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Abstract

To account for material slips at microscopic scale, we take deformations as SBV
functions ϕ, which are orientation-preserving outside a jump set taken to be two-
dimensional and rectifiable. For their distributional derivative F = Dϕ we admit the
common multiplicative decomposition F = F eF p into so-called elastic and plastic
factors. Then, we consider a polyconvex energy with respect to F e, augmented by
the measure |curlF p|. For this type of energy we prove existence of minimizers
in the space of SBV maps with appropriate constraints such as the one avoiding
interpenetration of matter. Our analysis rests on a representation of the slip system
in terms of currents with both Z3 and R3 valued multiplicity. The first choice is
particularly significant in periodic crystalline materials at a lattice level, while the
latter covers a more general setting and requires to account for an energy extra term
involving the slip boundary size.

Key words: Plasticity; dislocations; energy minimization; geometric measure
theory; currents; calculus of variations.

1 Introduction

We consider the energy of bodies undergoing irrecoverable strain that emerges
from the cumulative effects of internal slips, and investigate the existence of its
minimizers in the space of special bounded variation functions. The picture
is particularly appropriate for (periodic) crystalline bodies, where slips are
associated with dislocations, but we can consider it as appropriate even for
those amorphous bodies where plasticity occurs as a consequence of internal



slips among grains of various nature. In both cases, in large strain setting a
multiplicative decomposition of the deformation gradient into so-called elastic
and plastic factors plays a key descriptive role. Here we intend it in terms of
measures by considering deformations as special bounded variation functions,
which preserve the local spatial orientation outside their jump set.

At macroscopic scale, the irrecoverable strain characterizing what we call
plasticity emerges after loading-unloading processes and has multiple specific
sources, all concerning irreversible rearrangements of matter at microscopic
spatial scales. Examples in different classes of materials are void or inclusion
growth, localized micro-crackings that favor shear over surfaces, molecular en-
tanglement or disentanglement, relative slips among neighboring crystalline
grains, slips inside single crystals. This list is not exhaustive but we settle it
because in the present paper we limit our attention to slip mechanisms and we
assume that they develop over a two-dimensional rectifiable set S. The choice
includes slip planes in single crystals, each being often, but not always, a close-
packed plane, e.g., (111) in face-centered cubic crystals, (0001) in hexagonal
ones [12, p. 3]. The boundary line between the slipping portion of a crystal and
the rest is a dislocation, a line defect which can be variously detected essentially
because the pertinent atomic-level disturbances are so severe as to determine
scattering not consonant with that of the remaining crystal [44]. Dislocations
interact with each other at finite distance; the Γ-limit of pertinent non-local
energies justifies field-type representation of dislocation densities [18], [10],
[11]. In a bottom-to-top view, we can also start by looking at atomic scale
from which we may progressively move on the basis of Kohn-Sham’s density
functional theory—based on an approximation of the ground-state energy of
an interacting inhomogeneous electron gas in a static potential—up to a large
scale simulations of dislocations [45]. Intended as line defects, they are rather
ubiquitous. We can find structures that we can appropriately consider to be
dislocations even in bubble rafts, which are soap bubbles arranged in a crys-
talline form, or in crystallized colloids. We also find line defects in complex
materials like liquid crystals. However, although in the nematic phase they are
properly disclinations because they are just characterized by a discontinuity
in the inclination of rod-like molecules composing nematics, in the smectic
phase we can recognize the presence of proper dislocations between neighbor-
ing nematic layers [1] (such a case, however, does not fall within our setting
because for nematics we need at least an additional descriptor of the material
morphology, namely the local direction of the pertinent stick molecules, not
considered here because we deal just with gross-scale deformations). In crys-
tals, the Burgers vector indicates the units of lattice translations altered by
the presence of a dislocation [27], [12], [44]. Edge dislocations can be seen as
due to a single atomic plane insertion midway in the crystal to distort nearby
planes of atoms; in this case the Burgers vector indicates a single step on a
lattice walk around the planar inclusion [27], [12]. Screw dislocations emerge
ideally from a process in which we cut through half-plane a crystal and slip
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the two faces of the cut by a lattice vector. It forms a structure in which a walk
on the lattice determines a helix and the resulting Burgers vector is parallel
to the dislocation line [12]. In both cases we may individuate a slip surface
parallel to the Burgers vector. Essentially, this is an ideal picture dating back
to V. Volterra. Real dislocations commonly have mixed nature, given by a
combination of the two mechanisms. Also, we may record partial dislocations
(distinguished into Frank’s and Shockley’s families, the former ones with ses-
sile character, the latter with glissile nature), jogs, because a dislocation line
is rarely uniformly straight, kinks, even junctions when dislocations meet in
their walk through a crystal, a walk that can develop gliding along a plane
containing also the Burgers vector, or climbing when they encounter vacancies
in the crystal lattice. In polycrystals, dislocations may go out grains pinning
at inter-granular interstices where they may favor or obstruct grain rearrange-
ments [15]. When grains slip we could think of a Burgers vector measuring
the relative shift. In fact, although the Burgers vector emerged in the analysis
of crystals, we may define it even in amorphous solids [38], a circumstance
suggesting also to think in general of linear defects moving into differentiable
manifolds [34].

Here we look at the Burgers vector in a more abstract way by considering
a multiplicity for the current associated with the deformation map. First we
consider a Z3-valued multiplicity Θ, taking into account the possibility that
the deformation graph may wrap around the line defect. Such a function gen-
eralizes the concept of relative translation b ∈ Z3 between the upper and lower
surface in the slip plane S that one finds in Volterra’s picture of dislocations in
crystals. The boundary of S is the dislocation loop Γ with Burgers vector b. We
will assume that Θ lies in the approximate tangent plane to the 2-rectifiable
set corresponding to the current S̄, in agreement with the slipping mechanism
we aim at describing. This scheme is suitable essentially for periodic crystals
with lattice based on Zm, m = 1, 2, 3, although here we develop the analysis in
three-dimensional ambient space. When we look at quasi-periodic crystals—
also called quasicrystals although quasi-periodicity in the spatial arrangement
of atoms has been included in the definition of crystals by the International
Union of Crystallography—we see that the notion of dislocation makes sense
[25]; also, thicker linear defects called metadislocations appear [22], [23]. In
quasicrystals, the pertinent (standard, in the sense of lattice-based) Burgers
vector of dislocations has a dimension that may even double the ambient one.
In fact, a quasi-periodic lattice can be viewed as the projection of a peri-
odic atomic array in a given space over an incommensurate subspace with
lower dimension (e.g., a three-dimensional quasi-periodic atomic array is the
projection of a six-dimensional periodic lattice over an incommensurate 3D-
subspace) [50], [51]. If we would analyze the circumstance, we should consider
the multiplicity Θ of a current associated with the so-called phason field,
which describes the atomic shifts necessary to ensure lattice quasi-periodicity
in the physical space [36]. We do not consider here this case. However, al-
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though we keep in mind the classical case of periodic crystals, our treatment
applies also to those bodies described, at level of morphology, just by the
region they occupy in the physical space (Cauchy’s bodies, in short), specifi-
cally those characterized by microscopic slips, which cumulatively determine
irrecoverable finite strain.

At macroscopic continuum scale, in order to represent such an effect we com-
monly accept the multiplicative decomposition of the deformation gradient F ,
into so-called elastic (F e) and plastic (F p) factors above mentioned, namely

F = F eF p (1.1)

(the first authors introducing the decomposition are those of references [7],
[26], [5], [6], [28], and we tend to accept a suggestion in reference [35], calling
it the Kröner-Lee decomposition).

Let Ω be a fit region in the three-dimensional point space, endowed with
piecewise Lipschitz boundary, a region that we take as a reference shape for
a continuous body. At every x ∈ Ω, F p maps tangent vectors to Ω at x
onto a linear space where, at least pictorially, we think to represent the local
rearrangement of matter in a small neighborhood of x. Then, F e maps that
linear space onto the tangent space of a configuration considered deformed
with respect to Ω. This last mapping represents only crowding and shearing
of material elements; it does not involve any structural irreversible change in
the matter. Per se, F is compatible with a deformation, i.e., F = Dϕ, with
ϕ : Ω → R3, which we consider to be orientation preserving, while in general
F e and F p are not compatible, i.e., unless we are in very special conditions, e.g.,
a deck of sliding cards, we cannot write ϕ as a composition of two maps, one of
elastic nature (to be definite in some way), the other which plastic character
(see the detailed analyses on crystal lattices developed in references [13], [41],
[42], [43]). By varying x in Ω, the union of all linear spaces reached by F p(x)
is not (or better, not necessarily) the tangent bundle of some intermediate
configuration. Rather, we find it more correct to speak of intermediate spaces,
which visualize the ideal decomposition of recoverable strain from irreversible
rearrangements of matter depicted by the product F eF p.

This view is also compatible with a scheme in which plastic rearrangements
can be described through a multiplicity of reference shapes, a parameterized
family of configurations with infinitesimal generator a volume-preserving vec-
tor field, a type of horizontal variation (although special because it has to be
a material isomorphism), as proposed in reference [35]. In this setting, a me-
chanical dissipation inequality written relatively to such changes allows us to
describe from a unique invariance requirement all pertinent rules [35] (in fact,
we can also depict changes in the reference shape through variations of the
pertinent metrics to which, under appropriate conditions, the emergence of
associated configurational forces occurs [33]). However, here we do not tackle
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the problem of describing plastic flows. We just consider equilibrium along a
deformation allowing micro-slips over two-dimensional rectifiable sets.

For this reason, we consider ϕ to be a special function of bounded variation,
namely ϕ ∈ SBV (Ω,R3) assumed to preserve orientation and to avoid self-
penetration of matter; its jumps occur over the set S already mentioned. As
such the distributional derivative F = Dϕ of ϕ is a measure compatible with
the multiplicative decomposition (1.1), as shown for single crystal slips in
reference [46] and further analyzed in terms of lattice-to-continuum limit [47].
We take the plastic factor F p to be an R3×3-valued bounded measure in Ω,
which decomposes as

F p = a(x)IL 3 + F̂ (S̄,Γ)

where I is the 3× 3 identity matrix, L 3 is the Lebesgue measure, and a(x) is
a measurable function in Ω satisfying

C−1 ≤ a(x) ≤ C ∀x ∈ Ω

for some given real constant C > 1. The presence of a accounts for possible
plastic volume changes. In reference [46] just the case a = 1 is considered and
the last addendum in the structure of F p is the Schmidt tensor associated with
the crystal slip system (a picture in terms of SBV functions can be naturally
considered for elastic microcracked bodies [32]), while here we substitute that
tensor with F̂ (S̄,Γ), which is a tensor valued rectifiable measure supported
by a 2-rectifiable set in such a way that the dislocation measure curlF p =
curl F̂ (S̄,Γ) is supported on a 1-rectifiable set.

More precisely, the measure F̂ (S̄,Γ) corresponds to a Z3-valued rectifiable
current S̄ with boundary Γ that describes the dislocation measure curlF p at
a first glance. Then, to consider a microscopic level, we also take the measure
F̂ (S̄,Γ) to be associated with a R3-valued multiplicity Θ.

In our picture the elastic factor F e is a tensor-valued summable field

F e ∈ L1(Ω,R3×3; |F p|)

where |F p| is the total variation of F p, and the minors of F e are required to
satisfy some integrability assumptions with respect to the Lebesgue measure.

The multiplicative decomposition (1.1) implies that the jump set S(ϕ) iden-
tifies the 2-rectifiable set corresponding to the current S̄. As a consequence,
prescribing Θ in the approximate tangent space of the jump set is tantamount
to say that the deformation jump ϕ+−ϕ− ∈ R3 is H 2-a.e. tangent to the set
S(ϕ).
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In this setting we first consider the energy given by

Fp,s(ϕ) :=
∫

Ω

(
|M(F e(x))|p + | detF e(x)|−s

)
dx+ |curlF p|(Ω), (1.2)

where M(F e) is the vector with entries all minors of the elastic factor F e, and
p > 1, s > 0 are real exponents. We prove for Fp,s existence of minimizers
in the SBV space, under Dirichlet-type boundary conditions, after choosing
Z3-valued multiplicities for the related currents.

Then, we consider an energy variant given by

F̃p,s(ϕ) :=
∫

Ω

(
|M(F e(x))|p + | detF e(x)|−s

)
dx+ |curlF p|(Ω) + S(Γ), (1.3)

where S(Γ) is the size of a line-defect-supported current, and prove existence of
its minimizers under the same boundary conditions but considering R3-valued
multiplicity of currents; this last choice imposes the boundary current Γ = ∂S̄
to be with bounded size. S(Γ) is a line energy; it can be justified by the limit
of functionals with singular kernels under appropriate conditions [10], [21].

Our results apply also in the more general case in which the energy dependence
on F e is through a density which is a convex function of the F e minors.

2 Background material

2.1 Special functions of bounded variation

A real valued summable function v ∈ L1(Ω) is said to be of bounded vari-
ation if the distributional derivative Dv is a finite R3-valued measure in Ω.
In this case, the function v is approximately differentiable L 3-a.e. in Ω, and
the approximate gradient ∇v agrees with the density of the Radon-Nikodym
derivative of Dv with respect to the Lebesgue measure L 3. Therefore, the de-
composition Dv = ∇vL 3 +Dsv holds, where the component Dsv is singular
with respect to L 3. Also, the jump set S(v) of v is a countably 2-rectifiable
subset of Ω that agrees H 2-essentially with the complement of v Lebesgue’s
set, where H 2 is the two-dimensional Hausdorff measure. If, in addition, the
singular component Dsv is concentrated on the jump set S(v), we say that
v is a special function of bounded variation, and write in short v ∈ SBV (Ω).
In this case, we find Dsv = DJv, with DJv = (v+ − v−)νH 2 S(v), where
v± are the one-sided limits at points in the jump set S(v) with respect to the
given unit normal ν to S(v).

A vector field u : Ω → R3 belongs to the class SBV (Ω,R3) if all its com-
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ponents uj are in SBV (Ω). Therefore, the distributional derivative Du be-
longs to the class Mb(Ω,R3×3) of matrix-valued bounded Radon measures.
It decomposes as Du = ∇uL 3 + DJu, where the approximate gradient
∇u belongs to L1(Ω,R3×3). The jump component correspondingly reads as
DJu = (u+ − u−) ⊗ νH 2 S(u), where the jump set S(u) := ∪3

j=1S(uj) is
oriented by the unit normal ν and the one-sided limits u± are defined compo-
nentwise. Therefore, the total variation |Du|(B) of Du reads

|Du|(B) =
∫
B
|∇u| dx+

∫
B∩S(u)

|u+ − u−| dH 2

for each Borel set B ⊂ Ω (the treatise [3] offers an accurate analysis of SBV
functions properties).

2.2 Compatibility condition

We take two isomorphic copies of R3, say R̃3 and R3, with the isomorphism
being just an identification. We select Ω in R3 and consider it as a reference
configuration. For x ∈ Ω, we select in a neighborhood of it a basis {eA}, where
capital letters indicate coordinates in the reference configuration. Orientation
preserving differentiable maps ϕ select deformed shapes with respect to Ω in
the other copy of R3, endowed with basis {ẽi}, with a convention that the
lower-case indices indicate coordinates in the deformed shape.

Here and below F is a linear operator mapping at each x ∈ Ω the tangent
space TxΩ into R3, so that we write F (x) ∈ Hom(TxΩ,R3), intending F of the
form F = F i

Aẽi ⊗ eA.

Take ψ ∈ C1
c (Ω,R3×3) as a tensor valued field with components ψiA. We

set curlψ ∈ C0
c (Ω,R3×3) as the tensor valued field ∇ × ψ with components

(curlψ)iA := (ε B
A C(∂ψiB)C)T where ε, with components εACB, is the Levi-Civita

alternating symbol.

The measure curlF is defined in a distributional sense for any F ∈Mb(Ω,R3×3)
of the form above as

〈curlF, ψ〉 := 〈F, curlψ〉 =
3∑

i,A=1

〈F i
A, (curlψ)iA〉 , ψ ∈ C1

c (Ω,R3×3) .

If F = Du for some u ∈ BV (Ω,R3), using that div(curlψ) = 0 for each
ψ ∈ C2

c (Ω,R3×3), it turns out that F satisfies the compatibility condition

curlF = 0 . (2.1)

Actually, the inverse implication holds, too. In fact, a result by M. Miranda [37]
yields that any R3-valued distribution T in Ω, with distributional derivative
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DT a finite measure in Mb(Ω,R3×3), can be represented as T = uL 3 for
some u ∈ L1(Ω,R3) [48]. Moreover, since the domain Ω is simply-connected,
any measure F ∈ Mb(Ω,R3×3) satisfying the compatibility condition (2.1)
is equal to the derivative DT of a distribution T . Therefore, F = Du with
u ∈ BV (Ω,R3). In particular, if F is absolutely continuous with density in
Lq(Ω,R3×3) for some q ≥ 1, it turns out that F = ∇uL 3 for some Sobolev
vector field u ∈ W 1,q(Ω,R3).

3 Slip planes

Consider Ω to be occupied only by a single crystal endowed with a slip plane
S (this assumption holds only in this section). Assume that the slip activates
along a deformation ϕ : Ω→ R3 so that ϕ jumps across the slip and is per se
a SBV map with distributional derivative

Dϕ = ∇ϕL 3 + b⊗ νH 2 S (3.1)

where b ∈ R3 is the Burgers vector. The standard assumption that physically
admissible deformations be orientation preserving is tantamount to impose
det∇ϕ > 0 a.e. in Ω. Therefore, since curlDϕ = 0, we get

curl (∇ϕL 3) = −b⊗ τH 1 Γ (3.2)

where Γ = ∂S indicates the dislocation associated with the slip plane, oriented
by τ . The multiplicative decomposition (1.1) of F = Dϕ holds true and we
have (at crystal scale)

F e = ∇ϕ , F p = I L 3 + (∇ϕ)−1(b⊗ ν) H 2 S . (3.3)

We intend a measure F eL 3 ∈ Mb(Ω,R3×3) to be associated with the elastic
strain. For the specific case of a single slip, if we can imagine to fix a slipped
configuration of the crystal, we could even think of F e as the gradient of a
differentiable, orientation preserving map ϕe defined over the slipped shape,
so that curlF e = (curl∇ϕe)L 3 = 0. In general it is not so. In fact, as already
recalled, at every x ∈ Ω, the linear operator F p maps the tangent space TxΩ
onto a linear space, say Lx, which is isomorphic to Rk, with k selected into
{1, 2, 3}. In principle, varying x in Ω, the Lx also varies. Not necessarily the
union of all Lx, as x ranges in Ω, is the tangent bundle of some intermediate
configuration reached from Ω by means of some deformation. Consequently,
in general, although F is compatible, in the sense that F = Dϕ, its elastic
and plastic factors F e and F p are incompatible, i.e., curl (F eL 3) 6= 0 and
curlF p 6= 0. In other words, in general we cannot write ϕ as a composition
ϕ = ϕe ◦ ϕp : Ω→ R3, where, e.g., ϕp : Ω→ R3 is an SBV -function and ϕe :
ϕp(Ω)→ R3 a “smooth” elastic deformation. However, assuming F e invertible,
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using that curlF = 0, and writing F p = (F e)−1F , their incompatibilities are
related by the following formula (see reference [46])

curlF p = (detF ) curl [(F e)−1]F T (3.4)

where curl [(F e)−1] is computed in the deformed configuration ϕ(Ω).

In the presence of a finite number N of smooth dislocation loops within the
considered crystal, we can write

F p = IL 3 +
N∑
h=1

bh ⊗ νhH 2 Sh

where Sh is a smooth flat surface in Ω with boundary Γh = ∂Sh a smooth,
simple, and closed curve in Ω, and νh a smooth unit normal to Sh. Also, the
Burgers vector bh ∈ Z3 is constant. Then, the pertinent dislocation density
tensor is

curlF p =
N∑
h=1

bh ⊗ τhH 1 Γh

where τh is a tangent unit vector orienting the closed curve Γh in a consistent
way with respect to the orientation induced by νh on Sh (see also [40] and
[46]).

4 Dislocations and rectifiable currents

Both measures previously considered, namely

µS :=
N∑
h=1

bh ⊗ νhH 2 Sh and µΓ :=
N∑
h=1

bh ⊗ τhH 1 Γh , (4.1)

can be seen as triplets of integer multiplicity (in short i.m.) rectifiable currents
of dimension k = 2 and k = 1, respectively, each triplet living on the same
k-rectifiable set, in such a way that the equality curlµS = µΓ reduces to a
boundary condition in the sense of currents. To discuss the issue, first we fix
some general notions.

4.1 Integer rectifiable currents

If U ⊂ Rn is an open set, and k = 0, . . . , n, we denote by Dk(U) the strong dual
of the space of compactly supported smooth k-forms Dk(U), whence D0(U) is
the class of distributions in U . For any T ∈ Dk(U), we define its mass M(T )
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as
M(T ) := sup{〈T, ω〉 | ω ∈ Dk(U) , ‖ω‖ ≤ 1}

and (for k ≥ 1) its boundary as the (k− 1)-current ∂T defined by the relation

〈∂T, η〉 := 〈T, dη〉, ∀η ∈ Dk−1(U)

where dη is the differential of η. The weak convergence Th ⇀ T in the sense
of currents in Dk(U) is defined through the formula

lim
h→∞
〈Th, ω〉 = 〈T, ω〉 , ∀ω ∈ Dk(U) .

If Th ⇀ T , by lower semicontinuity we also have

M(T ) ≤ lim inf
h→∞

M(Th) .

For k ≥ 1, a k-current T with finite mass is called rectifiable if

〈T, ω〉 =
∫

M
θ 〈ω, ξ〉 dH k , ∀ω ∈ Dk(U) ,

with M a k-rectifiable set in U , ξ : M → Λk Rn a H k M -measurable
function such that ξ(x) is a simple unit k-vector orienting the approximate
tangent space to M at H k-a.e. x ∈ M , and θ : M → [0,+∞) a H k M -
summable and non-negative function. Therefore, we get M(T ) =

∫
M θ dH k <

∞ and the short-hand notation T = [[ M , ξ, θ ]] is commonly adopted.

In addition, if the multiplicity function θ is integer-valued, the current T is
called i.m. rectifiable and the corresponding class is denoted by Rk(U).

Currents in Rk(U) generalize the action given by integration of k-forms on
smooth oriented k-surfaces M , where one takes θ ≡ 1. Their relevance in
the calculus of variations relies of Federer-Fleming’s compactness theorem
[14], stating that if a sequence {Th} ⊂ Rk(U) satisfies suph M(Th) < ∞
and suph M((∂Th) U) < ∞, there exists T ∈ Rk(U) and a (not relabeled)
subsequence of {Th} such that Th ⇀ T weakly in Dk(U). As a consequence,
if T ∈ Rk(U) satisfies M((∂T ) U) <∞, the boundary rectifiability theorem
states that ∂T ∈ Rk−1(U).

An extended treatment of currents is in the treatise [20] (see also [21]).

4.2 Zm-valued rectifiable currents

Let m ∈ N+ and k = 1, . . . , n. In this paper, a Zm-valued rectifiable k-current
T in U is defined by a triplet (M , ξ,Θ), where M and ξ are as above, but
Θ : M → Zm is a Zm-valued H k M -summable multiplicity function. More
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precisely, setting Θ = (θ1, . . . , θm), we see T = (T 1, . . . , Tm) as an ordered
m-tuple of i.m. rectifiable currents T j ∈ Rk(U), with T j = [[ M , σj ξ, σjθj ]]
for j = 1, . . . ,m, where σj = 0 if θj = 0 and σj = θj/|θj| otherwise. Denote
by ω = (ω1, . . . , ωm) an ordered m-tuple of k-forms ωj ∈ Dk(U), in short
ω ∈ [Dk(U)]m, and by [Rk(U)]m the class of Zm-valued rectifiable k-currents
T as above. The action of T on ω is defined through its components by

〈T , ω〉 :=
m∑
j=1

〈T j, ωj〉 .

Differently from, e.g., reference [9], we are not dealing with rectifiable k-
currents T̂ with coefficients in Zm, in short T̂ ∈ Rk(U,Zm), with action on
a form ω ∈ Dk(U) defined by 〈T̂ , ω〉 :=

∫
M Θ 〈ω, ξ〉dH k for some triplet

(M , ξ,Θ) as above. In order to recover T̂ from T = (T 1, . . . , Tm), it suffices to
observe that 〈T̂ , ω〉 =

∑m
j=1〈T j, ω〉ej, where (e1, . . . , em) is the canonical basis

in Rm.

Remark 4.1 If T j ∈ Rk(U) for j = 1, . . . ,m we find a current T ∈ [Rk(U)]m

with components T = (T 1, . . . , Tm). In fact, letting T j = [[ Mj, ξj, θj ]], we

choose M as the set of points x in M̂ :=
⋃m
j=1 Mj with unitary k-dimensional

density Θk, namely Θk(M̂ , x) = 1. Then, we equip M with an orientation ξ.
Eventually, it suffices to define the multiplicity Θ = (θ1, . . . , θm) as follows:
for x ∈ M and j = 1, . . . ,m, if Θk(M j, x) = 0 we let θj(x) = 0, whereas if
Θk(M j, x) = 1 we let θj(x) = ±θj(x), according to the sign in the equality
ξj(x) = ±ξ(x).

The weak convergence T h ⇀ T in the class [Rk(U)]m is defined by components
through the formula 〈T h, ω〉 → 〈T , ω〉 for each ω ∈ [Dk(U)]m. In a similar way,
the boundary of a current T ∈ [Rk(U)]m is defined by the formula 〈∂T , ω〉 :=
〈T , dω〉 for any ω ∈ [Dk−1(U)]m, where dω := (dω1, . . . , dωm) is in [Dk(U)]m.
We also define the mass M(T ) :=

∑m
j=1 M(T j) < ∞ and the boundary mass

M((∂T ) U) :=
∑m
j=1 M((∂T j) U) if T = (T 1, . . . , Tm) as above.

If T ∈ [Rk(Ω)]m satisfies M((∂T ) Ω) < ∞, on account of the previous re-
mark, the boundary rectifiability theorem yields ∂T ∈ [Rk−1(Ω)]m.

In a similar way, if a sequence {T h} ⊂ [Rk(Ω)]m satisfies suph M(T h) <∞ and
suph M((∂T h) Ω) < ∞, by using Federer-Fleming’s compactness theorem
and a diagonal argument, we can find a current T ∈ [Rk(Ω)]m and a (not
relabeled) subsequence of {T h} such that T h ⇀ T .
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4.3 A physically significant choice

Consider n = m = 3, so that U = Ω. Vector fields φ in C∞c (Ω,R3) agree

with 0-forms ω in [D1(Ω)]3, say ω = ω
(0)
φ . A 1-form ω ∈ [D1(Ω)]3 is identified

by a tensor valued field ψ = ψjA
˜ej ⊗ eA in C∞c (Ω,R3×3) by letting ωj =∑3

A=1 ψjAdxA for j = 1, 2, 3. In this case, we write ω = ω
(1)
ψ . In a similar way,

a 2-form ω ∈ [D2(Ω)]3 is identified by a tensor valued field ζ ∈ C∞c (Ω,R3×3)

with components ζjA by letting ωj =
∑3
A=1(−1)A−1ζjAd̂xA, where dxA∧d̂xA =

(−1)A−1dx1 ∧ dx2 ∧ dx3. In this case, we write ω = ω
(2)
ζ . Finally, a 3-form ω ∈

[D3(Ω)]3 is identified by a covector field η ∈ C∞c (Ω,R3) with η = (η1, η2, η3),
by letting ωj = ηjdx

1 ∧ dx2 ∧ dx3, and we write ω = ω(3)
η . With this notation,

we have:

dω
(0)
φ = ω

(1)
∇φ , dω

(1)
ψ = ω

(2)
curlψ , dω

(2)
ζ = ω

(3)
divζ (4.2)

and hence the identities curl∇φ = 0 and div(curlψ) = 0 turn out to be
equivalent to the closure relations d ◦ d = d2 = 0 for 0-forms and 1-forms,
respectively.

Example 1 For k = 2, a current T = T S ∈ [R2(Ω)]3 is naturally associated
with the measure µS defined in (4.1). Assuming for the sake of simplicity that
H 2(Sh1 ∩ Sh2) = 0 for 1 ≤ h1 < h2 ≤ N , it suffices to take M = ∪Nh=1Sh
and define ξ ≡ ∗νh and Θ ≡ bh on each Sh, where ∗ is the Hodge operator in
R3. Similarly, for k = 1, a current T = T Γ ∈ [R1(Ω)]3 is naturally associated
with the measure µΓ in (4.1). By assuming again H 1(Γh1 ∩ Γh2) = 0 for
1 ≤ h1 < h2 ≤ N , it suffices to take M = ∪Nh=1Γh, setting ξ ≡ τh and Θ ≡ bh
on each Γh. We also notice that

curlµS = µΓ ⇐⇒ ∂T S = T Γ .

Since 〈µΓ, ψ〉 = 〈T Γ, ω
(1)
ψ 〉 and 〈µS, ζ〉 = 〈T S, ω(2)

ζ 〉, it suffices, in fact, to

recall that 〈∂T S, ω(1)
ψ 〉 = 〈T S, dω(1)

ψ 〉 and to use the second formula in (4.2).
Therefore, the implication ⇒ readily follows, whereas the reverse, namely ⇐,
holds true by a standard density argument based on the dominated convergence
theorem. Finally, the closure relation d ◦ d = 0 yields that ∂T Γ = 0 if µΓ =
curlµS. On account of identities (4.2), the null-boundary property ∂T Γ = 0 is
equivalent to the requirement that µΓ is a divergence-free dislocation measure
(see reference [9]).

For a given current S̄ ∈ [R2(Ω)]3, with a slight abuse of notation we let
F = F (S̄) denote the tensor valued distribution in Ω acting on test functions
ζ ∈ C∞c (Ω,R3×3) as

〈F, ζ〉 := 〈S̄, ω(2)
ζ 〉 .

Since M(S̄) < ∞, the distribution F can be extended to a measure F ∈
Mb(Ω,R3×3) with total variation bounded by the mass of S̄, namely |F |(Ω) ≤
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M(S̄). Moreover, by using the notation (S, ξS,ΘS) for S̄ ∈ [R2(Ω)]3, and
choosing the unit normal νS to S as a covector νS = (νS1, νS2, νS3) in such
a way that ξS = ∗ν]S, with ν]S the vector associated with the covector νS by

the metric in Ω, we have (−1)A−1〈φ d̂xA, ξS〉 = φ νSA for each A = 1, 2, 3 and
φ ∈ C∞c (Ω). Therefore, the component F j

A acts on bounded and continuous
functions φ ∈ Cb(Ω) as

〈F j
A, φ〉 =

∫
Ω
φ dF j

A =
∫
S

Θj
SνSA φ dH

2

and hence we can write

F = F (S̄) = ΘS ⊗ νS H 2 S .

4.4 Confinement condition

A confinement condition for dislocations has been discussed in reference [30].
We can translate it within the setting discussed here by requiring that the cur-
rent S̄ has compact support contained in Ω. By looking at the corresponding
measure, this property becomes

sptF (S̄) ⊂ Ω .

In addition, if the boundary current ∂S̄ has finite mass, there exists a current
Γ ∈ [R1(Ω)]3 with support contained in Ω such that ∂S̄ = Γ. By adopting the
notation (Γ, τΓ,ΘΓ), as above it turns out that the tensor valued distribution
F = F (Γ) in Ω acting on test functions ψ ∈ C∞c (Ω,R3×3) as

〈F, ψ〉 := 〈Γ, ω(1)
ψ 〉

can be extended to a measure F ∈Mb(Ω,R3×3), with total variation bounded
by the mass of Γ, |F |(Ω) ≤M(Γ), and actually

F (Γ) = ΘΓ ⊗ τΓ H 1 Γ .

Moreover, the boundary condition ∂S̄ = Γ is equivalent to

〈curlF (S̄), ψ〉 = 〈S̄, dω(1)
ψ 〉 = 〈Γ, ω(1)

ψ 〉 ∀ψ ∈ C∞c (Ω,R3×3) .

We thus have for all φ ∈ Cb(Ω) and A, j = 1, 2, 3

〈(curlF (S̄))jA, φ〉 =
∫

Ω
φ dcurlF (S̄)jA =

∫
Γ

Θj
Γ φ τΓA dH 1 ,

which is
curlF (S̄) = ΘΓ ⊗ τΓ H 1 Γ .

13



Finally, the support condition on Γ is equivalent to the confinement condition

spt (curlF (S̄)) ⊂ Ω .

4.5 Tangency condition

When dislocations glide, the Burgers vector b is parallel to the slip plane.
When they climb the geometry involved is not so simple. When material grains
relatively move, e.g. in polycrystalline bodies, we might also accept at least
in approximate sense a tangency condition of the (averaged) Burgers vector
of the line defect forest at the inter-granular interstices. In the generalized
sense adopted here, we consider a tangency condition by assuming that the
multiplicity ΘS is orthogonal to the unit normal νS, i.e., ΘS(x) • νS(x) = 0
at H 2-a.e. x ∈ S, where • denotes the scalar product in R3. By taking ζjA =
δjA φ(x), with δjA the Kronecker delta, for some φ ∈ C∞c (Ω), we find

〈S̄, ω(2)
ζ 〉 =

∫
S
(ΘS • νS)φ dH 2

and hence, in terms of currents, the tangency condition reads

〈S̄, ωφ〉 = 0 ∀φ ∈ C∞c (Ω) (4.3)

where ωφ = (ω1φ, ω2φ, ω3φ), with ωjφ := (−1)j−1δjAφ(x)d̂xA for j = 1, 2, 3.

If the condition (4.3) holds, ΘS(x) • νS(x) = 0 at H 2-a.e. x ∈ S.

In the smooth case, if we assume S to be a flat surface contained in the
slip plane with a constant Burgers vector ΘS ≡ b, the multiplicity ΘΓ of
the boundary current Γ = ∂S is tangential to the osculating plane to the
dislocation loop Γ. However, for currents S ∈ [R2(Ω)]3 associated with a
smooth surface S with multiplicity ΘS, in general the tangency condition
(4.3) does not imply a geometric property concerning the multiplicity ΘΓ of
the dislocation loop Γ.

4.6 Plastic deformations with rectifiable dislocations

Definition 4.1 We call generalized slip surface any Z3-valued current S̄ in
[R2(Ω)]3 satisfying the confinement condition spt S̄ ⊂ Ω, the tangency condi-
tion (4.3), and such that the boundary current Γ := ∂S̄ has finite mass. The
Z3-valued current Γ = [R1(Ω)]3 is called a rectifiable dislocation in Ω, and we
write Γ ∈ disl(Ω).
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As we have seen, ∂Γ = 0 and spt Γ ⊂ Ω for every Γ ∈ disl(Ω). In addition,
since in general no energy contribution is associated to the slip surface, as a
constitutive condition we require that

M(S̄) ≤ c ·M(Γ)2 (4.4)

for some fixed real constant c > 0. This bound holds true when Γ is associated
with a dislocation loop Γ strictly contained in Ω and lying in a slip plane, and
ΘΓ ≡ b for some Burgers vector tangential to the slip plane. Choose S as the
2-current generated by the triplet (S, ξ, b), where S is the flat surface in Ω
with boundary Γ, the 2-vector ξ being chosen in accordance to the orientation
τΓ of Γ. In this case, the inequality (4.4) holds true with c equal to square of
the isoperimetric constant in R2.

Definition 4.2 A tensor-valued bounded measure F ∈Mb(Ω,R3×3) is said to
be associated with a generalized slip surface S̄ with rectifiable dislocation Γ,
writing F = F̂ (S̄,Γ), if

〈F, ζ〉 = 〈S̄, ω(2)
ζ 〉 ∀ ζ ∈ C∞c (Ω,R3×3)

for some generalized slip surface S̄ with dislocation Γ = ∂S̄ in disl(Ω).

As a consequence, we identify the plastic tensor of a dislocation:

Definition 4.3 A tensor-valued measure F p ∈M (Ω,R3×3) is called a plastic
deformation tensor with generalized slip surface S̄ and rectifiable dislocation
Γ if

F p = a(x)I L 3 + F̂ (S̄,Γ)

where F̂ (S̄,Γ) is associated with a generalized slip surface S̄ with rectifiable
dislocation Γ. Moreover, a(x) is a Borel function in Ω satisfying

C−1 ≤ a(x) ≤ C ∀x ∈ Ω (4.5)

for some given real constant C > 1.

With these assumptions, the dislocation density tensor curlF p agrees with
curl F̂ (S̄,Γ) and hence we can identify it by means of the rectifiable dislocation
Γ in disl(Ω) through the formula

〈curlF p, ψ〉 = 〈Γ, ω(1)
ψ 〉 ∀ψ ∈ C∞c (Ω,R3×3) . (4.6)

Eventually, for any given plastic deformation as above, due to the bound (4.4)
we get

|F̂ (S̄,Γ)|(Ω) ≤ c ·M(Γ)2 , 2−1M(Γ) ≤ |curlF p|(Ω) ≤M(Γ) .
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4.7 Stability of the tangency condition

Weakly converging sequences of generalized slip surfaces with bounded masses
preserve the tangency condition.

Proposition 4.1 Let {S̄h}h ⊂ [R2(Ω)]3 be a sequence of generalized slip sur-
faces satisfying ∪hspt S̄h ⊂ K for some compact set K ⊂ Ω and

sup
h

(
M(S̄h) + M(∂S̄h)

)
<∞ .

Then, there exists a (not relabeled) subsequence and a generalized slip surface
S̄ ∈ [R2(Ω)]3 such that S̄h ⇀ S̄ weakly in [D2(Ω)]3 and spt S̄ ⊂ K .

Proof. Due to the validity of Federer-Fleming’s compactness theorem, we
only have to check that the limit current S̄ satisfies the tangency condition.
We have seen that such a geometric condition is equivalent to the identity
(4.3), whereas the weak convergence S̄h ⇀ S̄ implies that 〈S̄h, ωφ〉 → 〈S̄, ωφ〉
for every φ ∈ C∞c (Ω), whence property (4.3) is preserved, as required.

Another question to be investigated is a stability of the corresponding tan-
gency condition concerning the deformation map ϕ ∈ SBV (Ω,R3), namely,
that the jump of ϕ is tangential to the approximate tangent space to S(ϕ) at
H 2 S(ϕ)-a.e. point. To this purpose, we observe that this tangency condition
is equivalent to the following property:∫

S(ϕ)
φ (ϕ+ − ϕ−) • ν dH 2 = 0 ∀φ ∈ C∞c (Ω) .

Proposition 4.2 Let p > 1 and {ϕh} ⊂ SBV (Ω,R3) satisfy

sup
h

(
‖ϕh‖∞ +

∫
Ω
|∇ϕh|p dx+ H 2(S(ϕh))

)
<∞

where each ϕh satisfies the tangency condition. Then, there exists a (not re-
labeled) subsequence and a vector field ϕ ∈ SBV (Ω,R3) that satisfies the tan-
gency condition and is such that ϕh → ϕ in L1(Ω,R3), ∇ϕh ⇀ ∇ϕ weakly
in Lp(Ω,R3×3), and (ϕ+

h −ϕ−h )⊗ νhH 2 S(ϕh) weakly converges in the sense
of measures to (ϕ+ − ϕ−) ⊗ νH 2 S(ϕ) ⊗ ν. More generally, the tangency
condition holds true for any weak limit point ϕ.

Proof. As before, due to the validity of the compactness theorem in SBV,
we only have to check that if a (not relabeled) subsequence of {ϕh} weakly
converges to ϕ in the BV-sense, then the tangency condition is preserved. For
this purpose, we observe that the current [[ ∂SGϕjh ]] carried by the subgraph
of the j-th component of ϕh weakly converges to the current [[ ∂SGϕj ]] carried
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by the subgraph of the j-th component of ϕ, for j = 1, 2, 3. On the other hand,
for each function φ ∈ C∞c (Ω) we get

(−1)A〈[[ ∂SGϕj ]], dφ(x)d̂xA〉 =
∫

Ω
(∂Aφ(x)ϕj(x) + φ(x)∂Aϕ

j(x)) dx

+
∫
S(ϕ)

φ(x)(ϕj+(x)− ϕj−(x))νA(x) dH 2

and a similar formula holds true for ϕjh. As a consequence of the weak conver-
gence ∇ϕh ⇀ ∇ϕ in Lp(Ω,R3×3) and of the identity

lim
h→∞
〈[[ ∂SGϕjh ]], dφ(x)d̂xA〉 = 〈[[ ∂SGϕj ]], dφ(x)d̂xA〉 ∀A, j = 1, 2, 3

we infer

lim
h→∞

∫
S(ϕh)

φ (ϕ+
h − ϕ−h ) • νh dH 2 =

∫
S(ϕ)

φ (ϕ+ − ϕ−) • ν dH 2

for each φ ∈ C∞c (Ω), which yields the stability of the tangency condition.

4.8 Lack of stability of the bound

The inequality (4.4) is not preserved by the weak convergence in the sense of
currents. Namely, if {S̄h} ⊂ [R2(Ω)]3 satisfies

M(S̄h) ≤ c ·M(Γh)
2 < c̃ <∞ ∀h

for some fixed real constants c, c̃ > 0, where ∂S̄h = Γh ∈ [R1(Ω)]3 and spt S̄h ⊂
K for each h and for some given compact set K ⊂ Ω, by Federer-Fleming’s
compactness theorem, possibly passing to a (not relabeled) subsequence, it
turns out that {S̄h} weakly converges to some current S̄ ∈ [R2(Ω)]3 and {Γh}
to some current Γ ∈ [R1(Ω)]3 such that ∂S̄ = Γ and spt S̄ ⊂ K . By lower
semicontinuity of the mass, we have M(S̄) < c̃ and M(Γ)2 < c̃. However, in
general the weak limit currents S̄ and Γ fail to satisfy the inequality (4.4).

Notice that the bound (4.4) is preserved if e.g. we assume that the compact set
K giving the confinement condition is a convex (or star-shaped) subset of a
2-dimensional affine plane of R3. In this case, in fact, by a cone construction it
turns out that for each Γ ∈ [R1(Ω)]3 with spt Γ ⊂ K , there is a unique current
S̄ ∈ [R2(Ω)]3 satisfying ∂S̄ = Γ and spt S̄ ⊂ K . Therefore, as we said before,
the bound (4.4) holds true with c equal to the square of the isoperimetric
constant in R2.
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5 The elastic factor F e

We thus assume that F ∈ Mb(Ω,R3×3) satisfies the compatibility condi-
tion curlF = 0 and a multiplicative decomposition F = F eF p, where F p ∈
Mb(Ω,R3×3) is the plastic factor previously defined.

As to the elastic factor F e, we assume that it is summable as a function of x,
namely F e ∈ L1(Ω,R3×3; |F p|), and is such that detF e > 0 a.e. in Ω. Since
the total variation of F p decomposes as

|F p| =
√

3 a(x)L 3 + |ΘS ⊗ νS|H 2 S

it turns out that F = Dϕ for some function ϕ ∈ SBV (Ω,R3) satisfying

Dϕ = ∇ϕL 3 + (ϕ+ − ϕ−)⊗ νH 2 S(ϕ)

where the absolutely continuous and jump components are strictly related to
the elastic and plastic factors, respectively.

In fact, by the assumption (4.5) we have ∇ϕ(x) = a(x)F e(x) for a.e. x ∈ Ω,
where the L1-norms of ∇ϕ and F e are comparable, namely

C−1 ‖F e‖L1(Ω) ≤ ‖∇ϕ‖L1(Ω) ≤ C ‖F e‖L1(Ω) .

More specifically, we admit the possibility of plastic changes in volume (the
so-called Bell’s effect, after James Bell). When a(x) is identically 1, we recover
the traditional choice of considering just volume-preserving plastic strain.

Also, from now on, the Lebesgue spaces and pertinent norms are referred with
respect to the Lebesgue measure L 3, when not otherwise specified.

Furthermore, the jump set S(ϕ) of ϕ agrees with the set S corresponding
to the generalized slip surface S̄, under the assumption that |ΘS| > 0 on S.
Therefore, choosing the unit normal ν = νS, the requirement that ϕ jump
ϕ+ − ϕ− ∈ R3 is tangent to the jump set S(ϕ) at H 2-a.e. point can be
described in terms of the multiplicative decomposition. In fact, for H 2-a.e.
x ∈ S, both the unit vectors

v(x) =
ΘS(x)

|ΘS(x)|
, w(x) =

ϕ+(x)− ϕ−(x)

|ϕ+(x)− ϕ−(x)|

lie in the approximate tangent plane to S at x. Therefore, there exists a unique
rotation matrix R(x) ∈ SO(3) with rotation axis oriented by the unit normal
νS(x) such that w(x) = R(x)v(x). We thus define F e on H 2-a.e. point x in
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the L 3-negligible set S = S(ϕ) as

F e(x) =
|ϕ+(x)− ϕ−(x)|
|ΘS(x)|

R(x)

so that condition detF e > 0 is preserved and the multiplicative decomposition
implies that H 2-a.e. on S

(ϕ+ − ϕ−)⊗ ν = F e (ΘS ⊗ νS) =⇒ ϕ+ − ϕ− = F eΘS . (5.1)

A closure theorem in SBV

In the sequel, if G ∈ R3×3, we write M(G) for the list (G, cof G, detG) ∈ R19,
where cof G is the cofactor matrix. We require a summability condition on
the function M(F e), actually on M(∇ϕ). In the SBV setting, the weak L1

convergence of the minors holds true as a consequence of the closure theorem
proven in reference [16]. Here it reads as follows:

Theorem 5.1 Let {uh} a sequence of functions from SBV (Ω,R3) converging
in L1(Ω,R3) to a summable function u : Ω → R3. Assume that for some real
exponents p ≥ 2, q ≥ p/(p− 1), and r > 1

sup
h

{
‖uh‖∞ +

∫
Ω

(
|∇uh|p + |cof∇uh|q + | det∇uh|r

)
dx+ H 2(S(uh))

}
<∞ .

Then, u ∈ SBV (Ω,R3), the sequence H 2 S(uh) weakly converges in Ω to
a measure µ greater than H 2 S(u), and {M(∇uh)} converges to M(∇u)
weakly in L1(Ω,R19).

In reference [40], certain weak regularity properties on ϕ are assumed outside
the fixed dislocation loop Γ, in order to obtain the closure property in the
minimization process. However, the identity (3.2) implies that the gradient
∇ϕ fails to be in L2 around the dislocation loop Γ. The same problem would
emerge in our treatment if we rely on Theorem 5.1. To avoid it, we follow a
different approach, that is based on Federer-Fleming’s closure theorem for the
currents Gϕ carried by the graph of maps ϕ : Ω → R3. We point out that a
similar approach is followed in the second main result presented in reference
[40], where the authors assume that the elastic deformation is a Cartesian
map from V into R3 for each open set V contained in Ω \ Γ, where Γ is the
fixed dislocation loop.

Since we deal with the multiplicative decomposition F = F eF p with gen-
eral plastic deformation tensors, we shall require a bound on the mass of the
boundary current ∂Gϕ in terms of the total variation of the measure naturally
associated with the generalized slip surface of the plastic strain.
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5.1 Currents carried by approximately differentiable maps

Let u ∈ L1(Ω,R3) be an L 3-a.e. approximately differentiable map (as e.g. an
SBV vector field). The map u has a Lusin representative on the subset Ω̃ of
Lebesgue points pertaining to both u and ∇u, where L 3(Ω \ Ω̃) = 0. We say
that u ∈ A 1(Ω,R3) if M(∇u) ∈ L1(Ω,R19).

The graph of a map u ∈ A 1(Ω,R3) is defined by

Gu :=
{

(x, y) ∈ Ω× R3 | x ∈ Ω̃ , y = ũ(x)
}
,

where ũ(x) is the Lebesgue value of u. It turns out that Gu is a 3-rectifiable
set of U = Ω × R3, with H 3(Gu) < ∞. The approximate tangent 3-plane
at (x, ũ(x)) is generated by the vectors tA(x) = (eA, ∂Au(x)) ∈ R3+3, for
A = 1, 2, 3, where ∂Au is the A-th column vector of the gradient matrix ∇u,
and ∇u(x) is the Lebesgue value of ∇u at x ∈ Ω̃. Therefore, the unit 3-vector

ξ(x) :=
t1(x) ∧ t2(x) ∧ t3(x)

|t1(x) ∧ t2(x) ∧ t3(x)|

provides an orientation to the graph Gu, and the current Gu = [[ Gu, ξ, 1 ]]
carried by the graph of u is i.m. rectifiable in R3(Ω× R3), with mass

M(Gu) = H 3(Gu) =
∫

Ω

√
1 + |M(∇u)|2 dL 3 <∞ .

By Stokes theorem, if u is of class C2 we have

〈∂Gu, η〉 = 〈Gu, dη〉 =
∫

Gu

dη =
∫
∂Gu

η = 0

for every 2-form η ∈ D2(Ω × R3), which is tantamount to write the null-
boundary condition

(∂Gu) Ω× R3 = 0 . (5.2)

This property holds also, by approximation, for Sobolev maps in W 1,3(Ω,R3).
It defines the class of Cartesian maps u ∈ cart1(Ω,R3). However, in general,
the boundary ∂Gu does not vanish and may not have finite mass.

On the other hand, if u ∈ A 1(Ω,R3) is such that ∂Gu has finite mass in
Ω × R3, the boundary rectifiability theorem yields that ∂Gu ∈ R2(Ω × R3),
i.e., the boundary current is supported by a 2-rectifiable set in Ω × R3, and
actually u ∈ SBV (Ω,R3), with

H 2(S(u)) ≤M((∂Gu) Ω× R3) <∞ .
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5.2 Weak convergence of minors

Federer-Fleming’s compactness theorem grants the weak convergence of mi-
nors [20, Vol. I, Sec. 3.3.2].

Theorem 5.2 Let {uh} be a sequence in A 1(Ω,R3), u ∈ L1(Ω,R3) an a.e.
approximately differentiable map, and v ∈ L1(Ω,R19). Assume that uh →
u strongly in L1(Ω,R3) and that M(∇uh) ⇀ v weakly in L1(Ω,R19). If in
addition

sup
h

M((∂Guh) Ω× R3) <∞ (5.3)

then u ∈ A 1(Ω,RN) and v(x) = M(∇u(x)) for L 3-a.e x ∈ Ω. Moreover, we
have that Guh ⇀ Gu weakly in D3(Ω× R3), whence by lower semicontinuity

M(Gu) ≤ lim inf
h→∞

M(Guh) <∞

M((∂Gu) Ω× R3) ≤ lim inf
h→∞

M((∂Guh) Ω× R3) <∞ .

The boundary mass equi-boundedness (i.e., the estimate (5.3)) is automati-
cally satisfied by sequences of Cartesian maps {uh} ⊂ cart1(Ω,R3), i.e., those
for which the condition (5.2) holds true. In this case the limit u is a Cartesian
map too, since the weak convergence in terms of currents preserves condition
(5.2). This is the special version of Theorem 5.2 applied in the second existence
result in reference [40], with Ω replaced by the open sets V ⊂ Ω \ Γ.

5.3 The graph boundary of the deformation

In order to apply the closure theorem 5.2, we need to ensure that the SBV de-
formation ϕ : Ω→ R3 belongs to the class A 1(Ω,R3). Now, the multiplicative
decomposition Dϕ = F eF p gives

∇ϕ(x) = a(x)F e(x)

cof∇ϕ(x) = a(x)2cof F e(x)

det∇ϕ(x) = a(x)3 detF e(x)

(5.4)

a.e. in Ω. Therefore, on account of the bounds (4.5), it suffices to require that

M(F e) ∈ L1(Ω,R19) .

The boundary current ∂Gϕ describes ‘vertical’ parts in the graph of ϕ. The
latter may represent shear bands in this setting, as they indicate fractures
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in the elastic-brittle case. Here, we find it physically reasonable to require
that the projection on Ω falls within the 2-rectifiable set S corresponding to
the singular component F̂ (S̄,Γ) of the plastic factor F p in the multiplicative
decomposition Dϕ = F eF p. This condition generalizes the requirement in
reference [40] on the summability of distributional determinant and adjoints
of ∇ϕ outside a given disclination loop Γ. It is enclosed in the bound:

M((∂Gϕ) V × R3) ≤ c1 · |F̂ (S̄,Γ)|(V ) (5.5)

for each open set V ⊂ Ω and for some absolute constant c1 > 0. Notice that,
on account of the ansatz (4.4), and recalling that M(Γ) ≤ 2|curlF p|(Ω), the
latter bound implies the inequality

M((∂Gϕ) Ω× R3) ≤ 4c1c · |curlF p|(Ω)2 . (5.6)

Proposition 5.1 With the previous assumptions, the inequality (5.6) only
depends on the minors M(F e) of the elastic factor and on the total variation
of the dislocation measure curlF p.

Proof. If u ∈ A 1(Ω,R3), condition M((∂Gu) Ω×R3) <∞ is equivalent to
a bound for all A, j = 1, 2, 3 of the quantities

sup〈∂Gu, φ(x, y) d̂xA〉 , sup〈∂Gu, φ(x, y) dxA ∧ dyj〉 , sup〈∂Gu, φ(x, y) d̂yj〉

where each supremum is taken among all test functions φ ∈ C∞c (Ω×R3) such

that ‖φ‖∞ ≤ 1. For “horizontal” 2-forms φ(x, y) d̂xA we have

〈∂Gu, φ(x, y) d̂xA〉 = (−1)A−1
∫

Ω
∂A[φ(x, u(x))] dx

and, e.g., for “vertical” 2-forms φ(x, y) d̂yj

〈∂Gu, φ(x, y) d̂yj〉 = (−1)j−1
3∑

A=1

∫
Ω
∂A[φ(x, u(x))] (adj ∇u(x))jA dx .

The Laplace formulas imply

(−1)j−1
3∑

A=1

∂A[φ(x, u)](adj ∇u)jA =
3∑

A=1

(−1)A−1 ∂φ

∂xA
(x, u)M j

A
(∇u)

+(−1)j−1 ∂φ

∂yj
(x, u) det∇u

where M j

A
(G) indicates the 2 × 2-minor of G obtained by deleting the j-th

raw and A-th column (compare [20, Vol. I, Sec. 3.3.2]). Therefore, by condition
(4.5) and formulas (5.4) it turns out that the left-hand side of inequality (5.6)
only depends on M(F e), as required.
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5.4 By avoiding self-penetration

Besides imposing that the deformation ϕ be orientation-preserving (i.e., detF >
0 a.e. on Ω), we also accept self-contact between distant portions of the bound-
ary but avoid at the same time self-penetration of the matter. In order to
guarantee this behavior, in 1987 P. Ciarlet and J. Nečas [8] proposed the
introduction of the additional constraint:∫

Ω′
det∇ϕ(x) dx ≤ L 3(ϕ̃(Ω̃′))

for any sub-domain Ω′ of Ω, where Ω̃′ is intersection of Ω′ with the domain Ω̃
of the Lebesgue’s representative ϕ̃ of ϕ.

In 1989, M. Giaquinta, G. Modica, and J. Souček weakened such a constraint
[20, Vol. II, Sec. 2.3.2]. Their version reads∫
Ω

f(x, ϕ(x)) det∇ϕ(x) dx ≤
∫
R3

sup
x∈Ω

f(x, y) dy ∀ f ∈ C∞c (Ω× R3) , f ≥ 0 .

(5.7)
We adopt it here. Again by the identities (5.4), it turns out that (5.7) is
essentially a property of the elastic factor F e. We also point out that this
condition is preserved by the weak convergence Gϕh

⇀ Gϕ.

6 Existence of minimizers

What we have discussed so far deals with kinematics and allows us to define
a class of physically admissible competitors minimizing the energy (1.2) and
related variants that can be analyzed in the same way.

6.1 The admissible class

The class A = AM,C,c1,K (Ω) of admissible competitors depends on

• the reference body shape Ω ⊂ R3, taken to be open, simply connected, and
endowed with a surface like Lipschitz boundary ∂Ω,
• positive constants M,C, c1, with C > 1, and
• a compact set K contained in Ω related to the confinement condition.

A map ϕ : Ω→ R3 belongs to the admissible class A of elastic-plastic defor-
mations with rectifiable dislocations provided that the properties listed below
hold true.
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(1) ϕ ∈ SBV (Ω,R3) satisfies ‖ϕ‖∞ ≤M for some fixed constant M > 0 and
the tangency conditon: the jump of ϕ is tangential to the approximate
tangent plane at H 2-a.e. point in the slip set S(ϕ).

(2) The plastic factor F p in the multiplicative decomposition Dϕ = F eF p

belongs to Mb(Ω,R3×3). It indicates the effects of slips over a generalized
slip surface represented by the current S̄ associated with a rectifiable
dislocation Γ (see Definition 4.3).

(3) S̄ is supported over some given compact set K , namely spt S̄ ⊂ K , and
the bounding constant C > 1 for the term a(x) in (4.5) is fixed.

(4) The elastic factor F e in the multiplicative decomposition belongs to
L1(Ω,R3×3; |F p|) and is such that M(F e) ∈ L1(Ω,R19) and detF e > 0
a.e. in Ω.

(5) The boundary of the graph current Gϕ satisfies the mass bound (5.5) for
each open set V ⊂ Ω and for some absolute constant c1 > 0.

(6) Condition (5.7) avoiding self-penetration of matter holds.

Due to the lack of stability of the bound (4.4), as explained in Sec. 4.8, we are
led to introduce the following

Definition 6.1 Given some real constant c > 0, we denote by ÃM,C,c1,K ,c(Ω)
the subclass of maps ϕ in AM,C,c1,K (Ω) such that the bound (4.4) on the mass
of S̄ in terms of the mass of Γ holds.

6.2 The energy functional

As already recalled in the Introduction, we consider a homogeneous material
admitting an energy that is polyconvex with respect to the elastic factor F e

and includes weakly non-local effects encoded by curlF p. Its simplest form
reads

Fp,s(ϕ) :=
∫

Ω

(
|M(F e(x))|p + | detF e(x)|−s

)
dx+ |curlF p|(Ω)

where Dϕ = F eF p as above, while p > 1 and s > 0 are real exponents.

Essentially, the analysis we propose does not change if we replace the integrand
depending on F e with, e.g., a non-negative convex function f on R19 such that

f(M(G)) ≥ c2 · (|M(G)|p + | detG|−s)

for all G ∈ R3×3, where c2 > 0 is a real constant.
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6.3 Dirichlet-type boundary conditions

If ϕ ∈ AM,C,c1,K (Ω), the slip set S(ϕ) is H 2-essentially contained in the given
compact subset K of Ω, whence the restriction of ϕ to the open set Ω \K
is a Sobolev map. Therefore, if ϕ has bounded energy, Fp,s(ϕ) <∞, it turns
out that ϕ|Ω\K ∈ W 1,p(Ω \ K ,R3). We thus may impose a Dirichlet-type
condition by choosing a function γ in the trace space W 1−1/p,p(∂Ω,R3) and
requiring that the equality Tr(ϕ) = γ holds H 2-a.e. in ∂Ω, where Tr(ϕ) is the
trace of ϕ on the boundary of Ω. We thus let

Aγ := {ϕ ∈ AM,C,c1,K (Ω) | Fp,s(ϕ) <∞ , Tr(ϕ) = γ}

Ãγ := {ϕ ∈ ÃM,C,c1,K ,c(Ω) | Fp,s(ϕ) <∞ , Tr(ϕ) = γ} .

The absence of dislocations amounts to the condition |curlF p|(Ω) = 0. In this
case, the bound (4.4) reduces F p to a(x) I L 3, so that the deformation ϕ is a
Sobolev map in W 1,p(Ω,R3).

Suitable choices of the boundary term γ force the occurrence of defects in this
setting when we impose constraints on the energy derivative with respect to
M(F e); pertinent specific examples, expressed in the formal language adopted
here, are in reference [19].

The presence of curlF p in the energy is a way to account for geometrically nec-
essary dislocations, which can be detected by orientation imaging microscopy
[31]. Numerical simulations accounting for the energetic weight of curlF p cor-
roborate the interpretation (see, e.g., references [24], [17], [29]).

6.4 Existence theorem

Theorem 6.1 Take M,C, c1, c > 0, with C > 1, K ⊂ Ω a compact set, and
p > 1, s > 0. If for some γ ∈ W 1−1/p,p(∂Ω,R3) the class Ãγ is non-empty, the
functional ϕ 7→ Fp,s(ϕ) attains a minimum in Aγ, i.e., there exists ϕ0 ∈ Aγ

such that

Fp,s(ϕ0) = inf{Fp,s(ϕ) | ϕ ∈ Ãγ} .

Proof. We shall repeatedly extract not relabeled subsequences. Let {ϕh} ⊂
Ãγ be a minimizing sequence. Write Dϕh = F e

hF
p
h , where

F p
h = ah(x)I L 3 + F̂ (S̄h,Γh) .

Then, {Γh} ⊂ [R1(Ω)]3 with spt Γh ⊂ K , ∂Γh = 0, and M(Γh) ≤ 2 |curlF p
h |(Ω)

for each h. Moreover, {S̄h} ⊂ [R2(Ω)]3 with spt S̄h ⊂ K , ∂S̄h = Γh, and by
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the bound (4.4) we get the estimate

M(S̄h) = |F̂ (S̄h,Γh)|(Ω) ≤ 4c · |curlF p
h |(Ω)2 ∀h .

Therefore, by Federer-Fleming’s compactness theorem we find S̄ ∈ [R2(Ω)]3

and Γ ∈ [R1(Ω)]3 such that spt S̄, spt Γ ⊂ K , ∂S̄ = Γ, ∂Γ = 0, and a
subsequence such that S̄h ⇀ S̄ weakly in [D2(Ω)]3 and Γh ⇀ Γ weakly in
[D1(Ω)]3. Proposition 4.1 implies that the weak limit current S̄ satisfies the
tangency condition, whence it is a generalized slip surface in our sense.

By (4.5) we may and do assume the existence of a function a ∈ L∞(Ω) such
that ah ⇀ a weakly in L∞(Ω) and a.e., with a(x) satisfying (4.5). Setting then

F p = a(x) I L 3 + F̂ (S̄,Γ) (6.1)

so that curl F̂ (S̄,Γ) = curlF p, we have F̂ (S̄h,Γh) ⇀ F̂ (S̄,Γ) and curlF p
h ⇀

curlF p weakly as measures in Mb(Ω,R3×3), where the dislocation measure
curlF p is associated to the current Γ ∈ disl(Ω), and by lower semicontinuity
of the total variation

|curlF p|(Ω) ≤ lim inf
h→∞

|curlF p
h |(Ω) .

Moreover, since (5.4) holds true for each h by the multiplicative decomposition,
by condition (4.5) and the lower bound Fp,s(ϕh) ≥ ‖M(∇ϕh)‖pLp(Ω,R19) we get

sup
h

∫
Ω
|M(∇ϕh)|p dx <∞ .

Since the bounds (4.4) and (5.5) imply the inequality (5.6), we obtain

sup
h

(
M(Gϕh

) + M((∂Gϕh
) Ω× R3)

)
<∞ .

Therefore, we can apply Theorem 5.2, which states that, possibly passing to
a subsequence, ϕh → ϕ strongly in L1(Ω,R3) and M(∇ϕh) ⇀M(∇ϕ) weakly
in L1(Ω,R19) for some function ϕ ∈ A 1(Ω,R3) satisfying ‖ϕ‖∞ ≤ M and,
by lower semicontinuity of the mass with respect to the weak convergence in
terms of currents, M(Gϕ) + M((∂Gϕ) Ω× R3) <∞.

We thus infer that ϕ ∈ SBV (Ω,R3). Moreover, since by the multiplicative
decomposition S(ϕh) = Sh for each h, we get suph H 2(S(ϕh)) < ∞ and we
can apply Proposition 4.2 to infer that the limit vector field ϕ satisfies the
tangency condition, too.

Since, passing to a subsequence, ah(x)→ a(x) a.e. in Ω, M(∇ϕh) ⇀ M(∇ϕ)
weakly in Lp(Ω,R3×3) and a.e. in Ω, and F̂ (S̄h,Γh) ⇀ F̂ (S̄,Γ) as measures,
whereas ϕh → ϕ in L1(Ω,R3), by using the multiplicative decomposition
Dϕh = F e

hF
p
h for each h we deduce that the limit deformation ϕ satisfies
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itself the multiplicative decomposition Dϕ = F eF p, where the plastic factor
F p is given by (6.1) and the elastic factor is defined by F e(x) := a(x)−1∇ϕ(x)
for a.e. x ∈ Ω.

Therefore, M(F e
h) ⇀ M(F e) weakly in Lp(Ω,R19) and F e

h → F e a.e. in Ω, so
that F e ∈ L1(Ω,R3×3), whereas condition suph

∫
Ω | detF e

h |−s dx < ∞ implies,
by lower semicontinuity, that

∫
Ω | detF e|−s dx <∞ and hence that detF e > 0

a.e. in Ω. In particular, by using the notation (S, ξS,ΘS) for S̄ ∈ [R2(Ω)]3 and
assuming that ΘS ∈ Z3 \ {0R3} in S, we infer that H 2-essentially S(ϕ) = S.
We thus have F e ∈ L1(Ω,R3×3; |F p|), and by the tangency conditions of both
S̄ and ϕ we infer that the relation (5.1) holds true.

The weak convergence of ϕh|Ω\K to ϕ|Ω\K in W 1,p(Ω \ K ,R3) implies the
H 2-a.e. convergence Tr(ϕh) → Tr(ϕ) of the traces in ∂Ω, whence the limit
deformation ϕ satisfies the prescribed Dirichlet-type condition Tr(ϕ) = γ.

Since Gϕh
⇀ Gϕ weakly in D3(Ω× R3), we also infer that the deformation ϕ

satisfies condition (5.7); thus it avoids self-penetration of matter. Moreover,
the inequality (5.5) is stable with respect to the weak convergences Gϕh

⇀ Gϕ

and F̂ (S̄h,Γh) ⇀ F̂ (S̄,Γ), whence it is satisfied by the weak limit current Gϕ

and measure F̂ (S̄,Γ). Therefore, conditions (1)–(6) are satisfied and actually
ϕ ∈ Aγ. As already remarked in Sec. 4.8, due to the lack of stability of the

bound (4.4) we cannot in general conclude that ϕ ∈ Ãγ.

Since M(F e
h) ⇀ M(F e) weakly in L1(Ω,R3×3) and curlF p

h ⇀ curlF p weakly
as measures, by lower semicontinuity we get

Fp,s(ϕ) ≤ lim inf
h→∞

Fp,s(ϕh)

which concludes the proof.

7 A more general class of dislocation-type defects

The assumption that the Burgers vectors take value on Z3 is plausibile from
a microscopic point of view. In a continuous theory, i.e., at a macroscopic
level, one should replace that condition with a requirement that the R3-valued
Burgers vector b satisfies |b| ≥ c > 0, where the physical constant c depends
on the body microstructure. In a single periodic crystal c is the atomic spacing
while for polycrystals it is also related to the grain size (imagine the relative
slip of grains in contact); for amorphous materials under loading programs
that determine plastic strain through slips, values and meaning of c depend
on the material microstructure.
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However, such a lower bound cannot be preserved in the minimization process.
We thus choose here to work with R3-valued size bounded currents. After
introducing the necessary material, an existence theorem similar to Theorem
6.1 is readily proved, provided that a term involving the size of the dislocation
current is added to the energy functional previously considered (see (1.3)).

For example, in the case of a finite number N of pairwise disjoint dislocation
loops Γh, see (4.1), the size S(Γ) of the dislocation current Γ is the total length

S(Γ) =
N∑
h=1

H 1(Γh)

independently of the Burgers vectors bh ∈ R3.

7.1 Size bounded currents

Let U ⊂ Rn an open set and T a rectifiable current in Dk(U) with finite mass,
say T = [[ M , ξ, θ ]]. We denote set (T ) the set of points in M where the k-
dimensional density of the measure ‖T‖ := θH k M is positive, and size of
T the number S(T ) := H k(set (T )).

We say that a rectifiable current T is a size bounded one if S(T ) < ∞. We
indicate by Sk(U) the corresponding class of size bounded currents.

T ∈ Sk(U) implies that set (T ) agrees H k-essentially with the set of points
in M with positive multiplicity θ. Therefore, an i.m. rectifiable current T ∈
Rk(U) is automatically size bounded because S(T ) ≤M(T ), a property that
fails to hold in general for currents with real multiplicity.

We also denote by Nk(U) the class of normal currents, those T ∈ Dk(U) such
that N(T ) := M(T ) + M((∂T ) U) <∞.

For T1, T2 ∈ Nk(U) we define a flat distance d(T1, T2) by

d(T1, T2) := inf{M(Q) + M(R) | Q ∈ Nk(U) , R ∈ Nk+1(U)

T1 − T2 = Q+ ∂R} ,

where the term R does not appear in the case of top dimension k = n.

In general, the flat convergence d(Th, T ) → 0 of normal currents in Nk(U)
implies the weak convergence Th ⇀ T in Dk(U). The reverse implication holds
true provided that U is a smooth and bounded domain (see reference [49]).

By adapting a result due to Almgren [2, Prop. 2.10], and slightly weakening
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some assumptions adopted there, a lower semicontinuity result holds true (see
the proof in reference [39]).

Theorem 7.1 Let {Th}, T ⊂ Sk(U) ∩Nk(U) be such that suph N(Th) < ∞
and d(Th, T )→ 0. Then, S(T ) ≤ lim inf

h→∞
S(Th) .

Also, a closure theorem is valid, as proven in reference [4, Thm. 8.5] referring
to the more general setting of currents in metric spaces.

Theorem 7.2 Let {Th} ⊂ Sk(U) ∩Nk(U) be such that

sup
h

(S(Th) + N(Th)) <∞ .

Then, there exists a current T ∈ Sk(U) ∩Nk(U) and a (not relabeled) subse-
quence such that d(Th, T )→ 0.

7.2 Rm-valued size bounded currents

In a similar way to the class [Rk(U)]m, m ∈ N+, an Rm-valued rectifiable k-
current T in U is defined by a triplet (M , ξ,Θ), where M and ξ are given
as above, but Θ : M → Rm is an Rm-valued H k M -summable multiplicity
function.

Correspondingly, we denote by set (T ) the set of points in M where the k-
dimensional density of the measure ‖T‖ := |Θ|H k M is positive, and define
S(T ) := H k(set (T )).

We call T an Rm-valued size bounded current, formally writing T ∈ [Sk(U)]m,
when S(T ) <∞.

As for the class [Rk(U)]m, a current T ∈ [Sk(U)]m can be seen as an or-
dered m-tuple T = (T 1, . . . , Tm) of size bounded currents T j ∈ Sk(U), where
set (T ) = ∪mj=1set (T j). We also define N(T ) := M(T )+M((∂T ) U) where, we

recall, M(T ) :=
∑m
j=1 M(T j) <∞ and M((∂T ) U) :=

∑m
j=1 M((∂T j) U) if

T = (T 1, . . . , Tm).

Moreover, if T j ∈ Sk(U) for j = 1, . . . ,m, we find a current T ∈ [Sk(U)]m

with components T = (T 1, . . . , Tm). Therefore, if U is a smooth and bounded
domain, and a sequence {T h} ⊂ [Sk(U)]m satisfies suph(S(T h)+N(T h)) <∞,
by the compactness and semicontinuity results previously stated we can find
a current T ∈ [Sk(U)]m and a (not relabeled) subsequence of {T h} such that
T h ⇀ T and also

N(T ) ≤ lim inf
h→∞

N(T h) , S(T ) ≤ lim inf
h→∞

S(T h) .
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7.3 Plastic deformations with size bounded dislocations

Set n = m = 3 and U = Ω.

Definition 7.1 We call a generalized slip surface any R3-valued size bounded
current S̄ ∈ [S2(Ω)]3 satisfying the confinement condition spt S̄ ⊂ Ω, the
tangency condition (4.3), and such that the boundary current Γ := ∂S̄ is an
R3-valued size bounded current in [S1(Ω)]3. The current Γ is called a size
bounded dislocation in Ω, and we write Γ ∈ s− disl(Ω).

As before, ∂Γ = 0 and spt Γ ⊂ Ω for every Γ ∈ s− disl(Ω). In addition, as a
constitutive condition we require that the bound (4.4) holds and also

S(S̄) ≤ c · S(Γ)2 (7.1)

for some fixed real constant c > 0.

Moreover, we see that the tangency condition (4.3) is preserved in the mini-
mization process.

Proposition 7.1 Let {S̄h}h ⊂ [S2(Ω)]3 be a sequence of generalized slip sur-
faces satisfying

sup
h

(
N(S̄h) + S(Sh)

)
<∞ .

Then, there exists a (not relabeled) subsequence and a generalized slip surface
S̄ ∈ [S2(Ω)]3 such that S̄h ⇀ S̄ weakly in [D2(Ω)]3.

Proof. On account of the compactness theorem for size bounded currents,
we argue exactly as in the proof of Proposition 4.1.

Definition 7.2 A tensor-valued measure F p ∈M (Ω,R3×3) is called a plastic
deformation factor with generalized slip surface S̄ and size bounded dislocation
Γ if

F p = a(x)I L 3 + F̂ (S̄,Γ)

where a(x) is a Borel function in Ω satisfying (4.5) for some given real constant
C > 1, and

〈F̂ (S̄,Γ), ζ〉 = 〈S̄, ω(2)
ζ 〉 ∀ ζ ∈ C∞c (Ω,R3×3)

for some generalized slip surface S̄ with dislocation Γ = ∂S̄ in s− disl(Ω).

Therefore, this time curlF p is identified by the size bounded dislocation Γ in
s− disl(Ω) through the formula (4.6).
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7.4 Elastic-plastic deformations with size bounded dislocations

Similarly as above, the admissible class A s = A s
M,C,c1,K (Ω) of elastic-plastic

deformations with size bounded dislocations is defined by the maps ϕ : Ω→ R3

satisfying the properties (1), (3), (4), (5), and (6) listed in the previous section,
but with property (2) replaced by

(2’) F p ∈ Mb(Ω,R3×3) is a plastic deformation factor with generalized slip
surface S̄ and size bounded dislocation Γ (see Definition 7.2).

Also, due to the lack of stability of the bounds (4.4) and (7.1) we introduce
the following

Definition 7.3 Given some real constant c > 0, we denote by Ã s
M,C,c1,K ,c(Ω)

the subclass of maps ϕ in A s
M,C,c1,K (Ω) such that both the bounds (4.4) and

(7.1) hold.

7.5 The energy functional

In order to apply the closure theorem for size bounded currents, this time the
energy functional must contain an extra term. Namely, we may define

F̃p,s(ϕ) :=
∫

Ω

(
|M(F e(x))|p + | detF e(x)|−s

)
dx+ |curlF p|(Ω) + S(Γ)

for some real exponents p > 1 and s > 0, where in the first term we can take
more general integrands as already mentioned above.

7.6 Existence result

As before, we impose a Dirichlet-type condition by choosing a function γ in
W 1−1/p,p(∂Ω,R3) and letting

A s
γ := {ϕ ∈ A s

M,C,c1,K (Ω) | F̃p,s(ϕ) <∞ , Tr(ϕ) = γ}

Ã s
γ := {ϕ ∈ Ã s

M,C,c1,K ,c(Ω) | F̃p,s(ϕ) <∞ , Tr(ϕ) = γ} .

The following existence result is proved in a way similar to the one adopted
for Theorem 6.1.

Theorem 7.3 Take M,C, c1, c > 0, with C > 1, K ⊂ Ω a compact set, and
p > 1, s > 0. If for some γ ∈ W 1−1/p,p(∂Ω,R3) the class Ã s

γ is non-empty, the
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functional ϕ 7→ F̃p,s(ϕ) attains a minimum in A s
γ , i.e., there exists ϕ0 ∈ A s

γ

such that
F̃p,s(ϕ0) = inf{F̃p,s(ϕ) | ϕ ∈ Ã s

γ } .

Proof. For {ϕh} ⊂ Ã s
γ a minimizing sequence, write Dϕh = F e

hF
p
h , where

F p
h = ah(x)I L 3 + F̂ (S̄h,Γh). Then, Γh ∈ [S1(Ω)]3, spt Γh ⊂ K , ∂Γh = 0, and

M(Γh) ≤ 2 |curlF p
h |(Ω) for each h. Moreover, S̄h ∈ [S2(Ω)]3 with spt S̄h ⊂ K ,

∂S̄h = Γh, and by the bounds (4.4) and (7.1)

M(S̄h) ≤ 4c · |curlF p
h |(Ω)2 , S(S̄h) ≤ c · S(Γh)

2 ∀h .

Therefore, by the compactness theorem on size bounded currents we find S̄ ∈
[S2(Ω)]3 and Γ ∈ [S1(Ω)]3 such that spt S̄, spt Γ ⊂ K , ∂S̄ = Γ, ∂Γ = 0, and
a subsequence such that S̄h ⇀ S̄ weakly in [D2(Ω)]3 and Γh ⇀ Γ weakly in
[D1(Ω)]3. By Proposition 7.1 the weak limit current S̄ satisfies the tangency
condition, whence it is a generalized slip surface in our sense.

As a consequence of the bounds (4.5), we find again a function a ∈ L∞(Ω)
such that ah ⇀ a weakly in L∞(Ω) and a.e., with a(x) satisfying (4.5). Then,
by setting F p as in (6.1), so that curl F̂ (S̄,Γ) = curlF p, we have F̂ (S̄h,Γh) ⇀
F̂ (S̄,Γ) and curlF p

h ⇀ curlF p weakly as measures in Mb(Ω,R3×3), where the
dislocation measure curlF p is associated with the current Γ ∈ s− disl(Ω), and
by lower semicontinuity of the total variation and size

|curlF p|(Ω) ≤ lim inf
h→∞

|curlF p
h |(Ω) , S(Γ) ≤ lim inf

h→∞
S(Γh) .

By following steps in the proof of Theorem 6.1, we consequently infer that
ϕ ∈ A s

γ . Finally, since M(F e
h) ⇀ M(F e) weakly in L1(Ω,R3×3), by lower

semicontinuity we get

F̃p,s(ϕ) ≤ lim inf
h→∞

F̃p,s(ϕh)

which concludes the proof.
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