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Abstract. Given an open and bounded set Ω ⊆ Rn and a family X = (X1, . . . , Xm) of
Lipschitz vector fields on Ω, with m ≤ n, we characterize three classes of local functionals
defined on first-order X-Sobolev spaces, which admit an integral representation in terms of X,
i.e.

F (u, A) =
∫

A

f(x, u(x), Xu(x))dx,

being f a Carathéodory integrand.

Introduction

The representation of local functionals as integral functionals of the form

F (u) =
∫

Ω
f(x, u(x), Du(x)) dx

has a very long history and exhibits a natural application when dealing with relaxed functionals
and related Γ-limits in a suitable topology. In the Euclidean setting this problem is now very
well understood, and we refer the interested reader to the papers [Alb, B, BD1, BD2, BD3] for
a complete overview of the subject.
Recently, in [FSSC], the authors started the study of variational functionals driven by a family
of Lipschitz vector fields. By a family of Lipschitz vector fields we mean an m−tuple X =
(X1, . . . , Xm), with m ≤ n, where each Xj is a first-order differential operator with Lipschitz
coefficients cj,i defined on a bounded open set Ω ⊆ Rn, i.e.

Xj(x) =
n∑
i=1

cj,i(x)∂i j = 1, . . . ,m.

Moreover, according to [MPSC], we assume that the familyX satisfies the structure assumption
(LIC), which roughly means that X1(x), . . . , Xm(x) are linearly independent for a.e. x ∈ Ω
as vectors of Rn (cf. Definition 1.1). We stress that this point of view is pretty general and
encompasses, among other things, the Euclidean setting and many interesting sub-Riemannian
manifolds.
Since [FSSC], the possibility to extend the classical results of the calculus of variations to
the setting of variational functionals driven by vector fields has been the object of study of
many papers. For example, the homogenization theory has been intensively studied so far in
the setting of special sub-Riemannnian manifolds, i.e., Carnot groups (see for instance [BMT,
FT, MV]). More recently, in [MPSC, MPSC2] the authors started the investigation of the
Γ−convergence of translations-invariant local functionals F : Lp(Ω)×A → [0,∞], being A the
class of all open subsets of Ω. In [MPSC, Theorem 3.12], they found conditions under which F
can be represented as

F (u,A) =
∫
A
f(x,Xu(x)) dx (0.1)

for any A ⊆ Ω open and u ∈ Lp(Ω) s.t. u|A ∈ W 1,p
X,loc(A) (cf. Definition 1.2 and [FS]), and

for a suitable f : Ω × Rm → [0,∞). Finally, they applied this characterization to prove a
Γ-compactness theorem for integral functionals of the form (0.1), when 1 < p < ∞. Similar
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results have been proved in [MV], under stronger conditions on the family X. To conclude,
we also point out that functional (0.1) was studied in [FSSC] as far as its relaxation and in
connection with the so-called Meyers-Serrin theorem for W 1,p

X (Ω).
Inspired by the results proved in [BD1, BD2], the aim of the present paper is to extend the

results achieved in [MPSC] when we drop the assumption of translations-invariance. We find
some sufficient and necessary conditions under which a local functional

F : W 1,p
X,loc(Ω)×A −→ [0,+∞]

admits an integral representation of the form

F (u,A) =
∫
A
f(x, u(x), Xu(x)) dx ∀u ∈ W 1,p

X,loc(Ω), ∀A ∈ A, (0.2)

for a suitable Carathéodory function f : Ω × R × Rm → [0,∞). We point out that in this
new framework, due to the lack of translations-invariance, a dependence of the integrand with
respect to the function is expected. Let us observe that if F is defined on Lploc(Ω)×A instead
of W 1,p

X,loc(Ω)×A, under reasonable improvements of some assumptions it is easy to extend the
integral representation to get

F (u,A) =
∫
A
f(x, u(x), Xu(x)) dx ∀A ∈ A, ∀u ∈ Lploc(Ω) s.t. u|A ∈ W 1,p

X,loc(A).

The main goal of this paper is to obtain a representation formula as in (0.2) for the following
three different classes of functionals:

(i) convex functionals (Section 2, Theorem 2.3);
(ii) W 1,∞ weakly*- seq. l.s.c. functionals (Section 3, Theorem 3.3);
(iii) none of the above (Section 4, Theorem 4.4).

Unlike in Sobolev spaces, in this context no analogue of approximation results by a reasonable
notion of piecewise X-affine function holds in general (cf. [MPSC, Section 2.3]). To overcome
this difficulty we rely on the method employed in [MPSC], consisting of three steps.

1. Apply one of the classical results for Sobolev spaces ([BD1, BD2]) to the functional,
obtaining an integral representation w.r.t. a "Euclidean" Lagrangian fe of the form

F (u,A) =
∫
A
fe(x, u(x), Du(x))dx ∀u ∈ W 1,p

loc (Ω), ∀A ∈ A.

2. Find sufficient conditions on fe that guarantee the existence of a "non Euclidean" La-
grangian f such that∫

A
fe(x, u(x), Du(x))dx =

∫
A
f(x, u(x), Xu(x))dx ∀A ∈ A, ∀u ∈ C∞(A). (0.3)

3. Extend the previous equality to the whole space W 1,p
X,loc(Ω).

The second step crucially exploits third-argument convexity of the Euclidean Lagrangian fe.
Indeed, convexity of fe(x, u, ·) is sufficient to guarantee (0.3) (cf. Proposition 2.2). This is
shown in [MPSC], and the same ideas can be adapted to the cases (i) and (ii) of convex and
weakly*- seq. l.s.c. funtionals, for which the convexity of fe(x, u, ·) is granted. On the contrary,
due to the weaker assumptions on the functional, case (iii) is more demanding and requires a
further step. In Section 4 we show that the convexity of fe(x, u, ·) is not necessary for (0.3).
Thus, in order to find a more suitable notion of convexity, we define the weaker concept of
X-convexity (cf. Definition 4.1), which strongly depends on the chosen family of vector fields.
We show that, under a classical growth assumption on the functional, this new condition is
equivalent to (0.3) (cf. Proposition 4.2). Finally, by sligthly modifying a zig-zag argument due
to Buttazzo and Dal Maso ([BD2, Lemma 2.11]), we show that X-convexity is a consequence
of a reasonable lower semicontinuity assumption (cf. Lemma 4.3). This procedure allows to
generalize the final case as well. Finally, for each of the previous results we show that our
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hypotheses are also necessary, in order to give a complete characterization of the classes of
functionals studied.

The structure of the paper is the following. In Section 1 we briefly recall some basic facts
about vector fields and X-Sobolev spaces. In Section 2 we get an integral representation
result for a class of convex functionals. In Section 3 we deal with weakly*- sequentially l.s.c
functionals. In Section 4 we drop both the previous requirements, obtaining as well an integral
representation result.

1. Vector Fields and X-Sobolev Spaces

1.1. Notation. Unless otherwise specified, we let 1 ≤ p < +∞ and m,n ∈ N\{0} with m ≤ n,
we denote by Ω an open and bounded subset of Rn and by A the family of all open subsets
of Ω. Given two open sets A and B, we write A b B whenever A ⊆ B. We set A0 to be the
subfamily of A of all the open subsets A of Ω such that A b Ω. For any u, v ∈ Rn, we denote
by 〈u, v〉 the Euclidean scalar product, and by |v| the induced norm. We denote by Ln the
restriction to Ω of the n-th dimensional Lebesgue measure, and for any set E ⊆ Ω we write
|E| := Ln(E). Given an integrable function f : Ω −→ R, we write

∫
Ω f(x) dx :=

∫
Ω f(x) dLn(x).

Given x ∈ Rn and R > 0 we let BR(x) := {y ∈ Rn : |x − y| < R}, and given an integrable
function f : BR(x) −→ R we denote its integral average by

∫
BR(x) f dx := 1

|BR(x)|
∫
BR(x) f dx.

We usually omit the variable of integration when writing an integral: for instance, given two
functions f : Ω × R −→ R and u : Ω −→ R such that x 7→ f(x, u(x)) is integrable over Ω, we
write its integral as

∫
Ω f(x, u) dx instead of

∫
Ω f(x, u(x)) dx. Finally, for x ∈ Rn, u ∈ R and

ξ ∈ Rn we set
ϕx,u,ξ(y) := u+ 〈ξ, y − x〉. (1.1)

1.2. Basic Definitions and Properties. We will always identify a first order differential
operator X := ∑n

i=1 ci
∂
∂xi

with the map X(x) := (c1(x), . . . , cn(x)) : Ω→ Rn.

Definition 1.1. Let m ≤ n. We say that X := (X1, . . . , Xm) is a family of Lipschitz vector
fields on Ω if for any j = 1, . . . ,m and for any i = 1, . . . , n there exists a function cj,i ∈ Lip(Ω)
such that Xj(x) = (cj,1(x), . . . , cj,n(x)).
We will denote by C(x) the m× n matrix defined as

C(x) := [cj,i(x)] i=1,...,n
j=1,...,m

We say that X satisfies the linear independence condition (LIC) on Ω if the set

NX := {x ∈ Ω : X1(x), . . . , Xm(x) are linearly dependent}

is such that |NX | = 0. In this case we set ΩX := Ω \NX .

Let us point out that (LIC) embraces many relevant families of vector fields studied in
literature. In particular neither the Hörmander condition for X, that is, each vector field Xj is
smooth and the rank of the Lie algebra generated by X1, . . . , Xm equals n at any point of Ω,
nor the (weaker) assumption that the X-gradient induces a Carnot-Carathéodory metric in Ω
is requested. An exhaustive account of these topics can be found in [BLU].

Definition 1.2. Let m ≤ n, u ∈ L1
loc(Ω) and v ∈ L1

loc(Ω,Rm), and let X be a family of Lipschitz
vector fields. We say that v is the X-gradient of u if for any ϕ ∈ C∞c (Ω,Rm) it holds that

−
∫

Ω
u

m∑
j=1

n∑
i=1

∂

∂xi
(cj,iϕj) dx =

∫
Ω
ϕ · vdx.
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Whenever it exists, the X-gradient is shown to be unique a.e.. In this case we set Xu := v.
If p ∈ [1,+∞] we define the vector spaces

W 1,p
X (Ω) := {u ∈ Lp(Ω) : Xu ∈ Lp(Ω)}

and
W 1,p
X,loc(Ω) := {u ∈ Lploc(Ω) : u|A′ ∈ W 1,p

X (A′), ∀A′ ∈ A0}.
We refer to them as X-Sobolev spaces, and to their elements as X-Sobolev functions.

The next proposition can be found in [FS].

Proposition 1.3. Let p ∈ [1,+∞]. Then the vector space W 1,p
X (Ω), endowed with the norm

‖u‖W 1,p
X (Ω) := ‖u‖Lp(Ω) + ‖Xu‖Lp(Ω,Rm),

is a Banach space. Moreover, if 1 < p < +∞ it is a reflexive Banach space.

The following proposition tells us that X-Sobolev spaces are actually a generalization of the
classical Sobolev spaces, both because each Sobolev function is in particular an X-Sobolev
function, whatever X we choose, and because, as expected, the choice of the "standard" family
of vector fields

{
∂
∂x1
, . . . , ∂

∂xn

}
gives rise to the classical Sobolev spaces.

Proposition 1.4. The following facts hold:
(i) if n = m and cj,i(x) = δj,i for every i, j = 1, . . . , n, then W 1,p(Ω) = W 1,p

X (Ω);
(ii) W 1,p(Ω) ⊆ W 1,p

X (Ω), the inclusion is continuous and
Xu(x) = C(x)Du(x)

for every u ∈ W 1,p(Ω) and a.e. x ∈ Ω.

Let us notice that, being Ω bounded, we have that
W 1,∞(Ω) ⊆ W 1,p(Ω) ⊆ W 1,p

X (Ω)
for any family X of Lipschitz vector fields. The following proposition tells us that the weak
convergence in W 1,p

X is weaker than the weak*- convergence in W 1,∞.

Proposition 1.5. Let X be a family of Lipschitz vector fields. Then, for any sequence (uh)h ⊆
W 1,∞(Ω) and any u ∈ W 1,∞(Ω), it follows that

uh ⇀
∗ u in W 1,∞(Ω) =⇒ uh ⇀ u in W 1,p

X (Ω).

Proof. Follows easily from [Br, Theorem 3.10]. �

1.3. Approximation by Regular Functions. When dealing with representation theorems
for local functionals defined on classical Sobolev spaces, a typical strategy is to exploit classical
differentiation theorems for measures to get an integral representation of the form

F (u,A) =
∫
A
fe(x, u,Du)dx

for classes of "simple" functions, that is for instance linear or affine functions. Then one can
combine some semicontinuity properties of the functional together with approximation results
by means of piecewise affine functions (see for instance [ET, Chapter X, Proposition 2.9]), in
order to extend the integral representation to all Sobolev functions. In this context, one of
the main difficulties is that an analogue of [ET, Chapter X, Proposition 2.9]) does not hold.
We mean that, if we call X-affine a C∞ function such that Xu is constant, then there are
choices of X for which not all X-Sobolev functions can be approximated in W 1,p

X by piecewiese
X-affine functions [MPSC, Section 2.3]. So, as shown in Section 2, we have to adopt a different
strategy. Anyway we present some useful Meyers-Serrin type results that are still true even
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in this non Euclidean framework and that allow us to approximate X-Sobolev functions with
smooth functions. For the following fundamental theorem we refer to [FSSC2, Theorem 1.2].

Theorem 1.6. Let Ω be an open subset of Rn. For any u ∈ W 1,p
X (Ω) there exists a sequence

uε ∈ W 1,p
X (Ω) ∩ C∞(Ω) such that

uε → u in W 1,p
X (Ω) as ε→ 0.

Proposition 1.7. Given u ∈ W 1,p
X,loc(Ω) and A′ b Ω, then there exists a function v ∈ W 1,p

X (Ω)
which coincides with u on A′.

Proof. Let ϕ be a smooth cut-off function between A′ and Ω. It is straightforward to verify
that the function v(x) := ϕ(x)u(x) satisfies the desired requirements. �

The previous proposition, together with Theorem 1.6, allows to prove the following result.

Proposition 1.8. Take a function u ∈ W 1,p
X,loc(Ω) and an open set A′ b Ω. Then there exists

a sequence (uε)ε ⊆ W 1,p
X (Ω) such that

uε|A′ ∈ W 1,p
X (A′) ∩ C∞(A′) and uε|A′ −→ u|A′ in W 1,p

X (A′).

Proof. Let us fix u ∈ W 1,p
X,loc(Ω) and A′ ∈ A0. By Proposition 1.7 we can find a function

ũ ∈ W 1,p
X (Ω) such that u|A′ = ũ|A′ , and by Theorem 1.6 there exists a sequence (uε)ε ⊆

W 1,p
X (Ω)∩C∞(Ω) converging to ũ inW 1,p

X (Ω). It is easy to see that (uε|A′)ε ⊆ W 1,p
X (A′)∩C∞(A′);

moreover, since u|A′ = ũ|A′ , we conclude that uε|A′ −→ u|A′ in W 1,p
X (A′). �

1.4. Failure of a Lusin-Type Theorem. When dealing with integral representation in clas-
sical Sobolev spaces one might exploit the following Lusin-type result (cf. [CZ, Theorem 13]):

Proposition 1.9. Let Ω ⊆ Rn be open and bounded, 1 ≤ p ≤ +∞ and u ∈ W 1,p(Ω). Then,
for any ε > 0, there exists Aε ∈ A and v ∈ C1(Ω) such that |Aε| ≤ ε and u|Ω\Aε = v|Ω\Aε.

Under reasonable assumptions (cf. [BD2, Lemma 2.7]) this result allows to extend an integral
representation result from C1(Ω) × A to W 1,p(Ω) × A. The following counterexample shows
that an analogue of Proposition 1.9 does not hold in a general X-Sobolev space.

Counterexample. In this example we speak about approximate differentiability and approx-
imate partial derivatives according to [Fe, Section 3.1.2]. Let us take n = 2, m = 1, Ω =
(0, 1) × (0, 1) and X = X1 = ∂

∂x
(which satisfies the (LIC)). Let us consider a function

w : (0, 1) −→ R which is bounded, continuous but which is not approximately differentiable for
a.e. x ∈ (0, 1) (see for instance [Sa, p. 297]), and define the function u : Ω −→ R as

u(x, y) := w(y).

We have that u ∈ L∞(Ω) and it is constant w.r.t. x. Thus, for any ϕ ∈ C∞c (Ω), we have that

−
∫

Ω
u
∂ϕ

∂x
dx = −

∫ 1

0
dy w(y)

∫ 1

0
dx

∂ϕ

∂x
= 0,

and so Xu = 0. Hence u ∈ W 1,∞
X (Ω) and in particular we have that u ∈ W 1,p

X (Ω) for any
p ∈ [1,+∞]. If it was the case that u satisfies the desired property, then we would have that,
for a.e. (x, y) in Ω, u is approximately differentiable at (x, y) (see [LT, Theorem 1]). Thus,
according to [Sa, Theorem 12.2] and to the fact that u is constant w.r.t. x, we would have that
for any x ∈ (0, 1) and for a.e. y ∈ (0, 1), the function z 7→ u(x, z) = w(z) is approximately
differentiable at y, but this last assertion is in contradiction with our choice of w.
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1.5. Algebraic Properties of X. Here we present some algebraic properties of the coefficient
matrix C : Ω −→ Rm×n. The following results have been achieved in [MPSC, Section 3.2].

Definition 1.10. Let X be a family of Lipschitz vector fields. For any x ∈ Ω we define the
linear map Lx : Rn −→ Rm as

Lx(v) := C(x)v if v ∈ Rn

and
Nx := ker(Lx), Vx := {C(x)T z : z ∈ Rm}.

From standard linear algebra we know that Rn = Nx ⊕ Vx, and so, for any x ∈ Ω and ξ ∈ Rn,
there is a unique choice of ξNx ∈ Nx and ξVx ∈ Vx such that

ξ = ξNx + ξVx .

Finally we define Πx : Rn → Vx ⊂ Rn as the projection Πx(ξ) := ξVx.

These definitions make sense for a generic family of Lipschitz vector fields, but the following
two propositions list some very useful invertibility and continuity properties that are typical of
those families of vector fields satisfying the (LIC).

Proposition 1.11. Let X be a family of Lipschitz vector fields satisfying the (LIC) on Ω. Then
the following facts hold:

(i) dim Vx = m for each x ∈ ΩX and Lx(Vx) = Rm.
In particular Lx : Vx → Rm is an isomorphism.

(ii) Let
B(x) := C(x)CT (x) x ∈ Ω .

Then, for each x ∈ ΩX , B(x) is a symmetric invertible matrix of order m. Moreover
the map B−1 : ΩX → L(Rm,Rm), defined as

B−1(x)(z) := B(x)−1z if z ∈ Rm ,

is continuous.
(iii) For each x ∈ ΩX , the projection Πx can be represented as

Πx(ξ) = ξVx = C(x)TB(x)−1C(x) ξ, ∀ ξ ∈ Rn .

Remark. It is easy to see that NX = {x ∈ Ω : detB(x) = 0}. Hence NX is closed in Ω.

Proposition 1.12. Let X be a family of Lipschitz vector fields satisfying the (LIC) on Ω. Then
the map Lx : Vx → Rm is invertible and the map L−1 : ΩX → L(Rm,Rn) defined as

L−1(x) := L−1
x if x ∈ ΩX

belongs to C0(ΩX ,L(Rm,Rn)).

1.6. Local Functionals. We conclude this section by giving some definitions about increasing
set functions, for which we refer to [Dal, Chapter 14], and local functionals defined on W 1,p

X .
From now on we assume that X is a family of Lipschitz vector fields satisfying the (LIC) on Ω.

Definition 1.13. We say that ω : Ω× [0,+∞) −→ [0,+∞) is a locally integrable modulus of
continuity if and only if

r 7→ ω(x, r) is increasing, continuous and ω(x, 0) = 0 for a.e. x ∈ Ω
and

x 7→ ω(x, r) ∈ L1
loc(Ω) ∀r ≥ 0.

Definition 1.14. Let us consider a functional F : F ×A −→ [0,+∞], where F is a functional
space such that C1(Ω) ⊆ F . We say that:
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(i) F satisfies the strong condition (ω) if there exists a sequence (ωk)k of locally integrable
moduli of continuity such that

|F (v,A′)− F (u,A′)| ≤
∫
A′
ωk(x, r) dx (1.2)

for any k ∈ N, A′ ∈ A0, r ∈ [0,∞), u, v ∈ C1(Ω) such that

|u(x)|, |v(x)|, |Du(x)|, |Dv(x)| ≤ k

|u(x)− v(x)|, |Du(x)−Dv(x)| ≤ r;

for all x ∈ A′.
(ii) F satisfies the weak condition (ω) if there exists a sequence (ωk)k of locally integrable

moduli of continuity such that

|F (u+ s, A′)− F (u,A′)| ≤
∫
A′
ωk(x, |s|)dx

for any k ∈ N, A′ ∈ A0, s ∈ R, u ∈ C1(Ω) such that

|u(x)|, |u(x) + s|, |s| ≤ k ∀x ∈ A′.

Definition 1.15. Let α : A −→ [0,+∞] be a function. We say that α is
(i) increasing if it holds that α(A) ≤ α(B) for any A,B ∈ A s.t. A ⊆ B;

(ii) inner regular if it is increasing and α(A) = sup{α(A′) : A′ b A} for any A ∈ A;
(iii) subadditive if it is increasing and, for any A,B,C ∈ A with A ⊆ B ∪ C,

α(A) ≤ α(B) + α(C);

(iv) superadditive if it is increasing and, for any A,B,C ∈ A with A∩B = ∅ and A∪B ⊆ C,

α(C) ≥ α(A) + α(B);

(v) a measure if it is increasing and the restriction to A of a non-negative Borel measure.

Definition 1.16. Let Ω ⊆ Rn be an open and bounded set, let 1 ≤ p < +∞ and Let X be a
family of Lipschitz vector fields and consider a functional

F : W 1,p
X,loc(Ω)×A −→ [0,+∞].

We say that F is:
(i) a measure if, for any u ∈ W 1,p

X,loc(Ω), F (u, ·) : A −→ [0,+∞] is a measure;
(ii) local if, for any A′ ∈ A0 and u, v ∈ W 1,p

X,loc(Ω), then

u|A′ = v|A′ =⇒ F (u,A′) = F (v,A′);

Let’s take now a vector subspace G of W 1,p
X (Ω).

(iii) convex if, for any A′ ∈ A0, the function F (·, A′) : W 1,p
X (Ω) −→ [0,+∞] is convex;

(iv) p-bounded if there exist a ∈ L1
loc(Ω) and b, c > 0 such that, for any A′ ∈ A0 and for any

u ∈ W 1,p
X (Ω), it holds that

F (u,A′) ≤
∫
A′
a(x) + b|Xu|p + c|u|pdx;

We say that F is lower semicontinuous if for any A′ ∈ A0, (uh)h ⊆ W 1,p
X (Ω) and

u ∈ W 1,p
X (Ω) it holds that

uh → u in W 1,p
X (Ω) =⇒ F (u,A′) ≤ lim inf

h→+∞
F (uh, A′);
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(v) lower semicontinuous (resp. weakly sequentially lower semicontinuous) if, for any A′ ∈
A0, F (·, A′) : W 1,p

X (Ω) −→ [0,+∞] is sequentially l.s.c. w.r.t. the strong (resp. weak)
topology of W 1,p

X (Ω); We say that F is weakly sequentially lower semicontinuous if for
any A′ ∈ A0, (uh)h ⊆ W 1,p

X (Ω) and u ∈ W 1,p
X (Ω) it holds that

uh ⇀ u in W 1,p
X (Ω) =⇒ F (u,A′) ≤ lim inf

h→+∞
F (uh, A′);

(vi) weakly*- sequentially lower semicontinuous if, for any A′ ∈ A0, F (·, A′) : W 1,∞(Ω) −→
[0,+∞] is sequentially l.s.c. w.r.t. the weak*- topology of W 1,∞(Ω). We say that F is
weakly*- sequentially lower semicontinuous if for any A′ ∈ A0, (uh)h ⊆ W 1,∞(Ω) and
u ∈ W 1,∞(Ω) it holds that

uh ⇀
∗ u in W 1,∞(Ω) =⇒ F (u,A′) ≤ lim inf

h→+∞
F (uh, A′).

2. Integral Representation of convex functionals

In this section we completely characterize a class of convex local functionals defined on W 1,p
X .

As announced, we exploit [BD1, Lemma 4.1] to get an integral representation of the form

F (u,A) =
∫
A
fe(x, u,Du)dx ∀A ∈ A, ∀u ∈ W 1,p(Ω).

Then the forthcoming Propositions 2.1 and 2.2 guarantee the existence of a non Euclidean
Lagrangian f such that∫

A
f(x, u,Xu)dx =

∫
A
fe(x, u,Du)dx ∀A ∈ A, ∀u ∈ C∞(A).

Finally, we extend the integral representation to the whole W 1,p
X,loc(Ω).

The following propositions, which are almost totally inspired by [MPSC, Theorem 3.5] and
[MPSC, Lemma 3.13], allow us to pass from an Euclidean to a non Euclidean integral repre-
sentation.

Proposition 2.1. Let fe : Ω × R × Rn → [0,∞] be a Carathéodory function. Define f :
Ω× R× Rm → [0,∞] as

f(x, u, η) :=

 fe(x, u, L−1(x)(η)) if (x, u, η) ∈ ΩX × R× Rm

0 otherwise
(2.1)

Then the following facts hold:
(i) f is a Carathéodory function;

(ii) if fe(x, ·, ·) is convex for a.e. x ∈ Ω, then f(x, ·, ·) is convex for a.e. x ∈ Ω;
(iii) if fe(x, u, ·) is convex for a.e. x ∈ Ω and for any u ∈ R, then f(x, u, ·) is convex for

a.e. x ∈ Ω and for any u ∈ R;
(iv) If we assume that

fe(x, u, ξ) = fe(x, u,Πx(ξ)) for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rn, (2.2)
then it follows that∫

A
fe(x, u,Du) dx =

∫
A
f(x, u,Xu) dx ∀A ∈ A, ∀u ∈ C∞(A). (2.3)

Proof. (i) First we want to show that, for any (u, η) ∈ R × Rm, the function x 7→ f(x, u, η)
is measurable. Let us fix then (u, η) ∈ R × Rm, define the function Φ : ΩX −→ R × Rn as
Φ(x) := (u, L−1(x)(η)) and extend it to be zero on Ω \ ΩX . By Proposition 1.12, Φ|ΩX is
continuous, and so in particular Φ is measurable. Noticing that

f(x, u, η) = fe(x,Φ(x)) ∀x ∈ ΩX ,
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being fe a Carathéodory function and recalling [Dac, Proposition 3.7] we conclude that x 7→
f(x, u, η) is measurable. Let us define now the function Ψ : ΩX × R × Rm −→ ΩX × R × Rn

as Ψ(x, u, η) := (x, u, L−1(x)(η)). Since on ΩX we have that f = fe ◦ Ψ, then, for any fixed
x ∈ ΩX such that fe(x, ·, ·) is continuous, f(x, ·, ·) is the composition of a continuous function
and a linear function, and so it is continuous.
(ii) If x ∈ ΩX is such that fe(x, ·, ·) is convex, then f = fe ◦ Ψ is the composition of a convex
function and a linear function, and so it is convex.
(iii) Follows as (ii).
(iv) Assume that (2.2) holds. Let us fix A ∈ A and u ∈ C∞(A). From the regularity of u we
have that Xu(x) = C(x)Du(x). By Proposition 1.11 we get

Lx(Πx(Du)) = Lx(C(x)TB(x)−1C(x)Du) = C(x)C(x)TB(x)−1C(x)Du
= B(x)B(x)−1C(x)Du = C(x)Du = Lx(Du),

and
f(x, u,Xu) = f(x, u, C(x)Du) = f(x, u, Lx(Du)) = f(x, u, Lx(Πx(Du)))

= fe(x, u, L−1
x (Lx(Πx(Du)))) = fe(x, u,Πx(Du)) = fe(x, u,Du).

Now (2.3) follows by integrating over A.
�

In the following result we provide some sufficient conditions to guarantee (2.2).

Proposition 2.2. Let fe : Ω× R× Rn −→ [0,+∞] be a Carathéodory function such that
(i) fe(x, u, ·) is convex for a.e x ∈ Ω, for any u ∈ R;

(ii) there exist a ∈ L1
loc(Ω) and b, c > 0 such that

fe(x, u, ξ) ≤ a(x) + b|C(x)ξ|p + c|u|p (2.4)

for a.e. x ∈ Ω, for any (u, ξ) ∈ R× Rn.
Then fe satisfies (2.2).

Proof. Follows with some trivial modifications as in [MPSC, Lemma 3.13]. �

Let us now state and prove the main result of this section.

Theorem 2.3. Let F : W 1,p
X,loc(Ω)×A −→ [0,+∞] be such that:

(i) F is a measure;
(ii) F is local;
(iii) F is convex;
(iv) F is p-bounded.

Then there exists a Carathéodory function f : Ω× R× Rm −→ [0,+∞) such that

(u, ξ) 7→ f(x, u, ξ) is convex for a.e. x ∈ Ω, (2.5)

f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rm (2.6)
and the following representation formula holds:

F (u,A) =
∫
A
f(x, u,Xu)dx ∀u ∈ W 1,p

X,loc(Ω), ∀A ∈ A. (2.7)

Moreover, if f1, f2 : Ω× R× Rm −→ [0,+∞) are two Carathéodory functions satisfying (2.5),
(2.6) and (2.7), then there exists Ω̃ ⊆ Ω such that |Ω̃| = |Ω| and

f1(x, u, ξ) = f2(x, u, ξ) ∀x ∈ Ω̃, ∀(u, ξ) ∈ R× Rm. (2.8)
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Proof. First Step. Let
C := max{sup{|cj,i(x)| : x ∈ Ω} : i = 1, . . . , n, j = 1, . . . ,m}.

Then from our assumptions on X it follows that 0 < C < +∞. Let b̃ := Cpb. Using (iv) and
recalling that for all u ∈ W 1,p(Ω) we have that Xu(x) = C(x)Du(x) it follows that

F (u,A′) ≤
∫
A′
a(x) + c|u|p + b̃|Du|pdx ∀A′ ∈ A0, ∀u ∈ W 1,p(Ω). (2.9)

Thus we can apply [BD1, Lemma 4.1] to get a Carathéodory function fe : Ω×R×Rn −→ [0,+∞]
such that

F (u,A) =
∫
A
fe(x, u,Du)dx ∀A ∈ A, ∀u ∈ W 1,p

loc (Ω), (2.10)

fe(x, u, ξ) ≤ a(x) + b̃|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rn (2.11)
and

fe(x, ·, ·) : R× Rn → [0,∞] is convex for a.e. x ∈ Ω. (2.12)
Second Step. We want to prove that fe satisfies (2.2). By Proposition 2.2 and (2.12) we only
need to prove (2.4). Let us take then Ω′ ⊆ Ω such that |Ω′| = |Ω| and

(u, ξ) 7→ fe(x, u, ξ) is convex and finite ∀x ∈ Ω′, (2.13)
and fix x ∈ Ω′, u ∈ Q and ξ ∈ Qn. By (2.10), for any R > 0 small enough to ensure that
BR(x) b Ω, we have that

F (ϕx,u,ξ, BR(x)) =
∫
BR(x)

fe(y, u+ 〈ξ, y − x〉, ξ) dy

and from (iv) we have that

F (ϕx,u,ξ, BR(x)) ≤
∫
BR(x)

a(y) + c|u+ 〈ξ, y − x〉|p + b|C(y)ξ|p dy,

where ϕx,u,ξ is as in (1.1). Combining these two facts and dividing by |BR(x)| we obtain that∫
BR(x)

fe(y, u+ 〈ξ, x− y〉, ξ)dy ≤
∫
BR(x)

a(y) + c|u+ 〈ξ, y − x〉|p + b|C(y)ξ|pdy. (2.14)

Since the right integrand is in L1
loc(Ω), and (2.14) holds indeed for all A′ ∈ A0, the left one is

in L1
loc(Ω) as well. Therefore, thanks to Lebesgue Theorem we can find Ωu,ξ ⊆ Ω′ such that

|Ωu,ξ| = |Ω| and
fe(x, u, ξ) ≤ a(x) + c|u|p + b|C(x)ξ|p ∀x ∈ Ωu,ξ.

Setting Ω̃ := ⋂
(u,ξ)∈Q×Qn Ωu,ξ, it holds that |Ω̃| = |Ω| and

fe(x, u, ξ) ≤ a(x) + c|u|p + b|C(x)ξ|p ∀x ∈ Ω̃, ∀(u, ξ) ∈ Q×Qn.

Since the map (u, ξ) 7→ fe(x, u, ξ) is continuous for any x ∈ Ω̃ and Q×Qn is dense in R× Rn

then (2.4) holds and the conclusion follows.
Third Step. Thanks to the previous step we can apply (iv) of Proposition 2.1. Hence we get∫

A
fe(x, u,Du)dx =

∫
A
f(x, u,Xu)dx ∀A ∈ A, u ∈ C∞(A), (2.15)

where f : Ω× R× Rm −→ [0,+∞] is the function defined in (2.1). First of all we can assume
that f is finite up to modifying it on a set of measure zero. Moreover, thanks to (2.12) and (ii)
of Proposition 2.1 we have that f satisfies (2.5). Now we want to prove that f satisfies (2.6).
Let us fix x ∈ Ω, u ∈ Q and ξ ∈ Qn: by (iv), (2.10) and (2.15) we have that∫

BR(x)
f(y, ϕx,u,ξ, Xϕx,u,ξ) dy ≤

∫
BR(x)

a(y) + c|ϕx,u,ξ|p + b|Xϕx,u,ξ|pdy

=
∫
BR(x)

a(y) + c|u+ 〈ξ, y − x〉|p + b|C(y)ξ|p dy,
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and so, dividing by |BR(x)|, we get that∫
BR(x)

f(y, u+ 〈ξ, y − x〉, C(y)ξ)dy ≤
∫
BR(x)

a(y) + c|u+ 〈ξ, y − x〉|p + b|C(y)ξ|pdy.

Arguing as in the second step we can conclude that
f(x, u, C(x)ξ) ≤ a(x) + b|C(x)ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rn.

Finally, recalling that for x ∈ ΩX the map Lx : Vx → Rm is surjective, (2.6) follows.
Fourth Step. Here we want to prove that (2.7) holds. Let us fix u ∈ W 1,p

X (Ω) and A′ ∈ A0,
and consider the two functionals

FA′ , GA′ : ({v|A′ : v ∈ W 1,p
X (Ω)}, ‖ · ‖W 1,p

X (A′)) −→ [0,+∞]

defined as FA′(v|A′) := F (v,A′) and GA′(v|A′) :=
∫
A′ f(x, v,Xv)dx respectively. Thanks to (iii),

(iv), (2.5) and (2.6), they are convex and bounded on bounded sets on {v|A′ : v ∈ W 1,p
X (Ω)}.

Hence, they are continuous (cf. [ET, Lemma 2.1]). Moreover, from Proposition 1.8 we can find
a sequence (uε)ε ⊆ W 1,p

X (Ω) such that

(uε|A′)ε ⊆ W 1,p
X (A′) ∩ C∞(A′) and uε|A′ −→ u|A′ in W 1,p

X (A′).
From (2.10) and (2.15) we get that

F (u,A′) = lim
ε→0

F (uε, A′) = lim
ε→0

∫
A′
fe(x, uε, Duε)

= lim
ε→0

∫
A′
f(x, uε, Xuε) =

∫
A′
f(x, u,Xu)dx,

and so we assert that

F (u,A′) =
∫
A
f(x, u,Xu)dx ∀u ∈ W 1,p

X (Ω), ∀A′ ∈ A0. (2.16)

Let us take now u ∈ W 1,p
X,loc(Ω), A ∈ A and A′ b A, and, thanks to Proposition 1.7, take a

function v ∈ W 1,p
X (Ω) such that u|A′ = v|A′ . Thus, from hypothesis (ii) and from (2.16), we

have that
F (u,A′) = F (v, A′) =

∫
A′
f(x, v,Xv)dx =

∫
A′
f(x, u,Xu)dx. (2.17)

Since by hypothesis the function B 7→ F (u,B) is inner regular (cf. [Dal, Theorem 14.23]), and
noticing that the function B 7→

∫
B f(x, u,Xu)dx is inner regular, thanks to (2.17) we have that

F (u,A) = sup{F (u,A′) : A′ b A}

= sup
{∫

A′
f(x, u,Xu)dx : A′ b A

}
=
∫
A
f(x, u,Xu)dx,

and so we can conclude that (2.7) holds.
Fifth Step. Let us show the uniqueness of the Lagrangian. Fix then x ∈ Ω, u ∈ Q and ξ ∈ Qn:
since (2.7) holds both for f1 and f2, for any R > 0 small enough we have that∫

BR(x)
f1(y, u+ 〈ξ, y − x〉, C(y)ξ)dy =

∫
BR(x)

f2(y, u+ 〈ξ, y − x〉, C(y)ξ)dy

Since both integrand functions satisfy (2.6), then they are both in L1
loc(Ω). Again, thanks to

Lebesgue theorem, there exists Ωu,ξ ⊆ Ω such that |Ωu,ξ| = |Ω| and
f1(x, u, C(x)ξ) = f2(x, u, C(x)ξ) ∀x ∈ Ωu,ξ.

If we set
Ω̃ :=

⋂
(u,ξ)∈Q×Qn

Ωu,ξ ∩ {x ∈ Ω : (2.5) and (2.6) hold for f1 and f2} ∩ ΩX ,
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clearly we have |Ω̃| = |Ω| and it holds that

f1(x, u, C(x)ξ) = f2(x, u, C(x)ξ) ∀x ∈ Ω̃, ∀(u, ξ) ∈ Q×Qn. (2.18)

Since (u, ξ) 7→ f1(x, u, ξ) and (u, ξ) 7→ f2(x, u, ξ) are continuous for any x ∈ Ω̃, and recalling
again that for any x ∈ ΩX Lx is surjective, then (2.8) follows. �

The following theorem tells us that all the hypotheses of Theorem 2.3 are also necessary.

Theorem 2.4. Let f : Ω× R× Rm −→ [0,+∞) be a Carathéodory function such that

(u, ξ) 7→ f(x, u, ξ) is convex for a.e. x ∈ Ω, (2.19)

f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rm (2.20)
for some b, c > 0 and a ∈ L1

loc(Ω). If we set the functional F : W 1,p
X,loc(Ω)×A −→ [0,+∞] as

F (u,A) :=
∫
A
f(x, u,Xu)dx ∀u ∈ W 1,p

X,loc(Ω), ∀A ∈ A,

then F satisfies hypotheses (i)− (iv) of Theorem 2.3.

Proof. Let us fix u ∈ W 1,p
X,loc(Ω): our aim is to prove that α(A) := F (u,A) is a measure. Notice

that, being f ≥ 0, α is increasing, and of course α(∅) = 0. Then, according to [Dal, Theorem
14.23], it suffices to show that α is subadditive, superadditive and inner regular. The first two
properties are trivial, so let us focus on the third one. Let us fix A ∈ A and define the sequence
of sets (Ah)h as Ah := {x ∈ A : dist(x, ∂A) > 1

h
}. We have that (Ah)h ⊆ A0, Ah b Ah+1 b A

and ⋃h∈N+ Ah = A. Thus by the Monotone Convergence Theorem we conclude that∫
A
f(x, u,Xu)dx =

∫
A

lim
h→+∞

χAhf(x, u,Xu)dx = lim
h→+∞

∫
Ah

f(x, u,Xu)dx,

and so α is a measure. Property (ii) is straightforward, noticing that the X-gradients of two
a.e. equal functions coincide a.e. Finally, (iii) and (iv) follow from (2.19) and (2.20). �

3. Integral Representation of Weakly*- Sequentially Lower Semicontinuous
Functionals

In this section we characterize a class of local functionals defined on W 1,p
X for which we do

not require neither translations-invariance nor convexity, but which are weakly*- sequentially
lower semicontinuous in W 1,∞. It is well known (cf. [AF]) that, for an integral functional of
the form

F (u,A) :=
∫
A
fe(x, u,Du)dx,

the weak*- lower semicontinuity is equivalent to the convexity in the third entry of fe. Therefore
we can adopt the same strategy employed in the previous section, exploiting [BD2, Theorem
1.10] to get an Euclidean integral representation of the form

F (u,A) =
∫
A
fe(x, u,Du)dx ∀A ∈ A, , ∀u ∈ W 1,p(Ω).

Again, Propositions 2.1 and 2.2 guarantee the existence of a non Euclidean Lagrangian f such
that ∫

A
f(x, u,Xu)dx =

∫
A
fe(x, u,Du)dx ∀A ∈ A, , ∀u ∈ C∞(A).

We start by proving an useful continuity result inW 1,p
X , whose classical version is usually known

as Carathéodory continuity theorem.
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Theorem 3.1. Let f : Ω × R × Rm −→ [0,+∞] be a Carathéodory function such that there
exist a ∈ L1

loc(Ω) and b, c > 0 such that
f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rm. (3.1)

Then it holds that, for any A′ ∈ A0, the functional
F : W 1,p

X (A′) −→ [0,+∞)
defined as

F (u) :=
∫
A′
f(x, u,Xu)dx

is continuous w.r.t. the strong topology of W 1,p
X (A′).

Proof. First Step. Let us prove that F is lower semicontinuous. Fix u ∈ W 1,p
X (A′) and take a

sequence (uh)h ⊆ W 1,p
X (A′) converging to u and such that

∃ lim
h→+∞

F (uh) < +∞.

Up to a subsequence we can assume that (uh(x))h converges to u(x) and (Xuh(x))h converges
to Xu(x) for a.e. x ∈ A′. Being f Carathéodory, it follows that limh→∞ f(x, uh(x), Xuh(x)) =
f(x, u(x), Xu(x)) for a.e. x ∈ Ω. Thanks to Fatou’s Lemma we conclude that

F (u) =
∫
A′
f(x, u,Xu)dx =

∫
A′

lim inf
h→+∞

f(x, uh, Xuh)

≤ lim inf
h→+∞

∫
A′
f(x, uh, Xuh) = lim

h→+∞
F (uh).

Second Step. Here we want to prove that F is upper semicontinuous. Again, fix u ∈ W 1,p
X (A′)

and take a sequence (uh)h ⊆ W 1,p
X (A′) converging to u and such that

∃ lim
h→+∞

F (uh) > −∞.

Up to a subsequence, we can assume that (uh(x))h converges to u(x) and (Xuh(x))h converges
to Xu(x) for almost every x ∈ A′. Let us define the sequence of functions

gh(x) := −f(x, uh, Xuh) + C(|Xuh|p + |uh|p)
where C := max{b, c} > 0. Using (3.1) we get

gh(x) ≥ −a(x) for a.e. x ∈ A′,
and so, since the right side belongs to L1(A′), we can apply Fatou’s Lemma and get that∫

A′
−f(x, u,Xu)dx+‖u‖W 1,p

X (A′) =
∫
A′

lim inf
h→+∞

gh(x, u,Xu)dx

=
∫
A′

lim inf
h→+∞

(−f(x, uh, Xuh) + C(|Xuh|p + |uh|p))dx

≤ lim inf
h→+∞

∫
A′
−f(x, uh, Xuh) + C(|Xuh|p + |uh|p))dx

= lim
h→+∞

∫
A′
−f(x, uh, Xuh) + C lim

h→+∞
‖uh‖W 1,p

X (A′)

= lim
h→+∞

∫
A′
−f(x, uh, Xuh) + ‖u‖W 1,p

X (A′).

�

In the following proposition we prove that the notion of lower semicontinuity introduced in
Definition 1.16 is actually equivalent to a more useful condition.

Proposition 3.2. Let F : W 1,p
X,loc(Ω)×A −→ [0,+∞] be such that:

(i) F is a measure;
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(ii) F is local.
Then the following conditions are equivalent:

(a) F is lower semicontinuous;
(b) ∀A′ ∈ A0, FA′ : ({u|A′ : u ∈ W 1,p

X (Ω)}, ‖ · ‖W 1,p
X (A′)) → [0,+∞] defined as FA′(u|A′) :=

F (u,A′) is lower semicontinuous.

Proof. (b) =⇒ (a). It is straightforward.
(a) =⇒ (b). Fix an open set A′ ∈ A0 and take (uh)h, u in W 1,p

X (Ω) such that ‖uh|A′ −
u|A′‖W 1,p(A′) → 0. Now, for any k ∈ N, take an open set Ak such that Ak b Ak+1 b A′ and⋃+∞
k=0Ak = A′, and a smooth cut-off function ϕk between Ak and A′. For any h, k ∈ N, define

the functions vk := ϕku and vkh := ϕkuh. We have that, for any h, k ∈ N, vkh, vk belong to
W 1,p
X (Ω), vkh|Ak = uh|Ak , vk|Ak = u|Ak and moreover limh→∞ ‖vkh− vk‖W 1,p

X (Ω) = 0 for any k ∈ N.
Using (i) and (ii) we get

F (u,A′) = lim
k→∞

F (u,Ak) = lim
k→∞

F (vk, Ak)

≤ lim
k→∞

lim inf
h→∞

F (vkh, Ak) = lim
k→∞

lim inf
h→∞

F (uh, Ak)

≤ lim
k→∞

lim inf
h→∞

F (uh, A′) = lim inf
h→∞

F (uh, A′).

�

We are ready to state the main result of this section.

Theorem 3.3. Let F : W 1,p
X,loc(Ω)×A −→ [0,+∞] be such that:

(i) F is a measure;
(ii) F is local;
(iii) F satisfies the weak condition (ω);
(iv) F is p-bounded;
(v) F is weakly*- sequentially lower semicontinuous;
(vi) F is lower semicontinuous.

Then there exists a unique Carathéodory function f : Ω× R× Rm −→ [0,+∞) such that
ξ 7→ f(x, u, ξ) is convex for a.e. x ∈ Ω, ∀u ∈ R, (3.2)

f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rm (3.3)
and the following representation formula holds:

F (u,A) =
∫
A
f(x, u,Xu)dx ∀u ∈ W 1,p

X,loc(Ω), ∀A ∈ A. (3.4)

Remark. If we substitute hypotheses (v) and (vi) with
(v′) F is weakly sequentially lower semicontinuous,

then the conclusions of Theorem 3.3 still hold. Indeed, thanks to Proposition 1.5 the latter is
stronger than both (v) and (vi), even if not equivalent in general.

Proof. First Step. Arguing as in the first step of the proof of Theorem 2.3, the restriction of
F to W 1,p

loc (Ω)×A satisfies all the hypotheses of [BD2, Theorem 1.10]. Thus there exist b̃ > 0
and a Carathéodory function fe : Ω× R× Rn −→ [0,+∞] such that

F (u,A) =
∫
A
fe(x, u,Du)dx ∀A ∈ A, ∀u ∈ W 1,p

loc (Ω), (3.5)

fe(x, u, ξ) ≤ a(x) + b̃|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rn (3.6)
and

fe(x, u, ·) : Rn → [0,∞] is convex for a.e. x ∈ Ω, ∀u ∈ R. (3.7)
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Now, arguing as in the second step of the proof of Theorem 2.3, from (3.6) and (3.7) and
recalling Propositions 2.1 and 2.2, we obtain that∫

A
fe(x, u,Du)dx =

∫
A
f(x, u,Xu)dx ∀A ∈ A, u ∈ C∞(A), (3.8)

where f : Ω × R × Rm −→ [0,+∞] is the Carathéodory function defined in (2.1). Up to
modifying f on a set of measure zero, we can assume that it is finite. Moreover, arguing as in
the third step of the proof of Theorem 2.3, f satisfies (3.2) and (3.3).
Second Step. Here we prove that (3.4) holds. Let us start by fixing u ∈ W 1,p

X (Ω) and A′ ∈ A0.
Thanks to Proposition 1.8 we can find a sequence (uh)h ⊆ W 1,p

X (Ω) such that

(uh|A′)h ⊆ W 1,p
X (A′) ∩ C∞(A′) and uh|A′ −→ u|A′ in W 1,p

X (A′).
From this, (vi), (3.5), (3.8), Theorem 3.1 and Proposition 3.2 it follows that

F (u,A′) ≤ lim inf
h→+∞

F (uh, A′) = lim inf
h→+∞

∫
A′
fe(x, uh, Duh)dx

= lim
h→+∞

∫
A′
f(x, uh, Xuh)dx =

∫
A′
f(x, u,Xu)dx,

and hence we obtain that

F (u,A′) ≤
∫
A′
f(x, u,Xu)dx ∀A′ ∈ A0, ∀u ∈ W 1,p

X (Ω). (3.9)

To prove the converse inequality, fix u0 ∈ W 1,p
X (Ω) and set H : W 1,p

X,loc(Ω) × A −→ [0,+∞] as
H(u,A) := F (u+u0, A). It is straightforward to check that H satisfies all the hypotheses of the
theorem. Hence there exist a Carathéodory function h : Ω×R×Rm −→ [0,+∞), aH ∈ L1

loc(Ω)
and bH , cH > 0 such that

h(x, u, ξ) ≤ aH(x) + bH |ξ|p + cH |u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rm.

Moreover, it holds that

H(u,A) =
∫
A
h(x, u,Xu)dx ∀A ∈ A, ∀u ∈ C∞(A) (3.10)

and
H(u,A′) ≤

∫
A′
h(x, u,Xu)dx ∀A′ ∈ A0, ∀u ∈ W 1,p

X (Ω). (3.11)

Fix then A′ ∈ A0. Arguing as before we can find a sequence (uh)h ⊆ W 1,p
X (Ω) such that

(uh|A′)h ⊆ W 1,p
X (A′) ∩ C∞(A′) and uh|A′ −→ u0|A′ in W 1,p

X (A′).
Thus, thanks to Theorem 3.1, and the following chain of inequalities we get that∫

A′
h(x, 0, 0) (3.10)= H(0, A′) = F (u0, A

′)
(3.9)
≤

∫
A′
f(x, u0, Xu0)dx

= lim
h→+∞

∫
A′
f(x, uh, Xuh)dx = lim

h→+∞
F (uh, A′) = lim

h→+∞
H(uh − u0, A

′)
(3.11)
≤ lim

h→+∞

∫
A′
h(x, uh − u0, Xuh −Xu0)dx =

∫
A′
h(x, 0, 0)dx,

and all inequalities are indeed equalities. Being u0 arbitrarily chosen, we conclude that

F (u,A′) =
∫
A′
f(x, u,Xu)dx ∀u ∈ W 1,p

X (Ω), ∀A′ ∈ A0. (3.12)

The rest of the proof follows as in the proof of Theorem 2.3. �

The following theorem shows that the hypotheses of Theorem 3.3 are also necessary.
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Theorem 3.4. Let f : Ω× R× Rm −→ [0,+∞) be a Carathéodory function such that
ξ 7→ f(x, u, ξ) is convex for a.e. x ∈ Ω, ∀u ∈ R, (3.13)

f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rm (3.14)
for b, c > 0 and a ∈ L1

loc(Ω), and define the functional F : W 1,p
X,loc(Ω)×A −→ [0,+∞] as

F (u,A) :=
∫
A
f(x, u,Xu)dx ∀u ∈ W 1,p

X,loc(Ω), ∀A ∈ A.

Then F satisfies hypotheses (i)− (vi) of Theorem 3.3.

Proof. (i) follows as in the proof of Theorem 2.4, while (ii) is trivial. In order to prove (iii)
let us show that F satisfies the strong property (ω). This suffices, according to [BD2]. Since
f is Carathéodory, then the set Ω′ := {x ∈ Ω : (u, ξ) 7→ f(x, u, ξ) is continuous} satisfies
|Ω′| = |Ω|. For any k ∈ N and ε > 0 set Ek

ε ⊆ R× R× Rm × Rm as
Ek
ε := {(u, v, ξ, η) : |u|, |v|, |ξ|, |η| ≤ k, |u− v|, |ξ − η| ≤ ε}

and the function

ωk(x, ε) :=

 sup{|f(x, u, ξ)− f(x, v, η)| : (u, v, ξ, η) ∈ Ek
ε } if x ∈ Ω′,

0 otherwise.

We show that, for any k, ωk is a locally integrable modulus of continuity. Let us fix then
ε ≥ 0: since (u, ξ) 7→ f(x, u, ξ) is continuous for almost every x ∈ Ω, then the supremum in
the definition of ωk can be taken over a countable subset of Ek

ε . Since for any (u, v, ξ, η) the
function x 7→ |f(x, u, ξ) − f(x, v, η)| is measurable, then ωk(·, ε) is measurable. We are left to
show that it belongs to L1

loc(Ω). Observe that by (3.14) it follows that, for any (u, v, ξ, η) ∈ Ek
ε ,

|f(x, u, ξ)− f(x, v, η)| ≤ 2|a(x)|+ b|ξ|p + b|η|p + c|u|p + c|v|p

≤ 2|a(x)|+ 4k(b+ c).

Since the right side does not depend on (u, v, ξ, η) ∈ Ek
ε , we conclude that

ωk(x, ε) ≤ 2|a(x)|+ 4k(b+ c).
Hence ωk(·, ε) ∈ L1

loc(Ω). Fix now x ∈ Ω′. Since Ek
ε ⊆ Ek

δ for any ε ≤ δ, then ωk(x, ·)
is increasing, and ωk(x, 0) = 0. Finally its continuity follows from the continuity of f(·, u, ξ).
Then (ωk)k is a sequence of locally integrable moduli of continuity. Let us recall that, if we define
C := max{sup{|cj,i(x)| : x ∈ Ω} : i = 1, . . . , n, j = 1, . . . ,m}, it holds that 0 < C < +∞. Let
us define now, for any k ∈ N, the function

ω̃k(x, ε) := ω(bCc+1)k(x,Cε) ∀x ∈ Ω, ∀ε ≥ 0.
Of course we have that (ω̃k)k is still a sequence of locally integrable moduli of continuity: we
show that such a sequence satisfies (1.2). Take A′ ∈ A0, k ∈ N, ε ≥ 0, u, v ∈ C1(Ω) such that

|u(x)|, |v(x)|, |Du(x)|, |Dv(x)| ≤ k, |u(x)− v(x)|, |Du(x)−Dv(x)| ≤ ε ∀x ∈ A′.
Then it follows that

|Xu(x)| = |C(x)Du(x)| ≤ C|Du(x)| ≤ Ck ≤ (bCc+ 1)k,
|Xv(x)| = |C(x)Dv(x)| ≤ C|Dv(x)| ≤ Ck ≤ (bCc+ 1)k

and
|Xu(x)−Xv(x)| = |C(x)(Du(x)−Dv(x))| ≤ C|Du(x)−Dv(x)| ≤ Cε.

Thus we conclude that

|F (u,A′)− F (v, A′)| ≤
∫
A′
|f(x, u,Xu)− f(x, v,Xv)|dx ≤

∫
A′
ω̃k(x, ε)dx,
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and so also (iii) is proved. (iv) follows easily from (3.14), while (vi) is a direct consequence of
Theorem 3.1. Let us now defineH : W 1,∞(Ω)×A −→ [0,+∞] as the restriction toW 1,∞(Ω)×A
of F . Then, since for every u ∈ W 1,∞(Ω) it holds that Xu(x) = C(x)Du(x), if we define
fe : Ω× R× Rn −→ [0,+∞) as

fe(x, u, ξ) := f(x, u, C(x)ξ)
we can easily notice that fe is a Caratheodory function, convex in the third argument and such
that

H(u,A) =
∫
A
fe(x, u,Du)dx.

Applying [AF, Theorem 2.1], condition (v) holds for H and hence for F . �

4. Integral Representation of Non-convex Functionals

In this section we want to exploit [BD2, Theorem 1.8] to characterize a class of local func-
tionals for which again we do not require neither translations-invariance nor convexity, and for
which we want to weaken the assumption of weak*- sequential lower semicontinuity in Theorem
3.3. Convexity was a crucial assumption in Proposition 2.2 to guarantee the validity of (2.2),
which can be easily seen to fail if we drop it. Indeed

Example. Let us take Ω = B1(0) ⊆ R2, m = 1 and

X1 := x
∂

∂y
.

Then X1 is a Lipschitz vector field satisfying the (LIC) on Ω, with NX := {(x, y) ∈ Ω : x = 0}.
Clearly, for all (x, y) ∈ ΩX we have

C((x, y))T ·B−1((x, y)) · C((x, y)) =
[
0
x

]
·
[ 1
x2

]
·
[
0 x

]
=
[
0 0
0 1

]
,

thus by Proposition 1.11 it follows that
Π(x,y)(ξ1, ξ2) = (0, ξ2) ∀(ξ1, ξ2) ∈ R2, ∀(x, y) ∈ ΩX . (4.1)

Let us define the map fe : Ω× R× R2 −→ [0,+∞) as

fe((x, y), u, (ξ1, ξ2)) :=

 1− ξ2
1 − ξ2

2 if ξ2
1 + ξ2

2 ≤ 1
0 otherwise

.

Clearly, fe is a bounded Carathéodory function not convex in the third entry. Moreover, for
any (x, y) ∈ ΩX and (ξ1, ξ2) ∈ R2 with ξ2

1 + ξ2
2 ≤ 1, thanks to (4.1) it holds that

fe((x, y), u,Π(x,y)(ξ1, ξ2)) = 1− ξ2
2 .

We conclude that (2.2) does not hold.

On the other hand it is easy to see that there are cases when Proposition 2.2 still holds even
if the Lagrangian is not convex in the third argument, as the following example shows.

Example. Let us take n,m,X and Ω as in the previous example, and define the function
fe : Ω× R× R2 −→ [0,+∞) as

fe((x, y), u, (ξ1, ξ2)) :=

 1− ξ2
2 if |ξ2| ≤ 1

0 otherwise
.

Then fe is again a bounded Carathéodory function which is not convex in the third entry.
Anyway we can easily see that fe satisfies (2.2).
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At this point we may ask ourselves if there is a way to weaken the convexity of fe in the
third entry which is still able to guarantee the validity of (2.2). In the previous example we see
that, even if fe is not globally convex in the third entry, it is anyway convex along the direction
indicated by Nx. This leads us to the following

Definition 4.1. We say that a Carathéodory function fe : Ω×R×Rn −→ [0,+∞] is X-convex
if, for a.e. x ∈ Ω and for any u ∈ R, t ∈ (0, 1) and ξ1, ξ2 ∈ Rn such that ξ2 − ξ1 ∈ Nx, it holds
that

fe(x, u, tξ1 + (1− t)ξ2) ≤ tfe(x, u, ξ1) + (1− t)fe(x, u, ξ2).

The following proposition tells us that X-convexity is the proper requirement that we have
to assume on the Euclidean Lagrangian.

Proposition 4.2. Let fe : Ω×R×Rn −→ [0,+∞] be a Carathéodory function such that there
exist a ∈ L1

loc(Ω) and b, c > 0 such that

fe(x, u, ξ) ≤ a(x) + b|C(x)ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rn. (4.2)

Then the following facts are equivalent:
(i) fe is X-convex;
(ii) for a.e. x ∈ Ω and for any (u, ξ) ∈ R× Rn, the function g : Nx −→ [0,+∞] defined as

g(η) := fe(x, u, ξ + η) is constant;
(iii) fe(x, u, ξ) = fe(x, u,Πx(ξ)) for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rn;

Proof. (ii)⇔ (iii) Fix x ∈ Ω such that (ii) holds. For any (u, ξ) ∈ R× Rn, we have that

fe(x, u, ξ) = fe(x, u, ξNx + Πx(ξ)) = fe(x, u,Πx(ξ)).

Conversely, take x ∈ Ω such that (iii) holds. For any (u, ξ) ∈ R×Rn and η ∈ Nx, it holds that

fe(x, u, ξ + η) = fe(x, u,Πx(ξ + η)) = fe(x, u,Πx(ξ)) = fe(x, u, ξ).

(i) ⇔ (ii) The right implication is trivial. Conversely, assume (i) and fix x ∈ Ω such that (i)
holds and a(x) < +∞. Thanks to (4.2) we have that, for any fixed u ∈ R, ξ ∈ Rn and η ∈ Nx,

g(η) = fe(x, u, ξ + η) ≤ a(x) + b|C(x)ξ + C(x)η|p + c|u|p

= a(x) + b|C(x)ξ|p + c|u|p < +∞.

Since the right side does not depend on η, then g is bounded on Nx. Since by assumption it is
also convex on Nx, then g is constant. �

In order to guarantee the X-convexity of the Euclidean Lagrangian we exploit the zig-zag
argument employed in [BD2, Lemma 2.11].

Lemma 4.3. Let F : W 1,p
loc (Ω)×A −→ [0,+∞] be such that

(i) ∀u ∈ W 1,p
loc (Ω), the map A 7→ F (u,A) is a measure;

(ii) ∀u, v ∈ W 1,p
loc (Ω),∀A′ ∈ A0, u|A′ = v|A′ =⇒ F (u,A′) = F (v,A′);

(iii) F satisfies the weak condition (ω);
(iv) For any A′ ∈ A0 and (uh)h ⊆ W 1,p(Ω), u ∈ W 1,p(Ω) such that limh→∞ ‖uh−u‖W 1,p

X (Ω) =
0, then F (u,A′) ≤ lim infh→∞ F (uh, A′);

Then, if for any x ∈ Ω, u ∈ R and ξ ∈ Rn we define

fe(x, u, ξ) := lim sup
R→0

F (ϕx,u,ξ, BR(x))
|BR(x)| (4.3)

it holds that fe is X-convex.
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Proof. A slight modification of [BD2, Lemma 2.10] ensures the existence of a sequence (ωk)k of
locally integrable moduli of continuity and a set Ω′ ⊆ Ω such that |Ω′| = |Ω| and all the points
in Ω′ are Lebesgue points of x 7→ ωk(x, r) for any k ∈ N and for any r ≥ 0. Moreover

|fe(x, u, ξ)− fe(x, v, ξ)| ≤ ωk(x, |u− v|) (4.4)
for any x ∈ Ω′, k ∈ N, u, v ∈ R and ξ ∈ Rn such that

|ξ|, |u|, |v| ≤ k.

Take x ∈ Ω′, z ∈ R, t ∈ (0, 1), ξ1 6= ξ2 in Rn such that ξ2− ξ1 ∈ Nx, and set ξ := tξ1 + (1− t)ξ2.
We want to prove that

fe(x, z, ξ) ≤ tfe(x, z, ξ1) + (1− t)fe(x, z, ξ2). (4.5)
Let us define

ξ0 := ξ2 − ξ1

|ξ2 − ξ1|
,

and, for any h ∈ N, k ∈ Z and i = 1, 2, set

Ω1
h,k :=

{
y ∈ Ω : k − 1

h
≤ (ξ0, y) < k − 1 + t

h

}
;

Ω2
h,k :=

{
y ∈ Ω : k − 1 + t

h
≤ (ξ0, y) < k

h

}
;

Ωi
h :=

⋃
k∈Z

Ωi
h,k;

u(y) := z + (ξ, y − x) ∀y ∈ Ω;

vh(y) :=

(1− t)k−1
h
|ξ2 − ξ1|+ z + 〈ξ1, y − x〉 if y ∈ Ω1

h,k

−t k
h
|ξ2 − ξ1|+ z + 〈ξ2, y − x〉 if y ∈ Ω2

h,k

.

Arguing as in the proof of [BD1, Lemma 2.11] we have that vh → u uniformly on Ω. Hence, in
particular, vh → u strongly in Lp(Ω). Moreover, since ξ2 − ξ1 belongs to Nx and ξ is a convex
combination of ξ1 and ξ2, then both ξ − ξ1 and ξ − ξ2 belong to Nx. Thus for i = 1, 2 and for
any y ∈ Ωi

h,k we have that

|Xu(y)−Xvh(y)| = |C(x)ξ − C(x)ξi| = |C(x)(ξ − ξi)| = 0.

Therefore vh converges to u strongly in W 1,p
X (Ω). Take now k ∈ N+ such that, for any y ∈ Ω

and for any h ∈ N+,
|ξ1|, |ξ2|, |u1(y)|, |u2(y)|, |vh(y)| ≤ k.

Then, thanks to (4.4) and noticing that (see [BD2, Lemma 2.4])

F (u,A) =
∫
A
fe(x, u,Du)dx ∀u affine on Ω, ∀A ∈ A,

arguing as in [BD1, Lemma 2.11] and setting Bi
h,R(x) := BR(x) ∩ Ωi

h for i = 1, 2 and for any
R > 0 such that BR(x) b Ω, it holds that

F (vh, BR(x)) ≤
∫
B1
h,R

(x)
fe(y, u1, Du1)dy +

∫
B2
h,R

(x)
fe(y, u2, Du2)dy +

∫
Ω
wk(y, aR + b

h
),

with a := |ξ2 − ξ1| and b := at(1− t). Since vh converges to u strongly in W 1,p
X (Ω) and thanks

to hypothesis (iv) it is easy to see that

F (u,BR(x)) ≤ tF (u1, BR(x)) + (1− t)F (u2, BR(x)) +
∫

Ω
wk(y, ε),
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where this inequality holds for any ε > 0 and for any R ∈ (0, ε
a
]. Dividing both sides by |BR(x)|,

passing to the limsup and recalling that x is a Lebesgue point of y 7→ wk(y, ε), we have that

fe(x, z, ξ) ≤ tfe(x, z, ξ1) + (1− t)fe(x, z, ξ2) + wk(x, ε).

Letting ε go to zero, the thesis is proved. �

We are now ready to state and prove the main result of this section.

Theorem 4.4. Let F : W 1,p
X,loc(Ω)×A −→ [0,+∞] be such that:

(i) F is a measure;
(ii) F is local;
(iii) F satisfies the strong condition (ω);
(iv) F is p-bounded;
(v) F is lower semicontinuous.

Then there exists a unique Carathéodory function f : Ω× R× Rm −→ [0,+∞) such that

f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rm (4.6)

and the following representation formula holds:

F (u,A) =
∫
A
f(x, u,Xu)dx ∀u ∈ W 1,p

X,loc(Ω), ∀A ∈ A. (4.7)

Proof. Let us consider the restriction of F to W 1,p
loc (Ω)×A. Arguing as in the first step of the

proof of Theorem 2.3 it is easy to see that it satisfies all the hypotheses of [BD2, Theorem 1.8].
Thus, if fe is defined as in (4.3), it is a Carathéodory function and moreover there exists b̃ > 0
such that

F (u,A) =
∫
A
fe(x, u,Du)dx ∀A ∈ A, ∀u ∈ W 1,p

loc (Ω)

and
fe(x, u, ξ) ≤ a(x) + b̃|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rm.

Moreover, thanks to Lemma 4.3, fe is X-convex. So, recalling Proposition 4.2 and (iv) of
Proposition 2.1, we get that∫

A
fe(x, u,Du)dx =

∫
A
f(x, u,Xu)dx ∀A ∈ A, u ∈ C∞(A),

where f : Ω×R×Rm −→ [0,+∞] is the function defined in (2.1). Such an f can be supposed
to be finite up to modifying it on a set of measure zero. Arguing as in the third step of the
proof of Theorem 2.3, (4.6) holds, while (4.7) follows exactly as in the last step of the proof or
Theorem 3.3. Finally, uniqueness follows as usual. �

Proceeding exactly as in Theorem 3.4 we have the following

Theorem 4.5. Let f : Ω× R× Rm −→ [0,+∞) be a Carathéodory function such that

f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rm,

for b, c > 0 and a ∈ L1
loc(Ω). Setting the functional F : W 1,p

X,loc(Ω)×A −→ [0,+∞] as

F (u,A) :=
∫
A
f(x, u,Xu)dx ∀u ∈ W 1,p

X,loc(Ω), ∀A ∈ A,

then F satisfies hypotheses (i)− (v) of Theorem 4.4.
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