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Abstract. We consider the isoperimetric problem for clusters in the plane with a double
density, that is, perimeter and volume depend on two weights. In this paper we consider
the isotropic case, in the parallel paper [14] the anisotropic case is studied. Here we prove
that, in a wide generality, minimal clusters enjoy the “Steiner property”, which means
that the boundaries are made by C1,γ regular arcs, meeting in finitely many triple points
with the 120◦ property.

1. Introduction

In this paper we consider the isoperimetric problem with double density for planar
clusters. This means that we are given two l.s.c. functions g, h : R2 → R+ (the densities),
and the volume and perimeter of any set E ⊆ R2 of locally finite perimeter are given by

|E| =
∫
E

g(x) dx , P (E) =

∫
∂∗E

h(x) dH1(x) , (1.1)

where ∂∗E is the reduced boundary as usual (see [3] for definitions and properties of sets
of finite perimeter). The isoperimetric problem consists then, as always, in the search
of sets of given (weighted) volume which minimize the (weighted) perimeter. Of course,
depending on g and h, different situations may occur. This generalization of the standard
isoperimetric problem has gained a rapidly increasing interest in the last decades due to
the work of several authors, see for instance [33, 7, 6, 23, 5, 1, 10, 17, 2, 8, 11] and the
references therein.

The isoperimetric problem for clusters, instead, consists in minimizing the total perime-
ter of a union of sets with given volume. More precisely, for a given m ∈ N, an m-cluster
is a collection E = {E1, E2, . . . , Em} of m essentially disjoint sets of locally finite perime-
ter. For brevity, we will denote E0 = R2 \ (∪mi=1Ei). The volume of a cluster E is the
vector |E| = (|E1|, |E2|, . . . , |Em|) ∈ (R+)m, while its perimeter is

P (E) =
P (∪mi=1Ei) +

∑m
i=1 P (Ei)

2
=

∑m
i=0 P (Ei)

2
=

∫
∂∗E

h(x) dH1(x) ,

where the “boundary” ∂∗E of a cluster is defined as the union of the boundaries, that is,

∂∗E = ∪mi=1∂
∗Ei .

1



2 V. FRANCESCHI, A. PRATELLI, AND G. STEFANI

A cluster which minimizes the perimeter among all those with fixed volume is usually
called minimal cluster. The isoperimetric problem for clusters has been deeply studied
in the last decades. In particular, for the Euclidean case, corresponding to g ≡ h ≡ 1,
the problem is often referred to as the “double bubble problem” in the case m = 2,
which was completely solved in [19, 32]. Also the “triple bubble” and the “quadruple
bubble”, corresponding to m = 3 and m = 4, have been studied, see [38] and [26, 27, 28]
respectively.

The aim of this paper is to prove that minimal clusters enjoy the “Steiner property”,
that is, their boundaries are composed by finitely many C1,γ arcs, which meet in finitely
many triple points with the 120◦ property, see Definition 1.2 below. While this property
is widely known for the Euclidean case, see for instance the classical paper [36] or the
recent book [20], we generalize it to a much more general case. In particular, we will prove
the validity of the Steiner property as soon as an ε − εβ property and a volume growth
condition hold.

Definition 1.1 (η-growth condition and ε − εβ property for clusters). Given a power
η ≥ 1, an η-growth condition is said to hold if there exist two positive constants Cvol

and Rη such that, for every x ∈ R2 and every r < Rη, the ball B(x, r) has volume
|B(x, r)| ≤ Cvolr

η. We say that the local η-growth condition holds if for any bounded
domain D ⊂⊂ R2 there exist two constants Cvol and Rη such that the above property holds
for balls B(x, r) ⊆ D.

Moreover, we say that a cluster E satisfies the ε− εβ property for some 0 < β ≤ 1 if
there exist three positive constants Rβ, Cper and ε̄ such that, for every vector ε ∈ Rm with
|ε| ≤ ε̄ and every x ∈ R2, there exists another cluster F such that

F∆E ⊆ R2 \B(x,Rβ) , |F| = |E|+ ε , P (F) ≤ P (E) + Cper|ε|β . (1.2)

In this case, for every 0 < t ≤ ε̄ we call Cper[t] the smallest constant such that the
above property is true whenever |ε| ≤ t. The map t 7→ Cper[t] is clearly increasing and
Cper[ε̄] ≤ Cper.

We underline that both the above assumptions are satisfied for a wide class of densities.
In particular, the growth (or local growth) condition clearly holds with η = 2 whenever
the density g is bounded (or locally bounded). Concerning the ε − εβ property, this is
a crucial tool when dealing with isoperimetric problems. It is simple to observe that it
is valid with β = 1 for every cluster of locally finite perimeter whenever the density h is
regular enough (at least Lipschitz). It is also known that, if h is α-Hölder, then every
cluster of locally finite perimeter satisfies the ε− εβ property with

β =
1

2− α
,
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the proof can be found in [9] for the special case g = h and in [30] for the general case.
The case α = 0 is particular, also because there is not a unique possible meaning of
“0-Hölder function”. More precisely, the ε − ε1/2 property holds as soon as h is locally
bounded. If h is continuous, instead, not only the ε− ε1/2 property holds, but in addition
limt→0Cper[t] = 0. We can be even more precise: the function t 7→ Cper[t] can be bounded
by
√
ωh, where ωh is the modulus of continuity of h (see [31]).

We can now give the formal definitions of the Steiner property, already described
above, and of the Dini property.

Definition 1.2 (Steiner property). A cluster E is said to satisfy the Steiner property if
∂∗E is a locally finite union of C1 arcs, and at each junction point exactly three arcs are
meeting, having tangent vectors which form three angles of 2

3
π.

Definition 1.3 (Dini property). Let ϕ : R+ → R+ be an increasing function such that
ϕ(0) = 0. We say that ϕ satisfies the Dini property if for every C > 1 one has∑

n∈N

ϕ(C−n) < +∞ ,

and we say that ϕ satisfies the 1/2-Dini property if √ϕ satisfies the Dini property. A
uniformly continuous function f is Dini continuous if and only if its modulus of continuity
ωf satisfies the Dini property. We say that f is 1/2-Dini continuous if ωf satisfies the
1/2-Dini property.

We are now in position to state the main result of the present paper.

Theorem 1.4 (Steiner regularity for minimal clusters). Let h be locally 1/2-Dini contin-
uous, let E be a minimal cluster, and let us assume that for some η, β the local η-growth
condition holds, as well as the ε− εβ property for E. Assume in addition that either

(i) ηβ > 1, or
(ii) ηβ = 1 and the function t 7→ Cper[t] satisfies the 1/2-Dini property.

Then E satisfies the Steiner property, and if ηβ > 1 and h is locally α-Hölder then the
arcs of ∂∗E are actually C1,γ with γ = 1

2
min{ηβ − 1, α}.

A few comments are now in order. First of all we observe that, in the classical
Euclidean case, one has β = 1 and η = 2, hence the assumptions of our result cover an
extremely more general case than the classical one.

Concerning the case ηβ = 1, in order to get the Steiner property of E we have added
a Dini-type property on Cper, while if ηβ > 1 no additional assumption was needed. In
fact, the C1 regularity of the boundary fails if ηβ = 1 without extra assumptions. On
the bright side, Theorem 1.4 can always be applied if g is locally bounded and h is 1/4-
Dini continuous (i.e., 4

√
ωh satisfies the Dini property). Indeed, in this case η = 2 and
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β = 1/2, and the required continuity of h and Cper follows by the fact that Cper .
√
ωh,

already observed above. The fact that, in order to get C1 regularity of the boundary,
some 1/2-Dini property is needed, is standard, see for instance [35, 20].

It is to be remarked that the boundedness of an optimal cluster is false in general, but
true under quite mild assumptions. The boundedness of isoperimetric sets, or optimal
clusters, is a well studied question, also because it is deeply connected with the existence,
see for instance [9, 10, 29, 30]. Of course, whenever optimal clusters are a priori known
to be bounded, as soon as Theorem 1.4 applies then they are made by a finite (and not
just locally finite) union of regular arcs.

We conclude this introduction by pointing out that, in the isoperimetric problem
with double density, one can consider an anisotropic density for the perimeter, that is,
the density h may also depend on the direction of the normal vector. In other words, h
is defined on R2 × S1, and the term h(x) in the right definition in (1.1) is replaced by
h(x, νE(x)), where νE(x) is the unit normal vector to ∂∗E at x ∈ ∂∗E. The anisotropic
case is of course more complicate to treat, but it is a very important generalization,
in particular it allows to cover the case of Riemannian manifolds, where the density h

is naturally anisotropic, since it depends on the directional derivative of the Riemann
tensor. We are able to study the Steiner property also in the general anisotropic case, to
which the parallel paper [14] is devoted. An important peculiarity of the isotropic case is
the 120◦ property, which is in general false in the anisotropic case.

2. Proof of the main result

The proof of the main result, Theorem 1.4, is presented in this section. In turn,
this is subdivided in four subsections. The first one collects some basic definitions and
technical tools, in the second one we show that there are finitely many junction points,
each of which where exactly three different sets meet, and in the third one we obtain the
regularity. The actual proof of the theorem, presented in the last subsection, basically
only consists in putting the different parts together.

Since we aim to prove Theorem 1.4, from now on we assume that h is locally 1/2-Dini
continuous and that the local η-growth condition holds for some η ≥ 1.

2.1. Some definitions and technical tools. Let us fix some notation, that will be used
through the rest of the paper. Since we are interested in a local property, in the proof of
Theorem 1.4 we will immediately start by fixing a big closed ball D ⊆ R2, and the whole
construction will be performed there. Hence, all the following definitions will depend
upon D, in particular we assume that |B(x, r)| ≤ Cvolr

η for every ball B(x, r) ⊆ D.
Since h is locally 1/2-Dini continuous, hence in particular continuous, we can call

ω : R+ → R+ its modulus of continuity inside D. In particular, if h is locally α-Hölder,
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then ω(r) ≤ Crα for a suitable constant C. Moreover, we will call 0 < hmin ≤ hmax the
maximum and the minimum of h in D. Keep in mind that, if ηβ = 1, then the function
t 7→ Cper[t] is assumed to satisfy the 1/2-Dini property, so in particular it is infinitesimal.
As a consequence, we can fix ε̄ so small that Cper is as small as desired, in particular we
will use several times that

Cper = Cper[ε̄]�
h2min

Cβ
vol hmax

. (2.1)

We can easily observe now a simple estimate between volume and perimeter of any set E.

Lemma 2.1 (Isoperimetric inequality with exponent). For every set E ⊆ D we have

P (E) ≥ hmin

C
1/η
vol

|E|1/η .

Proof. By approximation, we can limit ourselves to consider the case of a planar, polygonal
set E. A classical result from Gustin (see [18]) says that such a set can be covered with
countably many balls Bi = B(xi, ri) in such a way that

H1(∂∗E) ≥ 2
√

2
∑

i
ri .

Keeping in mind that η ≥ 1, for any E ⊆ D we deduce

P (E) ≥ hminH1(∂∗E) ≥ 2
√

2hmin

∑
i
ri ≥

2
√

2hmin

C
1/η
vol

∑
i
|B(xi, ri)|1/η

≥ 2
√

2hmin

C
1/η
vol

(∑
i
|B(xi, ri)|

)1/η
≥ 2
√

2hmin

C
1/η
vol

|E|1/η ,

so the proof is concluded. �

The following is a simple geometric fact. This is specific for the isotropic case. The
analogous property in the anisotropic case is weaker and much more complicate to obtain.

Lemma 2.2 (The 120◦ net property). There exists a continuous and strictly increasing
function L : [0, 2π/3]→ [1, 2] such that, if x, y, z are three points in R2 such that |y−x| =
|z − x|, and θ = zx̂y ∈ [0, 2π/3], then there exists a connected set Γ contained in the
triangle xyz, containing x, y and z and such that H1(Γ) = L(θ)|y − x|.

Proof. There exists a unique point w, sometimes called Fermat point, contained in the
triangle xyz, such that the three angles yŵz, zŵx and xŵy are all equal to 2π/3. In
particular, w = z = y in the case θ = 0, while w = x if θ = 2π/3. The set Γ is then
simply the union of the three segments xw, yw and zw. Calling L(θ) the length of Γ

divided by |y − x| (which of course does not depend on |y − x| by rescaling), it is trivial
to express L(θ) as an explicit trigonometric function of θ. The fact that this is a strictly
increasing function of θ, with L(0) = 1 and L(2π/3) = 2, follows then by an elementary
calculation. �
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We introduce now the (standard) notation of relative perimeter. Given a set E ⊆ R2

of locally finite perimeter, or a cluster E , and given a Borel set A ⊆ R2, the relative
perimeter of E (or E) inside A is the measure of the boundary of E (or E) within A, i.e.,

P (E;A) =

∫
A∩∂∗E

h(x) dH1(x) , P (E ;A) =

∫
A∩∂∗E

h(x) dH1(x) .

We conclude this short section by presenting (a very specific case of) a fundamental result
due to Vol’pert, see [37] and also [3, Theorem 3.108].

Theorem 2.3 (Vol’pert). Let E ⊆ R2 be a set of locally finite perimeter, and let x ∈ R2

be fixed. Then, for a.e. r > 0, one has that

∂∗E ∩ ∂B(x, r) = ∂∗
(
E ∩ ∂B(x, r)

)
.

Notice that, for almost every r > 0, both sets in the above equality are done by
finitely many points. In particular, E ∩ ∂B(x, r) is a subset of the circle ∂B(x, r), and
its boundary has to be considered in the 1-dimensional sense. More precisely, for almost
every r > 0 the set E ∩ ∂B(x, r) essentially consists of a finite union of arcs of the circle,
and the boundary is simply the union of the endpoints of all of them. Through the rest of
the paper, we will often consider intersections of sets with balls. Even if this will not be
written every time, we will always consider balls for which Vol’pert Theorem holds true.

2.2. Finitely many triple points. We now start our construction for proving The-
orem 1.4. Through this section and the following one, E is a fixed, minimal cluster,
satisfying the assumptions of Theorem 1.4, and D is a fixed, closed ball. The aim of this
section is to show several preliminary properties of E , eventually establishing that ∂∗E
only admits (in D) finitely many “3-color points”, see Definition 2.10 and Proposition 2.12.
In the sequel we will derive that all the junction points (i.e., the points where at least 3 of
the C1 arcs of ∂E meet) are actually “3-color points”, and in particular triple points (i.e.,
points where exactly 3 arcs meet).

We set R1 = min{Rβ, Rη}. In the following, we will define several different values of
Ri with R1 ≥ R2 ≥ R3 · · · . Each of these constants will only depend on E , D, g and h
(the dependence on E , g and h is actually only through the constants hmin and hmax and
on the values of the constants Cper, Cvol, ε̄ and η of Definition 1.1).

Lemma 2.4 (Small ball competitor). Let B(x, r) ⊆ D be a ball with |B(x, r)| < ε̄/2 and
r < R1, and let E ′ be a cluster which coincides with E outside B(x, r). There exists another
cluster E ′′ such that |E ′′| = |E|, E ′′ ∩B(x, r) = E ′ ∩B(x, r) and, calling ε = |E| − |E ′|,

P (E ′′) ≤ P (E ′) + Cper|ε|β ≤ P (E ′) + Cper(2Cvolr
η)β . (2.2)
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Proof. Since

|ε| ≤
m∑
i=1

|εi| ≤ 2|B(x, r)| < ε̄ ,

we can apply the ε−εβ property to E with constant ε and point x. Hence, there is another
cluster F such that F = E inside B(x,Rβ) ⊇ B(x, r), and moreover |F| = |E| + ε and
P (F) ≤ P (E) + Cper|ε|β. We define then the cluster E ′′ as the cluster which coincides
with E ′ inside B(x, r), and with F outside of B(x, r). Its volume is

|E ′′| = |E ′ ∩B(x, r)|+ |F \B(x, r)|

= |E ∩B(x, r)|+ |E ′| − |E|+ |E \B(x, r)|+ |F| − |E| = |E| .

Keeping in mind the growth condition, we have |ε| ≤ 2|B(x, r)| ≤ 2Cvolr
η. As a conse-

quence, the perimeter of E ′′ can be evaluated as

P (E ′′) = P (E ′;B(x, r)) + P
(
F ;R2 \B(x, r)

)
= P (E ;B(x, r)) + P (E ′)− P (E) + P

(
E ;R2 \B(x, r)

)
+ P (F)− P (E)

≤ P (E ′) + Cper|ε|β ≤ P (E ′) + Cper(2Cvolr
η)β .

The proof is then concluded. �

Lemma 2.5 (Length in a ball is controlled by radius). There exists a constant R2 ≤ R1

such that, for every B(x, r) ⊆ D with r < R2, one has

H1(∂∗E ∩B(x, r)) <
13

2
r . (2.3)

Proof. We let R2 ≤ R1 be so small that

CvolR
η
2 <

ε̄

2
, ω(2R2) <

hmin

40
, Cper

(
2CvolR

η
2

)β
< hmin

R2

20
. (2.4)

Notice that the first two inequalities are true for every R2 small enough. The same is true
for the third one if ηβ > 1, while if ηβ = 1 the last inequality is true, regardless of R2,
since Cper is very small by (2.1).

Let now r < R2 and x ∈ R2 be as in the claim, and call h̃min = min{h(x), x ∈ B(x, r)}
and h̃max = max{h(x), x ∈ B(x, r)}. Let E ′ be the cluster defined by E ′1 = E1 ∪ B(x, r)

and E ′i = Ei \B(x, r) for every 2 ≤ i ≤ m. Clearly

P (E ′) ≤ P (E)− P (E ;B(x, r)) + 2πrh̃max . (2.5)

Let us call ε ∈ Rm the vector given by εi = |Ei ∩ B(x, r)| for every 2 ≤ i ≤ m, and
ε1 = −|B(x, r) \ E1|, so that |E| = |E ′| + ε. Notice that |B(x, r)| ≤ Cvolr

η < ε̄/2 by
the first property in (2.4). Hence, we can apply Lemma 2.4 to get another cluster E ′′

satisfying (2.2), so that

P (E ′′) ≤ P (E ′) + Cper(2Cvolr
η)β < P (E ′) + hmin

r

20
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by the third property in (2.4), which is clearly valid with every r < R2 in place of R2.
Putting this estimate together with (2.5), and recalling that P (E) ≤ P (E ′′) by minimality
of E and since |E ′′| = |E| by Lemma 2.4, we get

H1(∂∗E ∩B(x, r)) ≤ P (E ;B(x, r))

h̃min

≤ 2πr
h̃max

h̃min

+
hmin

h̃min

r

20
≤ 2πr

h̃max

h̃min

+
r

20
<

13

2
r ,

where the last inequality follows from the second property in (2.4) since

h̃max ≤ h̃min + ω(2r) ≤ h̃min +
hmin

40
≤ 41

40
h̃min .

�

Lemma 2.6 (At most 3 intersection points). There exist R3 ≤ R2 and C2 > 1 such that

∀ r ≤ R3, ∀B(x, r) ⊆ D, ∃ r

C2

< ρ < r : #
(
∂∗E ∩ ∂B(x, ρ)

)
≤ 3 . (2.6)

Proof. First of all, we show that (2.6) is true with 6 in place of 3 by choosing R3 = R2

and C2 = 14 directly by Lemma 2.5. Indeed, suppose that this is false for some B(x, r)

as in the claim. Then, for every r/14 < ρ < r we have #
(
∂∗E ∩ ∂B(x, ρ)

)
≥ 7. As a

consequence, by coarea formula

H1(∂∗E ∩B(x, r)) ≥ H1
(
∂∗E ∩ (B(x, r) \B(x, r/14))

)
≥
∫ r

r/14

H0
(
∂∗E ∩ ∂B(x, ρ)

)
dρ

≥ 7
13

14
r =

13

2
r ,

in contradiction with (2.3).
To conclude the proof is then enough to show that if (2.6) holds with some k ≥ 4 in

place of 3 and with two constants C2,k and R3,k, then it also holds with k − 1 in place of
3 and with two suitable constants C2,k−1 ≥ C2 and R3,k−1 ≤ R3,k.

Let then C2,k−1 ≥ C2,k and R3,k−1 ≤ R3,k be two constants to be specified later, and
let B(x, r) ⊆ D with r ≤ R3,k−1. By assumption, there exists some r/C2,k < r̃ < r for
which ∂∗E ∩ ∂B(x, r̃) contains at most k points. If the points are strictly less than k we
are done, whatever the choice of C2,k−1 ≥ C2,k and R3,k−1 ≤ R3,k is. Assume then that
the points are exactly k, say x1, x2, . . . , xk. We have to find some r/C2,k−1 < ρ < r for
which

#
(
∂∗E ∩ ∂B(x, ρ)

)
≤ k − 1 .

Assume then by contradiction that for every such ρ (so in particular for every r/C2,k−1 <

ρ < r̃) the opposite inequality holds, then by coarea formula again we deduce

H1(∂∗E ∩B(x, r̃)) ≥ H1
(
∂∗E ∩

(
B(x, r̃) \B(x, r/C2,k−1)

))
≥ k

(
r̃ − r

C2,k−1

)
≥ kr̃

(
1− C2,k

C2,k−1

)
.

(2.7)
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Up to renumbering, we can assume that the two points among x1, x2, . . . xk at minimal
distance are x1 and x2, so in particular

x1x̂x2 ≤
2π

k
<

2π

3
.

Let us define the set Σ ⊆ B(x, r̃) as the union of the k−2 segments xix for i ≥ 3 together
with the set Γ given by Lemma 2.2 by setting y = x1 and z = x2. Recall that the set Γ is
contained in the triangle xx1x2 by Lemma 2.2, hence it does not intersect the segments
xix with i ≥ 3. As a consequence, the union of Σ with ∂∗E \ B(x, r̃) is the boundary of
a uniquely defined cluster E ′ which coincides with E outside of B(x, r̃). Notice that by
construction, Lemma 2.2 and (2.7) one has

P (E ′)− P (E) ≤ h̃maxH1(Σ)− h̃minH1(∂∗E ∩B(x, r̃))

≤ h̃maxr̃

[
k − 2 + L

(
2π

k

)
− h̃min

h̃max

k

(
1− C2,k

C2,k−1

)]
,

having set again h̃min = min{h(x), x ∈ B(x, r)} and h̃max = max{h(x), x ∈ B(x, r)}.
Since r̃ < r ≤ R3,k−1 and

h̃min

h̃max

≥ 1− ω(2r)

hmin

≥ 1− ω(2R3,k−1)

hmin

,

then, up to choose R3,k−1 small enough and C2,k−1 big enough, this yields

P (E ′)− P (E) ≤ −cr̃h̃max ≤ −cr̃hmin (2.8)

with 2c = 2−L(2π/k). We apply again Lemma 2.4 with ε = |E| − |E ′| to get a cluster E ′′

with |E ′′| = |E| and such that

P (E ′′)− P (E ′) ≤ Cper(2Cvolr
η)β .

By the minimality of E , putting this inequality together with (2.8) we obtain

Cper(2Cvolr
η)β ≥ cr̃hmin ≥

crhmin

C2,k

,

hence

rηβ−1 ≥ c hmin

C2,kCper2βC
β
vol

.

If ηβ > 1, this gives a lower bound to r, hence we have the searched contradiction, up to
possibly decrease R3,k−1. Instead, if ηβ = 1, the searched contradiction follows since Cper

is very small by (2.1). �

Lemma 2.7 (No-islands). There exists R4 ≤ R3 such that for every r ≤ R4 and every
B(x, r) ⊆ D, if for some 0 ≤ i ≤ m one has

|Ei ∩B(x, r)| > 0 , (2.9)
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then also

H1(Ei ∩ ∂B(x, r)) > 0 . (2.10)

Notice that, in this lemma, i can also attain the value 0. Recall that E0 has been
defined as R2 \ (∪mi=1Ei).

Proof of Lemma 2.7. Take a ball B(x, r) ⊆ D with r ≤ R3 such that, for some 0 ≤ i ≤ m,
(2.9) holds while (2.10) does not. We have to prove that this is absurd provided that r is
is smaller than some R4 ≤ R3 that we are going to specify later.

Let us call F = Ei ∩ B(x, r). Since (2.10) is false then, up to H1-negligible subsets,
∂∗F ⊆ B(x, r), and in particular

∂∗F ⊆
⋃

j ∈ {0, 1, . . . , m}
j 6= i

∂∗Ej ,

so that for some 0 ≤ ` ≤ m, ` 6= i we have

H1(∂∗F ∩ ∂∗E`) ≥
1

m
H1(∂∗F ) ≥ 1

hmaxm
P (F ) .

Let us then define the cluster E ′ as the cluster such that E ′i = Ei \ F , E ′j = Ej for every
j /∈ {i, `} and E ′` = E` ∪ F . By construction and by Lemma 2.1 we have

P (E ′) ≤ P (E)− hminH1(∂∗F ∩ ∂∗E`) ≤ P (E)− hmin

hmaxm
P (F )

≤ P (E)− h2min

hmaxC
1/η
vol m

|F |1/η .
(2.11)

Let us define ε = |E| − |E ′|, so that |ε| ≤ 2|F |, and the latter is strictly positive by (2.9).
Applying again Lemma 2.4, we get a cluster E ′′ with |E ′′| = |E| and

P (E ′′) ≤ P (E ′) + Cper|ε|β ≤ P (E ′) + Cper2
β|F |β .

Putting this inequality together with (2.11), by the optimality of E we find

(Cvolr
η)1/η−β ≤ |B(x, r)|1/η−β ≤ |F |1/η−β ≤ hmax

h2min

C
1/η
vol Cper2

βm.

As usual, we have to distinguish two cases in order to conclude. If η > 1/β, then the
inequality implies that r cannot be too small, hence r > R4 for some R4 ≤ R3. If η = 1/β,
then the inequality is false because Cper is very small by (2.1). �

Remark 2.8. Notice that the claim of the above lemma can be trivially generalised as
follows. If there is a set G ⊆ B(x, r) with Lipschitz boundary such that |Ei∩G| > 0, then
also H1(Ei ∩ ∂G) > 0. The proof remains exactly the same, one only has to substitute
B(x, r) with G everywhere.
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Corollary 2.9 (At most 3 colors). For every B(x,R4) ⊆ D one has

#
{

0 ≤ i ≤ m : |Ei ∩B(x,R4/C2)| > 0
}
≤ 3 .

Proof. We apply Lemma 2.6 to the ball B(x,R4), finding some R4/C2 < ρ < R4 for which
∂∗E ∩∂B(x, ρ) consists of at most three points. As a consequence, there are at most three
different indices 0 ≤ i ≤ m such that Ei∩∂B(x, ρ) has positive H1-measure (keep in mind
that Vol’pert Theorem 2.3 holds true for the ball B(x, ρ)). Since ρ < R4, by Lemma 2.7
we obtain that |Ei ∩ B(x, ρ)| can be strictly positive for at most three different indices
0 ≤ i ≤ m, and since ρ > R4/C2 the proof is concluded. �

Definition 2.10 (3-color point). A point x ∈ R2 is said a 3-color point if, for every
r > 0, we have

#
{

0 ≤ i ≤ m : |Ei ∩B(x, r)| > 0
}
≥ 3 . (2.12)

Notice that, in view of Corollary 2.9, for every 3-color point x ∈ D the sets Ei
satisfying (2.12) are actually exactly 3 for every r < min{R4/C2, dist(x, ∂D)}. This also
motivates the name.

We can now improve the result of Lemma 2.6 for balls centered at a 3-color point,
namely, in (2.6) the possibly large constant C2 can be replaced by any constant strictly
larger than 1. We are going to prove the result with constant 25/24 just because this is
the value that we will need later, but it is clear from the proof that nothing changes with
any other constant strictly larger than 1.

Lemma 2.11. There exists R5 ≤ R4 such that, for any 3-color point x ∈ D and any
r ≤ min{R5, dist(x, ∂D)/C2}, there is 24r/25 < ρ̄ < r such that #

(
∂∗E ∩ ∂B(x, ρ̄)

)
= 3.

Proof. Let R5 ≤ R4 be a constant to be specified later, and let x and r be as in the claim.
By Lemma 2.7, we know that

#
(
∂∗E ∩ ∂B(x, s)

)
≥ 3 ∀ 0 < s ≤ min{R4, dist(x, ∂D)} . (2.13)

By Lemma 2.6, we find some r < ρ < C2r such that

#
(
∂∗E ∩ ∂B(x, ρ)

)
≤ 3 ,

and the number is in fact exactly 3 by (2.13). Notice that we have applied Lemma 2.6
with C2r in place of r, and this is possible only if C2r ≤ min{R3, dist(x, ∂D)}, which in
turn is admissible up to choose R5 ≤ R3/C2.

Let us now call

µ = H1
({

0 < s < ρ : #
(
∂∗E ∩ ∂B(x, s)

)
≥ 4
})

,
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so that the thesis follows as soon as we show that, with the right choice of R5, µ < r/25.
In view of (2.13), by coarea formula we can estimate

P (E ;B(x, ρ)) ≥ h̃min

(
3(ρ− µ) + 4µ

)
= h̃min(3ρ+ µ) ,

having again defined h̃min = min{h(x), x ∈ B(x, ρ)} and h̃max = max{h(x), x ∈ B(x, ρ)}.
Let us now define E ′ as the cluster which coincides with E outside of B(x, ρ) and such that
∂∗E ′ ∩ B(x, ρ) is done by the three segments joining the three points of ∂∗E ∩ ∂B(x, ρ)

with x. Observe that

P (E ′;B(x, ρ)) ≤ 3h̃maxρ ≤ 3h̃minρ+ 3ω(2ρ)ρ .

As usual, we apply Lemma 2.4 to get a competitor E ′′ with |E ′′| = |E| and

P (E ′′) ≤ P (E ′) + Cper(2Cvolρ
η)β .

Putting together the last three estimates, since P (E) ≤ P (E ′′) and hmin ≤ h̃min we find

µ ≤ ρ

hmin

(
3ω(2ρ) + 2βCperC

β
volρ

ηβ−1
)
≤ C2r

hmin

(
3ω(2ρ) + 2βCperC

β
volρ

ηβ−1
)
,

hence the thesis reduces to check that the term in parentheses in the above estimate can
be taken smaller than hmin/(25C2). Concerning 3ω(2ρ) ≤ 3ω(2C2R5), this is arbitrarily
small as soon as R5 is small enough, so we can suppose that this is smaller hmin/(50C2),
and to conclude we need the second term in parenthesis to be smaller than hmin/(50C2).
This is clearly true for R5 small enough if ηβ > 1, while in the case ηβ = 1 this is true
regardless of R5 thanks to (2.1). �

Proposition 2.12 (3-color points are a positive distance apart). There exists R6 ≤ R5

such that any two 3-color points x, x′ with B(x,R5) ⊆ D have distance at least R6.

Proof. Let us assume by contradiction the existence of two 3-color points x and x′ as in
the claim with d := |x−x′| < R6, where R6 ≤ R5 is a constant to be specified later. Since
the proof is a bit involved, we divide it in few steps for the sake of clarity.

Step I. A circle with three boundary points at around 120◦.
We start by applying Lemma 2.11 to the point x and with r = 5

4
d, which is admissible as

soon as R6 ≤ 4
5
R5, finding a radius ρ with

6

5
d =

24

25
· 5

4
d < ρ <

5

4
d (2.14)

such that ∂∗E ∩ ∂B(x, ρ) contains exactly three points, say x1, x2, x3. We want to show
that these three points are close to be vertices of an equilateral triangle. More precisely,
we will prove that

θ = min
{
x1x̂x2, x2x̂x3, x3x̂x1

}
>

(
2

3
− 1

15

)
π =

3

5
π . (2.15)
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Indeed, assuming just to fix the ideas that θ = x1x̂x2, we define the cluster E ′ which
coincides with E outside of B(x, ρ) and such that ∂∗E ′ ∩ B(x, ρ) is done by the segment
xx3 and the set Γ given by Lemma 2.2 with y = x1 and z = x2. By Lemma 2.4 we have
a cluster E ′′ with |E ′′| = |E| such that

P (E) ≤ P (E ′′) ≤ P (E ′) + Cper(2Cvolρ
η)β

≤ P (E) + ρ

(
h̃max

(
1 + L(θ)

)
− 3h̃min + 2βCperC

β
volρ

ηβ−1
)
,

(2.16)

where we have again defined h̃min = min{h(x), x ∈ B(x, ρ)} and h̃max = max{h(x), x ∈
B(x, ρ)}, and where we have used the fact that

P (E ;B(x, ρ)) ≥ 3h̃minρ ,

which follows from Lemma 2.7 because x is a 3-color point and by coarea formula. Arguing
as usual, a straightforward computation from (2.16) gives

2− L(θ) ≤ 1

hmin

(
3ω(2ρ) + 2βCperC

β
volρ

ηβ−1
)
.

As already done several times, both if ηβ > 1 and if ηβ = 1 we get that, provided R6 is
small enough, L(θ) is as close as 2 as we wish, in particular we can assume that (2.15)
holds true.

For later use, we remark that from (2.16) and by definition of E ′ we have

P (E ;B(x, ρ)) ≤ P (E ′;B(x, ρ)) + Cper(2Cvolρ
η)β ≤ 3h̃maxρ+ Cper(2Cvolρ

η)β

<
19

6
h̃minρ ,

(2.17)

again up to possibly decrease the value of R6.

Step II. The estimate (2.20).
In this step we define the “curved rectangles” Qa and Qb and we prove the estimate (2.20).
The situation is depicted in Figure 1.

We start by observing that, since both x and x′ are 3-color points, by Lemma 2.7,

P
(
E ;B(x′, ρ− d)

)
≥ 3h̃min(ρ− d) , P

(
E ;B(x, ρ− 2(ρ− d))

)
≥ 3h̃min(2d− ρ) . (2.18)

Among x1, x2 and x3, let a and b be the two points having maximal distance from x′, let
φ be the angle defined by the property

(2d− ρ)φ = 2ρ− 2d , (2.19)

and let Qa and Qb be the curved rectangles defined by

Qa =
{
z ∈ B(x, ρ) \B(x, 2d− ρ) : |zx̂a| < φ

}
,

Qb =
{
z ∈ B(x, ρ) \B(x, 2d− ρ) : |zx̂b| < φ

}
.
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x

2d− ρ

d

x′
2ρ− 2d

ρ

b

Qb

Q+
a

Q−a
a

φ

φ

2ρ− 2d

s̄

Sθ+

Sθ−

Figure 1. The situation in Proposition 2.12.

Notice that the angles ax̂x′ and x′x̂b are both at least 3π/10 by (2.15), while φ < 2/3 ≈
0.21π since d > 4ρ/5. As a consequence, a simple trigonometric computation ensures that,
as in the figure, Qa and Qb are disjoint and they do not intersect the ball B(x′, ρ − d).
The goal of this step is to show that

P (E ;Qa) ≥ h̃min(2ρ− 2d) , P (E ;Qb) ≥ h̃min(2ρ− 2d) . (2.20)

Let us prove the estimate for Qa, since there is no difference with the case of Qb. If for
almost every 2d − ρ < s < ρ one has #(∂∗E ∩ ∂B(x, s) ∩ Qa) ≥ 1, the claim directly
follows by integration.

Suppose then the existence of some 2d − ρ < s̄ < ρ such that the arc ∂B(x, s̄) ∩ Qa

does not intersect ∂∗E . Let us subdivide Qa = Q+
a ∪ Q−a , where Q±a are the two parts in

which Qa is divided by the segment {z : z − x = σ(a − x), 2d
ρ
− 1 < σ < 1}. For every

0 < θ < φ, let us now call Sθ the closed segment made by all the points z ∈ Q+
a such that

ax̂z = θ and s̄ ≤ |z − x| ≤ ρ, and similarly for every −φ < θ < 0 we call Sθ the closed
segment made by all the points z ∈ Q−a such that zx̂a = −θ and s̄ < |z − x| < ρ. If
#(∂∗E ∩ Sθ) ≥ 1 for almost every 0 < θ < φ, or for almost every −φ < θ < 0, then again
by integration and recalling (2.19) we obtain the searched estimate for P (E ;Qa).

We are then only left to consider the case when two angles θ± with −φ < θ− < 0 <

θ+ < φ exist such that both the segments Sθ+ and Sθ− have no intersection with ∂∗E . In
this case, putting together the two arcs ∂B(x, ρ)∩

⋃
θ−≤θ≤θ+ Sθ and ∂B(x, s̄)∩

⋃
θ−≤θ≤θ+ Sθ,
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and the two segments Sθ− and Sθ+ , we obtain a Lipschitz, closed loop which intersects
∂∗E in a single point, namely, a. And in turn, this is impossible, because for any such
loop the number of intersections with ∂∗E must be either empty, or done by at least two
points. The validity of (2.20) is then established.

Step III. Estimate on P (E ;B(x, ρ)) from below.
In this last quick step we find an estimate of P (E ;B(x, ρ)) from below, which gives a
contradiction with the estimate from above found in Step I, concluding the proof. Since
the curved rectangles Qa and Qb and the balls B(x, 2d− ρ) and B(x′, ρ− d) are pairwise
disjoint, by (2.18), (2.20) and (2.14) we obtain

P (E ;B(x, ρ)) ≥ h̃min(4ρ− d) ≥ 19

6
h̃minρ ,

against (2.17). �

2.3. Interface regularity. This section is devoted to prove the following regularity result
for the boundary of the optimal cluster E .

Proposition 2.13 (C1,γ regularity). There exists an increasing function ξ : R+ → R+

with limr→0+ ξ(r) = 0 such that the following property holds. Let B(x̄, r̄) ⊆ D be a ball
such that

#
{

0 ≤ i ≤ m : |Ei ∩B(x̄, r̄)| > 0
}
≤ 2 , #

(
∂∗E ∩ ∂B(x̄, r̄)

)
< +∞ . (2.21)

Then, ∂∗E ∩B(x̄, r̄) is a finite union of C1 pairwise disjoint relatively closed curves such
that, calling τ(x) ∈ P1 the direction of the tangent vector at any x ∈ ∂∗E ∩ B(x̄, r̄), one
has

|τ(y)− τ(x)| ≤ ξ(|y − x|) (2.22)

for every x, y ∈ ∂∗E ∩B(x̄, r̄). Moreover, if ηβ > 1 and h is locally α-Hölder continuous,
then it is possible to take ξ(t) = Ktγ with some K > 0 and

γ =
1

2
min{ηβ − 1, α} , (2.23)

so that in particular ∂∗E ∩B(x̄, r̄) is C1,γ.

Lemma 2.14 (Almost alignment on a circle with two boundary points). There exist
R7 < R6 and a function ξ1 : R+ → R+ as in Proposition 2.13 and satisfying the Dini
property such that the following holds. Let B(x̄, r̄) be as in Proposition 2.13, and let
x ∈ ∂∗E and r < R7 be such that

B(x, r) ⊆ B(x̄, r̄) , ∂B(x, r) ∩ ∂∗E = {a, b}
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where a, b are two distinct points in ∂∗E, such that 0 < ax̂b ≤ π. Then, calling d =

H1(∂∗E ∩B(x, r))− |b− a|, we have

|ax̂b− π| ≤ ξ1(r) , d ≤ r

6
ξ1(r)

2 . (2.24)

Proof. We define E ′ as the cluster which coincides with E outside of B(x, r), and such
that ∂E ′ ∩ B(x, r) is done by the segment ab. We let d = H1(∂∗E ∩ B(x, r)) − |b − a|.
Observe that, since x ∈ ∂∗E , the fact that r < R6 together with Lemma 2.7 ensures that
for almost each 0 < s < r the set ∂∗E ∩ ∂B(x, s) is non-empty, thus by Vol’pert Theorem
it contains at least 2 points. As a consequence, by coarea formula, H1(∂E ′∩B(x, r)) ≥ 2r,
hence d ≥ 2r − |b− a|. Setting h̃min and h̃max as usual, we have

P (E ′)− P (E) ≤ h̃max|b− a| − h̃min(|b− a|+ d) .

As a consequence, minding that E∆E ′ ⊆ B(x, r) and |B(x, r)| ≤ Cvolr
η, by Lemma 2.4

–notice that in (2.2) one can clearly use Cper[|ε|] in place of Cper– we readily obtain

d ≤ 1

hmin

(
2rω(2r) + Cper[2Cvolr

η](2Cvolr
η)β
)
.

Let us now set

ξ1(r) =

(
6

hmin

(
2ω(2r) + 2βCper[2Cvolr

η]Cβ
volr

ηβ−1
))1/2

,

so that the right estimate in (2.24) holds true. The left one then easily follows since
r

6
ξ1(r)

2 ≥ d ≥ 2r − |b− a| = 2r
(

1− sin
(
ax̂b/2

))
≥ r

6
(ax̂b− π)2 .

Hence, to conclude we only have to check the properties of ξ1. The fact that ξ1 is increasing
is true by construction, and the fact that, as r ↘ 0, it goes to 0 is true since ω(r) ↘ 0,
and rηβ−1 ↘ 0 if ηβ > 1, while Cper[2Cvolr

η] ↘ 0 if ηβ = 1 by assumption. In addition,
since rη ≤ r because η ≥ 1, then

ξ1(r) .
√
ω(2r) + Cper[2Cvolrη]rηβ−1 .

√
ω(2r) +

√
Cper[2Cvolr]rηβ−1 .

The Dini property of ξ1 then readily follows. Indeed, the Dini property of
√
ω(2r) is

true since by assumption h is locally 1/2-Dini continuous. Moreover, the Dini property
of
√
Cper[2Cvolr]rηβ−1 is clear if ηβ > 1, while it comes from the 1/2-Dini property of

t 7→ Cper[t] if ηβ = 1. Finally, if ηβ > 1 and h is locally α-Hölder then we have

ξ1(r) .
√
ω(2r) + rηβ−1 .

√
rα + rηβ−1 ≈ rγ ,

with γ given by (2.23). �

Lemma 2.15 (Almost alignment on every circle). There exists a function ξ2 : R+ → R+

as in Lemma 2.14 such that the following holds. Let B(x̄, r̄) be as in Proposition 2.13,
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and let x ∈ ∂∗E and r < R7/(2C2) be such that B(x, 2C2r) ⊆ B(x̄, r̄). Then, there exists
a direction τ(x, r) ∈ P1 such that every y ∈ ∂∗E ∩ ∂B(x, r) satisfies

|ζ(y − x)− τ(x, r)| ≤ ξ2(r) , (2.25)

where ζ(v) ∈ P1 is the direction of any vector v ∈ R2\{0}. Moreover, for every r′ ∈ [r/2, r)

|τ(x, r)− τ(x, r′)| ≤ 2C2ξ1(2C2r) + 2ξ2(r) . (2.26)

Proof. Since r < R7/(2C2) < R3/(2C2), by Lemma 2.6 there exists some 2r < ρ < 2C2r

such that ∂B(x, ρ) ∩ ∂∗E contains at most three points. We claim that these points are
actually 2. In fact, since x ∈ ∂∗E and ρ < R4 then there must be at least two such
points by Lemma 2.7. On the other hand, in view of (2.21) and again by Lemma 2.7, we
obtain that #

{
0 ≤ i ≤ m : H1(Ei ∩ ∂B(x, ρ)) > 0

}
≤ 2, so that the number of points of

∂B(x, ρ) ∩ ∂∗E must be even (keep in mind that, as always, Vol’pert Theorem holds for
B(x, ρ)). The claim is then proved, and we can then call a and b these two points, and
define τ(x, r) ∈ P1 the direction of the segment ab. Notice that the vector τ(x, r) depends
on x, on r, and on the choice of 2r < ρ < 2C2r. The vector τ(x) of Proposition 2.13,
instead, will only depend on x, as one can clearly deduce from (2.22).

Let now y ∈ ∂∗E ∩ ∂B(x, r) be given, let us call d1 = |y − a| and d2 = |y − b|
and assume, without loss of generality, that d1 ≤ d2. For every 0 < s < d2, we call
Gs = B(y, s)∩B(x, ρ). Since y ∈ ∂∗E , by Lemma 2.7 and keeping in mind also Remark 2.8,
we obtain that Γs := ∂Gs ∩ ∂∗E contains at least two points. Since s < d2, Γs cannot
contain b, and it cannot contain a if s < d1. Recalling that ∂B(x, ρ) ∩ ∂∗E = {a, b}, we
deduce that Γs ∩ B(x, ρ) contains at least two points for 0 < s < d1, and at least one
point for d1 < s < d2. By construction, this implies that

H1
(
∂∗E ∩B(x, ρ)

)
≥ d1 + d2 .

As usual, we define the cluster E ′ coinciding with E outside of B(x, ρ) and such that
∂E ′ ∩B(x, ρ) is given by the segment ab, so by Lemma 2.4 we readily obtain

hmin

(
d1 + d2 − |a− b|

)
≤ 2ρω(2ρ) + Cper[2Cvolρ

η](2Cvolρ
η)β .

Keeping in mind that |y−x| = r while |a−x| = |b−x| = ρ > 2r, arguing as in Lemma 2.14
we find a function ξ̃ satisfying the Dini property and such that |aŷb − π| ≤ ξ̃(r). In
addition, ξ̃(r) . rγ if ηβ > 1 and h is locally α-Hölder, with γ given by (2.23). Moreover,
Lemma 2.14 already gives that |ax̂b − π| ≤ ξ1(ρ) ≤ ξ1(2C2r). Then, since |y − x| = r >

ρ/(2C2), an immediate geometric argument provides a function ξ2, satisfying the Dini
property and with the same additional features as ξ̃, for which (2.25) is true.

To conclude we only have to establish (2.26). Keep in mind that, by Lemma 2.14,

H1(∂∗E ∩B(x, ρ))− 2ρ ≤ H1(∂∗E ∩B(x, ρ))− |b− a| ≤ ρ

6
ξ1(ρ)2 ,
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and this implies that
H1(∂∗E ∩B(x, r)) ≤ 2r +

ρ

6
ξ1(ρ)2 . (2.27)

Let now r′ ∈ [r/2, r), and let z ∈ ∂B(x, r′)∩∂∗E . Let us call y the point of ∂B(x, r)∩∂∗E
which is closest to z. Then, calling for brevity θ = ζ(z−x)− ζ(y−x), since r′ ≥ r/2 it is

H1(∂∗E ∩B(x, r))− 2r ≥ r
(√

1 + sin2 θ − 1
)
≥ θ2

6
r .

By (2.27) and (2.25), we have then

|ζ(z − x)− τ(x, r)| ≤
√

2C2ξ1(ρ) + ξ2(r) ≤
√

2C2ξ1(2C2r) + ξ2(r) .

To conclude it is then enough to apply (2.25) with r′ in place of r and z in place of y,
finally finding

|τ(x, r′)−τ(x, r)| ≤ |ζ(z−x)−τ(x, r′)|+|ζ(z−x)−τ(x, r)| ≤
√

2C2ξ1(2C2r)+ξ2(r)+ξ2(r
′) ,

which is stronger than (2.26). �

Corollary 2.16. Let B(x̄, r̄) be as in Proposition 2.13 and let x, y ∈ ∂∗E be such that
r := |y − x| < R7/(2C2) and B(x, 2C2r) ∪B(y, 2C2r) ⊆ B(x̄, r̄). Then,

|τ(x, r)− τ(y, r)| ≤ 2ξ2(r) .

Proof. It is possible to apply Lemma 2.15 both to x and y. Then, (2.25) gives that the
direction ζ(y − x) of the vector y − x differs at most ξ2(r) from both τ(x, r) and τ(y, r).
The thesis is then obvious. �

We are now in position to prove Proposition 2.13.

Proof (of Proposition 2.13). We let ξ1 and ξ2 be the functions defined in Lemmas 2.14
and 2.15. For every x ∈ ∂∗E ∩ B(x̄, r̄), it is possible to apply Lemma 2.15 for every r
small enough. For every such r, taking in account (2.26), by obvious induction we get
that for every n ∈ N and every r′ ∈ [r/2n, r/2n−1) one has

|τ(x, r)− τ(x, r′)| ≤ 2C2

n−1∑
j=0

ξ1(2C2r/2
j) + 2

n−1∑
j=0

ξ2(r/2
j) .

Let us then define

ξ3(r) = 2C2

+∞∑
j=0

ξ1(2C2r/2
j) + 2

+∞∑
j=0

ξ2(r/2
j) .

Notice that the series converges since the functions ξ1 and ξ2 have the Dini property.
Moreover, if ηβ > 1 and h is locally α-Hölder, then both ξ1 and ξ2 are bounded by a
multiplicative constant (only depending on hmin, β, η, ω, Cper and Cvol) times rγ, with
γ given by (2.23). Hence, not only the series converges, but also ξ3(r) ≤ Krγ with a
constant K only depending on the data.
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As a consequence, we obtain that τ(x, r′) converges to a direction τ(x) ∈ P1 for r′ ↘ 0,
and that |τ(x, r)− τ(x)| ≤ ξ3(r). For every x, y ∈ B(x̄, r̄) as in Corollary 2.16, then, we
deduce that, calling r = |y − x|, one has

|τ(x)− τ(y)| ≤ 2ξ3(r) + 2ξ2(r) .

We can finally set ξ(r) = 2ξ3(r) + 2ξ2(r). Summarizing, we have shown that for every
x ∈ ∂∗E ∩ B(x̄, r̄) the normal vector to ∂∗E at x exists, and is orthogonal to τ(x). The
above estimate, also keeping in mind (2.21), ensures then that ∂∗E is a finite union of C1

curves. �

Corollary 2.17 (Single C1 curve). Let B(x̄, r̄) ⊆ D be a ball as in Proposition 2.13,
with the additional assumption that r̄ < R4 and that #

(
∂∗E ∩ ∂B(x̄, r̄)

)
= 2. Then,

∂E ∩B(x̄, r̄) is a C1 relatively closed curve, having both endpoints on ∂B(x̄, r̄).

Proof. Proposition 2.13 already tells us that ∂E ∩ B(x̄, r̄) is a finite union of pairwise
disjoint relatively closed C1 curves. Every such curve cannot have an endpoint inside the
ball B(x̄, r̄), hence it is either a closed loop or a curve with both endpoints in ∂B(x̄, r̄).
On the other hand, a closed loop can be excluded since r̄ < R4 thanks to Lemma 2.7 and
Remark 2.8. Consequently, every curve has two endpoints in ∂B(x̄, r̄) and, since there
are only two points in ∂∗E ∩ ∂B(x̄, r̄), we deduce that the curve is unique. �

2.4. Conclusion. In this short section we can now give the proof of Theorem 1.4, which
basically consists in putting together the technical results of the preceding sections.

Proof of Theorem 1.4. Let E ⊆ R2 be a minimal cluster, and let us fix two large, closed
balls D− ⊂⊂ D ⊆ R2.

Let x ∈ D−∩∂E be any 3-color point in the boundary of E (there are finitely many of
these points by Proposition 2.12). Then, by Lemma 2.11 there is some radius r(x) < R6

such that the ball B(x, r(x)) is compactly contained in D, and its boundary contains
exactly three points in ∂∗E .

Let instead x ∈ D− ∩ ∂E be any point in the boundary of E which is not a 3-color
point. Then, by definition and by Lemma 2.6 there is some radius r(x) < R6 such that
the ball B(x, r(x)) is compactly contained in D, has non-negligible intersection with at
most 2 sets Ei with 0 ≤ i ≤ m, and its boundary contains exactly two points in ∂∗E (in
principle there could be at most three such points, but as already noticed in the proof of
Lemma 2.15 they are necessarily 2).

By compactness, we can cover D− with finitely many balls Bj = B(xj, rj), having
radii rj < R6 and with the following property. For every j, either xj is a 3-color point
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and ∂Bj ∩ ∂∗E is done by three points, or xj is not a 3-color point, the ball Bj has non-
negligible intersection with at most two different sets Ei, 0 ≤ i ≤ m, and ∂Bj ∩ ∂∗E is
done by two points.

In the second case, by Proposition 2.13 and Corollary 2.17 we know that ∂∗E ∩Bj is
done by a C1 curve whose tangent vector τ satisfies the uniform estimate (2.22).

Let us then consider a ball Bj centered at a 3-color point, and let a be one of the
three points of ∂Bj ∩∂∗E . The point a is not a 3-color point, by Proposition 2.12. Hence,
a small ball centered in a has non-negligible intersection with only two different sets Ei,
so using again Lemma 2.6 and Corollary 2.17 we obtain that ∂∗E is a uniformly C1 curve
near a. The same of course holds near b and c, the other two points of ∂Bj ∩ ∂∗E .

Therefore, there are three maximal (with respect to the inclusion) uniformly C1 curves
in Bj∩∂∗E , having one endpoint respectively in a, b, c. Since, as just observed, ∂∗E is a C1

curve around each point which is not a 3-color point, by maximality the second endpoint
of each of the three curves must be a 3-color point inside Bj (keep in mind that the curves
have finite length since E is a minimal cluster). This means that the three curves meet at
xj, which is the only 3-color point in Bj. Keeping in mind the uniform C1 property of the
curves, given by (2.22), we deduce that the three curves arrive with a well-defined tangent
vector at xj. In other words, ∂∗E ∩ Bj contains three C1 curves starting at a, b and c

and meeting at xj arriving with three tangent vectors. By Lemma 2.7 and Remark 2.8,
∂∗E ∩ Bj cannot have other points except these three curves. Finally, the fact that the
tangent vectors at xj form three angles of 2

3
π is an immediate consequence of Lemma 2.2.

The fact that, if ηβ > 1 and h is locally α-Hölder, then the arcs are not only C1 but
also C1,γ is already given by Proposition 2.13. The proof is then concluded. �

3. Examples

3.1. Grushin plane. An interesting example arising from sub-Riemannian geometry is
the so-called Grushin plane, corresponding to R2 endowed with densities

h(x, ν) =
√
ν21 + |x1|2αν22 , g ≡ 1, x = (x1, x2) ∈ R2, ν ∈ S1, (3.1)

for α ≥ 0. In particular, for α = 1 this is a 2-dimensional quotient of the Heisenberg
group, setting of the celebrated Pansu’s conjecture [24, 25].

In [22], the authors characterize isoperimetric sets in this framework. We also refer
to [13] for a multidimensional generalization of the isoperimetric problem, and to [12, 16]
for a first approach to clustering problems in the Grushin plane. Note that in these
references the Grushin perimeter is defined in a more general way via De Giorgi’s defi-
nition allowing for non-Euclidean rectifiable sets. In this paper, we do not need to work
at this level of generality since a suitable (non-smooth) change of coordinates (see [22,
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Proposition 2.3]) reduces the problem to the study of the densities

h ≡ 1, g(x) = |(1 + α)x1|−
α

1+α , x ∈ R2, (3.2)

for sets with locally finite Euclidean perimeter. Existence of minimal clusters for the
densities in (3.2) is proved in the forthcoming paper [15].

Proposition 3.1. Any minimal cluster E relative to the densities in (3.2) satisfies the
Steiner property and the arcs of ∂∗E are C1,γ with γ = 1/(2(α + 1)).

Proof. We show that the η-growth condition holds with η = (α + 2)/(α + 1) and that
any m-cluster E satisfies the ε− εβ property with β = 1. The conclusion follows then by
Theorem 1.4 (note that h is the Euclidean density, hence regular).

We begin with the η-growth condition. For x ∈ R2 and r > 0, let us set Q(x, r) =

[x1− r, x1 + r]× [x2− r, x2 + r]. In the following Cα > 0 will be a constant only depending
on α. Since t 7→ |t|−

α
1+α is decreasing for t ∈ R+, then

|Q(x, r)| ≤ |Q(0, r)| = 4(1 + α)−
α

1+α r

∫ r

0

x
− α

1+α

1 dx1 = Cα r
α+2
α+1 .

The η-growth condition then holds with Cvol = Cα and Rη = 1.
We now pass to the ε − εβ property for m-clusters, starting from the case m = 1.

Let E be a set of locally finite perimeter and finite Lebesgue measure. We fix a, b ∈ ∂∗E
such that d = min{|a − b|, |a1|, |b1|} > 0 and we let B1 = B(a, d/4) and B2 = B(b, d/4).
Note that on B1 ∪ B2 we have 1/K < g < K for a constant K > 0 only depending on
the choice of these two balls, and set Rβ = d/8. By construction, for every x ∈ R2 the
ball B(x,Rβ) can intersect at most one among B1 and B2, so to get (1.2) we can apply
the standard Euclidean result in a ball among B1 and B2 not intersecting B(x,Rβ). To
pass from the case m = 1 to the case m > 1, we can argue similarly as in the proof
of [20, Theorem 2.9.14]. More precisely, for any 1 ≤ i ≤ m, we can easily find finitely
many indices i0, i1, i2, . . . , ik ∈ {0, 1, . . . , m} such that i0 = i, ik = 0, and for every
0 ≤ j < k there is a point aj ∈ ∂∗Eij∩∂∗Eij+1

not lying on the x2-axis. Since the necessary
points to fix are at most m(m + 1)/2, we can apply the Euclidean result finitely many
times obtaining (1.2) for the special case when the vector ε ∈ Rm has a single non-zero
coordinate. And from this we obviously conclude also for a generic vector. �

Remark 3.2. The isoperimetric set for the densities in (3.2) has a C1, 1
α+1 regular bound-

ary, as follows by [22]. In particular, the regularity established in Proposition 3.1 is not
sharp, at least for m = 1. Moreover, in [15] we prove that minimal clusters in this frame-
work exist and are bounded so that they are made by a finite union of C1, 1

2(α+1) regular
arcs.
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3.2. Gaussian plane. The Gaussian plane is R2 with densities

h(x) = g(x) =
1

2π
e−
|x|2
2 , x ∈ R2 .

The isoperimetric problem with these densities, which is very important also for its con-
nections with Probability, is deeply studied since the pioneering works [34, 4]. Recently,
the characterization of optimal double bubbles in this framework has been given in [21],
where the problem is studied in the more general n-dimensional Gaussian space. A simple
application of our main result is the following.

Proposition 3.3. Any minimal cluster E relative to the Gaussian densities satisfies the
Steiner property and the arcs of ∂∗E are C∞.

Proof. We first apply Theorem 1.4 to prove that the Steiner property holds with C1, 1
2

regularity. Indeed, the η-growth condition is easily verified with η = 2 and the ε − εβ

property for clusters holds with β = 1 thanks to [30, Theorem A].
To conclude the proof it is enough to observe that h ≡ g is a smooth function on R2

and then the C∞ regularity of the arcs follows by a standard variational argument. �
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