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Abstract. We study the relative impact of fine-scale heterogeneities and singular perturbations in a

one-dimensional phase-field model of Ambrosio-Tortorelli type. We show that the limit functional is
always of Mumford-Shah type, with a surface term depending on the mutual converging rate of the

oscillation and the perturbation parameter.

1. Introduction

In this note we study the asymptotic behaviour, via Γ-convergence, of one-dimensional integral functionals
combining oscillations and singular perturbations occurring on two possibly different length-scales. The
functionals we consider are of Ambrosio-Tortorelli type and, for ε > 0 and u, v ∈ W 1,2(a, b), they are
defined as

Fε(u, v) =

ˆ b

a

(
v2(u′)2 +

(1− v)2

ε
+ εϕ

(x
δ

)
(v′)2

)
dx , (1.1)

where ϕ ∈ L∞(R) is a 1-periodic function. The scale-parameter δ = δ(ε) > 0 is infinitesimal as ε → 0
and represents the characteristic length of some underlying heterogeneities. If

α := inf ϕ, β := supϕ, with α > 0

then, up to a multiplicative constant, Fε is bounded both from below and from above by the Ambrosio-
Tortorelli functional [1, 2]; that is, we have
ˆ b

a

v2(u′)2 dx+

ˆ b

a

(
(1− v)2

ε
+ εα(v′)2

)
dx ≤ Fε(u, v) ≤

ˆ b

a

v2(u′)2 dx+

ˆ b

a

(
(1− v)2

ε
+ εβ(v′)2

)
dx.

Therefore, as in the Ambrosio-Tortorelli approximation, the parameter ε determines the length-scale of
the diffuse approximation of the jump set of the limit variable. Indeed if (uε, vε) ⊂W 1,2(a, b)×W 1,2(a, b)
is a sequence along which Fε is equi-bounded then, necessarily, vε → 1 in L2(a, b), while the first term in
(1.1) favours those configurations where vε is asymptotically negligible, in the regions where u′ε blows-up.
Then, as in the case of the Modica-Mortola functional [13, 14], vε makes a transition between 0 and 1 in a
small layer of width proportional to ε. The cost of this transition is of order one and is bounded between
the two constants 2

√
α and 2

√
β, the 2 appearing for symmetry reasons (cf. Remark 3.4). Moreover, the

Γ-limit of Fε (if it exists) shall satisfy
ˆ b

a

(u′)2 dx+ 2
√
α#S(u) ≤ Γ- limFε(u) ≤

ˆ b

a

(u′)2 dx+ 2
√
β#S(u), (1.2)

where S(u) denotes the set of discontinuity points of u (and the limit variable v is omitted since it is
equal to the constant function 1). The bounds in (1.2) then imply that the domain of the Γ-limit of Fε is
the space of piecewise-Sobolev functions P -W 1,2(a, b). The latter coincides with the space of functions u
which can be written as the sum of a Sobolev function ũ ∈ W 1,2(a, b) and a piecewise-constant function
upc; thus u′ = ũ′ and S(u) = S(upc).

1
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The main result of this note is Theorem 2.1 which establishes a Γ-convergence result for the functionals
Fε in every parameter regime; i.e., for every ` ∈ [0,+∞], where

` := lim
ε→0

ε

δ(ε)
.

Specifically, we show that the sequence (Fε) Γ-converges, with respect to the L1(a, b)-convergence, to a
functional which is always of Mumford-Shah type; i.e.,

F `(u) =

ˆ b

a

(u′)2 dx+ m`#S(u) , u ∈ P -W 1,2(a, b), (1.3)

with a (constant) surface energy-density m` depending on the combined effect of the oscillations and the
singular perturbation.

More precisely, we show that the lower bound in (1.2) is optimal when ` = 0. That is, if ε� δ, then
m0 = 2

√
α and the Γ-limit of Fε is given by the functional

F 0(u) =

ˆ b

a

(u′)2 dx+ 2
√
α#S(u), u ∈ P -W 1,2(a, b). (1.4)

In this case a scale separation takes place. Indeed, formally, if in (1.1) we first take the Γ-limit in ε, and
keep δ fixed, we obtain the inhomogeneous free-discontinuity functionals (see [11])

ˆ b

a

(u′)2 dx+ 2
∑

(a,b)∩S(u)

√
ϕ
(x
δ

)
, u ∈ P -W 1,2(a, b),

whose Γ-limit as δ → 0 is exactly given by (1.4) (see e.g., [7, Section 9.3]).
For ` = +∞, which corresponds to the case δ � ε, we also observe a scale separation. In fact being

the oscillation parameter δ smaller than the approximation parameter ε, in this regime, the Γ-limit of Fε
is the same as that of the homogeneous functionalsˆ b

a

v2(u′)2 dx+

ˆ b

a

(
(1− v)2

ε
+ εϕhom(v′)2

)
dx,

where ϕhom is the harmonic mean of ϕ in (0, 1); i.e.,

ϕhom :=

(ˆ 1

0

1

ϕ(t)
dt

)−1
.

Therefore, passing to the limit as ε→ 0 gives

F∞(u) =

ˆ b

a

(u′)2 dx+ 2
√
ϕhom #S(u), u ∈ P -W 1,2(a, b), (1.5)

that is, m∞ = 2
√
ϕhom. We notice that, in general, ϕhom ≤ β.

Finally, in the case ` ∈ (0,+∞) the parameters ε and δ, being of the same order, interact with
one another producing a surface energy m` which depends on their interplay according to the following
formula

m` = inf
z∈[0,1)

inf

{ ˆ
R

(
(1− v)2 + ϕ(`x)(v′)2

)
dx : v ∈W 1,2

loc (R) , v(z/`) = 0 , lim
t→±∞

v(t) = 1

}
. (1.6)

We notice that, in contrast to the typical optimal-profile problem for the Ambrosio-Tortorelli functional
(cf. (3.6)) which determines both m0 and m∞, the minimisation problem in (1.6) involves the (unscaled)
Modica-Mortola term in Fε on the whole real line, instead of (0,+∞). This is due to the presence of the
inhomogeneity ϕ, which breaks the usual symmetry of the problem. Moreover, an additional optimisation
on the parameter z ∈ [0, 1) is needed to determine the “starting point” of an optimal transition. This
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feature makes the present problem different from the corresponding one for the Modica-Mortola functional
considered in [3, 4] (see also [7, Chapter 9]).

Eventually, we conclude the limit analysis of the functionals Fε by proving that the surface energy
density m` is continuous with respect to the parameter `; i.e., we show that

lim
`→0+

m` = m0 and lim
`→+∞

m` = m∞.

We finally observe that the functionals in (1.1) have also a mechanical interpretation. Indeed they can
be seen as a one-dimensional variational model for damage in heterogeneous materials, according to,
e.g., [10, 12, 15, 16]. We also notice that due to the presence of the two interacting scales ε and δ, a
Γ-convergence analysis for the corresponding n-dimensional model makes it necessary to resort to a more
abstract method of proof, as shown in [6]. This method relies, among other, on the Γ-convergence analysis
for general (scale-dependent, non periodic) elliptic functionals recently developed in [5]. In particular, the
result established in [5] shows that the Γ-limit of the n-dimensional counterpart of (1.1) is always of brittle
type, this fact being a consequence of a volume-surface decoupling which takes place in the Γ-limit. On
the other hand, the one-dimensional problem studied in this note can be solved directly, by hands, taking
advantage of the simple form of the functionals Fε and of the structure of the space of one-dimensional
special functions of bounded variation, SBV 2(a, b), which coincides with the space of piecewise-Sobolev
functions P -W 1,2(a, b). In particular, in the proof of the upper-bound inequality (in the three different
scaling regimes), the structure of P -W 1,2(a, b) allows us to treat the regular and singular part of the limit
variable u separately, without resorting to the abstract decoupling result established in [5].

2. Setting of the problem and statement of the main result

In this section we define the phase-field functionals we are going to analyse and we state our main result.
Let ϕ ∈ L∞(R) be a 1-periodic function and set

α := inf ϕ, β := supϕ; (2.1)

we additionally assume that α > 0.

Let ε > 0 and let δε > be such that limε→0 δε = 0. For a, b ∈ R with a < b we consider the
one-dimensional integral functionals Fε : L1(a, b)× L1(a, b) −→ [0,+∞] defined by

Fε(u, v) :=


ˆ b

a

(
v2(u′)2 +

(1− v)2

ε
+ εϕ

( x
δε

)
(v′)2

)
dx u, v ∈W 1,2(a, b), 0 ≤ v ≤ 1,

+∞ otherwise.

(2.2)

We notice that thanks to (2.1) the functionals Fε satisfy

ATαε (u, v) ≤ Fε(u, v) ≤ AT βε (u, v) , (2.3)

where, for λ > 0, ATλε is the one-dimensional Ambrosio-Tortorelli functional given by

ATλε (u, v) :=


ˆ b

a

(
v2(u′)2 +

(1− v)2

ε
+ ελ(v′)2

)
dx u, v ∈W 1,2(a, b), 0 ≤ v ≤ 1,

+∞ otherwise.

(2.4)

For later use it is convenient to define the localised functionals

Fε(u, v, I) :=


ˆ
I

(
v2(u′)2 +

(1− v)2

ε
+ εϕ

( x
δε

)
(v′)2

)
dx u, v ∈W 1,2(a, b), 0 ≤ v ≤ 1,

+∞ otherwise,

(2.5)
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where I ⊂ (a, b) is any open interval. Analogously, we define a localised version of the Modica-Mortola
term in Fε by setting

Gε(v, I) :=


ˆ
I

(
(1− v)2

ε
+ εϕ

( x
δε

)
(v′)2

)
dx v ∈W 1,2(a, b), 0 ≤ v ≤ 1,

+∞ otherwise.

(2.6)

As for the Ambrosio-Tortorelli functional, the Γ-limit of Fε will be defined on a space of discontinu-
ous functions. Then, to describe the domain of the limit functional, we need to introduce the space
P -W 1,2(a, b). The latter denotes the space of piecewise W 1,2(a, b)-functions defined on the interval (a, b).
That is, u ∈ P -W 1,2(a, b) if and only if there exists a finite partition of (a, b), a = t0 < t1 < . . . < tM = b,
such that u ∈ W 1,2(ti, ti+1), for every i = 1, . . . ,M − 1. The discontinuity set of a function u ∈ P -W 1,2

is denoted by S(u) and it coincides with the minimal of such sets of points.
Let PC(a, b) denote the space of piecewise constant functions on (a, b); then it is easy to check that

P -W 1,2(a, b) = W 1,2(a, b) + PC(a, b), (2.7)

that is, u ∈ P -W 1,2(a, b) if and only if

u = ũ+ upc, (2.8)

with ũ ∈ W 1,2(a, b) and upc ∈ PC(a, b). We also notice that the sum in (2.7) is not a direct sum since
the constant functions belong to W 1,2(a, b) ∩ PC(a, b), therefore the decomposition in (2.8) is uniquely
determined up to an additive constant.

Thanks to (2.8), for u ∈ P -W 1,2(a, b) we have

u′ = ũ′ and S(u) = S(upc).

Set

` := lim
ε→0

ε

δε
∈ [0,+∞].

The following Γ-convergence theorem is the main result of this paper.

Theorem 2.1. The sequence of functionals (Fε) defined in (2.2) Γ(L1 ×L1)-converges to the functional
F ` : L1(a, b)× L1(a, b) −→ [0,+∞] defined as

F `(u, v) :=


ˆ b

a

(u′)2 dx+ m`#S(u) u ∈ P -W 1,2(a, b), v = 1 a.e. in (a, b) ,

+∞ otherwise .

(2.9)

Moreover, the constant m` > 0 is defined as follows:

(1) if ` = 0 and ϕ is upper semicontinuous then

m0 := 2
√
α; (2.10)

(2) if ` ∈ (0,+∞) then

m` := inf
z∈[0,1)

m`
z , (2.11)

with

m`
z := inf

{ˆ
R

(
(1− v)2 + ϕ(`x+ z)(v′)2

)
dx : v ∈W 1,2

loc (R), 0 ≤ v ≤ 1, v(0) = 0, v(±∞) = 1

}
, (2.12)

where v(±∞) := limx→±∞ v(x);
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(3) if ` = +∞ then

m∞ := 2

(ˆ 1

0

1

ϕ(t)
dt

)−1/2
. (2.13)

Eventually, the constant m` satisfies

lim
`→0+

m` = m0 and lim
`→+∞

m` = m∞ , (2.14)

provided ϕ is upper semicontinuous.

3. Preliminary results

In this section we state and prove some preliminary results which will be used in what follows. We start
recalling the convergence result for the 1-dimensional Ambrosio-Tortorelli functionals defined in (2.4)
(see, e.g., [8, Theorem 3.15])

Theorem 3.1. For any λ > 0 the functionals ATλε defined in (2.4) Γ(L1×L1)-converge as ε→ 0 to the
functional

MSλ(u, v) :=


ˆ b

a

(u′)2 dx+ 2
√
λ#S(u) u ∈ P -W 1,2(a, b), v = 1 a.e. in (a, b) ,

+∞ otherwise .

The next proposition establishes a compactness result for sequences with equi-bounded energy and a
lower bound for the first term in Fε, which is independent of the parameter regime.

Proposition 3.2. Let Fε be as in (2.2) and let (uε, vε) ⊂W 1,2(a, b)×W 1,2(a, b) be such that

uε → u in L1(a, b) and sup
ε>0

Fε(uε, vε) < +∞.

Then, there holds

(1) vε → 1 in L2(a, b), u ∈ P -W 1,2(a, b) and

lim inf
ε→0

ˆ b

a

v2ε(u′ε)
2 dx ≥

ˆ b

a

(u′)2 dx ; (3.1)

(2) If S(u) = {t1, . . . , tN} and I1, . . . , IN are pairwise disjoint open subintervals in (a, b) such that
ti ∈ Ii, for every i = 1, . . . , N , then there exist s1ε, . . . , s

N
ε with (siε) ⊂ Ii for every ε > 0, such

that

siε → ti and vε(s
i
ε)→ 0 as ε→ 0, (3.2)

for every i = 1, . . . , N .

Proof. Thanks to (2.3), the proof readily follows from the corresponding one for the Ambrosio-Tortorelli
functional (see, e.g., [8, Theorem 3.15]). �

Remark 3.3. Let (uε, vε) be as in Proposition 3.2 and I1, . . . , IN , siε as in Proposition 3.2 (2). Since (1)
implies that, up to subsequences, vε → 1 a.e. in (a, b), we can find ri, r̃i ∈ Ii with ri < siε < r̃i such that

lim
ε→0

vε(r
i) = lim

ε→0
vε(r̃

i) = 1. (3.3)

In particular, since vε is continuous, we can apply the Intermediate Value Theorem to deduce that, for
any η ∈ (0, 1/2) fixed, there exist s̃iε, r

i
ε, r̃

i
ε ∈ Ii (depending also on η) with riε < s̃iε < r̃iε such that

vε(s̃
i
ε) = η , vε(r

i
ε) = vε(r̃

i
ε) = 1− η and vε ≤ 1− η in [riε, r̃

i
ε] . (3.4)
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Set M := supε Fε(uε, vε); since by assumption M < +∞, from (3.4) we infer

M ≥
ˆ r̃iε

riε

(1− vε)2

ε
dx ≥ η2

ε
(r̃iε − riε) and M ≥ α

ˆ r̃iε

s̃iε

ε(v′ε)
2 dx ≥ ε α(1− 2η)2

r̃iε − s̃iε
,

where the last estimate follows from Jensen’s Inequality. Therefore, for every ε > 0 we get

α(1− 2η)2

M
≤ r̃iε − s̃iε

ε
<
r̃iε − riε
ε

≤ M

η2
(3.5)

and similarly for
s̃iε−r

i
ε

ε .

3.1. The optimal-profile problem. In this subsection we study the minimisation problem defining the
constant m` in (2.11). The latter represents the minimal cost of a two-sided transition from the value 0
to the value 1, on the real line, in terms of the unscaled Modica-Mortola term in Fε. We thus refer to the
corresponding minimisation problem as the optimal-profile problem. The analysis of m` will be useful
both to prove the Γ-convergence result in the regime δε ∼ ε and to establish (2.14) in Theorem 2.1.

We start recalling some properties of the corresponding optimal-profile problem for the Ambrosio-
Tortorelli functionals ATλε defined in (2.4).

Remark 3.4. Let λ > 0; arguing as in, e.g., [7, Chapter 6] it is immediate to check that

√
λ = min

{ ˆ +∞

0

(
(1− v)2 + λ (v′)2

)
dx : v ∈W 1,2

loc (0,+∞), 0 ≤ v ≤ 1, v(0) = 0, v(+∞) = 1

}
= inf
T>0

min

{ ˆ T

0

(
(1− v)2 + λ (v′)2

)
dx : v ∈W 1,2(0, T ), 0 ≤ v ≤ 1, v(0) = 0, v(T ) = 1

}
.

(3.6)

Let m`
z be as in (2.12); from (3.6) using a reflection argument and choosing either λ = α or λ = β, in

view of (2.1) we get

2
√
α ≤m`

z ≤ 2
√
β , (3.7)

for every ` ∈ (0,+∞) and every z ∈ [0, 1).

The following lemma shows that the cost of an optimal profile depends continuously on the value
attained by the competitors at zero.

Lemma 3.5. For ` ∈ (0,+∞), z ∈ [0, 1), and t ∈ [0, 1) let

m`
z(t) := inf

{ ˆ
R

(
(1− v)2 +ϕ(`x+ z)(v′)2

)
dx : v ∈W 1,2

loc (R), 0 ≤ v ≤ 1, v(0) = t , v(±∞) = 1

}
, (3.8)

and set

m`(t) := inf
z∈[0,1)

m`
z(t) , (3.9)

so that in particular m`(0) = m`, with m` as in (2.11). Then limt→0 m`(t) = m`.

Proof. Let ` ∈ (0,+∞) be fixed; let z ∈ [0, 1) be arbitrary and let v ∈ W 1,2
loc (R) be admissible for the

infimum problem defining m`
z in (2.12); i.e., in particular, v(0) = 0. For any t ∈ [0, 1) the function

vt := min{v + t, 1}

is admissible for the infimum problem defining m`
z(t) and satisfiesˆ

R

(
(1− vt)2 + ϕ(`x+ z)(v′t)

2
)
dx ≤

ˆ
R

(
(1− v)2 + ϕ(`x+ z)(v′)2

)
dx .
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Passing to the infimum in v and z we obtain both

m`(t) ≤m` for every t ∈ [0, 1) and lim sup
t→0

m`(t) ≤m`. (3.10)

Thus, to conclude it remains to show that

lim inf
t→0

m`(t) ≥m`. (3.11)

To this end, we fix η ∈ (0, 1/2) and for any t ∈ (0, 1/4) we choose zη,t ∈ [0, 1) and vη,t ∈ W 1,2
loc (R) with

0 ≤ vη,t ≤ 1, vη,t(0) = t, vη,t(±∞) = 1 such thatˆ
R

(
(1− vη,t)2 + ϕ(`x+ zη,t)(v

′
η,t)

2
)
dx ≤m`(t) + η . (3.12)

Since vη,t(±∞) = 1 and vε,t is continuous, we can apply the Intermediate Value Theorem to find T 1
η,t, T

2
η,t

with T 1
η,t < 0 < T 2

η,t such that

vη,t(T
1
η,t) = vηt(T

2
η,t) = 1− η and vη,t ≤ 1− η on [T 1

η,t, T
2
η,t] . (3.13)

Notice that the second condition in (3.13) together with (3.12) implies that

m`(t) + η ≥
ˆ T 2

η,t

T 1
η,t

(1− vη,t)2 dx ≥ η2(T 2
η,t − T 1

η,t) .

Thus, combining (3.7) and (3.10) yields

(T 2
η,t − T 1

η,t) ≤
2
√
β + η

η2
uniformly in t . (3.14)

Next we define

wη,t(x) :=



1− (η + t)(x− T 1
η,t + 1) if T 1

η,t − 1 ≤ x < T 1
η,t ,

max{0, vη,t(x)− t} if T 1
η,t ≤ x ≤ T 2

η,t ,

1 + (η + t)(x− T 2
η,t − 1) if T 2

η,t ≤ x < T 2
η,t + 1 ,

1 otherwise in R ,
(see Figure 1).

t

1− η
1

1− η − t

T 1
η,t T 2

η,t

Figure 1. The function vη,t (in dark grey) and the modification wη,t (in light grey).
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The first condition in (3.13) ensures that wη,t ∈W 1,2
loc (R). Moreover, we have wη,t(0) = vη,t(0)− t = 0

and vη,t(±∞) = 1. In particular, wη,t is admissible for m`
z for any z ∈ [0, 1), so that

m` ≤
ˆ
R

(
(1− wη,t)2 + ϕ(`x+ zη,t)(w

′
η,t)

2
)
dx . (3.15)

Further, since the map s 7→ (1− s)2 is decreasing on (−∞, 1) we get

ˆ T 2
η,t

T 1
η,t

(
(1− wη,t)2 + ϕ(`x+ zη,t)(w

′
η,t)

2
)
dx ≤

ˆ T 2
η,t

T 1
η,t

(
(1− vη,t − t)2 + ϕ(`x+ zη,t)(v

′
η,t)

2
)
dx

≤ (1 + η)

ˆ T 2
η,t

T 1
η,t

(
(1− vη,t)2 + ϕ(`x+ zη,t)(v

′
η,t)

2
)
dx+

(
1 +

1

η

)
t2(T 2

η,t − T 1
η,t) ,

(3.16)

where the second inequality follows by expanding the square (1−vη,t−t)2 and applying Young’s Inequality
to the term 2

√
η(1− vη,t) t√

η . Eventually, by definition of wη,t, from (2.1) we infer

ˆ
R\[T 1

η,t,T
2
η,t]

(
(1− wη,t)2 + ϕ(`x+ zη,t)(w

′
η,t)

2
)
dx

≤ (η + t)2

(ˆ T 1
η,t

T 1
η,t−1

(x− T 1
η,t + 1)2 dx+

ˆ T 2
η,t+1

T 2
η,t

(x− T 2
η,t − 1)2 dx+ 2β

)
= 2(η + t)2

(1

3
+ β

)
.

(3.17)

Thus, inserting (3.14) in (3.16) and combining (3.12) with (3.15)–(3.17) we deduce that

m` ≤ (1 + η)
(
m`(t) + η

)
+
(

1 +
1

η

)
t2

2
√
β + η

η2
+ 2(η + t)2

(1

3
+ β

)
.

Passing in the above inequality first to the liminf in t and then to the limit as η → 0 we finally obtain (3.11).
�

Remark 3.6. We observe that for ` ∈ (0,+∞), in general the strict inequality m0 < m` holds. To prove
it, assume ϕ is continuous with 0 < α = minϕ < maxϕ = β. Then, the direct methods and a truncation
argument provide us with a pair (z̄, v̄) ∈ [0, 1) ×W 1,2

loc (R) with 0 ≤ v̄ ≤ 1, v̄(0) = 0, v̄(±∞) = 1, such
that

m` =

ˆ
R

(1− v̄)2 + ϕ(`x+ z̄)(v̄′)2 dx . (3.18)

Therefore the Young Inequality yields

m` =

ˆ
R

(1− v̄)2 + ϕ(`x+ z̄)(v̄′)2 dx

=

ˆ
R

(
(1− v̄)2 + α(v̄′)2

)
dx+

ˆ
R
(ϕ(`x+ z̄)− α)(v̄′)2 dx

≥ 2
√
α+

ˆ
R

(ϕ(`x+ z̄)− α)(v̄′)2 dx , (3.19)

with equality if and only if v̄ satisfies α v̄′ = 1 − v̄; i.e., v̄ = 1 − exp(−|x|/
√
α). If this is the case, then

|v̄′(x)| > 0 for every x ∈ R \ {0}, which will imply that the second term on the right-hand side of (3.19)
is strictly positive by the assumptions on ϕ. Thus, the claim follows.

Remark 3.7. For later reference it is useful to observe that for every ` ∈ (0,+∞) and z ∈ [0, 1)
the constant m`

z in (2.12) can be equivalently expressed in terms of a minimisation problem where
the test functions are suitably shifted, instead of the integrand. Indeed, consider the shifted function
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vz := v( · − z
` ); if v ∈W 1,2

loc (R) then vt belongs to W 1,2
loc (R), moreover v(0) = 0, v(±∞) = 1 if and only if

vz(
z
` ) = 0, vz(±∞) = 1. Therefore, since the change of variables y = x+ z

` givesˆ
R

(
(1− v)2 + ϕ(`x+ z)(v′)2

)
dx =

ˆ
R

(
(1− vz)2 + ϕ(`y)(v′z)

2
)
dy ,

passing to the infimum we get

m`
z = inf

{ˆ
R

(
(1− v)2 + ϕ(`x)(v′)2

)
dx : v ∈W 1,2

loc (R), 0 ≤ v ≤ 1, v( z` ) = 0 , v(±∞) = 1

}
. (3.20)

Finally, in the next proposition we prove an alternative formula for the surface density of the Γ-limit
in the regime δε ∼ ε (cf. [5, Theorem 8.4]).

Proposition 3.8. Let ` ∈ (0,+∞) and set

m̃` := inf

{ˆ
R

(
(1− v)2 + ϕ(`x)(v′)2

)
dx : v ∈W 1,2

loc (R) , 0 ≤ v ≤ 1 , v(±∞) = 1 ,

∃u ∈W 1,2
loc (R) with u(−∞) = 0, u(+∞) = 1 and v u′ = 0 a.e. in R

}
.

Then m̃` = m`, where m` is as in (2.11).

Proof. We first prove that m` ≥ m̃`.
To this end, let ` ∈ (0,+∞) be fixed and η ∈ (0, 1/2) be arbitrary; using the expression of m`

z in (3.20)

we choose zη ∈ [0, 1) and vη ∈W 1,2
loc (R) such that vη(

zη
` ) = 0, vη(±∞) = 1 andˆ

R

(
(1− vη)2 + ϕ(`x)(v′η)2

)
dx ≤m` + η . (3.21)

Similarly as in Lemma 3.5 we can find T 1
η , T

2
η , S

1
η , S

2
η with T 1

η < S1
η <

zη
` < S2

η < T 2
η satisfying the

following conditions:

vη(T 1
η ) = vη(T 2

η ) = 1− η and vη ≤ 1− η on [T 1
η , T

2
η ] (3.22)

vη(S1
η) = vη(S2

η) = η2 and vη ≤ η2 on [S1
η , S

2
η ] . (3.23)

We then define a pair (uη, vη) ∈W 1,2
loc (R)×W 1,2

loc (R) with (uη, vη)(−∞) = (0, 1) and (uη, vη)(+∞) = (1, 1)
by setting

uη(x) :=



0 if x < S1
η ,

x− S1
η

S2
η − S1

η

if S1
η ≤ x ≤ S2

η ,

1 if x > S2
η ,

wη(x) :=



1− (η + η2)(x− T 1
η + 1) if T 1

η − 1 ≤ x < T 1
η ,

max{0, vη(x)− η2} if T 1
η ≤ x ≤ T 2

η ,

1 + (η + η2)(x− T 2
η − 1) if T 2

η < x ≤ T 2
η + 1 ,

1 otherwise in R .

Clearly, uη ∈ W 1,2
loc (R), while (3.22) ensures that also wη ∈ W 1,2

loc (R). Moreover, the second condition
in (3.23) implies that wη ≡ 0 on [S1

η , S
2
η ], hence wη u

′
η = 0 a.e. in R. In particular, wη is admissible
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for m̃`. Then it only remains to estimate its energy. This can be done arguing in a similar way as in
Lemma 3.5. Namely, by repeating the computation in (3.16)–(3.17) now replacing t with η2 leads to

m̃` ≤
ˆ
R

(
(1− wη)2 + ϕ(`x)(w′η)2

)
dx ≤ (1 + η)

ˆ
R

(
(1− vη)2 + ϕ(`x)(v′η)2

)
dx

+
(

1 +
1

η

)
η4(T 2

η − T 1
η ) + 2(η + η2)2

(1

3
+ β

)
.

(3.24)

Moreover, as in (3.14), we deduce from (3.21) and (3.22) that T 2
η − T 1

η ≤
2
√
β+η
η2 . Inserting the latter

in (3.24) and appealing to (3.21) yields

m̃` ≤ (1 + η)(m` + η) + 2(η + η2)
(√

β + η +
1

3
+ β

)
,

hence the desired inequality follows by the arbitrariness of η > 0.

We now show that m` ≤ m̃`.
Let v be admissible for m̃`; then there exist u ∈W 1,2

loc (R) with u(−∞) = 0, u(+∞) = 1, and v u′ = 0

a.e. in R. Since u ∈W 1,2
loc (R), the boundary conditions at ±∞ imply that u′ cannot be equal to zero a.e.

in R. Since at the same time v u′ = 0 a.e. in R, we can find z̄ ∈ R with v(z̄) = 0. Set z := `z̄−b`z̄c ∈ [0, 1)
and vz := v(·+ (z̄ − z

` )). Then vz(
z
` ) = 0 and v(±∞) = 1, while the 1-periodicity of ϕ together with the

fact that `z̄ − z = b`z̄c ∈ Z implies thatˆ
R

(
(1− v)2 + ϕ(`x)(v′)2

)
dx =

ˆ
R

(
(1− vz)2 + ϕ

(
`
(
x+ z̄ − z

`

))
(v′z)

2
)
dx

=

ˆ
R

(
(1− vz)2 + ϕ(`x)(v′z)

2
)
dx .

Thus we conclude by passing to the infimum in v. �

Remark 3.9. The proof of Proposition 3.8 actually shows that

m` = inf
T>0

inf

{ ˆ T

−T

(
(1− v)2 + ϕ(`x)(v′)2

)
dx : v ∈W 1,2(−T, T ) , 0 ≤ v ≤ 1 , v(±T ) = 1 ,

∃u ∈W 1,2(−T, T ) with u(−T ) = 0, u(T ) = 1, and v u′ = 0 a.e. in (−T, T )

}
.

4. Oscillations on a larger scale than the singular perturbation

In this section we analyse the case when the oscillation parameter δε is much larger than the singular-
perturbation parameter ε; i.e., the case ` = 0.

Throughout this section the function ϕ is additionally assumed to be upper semicontinuous.

Proposition 4.1. Let ` = 0 and assume that ϕ is upper semicontinuous; then the sequence (Fε) defined
in (2.2) Γ-converges to the functional F 0 : L1(a, b)× L1(a, b) −→ [0,+∞] defined as

F 0(u, v) :=


ˆ b

a

(u′)2 dx+ m0#S(u) u ∈ P -W 1,2(a, b) , v = 1 a.e. in (a, b) ,

+∞ otherwise ,

(4.1)

where m0 := 2
√
α.

Proof. Thanks to (2.3), from Theorem 3.1 we immediately deduce that

Γ- lim inf
ε→0

Fε(u, v) ≥ Γ- lim inf
ε→0

ATαε (u, v) =

ˆ b

a

(u′)2 dx+ 2
√
α#S(u) ,
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which by definition of m0 gives the lower-bound inequality. It thus remains to establish the upper-bound
inequality.

Let u ∈ P -W 1,2(a, b); we construct a sequence (uε, vε) ⊂W 1,2(a, b)×W 1,2(a, b) such that (uε, vε)→
(u, 1) in L1(a, b)× L1(a, b) and

lim sup
ε→0

Fε(uε, vε) ≤m0#S(u) .

Since the construction of the recovery sequence (uε, vε) will be performed locally, close to a discontinuity
point of u, we can assume without loss of generality that S(u) = {t0}, with t0 ∈ (a, b).

Let now ũ ∈ W 1,2(a, b) and upc ∈ PC(a, b) be as in (2.8); without loss of generality, we choose
upc = sχ(a,t0), with s ∈ R.

For η > 0 let yη ∈ (0, 1) satisfy

ϕ(yη) ≤ α+ η . (4.2)

Applying (3.6) with λ = α we find Tη > 0 and vη ∈ W 1,2(0, Tη) such that 0 ≤ vη ≤ 1, vη(0) = 0,
vη(Tη) = 1, and ˆ Tη

0

(
(1− vη)2 + α (v′η)2

)
dx ≤

√
α+ η . (4.3)

Finally, set

tε0 :=

⌊
t0
δε

⌋
δε , yεη := δεyη , (4.4)

and let ξε > 0 be such that ξε � ε. Then, a recovery sequence for F 0(u, 1) is defined as (uε, vε) =
(ũ+ ūε, vε) with (ūε, vε) ⊂W 1,2(a, b)×W 1,2(a, b) given by

ūε(x) :=


0 if x ≤ tε0 + yεη +

ξε
2
,

2s

ξε

(
x−

(
tε0 + yεη +

ξε
2

))
if tε0 + yεη +

ξε
2
< x < tε0 + yεη + ξε ,

s if x ≥ tε0 + yεη + ξε .

and

vε(x) :=



0 if |x− tε0 − yεη| ≤ ξε ,

vη

( |x− tε0 − yεη| − ξε
ε

)
if ξε < |x− tε0 − yεη| ≤ ξε + εTη ,

1 if |x− tε0 − yεη| > ξε + εTη ,

(see Figure 2).
We notice that since tε0 + yεη → t0, then by construction uε := ũ+ ūε → u in L1(a, b), further, vε → 1

in L1(a, b) and a.e. in (a, b). Therefore it remains to show that

lim sup
ε→0

Gε(vε, (a, b)) ≤
ˆ b

a

(u′)2 dx+ m0 . (4.5)

We start noticing that by construction

vεū
′
ε = 0 a.e. in (a, b)

and therefore

lim
ε→0

ˆ b

a

v2ε(u′ε)
2 dx = lim

ε→0

ˆ b

a

v2ε(ũ′)2 dx =

ˆ b

a

(ũ′)2 dx , (4.6)

the last equality following by the Dominated Convergence Theorem, since ũ′ ∈ L2(a, b) and 0 ≤ vε ≤ 1.
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∼ ε

vε

tε0 + yεη

uε

s = 1

Figure 2. Recovery sequence in the case s = 1

Moreover, by definition of vε we also have

Gε(vε, (a, b)) ≤ 2

ˆ tε0+y
ε
η+ξε+εTη

tε0+y
ε
η+ξε

(
(1− vε)2

ε
+ εϕ

( x
δε

)
(v′ε)

2

)
dx+

2ξε
ε
. (4.7)

Since ξε � ε, in (4.7) it only remains to estimate the integral on the right-hand side.
By a change of variables, recalling (4.4), and using the periodicity of ϕ we readily obtain

ˆ tε0+y
ε
η+ξε+εTη

tε0+y
ε
η+ξε

(
(1− vε)2

ε
+ εϕ

( x
δε

)
(v′ε)

2

)
dx =

ˆ Tη

0

(
(1− vη(x))2 + ϕ

( ε
δε
x+ yη +

ξε
δε

)
(v′η(x))2

)
dx .

(4.8)
Since ϕ is upper semicontinuous and ξε � ε� δε, applying the reverse Fatou Lemma we infer

lim sup
ε→0

ˆ Tη

0

ϕ
( ε
δε
x+ yη +

ξε
δε

)
(v′η(x))2 dx ≤

ˆ Tη

0

ϕ(yη)(v′η(x))2 dx . (4.9)

Therefore, gathering (4.7), (4.8), (4.9), and recalling the definition of yη and vη we get

lim sup
ε→0

Gε(vε, (a, b)) ≤ 2

ˆ Tη

0

(
(1− vη)2 + ϕ(yη)(v′η)2

)
dx

≤ 2

ˆ Tη

0

(
(1− vη)2 + (α+ η)(v′η)2

)
dx

≤ 2
(

1 +
η

α

)
(
√
α+ η) =

(
1 +

η

α

)
(m0 + 2η) .

(4.10)

Eventually, (4.5) follows by combining (4.6), (4.10) and letting η → 0. �

Remark 4.2. We observe that in the proof of Proposition 4.1 the upper semicontinuity of ϕ is only
needed to obtain the upper-bound inequality.

5. Oscillations on the same scale as the singular perturbation

In this section we analyse the case when the oscillation parameter δε and the singular-perturbation
parameter ε are of the same order; i.e., the case ` ∈ (0,+∞).

On account of Lemma 3.5 and Proposition 3.8 we prove the following result.
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Proposition 5.1. Let ` ∈ (0,+∞); then the sequence (Fε) defined in (2.2) Γ-converges to the functional
F ` : L1(a, b)× L1(a, b) −→ [0,+∞] defined as

F `(u, v) :=


ˆ b

a

(u′)2 dx+ m`#S(u) u ∈ P -W 1,2(a, b) , v = 1 a.e. in (a, b) ,

+∞ otherwise,

where m` is as in (2.11).

Proof. We prove separately the lower-bound and the upper-bound inequalities.

Step 1: Lower-bound inequality.

Let (u, v) ∈ L1(a, b)× L1(a, b) be arbitrary and let (uε, vε) ⊂W 1,2(a, b)×W 1,2(a, b) be such that

(uε, vε)→ (u, v) in L1(a, b)× L1(a, b) and lim inf
ε→0

Fε(uε, vε) < +∞ .

Then, up to subsequences (not relabelled) we can additionally assume that supε>0 Fε(uε, vε) < +∞,
therefore Proposition 3.2 immediately yields that u ∈ P -W 1,2(a, b), v = 1 a.e. in (a, b) and

lim inf
ε→0

ˆ b

a

v2ε(u′ε)
2 dx ≥

ˆ b

a

(u′)2 dx . (5.1)

Therefore, to prove the liminf inequality it suffices to show that

lim inf
ε→0

ˆ b

a

(
(1− vε)2

ε
+ εϕ

( x
δε

)
(v′ε)

2

)
dx ≥m`#S(u) ,

with m` as in (2.11).
To this end we notice that if S(u) = ∅ then there is nothing to prove. Hence, we may assume that

S(u) = {t1, . . . , tN}, with N ≥ 1. Now, let I1, . . . , IN be pairwise disjoint open intervals with Ii ⊂ (a, b)
and ti ∈ Ii, for every i = 1, . . . , N . We claim that

lim inf
ε→0

Gε(vε, Ii) ≥m` , (5.2)

for every i = 1, . . . , N , where Gε is as in (2.6).
To prove the claim, we let i ∈ {1, . . . , N} be arbitrary, and we invoke Proposition 3.2 (2) and Re-

mark 3.3 to find siε, r
i, r̃i ∈ Ii with ri < siε < r̃i satisfying

lim
ε→0

vε(s
i
ε) = 0 and lim

ε→0
vε(r

i) = lim
ε→0

vε(r̃
i) = 1 .

Set ziε :=
siε
δε
−
⌊
siε
δε

⌋
∈ [0, 1); thanks to the 1-periodicity of ϕ, the change of variables y =

x−siε
`δε

yields

Gε(vε, Ii) ≥
ˆ r̃i

ri

(
(1− vε)2

ε
+ εϕ

( x
δε

)
(v′ε)

2

)
dx =

ˆ r̃i−siε
`δε

ri−siε
`δε

(
`δε
ε

(1− wε)2 +
ε

`δε
ϕ(`y + ziε)(w

′
ε)

2

)
dy

≥ γε
ˆ r̃i−siε

`δε

ri−siε
`δε

(
(1− wε)2 + ϕ(`y + ziε)(w

′
ε)

2
)
dy ,

(5.3)

where wε(y) = vε(`δεy + siε) and

γε := min

{
`δε
ε
,
ε

`δε

}
→ 1 as ε→ 0 . (5.4)
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Since vε(r
i), vε(r̃

i)→ 1, using a linear interpolation as in the proof of Lemma 3.5 we can extend wε to a

function wiε ∈W
1,2
loc (R) with 0 ≤ wiε ≤ 1 satisfying wiε(0) = vε(s

i
ε), wε(±∞) = 1 and such that

ˆ r̃i−siε
`δε

ri−siε
`δε

(
(1− wε)2 + ϕ(`y + ziε)(w

′
ε)

2
)
dy =

ˆ
R

(
(1− wiε)2 + ϕ(`y + ziε)

(
(wiε)

′)2) dy + oε(1) , (5.5)

as ε → 0. Thus, since wiε is admissible for m`
ziε

(vε(s
i
ε)) ≥ m`(vε(s

i
ε)) and vε(s

i
ε) → 0, gathering (5.3)–

(5.5), passing to the liminf in ε and applying Lemma 3.5 yields

lim inf
ε→0

Gε(vε, Ii) ≥ lim
ε→0

γε lim inf
ε→0

m`(vε(s
i
ε)) = m` ,

hence (5.2). Eventually, summing over i we get

lim inf
ε→0

Gε(vε, (a, b)) ≥
N∑
i=1

lim inf
ε→0

Gε(vε, Ii) ≥m`N = m`#S(u) ,

which together with (5.1) gives the lower-bound inequality.

Step 2: Upper-bound inequality

As in the proof of Proposition 4.1 it suffices to construct a recovery sequence for u = ũ + upc with
ũ ∈ W 1,2(a, b) and upc = sχ(a,t0), with s ∈ R and t0 ∈ (a, b). To this end, we fix η > 0 and according to

Proposition 3.8 and Remark 3.9 we choose Tη > 0 and (uη, vη) ∈ W 1,2(−Tη, Tη) ×W 1,2(−Tη, Tη) with
0 ≤ vη ≤ 1 satisfying (uη, vη)(−Tη) = (0, 1), (uη, vη)(Tη) = (1, 1), and vη u

′
η = 0 a.e. in (−Tη, Tη) and

ˆ Tη

−Tη

(
(1− vη)2 + ϕ(`x)(v′η)2

)
dx ≤m` + η . (5.6)

We extend (uη, vη) to R by setting (uη, vη) := (χ(0,+∞), 1) in R\(−Tη, Tη). Moreover, we set tε0 :=
⌊
t0
δε

⌋
δε

and define the pairs (uε, vε) := (sūε + ũ, vε) with (ūε, vε) given by

ūε(x) := uη

(x− tε0
`δε

)
and vε(x) := vη

(x− tε0
`δε

)
.

By construction uε → upc + ũ = u in L1(a, b), while vε → 1 in L1(a, b) and a.e. in (a, b). It thus remains
to estimate Fε(uε, vε). Since vεu

′
ε = 0 a.e. in (a, b), as in (4.6) we deduce that

lim
ε→0

ˆ b

a

v2ε(u′ε)
2 dx = lim

ε→0

ˆ b

a

v2ε(ũ′)2 dx =

ˆ b

a

(ũ′)2 dx . (5.7)

Therefore, we are left to estimate Gε(vε, (a, b)). By the choice of tε0 and the 1-periodicity of ϕ, a change
of variables yields

Gε(vε, (a, b)) =

ˆ tε0+`δεTη

tε0−`δεTη

(
(1− vε)2

ε
+ ϕ

( x
δε

)
(v′ε)

2

)
dx

=

ˆ Tη

−Tη

(
`δε
ε

(1− vη)2 +
ε

`δε
ϕ(`x)(v′η)2

)
dx ≤ γ̃ε

ˆ Tη

−Tη

(
(1− vη)2 + ϕ(`x)(v′η)2

)
dx ,

(5.8)

where

γ̃ε := max

{
`δε
ε
,
ε

`δε

}
→ 1 as ε→ 0 . (5.9)

Using (5.6) and gathering (5.7)–(5.9) we readily obtain

lim sup
ε→0

Fε(uε, vε) ≤
ˆ b

a

(u′)2 dx+ m` + η ,

hence the upper-bound inequality follows by the arbitrariness of η > 0. �
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6. Oscillations on a smaller scale than the singular perturbation

In this section we analyse the case when the oscillation δε parameter is much smaller than the singular-
perturbation parameter ε; i.e., the case ` = +∞.

Proposition 6.1. Let ` = ∞; then the sequence (Fε) defined in (2.2) Γ-converges to the functional
F∞ : L1(a, b)× L1(a, b)→ [0,+∞] defined as

F∞(u, v) :=


ˆ b

a

(u′)2 dx+ m∞#S(u) u ∈ P -W 1,2(a, b), v = 1 a.e. in (a, b) ,

+∞ otherwise,

(6.1)

where

m∞ := 2

(ˆ 1

0

1

ϕ(t)
dt

)−1/2
. (6.2)

Proof. It is convenient to introduce the constant

ϕhom :=

(ˆ 1

0

1

ϕ(t)
dt

)−1
,

so that m∞ = 2
√
ϕhom. We now divide the proof into two steps.

Step 1: Lower-bound inequality.

For any (u, v) ∈ L1(a, b)× L1(a, b) let (uε, vε) ⊂W 1,2(a, b)×W 1,2(a, b) be such that

(uε, vε)→ (u, v) in L1(a, b)× L1(a, b) and lim inf
ε→0

Fε(uε, vε) < +∞ .

Arguing as in Proposition 5.1 we assume without loss of generality that supε>0 Fε(uε, vε) < +∞ and we
apply Proposition 3.2 to deduce that u ∈ P -W 1,2(a, b), v = 1 a.e. in (a, b) and

lim inf
ε→0

ˆ b

a

v2ε(u′ε)
2 dx ≥

ˆ b

a

(u′)2 dx .

We set S(u) = {t1, . . . , tN} with N ≥ 1 (if S(u) = ∅ there is nothing to prove) and we let I1, . . . , IN be
pairwise disjoint open intervals with Ii ⊂ (a, b) and ti ∈ Ii for i = 1, . . . , N . Then if we show that

lim inf
ε→0

Gε(vε, Ii) ≥m∞ for every i = 1, . . . , N, (6.3)

with m∞ as in (6.2) we are done.
We fix η > 0 and i ∈ {1, . . . , N}. By Proposition 3.2 and Remark 3.3 we can find s̃iε, r

i
ε, r̃

i
ε ∈ Ii with

riε < s̃iε < r̃iε such that

vε(s̃
i
ε) = η , vε(r

i
ε) = vε(r̃

i
ε) = 1− η and vε ≤ 1− η in [riε, r̃

i
ε] . (6.4)

Then (3.5) implies that

r̃iε − s̃iε
ε

∈
[
α(1− 2η)2

M
,
M

η2

]
for every ε > 0 , (6.5)

where M := supε>0 Fε(uε, vε) < +∞. Thanks to (6.4) the function ṽε : R→ [0, 1] given by

ṽε(x) :=



η if x < s̃iε ,

vε(x) if s̃iε ≤ x ≤ r̃iε ,

(1− η) + η
x− riε
ε

if r̃iε < x ≤ r̃iε + ε ,

1 otherwise in R

(6.6)
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belongs to W 1,2
loc (R). Moreover, set tiε :=

⌊
s̃iε
δε

⌋
δε ∈ (s̃iε−δε, s̃iε]; using (2.1), by the definition of ṽε we have

Gε(vε, (s̃
i
ε, r̃

i
ε)) ≥ Gε(ṽε, (tiε, r̃iε + ε))−

(
1

3
+ β

)
η2 − (1− η)2

δε
ε
. (6.7)

Eventually, by setting wε(x) := ṽε(εx+ tiε) and Tη := M
η2 + 2, the periodicity of ϕ, (6.5) and a change of

variables yield

Gε(ṽε, (t
i
ε, r̃

i
ε + ε)) =

ˆ Tη

0

(
(1− wε)2 + ϕ

(εx
δε

)
(w′ε)

2

)
dx

≥ inf

{ˆ Tη

0

(
(1− w)2 + ϕ

( x

δε/ε

)
(w′)2

)
dx : w ∈W 1,2(0, Tη) , w(0) = η , w(Tη) = 1

}
.

(6.8)

Now, since δε/ε→ 0, by classical homogenisation (see e.g., [7, Theorem 3.1]) we get

lim
ε→0

inf

{ˆ Tη

0

(
(1− w)2 + ϕ

( x

δε/ε

)
(w′)2

)
dx : w ∈W 1,2(0, Tη) , w(0) = η , w(Tη) = 1

}

= min

{ˆ Tη

0

(
(1− w)2 + ϕhom(w′)2

)
dx : w ∈W 1,2(0, Tη) , w(0) = η , w(Tη) = 1

}
.

(6.9)

For any w ∈ W 1,2(0, Tη) satisfying w(0) = η and w(Tη) = 1, an application of the Modica-Mortola trick
together with a change of variables yields
ˆ Tη

0

(
(1− w)2 + ϕhom(w′)2

)
dx ≥ 2

√
ϕhom

ˆ Tη

0

(1− w)|w′| dx = 2
√
ϕhom

ˆ 1

η

(1− s) = (1− η)2
√
ϕhom ,

hence

min

{ˆ Tη

0

(
(1− w)2 + ϕhom(w′)2

)
dx : w ∈W 1,2(0, Tη) , w(0) = η , w(Tη) = 1

}
≥ (1− η)2

√
ϕhom .

(6.10)
Finally, gathering together (6.7)–(6.10) we obtain

lim inf
ε→0

Gε(vε, (s̃
i
ε, r̃

i
ε)) ≥ (1− η)2

√
ϕhom − η2

(
1

3
+ β

)
. (6.11)

Analogously it can be shown that

lim inf
ε→0

Gε(vε, (r
i
ε, s̃

i
ε)) ≥ (1− η)2

√
ϕhom − η2

(
1

3
+ β

)
. (6.12)

Hence, from (6.11) and (6.12) we deduce that

lim inf
ε→0

Gε(vε, Ii) ≥ (1− η)2m∞ − η2
(

1

3
+ β

)
.

Eventually, by letting η → 0 we obtain (6.3) and therefore the lower bound.

Step 2: Upper-bound inequality.

Let u ∈ P -W 1,2(a, b) be fixed; As in the proof of Proposition 4.1 we assume without loss of generality
that S(u) = {t0} for some t0 ∈ (a, b) and u = ũ + upc as in (2.8) with ũ ∈ W 1,2(a, b) and upc = sχ(a,t0)

for some s ∈ R.



INTERACTION BETWEEN OSCILLATIONS AND SINGULAR PERTURBATIONS 17

We fix η > 0; applying (3.6) with λ = ϕhom we find Tη > 0 and vη ∈W 1,2(0, Tη) satisfying 0 ≤ vη ≤ 1,
vη(0) = 0, vη(Tη) = 1, and ˆ Tη

0

(1− vη)2 + ϕhom(v′η)2 dx ≤ √ϕhom + η . (6.13)

By invoking the classical homogenization theorem (see e.g., [9, Theorem 14.5]), for any σ ↘ 0 we find a
sequence (wσ) ⊂W 1,2(0, Tη) such that wσ → vη in L2(0, Tη) as σ → 0, wσ(0) = 0, wσ(Tη) = 1 and

lim
σ→0

ˆ Tη

0

(
(1− wσ)2 + ϕ

(x
σ

)
(w′σ)2

)
dx =

ˆ Tη

0

(
(1− vη)2 + ϕhom(v′η)2

)
dx . (6.14)

Now we let tε0 be as in (4.4), σε := δε/ε and wε := wσε and define the pair (uε, vε) ∈W 1,2(a, b)×W 1,2(a, b)
by setting uε := ũ+ ūε with

ūε(x) :=


0 if x ≤ tε0 +

δε
2
,

2s

δε

(
x−

(
tε0 +

δε
2

))
if tε0 +

δε
2
< x < tε0 + δε ,

s if x ≥ tε0 + δε ,

and

vε(x) :=



0 if |x− tε0| ≤ δε ,

wε

(
|x− tε0| − δε

ε

)
if δε < |x− tε0| < δε + ε Tη ,

1 if δε + ε Tη ≤ |x− tε0| ,
(see Figure 3).

∼ ε

δε

tε0

uε

vε

s = 1

Figure 3. Recovery sequence in the case s = 1; vε in dark grey is obtained by superposing oscillations
on the rescaled optimal profile.

We claim that (uε, vε) is a recovery sequence for F∞(u, 1). In fact, by construction uε := ũ+ ūε → u
in L1(a, b), vε → 1 in L1(a, b) and a.e. in (a, b). Moreover, observing that

vεū
′
ε = 0 a.e. in (a, b)

we get

lim
ε→0

ˆ b

a

v2ε(u′ε)
2 dx = lim

ε→0

ˆ b

a

v2ε(ũ′)2 dx =

ˆ b

a

(ũ′)2 dx =

ˆ b

a

(u′)2 dx . (6.15)
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On the other hand, by a change of variables and the periodicity of ϕ we deduce that

Gε(vε, (a, b)) ≤ 2

ˆ tε0+δε+εTη

tε0+δε

(
(1− vε)2

ε
+ εϕ

( x
δε

)
(v′ε)

2

)
dx+

2δε
ε

= 2

ˆ Tη

0

(
(1− wε)2 + ϕ

(
x

σε

)
(w′ε)

2

)
dx+

2δε
ε
.

The latter together with (6.14) and (6.13) yield

lim sup
ε→0

Gε(vε, (a, b)) ≤ 2
√
ϕhom + 2η = m∞ + 2η . (6.16)

Finally, gathering together (6.15) and (6.16) we obtain

lim sup
ε→0

ˆ b

a

(
v2ε(u′ε)

2 +
(1− vε)2

ε
+ ϕ

( x
δε

)
(v′ε)

2

)
dx ≤

ˆ b

a

(u′)2 dx+ m∞ + 2η .

Thus, upon replacing vε by 0 ∨ (vε ∧ 1) we conclude by the arbitrariness of η > 0. �

7. Limit analysis of m`

We conclude this note by analysing the convergence of the constant m` as `→ 0+ and `→ +∞. Namely,
we prove (2.14), thus concluding the proof of Theorem 2.1.

Proposition 7.1. Let ` ∈ (0,+∞) and m` be as in (2.11). Let moreover m0 and m∞ be as in (2.10)
and (2.13), respectively. Then

lim
`→+∞

m` = m∞ . (7.1)

If ϕ is upper semicontinuous, it also holds

lim
`→0+

m` = m0 . (7.2)

Proof. The proof of (7.1) and (7.2) uses arguments which are similar to those employed in the proof of
Proposition 6.1 and Proposition 4.1, respectively. For this reason, we only sketch this proof.

Step 1: Proof of (7.1).

We first show that

lim inf
`→+∞

m` ≥m∞ . (7.3)

To this end, we fix η > 0; using a similar argument as in the proof of Lemma 3.5 we can find Tη > 0
and for every ` ∈ (0,+∞) a real number zη,` ∈ [0, 1) and vη,` ∈ W 1,2(−Tη, Tη) such that 0 ≤ vη,` ≤ 1,
vη,`(

zη,`
` ) = 0, vη(±Tη) = 1 and

ˆ Tη

−Tη

(
(1− vη,`)2 + ϕ(`x)(v′η,`)

2
)
dx ≤m` + η . (7.4)

Note that Tη can be chosen independently of `. We now define ṽη,` ∈W 1,2(0, Tη) by setting

ṽη,` :=

vη,` if
zη,`
` ≤ x ≤ Tη ,

0 if 0 ≤ x < zη,`
` .
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Since zη,` ∈ [0, 1), we readily obtain

ˆ Tη

zη,`
`

(
(1− vη,`)2 + ϕ(`x)(v′η,`)

2
)
dx ≥

ˆ Tη

0

(
(1− ṽη,`)2 + ϕ(`x)(ṽ′η,`)

2
)
dx− 1

`

≥ inf

{ ˆ Tη

0

(
(1− v)2 + ϕ(`x)(v′)2

)
dx : v ∈W 1,2(0, Tη), v(0) = 0, v(Tη) = 1

}
− 1

`
.

Thus, arguing as in the proof of Proposition 6.1, applying the classical homogenisation result together
with the Modica-Mortola trick we deduce that

lim inf
`→+∞

ˆ Tη

zη,`
`

(
(1− vη,`)2 + ϕ(`x)(v′η,`)

2
)
dx ≥ m∞

2
.

Since an analogous argument holds on (−Tη, zη,`` ), in view of (7.4) we get

lim inf
`→+∞

m` ≥m∞ − η ,

from which we deduce (7.3) by letting η → 0.
Then, it remains to prove that

lim sup
`→+∞

m` ≤m∞ .

We fix η > 0; arguing as in the proof of Proposition 6.1 Step 2 we use (3.6) together with the classical
homogenisation result with boundary conditions to find Tη > 0 and a sequence (vη,`)` ⊂ W 1,2(0, Tη)
satisfying vη,`(0) = 0, vη,`(Tη) = 1 and

lim
`→+∞

ˆ Tη

0

(
(1− vη,`)2 + ϕ(`x)(v′η,`)

2
)
dx ≤ m∞

2
+ η . (7.5)

Upon truncation we can additionally assume that 0 ≤ vη,` ≤ 1. Since vη,`(0) = 0, the reflected function
ṽη,` defined by setting ṽη,`(x) := vη,`(|x|) belongs to W 1,2(−Tη, Tη). Moreover, upon extending ṽη,` by 1
it is admissible for m`

0. Thus, (7.5) implies that

lim sup
`→+∞

m` ≤ lim sup
`→+∞

m`
0 ≤ lim

`→+∞
2

ˆ Tη

0

(
(1− vη,`)2 + ϕ(`x)(v′η,`)

2
)
dx ≤m∞ + 2η ,

which together with (7.3) gives (7.1) by the arbitrariness of η > 0.

Step 2: Proof of (7.2).

By definition of m0, from (3.7) we immediately deduce that lim inf`→0 m` ≥ m0. To prove the

opposite inequality, we fix η > 0 and choose yη ∈ (0, 1) such that
√
ϕ(yη) ≤

√
α+ η. Moreover, we set

vη(x) := 1− exp

(
− |x|√

ϕ(yη)

)
.

Then vη ∈W 1,2
loc (R), 0 ≤ vη ≤ 1 and vη satisfies vη(0) = 0, vη(±∞) = 1 andˆ

R

(
(1− vη)2 + ϕ(yη)(v′η)2

)
dx = 2

√
ϕ(yη) ≤m0 + 2η . (7.6)

Since vη is admissible for m`
yη ≥ m`, by the reverse Fatou Lemma and the upper semicontinuity of ϕ

from (7.6) we deduce that

lim sup
`→0+

m` ≤ lim sup
`→0+

m`
yη ≤ lim sup

`→0+

ˆ
R

(
(1− vη)2 + ϕ(`x+ yη)(v′η)2

)
dx

≤
ˆ
R

(
(1− vη)2 + lim sup

`→0+
ϕ(`x+ yη)(v′η)2

)
dx ≤m0 + 2η .
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By the arbitrariness of η > 0 this concludes the proof. �
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