtain, formally by (2.15), again

tr(inc CurlS) ≡ 0. (2.41)

Remark 2.5. The incompatibility operator inc occurs in infinitesimal strain dislocation models, e.g., in
the modeling of dislocated crystals or in the modeling of elastic materials with dislocations, since the strain
cannot be a symmetrized gradient of a vector field as soon as dislocations are present and the notion of
incompatibility is at the basis of a new paradigm to describe the inelastic effects, cf. [46, 8, 94, 9, 7, 108].
Furthermore, the equation inc sym e ≡ 0 is equivalent to the Saint-Venant compatibility condition(s)10

defining the relation between the displacement vector field u and the symmetric strain sym e, more precisely:

inc sym e ≡ 0 ⇔ sym e = sym Du (2.42)

in simply connected domains, cf. [4, 108]. For investigations over multiply connected domains see e.g. [151,
64].

2.3 Linear combinations of higher derivatives

Our analysis relies on a number of apparently hitherto unnoticed identities which arise from the interaction
of the matrix Curl operator with the algebraic splitting (1.34):

X = dev symX + skewX +
1

3
tr(X) · 1.

In particular, we have the following identities.

10Those compatibility conditions can be found in the third appendix §32 p. 597 et seq. of the third edition of the lecture
notes Résistance des corps solides given by Navier and extended with several notes and appendices by Barré de Saint-Venant
and published as Résumé des Leçons données à l’École des Ponts et Chaussées sur l’Application de la Mécanique, vol. I, Paris,
1864. Their coordinate-free version are contained in Lagally’s monograph on vector calculus from 1928 [90, Ziff. 191].
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Lemma 2.6. Let A ∈ D ′(Ω, so(3)). Then

(a) the entries of D2A are linear combinations of the entries of D sym CurlA.

(b) the entries of D3A are linear combinations of the entries of D2 dev sym CurlA.

Proof. By Nye’s formula (1.26)1 we have

sym CurlA = tr(DaxlA) 1− sym(DaxlA). (2.43)

Taking the trace on both sides we obtain tr(sym CurlA) = 2 tr(DaxlA) and inserting this identity into
(2.43) we get

sym(DaxlA) =
1

2
tr(sym CurlA)1− sym CurlA. (2.44)

Moreover, by the relation (1.23) used for the proof of the classical Korn’s inequality, we obtain

D2 axlA
(1.23)

= L(Dsym DaxlA)
(2.44)

= L1(Dsym CurlA). (2.45)

In other words, the entries of D2A are linear combinations of the entries of Dsym CurlA which establishes
part (a).

To prove (b) we make use of the incompatibility operator inc , since it kills the symmetric displacement
gradient, cf. (2.39). Consider now the deviatoric part on both sides of (2.43):

dev sym CurlA =
1

3
tr(DaxlA) 1− sym(DaxlA) . (2.46)

Applying inc on both sides, we obtain in view of (2.39) and (2.40):

3 inc dev sym CurlA = ∆ tr(DaxlA) · 1−D2 tr(DaxlA) (2.47)

or, equivalently,

D2 tr(DaxlA) =
3

2
tr(inc dev sym CurlA) · 1− 3 inc dev sym CurlA = L2(D2 dev sym CurlA), (2.48)

where we have used that the entries of incB are, of course, linear combinations of the entries of D2B, so
that by (2.46) we have

D2 sym(DaxlA) = L3(D2 dev sym CurlA). (2.49)

The conclusion of part (b) then follows using the relation (1.23):

D3 axlA
(1.23)

= L(D2 sym DaxlA)
(2.49)

= L4(D2 dev sym CurlA). �

The algebraic considerations above provide information on higher derivatives of P in negative Sobolev
spaces. To obtain Lp-estimates for P we use the following deep result.

Theorem 2.7 (Lions lemma and Nečas estimate). Let Ω ⊂ Rn be a bounded Lipschitz domain. Let m ∈ Z
and p ∈ (1,∞). Then f ∈ D ′(Ω,Rd) and Df ∈Wm−1, p(Ω,Rd×n) imply f ∈Wm, p(Ω,Rd). Moreover,

‖f‖Wm, p(Ω,Rd) ≤ c
(
‖f‖Wm−1, p(Ω,Rd) + ‖Df‖Wm−1, p(Ω,Rd×n)

)
, (2.50)

with a constant c = c(m, p, n, d,Ω) > 0.

For a proof we refer to [6, Proposition 2.10 and Theorem 2.3] and [15]. However, for our discussions the
heart of the matter is the estimate (2.50), see Nečas [127, Théorème 1]. The case m = 0 is already contained
in [24]; for an alternative proof, see [110, Lemma 11.4.1] and [16, Chapter IV] as well as [17] and [38]. For
further historical remarks, see the discussions in [28, 5] and the references contained therein.

Since we only have information on higher order derivatives of P we will use the following consequence of
Theorem 2.7.
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Corollary 2.8. Let Ω ⊂ Rn be a bounded Lipschitz domain, m ∈ Z and p ∈ (1,∞). Denote by Dkf the

collection of all distributional derivatives of order k. Then f ∈ D ′(Ω,Rd) and Dkf ∈ Wm−k, p(Ω,Rd×nk)
imply f ∈Wm, p(Ω,Rd). Moreover,

‖f‖Wm, p(Ω,Rd) ≤ c
(
‖f‖Wm−1, p(Ω,Rd) + ‖Dkf‖

Wm−k, p(Ω,Rd×nk )

)
, (2.51)

with a constant c = c(m, p, n, d,Ω) > 0.

Proof. The assertion f ∈ Wm, p(Ω,Rd) and the estimate (2.51) follow by inductive application of Theorem
2.7 to Dlf with l = k − 1, k − 2, . . . , 0. �

Lemma 2.9. Let A ∈ Lp(Ω, so(3)). Then

(a) sym CurlA ≡ 0 in the distributional sense if and only if A = Anti(Ã x+ b) almost everywhere in Ω,

(b) dev sym CurlA ≡ 0 in the distributional sense if and only if A = Anti
(
Ã x+b+β x+

〈
d, x
〉
x− 1

2d‖x‖2
)

almost everywhere in Ω

with constant Ã ∈ so(3), b, d ∈ R3 and β, γ ∈ R.

Remark 2.10. It is seen already from the calculations of the kernels that there can not be corresponding
Korn type inequalities in terms of ‖dev symP‖ + ‖sym CurlP‖ or ‖dev symP‖ + ‖dev sym CurlP‖. The
kernels would be infinite-dimensional, since all restricting information on ζ would get lost. Indeed, we have

sym Curl(A+ ζ · 1)
(1.26)

= tr(DaxlA)1− sym(DaxlA)

so that sym Curl(A+ ζ · 1) ≡ 0 or dev sym Curl(A+ ζ · 1) ≡ 0 allow ζ to be arbitrary.

Remark 2.11. Solutions of Lemma 2.9 have already been partially indicated in the literature, cf. [136, 11].
We include their full deduction here for the convenience of the reader.

Proof of Lemma 2.9. The “if”-parts follow from a direct calculation using Nye’s formula (1.26):

(a) Curl(Anti(Ã x+ b)) = Ã,

(b) D(Anti
(
Ã x+b+β x+

〈
d, x
〉
x− 1

2d‖x‖2
)
) = Ã+β 1+

〈
d, x
〉
1+x⊗d−d⊗x = (β+

〈
d, x
〉
)1+Ã+Anti(d×x),

hence, Curl(Anti
(
Ã x+ b+ β x+

〈
d, x
〉
x− 1

2d‖x‖2
)
) = 2(β +

〈
d, x
〉
)1 + Ã+ Anti(d× x),

Now, we will focus on the “only if”-directions.
By (2.44) the condition sym CurlA ≡ 0 implies sym(DaxlA) ≡ 0, so that the usual calculation for

Korn’s inequality, cf. (1.23), gives that DaxlA must be a constant skew-symmetric matrix. Thus,

A = Anti(Ã x+ b)

for some Ã ∈ so(3) and b ∈ R3, which establishes (a).

Considering now dev sym CurlA ≡ 0 we obtain by (2.48) that D2 tr(DaxlA) ≡ 0. Hence,

1

3
tr(DaxlA) = β +

〈
d, x
〉

(2.52)

for some d ∈ R3 and β ∈ R. Define ā by

ā(x) = β x+
〈
d, x
〉
x− 1

2
d ‖x‖2. (2.53)
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Then
Dā = β 1 +

〈
d, x
〉

1 + x⊗ d− d⊗ x = (β +
〈
d, x
〉
) 1 + Anti(d× x)

and
sym Dā = (β +

〈
d, x
〉
) 1. (2.54)

Thus, by (2.46) we have

sym(D(axlA− ā))
(2.54)

= sym(DaxlA)− (β +
〈
d, x
〉
) 1

(2.46)
=

1

3
tr(DaxlA)1− (β +

〈
d, x
〉
) 1

(2.52)
= 0 .

Again, (1.23) gives that D(axlA− ā) must be a constant skew-symmetric matrix and we have

axlA = Ãx+ b+ ā,

for some Ã ∈ so(3) and b ∈ R3, and statement (b) follows from the representation (2.53). �

Remark 2.12. The conclusion of (b) also follows directly from Nye’s formula and is connected to infinitesimal
conformal maps. Indeed, we have

dev sym Curl Anti(a)
(1.26)1= −dev sym Da, (2.55)

so that
dev sym Curl Anti(a) ≡ 0 ⇔ dev sym Da ≡ 0 ⇔ a = ϕC , (2.56)

denoting by ϕC an infinitesimal conformal map, so that the expression in (b) of Lemma 2.9 follows from the
expression for infinitesimal conformal maps (1.10).

3 New incompatible Korn type inequalities

Lemma 3.1. Let Ω ⊂ R3 be a bounded Lipschitz domain, 1 < p <∞ and P ∈ D ′(Ω,R3×3). Then either of
the conditions

(a) symP ∈ Lp(Ω,R3×3) and sym CurlP ∈W−1, p(Ω,R3×3),

(b) symP ∈ Lp(Ω,R3×3) and dev sym CurlP ∈W−1, p(Ω,R3×3),

implies P ∈ Lp(Ω,R3×3). Moreover, we have the estimates

‖P‖Lp(Ω,R3×3) ≤ c
(
‖skewP‖W−1, p(Ω,R3×3)

+ ‖symP‖Lp(Ω,R3×3) + ‖sym CurlP‖W−1, p(Ω,R3×3)

)
, (3.1a)

‖P‖Lp(Ω,R3×3) ≤ c
(
‖skewP‖W−1, p(Ω,R3×3)

+ ‖symP‖Lp(Ω,R3×3) + ‖dev sym CurlP‖W−1, p(Ω,R3×3)

)
, (3.1b)

always with a constant c = c(p,Ω) > 0.

Remark 3.2. Clearly, condition (b) is weaker than condition (a) and (3.1b) implies (3.1a). Furthermore,
(3.1b) implies the estimate

‖P‖Lp(Ω,R3×3) ≤ c
(
‖skewP‖W−1, p(Ω,R3×3)

+ ‖symP‖Lp(Ω,R3×3) + ‖CurlP‖W−1, p(Ω,R3×3)

) (3.2)
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in [104, Lemma 3.1] as well as the estimate

‖P‖Lp(Ω,R3×3) ≤ c
(
‖skewP‖W−1, p(Ω,R3×3)

+ ‖symP‖Lp(Ω,R3×3) + ‖dev CurlP‖W−1, p(Ω,R3×3)

) (3.3)

in [101, Lemma 3.6], but not the estimate

‖P‖Lp(Ω,R3×3) ≤ c
(
‖skewP + 1

3 trP · 1‖W−1, p(Ω,R3×3)

+ ‖dev symP‖Lp(Ω,R3×3) + ‖dev CurlP‖W−1, p(Ω,R3×3)

) (3.4)

in [101, Lemma 3.6] which uses dev symP rather than symP on the right hand side. The point is, that
we cannot improve (3.1) to an estimate which involves dev symP instead of symP on the right hand side,
cf. Remark 1.2.

Proof of Lemma 3.1. By the previous remark it suffices to establish the assertion P ∈ Lp(Ω;R3×3) under
condition (b) and to prove the estimate (3.1b).

We will follow the same line of reasoning as in the proof of [104, Lemma 3.1] and start by considering the
orthogonal decomposition

P = symP + skewP.

To deduce skewP ∈ Lp(Ω,R3×3) under assumption (b) we consider

‖D2 dev sym Curl skewP‖W−3, p(Ω,R3×33 ) ≤ c ‖dev sym Curl(P − symP )‖W−1, p(Ω,R3×3)

≤ c (‖dev sym CurlP‖W−1, p(Ω,R3×3) + ‖Curl symP‖W−1, p(Ω,R3×3))

≤ c (‖dev sym CurlP‖W−1, p(Ω,R3×3) + ‖symP‖Lp(Ω,R3×3)). (3.5)

Hence, D2 dev sym Curl skewP ∈W−3, p(Ω,R3×33

) and it follows from Lemma 2.6 (b) that

D3 skewP ∈W−3, p(Ω,R3×34

). (3.6)

Now, we apply Corollary 2.8 to skewP and we deduce that skewP ∈ Lp(Ω,R3×3) and

‖skewP‖Lp(Ω,R3×3) ≤ c (‖skewP‖W−1, p(Ω,R3×3) + ‖D3 skewP‖W−3, p(Ω,R3×34 ))

Lem. 2.6 (b)

≤ c (‖skewP‖W−1, p(Ω,R3×3) + ‖D2 dev sym Curl skewP‖W−3, p(Ω,R3×33 )

(3.5)

≤ c (‖skewP‖W−1, p(Ω,R3×3) (3.7)

+ ‖symP‖Lp(Ω,R3×3) + ‖dev sym CurlP‖W−1, p(Ω,R3×3)). �

The rigidity results follow by eliminating the corresponding first term on the right-hand side of (3.1).

Theorem 3.3. Let Ω ⊂ R3 be a bounded Lipschitz domain and 1 < p < ∞. There exists a constant
c = c(p,Ω) > 0 such that for all P ∈ Lp(Ω,R3×3)

(a)
inf

T∈KS,SC
‖P − T‖Lp(Ω,R3×3) ≤ c

(
‖symP‖Lp(Ω,R3×3) + ‖sym CurlP‖W−1, p(Ω,R3×3)

)
(3.8a)

(b)
inf

T∈KS,dSC
‖P − T‖Lp(Ω,R3×3) ≤ c

(
‖symP‖Lp(Ω,R3×3) + ‖dev sym CurlP‖W−1, p(Ω,R3×3)

)
(3.8b)
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where the kernels are given by

KS,SC = {T : Ω→ R3×3 | T (x) = Anti(Ã x+ b), Ã ∈ so(3), b ∈ R3}, (3.9a)

KS,dSC = {T : Ω→ R3×3 | T (x) = Anti
(
Ã x+ β x+ b+

〈
d, x
〉
x− 1

2
d‖x‖2

)
,

Ã ∈ so(3), b, d ∈ R3, β ∈ R}, (3.9b)

Remark 3.4. Setting ã = axl(Ã) we have for the linear functions in the kernels

Anti(Ã x) = Anti(Anti(ã)x) = x⊗ ã− ã⊗ x = 2 skew(x⊗ ã) (3.10)

so that KS,SC can be alternatively written as

KS,SC = {T : Ω→ R3×3 | T (x) = skew(x⊗ ã) + Anti(b), ã, b ∈ R3}. (3.9a’)

Furthermore, the elements of KS,dSC are connected to infinitesimal conformal mappings ϕC via

KS,SC = {T : Ω→ R3×3 | T (x) = Anti(ϕC(x)), with dev sym DϕC ≡ 0} (3.9b’)

cf. Remark 2.12.

Proof of Theorem 3.3. We first prove the formulae for the kernels KS,Sc and KS,dSC . If

P ∈ KS,SC := {P ∈ Lp(Ω,R3×3) | symP = 0 a.e. and sym CurlP = 0 in the dist. sense}, (3.11)

then P = skewP and sym Curl skewP = 0. Thus (3.9a) follows by virtue of Lemma 2.9 (a). Similarly, the
formula (3.9b) follows from Lemma 2.9 (b).

The estimates (3.8a) and (3.8b) now follow from Lemma 3.1, the fact that the kernels are finite-dimensional
and the compactness of the embedding Lp(Ω) ↪→ W−1,p(Ω), see, for example, the proofs [104, 103, 101] or
[29, Theorem 6.15-3] for similar reasoning. For the convenience of the reader we provide the details for the
argument for the estimate (3.8a). The proof of (3.8b) is analogous. By e1, . . . , eM we denote a basis of
KS,SC , and by `1, . . . , `M we denote the corresponding dual basis of linear functionals on KS,SC which is
characterized by the conditions

`α(ej) := δαj . (3.12)

Then, the Hahn-Banach theorem in a normed vector space (see e.g. [29, Theorem 5.9-1]), allows us to extend
`α to continuous linear forms - again denoted by `α - on the Banach space Lp(Ω,R3×3), 1 ≤ α ≤ M . Note
that

∀ T ∈ KS,SC T = 0 ⇔ `α(T ) = 0 ∀ α ∈ {1, . . . ,M}. (3.13)

We claim that

‖P‖Lp(Ω,R3×3) ≤ c
(
‖symP‖Lp(Ω,R3×3) + ‖sym CurlP‖W−1, p(Ω,R3×3) +

M∑
α=1

|`α(P )|
)
. (3.14)

Indeed, if this inequality is false, there exists a sequence Pk ∈ Lp(Ω,R3×3) with the properties

‖Pk‖Lp(Ω,R3×3) = 1 and

(
‖symPk‖Lp(Ω,R3×3) + ‖sym CurlPk‖W−1,p(Ω,R3×3) +

M∑
α=1

|`α(Pk)|
)
<

1

k
.

Hence, (for a subsequence) Pk ⇀ P ∗ in Lp(Ω,R3×3) and we have symP ∗ ≡ 0 and sym CurlP ∗ ≡ 0 in
the distributional sense but also `α(P ∗) = 0 for all α = 1, . . . ,M , so that P ∗ ≡ 0. Since the embedding
Lp(Ω,R3×3) ↪→ W−1, p(Ω,R3×3) is compact we get skewPk → skewP ∗ ≡ 0 in W−1, p(Ω,R3×3). Thus,
Pk → 0 in W−1, p(Ω,R3×3) and this yields to a contradiction with (3.1a). Hence (3.14) holds.
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Now consider the projection πa : Lp(Ω,R3×3)→ KS,SC given by

πa(P ) :=

M∑
j=1

`j(P ) ej . (3.15)

We obtain `α(P − πa(P ))
(3.12)

= 0 for all 1 ≤ α ≤ M , so that (3.8a) follows after inserting P − πa(P ) into
(3.14):

inf
T∈KS,SC

‖P − T‖Lp(Ω,R3×3) ≤ ‖P − πa(P )‖Lp(Ω,R3×3)

≤ c
(
‖symP‖Lp(Ω,R3×3) + ‖sym CurlP‖W−1, p(Ω,R3×3)

)
. �

Finally, we show that the estimates in Theorem 3.3 can be improved to estimates for P itself, and not
just for P − T , if we impose a natural boundary condition which annihilates the relevant kernels.

We focus on the improvement of (3.8b) because this already implies the improved estimate for (3.8a). For
a weak definition of boundary values of certain linear combinations of P it is not sufficient to assume only
dev sym CurlP ∈ W−1, p(Ω,R3×3). Indeed, this condition is satisfied for every P ∈ Lp(Ω,R3×3). We thus
consider, for p ∈ (1,∞) and r ∈ [1,∞) the spaces

W 1, p, r(dev sym Curl; Ω,R3×3) := {P ∈ Lp(Ω,R3×3) | dev sym CurlP ∈ Lr(Ω,R3×3)}. (3.16)

Equipped with the norm

‖P‖p,r,dSC := ‖P‖Lp(Ω,R3×3) + ‖ dev sym CurlP‖Lr(Ω,R3×3) (3.17)

this space becomes a Banach space. In terms of scaling the natural relation between p and r is p = r∗ where
r∗ is the Sobolev exponent of r. To properly treat the borderline case p = 1∗ = 3

2 we make the following
assumptions

r ∈ [1,∞),
1

r
≤ 1

p
+

1

3
, r > 1 if p =

3

2
. (3.18)

We assume that Ω ⊂ R3 is a bounded domain with Lipschitz boundary. To define boundary conditions
for certain linear combinations of the components of P in the distributional sense, we first recall that for
q ∈ (1,∞) the space C1(Ω) is dense in W 1, q(Ω) and there exists a linear bounded and surjective trace
operator Tr : W 1, q(Ω)→ W 1−1/q, q(∂Ω) which is uniquely characterized by the condition Trf = f |∂Ω for all
f ∈ C1(Ω). Moreover there exists a linear, bounded extension operator E : W 1−1/q, q(∂Ω) → W 1, q(Ω) with
Tr ◦ E = id. If follows from the divergence theorem and the density of C1(Ω) that for all i = 1, 2, 3∫

Ω

∂if dx =

∫
∂Ω

Trf νi dH2 ∀f ∈W 1, q(Ω) (3.19)

where ν denotes the outer normal of ∂Ω (which exist H2 a.e. on ∂Ω) and H2 the two-dimensional Hausdorff
measure. For p ∈ (1,∞) we denote by p′ the dual exponent given by 1

p + 1
p′ = 1. The dual of the space

W 1−1/p′, p′(∂Ω) = W 1/p, p′(∂Ω) is denoted by W−1/p, p(∂Ω). In order to introduce a weak definition of the
boundary values of dev sym[P × ν] we assume that r satisfies (3.18). Then we can define a bounded map
S : W 1, p, r(dev sym Curl; Ω;R3×3)→W−1/p, p(∂Ω;R3×3) by〈

SP,Q
〉
∂Ω

:=

∫
Ω

〈
dev sym CurlP,EQ

〉
−
〈
P,Curl dev sym EQ

〉
dx ∀ Q ∈W 1/p, p′(∂Ω,R3×3). (3.20)

Here the extension operator is applied componentwise. If a ∈ C1(Ω;R3) and b ∈W 1, q(Ω,R3) then it follows
from (3.19) that ∫

Ω

〈
curl a, b

〉
−
〈
a, curl b

〉
dx =

∫
∂Ω

〈
a× (−ν),Tr b

〉
dH2 . (3.21)
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Using this identity, the fact that Curl acts row-wise and (2.7), one easily deduces that for P ∈ C1(Ω;R3×3)
and Q ∈W 1/p, p′(∂Ω,R3×3) 〈

SP,Q
〉
∂Ω

=

∫
∂Ω

〈
dev sym[P × (−ν)], Q

〉
dH2 . (3.22)

Thus, for P ∈ C1(Ω;R3×3) we have SP = dev sym[P × (−ν)]. Let Γ be a relatively open subset of ∂Ω. We
say that

SP = 0 in Γ if
〈
SP,Q

〉
= 0 ∀Q ∈ (W 1/p, p′ ∩ C0)(∂Ω;R3×3) with Q = 0 on ∂Ω \ Γ.

Note that (W 1/p, p′ ∩ C0)(∂Ω) is dense in W 1/p, p′(∂Ω) since it contains Tr(C1(Ω)). We define

W 1, p, r
0,Γ (dev sym Curl; Ω,R3×3) := {P ∈W 1, p, r(dev sym Curl; Ω,R3×3) | SP = 0 in Γ}. (3.23)

In particular

T ∈ C1(Ω;R3×3) ∩W 1, p, r
0,Γ (dev sym Curl; Ω,R3×3) =⇒ dev sym[T × ν] = 0 on Γ. (3.24)

Since S is continuous, the space W 1, p, r
0,Γ (dev sym Curl; Ω,R3×3) is a closed subspace of

W 1, p, r(dev sym Curl; Ω,R3×3).

Theorem 3.5. Let Ω ⊂ R3 be a bounded Lipschitz domain, let 1 < p <∞ and assume that r satisfies (3.18).
Let Γ ⊂ ∂Ω be relatively open and non-empty. Then there exists a constant c = c(p, r,Ω,Γ) such that for all
P ∈W 1, p, r

0,Γ (dev sym Curl; Ω,R3×3) we have

‖P‖Lp(Ω,R3×3) ≤ c
(
‖symP‖Lp(Ω,R3×3) + ‖dev sym CurlP‖Lr(Ω,R3×3)

)
. (3.25)

Remark 3.6. Conti and Garroni [34] and Gmeineder and Spector [68] have shown that the estimate

‖P‖Lp(Ω,R3×3) ≤ c
(
‖symP‖Lp(Ω,R3×3) + ‖CurlP‖Lr(Ω,R3×3)

)
holds also in the borderline case r = 1 and p = 3

2 under the normalization condition
∫

Ω
skewP dx = 0 similar

to [62]. We do not know if Theorem 3.5 holds in this borderline case.

To show Theorem 3.5 we use the following simple fact which will be proved after the proof of Theorem
3.5:

Lemma 3.7. Assume that Γ ⊆ R3 has the following properties

1. Γ is not discrete; 2. Γ is not contained in a line; 3. Γ is not contained in a circle.

Let A ∈ so(3), b, d ∈ R3, β ∈ R and consider the function f : R3 → R3 given by

f(x) = Ax+ βx+ b+ 〈d, x〉x− 1

2
d‖x‖2.

Then
f = 0 on Γ =⇒ A = 0, b = d = 0, β = 0. (3.26)

Proof of Theorem 3.5. We first show that

KS,dSC ∩W 1, p, r
0,Γ (dev sym Curl; Ω;R3×3) = {0}. (3.27)

Then the assertion will follow by a standard argument from (3.8b) and the fact that KS,dSC is finite-

dimensional while W 1, p, r
0,Γ (dev sym Curl; Ω;R3×3) is closed.
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To show (3.27), let T ∈ KS,dSC ∩ W 1, p, r
0,Γ . Then T is smooth and thus (3.24) implies that

dev sym[T × ν] = 0 on Γ. Since the elements of KS,dSC are skew-symmetric it follows from Observation 2.1

and the formula for KS,dSC that there exist Ã ∈ so(3), b, d ∈ R3 and β ∈ R such that

axlT (x) = Ã x+ β x+ b+
〈
d, x
〉
x− 1

2
d‖x‖2 = 0 for all x ∈ Γ .

Now Lemma 3.7 implies that all coefficients vanish and hence T ≡ 0. This concludes the proof of (3.27).
Assume now that (3.25) does not hold. Then there exists a sequence Pk ∈W 1, p, r

0,Γ (dev sym Curl; Ω;R3×3)
such that

‖symPk‖Lp(Ω,R3×3) + ‖dev sym CurlPk‖Lr(Ω,R3×3) → 0

and
‖Pk‖Lp(Ω,R3×3) = 1.

The assumption (3.18) on r implies that W 1, p′

0 (Ω) embeds continuously into Lr
′
(Ω). Hence Lr(Ω) embeds

continuously into W−1, p(Ω). Thus it follows from (3.8b) that there exist Tk ∈ KS,dSC such that

‖Pk − Tk‖Lp(Ω,R3×3) → 0.

In particular, the sequence Tk is bounded in Lp and since KS,dSC is finite-dimensional, there exists a
T ∈ KS,dSC and a subsequence such that Tk → T in Lp(Ω,R3×3). Thus (for the same subsequence)
Pk → T in Lp(Ω,R3×3). Moreover dev sym CurlPk converges to zero in Lr and dev sym CurlT = 0.
Since W 1, p, r

0,Γ (dev sym Curl; Ω;R3×3) is a closed subspace of W 1, p, r(dev sym Curl; Ω;R3×3) it follows that

T ∈ W 1, p, r
0,Γ (dev sym Curl; Ω;R3×3). Hence (3.27) implies that T = 0 and thus Pk → 0 in Lp(Ω,R3×3). This

contradicts the hypothesis ‖Pk‖Lp = 1. �

Remark 3.8. Estimate (3.25) does not hold true in other dimensions, since only in three dimensions the
matrix Curl returns a square matrix.

Proof of Lemma 3.7. Since Γ is not discrete there exists x̄ ∈ R3 and xk ∈ Γ \ {x̄} such that limk→∞ xk = x̄.
The map g(x) := f(x̄ + x) has the same form as f (with different values of the parameters A, b, d, β). Thus
we may assume without loss of generality that x̄ = 0. Since f is continuous we get f(0) = 0 and hence b = 0.

Since

0 = 〈f(x), x〉 = β‖x‖2 +
1

2
〈d, x〉‖x‖2 ∀x ∈ Γ \ {0}

we deduce that β + 1
2 〈d, x〉 = 0 for all x ∈ Γ \ {0}. Considering points xk ∈ Γ \ {0} with xk → 0 we see that

β = 0 and
〈d, x〉 = 0 ∀x ∈ Γ.

If d = 0 then f(x) = Ax. If A 6= 0 then the kernel of A is a line since A ∈ so(3). Thus Γ would be
contained in a line which contradicts our assumption. Hence for d = 0 we get A = 0 and we are done.

If d 6= 0 then Γ is contained in the hyperplane perpendicular to d. Since
〈
d, f(x)

〉
= 0 for all x ∈ Γ and

A is skew-symmetric we get 2
〈
Ad, x

〉
+ ‖d‖2‖x‖2 = 0 for all x ∈ Γ. This implies that∥∥∥∥x+

1

‖d‖2Ad
∥∥∥∥2

=
‖Ad‖2
‖d‖4 ∀ x ∈ Γ.

Since A is skew-symmetric, the vector Ad is contained in the plane perpendicular to d. It follows that Γ is
either a point (and hence discrete) or a circle (x ∈ Γ and Ad lie in the same hyperplane) with center − 1

‖d‖2Ad

and radius ‖Ad‖‖d‖2 which contradicts our assumption. �

It is well-known, that Korn’s inequality and Poincaré’s inequality are not equivalent, however, due to the
presence of the Curl we get back both inequalities from our general result (3.25). Indeed, in the compatible
case P = Du we recover a tangential Korn inequality.
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Corollary 3.9. Let Ω ⊂ R3 be a bounded Lipschitz domain, 1 < p < ∞ and Γ a relatively open non-
empty subset in ∂Ω. There exists a constant c = c(p,Ω,Γ) > 0 such that for all u ∈ W 1, p(Ω,R3) with
dev sym(Du× ν) = 0 on Γ we have

‖Du‖Lp(Ω,R3×3) ≤ c ‖sym Du‖Lp(Ω,R3×3) . (3.28)

Proof. This follows from Theorem 3.5 by setting P = Du. �

Remark 3.10. This boundary condition is rather weak. If Γ is flat, then the condition dev sym(Du×ν)|Γ = 0
implies that u = αx+ b along Γ with α ∈ R and b ∈ R3, see Appendix A.1.4.

For skew-symmetric P = Anti(a) we recover from (3.25) a Poincaré’s inequality involving only the devia-
toric (trace-free) part of the symmetrized gradient. Such a Poincaré-type inequality can also be generalized
to functions of bounded deformation, cf. [59].

Corollary 3.11. Let Ω ⊂ R3 be a bounded Lipschitz domain and 1 < p < ∞. Set W 1,p
Γ,0(Ω,R3) := {a ∈

W 1,p(Ω;R3) | Tr a = 0 on Γ}. There exists a constant c = c(p,Ω,Γ) > 0 such that for all a ∈ W 1, p
Γ,0 (Ω,R3),

we have
‖a‖Lp(Ω,R3) ≤ c ‖dev sym Da‖Lp(Ω,R3×3) . (3.29)

Proof. This follows from Theorem 3.5 by setting P = Anti(a) and the following observations:
dev sym(Anti(a)× ν) = 0 ⇔ a = 0 on Γ, Curl(Anti(a)) = L(Da) and the form of Anti(a), cf. (2.2). �

The results of Theorem 3.5 , Corollary 3.9 and Corollary 3.11 can be graphically summarized as follows.

conformally invariant incompatible Korn

∥P∥Lp ≤ c (∥symP∥Lp + ∥dev symCurlP∥Lr ) ∀ P ∈ W 1, p, r
0,Γ (dev symCurl; Ω,R3×3)

Korn with weak boundary conditions

∥Du∥Lp ≤ c ∥symDu∥Lp ∀ u ∈ W 1, p(Ω,R3)

with dev sym(Du× ν) = 0 on Γ ⊆ ∂Ω

P = Du

trace-free symmetrized Poincaré

∥a∥Lp ≤ c ∥dev symDa∥Lp ∀ a ∈ W 1, p
Γ,0 (Ω,R

3)

P = Anti(a)

4 Comparison of the spaces W 1, p(sym Curl) and W 1, p(dev sym Curl)

Using the linear expression of the entries of DCurlP in terms of the entries of Ddev CurlP the authors of
[101] showed that for all P ∈ D ′(Ω,R3×3) and all m ∈ Z one has

CurlP ∈Wm, p(Ω,R3×3) ⇔ dev CurlP ∈Wm, p(Ω,R3×3). (4.1)

One might, therefore, wonder whether the spaces W 1, p(dev sym Curl; Ω;R3) := W 1, p, p(dev sym Curl; Ω;R3)
and W 1, p(sym Curl; Ω;R3) are actually identical, where

W 1, p(sym Curl; Ω,R3×3) := {P ∈ Lp(Ω,R3×3) | sym CurlP ∈ Lp(Ω,R3×3)} .

We first note that clearly W 1, p(sym Curl; Ω,R3×3) ⊂ W 1, p(dev sym Curl; Ω,R3×3) and that the natural
norm ‖P‖Lp + ‖dev sym CurlP‖Lp on W 1, p(dev sym Curl; Ω,R3×3) is weaker than the natural norm on
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W 1, p(sym Curl; Ω,R3×3). Thus, in view of the open mapping theorem, the two spaces are identical if and
only if the two natural norms are equivalent. In view of the second estimate in (2.30) (which follows directly
form (2.29) by dividing by ‖b‖2) one might expect that this is really the case. Indeed, using the reasoning in
Section 2.2, we see that the algebraic identity (2.29) shows that

∆ sym CurlP = L(D2 dev sym CurlP ) (4.2)

in the sense of distributions. The identity (4.2) yields interior estimates for all compactly contained subsets
Ω′ of Ω of the form

‖sym CurlP‖Lp(Ω′) ≤ C(Ω′) (‖dev sym CurlP‖Lp(Ω) + ‖P‖Lp(Ω)) (4.3)

but we will see in the proof of Theorem 4.3 assertion 4 below that this is not enough to obtain equivalence
of the norm on the full set Ω because we do not impose boundary conditions on P .

To illustrate the obstruction to a global estimate, let use consider the following example. Let D be the
unit ball in R2 and consider the spaces W 2,2(D) and W 2,2

∆ (D) := {u ∈ W 1,2(D) | ∆u = 0} with norms
‖u‖W 2,2 = ‖u‖L2(Ω) + ‖Du‖L2(Ω) + ‖D2u‖L2(Ω) and ‖u‖∆ = ‖u‖L2(Ω) + ‖Du‖L2(Ω) + ‖∆u‖L2(Ω), respectively.
Since ∆ is an elliptic operator, we have interior estimates ‖u‖W 2,2(Ω′) ≤ C(Ω′) ‖u‖∆, but the norms are not

equivalent since for the harmonic functions fk(x) := <(ek(x1+i x2)) we get limk→∞ ‖u‖W 2,2/‖u‖∆ = ∞. The
reason: while the symbol σ(ξ) = −(ξ2

1 +ξ2
2) of the operator ∆ has no non-trivial real zeroes (this is ellipticity),

it does have the non-trivial complex zeroes ξ1 = k, ξ2 = i k. This allows us to construct the ‘bad’ functions
fk. A similar analysis of the action of the matrix-valued symbols of the operators sym Curl and dev sym Curl
on C3 will allow us below to construct maps Pk which show that the norms ‖dev sym CurlP‖Lp(Ω) +‖P‖Lp(Ω)

and ‖sym CurlP‖Lp(Ω) + ‖P‖Lp(Ω) are not equivalent if Ω is a bounded domain. By contrast, one can use
Fourier transform to show that the norms are equivalent for periodic P or P ∈ Lp(R3,R3×3), which we
show for the convenience of the reader in Appendix A.6. For the latter purposes we start with the following
proposition.

Proposition 4.1. Let V be a finite-dimensional vectorspace and denote by Lin(V, V ) the space of linear maps

from V to V . Let A and Ã be linear maps from Rn to Lin(V, V ). Assume that

Ã(ξ)a = 0 ∀ ξ ∈ Rn \ {0} ∀ a ∈ kerA(ξ) (4.4)

and
dim kerA is constant on Rn \ {0}. (4.5)

Define differential operators by

A = A(∇) :=

n∑
j=1

A(ej)∂j and Ã = Ã(∇) :=

n∑
j=1

Ã(ej)∂j .

Then for each p ∈ (1,∞) there exists a constant c = c(p) such that

‖Ãf‖Lp(Rn,V ) ≤ c ‖Af‖Lp(Rn,V ) ∀ f ∈ Lp(Rn, V ) (4.6)

and

‖Ãf‖Lp(Tn,V ) ≤ c ‖Af‖Lp(Tn,V ) ∀ f ∈ Lp(Tn, V ) (4.7)

in the distributional sense.

Proof. This is well-known, cf. e.g. [52, pp. 1362–1365] or [147, Section IV.3]. We recall the argument for
the convenience of the reader. We focus on (4.6), the proof of (4.7) is analogous. If suffices to show (4.6)
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for f ∈ C∞c (Rn, V ). Then the general case follows by approximation. We will construct a linear bounded
operator M : Lp(Rn, V )→ Lp(Rn, V ) such that

Ãf =MAf ∀f ∈ C∞c (Rn, V ). (4.8)

For ξ ∈ Rn \ {0} we define

P(ξ) : V → V as the orthogonal projection onto kerA(ξ) (4.9)

and we define Q(ξ) : V → V by

Q(ξ)A(ξ) = Id− P(ξ), Q ≡ 0 on (rangeA(ξ))⊥. (4.10)

It follows from (4.5) that ξ 7→ P(ξ) is smooth and homogeneous of degree zero on Rn \ {0}, while ξ 7→ Q(ξ)
is smooth and homogeneous of degree −1. For ξ ∈ Rn \ {0} define

M(ξ) := Ã(ξ)Q(ξ). (4.11)

Then M is homogeneous of degree zero and smooth on the unit sphere Sn−1 of Rn. For f ∈ C∞c (Rn, V ) define

Mf = (F)−1MFf (4.12)

where F denotes the Fourier transform. By the Mikhlin-Hörmander multiplier theorem M has a unique
extension to a bounded operator on Lp(Rn, V ). Moreover we have

M(ξ)A(ξ) = Ã(ξ)Q(ξ)A(ξ) = Ã(ξ)− Ã(ξ)P(ξ) = Ã(ξ). (4.13)

Here we used the assumption (4.4) in the last identity. Now (4.8) follows from the definition of M. �

On bounded sets we will make use of the following behavior.

Proposition 4.2. Let Ω ⊂ R3 be bounded, open and non-empty. Let z = x1 + ix2 and let qk(x) = zk. Then

lim
k→∞

‖kqk−1‖Lp(Ω,C)

‖qk‖Lp(Ω,C)
=∞.

Proof. For δ > 0 define Uδ := {x ∈ R3 | x2
1 + x2

2 < δ2}. Since |qk−1/qk| ≤ δ−1 on Ω \ Uδ we have

lim
k→∞

‖kqk−1‖Lp(Ω\Uδ,C)

‖qk‖Lp(Ω\Uδ,C)
=∞. (4.14)

Now the assertion follows from the fact that

lim
k→∞

‖qk‖Lp(Ω\Uδ,C)

‖qk‖Lp(Ω,C)
= 1

whenever δ > 0 is so small that Ω \ U2δ has positive measure. �

With these preparations in hand we arrive at our final result.

Theorem 4.3. The following assertions hold for p ∈ (1,∞).

1. (whole space R3) There exists a constant c = c(p) such that for P ∈ Lp(R3,R3×3)

‖ sym CurlP‖Lp(R3,R3×3) ≤ c ‖ dev sym CurlP‖Lp(R3,R3×3); (4.15)

2. (periodic functions) if T3 = R3/Z3 then for all P ∈ Lp(T3,R3×3)

‖sym CurlP‖Lp(R3,R3×3) ≤ c ‖dev sym CurlP‖Lp(R3,R3×3); (4.16)

3. (half-spaces) if Ω is a half-space then for P ∈ Lp(Ω,R3×3) the seminorms ‖ sym CurlP‖Lp(Ω,R3×3) and
‖ dev sym CurlP‖Lp(Ω,R3×3) are not equivalent;

4. (bounded sets) If Ω ⊂ R3 is a bounded, open, non-empty set then

W 1, p(sym Curl; Ω,R3) 6= W 1, p(dev sym Curl; Ω,R3).
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Notation In this subsection we use the notation

〈
a, b
〉

:=

3∑
j=1

ajbj for a, b ∈ C3.

Note that this is different from the usual sesquilinear form
∑
j ajbj where z denotes the complex conjugate

of a complex number z. In particular
〈
a, a
〉

is not nonnegative on C3.

Proof. The first and second assertion for the whole space and periodic functions follow from the estimate
(2.30)

∀ ξ ∈ R3 ∀ P̂ ∈ R3×3 ‖sym(P̂ × ξ)‖ ≤ (1 +
√

3)‖dev sym(P̂ × ξ)‖, (4.17)

the fact that dim{P̂ | dev sym(P̂ × ξ) = 0} = 4 is independent of ξ for ξ ∈ R3 \ {0} and Proposition 4.1,

applied to the operators A(ξ)P = dev sym(P × ξ) and Ã(ξ)P = sym(P × ξ).
To prove the third and fourth assertion we first show that

∃ ξ ∈ C3 ∃ P̂ ∈ C3×3 : dev sym(P̂ × ξ) = 0 and sym(P̂ × ξ) 6= 0. (4.18)

Then the assertion will follow by standard arguments. One such example is given by

P̂ =

0 0 −1
0 0 i
0 −i 0

 and ξ =

1
i
0

 ⇒ P̂ × ξ =

 i −1 0
1 i 0
0 0 i

 (4.19a)

so that

sym(P̂ × ξ) = i · 1 but dev sym(P̂ × ξ) = 0. (4.19b)

Further examples which fulfill (4.18) can be found splitting P̂ into the symmetric and skew-symmetric part:

P̂ = Ŝ + Anti(â). By (2.26)

dev sym(P̂ × ξ) = sym(P̂ × ξ) +
2

3

〈
â, ξ
〉

1. (4.20)

Thus it suffices to find P̂ ∈ C3×3 and ξ ∈ C3 such that dev sym(P̂ × ξ) = 0 and
〈
â, ξ
〉
6= 0. Indeed, the

example in (4.19a) satisfies these conditions.
Now we show that in a half-space the seminorms ‖sym Curl ·‖Lp(Ω,R3×3) and ‖dev sym Curl ·‖Lp(Ω,R3×3) are

not equivalent. Since the operators dev sym Curl and sym Curl interact naturally with rotations it suffices to
consider the half-space

Ω = {x ∈ R3 | x1 < 0}.
Note that the norms are equivalent for real-valued fields P if and only if they are equivalent for complex-
valued fields P . Let ξ and P̂ be as in (4.19a). For a constant vector b ∈ R3 and a scalar function ζ

we have curl(b ζ) = b × (−∇ζ). Since Curl acts row-wise we have for a constant matrix P̂ the identity

Curl(P̂ ζ) = −P̂ ×∇ζ. Thus for all k ∈ N

Curl

(
P̂ ek

〈
ξ,x
〉)

= −P̂ ×∇ek
〈
ξ,x
〉

= −kek
〈
ξ,x
〉
(P̂ × ξ) (4.21)

so that with (4.19b) we have

sym Curl

(
P̂ ek

〈
ξ,x
〉)

= −i k ek
〈
ξ,x
〉
· 1 and dev sym Curl

(
P̂ ek

〈
ξ,x
〉)

= 0. (4.22)
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Let η ∈ C∞c (B(0, 2)) be a cut-off function such that η = 1 in B(0, 1) and consider the functions

Pk(x) =
1

k
P̂ ek

〈
ξ,x
〉
η(x). (4.23)

Then

CurlPk(x) =
η(x)

k
Curl

(
P̂ ek

〈
ξ,x
〉)
− 1

k
ek
〈
ξ,x
〉
P̂ Anti(∇η)

(4.21)
= −ek

〈
ξ,x
〉 (

P̂ × ξ +
1

k
P̂ Anti(∇η)

)
and with (4.19b) we obtain

‖dev sym CurlPk(x)‖ ≤ C 1

k
ekx1 sup‖∇η‖ (4.24a)

and

sym CurlPk = −i ek x1+i k x2 · 1 in B(0, 1). (4.24b)

From this we easily conclude that ‖sym CurlPk‖p/‖dev sym CurlPk‖p →∞ which shows claim 3.
Finally, we prove the last assertion 4. Let Ω be a bounded, open, non-empty set. It suffices to show

that in W 1, p(sym Curl; Ω,C3×3) the norms ‖·‖Lp(Ω,C3×3) + ‖sym Curl ·‖Lp(Ω,C3×3) and ‖·‖Lp(Ω,C3×3) +
‖dev sym Curl ·‖Lp(Ω,C3×3) are not equivalent. Indeed, this implies that also in W 1, p(sym Curl; Ω,R3×3) the
norms ‖·‖Lp(Ω,R3×3) +‖sym Curl ·‖Lp(Ω,R3×3) and ‖·‖Lp(Ω,R3×3) +‖dev sym Curl ·‖Lp(Ω,R3×3) are not equivalent.
Thus, since the identity map

i : W 1, p(sym Curl; Ω,R3×3)→W 1, p(dev sym Curl; Ω,R3×3)

is continuous it then follows from the open mapping theorem that

W 1, p(dev sym Curl; Ω,R3×3) 6= W 1, p(sym Curl; Ω,R3×3).

Let ξ and P̂ be again as in (4.19a). Set z = x1 + ix2 and

Pt(x) := P̂ et
〈
ξ,x
〉

= P̂ etz. (4.25)

Then as in (4.22)
dev sym CurlPt = 0 (4.26)

and
sym CurlPt = −i t etz · 1. (4.27)

Let Qk(x) = P̂ zk. Taking the k-th derivative of (4.26) and (4.27) and evaluating at t = 0 we get, for all
k ∈ N,

dev sym CurlQk = 0, sym CurlQk = −i k zk−1 · 1. (4.28)

It follows from Proposition 4.2 that

lim
k→∞

‖sym CurlQk‖Lp(Ω,C3×3)

‖Qk‖Lp(Ω,C3×3) + ‖dev sym CurlQk‖Lp(Ω,C3×3)
=∞.

This concludes the proof of the theorem. �

Remark 4.4. Assertion 4 of Theorem 4.3 is complemented by the following two strict inclusions:

W 1, p(Ω,R3×3) $W 1, p(Curl; Ω,R3×3) $W 1, p(sym Curl; Ω,R3×3). (4.29)

To see that the first inclusion is strict, we may use functions of the form Pk = Duk where uk = w(kx) and
w : R3 → R3 is periodic, to see that the corresponding norms are not equivalent. To see that the second
inclusion is strict we can use functions of the form Pk(x) = ζ(kx) · 1 where ζ : R3 → R is periodic, and
observe that sym CurlPk = k sym(Anti(∇ζ)(kx)) = 0.
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[123] P. Neff, J. Jeong, and H. Ramézani. “Subgrid interaction and micro-randomness–Novel invariance requirements in
infinitesimal gradient elasticity”. International Journal of Solids and Structures 46.25 (2009). Pp. 4261–4276.

[124] P. Neff and I. Münch. “Curl bounds Grad on SO(3)”. ESAIM: Control, Optimisation and Calculus of Variations 14.1
(2008). Pp. 148–159.
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[128] J. A. Nitsche. “On Korn’s second inequality”. RAIRO Analyse Numérique 15.3 (1981). Pp. 237–248.

[129] J. F. Nye. “Some geometrical relations in dislocated crystals”. Acta Metallurgica 1 (1953). Pp. 153–162.

[130] N. Ohno and D. Okumura. “Higher-order stress and grain size effects due to self-energy of geometrically necessary
dislocations”. Journal of the Mechanics and Physics of Solids 55.9 (2007). Pp. 1879–1898.

[131] D. Ornstein. “A non-equality for differential operators in the L1 norm”. Archive for Rational Mechanics and Analysis
11 (1962). Pp. 40–49.

[132] A. Panteghini, L. Bardella, and C. F. Niordson. “A potential for higher-order phenomenological strain gradient plasticity
to predict reliable response under non-proportional loading”. Proceedings A 475.2229 (2019). Pp. 20190258, 21.

[133] L. E. Payne and H. F. Weinberger. “On Korn’s inequality”. Archive for Rational Mechanics and Analysis 8 (1961).
Pp. 89–98.

[134] M. Pinl. “Kollegen in einer dunklen Zeit”. Jahresbericht der DMV 71 (1969). Pp. 167–228.

[135] W. Pompe. “Korn’s first inequality with variable coefficients and its generalization”. Commentationes Mathematicae
Universitatis Carolinae 44.1 (2003). Pp. 57–70.

[136] Y. G. Reshetnyak. “Estimates for certain differential operators with finite-dimensional kernel”. Siberian Mathematical
Journal 11.2 (1970). Pp. 315–326.

[137] Y. G. Reshetnyak. Stability Theorems in Geometry and Analysis. Springer Science+Business Media Dordrecht, 1994.
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A Appendix

A.1 Geometrical interpretation of tangential boundary conditions

A.1.1 The case P × ν = 0 following [74]

In this appendix we provide the reader with the development of Gurtin and Needleman [74] adapted to our notation. Let
ν ∈ R3 be a unit vector. For the projection onto the plane perpendicular to ν we can consider one of the following matrix
representations:

Pν = 1− ν ⊗ ν (2.9)
= −Anti(ν)× ν (2.12)

= −Anti(ν) Anti(ν) = Anti(ν)T Anti(ν) . (A.1)

The last expression shows directly that the vector product of Pν and ν commutes:

ν × Pν = −Anti(ν) Anti(ν) Anti(ν) = Pν Anti(ν) = Pν × ν
(2.13)

=
‖ν‖=1

Anti(ν) ∈ so(3) (A.2)

and we have moreover for any (3× 3)-matrices P and H:〈
P × ν,H

〉
=
〈
P Anti(ν), H

〉
= −

〈
P,H Anti(ν)

〉
= −

〈
P,H × ν

〉(A.2)
=
〈
P Pν Anti(ν), H

〉
= −

〈
P Pν , H × ν

〉
. (A.3)

and also

‖P Pν‖2 =
〈
P Pν , P Pν

〉 (A.1)
=

〈
P Anti(ν) Anti(ν), P Anti(ν) Anti(ν)

〉
= −

〈
P Anti(ν), P Anti(ν) Anti(ν) Anti(ν)

〉
(A.4)

(2.13)
=
‖ν‖=1

〈
P Anti(ν), P Anti(ν)

〉
= ‖P × ν‖2 (A.5)

= −
〈
P, P Anti(ν) Anti(ν)

〉 (A.1)
=

〈
P, P (1− ν ⊗ ν)

〉
=
〈
P, P

〉
−
〈
P, P ν ⊗ ν

〉
= ‖P‖2 −

〈
P ν, P ν

〉
(A.6)

= ‖P‖2 − ‖P ν‖2 . (A.7)

Thus, P Pν = 0 if and only if P × ν = 0. The latter condition can be tested by applying the scalar product with deviatoric
(trace-free) matrices, it holds: 〈

P × ν,D
〉

= 0 ∀D with trD = 0 ⇔ P × ν = 0. (A.8)

This implies dev(P × ν) = 0 if and only if P × ν = 0 and extends, of course, to the case of arbitrary non-zero vector ν ∈ R3,
cf. also our Observation 2.2 in [101] and shows

‖dev(P × ν)‖ ≤ ‖P × ν‖ ≤ C · ‖dev(P × ν)‖. (A.9)

To establish (A.8), let H be an arbitrary matrix and consider the trace-free matrix D := H− tr(H)ν⊗ν. By the assumption
we have

0 =
〈
P × ν,D

〉
=
〈
P × ν,H − tr(H)ν ⊗ ν

〉
=
〈
P × ν,H

〉
+ tr(H)

〈
P, (ν ⊗ ν)× ν

〉
=
〈
P × ν,H

〉
. (A.10)

Since H is arbitrary, it follows P × ν = 0.

A.1.2 The compatible case Du× ν = 0

Let Γ be a relatively open (non-empty) connected subset of the boundary ∂Ω and assume that P = Du is compatible. The
condition Du × ν|Γ ≡ 0 is equivalent to DuPν |Γ ≡ 0 which can also be written as Du τ |Γ ≡ 0 for all tangential directions on
Γ, meaning that all tangential derivatives of u along Γ are vanishing. Thus, u has to be constant along Γ, since for any curve
γ : [0, 1]→ Γ on Γ we have d

ds
u(γ(s)) = Du(γ(s)) γ′(s) = 0, cf. [67, p. 35].
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A.1.3 The case sym(P × ν) = 0

If sym(P × ν) = 0, then there exists a vector a ∈ R3 so that P × ν = Anti(a). Hence,

a× ν = Anti(a) ν = (P × ν) ν = P Anti(ν) ν = P (ν × ν) = 0 (A.11)

and a has to be of the form a = α · ν with α ∈ R. Thus we have P × ν = α ·Anti(ν) = α · 1× ν and we conclude

sym(P × ν) = 0 ⇔ P × ν = α ·Anti(ν) ⇔ (P − α · 1)× ν = 0 ⇔ (P − α · 1)Pν = 0 for an α ∈ R. (A.12)

In a similar way to (A.8), it follows that〈
sym(P × ν), D

〉
= 0 ∀D with trD = 0 ⇔ sym(P × ν) = 0 (A.13)

so that again we deduce that dev sym(P × ν) = 0 if and only if sym(P × ν) = 0, cf. our Observation 2.3.

A.1.4 The compatible case sym(Du× ν) = 0

Let Γ be a relatively open (non-empty) connected subset of the boundary ∂Ω and assume that P = Du is compatible. By the
previous observation the condition sym(Du × ν)|Γ = 0 is fulfilled if and only if there exists a function ζ : Γ → R such that
(Du−ζ ·1)Pν |Γ = 0. If u = αx+b, then it is clear that this boundary condition is satisfied. On a flat portion of the boundary we

will establish also a converse statement. Indeed, let (after possible rotation) Γ ⊆ R2×{0} be simply connected and γ : [0, 1]→ Γ.

By the previous observation we have d
ds
u(γ(s)) = Du(γ(s)) γ′(s) = ζ(γ(s))γ′(s), so that u(γ(1)) = u(γ(0)) +

∫ 1
0 ζ(γ(s))γ′(s)ds

and for a closed curve γ we deduce

0 =

∫ 1

0
ζ(γ(s))γ′(s)ds =

∫ 1

0

〈ζ(γ(s)) e1, γ′(s)
〉〈

ζ(γ(s)) e2, γ′(s)
〉〈

ζ(γ(s)) e3, γ′(s)
〉
ds =

∫ 1

0

〈(ζ̂(γ1(s), γ2(s)), 0), (γ′1(s), γ′2(s))
〉
R2〈

(0, ζ̂(γ1(s), γ2(s))), (γ′1(s), γ′2(s))
〉
R2

0

 ds (A.14)

where in the last step we have used, that γ ⊂ R2×{0} has vanishing third component and we have set ζ̂(x, y) = ζ(x, y, 0). Since

(A.14) is valid for all connected curves γ ⊂ Γ ⊆ R2 × {0} the vector fields (ζ̂, 0)T and (0, ζ̂)T have to be conservative. Thus,

0 = curl2 D

(
ζ̂
0

)
= −ζ̂,y and 0 = curl2 D

(
0

ζ̂

)
= ζ̂,x (A.15)

where curl2 Dv = v2, x − v1, y, so that we conclude ζ = ζ̂ ≡ const and set ζ(x, y, 0) = α. The previous observation imply
d
ds

[u(γ(s)) − αγ(s)] ≡ 0 for all admissible curves γ meaning that along Γ the function u has to be of a form u(x, y, 0) =

α · (x, y, 0)T + (b1, b2, 0)T .

A.2 Some basic identities
We outline some basic identities which played useful roles in our considerations:
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1. from linear algebra: 2. and their formal equivalents from calculus:

(a) a⊗ b dyadic product,〈
a, b
〉

= tr(a⊗ b) scalar product,
a× b = axl(b⊗ a− a⊗ b) vector product,
b× b = 0,〈
a× b, b

〉
= 0,

2 skew(a⊗ b) = −Anti(a× b),

(a) Da = a⊗∇,
div a =

〈
a,∇

〉
= tr(Da),

curl a = a× (−∇) = 2 axl skew(Da),
curl∇ζ ≡ 0,
div curl a ≡ 0,
2 skew(Da) = Anti(curl a),

(b) P b,
1 b = b,
Anti(a) b = a× b = −Anti(b) a,
Ab = (axlA)× b,
(a⊗ b)b = ‖b‖2a,
(b⊗ a)b =

〈
a, b
〉
b = ‖b‖2a+ (a× b)× b,

(b) DivP = P ∇,
Div(ζ · 1) = ∇ζ,
Div(Anti(a)) = − curl a = Anti(∇) a,
DivA = − curl axlA,
Div(Da) = ∆a,
Div((Da)T ) = ∇div a = ∆a+ curl curl a,

(c) P × b = P Anti(b) = −(Anti(b)PT )T , (c) CurlP = P × (−∇) = −P Anti(∇),

(d) 1× b = Anti(b) ∈ so(3), (d) Curl(ζ · 1) = −Anti(∇ζ) ∈ so(3),

(e) (a⊗ b)× b = 0,
1
2

(b⊗ a)× b = sym(a⊗ b)× b = − skew(a⊗ b)× b
= −b⊗ axl skew(a⊗ b),

(e) Curl(Da) ≡ 0,
1
2

Curl((Da)T ) = Curl(sym Da) = −Curl(skew Da)

= (Daxl skew Da)T = 1
2

(D curl a)T ,

(f) Room’s formulas:
(Anti(a))× b = b⊗ a−

〈
b, a
〉
· 1,

A× b = b⊗ axlA−
〈
b, axlA

〉
· 1,

(axlA)⊗ b = (A× b)T − 1
2

tr(A× b) · 1,

tr(A× b) = −2
〈

axlA, b
〉
,

(f) Nye’s formulas:
Curl(Anti(a)) = div a · 1− (Da)T ,
CurlA = tr(DaxlA) · 1− (DaxlA)T ,
Daxl(A) = 1

2
tr(CurlA) · 1− (CurlA)T ,

tr(CurlA) = 2 div axlA,

(g) tr(S × b) = 0, (g) tr(CurlS) ≡ 0,

(h) (P × b)T × b = −Anti(b)PT Anti(b) = −b× PT × b, (h) inc (P ) = Curl[(CurlP )T ] = −∇× PT ×∇,

(i)
(
1× b

)T × b = ‖b‖2 · 1− b⊗ b ∈ Sym(3), (i) inc (ζ · 1) = ∆ζ · 1−D2ζ ∈ Sym(3),

(j)
(
(b⊗ a)× b

)T × b = 0,(
sym(a⊗ b)× b

)T × b = 0,(
skew(a⊗ b)× b

)T × b = 0,

(j) inc ((Da)T ) ≡ 0,
inc (sym Da) ≡ 0,
inc (skew Da) ≡ 0,

(k)
(
(Anti(a))× b

)T × b = −
〈
b, a
〉

Anti(b) ∈ so(3), (k) inc (Anti(a)) = −Anti(∇ div a) ∈ so(3),

(l)
(
S × b

)T × b ∈ Sym(3),

tr(
(
S× b

)T × b) = ‖b‖2 tr(S)−
〈
S, b⊗ b

〉
R3×3 ,

(l) incS ∈ Sym(3),
tr(incS) = ∆ tr(S)− div DivS,

(m) dev(P × b) = P × b+ 2
3

〈
axl skewP, b

〉
· 1, (m) dev CurlP = CurlP − 2

3
div axl skewP · 1,

(n) [(P × b)T × b]T = (PT × b)T × b,
sym[(P × b)T × b] = ((symP )× b)T × b,
skew[(P × b)T × b] = ((skewP )× b)T × b,

(n) [inc (P )]T = inc (PT ),
sym incP = inc symP ,
skew incP = inc skewP ,

(o) tr[((S × b)× b)T × b] = 0, (o) tr(inc CurlS) ≡ 0,

(p)
〈
a× b, c

〉
= −

〈
a, c× b

〉
,

(q) a⊗ b = 0 ⇔ dev sym(a⊗ b) = 0,
⇔ dev sym(Anti(a)× b) = 0,

for ζ ∈ D ′(Ω,R), a ∈ D ′(Ω,R3), A ∈ D ′(Ω, so(3))
S ∈ D ′(Ω, Sym(3)) and P ∈ D ′(Ω,R3×3).

(r) dev(P × b) = 0 ⇔ P × b = 0,

(s) dev sym(P × b) = 0 ⇔ sym(P × b) = 0,

for a, b ∈ R3, S ∈ Sym(3), A ∈ so(3) and P ∈ R3×3,

The expression in (l) reads in more details

(S × b)T × b = −b× S × b = −Anti(b)S Anti(b)

= S(b⊗ b) + (b⊗ b)S − ‖b‖2S − tr(S)b⊗ b+ (‖b‖2 tr(S)−
〈
S, b⊗ b

〉
R3×3 ) · 1 , (A.16)

so that the formal equivalent for incS has the form

incS = DDivS + (DDivS)T −∆S −D2 tr(S) + (∆ tr(S)− div DivS) · 1 . (A.17)
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A.3 The kernel of Curl, dev Curl and sym Curl
Lemma A.1. Let Ω ⊂ R3 be a simply connected open set and P ∈ D ′(Ω,R3×3). Then we have

(a) CurlP ≡ 0 if and only if P = Du,

(b) dev CurlP ≡ 0 if and only if P = α ·Anti(x) + Du,

(c) sym CurlP ≡ 0 if and only if P = ζ · 1 + Du.

where α ∈ R, ζ ∈ D ′(Ω,R) and u ∈ D ′(Ω,R3).

Proof. Part (a) follows by the definition of the matrix Curl which acts row-wise on matrices and the fact that Ω is simply
connected from the classical Poincaré lemma, cf. e.g. [29, Theorem 6.17-2] but also the historical remarks therein.

Now, let dev CurlP ≡ 0 then CurlP = 2α ·1 with a scalar field α. Since Div CurlP ≡ 0 (in the sense of distributions)
we get, taking the matrix Div on both sides, that

2∇α = 2 Div(α · 1) = Div CurlP ≡ 0 ⇒ α ≡ const . (A.18)

Hence, Curl(P − α · Anti(x)) = CurlP − α · Curl(Anti(x)) = CurlP − 2α · 1 ≡ 0, so that there exists a vector field u such
that

P − α ·Anti(x) = Du. (A.19)

Conversely, we have dev Curl(α ·Anti(x) + Du) = α · dev Curl(Anti(x)) = α · dev(2 · 1) ≡ 0, so that part (b) follows.
The conclusion of part (c) is obtained in a similar way. Indeed, if sym CurlP ≡ 0 then CurlP = Anti(a) for a vector

field a. Taking the matrix Div on both sides we obtain

− curl a = Div Anti(a) = Div CurlP ≡ 0. (A.20)

Hence, (Ω is a simply connected)
a = −∇ζ (A.21)

for a scalar field ζ. Moreover, we have

Curl(ζ · 1) = −Anti(∇ζ) = Anti(a) = CurlP. (A.22)

Thus, Curl(P − ζ · 1) ≡ 0 and therefore there exists a vector field u such that

P − ζ · 1 = Du. (A.23)

Conversely, we have
sym Curl(ζ · 1 + Du) = sym Curl(ζ · 1) = − sym(Anti(∇ζ)) ≡ 0, (A.24)

which establishes part (c). �

Remark A.2 (Concerning the kernel of dev sym Curl). It is clear that, Anti(ϕC)+ζ ·1+Du belongs to the kernel of dev sym Curl,
denotig by ϕC the infinitesimal conformal maps, cf. (1.10). However, it is not clear wether these functions already represent the
whole class.

A.4 The kernel of inc sym, inc skew and inc
Let Ω ⊂ R3 be a bounded domain and P ∈ D ′(Ω,R3×3). Then the Saint-Venant compatibility conditions give

inc symP ≡ 0 ⇔ symP = sym Du, (A.25)

where u ∈ D ′(Ω,R3). Moreover, we have

inc skewP ≡ 0 ⇔ skewP = α ·Anti(x) + skew Dv (A.26)

where α ∈ R and v ∈ D ′(Ω,R3). However, it would be desirable to obtain in (A.26) an expression as in (A.25) without an
additional term in Anti(x). This can be achieved, e.g., assuming additional (boundary) conditions. In a first observation, for
skewP = skew Dv we obtain axl skewP = axl skew Dv = 1

2
curl v, where curl v = 2 axl skewP always has a solution provided

that div axl skewP ≡ 0. However, we will see, that inc (skewP ) ≡ 0 implies only div axl skewP ≡ const. Indeed, to establish
(A.26) we make use of the expression

inc Anti(a) = −Anti(∇div a)

valid for all a ∈ D ′(Ω,R3). Thus,

inc Anti(a) ≡ 0 ⇔ ∇div a ≡ 0 ⇔ div a ≡ const .

Therefore, there exists an α ∈ R such that the vector field a(x)− α · x is solenoidal, i.e., div(a(x)− α · x) ≡ 0. Hence, there

exists a vector potential v ∈ D ′(Ω,R3) such that a(x) − α · x = curl
v(x)

2
. Since Anti(curl v) = 2 skew(Dv) we obtained

the expression from (A.26) where we have used a = axl skewP . Conversely, we have inc (α · Anti(x) + skew Dv) ≡ 0, which
establishes the relation from (A.26).

Furthermore,

incP ≡ 0 ⇔ sym incP ≡ 0 ∧ skew incP ≡ 0 ⇔ inc symP ≡ 0 ∧ inc skewP ≡ 0

(A.25)⇔
(A.26)

symP = sym Du ∧ skewP = α ·Anti(x) + skew Dv

⇔ P = α ·Anti(x) + sym Du+ skew Dv (A.27)

where u, v ∈ D ′(Ω,R3) and α ∈ R.
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A.5 Rotations and the cross product
By definition of Anti it holds Anti(a) b = a× b. Thus, for any rotation R ∈ SO(3) we have

Anti(Ra)Rb = (Ra)× (Rb) = R(a× b) = RAnti(a) b ∀a, b ∈ R3 (A.28)

and therefore
Anti(Ra)R = RAnti(a) ⇒ Anti(Ra) = RAnti(a)RT . (A.29)

It follows that

Anti(Ra) Anti(Rb) = RAnti(a) Anti(b)RT (A.30a)

but also

dev(Anti(Ra) Anti(Rb)) = R[dev(Anti(a) Anti(b))]RT , (A.30b)

sym(Anti(Ra) Anti(Rb)) = R[sym(Anti(a) Anti(b))]RT , (A.30c)

dev sym(Anti(Ra) Anti(Rb)) = R[dev sym(Anti(a) Anti(b))]RT , (A.30d)

tr(Anti(Ra) Anti(Rb)) = tr(Anti(a) Anti(b)) . (A.30e)

Consequently, we have

‖Anti(Ra) Anti(Rb)‖ = ‖RAnti(a) Anti(b)RT ‖ = ‖Anti(a) Anti(b)‖ (A.31a)

and, due to the isotropy of dev, sym and dev sym, also

‖dev(Anti(Ra) Anti(Rb))‖ = ‖dev(Anti(a) Anti(b))‖, (A.31b)

‖sym(Anti(Ra) Anti(Rb))‖ = ‖sym(Anti(a) Anti(b))‖, (A.31c)

‖dev sym(Anti(Ra) Anti(Rb))‖ = ‖dev sym(Anti(a) Anti(b))‖ . (A.31d)

Since Anti(αa) = αAnti(a) for all α ∈ R and in regard with the invariance relations above and the quadratic homogeneity,
the considerations in section 2.1 can also be obtained with a fixed skew-symmetric matrix, say for a = e3 or, equivalently
A = Anti(e3) = e2 ⊗ e1 − e1 ⊗ e2. We demonstrate it in re-proving Observation 2.1, i.e.

1

2
‖a‖2‖b‖2 ≤ ‖dev sym(Anti(a)× b)‖2 ≤

2

3
‖a‖2‖b‖2 ∀a, b ∈ R3. (A.32)

By the previous discussion it suffices to establish this estimates already for fixed a = e3. Indeed, we have

Anti(e3)× b =

0 −1 0
1 0 0
0 0 0

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 =

−b3 0 b1
0 −b3 b2
0 0 0

 (A.33)

Hence,

‖dev sym(Anti(e3)× b)‖2 =
2

3
b23 +

1

2
b21 +

1

2
b22 (A.34)

and therefore
1

2
‖b‖2 ≤ ‖dev sym(Anti(e3)× b)‖2 ≤

2

3
‖b‖2 . (A.35)

From the estimate (A.32) it follows that for fixed b 6= 0 the linear map a 7→ dev sym(Anti(a)× b) is invertible. A specific inverse
map can be obtained as follows. Set

M := dev sym(Anti(a)× b) (2.20)
=

1

2
(a⊗ b+ b⊗ a)−

1

3

〈
a, b
〉
· 1.

Thus,

trM = 0, M b =
1

2
‖b‖2a+

1

6

〈
a, b
〉
b, and

〈
Mb, b

〉
=

2

3

〈
a, b
〉
‖b‖2

and we have

a = LbM, where LbM :=
2

‖b‖2

(
M b−

1

4

〈
Mb, b

〉
‖b‖2

b

)
. (A.36)

A.6 Fourier transformation and equivalence of spaces
The Fourier transform of f on R3 is given by

Ff(ξ) = f̂(ξ) = (2π)−
3
2

∫
R3

e−i〈ξ,x〉f(x) dx, ξ ∈ R3 . (A.37)

If f is sufficiently regular, then ∂̂jf(ξ) = i ξj f̂(ξ). Thus, for a sufficiently regular vector field v : R3 → R3 we have

ĉurl v(ξ) = i ξ × v̂(ξ) = i v̂(ξ)× (−ξ) (A.38)
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and for a sufficiently regular matrix field P : R3 → R3×3 it follows

ĈurlP (ξ) = −i P̂ (ξ)× ξ = −i P̂ (ξ) Anti(ξ). (A.39)

Consequently,

F sym CurlP (ξ) = −i sym(P̂ (ξ)× ξ) and F dev sym CurlP (ξ) = −i dev sym(P̂ (ξ)× ξ) . (A.40)

Recall, that by (2.30) we have the estimate

∀ξ ∈ R3 : ‖dev sym(P × ξ)‖ ≤ ‖sym(P × ξ)‖ ≤ (1 +
√

3)‖dev sym(P × ξ)‖ (A.41)

which in regard with (A.40) gives

c ‖F dev sym CurlP‖L2(R3) ≤ ‖F sym CurlP‖L2(R3) ≤ C ‖F dev sym CurlP‖L2(R3) . (A.42)

Since by Plancherel’s theorem the Fourier transformation is an isometry of spaces, i.e. the L2-norm satisfies ‖f‖L2(R3) =

‖f̂‖L2(R3) we conclude

c ‖dev sym CurlP‖L2(R3,R3×3) ≤ ‖sym CurlP‖L2(R3,R3×3) ≤ C ‖dev sym CurlP‖L2(R3,R3×3) . (A.43)

In other words dev sym CurlP ∈ L2(R3,R3×3) if and only if sym CurlP ∈ L2(R3,R3×3), thus, establishing the equivalence
of spaces without boundary conditions

W 1,2(dev sym Curl;R3,R3×3) = W 1,2(sym Curl;R3,R3×3),

as well as the norm equivalence

‖P‖L2(R3,R3×3) + ‖sym CurlP‖L2(R3,R3×3) ≤ C(‖P‖L2(R3,R3×3) + ‖dev sym CurlP‖L2(R3,R3×3)) .

Hence, we conclude

̂skewP (ξ)
(A.36)

= Anti

(
Lξ/‖ξ‖

[
dev sym

(
( ̂skewP (ξ))×

ξ

‖ξ‖

)])
= Anti

(
Lξ/‖ξ‖

[
dev sym

(
(skew P̂ (ξ))×

ξ

‖ξ‖

)])
= Anti

(
Lξ/‖ξ‖

[
dev sym

(
((P̂ − sym P̂ )(ξ))×

ξ

‖ξ‖

)])
(A.40)

= Anti

(
Lξ/‖ξ‖

[
−i

‖ξ‖
F dev sym CurlP (ξ)

]
− Lξ/‖ξ‖

[
dev sym

(
(ŝymP (ξ))×

ξ

‖ξ‖

)])
.

Thus, standard multiplier estimates will give Lp estimates (for 1 < p <∞) in the periodic setting and in the whole space R3.
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