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présents. Je remercie également les secrétaires du laboratoire pour leurs travaux administratifs
et leurs efficacités, notamment Estelle Savinien. Je remercie aussi tous les membres du LMO.

Je remercie la France, mon deuxième pays, qui m’a bien accueilli. Un grand merci à la
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jamais pu aboutir et je vous serai éternellement reconnaissant d’avoir su me donner les moyens
d’arriver jusqu’ici. Aucun mot ne saurait décrire ma pensée !



4

Résumé: Une première partie de cette thèse est dédiée à l’étude de la régularité de la den-
sité de transport σ dans le problème de Monge entre deux mesures f+ et f− sur un domaine
Ω. Tout d’abord, on étudie la question de la sommabilité Lp de cette densité de transport
entre une mesure f+ et sa projection sur le bord (P∂Ω)#f

+, qui ne découle pas en fait des
résultats connus (dus à De Pascale - Evans - Pratelli - Santambrogio) sur la densité de transport
entre deux densités Lp, comme dans notre cas la mesure cible est singulière. Par une méthode
de symétrisation, dès que Ω est convexe ou satisfait une condition de boule uniforme extérieure,
nous prouvons les estimations Lp (si f+ ∈ Lp, alors σ ∈ Lp). En plus, nous analysons le cas où
on paye des coûts supplémentaires g± sur le bord, en prouvant que la densité de transport σ
est dans Lp dès que f± ∈ Lp, Ω satisfait une condition de boule uniforme extérieure et, g± sont
λ±−Lipschitiziens avec λ± < 1 et semi-concaves. Ensuite, on s’attaque à la régularité d’ordre
supérieur (W 1,p, C0,α, BV · · · ) de la densité de transport σ entre deux densités régulières f+ et
f−. Plus précisément, nous fournissons une famille de contre-exemples à la régularité supérieure:
nous prouvons que la régularité W 1,p des mesures source et cible, f+ et f−, n’implique pas que
la densité de transport est W 1,p, de même pour la régularité BV, et même f± ∈ C∞ n’implique
pas que σ est dans W 1,p, pour p grand. Ensuite, nous étudions la sommabilité Lp de la densité
de transport entre deux mesures f+ et f− concentrées sur le bord. Plus précisément, nous prou-
vons que si f+ et f− sont dans Lp(∂Ω), alors la densité de transport σ entre eux est dans Lp(Ω)
dès que Ω est uniformément convexe et p ≤ 2; de plus, nous introduisons un contre-exemple
montrant que ce résultat n’est plus vrai si p > 2. Cela fournit des résultats de régularité W 1,p

sur la solution u du problème de gradient minimal avec donnée au bord g dans des domaines
uniformément convexes (si g ∈W 1,p(∂Ω)⇒ u ∈W 1,p(Ω)).

Dans une deuxième partie, nous étudions un problème de contrôle optimal motivé par un
modèle de jeux à champ moyen. D’abord, nous montrons des résultats de différentiabilité et
semi-concavité sur la fonction valeur associée au problème de contrôle (le résultat de semi-
concavité est optimal en ce qui concerne les hypothèses sur la régularité en temps). Ensuite,
nous démontrons que la densité des agents ρt, dans le modèle MFG considéré, est dans Lp dès
que la densité initiale ρ0 ∈ Lp. En plus, nous arrivons à prouver l’existence d’un équilibre pour
le problème MFG considéré dans un cas où la dynamique n’est pas régulière.

Dernièrement, nous considérons le problème stationnaire associé au problème MFG. Nous
montrons que la densité d’équilibre n’est rien d’autre que la densité de transport entre une
densité source f et sa projection sur le bord en utilisant une métrique Riemannienne non-
uniforme comme coût de transport. Cela nous permet de démontrer que la densité d’équilibre
ρ est dans Lp dès que la densité source f ∈ Lp. Par conséquent, nous arrivons à prouver aussi
l’existence d’un équilibre stationnaire dans un cas où la dynamique n’est pas régulière.
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Introduction

Gaspard Monge a proposé en 1781 un problème, Mémoire sur la théorie des déblais et des
remblais [93], qui, dans ses divers développements, suscite toujours un intérêt profond au sein
d’une vaste communauté dans divers domaines de mathématiques. Son idée était de considérer
un tas de sable (le déblai), représenté par f+, et un trou (le remblai), représenté par f−, du
même volume, et il voulait trouver comment déplacer les sables de la pile au trou en minimisant
le travail effectué. Nous pouvons formaliser ce problème dans une terminologie moderne comme
suit: les données sont deux densités, f+ et f−, définies sur une région Ω, qui doivent être
considérées comme la hauteur de la pile et la profondeur du trou. Un moyen de déplacer la
masse est une fonction T : Ω 7→ Ω, et le fait que ce soit effectivement un moyen de déplacer
les sables dans le trou peut être exprimé par la condition T#f

+ = f−, ce qui signifie que∫
T−1(A) f

+(x) dx =
∫
A f
−(y) dy pour tout ensemble Borelien A ⊂ Ω. Puisque, selon la formu-

lation de Monge, le coût du déplacement d’une masse unitaire du point x au point y est la
distance Euclidienne |x− y|, on peut se rendre compte que le coût total du transport correspon-
dant à l’application T est

(0.1)

∫
Ω
|x− T (x)|df+.

Le problème du transport de masse consiste alors à trouver la fonction T (appelée application
de transport optimale) qui minimise (0.1) parmi toutes les applications de transport. L’existence
des applications optimales a été abordée par de nombreux auteurs [1], [32], [58], [101] et [110]
(voir aussi [42] pour un résultat plus général, qui est valable pour des normes arbitraires ||x−y||).

Bien que ce problème pourrait ne pas avoir aucune solution, son relaxation (qui est le problème
de Kantorovich [73]) en a toujours, au moins, une. Le problème relaxé consiste à trouver une
mesure de Borel λ sur Ω × Ω (applée plan de transport optimal) satisfaisant (Πx)#λ = f+ et
(Πy)#λ = f−, où Πx, Πy : Ω × Ω 7→ Ω sont les projections sur le premier et le second facteur,
respectivement, qui minimise la fonctionnelle

∫
Ω×Ω
|x− y| dλ

parmi toutes les mesures Boreliennes λ sur Ω×Ω satisfaisant (Πx)#λ = f+ et (Πy)#λ = f−.
En fait, sous l’hypothèse que f+ est absolument continue par rapport à la mesure de Lebesgue
Ld, les problèmes de Monge et Kantorovich sont équivalents, au sens que toute application de
transport T telle que T#f

+ = f− induit un plan de transport λ = (Id, T )#f
+ et que, parmi

7
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les plans optimaux λ, il en existe un qui a cette forme (au contraire, il n’y a pas d’unicité,
et d’autres plans de transport optimaux pourraient être de formes différentes). Pour plus des
détails sur la théorie du transport optimal, son histoire et les principaux résultats, nous nous
référons aussi à [103] et [112].

Dans l’analyse du problème de transport optimal ci-dessus, un outil clé consiste en la dualité
convexe. En effet, il est possible de prouver que la maximisation de la fonctionnelle suivante

∫
Ω
ud(f+ − f−)

parmi toutes les fonctions 1-Lipschitziennes u sur Ω, est le dual du problème de Kantorovich:
il peut être obtenu à partir de problème primal par une procédure d’échange inf-sup appropriée,
sa valeur est égale au minimum du problème du Kantorovich, et, pour tout plan de transport λ
et pour toute fonction u ∈ Lip1(Ω), on a∫

Ω×Ω
|x− y|dλ ≥

∫
Ω×Ω

(u(x)− u(y)) dλ =

∫
Ω
u(x) df+(x)−

∫
Ω
u(y) df−(y) =

∫
Ω
u d(f+ − f−).

L’égalité des deux valeurs optimales implique que les solutions λ et u satisfont u(x) − u(y) =
|x− y| sur le support de λ (un segment [x, y] maximal qui satisfait cette égalité sera nommé un
rayon de transport), mais aussi que, à chaque fois que nous trouvons un plan de transport λ
et une fonction u ∈ Lip1 satisfaisant

∫
|x − y| dλ =

∫
ud(f+ − f−), elles sont toutes les deux

optimales. Les maximiseurs dans le problème dual sont appelés potentiels de Kantorovich.

Dans une telle théorie, il est classique d’associer à un plan de transport optimal λ une mesure
positive σ sur Ω, appelée densité de transport, qui représente la quantité de transport effectuée
dans chaque région de Ω. Cette mesure σ est définie par

< σ,ϕ >=

∫
Ω×Ω

dλ(x, y)

∫ 1

0
ϕ(ωx,y(t))|ω′x,y(t)|dt ∀ ϕ ∈ C(Ω)

où ωx,y est une courbe paramétrant le segment reliant x à y. En d’autres termes, on a

σ(A) =

∫
Ω×Ω
H1(A ∩ [x, y]) dλ(x, y) pour tout ensemble Borelien A ⊂ Ω

où H1 représente la mesure de Hausdorff 1-dimensionnelle. Cela signifie que σ(A) représente
“combien” le transport a lieu dans A, si les particules passent de leur origine x à leur destination
y en ligne droite. Le rôle de cette mesure est très important: elle a été utilisée par exemple pour
donner l’une des premières preuves d’existence d’une application de transport optimal T pour
le problème de Monge [58], mais également en optimisation de forme [14].
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Nous rappelons ici certaines propriétés de σ.

Proposition 0.1. Supposons f+ � Ld. Dans ce cas, la densité de transport σ est unique
(c.à.d. ne dépend pas du choix du plan de transport optimal λ) et σ � Ld. En plus, si f+ est
dans Lp(Ω), avec p < d/(d− 1), alors σ est aussi dans Lp(Ω). Et, si f+, f− sont les deux dans
Lp(Ω), alors σ appartient également à Lp(Ω).

Ces propriétés sont bien connues dans la littérature, et nous nous référons à [48], [50], [51], [59]
et [102]. La densité de transport σ apparâıt également dans le problème de Beckmann suivant
[9]

(0.2) min

{∫
Ω
|w|dx : w ∈Md(Ω), ∇ · w = f+ − f− dans Ω̄

}
,

où ∇ · w = f+ − f− dans Ω̄ est équivalent à dire que
∫
∇φ · dw +

∫
φ d(f+ − f−) =

0 pour toute φ ∈ C1(Ω̄). La relation entre ce problème et le problème de Kantorovich peut
être considérée comme une conséquence de la dualité convexe. En effet, si l’on utilise la version
duale de la contrainte de divergence, on peut obtenir un problème dual en interchangeant inf et
sup:

sup
u

{∫
Ω
ud(f+ − f−) + inf

w

(∫
Ω
|w| dx+

∫
Ω
∇u · dw

)}
devient

sup

{∫
Ω
ud(f+ − f−) : |∇u| ≤ 1

}
.

Il suffit alors d’observer que la condition |∇u| ≤ 1 est équivalente à u ∈ Lip1 (en supposant que
Ω est convexe) pour revenir au problème de Monge-Kantorovich.

En fait, il est possible de démontrer que le champ vectoriel w donné par w = −σ∇u, où u
est un potentiel de Kantorovich, est une solution de problème de minimisation ci-dessus. Aussi,
il est possible de prouver (voir, par exemple, [103, théorème 4.13]) que tous les minimiseurs de
ce dernier problème sont de cette forme, et que donc le minimiseur est unique dès que f+ � Ld.

Les conditions d’optimalité primale-duale dans les problèmes ci-dessus peuvent également être
écrites sous la forme d’une EDP: σ résout, avec le potentiel de Kantorovich u, le système de
Monge-Kantorovich suivant

(0.3)


−∇ · (σ∇u) = f+ − f− dans Ω,

σ∇u · n = 0 sur ∂Ω,

|∇u| ≤ 1 dans Ω,

|∇u| = 1 σ − p.p.
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Dans le cadre de la congestion du trafic et du renforcement des membranes, voir [30], les
auteurs utilisent une variante de ce problème, déjà présente dans [13] et [29], où le système de
Monge-Kantorovich (0.3) est complété par une condition de Dirichlet au bord. La version la
plus simple du système devient

(0.4)


−∇ · (σ∇u) = f+ dans Ω,

u = 0 sur ∂Ω,

|∇u| ≤ 1 dans Ω,

|∇u| = 1 σ − p.p.

En termes de transport optimal, cela correspond au problème de transport vers le bord, c.à.d.
on a une densité f+ à l’intérieur de Ω et on la transporte vers le bord de manière optimale.
Plus précisément, on veut étudier le problème suivant

min

{∫
Ω×Ω
|x− y|dλ : λ ∈M+(Ω× Ω), (Πx)#λ = f+ et (Πy)#λ ⊂ ∂Ω

}
.

Puisque la mesure (Πy)#λ sur ∂Ω est complètement arbitraire, il est clair que le choix opti-
mal est de la prendre égale à P#f

+, où

P (x) = argmin {|x− y|, y ∈ ∂Ω} pour tout x ∈ Ω.

Cela signifie que nous allons considérer le problème suivant

min

{∫
Ω×Ω
|x− y| dλ, λ ∈ Π(f+, P#f

+)

}
,

ce qui revient aussi à résoudre

(0.5) min

{∫
Ω
|w|dx : w ∈ L1(Ω,Rd), ∇ · w = f+ dans

◦
Ω

}
.

Nous pouvons exprimer la contrainte dans un sens faible en testant contre les fonctions u ∈ C1
c (Ω)

(ou C1 s’annulant sur ∂Ω), et le dual de ce problème devient

sup

{∫
Ω
udf+ : u ∈ Lip1(Ω), u = 0 sur ∂Ω

}
.
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Dans le chapitre 3, nous serons principalement concernés par la régularité de la densité de
transport σ, entre f+ et P#f

+, en termes de la régularité de f+. En fait, on pourrait se deman-
der si la densité de transport σ est dans Lp ou pas, quand f+ ∈ Lp. Notons qu’on ne pourrait
pas utiliser la proposition 0.1 (pour p ≥ d/(d − 1)), puisque dans ce cas la mesure cible P#f

+

est concentrée sur le bord de Ω et est donc singulière. Cependant, nous verrons plus loin (au
Chapitre 3) que le même résultat Lp sera également vrai, par une technique de symétrisation.
Plus précisément, on a le résultat suivant:

Proposition 0.2. La densité de transport σ entre f+ et P#f
+ est dans Lp(Ω) dès que

f+ ∈ Lp(Ω) et sous l’hypothèse que Ω satisfait une condition de boule uniforme extérieure.

La preuve (voir Chapitre 3) se base sur une technique de symétrisation; en fait, si Ω est un
polyèdre, σ est égal à la restriction à Ω d’une densité de transport entre f+ et une nouvelle
densité f− obtenue en symétrisant f+ à travers les faces composant la frontière ∂Ω. Un ar-
gument similaire peut être effectué pour les domaines avec des faces “rondes” (appelés round
polyhedra) et, par un argument d’approximation, pour des domaines arbitraires satisfaisant une
condition de boule uniforme extérieure.

La condition de la boule uniforme extérieure garantit que si f+ ∈ L∞(Ω), alors P#f
+ a une

densité bornée par rapport à la mesure de Hausdorff sur ∂Ω. Donc, on pourrait se demander si
cette dernière condition est la bonne hypothèse pour obtenir la sommabilité L∞ de la densité
de transport: si f+ ∈ L∞(Ω) et f− ∈ L∞(∂Ω), est-il vrai que la densité de transport entre ces
deux mesures est dans L∞(Ω) ?

Or, nous donnerons, au Chapitre 3, un exemple où f+ ∈ L∞(Ω) et f− ∈ L∞(∂Ω) mais la
densité de transport entre f+ et f− n’est pas dans L∞(Ω). En d’autres termes, si σ(f+, f−)
désigne la densité de transport entre f+ et f−, alors on a les assertions suivantes:

f+ ∈ L∞(Ω)⇒ σ(f+, P#f
+) ∈ L∞(Ω),

f+ ∈ L∞(Ω), f− ∈ L∞(∂Ω) ; σ(f+, f−) ∈ L∞(Ω).

Une généralisation du problème de transport vers le bord peut être obtenue quand on ajoute
des coûts sur le bord [90]. En d’autres termes, nous voulons transporter une certaine quantité de
matériel représentée par f+, dans Ω, (f+ encode la quantité de matériau et son emplacement)
vers un trou avec une distribution donnée par f−, également définie dans Ω. Le but est de
transporter toute la masse de f+ vers f− ou bien vers le bord (c.à.d. exporter la masse de f+ à
l’extérieur). En faisant cela, nous payons le coût de transport donné par la distance Euclidienne
|x−y| et quand une unité de masse est sortie à travers un point y ∈ ∂Ω, un coût supplémentaire
donné par g−(y), la taxe d’exportation. Nous avons également la contrainte de remplir le trou
complètement, c.à.d. que nous devons importer de la masse, si nécessaire, de l’extérieur de Ω en
payant les frais de transport plus un coût supplémentaire −g+(x), la taxe d’importation, pour
chaque unité de masse qui pénètre à travers un point x ∈ ∂Ω. Nous avons la liberté de choisir
d’exporter ou d’importer de la masse, à condition qu’on transporte toute la masse f+ et qu’on
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couvre aussi toute la masse de f−. L’objectif principal ici est de minimiser le coût total de
cette opération, qui est donné par le coût de transport plus les taxes d’exportation/importation.
Notons que dans ce problème de transport il en a deux masses sur le bord qui sont inconnues
(qui encodent la masse exportée et la masse importée). Notons également que la condition
d’équilibre de masse ∫

Ω
f+(x) dx =

∫
Ω
f−(y) dy

n’est pas demandée car nous pouvons importer ou exporter de la masse à travers la frontière si
nécessaire. En d’autres termes, nous considérons le problème suivant

min

{∫
Ω×Ω
|x− y|dλ+

∫
∂Ω
g−d(Πy)#λ−

∫
∂Ω
g+d(Πx)#λ : ((Πx)#λ)

|
◦
Ω

= f+, ((Πy)#λ)
|
◦
Ω

= f−
}
.

Nous pouvons démontrer que ce problème est équivalent au problème suivant

min

{∫
Ω
|w| dx+

∫
∂Ω
g− dχ− −

∫
∂Ω
g+ dχ+ : w ∈ L1(Ω,Rd), χ± ∈M+(∂Ω), ∇ · w = f + χ

}
.

D’autre part, on peut prouver que le dual de ce problème est

sup

{∫
Ω
ud(f+ − f−) : u ∈ Lip1(Ω), g+ ≤ u ≤ g− sur ∂Ω

}
.

En plus, le système (0.4), dans ce cas, sera complété par la condition g+ ≤ u ≤ g− sur ∂Ω,
c.à.d., (0.4) devient

(0.6)


−∇ · (σ∇u) = f dans Ω,

g+ ≤ u ≤ g− sur ∂Ω,

|∇u| ≤ 1 dans Ω,

|∇u| = 1 σ − p.p.

Dans le chapitre 4, nous serions intéressés à étudier la sommabilité Lp de la densité de transport
σ associé à ce problème, qui ne découle pas, en fait, de la proposition 0.1, puisque à nouveau les
mesures cibles ne sont pas dans Lp car elles ont des parties concentrées sur ∂Ω. Rappelons-nous
que dans le chapitre 3 nous prouvons que si g+ = g− = 0, alors la densité de transport σ est
dans Lp à condition que f ∈ Lp et Ω satisfait une condition de boule uniforme extérieure.
Notre but, dans le chapitre 4, sera, donc, de prouver le même résultat Lp que dans le chapitre
3, mais cette fois pour des coûts plus généraux g+ et g−.
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Pour ce faire, l’idée sera de décomposer un plan de transport optimal λ comme une somme
de trois plans de transport λii, λib et λbi, où chacun de ces plans résout un problème de trans-
port particulier. Plus précisément, si λ est un plan de transport optimal et si ν+ représente
une partie de f+ qu’on va exporter et ν− une partie de f− pour laquelle on va importer une
masse de l’extérieure, alors on pourra décomposer le plan λ en trois parties: λii c’est le plan
qui transporte f+ − ν+ vers f− − ν−, λib transporte le reste de la masse de f+, c.à.d. ν+, vers
le bord (c.à.d. on exporte la masse ν+), λbi qui importe une masse de l’extérieure pour remplir
la masse qui reste de f−, c.à.d. ν−. En fait, le plan λii résout le problème suivant

min

{∫
Ω×Ω
|x− y| dλ : λ ∈ Π(f+ − ν+, f− − ν−)

}
,

le plan λib résout

min

{∫
Ω×Ω
|x− y| dλ +

∫
∂Ω
g− dχ− : λ ∈ Π(ν+, χ−), spt(χ−) ⊂ ∂Ω

}
et λbi minimise

min

{∫
Ω×Ω
|x− y| dλ −

∫
∂Ω
g+ dχ+ : λ ∈ Π(χ+, ν−), spt(χ+) ⊂ ∂Ω

}
.

Ensuite, nous étudierons la sommabilité Lp des densités de transport σii, σib et σbi associées à
ces plans de transport λii, λib et λbi, respectivement. De cette façon, nous obtenons la somma-
bilité de la densité de transport σ associée au plan de transport optimal λ. En fait, la densité
σii ne pose pas de problèmes car λii est un plan de transport optimal entre deux densités Lp

(qui sont f+ − ν+ et f− − ν−) et donc, σii ∈ Lp. Par contre, on voit que ce n’est pas le cas
pour σib et σbi, puisque, dans ces deux cas, le plan de transport aura lieu entre une densité Lp

et une mesure singulière concentrée sur le bord (qui n’est pas donc, dans Lp). L’étude de la
sommabilité de σbi est assez similaire à celui de σib et, donc, il suffit d’étudier la sommabilité de
σib.

En fait, on pourra voir facilement que le choix optimal pour exporter la masse ν+ à l’extérieure
est de la transporter vers T#ν

+ où T est définie comme suit:

T (x) = argmin{|x− y|+ g−(y) : y ∈ ∂Ω} pour tout x.

En particulier, λib résout

min

{∫
Ω×Ω
|x− y| dλ : λ ∈ Π(ν+, T#ν

+)

}
.

D’abord, nous supposons que notre domaine Ω est un round polyhedron de rayon r. Dans
ce cas, sous l’hypothèse que g− ∈ C2(∂Ω) avec |∇g−| < 1, nous démontrons que le Jacobien Jt
de l’application Tt := (1− t)I + tT satisfait l’estimation suivante

Jt ≥ C(1− t)
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où C est une constante strictement positive qui dépend de d, r, diam(Ω), ||∇g−||∞ et de la
borne supérieure de D2g−.

Cette estimation sur le Jacobien Jt nous sera suffisante pour obtenir la sommabilité Lp de
la densité de transport σib. Plus précisément, nous arriverons à démontrer l’estimation

||σib||Lp(Ω) ≤ C||ν+||Lp(Ω),

où C est une constante qui dépend seulement de d, r, diam(Ω), ||∇g−||∞ et de la borne
supérieure de D2g−. Ensuite, nous généralisons ce résultat à chaque domaine ayant une boule
uniforme extérieure.

Proposition 0.3. La densité de transport σ entre ν+ et T#ν
+ est dans Lp(Ω) dès que

ν+ ∈ Lp(Ω), sous l’hypothèse que Ω satisfait une condition de boule uniforme extérieure et le
coût g− est λ−Lip, avec λ < 1, et semi-concave.

Dans le chapitre 5, nous nous intéresserons à l’étude de la régularité d’ordre supérieur
(W 1,p, C0,α et BV) pour la densité de transport σ entre deux densités régulières f+ et f−. Ce
problème est ouvert et difficile. Le seul résultat connu est contenu dans [61], mais ne concerne
que le cas de la dimension 2 et exige des hypothèses très restrictives sur f+ et f− (densités
continues sur des supports convexes disjoints et bornées inférieurement sur leur supports). Dans
leur papier, l’objectif principal est la preuve de la continuité de l’application optimale T (qui
n’est pas unique, et le résultat concerne donc une application de transport privilégiée, celle qui
est monotone sur chaque rayon de transport) et la continuité de la densité de transport σ n’est
qu’un sous-produit de l’analyse developpée pour T . Récemment, une nouvelle stratégie de preuve
a été proposée dans [84], basée sur les estimations de Ma-Trudinger-Wang [110], pour prouver
la continuité de T . Hélas, le résultat n’est pas complet: voulant prouver que T est Lipschitz,
[84] n’arrive qu’à démontrer que les valeurs propres de DT sont bornées mais, DT n’étant pas
symétrique, cela ne permet pas de conclure, et un contre-exemple est même proposé. Pourtant,
dans ce contre-exemple T est C0,α, ce qui laisse ouverte la question de la continuité de T . Or,
dans [45], les auteurs arrivent à construire deux densités f+ et f− α−Höldériennes tel que le
transport optimal monotone T entre eux n’est pas α−Höldérien, c.à.d., on a l’assertion suivante

f± ∈ C0,α ; T ∈ C0,α, ∀ α ∈ (0, 1).

Mais, cela n’implique pas que la densité de transport entre f+ et f− n’est pas régulière puisque
toute application de transport optimal T produit la même densité de transport σ, ce qui nous
permet, alors, de choisir la plus régulière parmi eux pour étudier la régularité de σ. Par
conséquent, la question de régularité C0,α ou Lipschitz de la densité de transport σ reste
ouverte.
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D’autre part, dans [83], les auteurs prouvent la continuité de l’application de transport op-
timal monotone T sous l’hypothèse que f+ et f− soient deux densités positives, continues avec
spt(f+) ⊂ spt(f−) et l’un des ensembles {f+ > f−}, {f− > f+} soit convexe (la densité de
transport σ est également continue dans ce cas). D’autres résultats existent en ce qui concerne
la régularité de la densité de transport dans certaines directions: dans [58], il a été prouvé que
lorsque f± sont Lipschitz continues avec des supports disjoints (et avec des conditions techniques
supplémentaires sur les supports), alors la densité de transport est localement Lipschitzienne
“le long des rayons de transport”. Dans [31], les auteurs ont généralisé le résultat au cas où les
densités f+ et f− sont seulement dans Lp, sans aucunes conditions sur les supports; ils prouvent
que si f± ∈ Lp(Ω), alors pour presque tout x ∈ Ω, la densité de transport σ ∈W 1,p

loc (Rx), où Rx
est le rayon de transport passant par x. Or, comme on a l’assertion

f± ∈ Lp ⇒ σ ∈ Lp,

on pourrait se demander si l’assertion suivante est correcte ou pas

f± ∈W 1,p ⇒ σ ∈W 1,p ?

Pour des problèmes de congestion de trafic, [39] a introduit une généralisation de la densité
de transport, appelée intensité de trafic, qui donne lieu à des problèmes d’équilibre dans un jeu
à potentiel représentant les choix des agents dans un domaine congestionné. Ensuite, [21] a
montré l’équivalence du modèle choisi avec le modèle proposé par Beckmann dans [9]. Il s’agit
de résoudre

min

{∫
Ω
F (w(x)) dx : w : Ω 7→ Rd, ∇ · w = f

}
,

où F : Rd 7→ R est une fonction convexe, superlinéaire, et telle que F (w) ≥ |w| (pour représenter
le fait que le coût de transport augmente en présence de congestion). Le w optimal peut être
identifié à l’aide d’une EDP elliptique dégénérée: en effet, on vérifie facilement que ∇F (w) doit
être un gradient, et on trouve donc ∇ · (∇F ∗(∇u)) = f , où F ∗ est la transformé de Flenchel
de F . Le problème de cette équation, de type p−Laplacien, est que F ∗ = 0 sur la boule unité,
ce qui en fait une équation très dégénérée. La question de la régularité de w = ∇F ∗(∇u) a
été étudiée dans [21] (bornes L∞ et H1) et dans [44, 104] (continuité de w), sous des hy-
pothèses de non-dégénerescence de F ∗ en dehors de la boule. Or, pour des modèles de trafic
basés sur l’homogénéisation de modèles de réseaux [6], d’autres choix de F sont nécessaires, et

cela donne F ∗(z) =
∑d

i=1(|zi| − 1)p+. Le problème dans ce cas est extrêment plus difficile, du
fait de la dégénerescence sur une zone non bornée. Brasco et ses collaborateurs ont travaillé en
profondeur sur ce problème, en obtenant des résultats intéressants (mais durs) dans [18] et [20].
D’autres approches ont aussi été utilisées dans [47].

Pour étudier la régularité supérieure de la densité de transport σ, ou de façon équivalente
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la régularité du flot optimal w dans le cas où F (w) = |w|, une idée sera d’étudier le cas
Fε(w) = |w| + ε|w|2 et de faire tendre ε vers 0. Malheureusement, les estimations H1, par
exemple, sur les flots optimaux wε ne passent pas à la limite et, on ne peut rien dire à propos
de la régularité du flot optimal w.

En effet, nous donnerons, au Chapitre 5, une famille de contre-exemples aux régularités
supérieures de la densité de transport σ. En particulier, nous démontrons que la régularité
W 1,p des densités f+ et f− n’implique pas que la densité de transport σ soit dans W 1,p aussi,
c.à.d., on a l’assertion suivante

f± ∈W 1,p ; σ ∈W 1,p, ∀ p > 1.

En plus, on a

f± ∈ C0,α ; σ ∈ C0,α, ∀ α ∈ (0, 1).

Proposition 0.4. On a les assertions suivantes:

f± ∈ BV (Ω) 6⇒ σ ∈ BV (Ω),(0.7)

∀ p > 1, ε > 0, f± ∈W 1,p(Ω) 6⇒ σ ∈W
1, 2p+ε
p+1

loc (Ω),(0.8)

f± ∈ C1(Ω̄) 6⇒ σ ∈ H1(Ω),(0.9)

f± ∈W 1,∞(Ω) 6⇒ σ ∈ H1
loc(Ω),(0.10)

∀ α ∈ (0, 1), f± ∈ C1,α(Ω) 6⇒ σ ∈W 1,2+α
loc (Ω),(0.11)

f± ∈ C2,1(Ω) 6⇒ σ ∈W 1,3
loc (Ω),(0.12)

f± ∈ C∞(Ω̄) 6⇒ σ ∈W 1,3(Ω),(0.13)

f± ∈ C∞(Ω̄) 6⇒ σ ∈W 1,5
loc (Ω),(0.14)

∀ α ∈ (0, 1), ε > 0, f± ∈ C0,α(Ω) 6⇒ σ ∈ C
0, α
α+2

+ε

loc (Ω),(0.15)

∀ ε > 0, f± ∈ C1(Ω̄) 6⇒ σ ∈ C0, 1
3

+ε(Ω),(0.16)

∀ ε > 0, f± ∈ C0,1(Ω) 6⇒ σ ∈ C0, 1
3

+ε

loc (Ω),(0.17)

∀ α ∈ (0, 1), ε > 0, f± ∈ C1,α(Ω) 6⇒ σ ∈ C
0, 1+α

3+α
+ε

loc (Ω),(0.18)

∀ ε > 0, f± ∈ C2,1(Ω) 6⇒ σ ∈ C0, 1
2

+ε

loc (Ω),(0.19)

∀ ε > 0, f± ∈ C∞(Ω̄) 6⇒ σ ∈ C0, 1
2

+ε(Ω),(0.20)

∀ ε > 0, f± ∈ C∞(Ω̄) 6⇒ σ ∈ C0, 2
3

+ε

loc (Ω).(0.21)

Les contre-exemples que nous allons construire seront inspirés par [45, 84]. Plus précisément,
pour produire de tels contre-exemples, l’idée sera de fixer un réel γ > 0 et de considérer les
rayons de transport (la)a∈(0,1) où chaque rayon la est défini comme suit
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x2 =
aγ

2
(x1 + a), x1 ∈ [−a, 1].

En plus, la densité f+ sera donnée tandis que la densité f− sera à choisir de façon à ce que les
rayons de transport entre f+ et f− seront exactement les segments (la)a. Ce réel γ > 0 joue
un grand rôle dans la construction des contre-exemples: en fait, on voudra choisir à chaque fois
un γ convenable pour obtenir un contre-exemple à la régularité W 1,p (pour un certain p), C0,α

(pour un certain α) ou BV. En particulier, pour faire un contre-exemple à la régularité W 1,p,
pour un p → 1, on devra choisir un γ → +∞. La régularité W 1,p (C0,α ou BV) de la fonction
f− dépend, éventuellement, du choix de paramètre γ. Donc, pour chaque γ > 0, on voudrait
vérifier que f− est W 1,p et pourtant, σ ne l’est pas.

Dans le chapitre 6, nous nous intéressons à une nouvelle application des estimations Lp sur
la densité de transport. Il s’agit d’étudier la régularité W 1,p de la solution, en 2D, du problème
du gradient minimal [108, 64]

(0.22) min

{∫
Ω
|∇u| dx : u ∈ BV (Ω), u|∂Ω = g

}
,

quand Ω est un domaine uniformément convexe, u|∂Ω désigne la trace de u et g : ∂Ω 7→ R
est une fonction L1 donnée. Tout d’abord, nous rappelerons la connection entre (0.22) et le
problème de Beckmann (voir aussi [65])

(0.23) inf

{∫
Ω
|w|dx : w ∈ L1(Ω,R2), ∇ · w = 0 dans

◦
Ω, w · n = f sur ∂Ω

}
,

où f est la dérivée tangentielle de g (i.e., f = ∂g/∂τ , τ est la tangente au bord de Ω) et n
est la normale extérieure au ∂Ω. Plus précisément, il est possible de prouver que si u est une
solution de (0.22), alors le champ w = Rπ

2
∇u résout (0.23), où Rπ

2
désigne une rotation avec

angle π
2 autour de l’origine. Or, ce problème (0.23) est aussi équivalent au problème de Monge-

Kantorovich entre deux mesures, f+ et f−, concentrées sur le bord:

(0.24) min

{∫
Ω×Ω
|x− y|dλ : λ ∈ Π(f+, f−)

}
,

où f = f+ − f−. D’autre part, on rappelle que si λ est un minimiseur du (0.24), alors le
champ de vecteur wλ donné par
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< wλ, ξ >:=

∫
Ω×Ω

dλ(x, y)

∫ 1

0
ξ((1− t)x+ ty) · (y − x) dt, ∀ ξ ∈ C(Ω,R2)

est un minimiseur de (0.23). En plus, tout minimiseur de (0.23) vient d’un minimiseur λ de
(0.24). Pourtant, nous ne savons pas, par exemple, si ce minimiseur est unique ou pas, parce
que les seuls résultats connus à propos de l’unicité de wλ nécessite qu’au moins l’un des deux
f+ ou f− soit dans L1(Ω), ce qui n’est pas le cas ici comme f+ et f− sont concentrées sur le
bord. Cependant, nous sommes en mesure de prouver que si Ω est strictement convexe, si f+

ou f− est non-atomique, et s’ils n’ont pas de masse commune, alors il existe un unique plan de
transport optimal λ et donc, un unique minimiseur w pour (0.23).

Par conséquent, étudier la régularité W 1,p de la solution u revient à étudier la sommabilité
Lp du flot optimal w. Rappelons-nous que les seuls résultats connus à propos de la somma-
bilité Lp du flot optimal w demandent qu’au moins une mesure entre f+ et f− soit dans Lp(Ω)
(voir Proposition 0.1). La sommabilité Lp du w dans le cas où on transporte une mesure f+,
concentrée sur le bord, vers une autre f−, concentrée sur le bord aussi, n’est pas connue. En par-
ticulier, si f± ∈ Lp(∂Ω), est-il vrai que le flot optimal w entre f+ et f− est dans Lp(Ω,R2) ?

En fait, en utilisant un argument d’approximation par des mesures atomiques, nous montrons
que si f± ∈ Lp(∂Ω), alors le flot minimal w est dans Lp(Ω,R2), à condition que Ω soit uni-
formément convexe et p ≤ 2.

Proposition 0.5. Si Ω est uniformément convexe, alors, pour une donnée au bord g dans
W 1,p(∂Ω), la solution u est dans W 1,p(Ω), pour tout p ≤ 2.

D’autre part, par un contre-exemple, nous montrons que ce résultat ne reste plus valable si
p > 2. Plus précisément, on a un contre-exemple où f+ et f− sont dans L∞(∂Ω), mais le flot
optimal n’est pas dans Lp(Ω,R2), pour tout p > 2.

Proposition 0.6. On a l’assertion suivante

g ∈ Lip(∂Ω) ; u ∈W 1,p(Ω), ∀ p > 2.

Par des estimations du même type, on voit que l’hypothèse classique g ∈ C1,1(∂Ω) donnera

u ∈ Lip(Ω). Plus généralement, nous prouvons que si g ∈ C1,α(∂Ω), alors u ∈W 1, 2
1−α (Ω).



INTRODUCTION 19

À partir du Chapitre 7 nous passons à un sujet de recherche différent, en lien avec la théorie
récente des MFG [79, 80, 81, 67, 68, 69, 28, 87, 7, 8, 33, 38, 63, 78, 11, 34]. On verra, pour-
tant, que plusieurs liens apparaissent avec les sujets développés dans les chapitres précédents.
Comme point de départ, la théorie des MFG était très liée au contrôle optimal [37, 43]. Dans le
chapitre 7, nous considérons un problème de sortie d’un domaine en temps minimal. Le temps
terminal des trajectoires n’est pas fixe, mais c’est le premier auquel elles atteignent le bord de Ω.
Plus précisément, pour chaque x0 ∈ Ω et t0 ∈ R+, on considère la trajectoire γt0,x0,u solution de

{
γ′(t) = k(t, γ(t))u(t), t ≥ t0,
γ(t0) = x0,

où u : [t0,∞) 7→ B̄(0, 1) est une fonction mesurable et k : R+ × Ω 7→ R+ est une fonction
donnée (appelée dynamique). De plus, on se donne une fonction g : ∂Ω 7→ R+ définie sur le
bord. Le but est de minimiser ce coût

τ t0,x0,u + g(γt0,x0,u
τ )

parmi tous les controles u, où τ t0,x0,u est le premier instant pour lequel la trajectoire γt0,x0,u

touche le bord en un point noté γt0,x0,u
τ .

Premièrement, nous démontrons l’existence d’un contrôle optimal u sous certaines hypothèses
sur k et g. D’autre part, si ϕ est la fonction valeur associée à notre problème de contrôle
optimal, c.à.d.,

ϕ(t, x) = inf
u
{τ t,x,u + g(γt,x,uτ )}, ∀ (t, x) ∈ R+ × Ω,

alors ϕ est une solution de viscosité du problème

{
− ∂tϕ(t, x) + k(t, x)|∇ϕ(t, x)| = 1, (t, x) ∈ R+ × Ω,

ϕ(t, x) = g(x), (t, x) ∈ R+ × ∂Ω.

Nous démontrons aussi que cette fonction valeur ϕ est Lipschitzienne sur R+ × Ω. De plus,
il est possible de prouver que ∂tϕ ≥ c − 1, pour un certain c > 0, ce qui est équivalent à une
borne inférieure |∇ϕ| ≥ c > 0.

D’autre part, nous analysons quelques conditions d’optimalité pour notre problème de contrôle.
Notre objectif sera d’obtenir plus de régularité sur les trajectoires optimales. En particulier,
nous prouvons que si u est un contrôle optimal, alors u est Lipschitzien, ce qui est équivalent à
dire que la trajectoire optimale γ est C1,1. Aussi, nous prouvons la suivante
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Proposition 0.7. Si γ : [t0, t0 + τγ ] 7→ Ω est une trajectoire optimale pour (t0, γ(t0))

(où τγ := τ t0,γ(t0),u et u est le contrôle optimal correspondant), alors la fonction valeur ϕ est
différentiable en (t, γ(t)), pour tout t ∈ (t0, t0 + τγ).

Par conséquent, on aura l’égalité

γ′(t) = −k(t, γ(t))
∇ϕ(t, γ(t))

|∇ϕ(t, γ(t))|
, ∀ t ∈ (t0, t0 + τγ).

D’autre part, nous allons raffiner le résultat de semi-concavité donné dans [37] en montrant
qu’au lieu de supposer que la dynamique k est C1,1 en (t, x), seule une borne inférieure sur ∂tk
(tout en gardant l’hypothèse C1,1 en x) est suffisante pour obtenir la semi-concavité de ϕ par
rapport à x. Pour gérer la dépendance en temps, nous devrons renforcer aussi la régularité du
bord. Plus précisément, on a

Proposition 0.8. Si ∂tk ≥ −c, |∇2
xk| ≤ C et ∂Ω est C1,1, alors la fonction valeur ϕ est

semi-concave par rapport à x.

On rappelle que si la dynamique k ne dépend pas du temps, alors une condition d’une boule
uniforme extérieure (au lieu d’une hypothèse C1,1 sur ∂Ω) est suffisante pour avoir la semi-
concavité de la fonction valeur ϕ.

Dans le chapitre 8, nous étudierons un problème de jeux à champ moyen où on a une den-
sité d’agents, représentée par ρ0, dans un domaine Ω, et le but de chaque agent est de quitter
le domaine Ω à travers son bord ∂Ω en temps minimal (ou de façon plus générale en min-
imisant un coût qui est supposé être donné par le temps nécessaire pour atteindre un point de
sortie éventuel z plus un coût sur le bord g(z) au point z). Afin de prendre en compte des
phénomènes de congestion, nous supposons que la vitesse maximale de chaque agent est bornée
par une dynamique k, c.à.d.,

|γ′(t)| ≤ k(ρt, γ(t)),

où γ(t) donne la position de l’agent à chaque instant t, ρt est l’évolution de la densité ρ0

au temps t et k : P(Ω) × Ω 7→ R+ est une fonction de congestion donnée. Nous donnerons
une formulation Lagrangienne de ce probème. Il s’agit de décrire l’évolution des agents par une
mesure η sur l’ensemble C(R+,Ω) de trajectoires possibles sur Ω. En fait, pour chaque x ∈ Ω,
on considère le problème suivant

inf

{
τγ + g(γ(τγ)) : γ(0) = x, |γ′(t)| ≤ k((et)#η, γ(t)) p.p. t, γ(t) = γ(τγ) ∀ t > τγ

}
,

où
τγ := inf{s ≥ 0 : γ(s) ∈ ∂Ω}.
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Une mesure η est appelée équilibre si son image par l’évaluation au temps t = 0 cöıncide
avec la distribution initiale ρ0 et η−presque toute trajectoire γ minimise le coût τγ + g(γ(τγ))
parmi toutes les trajectoires admissibles qui démarrent de γ(0). Nous montrerons l’existence
d’un équilibre η, sous l’hypothèse que la dynamique k est continue en (ρ, x) et Lipschitzienne
par rapport à x, en reformulant cette notion en termes d’un problème de point fixe (voir [87]).

Nous donnerons ensuite une caractérisation de l’équilibre, en montrant que la distribution
d’agents ρt satisfait une équation de continuité dont le champ de vitesse dépend du gradient
de la fonction valeur ϕ du problème de contrôle associé au problème de jeux à champ moyen
considéré. Cette équation de continuité sur ρ, satisfaite au sens des distributions, sera couplée
avec une équation de Hamilton–Jacobi sur ϕ, satisfaite au sens de viscosité. Plus précisément,
nous montrerons que, sous des hypothèses convenables sur la dynamique k, ρ : t 7→ ρt et ϕ sont
solutions du système suivant

(0.25)



∂tρ(t, x)−∇ ·
(
ρ(t, x) k(ρt, x)

∇ϕ(t, x)

|∇ϕ(t, x)|

)
= 0, (t, x) ∈ (0,∞)× Ω,

− ∂tϕ(t, x) + k(ρt, x)|∇ϕ(t, x)| = 1, (t, x) ∈ R+ × Ω,

ρ(0, x) = ρ0(x), x ∈ Ω,

ϕ(t, x) = g(x), (t, x) ∈ R+ × ∂Ω.

D’autre part, sous des hypothèses de régularité sur le domaine Ω et la dynamique k, on a
ce qui suit

Proposition 0.9. Si ρ0 est une densité dans Lp(Ω), alors la restriction de ρt à
◦
Ω est aussi

absolument continue et à densité dans Lp(Ω) pour tout t ≥ 0, avec un contrôle de la norme Lp

de la densité de ρt par celle de la densité de ρ0, c.à.d., il existe une constante C tel que

||ρt||Lp(Ω) ≤ eCt||ρ0||Lp(Ω), ∀ t ∈ R+.

Ces estimations Lp seront très utiles pour démontrer l’existence d’un équilibre dans le cas où la
dynamique k est définie comme suit

k(ρ, x) = c

(∫
Ω
χ(x− y)1 ◦

Ω
(y) dρ(y)

)
, ∀ (ρ, x) ∈ P(Ω)× Ω.

La signification de cette dynamique est que chaque agent évalue une densité moyenne des agents
autour de lui à travers le terme intégral, χ étant un noyau de convolution et l’indicatrice nous
permet de ne pas prendre en compte les agents ayant déjà quitté le domaine, et qui restent sur
∂Ω. Sa vitesse maximale dépend de cette évaluation de la densité à travers une fonction c, qui
est supposée être décroissante.
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Pour ce faire, l’idée sera d’approcher la dynamique k par des dynamiques plus régulières kε,
où kε est supposée être de la forme

kε(ρ, x) = c

(∫
Ω
χ(x− y)ψε(y) dρ(y)

)
, ∀ (ρ, x) ∈ P(Ω)× Ω.

Ici ψε est une fonction cut-off qui converge vers 1 ◦
Ω

quand ε → 0. Si ηε est un équilibre as-

socié à la dynamique kε, alors ηε ⇀ η où η sera un équilibre associé à la dynamique k. Cela
découle du fait que les estimations Lp sur ρεt := 1 ◦

Ω
· (et)#η

ε sont uniformes en ε, ce qui permet

de montrer la convergence uniforme de la fonction valeur ϕε, associée au problème de contrôle
avec la dynamique kε, à la fonction valeur ϕ, associée avec la dynamique k.

Dans le chapitre 9, nous étudions le problème de jeux à champ moyen stationnaire de (0.25) avec
une source f . En d’autres termes, nous considérons d’abord le même problème qu’auparavant
avec l’ajout du fait qu’à chaque instant t, une densité additionnelle f (independente de t) entre
dans le jeu. Dans ce cas, le système (0.25) serait

(0.26)



∂tρ(t, x)−∇ ·
(
ρ(t, x) k(ρt, x)

∇ϕ(t, x)

|∇ϕ(t, x)|

)
= f, (t, x) ∈ (0,∞)× Ω,

− ∂tϕ(t, x) + k(ρt, x)|∇ϕ(t, x)| = 1, (t, x) ∈ R+ × Ω,

ρ(0, x) = ρ0(x), x ∈ Ω,

ϕ(t, x) = 0, (t, x) ∈ R+ × ∂Ω.

De ce système, on considère la version stationnaire, qui est la suivante

(0.27)


−∇ ·

(
ρ k(ρ, ·) ∇ϕ|∇ϕ|

)
= f dans Ω,

k(ρ, ·) |∇ϕ| = 1 dans Ω,

ϕ = 0 sur ∂Ω.

Tout d’abord, nous voulons étudier l’existence d’un équilibre pour le problème stationnaire

associé à (0.27). En fixant T > 0 suffisamment grand, nous posons ρη :=
∫ T

0 (et)#η dt, pour
toute mesure η sur C(R+,Ω). Pour tout x ∈ Ω, nous considérons le problème

min

{
τγ : γ(0) = x, |γ′(t)| ≤ k(ρη, γ(t)) p.p. t ∈ (0, τγ), γ(t) = γ(τγ) ∈ ∂Ω ∀ t > τγ

}
.
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Encore une fois, η est un équilibre pour le problème stationnaire si son image par l’évaluation
au temps t = 0 est égal à f et η est concentrée sur l’ensemble des courbes optimales, c.à.d.
η−p.p. γ est une courbe optimale pour γ(0). Dans le cas où la dynamique k est régulière, on
peut démontrer, comme au Chapitre 8, l’existence d’un équilibre η en utilisant une méthode
du point fixe.

D’autre part, on verra que le système (0.27) n’est rien d’autre que celui de Monge-Kantorovich
pour le problème de transport optimal entre la densité f et la frontière en présence d’une
métrique non-uniforme dc, où c = k−1. En d’autres termes, nous considérons le problème de
transport

(0.28) min

{∫
Ω
dc(x, y) dλ : λ ∈M+(Ω× Ω), (Πx)#λ = f, (Πy)#λ ⊂ ∂Ω

}
où

dc(x, y) = inf

{∫ 1

0
c(γ(t))|γ′(t)| dt : γ ∈ C1([0, 1],Ω), γ(0) = x et γ(1) = y

}
, ∀ x, y ∈ Ω.

Puisque la mesure (Πy)#λ sur ∂Ω est complètement arbitraire, alors il est clair que le choix
optimal est de la prendre égale à P#f , où

P (x) = argmin {dc(x, y), y ∈ ∂Ω} pour tout x ∈ Ω,

ce qui signifie que λ := (Id, P )#f est l’unique plan de transport optimal pour (0.28), qui est
également le même que

(0.29) min

{∫
Ω×Ω

dc(x, y) dλ : λ ∈ Π(f, P#f)

}
.

Ce qui est aussi équivalent au problème suivant

(0.30) max

{∫
Ω
u df : |∇u| ≤ c, u = 0 sur ∂Ω

}
.

Maintenant, nous voulons généraliser la notion de la densité de transport au cas où le coût
de transport n’est pas la distance Euclidienne, mais c’est plutôt la distance géodésique avec
un poids c. Dans ce cas, les rayons de transport seront des géodésiques (et pas forcément des
segments). Nous posons alors

σ :=

∫
Ω×Ω
H1 γx,y dλ(x, y),
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où γx,y est une géodésique reliant x à y. De façon équivalente,

< σ, φ >=

∫
Ω×Ω

dλ(x, y)

∫ 1

0
φ(γx,y(t)) |γ ′x,y(t)|dt ∀ φ ∈ C(Ω).

D’autre part, le problème de Beckmann (0.2) devient

(0.31) min

{∫
Ω
c d|w| : w ∈Md(Ω), ∇ · w = f dans

◦
Ω

}
.

En plus, si on pose

< w, ξ >=

∫
Ω×Ω

dλ(x, y)

∫ 1

0
ξ(γx,y(t)) · γ ′x,y(t) dt, ∀ ξ ∈ C(Ω,Rd),

alors, la mesure vectorielle w résout (0.31). La version la plus compliquée du système (0.4)
devient

(0.32)


−∇ ·

(
σ ∇u|∇u|

)
= f dans Ω,

u = 0 sur ∂Ω,

|∇u| ≤ c dans Ω,

|∇u| = c σ − p.p.

La question que nous considérons maintenant est de savoir si la densité de transport σ, dans
(0.32), de f à P#f (ou de manière équivalente, le champ de vecteur optimal w dans (0.31))
est dans Lp(Ω) quand f ∈ Lp(Ω). Pour cette raison, nous démontrons que le Jacobien Jt de
l’application x 7→ Pt(x), où Pt(x) est le point de la géodésique entre x et P (x) situé à une dis-
tance (1− t) dc(x, ∂Ω) du bord, est borné inférieurement par une constante strictement positive
C, multipliée par un facteur (1− t), c.à.d. on a

Jt ≥ C(1− t),

dès que Ω et c sont lisses. Grâce à cette borne, nous arriverons à démontrer l’estimation
suivante

||σ||Lp(Ω) ≤ C||f ||Lp(Ω),
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où C est une constante qui dépend seulement de d, diam(Ω), cmin, cmax, ||∇c||∞, ||D2c||∞ et
de la borne inférieure de la courbure de ∂Ω. Donc, on a le résultat suivant

Proposition 0.10. La densité de transport σ entre f et P#f est dans Lp(Ω) dès que
f ∈ Lp(Ω) et, sous les hypothèses que Ω satisfait une condition de boule uniforme extérieure et
que c soit C1,1.

Revenons au problème de jeux à champ moyen stationnaire, nous observons que la densité
d’équilibre ρ n’est rien d’autre que la densité de transport σ entre f et P#f . Et donc, on a

||ρ||Lp(Ω) ≤ C||f ||Lp(Ω).

Ces estimations Lp seront aussi très utiles pour généraliser le résultat d’existence d’un équilibre
pour le problème stationnaire au cas où la dynamique k est moins régulière. Plus précisément,
nous démontrons l’existence d’un équilibre stationnaire dans le cas où k est définie comme suit

k(ρ, x) = h

(∫
Ω
χ(x− y)1 ◦

Ω
(y) dρ(y)

)
, ∀ (ρ, x) ∈ P(Ω)× Ω,

exactement comme ce qu’on a fait au Chapitre 8 dans le cas évolutif. La différence est que
ici les hypothèses sont sur le terme source f et pas sur la donnée initiale ρ0 qui n’a pas lieu
d’être dans un problème stationnaire.

Le lecteur pourra remarquer que le traitement de la donnée au bord g, les estimations Lp,
et la notion de la densité de transport sont finalement le point clé et le fil conducteur de la
thèse, y compris dans la partie MFG.





CHAPTER 1

Preliminaries on the Monge-Kantorovich problem

Let Ω be a compact domain in Rd and f+, f− be two finite non-negative Borel measures
on Ω with the same total mass; i.e. f+, f− ∈ M+(Ω) and f+(Ω) = f−(Ω). The goal of the
transport problem is to move f+ onto f−: this means, roughly speaking, that one needs a map
specifying where to move the mass. Taking then any Borel map T : Ω 7→ Ω, we try to under-
stand what should mean to consider it as a way to transport the distribution of mass given by
f+: the idea is that one should move all the mass which is in a point x into the point T (x). Yet,
this simple “pointwise” point of view is not formally correct unless f+ is the sum of countably
many point masses, but it leads to the correct idea that the mass which will be in any Borel set
A ⊂ Ω after the movement is f+(T−1(A)). Since we want to move f+ on f−, it should happen
that this mass equals f−(A). Following this intuitive argument, a Borel map T : Ω 7→ Ω is
said to be a transport map from f+ to f− if T#f

+ = f−, where the push-forward is defined as

T#f
+ (A) := f+(T−1(A)) for all Borel set A ⊂ Ω.

Once we know what a transport map is, we are interested in finding a cheapest one; to ex-
plain what this means, we need to consider a continuous cost function c(x, y) (typically, we take
c(x, y) = |x− y|): its meaning is that the cost of moving a unit mass from the point x ∈ Ω to
the point y ∈ Ω is c(x, y). Recalling the meaning of the mass following the transport map T ,
it is natural to consider, as the cost of the transport T , the quantity

(1.1)

∫
Ω
c(x, T (x)) df+.

The task will be to find an optimal transport map, which is a transport map minimizing the
quantity (1.1) among all the transport maps from f+ to f−. In other words, we consider the
following problem, which is already introduced by Monge in [93],

(MP) inf

{∫
Ω
c(x, T (x)) df+ : T#f

+ = f−
}
.

Yet, even if this problem is quite easy to state, it is not easy at all to solve it and in gen-
eral, it may also have no solutions (to see that, just consider the case where f+ = δx, for some
x ∈ Ω, and f− is any probability measure different than a Dirac mass; in this case no transport
map can exist).

27
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However, the first key ideas for studying the Monge problem are due to Kantorovich [73, 74]
in the 1940’s : he proposed to consider as admissible ways to move the mass all the measures
γ defined in Ω × Ω admitting f+ and f− as marginals; each of these measures will be called
transport plan. The meaning of this definition is to allow the splitting of masses; roughly speak-
ing, consider the mass contained in a point x : according to Monge’s formulation, it should be
entirely moved to the point T (x), while Kantorovich’s idea is to distribute it in Ω more freely,
provided that the final distribution of the points results to be the target measure f−. More
precisely, the Kantorovich problem is the following

(KP) min

{∫
Ω×Ω

c(x, y) dγ : γ ∈ Π(f+, f−)

}
where

Π(f+, f−) =

{
γ ∈M+(Ω× Ω) : (Πx)#γ = f+, (Πy)#γ = f−

}

and Πx, Πy are the two projections of Ω × Ω onto Ω. Let us note that the Kantorovich
problem of finding an optimal transport plan is a generalization of the Monge one of finding
an optimal transport map. Indeed, if T is a transport map from f+ to f−, then γT :=
(Id, T )#f

+ ∈ Π(f+, f−) and, we have

∫
Ω×Ω

c(x, y) dγT =

∫
Ω×Ω

c(x, y) d(Id, T )#f
+ =

∫
Ω
c(x, T (x)) df+.

This generalization is extremely useful for many reasons; let us briefly discuss some of them.
First of all, one can show that the Kantorovich problem is “much easier”, since it is immediately
seen to admit a solution. In fact, the set of all transport plans between f+ and f− belongs to the
normed space M+(Ω× Ω), and in particular we will see that it is, for the weak convergence of
measures, a compact subset of it; moreover, the cost in (KP) is a linear function of the transport
plan. On the other hand, if (Tn)n is a minimizing sequence of transport maps, then, up to a
subsequence, Tn ⇀ T weak* in L∞; but, this is not sufficient to get that T is a transport map.
Consequently, it is much easier to compare different plans than different maps. In addition, an-
other big difference between (KP) and (MP) is about symmetry: for the Kantorovich problem,
exchanging f+ and f− does not have any effect, and it is completely equivalent to transport
f+ on f− or f− on f+ provided we replace c(x, y) with c(y, x); for the Monge problem, this is
absolutely not true.

Proposition 1.1. (KP) admits a solution.

Proof. We need to show that the set Π(f+, f−) is compact and that γ 7→ K(γ) :=
∫
cdγ is

continuous and then, to apply Weierstrass’s Theorem. The continuity of K follows immediately
from the definition of the weak convergence of measures and the fact that the cost c is continu-
ous. For the compactness, take a sequence (γn)n ⊂ Π(f+, f−). They are measures with the same
total mass (which is f+(Ω) = f−(Ω)) and so, they are bounded in M+(Ω × Ω). Hence, there
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exists a subsequence γnk ⇀ γ converging to a non-negative measure γ. We just need to check
that γ ∈ Π(f+, f−). This may be done by fixing φ ∈ C(Ω) and using

∫
φ(x) dγnk =

∫
φdf+

and passing to the limit, which gives
∫
φ(x) dγ =

∫
φ df+. This shows that (Πx)#γ = f+. The

same may be done for Πy. �

On the other hand, the problem (KP) is a linear optimization under convex constraints,
given by linear equalities and, so an important tool will be duality theory, which is typically
used for convex problems. In fact, by an inf-sup exchange, we are able to find a formal dual
problem (DP) for (KP). To do that, let us express the constraint γ ∈ Π(f+, f−) in the following
way: note that, if γ ∈M+(Ω× Ω), then we have

sup
u± ∈C(Ω)

{∫
Ω
u+ df+ +

∫
Ω
u− df− −

∫
Ω×Ω

(u+(x) + u−(y)) dγ

}
=

{
0 if γ ∈ Π(f+, f−)

+∞ else.

Hence, we may look at the problem, we get

min
γ ∈M+(Ω×Ω)

{∫
Ω×Ω

c dγ + sup
u± ∈C(Ω)

{∫
Ω
u+ df+ +

∫
Ω
u− df− −

∫
Ω×Ω

(u+(x) + u−(y)) dγ

}}

and consider interchanging sup and inf:

sup
u± ∈C(Ω)

{∫
Ω
u+ df+ +

∫
Ω
u− df− + inf

γ ∈M+(Ω×Ω)

{∫
Ω×Ω

(c(x, y) − (u+(x) + u−(y))) dγ

}}
.

If we come back to the maximization over (u+, u−), one can rewrite the inf in γ as a con-
straint on u+ and u−:

inf
γ ∈M+(Ω×Ω)

{∫
Ω×Ω

(c(x, y) − (u+(x) + u−(y))) dγ

}
=

{
0 if u+ ⊕ u− ≤ c on Ω× Ω

−∞ else,

where u+ ⊕ u− denotes the function defined through (u+ ⊕ u−)(x, y) := u+(x) + u−(y). Fi-
nally, we get the following dual problem

(DP) sup

{∫
Ω
u+ df+ +

∫
Ω
u− df− : u± ∈ C(Ω), u+ ⊕ u− ≤ c

}
.
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In fact, there was a great development in studying the duality relationship between prob-
lems (KP) and (DP): a main ingredient was the extension of the notion of superdifferential for
concave functions as proposed by Rockafellar [98], leading to the notions of c−concavity and
c−superdifferential (see [75, 99, 100]). For completeness, let us introduce an alternative proof
(which is essentially taken from [103]) based on a simple convex analysis trick.

Proposition 1.2. The duality formula min (KP) = sup (DP) holds.

Proof. For every p ∈ C(Ω× Ω), set

H(p) := − sup

{∫
Ω
u+ df+ +

∫
Ω
u− df− : u± ∈ C(Ω), u+ ⊕ u− ≤ c− p

}
.

Then, it is not difficult to see that H(p) ∈ R ∪ {+∞}, for all p ∈ C(Ω × Ω). This follows
immediately from the fact that for a maximizing sequence (u+

n , u
−
n )n, we can always assume

that these functions share the same modulus of continuity as c− p (in fact, if we replace u−n by
v−n where v−n (y) := min{c(x, y)− p(x, y)− u+

n (x) : x ∈ Ω}, for every y ∈ Ω, the constraints are
preserved and the integrals increased) and that they are uniformly bounded (this may be done
if we note that adding a constant to u+

n and subtracting it to u−n is always possible) and so, to
apply Ascoli-Arzelà’s Theorem. Moreover, we have that

• H is convex : take p0 and p1 with their optimal potentials (u+
0 , u

−
0 ) and (u+

1 , u
−
1 ). For

t ∈ [0, 1], define pt := (1− t)p0 + tp1, u+
t := (1− t)u+

0 + tu+
1 and u−t := (1− t)u−0 + tu−1 . Yet,

the pair (u+
t , u

−
t ) is admissible in the max defining −H(pt) and so, we have

H(pt) ≤ −
(∫

Ω
u+
t df+ +

∫
Ω
u−t df−

)
= (1− t)H(p0) + tH(p1).

• H is l.s.c. : take pn → p uniformly in Ω × Ω and extract a subsequence (pnk)k realizing
the lim inf of H(pn). From uniform convergence, the sequence (pnk)k is equicontinuous and
bounded. Hence, the corresponding optimal potentials (u+

nk
, u−nk)k are also equicontinuous and

bounded and so, we can assume u+
nk
→ u+ and u−nk → u− uniformly in Ω. As

u+
nk
⊕ u−nk ≤ c− pnk ,

then

u+ ⊕ u− ≤ c− p
and

H(p) ≤ −
(∫

Ω
u+ df+ +

∫
Ω
u− df−

)
= lim inf

n
H(pn).

Now, let us compute H? : M(Ω × Ω) 7→ R ∪ {+∞}, the Legendre transform of H. For
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γ ∈M(Ω× Ω), we have

H?(γ) = sup

{∫
Ω×Ω

p dγ −H(p) : p ∈ C(Ω× Ω)

}

= sup

{∫
p dγ +

∫
u+df+ +

∫
u−df− : u± ∈ C(Ω), p ∈ C(Ω× Ω), u+ ⊕ u− ≤ c− p

}
.

If γ /∈ M+(Ω × Ω), i.e. there is a non-negative continuous function p0 such that
∫
p0 dγ < 0,

one can take u± = 0, pn = c− np0, and for n→ +∞, we get H?(γ) = +∞. On the contrary, if
γ ∈M+(Ω× Ω), we should choose the largest possible p, i.e., p := c− (u+ ⊕ u−). This gives

H?(γ) =

∫
cdγ + sup

{∫
u+ df+ +

∫
u− df− −

∫
(u+(x) + u−(y)) dγ : u± ∈ C(Ω)

}

=

{∫
cdγ if γ ∈ Π(f+, f−)

+∞ else.

Yet, we have already seen that H is convex and l.s.c., then H?? = H. In particular, we have
H??(0) = H(0). Yet, H(0) = − sup (DP) and,

H??(0) := sup {< 0, γ > −H?(γ) : γ ∈M(Ω× Ω)} = −min (KP). �

Using this duality result (i.e., min (KP) = sup (DP)), we are able to give the following stability
result that we will need in the sequel:

Proposition 1.3. Let γn be an optimal transport plan between f+ and f−n , and assume
that f−n ⇀ f−. Then, up to a subsequence, γn ⇀ γ, where γ is an optimal transport plan
between f+ and f−. Moreover, if all the plans γn are induced by transport maps Tn and γ is
induced by a map T , then we have Tn → T in L2(f+).

Proof. Firstly, it is easy to see that there is a subsequence γnk ⇀ γ with γ ∈ Π(f+, f−).
Let (u+

nk
, u−nk) be a corresponding maximizer for (DP) between f+ and f−nk . From Proposition

1.2, we have ∫
Ω
u+
nk

df+ +

∫
Ω
u−nk df−nk =

∫
Ω×Ω

cdγnk →
∫

Ω×Ω
cdγ.

In addition, we can suppose that u±nk are equicontinuous and equibounded, and so there are

two subsequences u+
nk
→ u+ and u−nk → u− with u+ ⊕ u− ≤ c. Hence,
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∫
Ω
u+ df+ +

∫
Ω
u− df− =

∫
Ω×Ω

cdγ,

which implies that γ is an optimal transport plan between f+ and f−, and (u+, u−) is the
corresponding maximizer for (DP). The last part of the statement, when plans are induced by
maps, can be deduced by the weak convergence of the plans. Using γn = (Id, Tn)#f

+ and
γn ⇀ γ := (Id, T )#f

+ and testing the weak convergence against the test function φ(x, y) =
ξ(x) · y we obtain ∫

Ω
ξ(x) · Tn(x) df+(x)→

∫
Ω
ξ(x) · T (x) df+(x),

which means that we have the weak convergence Tn ⇀ T in L2(f+). We can now test against
φ(x, y) = |y|2 and obtain ∫

Ω
|Tn(x)|2 df+(x)→

∫
Ω
|T (x)|2 df+(x),

which proves the convergence of the L2 norm. This gives strong convergence in L2(f+). �

Concerning the existence of an optimal transport map for (MP): the first general existence
result has been proved when the cost is c(x, y) = |x − y|2: it was obtained independently in
1984 by Knott and Smith, [76], and in 1987 by Brenier, [22, 23]. After their first results, many
generalizations (c(x, y) = |x − y|p, p > 1) come out, see for example [10, 62, 97, 113]. Here,
for the sake of generality, we provide a proof of existence of an optimal transport map when the
cost is c(x, y) = h(x−y), where h is a strictly convex function, which includes the quadratic and
the power cases. In fact, the duality min (KP) = sup (DP) implies that optimal γ and (u+, u−)
satisfy

u+(x) + u−(y) = h(x− y) on spt(γ).

We recall that the function u+ shares the same modulus of continuity as the cost c. Hence, u+

is Lipschitz continuous in this case. If f+ � Ld, then for γ−a.e. (x, y), we get

∇u+(x) ∈ ∂h(x− y),

where ∂h denotes the subdifferential of h. As h is strictly convex, then this shows at the same
time that every optimal transport plan is induced by a transport map and that this transport
map is

x 7→ T (x) := x− (∂h)−1(∇u+(x)).
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Since the potential u+ does not depend on γ, then this map is uniquely determined and
so, there is a unique optimal transport plan γ (which is in fact induced by the map T ). In
the quadratic case, one can easily see that there is a convex function u such that the optimal
transport map T is the gradient of u, i.e., T = ∇u.

On the other hand, it has been really hard to give some answer about the existence of an
optimal transport map in the Euclidean case (i.e., when c(x, y) = |x− y|). The main difficulty
of this problem is the fact that the cost |x−y| is convex but not strictly convex. More precisely,
due to the lack of strict convexity of the Euclidean cost, the uniqueness of the optimal transport
plan is in general not true, except for particular situations, and moreover not all the optimal
transport plans are actually transport maps. Therefore, there is the additional trouble of se-
lecting a particular optimal transport plan, which comes from a map. The proof of existence of
such a map has took a lot of time: in the work of Evans and Gangbo [58], it was considered the
case when f+ and f− are two positive Lipschitz densities supported in disjoint sets. Afterwards
Caffarelli, Feldmann and McCann [32] and Trudinger and Wang [110] independently extended
the result to the case when f+ and f− are absolutely continuous with respect to the Lebesgue
measure Ld. Then, Ambrosio [1, 4] proved that it was sufficient the absolute continuity of
the measure f+, while f− could be any measure; his proof is based essentially on the notion of
c−cyclical monotonicity. In order to understand this, we first need to analyse the support of the
optimal γ. In fact, one can easily see that the support of any optimal transport plan γ for (KP)
is c−cyclically monotone, i.e., for any k ∈ N, any finite set of pairs (x1, y1), ..., (xk, yk) ∈ spt(γ)
and any permutation σ, we have

k∑
i=1

c(xi, yi) ≤
k∑
i=1

c(xi, yσ(i)).

This property is a generalization of the cyclical monotonicity introduced by Rockafellar in [98],
and it was first considered by Knott and Smith in [77]; a detailled discussion can be found in
[62]. In the Euclidean case: this implies that, for all (x, y), (x′, y′) ∈ spt(γ), we have

|x− y| + |x′ − y′| ≤ |x− y′| + |x′ − y|.

This inequality has the intuitive meaning that if an optimal transport plan moves x to y and
x′ to y′, then this must be more convenient than moving x to y′ and x′ to y. In particular, it
implies that the segments [x, y] and [x′, y′] cannot intersect at an interior point for one of them,
except they have the same direction. This is a well-known property in the mass transportation
problem with Euclidean cost. To be more precise, we will introduce the notion of transport rays.
First, let us note that, in the Euclidean case, if (u+, u−) is a maximizer of (DP), then one can
suppose that u+ is 1−Lipschitz and u− = −u+. As a consequence of that, we get the following

(1.2) min

{∫
Ω×Ω
|x− y|dγ : γ ∈ Π(f+, f−)

}
= sup

{∫
Ω
ud(f+ − f−) : u ∈ Lip1(Ω)

}
.

The equality of the two optimal values implies that optimal γ and u satisfy u(x)−u(y) = |x−y|
on the support of γ, but also that, whenever we find some admissible γ and u satisfying
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|x − y|dγ =

∫
ud(f+ − f−), they are both optimal. Let u be such a maximizer (which is

called Kantorovich potential). We call transport ray any non-trivial (i.e., different from a sin-
gleton) segment [x, y] such that u(x) − u(y) = |x − y| that is maximal for the inclusion among
segments of this form (this definition makes sense since u is affine on the whole segment [x, y]).
This notion has been first introduced by Evans and Gangbo in [58], even if Monge himself had in
mind something similar (see also [1, 32, 50]). Following this definition, we see that an optimal
transport plan has to move the mass along the transport rays. Moreover, we call S the union of
all nondegenerate transport rays, S+ (resp. S−) be the set of lower (resp. upper) endpoints of
nondegenerate transport rays (i.e., those where u is maximal (resp. minimal) on the transport
ray, say the points x (resp. y) in the definition u(x)− u(y) = |x− y|). Finally, we denote by D
the set of double points, i.e., those whose belong to several transport rays.

In fact, it is not difficult to prove (see, for instance, [103]) that the Kantorovich potential u
is differentiable at any interior point z of a transport ray [x, y] with ∇u(z) = e := (x−y)/|x−y|.
To see that, take z′ ∈ B(z, ε), ε > 0 is small enough, and let z′′ be the projection of z′ on the
segment [x, y]. Then, there are a vector v orthogonal to e and a small t such that z′ = z′′ + tv
and so, one has

u(z′) = u(z′′ + tv) = u(z′′ + tv)− u(z′′) + e · (z′ − z) + u(z).

Yet, one can check easily that

|u(z′′ + tv)− u(z′′)| = o(|z′ − z|).

As a consequence of that, two different transport rays can only meet at a boundary point for
both of them, and in such a case, one can show that u must be not differentiable at such a point
(this implies that Ld(D) = 0). Moreover, the transport rays have some regularity; they satisfy
Property N for “negligibility”. Let us introduce the notion of this property.

Definition 1.4. We say that Property N for “negligibility” holds, for a given Kantorovich
potential u, if for every set B ⊂ Ω such that:

• B ⊂ S

• B ∩ r is at most countable for every transport ray r,

then Ld(B) = 0.

Notice that this property is not always satisfied by any disjoint family of segments, and there
is an exemple (by Alberti, Kirchheim, and Preiss, later improved by Ambrosio, Kirchheim and
Pratelli; see [3]) where a disjoint family of segments contained in a cube is such that the collec-
tion of their middle points has a strictly positive measure. Yet, one can prove that the direction
of the transport rays satisfies additional properties, which guarantee Property N . More pre-
cisely, we are able to show (see, for instance, [103]) that the gradient of a Kantorovich potential
u is in fact countably Lipschitz. To see that, let us define
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Sε =

{
x ∈ S : ∃z ∈ S with u(x)− u(z) = |x− z| > ε

}
, ε > 0,

which is roughly speaking made of those points in the transport rays that are at least at a
distance ε apart from the upper boundary point of the rays. It is clear that ∪ε>0 Sε = S \S−.
In addition, it is easy to check that, if x ∈ Sε, then

u(x) = inf
y/∈B(x,ε)

|x− y|+ u(y).

Hence, the restriction of u to each set Sε is semi-concave. Using this fact, we get the fol-
lowing (see [103]):

Proposition 1.5. The property N for “negligibility” holds for a given Kantorovich potential
u.

Proof. Without loss of generality, suppose that ∇u is Lipschitz. Consider a set B in the
definition of Property N (see Definition 1.4). Take x ∈ B. So, x belongs to some transport ray
r. Yet, it is clear that this ray r intersects at least one hyperplane xi = q, for some i ∈ {1, ..., d}
and q ∈ Q, at exactly one point of its interior (we denote by Hi,q such an hyperplane and by
Bi,q the set of all points x in B having this property). In this way, one has B = ∪i,qBi,q. Let
Ri,q be the set of all transport rays that meet the hyperplane Hi,q at exactly one point of its
interiors (we denote by Ii,q the set of all the intersection points). Set

Ai,q =

{
(y, t) ∈ Ii,q × R : ∃ r ∈ Ri,q, y ∈ r and y + t∇u(y) ∈ r\D

}
.

Now, let us define the map ξi,q : Ai,q 7→ Rd by setting, for (y, t) ∈ Ai,q, ξi,q(y, t) = y + t∇u(y).
The map ξi,q is injective, since getting the same point as the image of (y, t) and of (y′, t′) would
mean that two different transport rays cross at such point. Bi,q is contained in the image of ξi,q
by construction, so that ξi,q is a bijection between B′i,q := ξ−1(Bi,q) and Bi,q. The map ξi,q is

also Lipschitz, as a consequence of the Lipschitz behavior of ∇u. Note that B′i,q is a subset of

Hi,q×R containing at most countably many points on every line {y}×R. By Fubini’s theorem,

this implies Ld(B′i,q) = 0. Then we have also Ld(Bi,q) = Ld(ξi,q(B′i,q)) ≤ Lip(ξi,q)
dLd(B′i,q),

which implies Ld(Bi,q) = 0. �

Finally, we are ready to find an optimal transport plan γ somehow better than the others
(i.e., induced by a map). In fact, the idea was to consider the following

(1.3) min

{∫
Ω×Ω
|x− y| + ε|x− y|2 dγ : γ ∈ Π(f+, f−)

}
, ε > 0.
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If γε is an optimal transport plan for (1.3), then it is not difficult to see that γε ⇀ γ when
ε → 0, where γ is an optimal transport plan for (KP) with Euclidean cost. Moreover, by the
c−cyclical monotonicity of spt(γε) when ε→ 0, one can prove that, for (x, y), (x′, y′) ∈ spt(γ)
such that x, x′, y and y′ are all points of a same transport ray r, we have

|x− y|2 + |x′ − y′|2 ≤ |x− y′|2 + |x′ − y|2,

which is equivalent to say that

(1.4) (x− x′) · (y − y′) ≥ 0 .

Let us define an order relation on such a transport ray through x ≤ x′ ⇔ u(x) ≥ u(x′). This
implies that if x ≤ x′, then y ≤ y′. Now, let us define the interval Ix as the minimal interval
I such that spt(γ) ∩ ({x} × r) ⊂ {x} × I. As the interiors of all these intervals are disjoint
and ordered, then there can be at most a countable quantity of points x such that Ix is not a
singleton. Using Proposition 1.5, we infer that the optimal transport plan γ will be induced
by a map T as soon as f+ � Ld (thanks to (1.4), this plan γ is monotone nondecreasing along
each transport ray; it is so-called the monotone optimal transport plan and the map T , which
corresponds to it, the monotone optimal transport map). So, we have the following

Theorem 1.6. If f+ � Ld, then (MP) reaches a minimum.



CHAPTER 2

Transport density

2.1. Definitions

In the mass transportation problem with Euclidean cost (supposing also that the domain Ω
is convex), it is classical to associate with any optimal transport plan γ for (KP) a non-negative
measure σγ on Ω, called transport density, which represents the amount of transport taking
place in each region of Ω. This measure σγ is defined by

(2.1) < σγ , ϕ >=

∫
Ω×Ω

dγ(x, y)

∫ 1

0
ϕ(ωx,y(t))|ω′x,y(t)| dt for all ϕ ∈ C(Ω)

where ωx,y is a curve parameterizing the straight line segment connecting x to y. Notice in
particular that one can write

(2.2) σγ(A) =

∫
Ω×Ω
H1(A ∩ [x, y]) dγ(x, y) for every Borel subset A ⊂ Ω

where H1 stands for the 1-dimensional Hausdorff measure. This means that σγ(A) stands for
“how much” the transport takes place in A, if particles move from their origin x to their desti-
nation y on straight lines.

This measure σγ had been already considered by Janfalk (see [71]). Moreover, in the work
of Evans and Gangbo, it was one of the main tools to build an optimal transport map for the
Monge’s problem; it was the additional ingredient that they used to recover enough information
to move correctly the mass inside each transport ray. More precisely, their construction used
the approximation of the so-called p−Laplacian: they considered the solutions up of the problem

−∇ · (|∇up|p−2∇up) = f+ − f−

and, passing to a limit for p→ +∞, they prove then that there is some u ∈ Lip1(Ω) such that,
up to a subsequence, up converges uniformly to u and |∇up|p−2∇up weakly ?−converges in
L∞ to σ∇u, where σ is a non-negative bounded density. Then, in particular, one has

(2.3) −∇ · (σ∇u) = f+ − f−.

The function u is a Kantorovich potential, while σ is the transport density between f+ and
f−. From the definition (2.1), we see that a transport density σγ does not depend uniquely on
f+ and f−, but also on the choice of the optimal transport plan γ. However, the uniqueness of
this measure is true under some assumptions on the data. In fact, we have the following result

37
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(see, for instance, [59, 103]).

Proposition 2.1. Suppose f+ � Ld or f− � Ld. Then the transport density is unique,
that is, any optimal transport plan γ between f+ and f− defines the same transport density σγ.

Proof. Suppose f+ � Ld and let u be a Kantorovich potential for the transport between
f+ and f−. Define the map R : Ω × Ω 7→ R, valued in the set R of all transport rays,
sending each pair (x, y) into the ray containing x (this is well-defined γ−a.e. since f+ � Ld
and Ld(D) = 0, where D is the set of double points). So, we can write γ = γr ⊗ α, where
α = R#γ (notice that the plan γr will be optimal between its own marginals, for α−a.e. r ∈ R).
Hence, we have σγ = σγr ⊗ α. It is clear that the measure α does not depend on γ, since it
has been obtained as an image measure through a map only depending on x and hence, only
on f+. On the other hand, σγr is the 1D transport density associated with the optimal trans-
port plan γr and so, one can see easily that it uniquely depends on the marginal measures of
γr. But, (Πx)#γ

r (resp. (Πy)#(γr (Ω×Dc))) must coincide with the disintegration of f+

(resp. f− Dc) according to the map R and then, it does not depend on γ. And, the measure
(Πy)#(γr (Ω×D)) can only be concentrated on the two endpoints of the transport ray r. Yet,
an endpoint where u is maximal cannot contain any mass of the target measure unless the source
one has an atom at the “beginning” of the transport ray. But, this is not the case for α−a.e. ray
r ∈ R, as f+ � Ld and Property N holds (see Proposition 1.5). Hence, (Πy)#(γr (Ω×D))
is a single Dirac for α−a.e. r ∈ R, with mass equals to 1 − (Πy)#(γr (Ω×Dc)). Yet, this
last quantity does not depend on γ but only on f+ and f−. The same result is true if f−

(in place of f+) is absolutely continuous with respect to the Lebesgue measure Ld, since we
recall that the transport plans between f+ and f− remain the same swapping f+ and f−. �

2.2. Lp summability

There are several papers, mainly by De Pascale and Pratelli, Evans and Feldmann and Mc-
Cann, adressing absolute continuity (or more generally, Lp summability) of the transport density
(see, for instance, [48, 50, 51]). In [50], the authors show estimates on the dimension of the
transport density σ in terms of the dimensions of the measures f+ and f−, and they represent
the connection between the study of the dimension and that of the summability of σ. Alterna-
tively, in [102], the author gives a short proof for this summability result; the idea is based on
displacement interpolation and on approximation by discrete measures. More precisely, we have
the following

Proposition 2.2. Suppose f+ � Ld or f− � Ld. Then, the unique transport density σ
between f+ and f− is also absolutely continuous with respect to the Lebesgue measure Ld.

Proof. Let γ be an optimal transport plan between f+ and f−, and let ft be the inter-
polation between these two measures, i.e., ft = (Πt)#γ where Πt(x, y) := (1 − t)x + ty (note
that f0 = f+ and f1 = f−). From (2.1), it is easy to see that

(2.4) σ ≤ C
∫ 1

0
ft dt.
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Hence, to prove that σ is absolutely continuous with respect to the Lebesgue measure Ld, it
is sufficient to prove that almost every measure ft is absolutely continuous with respect to Ld.
First, we suppose that f− is finitely atomic (the points (xi)i=1,...,n being its atoms). In this case,
we will choose γ to be the monotone optimal transport plan between f+ and f− (let T be the
corresponding monotone optimal transport map). For each i ∈ {1, ..., n}, set Ωi := T−1({xi})
and let Ωi(t) be the image of Ωi through the map x 7→ (1− t)x+ tT (x). It is easy to see that
these sets (Ωi(t))i=1,...,n are disjoint, for every t ∈ [0, 1]. So, for every Borel subset A ⊂ Ω, we
have

ft(A) =
n∑
i=1

ft(A ∩ Ωi(t)) =
n∑
i=1

f+

(
A ∩ Ωi(t)− txi

1− t

)
= f+

( n⋃
i=1

A ∩ Ωi(t)− txi
1− t

)
.

Yet,

Ld
( n⋃
i=1

A ∩ Ωi(t)− txi
1− t

)
≤ 1

(1− t)d
Ld(A).

Then, ft � Ld, for all t < 1. Now, take a sequence f−n of atomic measures converging to
f−. From Proposition 1.3, we know that the corresponding optimal transport plans γn between
f+ and f−n converge to an optimal transport plan γ between f+ and f−, and fn,t := (Πt)#γn
converge to the corresponding ft. We conclude by observing that the absolute continuity esti-
mates on fn,t may pass to the limit. �

Moreover, we are able to find estimates for the Lp summability of the transport density σ
under stronger assumptions on the data. In fact, one can expect some results stronger than the
last one, i.e. the L1 result on σ (see Proposition 2.2), if the source (resp. target) measure f+

(resp. f−) belongs to Lp, for some p > 1. In [50], the authors gave some Lp estimates on
the transport density σ via geometrical arguments. Yet, their result has been strengthened in
[102], where the author proves the following

Proposition 2.3. Suppose f+ ∈ Lp(Ω). Then, if p < d/(d− 1), the unique transport den-
sity σ associated with the transport of f+ onto f− belongs to Lp(Ω) as well.

Proof. Using Minkowski’s inequality, (2.4) implies that

‖ σ ‖Lp(Ω)≤ C
∫ 1

0
‖ ft ‖Lp(Ω) dt.

First, consider the case where f− is discrete: we know that ft is absolutely continuous and
that it coincides on each set Ωi(t) with the density of a homothetic image of f+ on Ωi, the
homothetic ratio being (1− t). Hence, we have∫

Ω
ft(y)p dy =

n∑
i=1

∫
Ωi(t)

ft(y)p dy =
n∑
i=1

∫
Ωi(t)

(
f+(y−txi1−t )

(1− t)d

)p
dy

= (1− t)d(1−p)
n∑
i=1

∫
Ωi

f+(x)p dx = (1− t)d(1−p)
∫

Ω
f+(x)p dx.
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Consequently,

‖ ft ‖Lp(Ω)= (1− t)−
d
p′ ‖ f+ ‖Lp(Ω),

where p′ := p/(p − 1). In addition, it is easy to see that this inequality, which is true in the
discrete case, stays true at the limit as well (i.e., if f− is not atomic) and then,

‖ σ ‖Lp(Ω)≤ C

∫ 1

0
‖ ft ‖Lp(Ω) dt ≤ C

(∫ 1

0
(1− t)−

d
p′ dt

)
‖ f+ ‖Lp(Ω) < +∞. �

This result is actually sharp ! One can give an example where f+ ∈ L∞, but the singularity

of the target measure f− prevents σ from being L
d
d−1 (just consider the case where we send a

bounded density f+ to a Dirac mass).

What happens if both f+ and f− are in Lp ? It is reasonable, in this case, to expect that the

transport density σ between f+ and f− would be more summable than just L
d
d−1
−ε when

p ≥ d/(d − 1), since the target measure is no more singular. In fact, we saw in the previous
estimates that the measures ft inherit some regularity (absolute continuity or Lp summability)
from f+ exactly as it happens for homotheties of ratio 1 − t. This regularity degenerates as
t→ 1, but we saw two cases where this degeneracy produced no problem: for proving absolute
continuity, where the separate absolute continuous behavior of almost all the ft, was sufficient,
and for Lp estimates, provided “the degeneracy stays integrable”. However, if f− is also regular,
then we can give estimate on ft for t → 0 starting from f+ and for t → 1 starting from f−.
Yet, let us note that in the previous estimates, we didn’t know a priori that ft shared the same
behavior of piecewise homotheties of f+; we go it as a limit from discrete approximations and,
when we pass to the limit, we do not know which optimal transport plan γ will be selected as
a limit of the optimal plans γn. This was not important above, since any optimal γ induces the
same transport density σ (thanks to Proposition 2.1). But here, we would like to glue together
estimates on ft for t→ 0 which have been obtained by approximating f− and estimates on ft
for t→ 1 which come from the approximation of f+. Should the two approximations converge
to two different transport plans, we could not put together the two estimates and deduce any-
thing on σ.

Hence, the main technical issue that we need to consider is proving that one particular optimal
transport plan can be approximated in both directions. To do that, the idea is to consider, first,
the optimal transport plan γε for (KP), with cost |x − y|1+ε (where ε > 0), and to show that
the same estimates, as in the proof of Proposition 2.3, are still true for fε,t := (πt)#γε. The
advantage, now, is that the optimal transport plan γε is unique, and then, we can get uniform
Lp estimates on fε,t (with no degeneracy when t → 0 or t → 1) by approximating f+ or f−

(the only fact that must be checked is the disjointness of the sets Ωi(t), which follows, in fact,
from the c−cyclical monotonicity of spt(γε)). We note that this strategy is different from the
one given in [102] where the author shows that the monotone optimal transport plan can be
approximated in both directions. Anyway, we are able to prove that

(2.5) ‖ fε,t ‖Lp(Ω) ≤ C max{‖ f+ ‖Lp(Ω), ‖ f− ‖Lp(Ω)}, ∀ t ∈ [0, 1], ε > 0.
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Hence, we get the following

Proposition 2.4. Suppose both f+ and f− belong to Lp(Ω). Then, the unique transport
density σ associated with the transport of f+ onto f− belongs to Lp(Ω) as well.

Proof. It is easy to see that the optimal transport plans γε converge to an optimal trans-
port plan γ for (KP) with Euclidean cost, and then, fε,t converge to ft. Yet, the estimate (2.5)
may pass to the limit, when ε→ 0, giving that

‖ ft ‖Lp(Ω) ≤ C max{‖ f+ ‖Lp(Ω), ‖ f− ‖Lp(Ω)}.

Consequently, the transport density σ between f+ and f− belongs to Lp(Ω) and, we have the
following estimate

‖ σ ‖Lp(Ω) ≤ C max{‖ f+ ‖Lp(Ω), ‖ f− ‖Lp(Ω)}. �

2.3. From transport density to Beckmann’s problem

The equation (2.3) used by Evans and Gangbo had been independently considered and
deeply generalized, in the context of shape optimization problems, by Bouchitté, Buttazzo and
Seppecher [13, 14, 15] and it had been studied also by Iri [70] and Strang [109]. In fact, some
problems which appeared to have correlations with the mass transportation were the Beckmann
problem [9] and, the evolution problem considered by Brenier [24, 25, 26]. It turns out that,
in all these connections, a main role is played by the transport density, which appears in each
of these problems with different meanings.

Back to Monge’s original problem, i.e. when the cost is equal to the Euclidean distance, we can
take advantage of one more equivalent formulation of (KP), which is particularly interesting, as
far as it is expressed as a divergence-constrained optimization problem. This is a particular case
of the so-called continuous model of transportation, first, proposed by Beckmann in [9], which
is the following

(BP) inf

{∫
Ω
|w| dx : w ∈ L1(Ω,Rd), ∇ · w = f+ − f−

}
,

where the divergence condition is to be read in the weak sense, with no-flux boundary con-
ditions, i.e., −

∫
Ω∇φ · w dx =

∫
Ω φ d(f+ − f−) for any φ ∈ C1(Ω̄).

We note that the minimization of the L1 norm under divergence constraints also has applica-
tions in image processing, as in [27, 82], in particular because the L1 norm (and not its strictly
convex variants) induces sparsity.
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Let us note that the direct method in Calculus of Variations, to prove existence of a mini-
mizer for (BP), does not work here (this is due to the fact that the space L1 is not reflexive)
and so, (BP) is a priori not well-posed in the L1 space. To avoid this difficulty, we will choose
the natural setting for (BP), i.e., we will replace the space L1(Ω,Rd) with the space of vector
measures Md(Ω). This means that we want to consider the following

(BP) min

{
|w|(Ω) : w ∈Md(Ω), ∇ · w = f+ − f−

}
,

where |w|(Ω) denotes the total variation of the vector measure w. Now, it is easy to see
that this second version of (BP) has always a solution (using the direct method in Calculus of
Variations). However, a minimizer w is a priori a vector measure (we do not known whether
it belongs or not to L1(Ω,Rd)). So, the idea is to construct a minimizer for (BP) (which is
essentially a vector measure) and to show that, under some assumptions on the data, it belongs
to L1. In this way, we get a solution to the original (BP) (i.e., the one that is formulated in the
space L1 instead of the space of vector measures). More precisely, we want to show that the
minimal value of (BP) equals that of (KP), and a solution of (BP) can be built from a solution
of (KP); the two problems are hence equivalent. One first observes that the indicator function
of the set of admissible w can be written as

sup

{∫
Ω
∇φ · dw +

∫
Ω
φ d(f+ − f−) : φ ∈ C1(Ω)

}
=

{
0 if ∇ · w = f+ − f−,
+∞ otherwise.

So, the (BP) can be stated in an unconstrained form as

min

{
|w|(Ω) + sup

{∫
Ω
∇φ · dw +

∫
Ω
φ d(f+ − f−) : φ ∈ C1(Ω)

}
: w ∈Md(Ω)

}
.

Notice that

inf

{
|w|(Ω) +

∫
Ω
∇φ · dw : w ∈Md(Ω)

}
=

{
0 if |∇φ| ≤ 1

−∞ otherwise.

Hence, via a formal inf-sup exchange, we get

sup

{∫
Ω
φ d(f+ − f−) : |∇φ| ≤ 1

}
.

The latter being exactly the dual formulation of Monge’s problem (see (1.2)). In fact, we
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can see easily that sup (DP) ≤ min (BP). Indeed, for all admissible φ in (DP) and w in (BP),
we have ∫

Ω
φ d(f+ − f−) =

∫
Ω

(−∇φ) · dw ≤
∫

Ω
1 d|w| = |w|(Ω).

Now, let γ be an optimal transport plan between f+ and f−, and build a vector measure
wγ as follows

(2.6) < wγ , ξ >:=

∫
Ω×Ω

dγ(x, y)

∫ 1

0
ξ(wx,y(t)) · w′x,y(t) dt, for every ξ ∈ C(Ω,Rd),

where wx,y being a parameterization of the segment [x, y]. Recalling (2.1), it is not difficult
to see that

wγ = −σγ∇u,

where σγ is the transport density associated with the optimal transport plan γ and u is the
Kantorovich potential between f+ and f−. On the other hand, it is easy to check that this
measure wγ satisfies the divergence constraint in (BP), since for every φ ∈ C1(Ω), we have

− < wγ ,∇φ > = −
∫

Ω×Ω
dγ(x, y)

∫ 1

0

d

dt
φ(wx,y(t)) dt

=

∫
Ω×Ω

(φ(x)− φ(y)) dγ(x, y)

=

∫
Ω
φ d(f+ − f−).

Hence,

min (BP) ≤ |wγ |(Ω) ≤ σγ(Ω) =

∫
Ω×Ω
|x− y|dγ = min (KP) = sup (DP).

Thus, the equality min (BP) = min (KP) holds and, the vector measure wγ is in fact a so-
lution to (BP). Yet, from Proposition 2.2, the transport density σ is absolutely continuous with
respect to the Lebesgue measure Ld, provided that f+ � Ld or f− � Ld. Hence, the original
(BP) reaches a minimum, as soon as f+ or f− is in L1(Ω).

In addition, we note that the pair (σ, u) solves a particular PDE system, which is the so-
called Monge-Kantorovich system,

(2.7)


−∇ · (σ∇u) = f+ − f− in Ω

σ∇u · n = 0 on ∂Ω

|∇u| ≤ 1 in Ω

|∇u| = 1 σ − a.e.
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Now, we want to show that in fact any minimizer for (BP) comes from an optimal transport
plan for (KP). In Chapter 6, we will also need this result in the case where the transport cost
c is given by a strictly convex norm || · ||. So, let us give the proof in this more general case.
From Proposition 1.2, we have

min

{∫
Ω×Ω
||x− y||dγ : γ ∈ Π(f+, f−)

}
= sup

{∫
Ω
u d(f+ − f−) : ||∇u||?,∞ ≤ 1

}
,

since u is 1−Lip with respect to || · || is equivalent to ||∇u||?,∞ ≤ 1, as soon as Ω is con-
vex, where || · ||?,∞ is defined as follows

||∇u||?,∞ = sup
x∈Ω
||∇u(x)||?

and

||v||? := sup

{
v · ξ : ||ξ|| ≤ 1

}
, for every v ∈ Rd.

With a general norm, (BP) becomes

min

{
||w||(Ω) : w ∈Md(Ω), ∇ · w = f+ − f−

}
,

where ||w|| denotes the variation measure associated with the vector measure w, i.e., ||w||(E) :=
supπ

∑
A∈π ||w(A)||, for every measurable set E ⊂ Ω, where the supremum is taken over all

partitions π of E into a countable number of disjoint measurable subsets.

Note that, so far, we have not stated the equivalence between the problems (BP) and (KP)
in the case of a general norm. Before showing that, let us define the transport density σγ ,
associated with some optimal transport plan γ, as follows

(2.8) < σγ , φ >=

∫
Ω×Ω

dγ(x, y)

∫ 1

0
φ((1− t)x+ ty)||x− y||dt, for all φ ∈ C(Ω).

Define wγ exactly as in (2.6). We see easily that ||wγ || ≤ σγ . Yet, wγ is admissible in (BP)
and ||wγ ||(Ω) ≤ σγ(Ω) = min (KP) = sup (DP) ≤ min (BP), where the last inequality follows
from the fact that, if ∇ · w = f+ − f− and ||∇u||?,∞ ≤ 1, then we have

∫
Ω ud(f+ − f−) =

−
∫

Ω∇u · dw ≤ ||w||(Ω). This yields that wγ is an optimal flow for (BP).

Now, let us come back to the proof of the claim, that is the fact that any optimal flow for
(BP) comes from an optimal transport plan for (KP). First of all, we will introduce some ob-
jects that generalize both σγ and wγ .
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Let C be the set of absolutely continuous curves α : [0, 1] 7→ Ω. We call traffic plan any
non-negative measure Q on C with total mass equal to f+(Ω) = f−(Ω), and

∫
C
L(α) dQ(α) < +∞,

where L(α) is the length of the curve α, i.e. L(α) =
∫ 1

0 ||α
′(t)||dt (note that the length is

measured according to the norm || · ||). We define the traffic intensity iQ ∈M+(Ω) as follows

∫
Ω
φ diQ =

∫
C

(∫ 1

0
φ(α(t))||α′(t)||dt

)
dQ(α) for all φ ∈ C(Ω).

This definition (which is taken from [39] and adapted to the case of a general norm) is a
generalization of the notion of transport density σγ . The interpretation is the following: for a
subregion A, iQ(A) represents the total cumulated traffic in A induced by Q, i.e., for every path
we compute “how long” it stays in A, and then we average on paths. We also associate a vector
measure wQ (called traffic flow) with any traffic plan Q via

∫
Ω
ξ · dwQ =

∫
C

(∫ 1

0
ξ(α(t)) · α′(t) dt

)
dQ(α) for all ξ ∈ C(Ω,Rd).

Taking a gradient field ξ = ∇φ in the previous definition yields

∫
Ω
∇φ · dwQ =

∫
C

(
φ(α(1))− φ(α(0))

)
dQ(α) =

∫
Ω
φ d((e1)#Q− (e0)#Q),

where et is the evaluation map at time t, i.e. et(α) := α(t), for all α ∈ C, t ∈ [0, 1]. From
now on, we will restrict our attention to admissible traffic plans Q, i.e. traffic plans such that
(e0)#Q = f+ and (e1)#Q = f−, since, in this case, wQ will be an admissible flow in (BP), i.e.
one has

∇ · wQ = f+ − f−.

Lemma 2.5. Let w be a flow such that ∇·w = f+−f−. Then, there is an admissible traffic
plan Q such that ||w − wQ||(Ω) + iQ(Ω) = ||w||(Ω).

Proof. Following [103, Section 4.2.3], we suppose, first, that f+, f− and w are smooth
with f+, f− > 0. Let X(., x) be the flow solution of
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{
∂tX(t, x) = w(X(t,x))

(1−t)f+(X(t,x)) + tf−(X(t,x))
,

X(0, x) = x.

Then, we define the measure Q as follows:

∫
C
ψ(α) dQ(α) :=

∫
Ω
ψ(X(., x)) df+(x), for every ψ ∈ C(C).

By construction, it is not difficult to check that the flow map X satisfies the following

d

dt

(
((1− t)f+(X(t, x)) + tf−(X(t, x))) det∇xX(t, x)

)
= 0,

which implies that
f+(x) = ft(X(t, x)) det∇xX(t, x),

where ft is the standard interpolation between f+ and f−, i.e. ft = (1 − t)f+ + tf−. Hence,
ft = (X(t, .))#f

+, which guarantees, in particular, that (e0)#Q = f+ and (e1)#Q = f−. In
addition, one can see easily that wQ = w and iQ = ||w||.

For the general case: following also [103, Theorem 4.10], take a convolution of w (resp. of
f+ and f−) with a Gaussian kernel ηε and take care of the boundary behavior (for more details,
see [103, Lemma 4.8]), we obtain smooth vector fields wε and positive smooth densities f±ε
with ∇·wε = f+

ε −f−ε such that wε ⇀ w (resp. ||wε||⇀ ||w|| because of standard properties of
convolutions) and f±ε ⇀ f±. Let (Qε)ε be the sequence of traffic plans such that, for every ε > 0,
wQε = wε and iQε = ||wε||. The measures Qε were constructed so that (e0)#Qε = f+

ε and
(e1)#Qε = f−ε , which implies, at the limit, that Qε ⇀ Q (since

∫
C L(α) dQε(α) = ||wε||(Ω) ≤ C

and so, Qε is tight) with (e0)#Q = f+ and (e1)#Q = f−. Moreover, it is not difficult to check
that Proposition 4.7 in [103] is still true if we replace the Euclidean norm | · | by another one
|| · ||. In particular, we have

∫
Ω
ξ · dw = lim

ε

∫
Ω
ξ · dwε = lim

ε

∫
C

(∫ 1

0
ξ(α(t)) · α′(t) dt

)
dQε(α)

≥
∫

Ω
ξ · dwQ + ||ξ||?,∞ (iQ(Ω)− ||w||(Ω)),

for all ξ ∈ C(Ω,Rd). Hence, ||w − wQ||(Ω) + iQ(Ω) ≤ ||w||(Ω). Yet, the other inequality is
always true since ||wQ|| ≤ iQ. Then, we get that ||w − wQ||(Ω) + iQ(Ω) = ||w||(Ω). �
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Proposition 2.6. Let w be an optimal flow for (BP), then there is an optimal transport
plan γ for (KP) such that w = wγ.

Proof. From Lemma 2.5, there is an admissible traffic plan Q such that ||w − wQ||(Ω) +
iQ(Ω) = ||w||(Ω). The optimality of the flow w and the fact that ||wQ|| ≤ iQ imply that wQ = w
and iQ = ||w||. Hence,

||w||(Ω) = iQ(Ω) =

∫
C
L(α) dQ(α) ≥

∫
C
||α(0)− α(1)||dQ(α) =

∫
Ω×Ω
||x− y||d(e0, e1)#Q

≥ min (KP).

Yet, the equalities ||w||(Ω) = min (BP) = min (KP) imply that the above inequalities are in fact
equalities. This means that Q must be concentrated on segments (this is the point where the
strict convexity of the norm || · || is needed). Also, the measure γ = (e0, e1)#Q, which belongs
to Π(f+, f−), must be optimal in (KP) and, we have w = wQ = wγ . �

If f+ � Ld or f− � Ld, we also obtain uniqueness of optimal flow w for (BP) in the
Euclidean case, since an optimal γ induces the same wγ (thanks to Proposition 2.1). This
has not been investigated in the case of general norms. We will see in Chapter 6 that we use
uniqueness of the optimal w, but in a case where the optimal γ is unique.





CHAPTER 3

Summability estimates via symmetrization techniques

In this chapter we consider the mass transportation problem in a compact domain Ω where a non-

negative mass f+ in the interior is sent to the boundary ∂Ω. This problem appears, for instance, in some

shape optimization issues. We prove summability estimates on the associated transport density σ, which

is the transport density from a diffuse measure to a measure on the boundary f− = (P∂Ω)#f
+ (P∂Ω being

the projection on the boundary), hence singular. Via a symmetrization trick, as soon as Ω is convex or

satisfies a uniform exterior ball condition, we prove Lp estimates (if f+ ∈ Lp, then σ ∈ Lp). Finally, by

a counter-example we prove that if f+ ∈ L∞(Ω) and f− has bounded density w.r.t. the surface measure

on ∂Ω, the transport density σ between f+ and f− is not necessarily in L∞(Ω), which means that the

fact that f− = (P∂Ω)#f
+ is crucial.

This chapter is taken from a joint article with F. Santambrogio, which will be
published in ESAIM: Control, Optimisation and Calculus of Variations, [53].

3.1. About optimal transport with Dirichlet regions

In [13] & [29] a transport problem between measures with different mass is proposed, in
the presence of a so-called Dirichlet Region. A Dirichlet region Σ ⊂ Ω is a closed set where
transportation is free, and one can study the following problem

min

{∫
Ω×Ω
|x− y|dγ, γ ∈ ΠΣ(f+, f−)

}
,

where

ΠΣ(f+, f−) :=
{
γ ∈M+(Ω× Ω) : ((Πx)#γ) (Ω \ Σ) = f+, ((Πy)#γ) (Ω \ Σ) = f−

}
.

It is not difficult to see that this problem corresponds to a transport problem where it is possible
to add arbitrary mass to f± on Σ, but the transport cost between points on Σ is set to 0. A
simple variant, that we will develop in Chapter 4, concerns the case where the mass we add on
Σ “pays” something, i.e. adding a cost

∫
g+(x) d((Πx)#γ) Σ +

∫
g−(y) d((Πy)#γ) Σ. This is

what is done, for instance, in [46, 90] in the case Σ = ∂Ω, where g± represent import/export
costs.

Anyway, here we consider the easiest case, which is f− = 0. In this case the transport plan
γ can only transport mass from the density f+ on Ω to Σ. Since its marginal (Πy)#γ on Σ
is completely arbitrary, then it is clear that the optimal choice is to take it equal to (PΣ)#f

+,
where

PΣ(x) = argmin {|x− y|, y ∈ Σ} for all x.

49
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By this definition, PΣ is a priori multivalued, but the argmin is a singleton on all the points
where the function x 7→ d(x,Σ) is differentiable, which means a.e. (here as well, the assumption
f+ � Ld is crucial).

In this chapter we will concentrate on the case where Σ is a negligible (lower-dimensional)
subset of Ω and, more precisely, for a “nice” domain Ω, we will consider Σ = ∂Ω (as in
[13, 30, 90]). This means that we will consider the following problem

min

{∫
Ω×Ω
|x− y|dγ, γ ∈ Π(f+, (P∂Ω)#f

+)

}
.

This is also the same as

min

{∫
Ω×Ω
|x− y|dγ, (Πx)#γ = f+, spt((Πy)#γ) ⊂ ∂Ω

}
.

In the Beckmann’s formulation, this also amounts to solve

(3.1) min

{∫
Ω
|w|dx : w ∈ L1(Ω,Rd), spt(∇ · w − f+) ⊂ ∂Ω

}
.

If we write the condition spt(∇ · w − f+) ⊂ ∂Ω as ∇ · w = f+ inside
◦
Ω, we can express

this condition in a weak sense by testing functions u ∈ C1
c (Ω) (or C1 functions, vanishing on

∂Ω), and the dual of this problem becomes (in Chapter 4, we will prove this duality result in a
more general case, i.e., when we add boundary costs)

sup

{∫
Ω
ud(f+ − f−) : u ∈ C1(Ω), |∇u| ≤ 1, u = 0 on ∂Ω

}
.

This relaxes on the set of Lip1 functions vanishing on the boundary ∂Ω. In this way, the
Dirichlet region Σ really hosts a Dirichlet boundary condition !

Remark 3.1. We observe that in this framework the convexity of Ω is no longer needed to
guarantee the equivalence between (BP) and (KP). Indeed, for C1 functions vanishing on ∂Ω
we have Lip(u) = sup |∇u|, which is not true for Ω non convex, without the condition u = 0
on ∂Ω. Equivalently, we can think that the transport rays [x, T (x)] will never exit Ω, from the
fact that the target measure is on ∂Ω and is arbitrary: in case of multiple intersections of the
segment [x, T (x)] with the boundary, then P∂Ω(x) would coincide with the first one.
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The pair (σ, u), where σ is the transport density between f+ and its projection on the
boundary (P∂Ω)#f

+, and u is the Kantorovich potential (which is in fact the distance function
to the boundary x 7→ d(x, ∂Ω)), models (in a statical or dynamical framework) the configuration
of stable or growing sandpiles, where u gives the pile shape and σ stands for sliding layer (see,
for instance, [35, 49, 52, 96]). In the framework of both traffic congestion and membrane
reinforcement, in [30] the authors also consider the easiest version of the Monge-Kantorovich
system (2.7), which becomes

(3.2)


−∇ · (σ∇u) = f+ in Ω,

u = 0 on ∂Ω,

|∇u| ≤ 1 in Ω,

|∇u| = 1 σ − a.e.

The question that we consider now is whether the transport density σ from f+ to (P∂Ω)#f
+

(or equivalently, the optimal vector field w in (3.1)) is in Lp(Ω) when f+ ∈ Lp(Ω). We can-
not use Proposition 2.4, since in this case the target measure (P∂Ω)#f

+ is concentrated on the
boundary of Ω and hence, is not Lp itself. However, from Propositions 2.2 & 2.3, we get that
the transport density σ, between f+ and its projection on the boundary, is in Lp as soon as
f+ ∈ Lp and p < d′ := d/(d − 1). Anyway, the summability question in the Dirichlet case is
an interesting one, required in some estimates in [30], since it is non-trivial for p ≥ d′ because
f− is singular. In this chapter, thanks to a symmetrization argument, we give positive answer
under some geometric conditions on ∂Ω. Note that [48] already contained a similar, but weaker,
result: indeed, the methods used in [48] allows to get the Lp estimate we look for, for p < ∞,
on a convex domain, since a boundary term in an integration by parts happens to have a sign.
As far as results are concerned (since, anyway, the strategy is completely different), the novelty
in the present work are the case p = ∞ and the case where Ω only satisfies an exterior ball
condition, instead of being convex.

To prove that, the idea is the following: we will show, first, that the transport density σ be-
tween f+ and (P∂Ω)#f

+ is in Lp(Ω) provided f+ ∈ Lp(Ω) and Ω is a polyhedron. In this
case, we prove that σ is equal to the restriction to Ω of the transport density from f+ to a
new density f− obtained by symmetrizing f+ across the faces composing the boundary ∂Ω. A
similar argument can be performed for domains with “round” faces (called round polyhedra) and,
by an approximation argument, for arbitrary domains satisfying an exterior ball condition. The
presentation, for completeness and pedagogical purposes, goes step-by-step from the convex case
to the case of domains with an exterior ball condition, by aproximations, and is done for every p.

3.2. Lp estimates via symmetrization

In this section, we will first develop some tools, based on a symmetrization argument, to
show that the transport density σ from f+ to (P∂Ω)#f

+ is also the restriction of a transport
density σ̃, which is associated with the transport from f+ to another suitable density f−, sup-
ported outside Ω. Then, we will apply this fact so as to produce the desired Lp estimates on σ.
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Ωi

R(Ωi)

Fi

Figure 1

We will start by supposing that Ω is a convex polyhedron with n faces Fi (i = 1, ..., n),
and denote by Ωi the set of points whose projection onto ∂Ω lies in Fi:

Ωi =

{
x ∈ Ω : d(x, ∂Ω) = d(x, Fi)

}
.

We can write Ω =
⋃
i Ωi, and the union is almost disjoint (we have Ld(Ωi ∩ Ωj) = 0 for all

i 6= j). Let R be the map obtained by reflecting with respect to the boundary each subdomain
Ωi. More precisely, for all x ∈ Ωi \

⋃
j 6=i Ωj , the point R(x) is the reflexion of x with respect to

Fi (see Figure 1). In this way R is well-defined for a.e. x ∈ Ω.

Suppose that f+ ∈ Lp(Ω) and set f− := R#f
+. It is clear that f− is an absolutely continuous

measure, with density given by f−(Ry) = f+(y) for all y ∈ Ω. Let Ω̃ be any large compact

convex set containing Ω ∪R(Ω). We observe that f− ∈ Lp(Ω̃) and ||f−||Lp = ||f+||Lp .

We are now interested in the following fact concerning the corresponding transport density.
We will denote by σ(f+, f−) the transport density from f+ to f− (which is unique and belongs
to L1 as soon as f+ � Ld; thanks to Propositions 2.1 & 2.2).

Proposition 3.2. Suppose that Ω is a polyhedron. Take f+ � Ld and define f− as above
through f− = R#f

+. Then,

(σ(f+, f−)) Ω = σ(f+, (P∂Ω)#f
+).
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Moreover, if f+ ∈ Lp(Ω), then the transport density between f+ and (P∂Ω)#f
+ is in Lp(Ω).

Proof. First, we will show that R is an optimal transport map from f+ to f−. Set,

u(x) =

{
d(x, ∂Ω) if x ∈ Ω,

−d(x, ∂Ω) else.

From |x−R(x)| = 2|x− P∂Ω(x)|, we have

∫
Ω
|x−R(x)|df+(x) = 2

∫
Ω
|x− P∂Ω(x)| df+(x).

On the other hand, u is 1-Lip and

∫
Ω
ud(f+ − f−) =

∫
Ω
|x− P∂Ω(x)| f+(x) dx+

∫
Ω
|R(x)− P∂Ω(R(x))| f+(x) dx

= 2

∫
Ω
|x− P∂Ω(x)| df+(x).

Consequently, R is an optimal transport map between f+ and f−, and u is a Kantorovich
potential. We observe that the segment [x,R(x)] intersects ∂Ω at the point P∂Ω(x) and that
we have

[x,R(x)] ∩ Ω = [x, P∂Ω(x)].

But the map x 7→ P∂Ω(x) is of course optimal in the transport from f+ to (P∂Ω)#f
+. Hence,

using (2.2), we immediately get

(σ(f+, f−)) Ω = σ(f+, (P∂Ω)#f
+)

and we conclude by using Proposition 2.4. �

Now, we will give a more general construction, inspired from the previous one, which will allow
to deal with the case of a domain with an exterior ball condition.

Suppose that the boundary of Ω is a union of a finite number of parts of sphere of radius
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Ωi
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r. We will call the domains with this property round polyhedra (see Figure 2). Set again

Ωi :=

{
x ∈ Ω : P∂Ω(x) ∈ Fi

}

where Fi ⊂ ∂B(bi, r) is the ith part in the boundary of Ω, contained in a sphere centered
at bi. More precisely, we suppose that B :=

⋃
iB(bi, r) disconnects Rd and that Ω is equal to

the union of all the bounded connected components of Rd \B. We define

T (x) := bi +

(
r − |x− bi| − r

L

r

2

)
x− bi
|x− bi|

for all x ∈ Ωi

where L := diam(Ω) and bi is the center of the sphere corresponding to Fi. Again we choose a

large domain Ω̃ containing Ω ∪ T (Ω).

Proposition 3.3. Suppose that f+ ∈ Lp(Ω) and set f− := T#f
+, then f− ∈ Lp(Ω̃) with

||f−||Lp ≤ C||f+||Lp , where the constant C only depends on d, r and L.
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Proof. Compute the Jacobian of the map T : on Ωi, we have

DT (x) =
r

2L

(
−I +

r + 2L

|x− bi|
(
I − e(x)⊗ e(x)

))
,

where e(x) := (x − bi)/|x − bi|. It is easy to see that DT (x) is a symmetric matrix with
one eigenvalue equals to − r

2L and d− 1 eigenvalues equal to

λ(x) :=
r

2L

r + 2L− |x− bi|
|x− bi|

=
r

2L

(
r + 2L

|x− bi|
− 1

)
.

Using |x− bi| ≤ r + L, we get

λ(x) ≥ r

2(r + L)
.

This provides, for J := |det(DT )|, the lower bound

J(x) ≥ rd

2d(r + L)d−1L

which is, by the way, independent of i and of the number of spherical parts composing ∂Ω.
Moreover, from f−(T (x)) = f+(x)/J(x), we get

∫
|f−(y)|p dy =

∫
|f−(y)|p−1 df− =

∫
|f−(T (x))|p−1 df+ =

∫
f+(x)p

J(x)p−1
dx ≤ C

∫
f+(x)p dx,

where C := (inf J(x))1−p > 0. By raising to power 1/p, this provides

||f−||Lp ≤ C(r, L, d)1/p−1||f+||Lp

and the constant can be taken independent of p. In particular, the estimate is also valid for
p =∞. �

Proposition 3.4. Suppose that Ω is a round polyhedron. Take f+ � Ld and define f− as
above through f− = T#f

+. Then

(σ(f+, f−)) Ω = σ(f+, (P∂Ω)#f
+).
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Moreover, if f+ ∈ Lp(Ω), then the transport density between f+ and (P∂Ω)#f
+ is in Lp(Ω).

Proof. The proof will follow the same lines of Proposition 3.2. We will show again the
optimality of T for the transport of f+ to f− by producing a Kantorovich potential. In this
case, we set

u(x) = min
i=1,..,n

|x− bi|.

The function u is of course 1-Lip and we have

∫
Ω
ud(f+ − f−) =

∫
Ω
u(x)f+(x) dx−

∫
Ω
u(T (x))f+(x) dx

=

n∑
i=1

∫
Ωi

u(x)f+(x) dx−
∫

Ωi

u(T (x))f+(x) dx

=

n∑
i=1

∫
Ωi

(|x− bi| − |T (x)− bi|) f+(x) dx.

Yet, by definition of T , the points bi, x and T (x) are aligned (with T (x) ∈ [x, bi]) and then,
|x− bi| − |T (x)− bi| = |x− T (x)|. So, we get∫

Ω
ud(f+ − f−) =

∫
Ω
|x− T (x)|f+(x) dx.

Consequently, T is an optimal transport map between f+ and f−, and u is the correspond-
ing Kantorovich potential. Now, we observe in this case as well that the segment [x, T (x)]
intersects ∂Ω at the point P∂Ω(x) and that we have

[x, T (x)] ∩ Ω = [x, P∂Ω(x)].

Hence, using (2.2) again, we immediately get

(σ(f+, f−)) Ω = σ(f+, (P∂Ω)#f
+)

and we conclude by Proposition 2.4. �

Remark 3.5. One can easily see that, both in Propositions 3.2 and 3.4, the restriction prop-
erty of the transport density σ also holds for the optimal flow w of (3.1).
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Ω

∂Ωk

Figure 3

We will now generalize, via a limit procedure, the previous construction to arbitrary convex
domains, or more generally domains satisfying a uniform ball condition. Before doing that, let
us give a suitable definition for this last condition:

Definition 3.6. We say that a bounded domain Ω ⊂ Rd satisfies an exterior ball condition
of radius r > 0 if for every point x ∈ Rd \ Ω and x0 ∈ ∂Ω with d(x,Ω) = |x − x0| > 0 we have
d(y,Ω) = r for y := x0 + r x−x0

|x−x0| (and hence, x0 = P∂Ω(x) is also a projection of y onto ∂Ω).

This definition means that for every x ∈ ∂Ω there exists y ∈ Rd \Ω such that |x− y| = r and
B(y, r) ∩ Ω = ∅, where these balls of radius r can “roll” on the boundary. It could seem more
restrictive than the usual definition which only requires the existence of a ball for every point of
the boundary, but actually for compact sets they can be proven to be equivalent, up to reducing
the radius r. However, for simplicity, we just choose the definition which best fits the use we
will make of it. Now, we need an approximation lemma about sets satisfying an exterior ball
condition. More precisely:

Lemma 3.7. For every bounded domain Ω ⊂ Rd satisfying an exterior ball condition of ra-
dius r > 0, there exists a sequence of round polyhedra Ωk such that

• Ω ⊂ Ωk,

• diam(Ωk) ≤ diam(Ω) + 2r,

• ∂Ωk is made of parts of sphere of radius r,

• ∂Ωk → ∂Ω in the Hausdorff sense, and P∂Ωk(x)→ P∂Ω(x) for a.e. x ∈ Ω.

Proof. Set A := {x : d(x,Ω) = r} and let Ak ⊂ A be a sequence of finite sets converging
in the Hausdorff sense to A (to produce them, just take a countable dense subset of A, order
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its points, and put the first k points in Ak). Set Ωk := {x : d(x,Ω) ≤ r ≤ d(x,Ak)}. For large
k, the set Ωk is a round polyhedron with boundary composed of parts of spheres of radius r
centered at points of Ak. Indeed, it is clear that the points on ∂Ωk are contained either in these
spheres, or in A, but as soon as the Hausdorff distance between Ak and A is smaller than r,
we have d(x,Ak) < r for every x ∈ A, hence A ∩ Ωk = ∅ and the points of A cannot be on the
boundary of Ωk. Moreover, one easily see that we have Ω ⊂ Ωk and that Ωk is contained in a
compact set. Up to a subsequence, we can suppose Ωk → Ω′ in the Hausdorff sense, with Ω ⊂ Ω′.
Yet, passing to the limit in the definition of Ωk, we get Ω′ ⊂ {x : d(x,Ω) ≤ r ≤ d(x,A)}. This
is enough to obtain Ω′ = Ω : take a point x with d(x,Ω) ≤ r ≤ d(x,A) and suppose that it
does not belong to Ω; let x0 ∈ ∂Ω be such that |x − x0| = d(x,Ω) and set y := x0 + r x−x0

|x−x0| .

From the definition 3.6, we have that y ∈ A, which is a contradiction, as d(x, y) < r.

Hence, we have Ω ⊂ Ωk and Ωk → Ω in the Hausdorff sense. The last part of the state-
ment (convergence of the boundaries and of the projections onto the boundaries) is a general
consequence of these facts. �

We can now state the following

Proposition 3.8. Suppose that Ω ⊂ Rd is a compact domain satisfying a uniform exterior

ball condition of radius r > 0. Then there exists a larger domain Ω̃ such that for every positive

measure f+ � Ld, there exists f− � Ld, supported on Ω̃ \ Ω with

(σ(f+, f−)) Ω = σ(f+, (P∂Ω)#f
+).

Moreover, for every p ∈ [1,+∞], we have

||f−||
Lp(Ω̃)

≤ C||f+||Lp(Ω),

where C is a constant only depending on d, r and L := diam(Ω).

Proof. It is enough to act by approximation. In the case where Ω is convex, we can write
it as an intersection of half-spaces, and hence we can approximate Ω as the limit of a sequence
of polyhedra Ωk, while in the case where Ω satisfies a uniform exterior ball condition, we will
write it as a limit of round polyhedra (see Figure 3) as we pointed out in Lemma 3.7. Then, we
just build the reflection maps Rk (or Tk) as in Propositions 3.2 and 3.4, and we get a sequence

of measures f−k supported on Ω̃ \ Ωk with ||f−k ||Lp(Ω̃)
≤ C||f+||Lp(Ωk) = C||f+||Lp(Ω). We also

have

(σ(f+, f−k )) Ω = σ(f+, (P∂Ωk)#f
+) Ω.

Then, it is enough to extract a converging subsequence from the sequence f−k , note that we have
(P∂Ωk)#f

+ ⇀ (P∂Ω)#f
+, and use Proposition 1.3. �

As a consequence, we can now obtain
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Theorem 3.9. Suppose that Ω satisfies a uniform exterior ball condition of radius r > 0.
Then, the transport density σ between f+ and (P∂Ω)#f

+ is in Lp(Ω) provided f+ is in Lp(Ω),
and

||σ||Lp(Ω) ≤ C||f+||Lp(Ω),

where the constant C only depends on d, r and L = diam(Ω).

Proof. We just need to use Proposition 3.8, which guarantees that σ is the restriction to
Ω of the transport density between two Lp measures. �

We finish this section by two remarks on the proof of the above result.

Remark 3.10. In this particular case where the transport has not a fixed target measure on
∂Ω, the transport density σ linearly depends on f+: in this case, Lp estimates could be obtained
via interpolation (via the celebrated Marcinkiewicz interpolation theorem, [86, 114]) as soon as
one has L1 and L∞ estimates. Since L1 (and Lp for p < d′) are well-known, this means that
it would be enough to write L∞ estimates. Yet, we did not see any significant simplification in
concentrating on L∞ estimates instead of Lp, which is the reason why we decided not to evoke
general interpolation theorems but we performed explicit estimates.

Remark 3.11. Another observation concerns the fact that we proved Proposition 3.8 by ap-
proximation. Apart from the fact that we first developed the convex case (just for the sake of
simplicity), the reader would have preferred a direct formulation, valid in the case of an arbi-
trary domain Ω with an exterior ball condition, instead of passing through round polyhedra. This
would be possible, by defining a map T (x) := P∂Ω(x) + c(P∂Ω(x)−x), for small c > 0. It can be
proven, by studying the properties of the Jacobian of P∂Ω, that T is injective and |det(DT )| is
bounded from below as soon as c is small (depending on r and L), but we considered that the
proof in the case of round polyhedra was easier.

3.3. An L∞ bound on f− with respect to the surface measure on ∂Ω is not enough

In this section, we show that the L∞ estimates for the transport density (again, note by
Remark 3.10 that the case p =∞ is the most interesting one) fail if we only assume summabil-
ity (or boundedness) of the densities of f+ w.r.t. the Lebesgue measure on Ω and of f− w.r.t.
the Hausdorff measure Hd−1 on ∂Ω. Indeed, when we consider a domain Ω with a uniform
exterior ball condition and we take f+ ∈ L∞, we can easily prove that (P∂Ω)#f

+ has a bounded

density w.r.t. Hd−1 ∂Ω. One could wonder whether this is the correct assumption to prove,
for instance, σ ∈ L∞, and the answer is negative.

We will construct an example of f±, where f+ has a bounded density w.r.t. Ld in Ω and f−

w.r.t. Hd−1 ∂Ω (for instance Ω is a big square containing the support of f+ and its bound-
ary contains the support of f−), but σ /∈ L∞ (we will also investigate the summability of σ). Set

f+ := L2 A, f− := H1 ([2, 3]× {0})
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where A is a trapeze with vertices (0, 0), (1, 0), (1, 4
5) and (0, 6

5) (see Figure 4). For every
ε ∈ [0, 1], let lε be the segment joining the two points (0, w(ε)) and (2 + ε, 0), where

w(ε) :=
2(2 + ε)ε

3 + 2ε
.

First, it is easy to see that f+(∆ε) = f−(∆ε), for every ε ∈ [0, 1], where ∆ε is the triangle
limited by (0, 0), (2 + ε, 0) and (0, w(ε)). Then by [95] (or exactly as in Chapter 5), we can
construct an optimal mapping T , which pushes f+ to f−, with {lε} as its transport rays.

Let σ be the transport density between f+ and f−. For simplicity of notation, we denote the
ball of center (2, 0) and radius r by Br, and in this case we have

σ(B2r) =

∫
H1(B2r ∩ [x, y]) dγ(x, y) ≥ r γ ({(x, y) : Br ∩ [x, y] 6= ∅}) ,

where we used the fact that for every (x, y) s.t. Br ∩ [x, y] 6= ∅, we have H1(B2r ∩ [x, y]) ≥ r.
Note that there exists a value εr ∈ (0, 1) such that {x : Br ∩ [x, T (x)] 6= ∅} = ∆εr and lεr is
tangent to the ball Br. Hence,

σ(B2r) ≥ rf+({x : Br ∩ [x, T (x)] 6= ∅}) = rf+(∆εr) ' rεr.

If we denote by θ the angle between the two segments [(0, 0), (2 + εr, 0)] and lεr , then we



3.3. AN L∞ BOUND ON f− WITH RESPECT TO THE SURFACE MEASURE ON ∂Ω IS NOT ENOUGH 61

have

sin(θ) =
r

εr
.

Yet, sin(θ) ' εr for r small enough. So, we get εr ' r
1
2 . Thus, for r small enough

(3.3) σ(B2r) ≥ cr
3
2 ,

which implies that σ cannot be bounded in a neighborhood of (2, 0), otherwise we would have

Cr2 = ||σ||L∞(∆1)|B2r| ≥ σ(B2r) ≥ cr
3
2

which is a contradiction for small r. In addition, it is possible to see σ /∈ L4(∆1), otherwise, by
Hölder inequality, we would get

σ(B2r)

r3/2
≤
|B2r|3/4

(∫
B2r

σ4
)1/4

r3/2
→ 0,

which is a contradiction with (3.3).

Actually, a finer analysis even proves σ ∈ Lp(∆1) if and only if p < 3. To prove this we need
to use heavier computations. Fix ε0 small enough and take x ∈ ∆ε0 : there exist ε ∈ [0, ε0] and
s ∈ [0, 1] such that

x = (1− s)(2 + ε, 0) + s(0, w(ε)).

Recalling (2.1), for all ϕ ∈ C(∆ε0), we have

< σ,ϕ >:=

∫ 1

0

∫
∆ε0

|x− T (x) |ϕ((1− t)x+ tT (x)) f+(x) dx dt.

So, by a change of variable, we get, in the variable (ε, s),

σ(ε, s) =

√
(2 + ε)2 + w(ε)2

∫ 1
s f

+((1− t)(2 + ε), tw(ε))|J(ε, t)|dt
|J(ε, s)|

=

√
(2 + ε)2 + w(ε)2

∫ 1
1− 1

2+ε
|J(ε, t)|dt

|J(ε, s)|
'

∫ 1
1− 1

2+ε
|J(ε, t)|dt

|J(ε, s)|
,
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where |J | := |D(ε,s)(x1, x2)|. Using the fact that |J(ε, s)| ' s+ ε, we get

σ(ε, s) ' 1

s+ ε
and

||σ||pLp(∆1) '
∫ ε0

0

∫ 1

0

1

(s+ ε)p−1
ds dε '

∫ ε0

0

1

εp−2
dε.

Notice that as d = 2 and f+ ∈ L∞(∆1), by Proposition 2.3 we know that automatically
σ ∈ Lp(∆1) for all p < 2. The fact that here we get σ ∈ Lp(∆1) for all p < 3 depends on
the fact that we send a mass f+ to a mass f− which is distributed on a segment, and not to a
Dirac mass. We are not in the worst possible case !

So, we have shown that if f+ is a bounded density w.r.t. Ld and f− is a bounded density
w.r.t. Hd−1 ∂Ω (and, f− is different than the projection of f+ onto ∂Ω), then the transport
density σ between f+ and f− is not, in general, in Lp, for all p ≥ 3. In Chapter 6, we will study
the summability of the transport density σ between two measures, f+ and f−, concentrated
on the boundary.



CHAPTER 4

Summability estimates with boundary costs

In this chapter we analyze a mass transportation problem in a compact domain with the possibility

to transport mass to/from the boundary, paying a cost given by the Euclidean distance plus an extra cost

depending on the exit/entrance point. This problem appears in import/export model, as well as in some

shape optimization problems. We study the Lp summability of the transport density σ which does not

follow from Proposition 2.4, as the target measures are not absolutely continuous but they have some

parts which are concentrated on the boundary. We also provide the relevant duality arguments to connect

the corresponding Beckmann and Kantorovich problems to a formulation with Kantorovich potentials with

Dirichlet boundary conditions.

This chapter is taken from my article [54], which will be published in Journal of
Convex Analysis.

In [90], the authors introduce a variant of the classical Kantorovich problem (KP). They study
a mass transportation problem between two masses f+ and f− (which do not have a priori the
same total mass) with the possibility of transporting some mass to/from the boundary, paying
the transport cost c(x, y) = |x−y| plus an extra cost g−(y) for each unit of mass that comes out
from a point y ∈ ∂Ω (the export taxes) or −g+(x) for each unit of mass that enters at the point
x ∈ ∂Ω (the import taxes). This means that we can use ∂Ω as an infinite reserve/repository, we
can take as much mass as we wish from the boundary, or send back as much mass as we want,
provided that we pay the transportation cost plus the import/export taxes. In other words,
given the set

Πb(f+, f−) :=
{
γ ∈M+(Ω× Ω) : ((Πx)#γ)

◦
Ω = f+, ((Πy)#γ)

◦
Ω = f−

}
,

we minimize the quantity

(KPb) min

{∫
Ω×Ω
|x− y|dγ +

∫
∂Ω
g− d(Πy)#γ −

∫
∂Ω
g+ d(Πx)#γ : γ ∈ Πb(f+, f−)

}
.

The equality min (KP) = min (BP) (see Section 2.3) implies that min (KPb) = min (BPb),
where (BPb) is the following variant of (BP)

63
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min

{
|w|(Ω) +

∫
∂Ω
g− dχ− −

∫
∂Ω
g+ dχ+ : w ∈Md(Ω), χ ∈M(∂Ω), ∇ · w = f + χ

}
.

On the other hand, the authors of [90] prove that the dual of (KPb) (or equivalently, (BPb)) is
the following

(DPb) sup

{∫
Ω
ud(f+ − f−) : u ∈ Lip1(Ω), g+ ≤ u ≤ g− on ∂Ω

}
.

We will give an alternative proof for this duality formula that we consider simpler than that in
[90]. In fact, one can easily see that it follows immediately from a formal inf-sup exchange: we
may look at the problem (KPb), we get

min

{
sup

{∫
Ω
ud(f + χ) : u ∈ Lip1(Ω)

}
+

∫
∂Ω
g− χ− −

∫
∂Ω
g+ dχ+ : χ± ∈M+(∂Ω)

}

and consider interchanging inf and sup:

= sup

{∫
Ω
udf + inf

{∫
∂Ω

(u− g+) dχ+ +

∫
∂Ω

(g− − u) dχ− : χ± ∈M+(∂Ω)

}
: u ∈ Lip1(Ω)

}
.

Yet,

inf

{∫
∂Ω

(u− g+)dχ+ +

∫
∂Ω

(g− − u)dχ− : χ± ∈M+(∂Ω)

}
=

{
0 if g+ ≤ u ≤ g− on ∂Ω

−∞ else.

4.1. Monge-Kantorovich problems with boundary costs: existence,
characterization and duality

In this section, we analyze the problem (KPb). Except for the duality proof, we will also
decompose it into subproblems. One of this subproblems involves a transport plan γib (with
its transport density σib), where i and b stand for interior and boundary (conversely, we also
have a transport plan γbi with σbi). We will show that some questions, including summability
of the transport density σ, reduce to the study of the summability of σib and σbi. First of all,
we suppose g± ∈ C(∂Ω) and we assume the following inequality

(4.1) g+(x)− g−(y) ≤ |x− y| for all x, y ∈ ∂Ω.

Under this assumption, we have the following:
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Proposition 4.1. (KPb) reaches a minimum.

Proof. Set

K(γ) :=

∫
Ω×Ω
|x− y|dγ +

∫
∂Ω
g− d(Πy)#γ −

∫
∂Ω
g+ d(Πx)#γ, ∀ γ ∈M+(Ω× Ω).

Then, K is continuous with respect to the weak convergence of measures in Πb(f+, f−). Indeed,
if (γn)n is a sequence in Πb(f+, f−) such that γn⇀γ, then, for every n, there exists χ±n ∈
M+(∂Ω) such that

(Πx)#γn = f+ + χ+
n , (Πy)#γn = f− + χ−n

and

χ±n ⇀ χ±,

where (Πx)#γ = f+ + χ+ and (Πy)#γ = f− + χ−. As g± ∈ C(∂Ω), then

K(γn)→ K(γ).

On the other hand, we observe that if γ ∈ Πb(f+, f−) and γ̃ := γ (∂Ω× ∂Ω)c, then γ̃ also
belongs to Πb(f+, f−). In addition, we have∫

Ω×Ω
|x− y|dγ +

∫
∂Ω
g− d(Πy)#γ −

∫
∂Ω
g+ d(Πx)#γ

=

∫
∂Ω×∂Ω

(|x−y|+g−(y)−g+(x)) dγ +

∫
(∂Ω×∂Ω)c

|x−y| dγ +

∫
Ω◦×∂Ω

g−(y) dγ −
∫
∂Ω×Ω◦

g+(x) dγ.

As

|x− y|+ g−(y)− g+(x) ≥ 0,

we get

∫
Ω×Ω
|x− y|dγ +

∫
∂Ω
g− d(Πy)#γ −

∫
∂Ω
g+ d(Πx)#γ

≥
∫

Ω×Ω
|x− y|dγ̃ +

∫
∂Ω
g− d(Πy)#γ̃ −

∫
∂Ω
g+ d(Πx)#γ̃.

Now, let (γn)n ⊂ Πb(f+, f−) be a minimizing sequence. Then, we can suppose that

γn(∂Ω× ∂Ω) = 0.
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In this case, we get

γn(Ω× Ω) ≤ γn(Ω0 × Ω) + γn(Ω× Ω0)

= f+(Ω) + f−(Ω).

Hence, there exist a subsequence (γnk)nk and a plan γ ∈ Πb(f+, f−) such that γnk⇀γ. But,
the continuity of K implies that this plan γ is in fact a minimizer for (KPb). �

Let us note that the proof of the duality formula of (KPb), in [90], is based on the Fenchel-
Rocafellar duality Theorem and it is decomposed into two steps: firstly, the authors suppose
that the inequality in (4.1) is strict and secondly, they use an approximation argument to cover
the other case. Now, we want to give an alternative proof for this duality formula, similar to
the one introduced in Proposition 1.2, but, here, via a perturbation of the boundary costs g±.

Proposition 4.2. Under the assumption (4.1), we have the following equality

min

{∫
Ω×Ω
|x− y| dγ +

∫
∂Ω
g− d(Πy)#γ −

∫
∂Ω
g+ d(Πx)#γ : γ ∈ Πb(f+, f−)

}
(KPb)

= sup

{∫
Ω
u d(f+ − f−) : u ∈ Lip1(Ω), g+ ≤ u ≤ g− on ∂Ω

}
(DPb).

Notice that if (4.1) is not satisfied, then both sides of this equality are −∞.

Proof. For every (p+, p−) ∈ C(∂Ω)× C(∂Ω), set

H(p+, p−) := − sup

{∫
Ω
ud(f+ − f−) : u ∈ Lip1(Ω), g+ + p+ ≤ u ≤ g− − p− on ∂Ω

}
.

First, it is easy to see that H(p+, p−) ∈ R ∪ {+∞}. In addition, we claim that H is con-
vex and l.s.c.

• For convexity: take t ∈ (0, 1) and (p+
0 , p

−
0 ), (p+

1 , p
−
1 ) ∈ C(∂Ω) × C(∂Ω), and let u0, u1 be

their optimal potentials. Set

p+
t := (1− t)p+

0 + tp+
1 , p

−
t := (1− t)p−0 + tp−1

and

ut := (1− t)u0 + tu1.
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As

g+ + p+
0 ≤ u0 ≤ g− − p−0 and g+ + p+

1 ≤ u1 ≤ g− − p−1 on ∂Ω,

then

g+ + p+
t ≤ ut ≤ g− − p

−
t on ∂Ω.

In addition, ut is 1-Lipschitz. Consequently, ut is admissible in the max defining −H(p+
t , p

−
t )

and then,

H(p+
t , p

−
t ) ≤ −

∫
Ω
ut d(f+ − f−) = (1− t)H(p+

0 , p
−
0 ) + tH(p+

1 , p
−
1 ).

• For semi-continuity: take p+
n → p+ and p−n → p− uniformly on ∂Ω. Let (p+

nk
, p−nk)nk

be a subsequence realizing the lim inf of H(p+
n , p

−
n ) (for simplicity of notation, we still denote

it (p+
n , p

−
n )n) and let (un)n be their corresponding optimal potentials. As un is a 1-Lipschitz

function and (p+
n )n, (p−n )n are equibounded, then, by Ascoli-Arzelà Theorem, there exist a 1-

Lipschitz function u and a subsequence (unk)nk such that unk → u uniformly in Ω. As

g+ + p+
nk
≤ unk ≤ g

− − p−nk on ∂Ω,

then

g+ + p+ ≤ u ≤ g− − p− on ∂Ω.

Consequently, the potential u is admissible in the max defining −H(p+, p−) and, one has

H(p+, p−) ≤ −
∫

Ω
u d(f+ − f−) = lim inf

n
H(p+

n , p
−
n ).

Hence, we get H?? = H. In particular, H??(0, 0) = H(0, 0). But by the definition of H,
we have H(0, 0) = − sup (DPb). On the other hand, let us compute H??(0, 0). Take χ± in
M(∂Ω), then we have

H?(χ+, χ−) := sup
p± ∈C(∂Ω)

{∫
∂Ω
p+ dχ+ +

∫
∂Ω
p− dχ− −H(p+, p−)

}

= sup
p±∈C(∂Ω), u∈Lip1(Ω)

{∫
∂Ω
p+ dχ++

∫
∂Ω
p− dχ−+

∫
Ω
ud(f+−f−) : g++p+ ≤ u ≤ g−−p− on ∂Ω

}
.

If χ+ /∈ M+(∂Ω), i.e. there exists p+
0 ∈ C(∂Ω) such that p+

0 ≥ 0 and
∫
∂Ω p

+
0 dχ+ < 0, we

may see that

H?(χ+, χ−) ≥ −n
∫
∂Ω
p+

0 dχ+ +

∫
∂Ω
g− dχ− −

∫
∂Ω
g+ dχ+ −→

n→+∞
+∞
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and similarly, if χ− /∈ M+(∂Ω). Now, suppose both χ± ∈ M+(∂Ω). As g+ + p+ ≤ u ≤
g− − p− on ∂Ω, we should choose the largest possible p+ and p−, i.e. p+ = u − g+ and
p− = g− − u on ∂Ω. Hence, we get

H?(χ+, χ−) = sup

{∫
Ω
u d(f + χ) : u ∈ Lip1(Ω)

}
+

∫
∂Ω
g− dχ− −

∫
∂Ω
g+ dχ+.

By Proposition 1.2, we infer that

H?(χ+, χ−) = min

{∫
Ω×Ω
|x− y|dγ : γ ∈ Π(f+ + χ+, f− + χ−)

}
+

∫
∂Ω
g− dχ− −

∫
∂Ω
g+ dχ+

= min

{∫
Ω×Ω
|x− y|dγ +

∫
∂Ω
g− d(Πy)#γ −

∫
∂Ω
g+ d(Πx)#γ : γ ∈ Π(f+ + χ+, f− + χ−)

}
.

Finally, we have

H??(0, 0) = sup

{
−H?(χ+, χ−) : χ+, χ− ∈M+(∂Ω)

}
= −min (KPb). �

Let γ be a minimizer for (KPb) and let us denote by χ+ and χ− the two non-negative measures
concentrated on the boundary of Ω such that (Πx)#γ = f+ + χ+ and (Πy)#γ = f− + χ−.
Then, we may see easily that γ is also a minimizer for the following problem

min

{∫
Ω×Ω
|x− y| dγ : γ ∈ Π(µ+, µ−)

}

where µ± := f± + χ±. Moreover, if u is a maximizer for (DPb), then we have the follow-
ing:

Proposition 4.3. The function u is also a Kantorovich potential between µ+ and µ−, i.e.,
u solves the following problem

sup

{∫
Ω
ϕd(µ+ − µ−) : ϕ ∈ Lip1(Ω)

}
.
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Proof. Let ϕ be a Kantorovich potential between µ+ and µ−. As u is 1-Lip and g+ ≤
u ≤ g− on ∂Ω, then we have

∫
Ω
ud(f+ − f−) +

∫
∂Ω
g+ dχ+ −

∫
∂Ω
g− dχ− ≤

∫
Ω
ud(µ+ − µ−) ≤

∫
Ω
ϕd(µ+ − µ−).

Yet, by Proposition 1.2, we have

∫
Ω
ϕd(µ+ − µ−) =

∫
Ω×Ω
|x− y|dγ,

where γ is the fixed optimal transport plan for (KPb). Using Proposition 4.2, we infer that
the above inequalities are in fact equalities and u is a Kantorovich potential between µ+ and
µ−. �

Now, suppose that Ω is convex and, set w := −σ∇u, where σ is the transport density associated
with the optimal transport plan γ. Then, using Proposition 4.3, we infer that the vector measure
w solves

min

{
|w|(Ω) : w ∈Md(Ω), ∇ · w = µ+ − µ−

}
.

Yet, from the fact that min (BPb) = min (KPb), we can conclude that the vector measure
w and the boundary measure χ solve together (BPb) (χ± are the import/export measures). In
addition, the pair (σ, u) solves the following system, which is a variant of the Monge-Kantorovich
one:

(4.2)


−∇ · (σ∇u) = f+ − f− in Ω,

g+ ≤ u ≤ g− on ∂Ω,

|∇u| ≤ 1 in Ω,

|∇u| = 1 σ − a.e.

However, the same result will be true, even if Ω is not convex, by using the following:

Proposition 4.4. Suppose that

|g+(x)− g−(y)| ≤ |x− y| for all x, y ∈ ∂Ω,

i.e. g+ = g− := g where g is a 1-Lipschitz function on ∂Ω. Then there exists a minimizer γ?

for (KPb) such that for all (x, y) ∈ spt(γ?), we have [x, y] ⊂ Ω. In addition, if g is λ-Lipschitz
with λ < 1, then for any minimizer γ of (KPb) and for all (x, y) ∈ spt(γ), [x, y] ⊂ Ω.
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Proof. First of all, set

E :=

{
(x, y) ∈ Ω× Ω, [x, y] ⊂ Ω

}
.

Let us define the map p+ as follows

p+ : Ω× Ω 7→ ∂Ω× Ω

(x, y) 7→ (x′, y)

where x′ is the last point of intersection between the segment [x, y] and the boundary if
(x, y) /∈ E and x′ = x else.

Also set

p− : Ω× Ω 7→ Ω× ∂Ω

(x, y) 7→ (x, y′)

where y′ is the first point of intersection between the segment [x, y] and the boundary if
(x, y) /∈ E and y′ = y else.

Take a minimizer γ for (KPb) and, set

γ? := γ E + (p+)#(γ Ec) + (p−)#(γ Ec).

It is easy to see that γ? ∈ Πb(f+, f−). Moreover, γ? is better than γ in (KPb), i.e., K(γ?) ≤
K(γ). Indeed, we have∫

Ω×Ω
|x− y|dγ? +

∫
∂Ω
g d(Πy)#γ

? −
∫
∂Ω
g d(Πx)#γ

?

=

∫
E
|x− y|dγ +

∫
Ec

(|x− y′|+ |x′ − y|+ g(y′)− g(x′)) dγ +

∫
∂Ω
g d(Πy)#γ −

∫
∂Ω
g d(Πx)#γ.

Yet,

|x− y′|+ |x′ − y|+ g(y′)− g(x′) ≤ |x− y′|+ |x′ − y|+ |x′ − y′| = |x− y|.

Consequently, γ? is a minimizer for (KPb) and, for all (x, y) ∈ spt(γ?), we have [x, y] ⊂ Ω.
The second statement follows directly from the last inequality, which becomes strict. �
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Using Proposition 4.4, even if Ω is not convex, we infer that there is a solution (σ, u) to the
following system, provided that the boundary cost g is 1-Lip,

(4.3)


−∇ · (σ∇u) = f in Ω

u = g on ∂Ω,

|∇u| ≤ 1 in Ω,

|∇u| = 1 σ − a.e.

We note that this system describe the growth of a sandpile on a bounded table, with a wall on
the boundary of a height g, under the action of a vertical source here modeled by f (see [46]).

Now, we are interested to study the Lp summability of the transport density σ, which does
not follow from Proposition 2.4, since in this case the source and target measures are not in Lp

as they have some parts, χ±, which are concentrated on ∂Ω. First of all, we note that to get a
Lp summability on σ, it is natural to suppose that g is strictly better than 1-Lipschitz. Indeed,
we can find a positive density f ∈ Lp(Ω) and a boundary measure χ ∈ M+(∂Ω) such that the
transport density σ between f and χ is not in Lp(Ω) (see, for instance, Section 3.3). So, if
u is the Kantorovich potential between f and χ (which is 1-Lipschitz), then (σ, u) solves (4.3)
with g = u.

For this aim, we want to decompose the optimal transport plan γ as a sum of three transport
plans γii, γib and γbi, where each of these plans solves a particular transport problem (i and b
stand for interior and boundary). Next, we will study the Lp summability of the transport den-
sities σii, σib and σbi associated with these transport plans γii, γib and γbi, respectively. In this
way, we get the summability of the transport density σ associated with the optimal transport
plan γ. Set,

γii := γ (Ω◦ × Ω◦), γib := γ (Ω◦ × ∂Ω), γbi := γ (∂Ω× Ω◦), γbb := γ (∂Ω× ∂Ω) = 0

and

ν+ := (Πx)#γib , ν
− := (Πy)#γbi .

Consider the three following problems:

(P1) min

{∫
Ω×Ω
|x− y|dγ : γ ∈ Π(f+ − ν+, f− − ν−)

}

(P2) min

{∫
Ω×Ω
|x− y|dγ +

∫
∂Ω
g− dχ− : γ ∈ Π(ν+, χ−), spt(χ−) ⊂ ∂Ω

}

(P3) min

{∫
Ω×Ω
|x− y|dγ −

∫
∂Ω
g+ dχ+ : γ ∈ Π(χ+, ν−), spt(χ+) ⊂ ∂Ω

}
.
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Let γ1 (resp. γ2 and γ3) be a solution of (P1) (resp. (P2) and (P3)). It is easy to see that
γii, γib and γbi are admissible in (P1), (P2) and (P3), respectively. Then, one has

∫
Ω×Ω
|x− y| dγ1 ≤

∫
Ω×Ω
|x− y| dγii,

∫
Ω×Ω
|x− y|dγ2 +

∫
∂Ω
g− d(Πy)#γ2 ≤

∫
Ω×Ω
|x− y|dγib +

∫
∂Ω
g− d(Πy)#γib

and ∫
Ω×Ω
|x− y|dγ3 −

∫
∂Ω
g+ d(Πx)#γ3 ≤

∫
Ω×Ω
|x− y| dγbi −

∫
∂Ω
g+ d(Πx)#γbi.

Yet, we see easily that the transport plan γ̃ := γ1 + γ2 + γ3 belongs to Πb(f+, f−) and,
we have

∫
Ω×Ω
|x− y|dγ̃ +

∫
∂Ω
g− d(Πy)#γ̃ −

∫
∂Ω
g+ d(Πx)#γ̃

≤
∫

Ω×Ω
|x− y|dγ +

∫
∂Ω
g− d(Πy)#γ −

∫
∂Ω
g+ d(Πx)#γ.

Then, γ̃ also solves the problem (KPb) and so, we obtain that γii, γib and γbi solve (P1), (P2)
and (P3), respectively.

We want to characterize the optimal transport plan γib. For this aim, let us define the multi-
valued map Tib as follows

Tib(x) := argmin
{
|x− y|+ g−(y), y ∈ ∂Ω

}
, for all x ∈ Ω.

We have the following

Lemma 4.5. The multi-valued map Tib has a Borel selector function.

Proof. To prove that Tib has a Borel selector function, it is enough to show that the graph
of Tib is closed (see, for instance, [5, 40]). Take a sequence (xn, yn)n in the graph of Tib such
that (xn, yn)→ (x, y). As yn ∈ Tib(xn), then we have

|xn − yn|+ g(yn) ≤ |xn − z|+ g(z), for all z ∈ ∂Ω.
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Passing to the limit, we get

|x− y|+ g(y) ≤ |x− z|+ g(z), for all z ∈ ∂Ω

and then, y ∈ Tib(x). �

Then, the plan γTib := (Id, Tib)#ν
+ is admissible in (P2). In addition, for any admissible

γ 6= γTib in (P2), we have

∫
Ω×∂Ω

(|x− y|+ g−(y)) dγTib <

∫
Ω×∂Ω

(|x− y|+ g−(y)) dγ,

which implies that γib = γTib = (Id, Tib)#ν
+. Moreover, the transport plan γib solves the

following problem

min

{∫
Ω×Ω
|x− y|dγ : γ ∈ Π(ν+, (Tib)#ν

+)

}
.

In the same way, we get that the transport plan γbi is of the form (Tbi, Id)#ν
−, where the

map Tbi is defined as follows

Tbi(y) := argmin
{
|x− y| − g+(x), x ∈ ∂Ω

}
, for all y ∈ Ω.

In particular, γbi also solves

min

{∫
Ω×Ω
|x− y|dγ : γ ∈ Π((Tbi)#ν

−, ν−)

}
.

Now, let σ (resp. σii, σib and σbi) be the transport density associated with the optimal trans-
port plan γ (resp. γii, γib and γbi), therefore σ = σii + σib + σbi. By Proposition 2.4, the
transport density σii belongs to Lp(Ω) as soon as f± ∈ Lp(Ω). Hence, it is enough to study
the summability of σib (the case of σbi will be analogous), to get that of σ.

4.2. Lp summability of the transport density

In this section, we will study the Lp summability of the transport density σib, under the as-
sumption that Ω satisfies a uniform exterior ball condition and, by supposing that the boundary
cost g is λ-Lip with λ < 1 and semi-concave. First, we will suppose that Ω has a very particu-
lar shape, i.e. its boundary is composed of parts of sphere of radius r (i.e., a round polyhedron),
and then, by an approximation argument, we are able to generalize the result to any domain
having a uniform exterior ball. Let us consider again the following transport problem



74 4. SUMMABILITY ESTIMATES ON TRANSPORT DENSITIES

(P) min

{∫
Ω×Ω
|x− y|dγ +

∫
∂Ω
g dχ : γ ∈ Π(f, χ), spt(χ) ⊂ ∂Ω

}
.

Suppose that the boundary cost g is λ-Lip with λ < 1 and, set

T (x) := argmin {|x− y|+ g(y), y ∈ ∂Ω} for all x ∈ Ω.

Then, we have the following:

Proposition 4.6. T (x) is a singleton Lebesgue-almost everywhere.

Proof. Set

φ(x) := min{|x− y|+ g(y), y ∈ ∂Ω} for all x ∈ Ω.

It is clear that φ is 1-Lip, therefore it is differentiable Lebesgue-almost everywhere. Take x0 ∈ Ω
and suppose that there exist y0 and y1 ∈ ∂Ω such that

φ(x0) = |x0 − y0|+ g(y0) = |x0 − y1|+ g(y1).

As

φ(x)− |x− y0| ≤ g(y0) for all x ∈ Ω,

then the function: x 7→ φ(x)− |x− y0| reaches a maximum at x0 and so, ∇φ(x0) = x0−y0

|x0−y0| . In

the same way, we get ∇φ(x0) = x0−y1

|x0−y1| . Hence, we have x0−y0

|x0−y0| = x0−y1

|x0−y1| , which is a contradic-

tion as y1 is in the half line with vertex x0 and passing through y0 (indeed in this case, one has
|g(y0)− g(y1)| = |y0 − y1|). �

Proposition 4.7. If x ∈ Ω and y ∈ T (x), then (x, y) ∩ ∂Ω = ∅.

Proof. Suppose that this is not the case, i.e. there exist x ∈ Ω, y ∈ T (x) and some point
z ∈ (x, y) ∩ ∂Ω. By definition of T , we have

|x− y|+ g(y) ≤ |x− z|+ g(z).

Then

|z − y| = |x− y| − |x− z| ≤ g(z)− g(y) ≤ λ|z − y|,

which is a contradiction. �
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Let Σ be the set of all the points x ∈ Ω where T (x) is not a singleton (thanks to Proposition
4.6, one has Ld(Σ) = 0). Then, we have the following:

Proposition 4.8. If x ∈ Ω, y ∈ T (x) and z ∈ (x, y), then z /∈ Σ and T (z) = {y}.

Proof. For every w ∈ ∂Ω such that w /∈ T (x), we have

|z − y|+ g(y) = |x− y| − |x− z|+ g(y)

< |x− w|+ g(w)− |x− z|

≤ |z − w|+ g(w).

If w ∈ T (x), we also have

|z − y|+ g(y) = |x− w|+ g(w)− |x− z|

< |z − w|+ g(w),

where the last strict inequality follows from Proposition 4.7. �

We recall that the plan γT := (Id, T )#f is the unique minimizer for (P). In addition, γT solves
the following problem

min

{∫
Ω×Ω
|x− y|dγ : γ ∈ Π(f, (T )#f)

}
.

For simplicity of notation, we will denote this minimizer by γ instead of γT . Let σ be the
transport density associated with the transport of f into (T )#f . By the definition of σ (see
(2.1)), we have that, for all ϕ ∈ C(Ω),

< σ,ϕ > =

∫
Ω×Ω

∫ 1

0
|x− y|ϕ((1− t)x+ ty) dt dγ(x, y)

=

∫
Ω

∫ 1

0
|x− T (x)|ϕ((1− t)x+ tT (x))f(x) dtdx.

Then

σ =

∫ 1

0
ft dt,

where

< ft, ϕ >:=

∫
Ω
|x− T (x)|ϕ(Tt(x))f(x) dx for all ϕ ∈ C(Ω)
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and

Tt(x) := (1− t)x+ tT (x) for all x ∈ Ω.

Notice that in the definition of ft, differently from what done in Section 2.2, we need to keep the
factor |x− T (x)|, which will be essential in the estimates. In addition, we have that ft � Ld as
soon as one has f � Ld (see Proposition 2.2).

Now, we will introduce the two following propositions, whose proofs, for simplicity of expo-
sition, are postponed to Section 4.4.

Proposition 4.9. Suppose that Ω is a round polyhedron and g is in C2(∂Ω) with |∇g| < 1.
Then, the closure Σ̄ of the set Σ is negligible and T is a C1 function on Ω\Σ̄.

We want to give an explicit formula of ft in terms of f and T . Let ϕ be in C(Ω), then we
have ∫

Ω
ϕ(y) dft(y) =

∫
Ω
ϕ(Tt(x))|x− T (x)|f(x) dx.

Take a change of variable y = Tt(x). By Proposition 4.8, we get easily that

x =
y − tT (y)

1− t
and |x− T (x)| = |y − T (y)|

1− t
.

Consequently, ∫
Ω
ϕ(y)ft(y) dy =

∫
Ωt

ϕ(y)
|y − T (y)|

1− t
f

(
y − tT (y)

1− t

)
|Jt(y)|dy,

where Ωt := Tt(Ω) and Jt(y) := (det(DTt(x)))−1 for all y = Tt(x) ∈ Ωt. Yet, this implies
that

ft(y) =
|y − T (y)|

1− t
f

(
y − tT (y)

1− t

)
|Jt(y)|1Ωt(y) for a.e. y ∈ Ω.

Notice that a point y belongs to Ωt if and only if |y − T (y)| ≤ (1 − t)l(y) where l(y) is
the length of the transport ray containing y, i.e.,

l(y) := sup {|x− T (x)| : x ∈ Ω ∩ {T (y) + s(y − T (y)), s ≥ 1}, T (x) = T (y)} .

The following proposition gives a lower bound on the Jacobian Jt, which is in fact sufficient to
prove our Lp estimates on the transport density σ:
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Proposition 4.10. Suppose that Ω is a round polyhedron and g ∈ C2(∂Ω) with |∇g| ≤
λ < 1. Then, there exists a constant C := C(d, diam(Ω), λ, r, M) > 0, where D2g ≤MI, such
that, for a.e. x ∈ Ω, we have the following estimate

|det(DTt(x))| ≥ C(1− t).

We are now ready to prove the Lp summability of the transport density σ. Then, we have the
following result.

Proposition 4.11. Suppose that Ω is a round polyhedron and g ∈ C2(∂Ω) with |∇g| ≤
λ < 1. Then, the transport density σ belongs to L∞(Ω) provided that f ∈ L∞(Ω).

Proof. By Proposition 4.10, we have

‖ σ ‖L∞(Ω) = sup
y ∈Ω

(∫ 1

0
ft(y) dt

)

= sup
y ∈Ω

(∫ 1− |y−T (y)|
l(y)

0

|y − T (y)|f(y−tT (y)
1−t )

(1− t)|det(DTt(x))|
dt

)

≤ C−1 ‖ f ‖L∞(Ω) sup
y ∈Ω

(∫ 1− |y−T (y)|
l(y)

0

|y − T (y)|
(1− t)2

dt

)
.

Yet, it is easy to see that

sup
y ∈Ω

∫ 1− |y−T (y)|
l(y)

0

|y − T (y)|
(1− t)2

dt ≤ diam(Ω).

Then,
‖ σ ‖L∞(Ω) ≤ C ‖ f ‖L∞(Ω),

for some constant C depending only on d, diam(Ω), λ, r and M , where M is any constant
such that D2g ≤MI. �

Proposition 4.12. Let Ω be a round polyhedron, g ∈ C2(∂Ω) with |∇g| < 1 and suppose
f ∈ Lp(Ω) for some p ∈ [1,+∞]. Then, the transport density σ also belongs to Lp(Ω).

Proof. We observe that as the transport is between f and (T )#f , then the transport
density σ linearly depends on f : in this case, Lp estimates could be obtained via interpolation
as soon as one has L1 and L∞ estimates (see, for instance, [86]). In order to get an L1 estimate,
it is enough to remember the implication f ∈ L1(Ω) ⇒ σ ∈ L1(Ω) from Proposition 2.2, and
that we have

||σ||L1(Ω) ≤ diam(Ω) ||f ||L1(Ω).
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In addition, the L∞ estimates follow from Proposition 4.11. �

Remark 4.13. The same proof as in Proposition 4.11 could also be adapted to proving Propo-
sition 4.12, but a suitable use of a Hölder inequality would be required (see Proposition 9.2).

We will now generalize, via a limit procedure, the result of Proposition 4.12 to arbitrary
domain having a uniform exterior ball (see Definition 3.6).

Proposition 4.14. Let Ω be a domain having a uniform exterior ball of radius r. Then,
the transport density σ between f and (T )#f belongs to Lp(Ω) provided that f ∈ Lp(Ω) and,
the boundary cost g is λ−Lip with λ < 1 and semi-concave.

Proof. This proposition can be proven using the lemma 3.7. To do that, take a sequence
of domains (Ωk)k such that: the boundary of each Ωk is a union of parts of sphere of radius r,

∂Ωk → ∂Ω in the Hausdorff sense and Ω ⊂ Ωk ⊂ Ω̃ for some large compact set Ω̃. First of all,
we suppose that g ∈ C2(∂Ω). Let γk be an optimal transport plan between f and (T k)#f , i.e.
the plan γk solves

min

{∫
Ω̃×Ω̃
|x− y|dγ : γ ∈ Π(f, (T k)#f)

}
,

where T k(x) := argmin{|x − y| + g(y), y ∈ ∂Ωk}. Let σk be the transport density associ-
ated with the optimal transport plan γk. From Proposition 4.12, we have

σk ∈ Lp(Ωk)

and

‖ σk ‖Lp(Ωk)≤ C ‖ f ‖Lp(Ω),

for some constant C := C(d, diam(Ω), λ, r, M), where M is a constant such that D2g ≤ MI.

Then, up to a subsequence, we can assume that σk ⇀ σ weakly in Lp(Ω̃). Moreover, we have
the following estimate

‖ σ ‖Lp(Ω)≤ lim inf
k
‖ σk ‖Lp(Ωk)≤ C ‖ f ‖Lp(Ω) .

Now, it is sufficient to show that this σ is in fact the transport density associated with the
transport of f into (T )#f. Firstly, we observe that for a given x, (Tk(x))k converges, up to a
subsequence, to a point y ∈ ∂Ω such that y ∈ argmin{|x− z|+ g(z), z ∈ ∂Ω}. Since this point
is unique for a.e. x, we get (with no need to pass to a subsequence):

T k(x)→ T (x)

and

(T k)#f ⇀ (T )#f in the sense of measures.
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By Proposition 1.3, we get that
γk ⇀ γ,

where γ solves

min

{∫
Ω×Ω
|x− y|dγ : γ ∈ Π(f, (T )#f)

}
.

Let σγ be the unique transport density between f and (T )#f . As γk ⇀ γ, we find that
σk ⇀ σγ (this follows immediately from (2.1)). Consequently, σγ = σ ∈ Lp(Ω) and we have the
following estimate

‖ σγ ‖Lp(Ω)≤ C ‖ f ‖Lp(Ω),

for some constant C := C(d, diam(Ω), λ, r, M), where M is a constant such that D2g ≤MI.

Finally, the approximation of a semi-concave function g with smoother functions is also
standard. Then, it is not difficult to check again that our result is still true for a semi-concave
function g. �

4.3. A geometric lemma

In the particular case g = 0, we are able to prove Proposition 4.10, for arbitrary domain
Ω having a uniform exterior ball, via a geometric argument which will not be available for the
general case.

Lemma 4.15. Let P∂Ω be the projection on the boundary of Ω, i.e.,

P∂Ω(x) := argmin {|x− y|, y ∈ ∂Ω} for all x.

Then, P∂Ω is the gradient of a convex function. In addition, if Ω has a uniform exterior ball of
radius r > 0, then for a.e. x ∈ Ω, the positive symmetric matrix DP∂Ω(x) has d− 1 eigenvalues
larger than r

r+d(x,∂Ω) .

Proof. Set

u(x) := sup

{
x · y − 1

2
|y|2, y ∈ ∂Ω

}
.

As we can rewrite u(x) as follows

u(x) = sup

{
−1

2
|x− y|2 +

1

2
|x|2, y ∈ ∂Ω

}
,
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then the supremum is attained at P∂Ω(x) and ∇u(x) = P∂Ω(x) for a.e. x. This implies that
P∂Ω is the gradient of a convex function, which is in fact coherent with Brenier Theorem [22, 23]
(see also Chapter 1).

Now, take x0 ∈ Ω and let y0 be the center of a ball B(y0, r) such that B(y0, r) ∩ Ω = ∅
and |y0−P∂Ω(x0)| = r. Then x0, P∂Ω(x0) and y0 are aligned. Indeed if not, we get |x0− y0| <
|x0 − P∂Ω(x0)| + r, but |x0 − y0| = |x0 − z| + |z − y0| for some z ∈ [x0, y0] ∩ ∂Ω, which is a
contradiction as |x0 − P∂Ω(x0)| ≤ |x0 − z| and r ≤ |z − y0|. Moreover, we have

u(x) = sup

{
1

2
|x|2 − 1

2
|x− y|2, y ∈ ∂Ω

}
≥ 1

2
|x|2 − 1

2
|x− yx|2, for some yx ∈ [x, y0] ∩ ∂Ω

≥ 1

2
|x|2 − 1

2
(|x− y0| − r)2 := v(x).

As u(x0) = v(x0), then the function: x 7→ u(x) − v(x) has a minimum at x0. Hence, we
get that D2u(x0) ≥ D2v(x0) and the eigenvalues of D2u(x0) are bounded from below by those
of D2v(x0). Yet, it is easy to show that

D2v(x0) =
r

r + d(x0, ∂Ω)
(I − e(x0)⊗ e(x0)) ,

where e(x0) := x0−y0

|x0−y0| .

Then, we conclude by observing that the eigenvalues of this matrix are 0 and r
r+d(x0,∂Ω) (with

multiplicity d− 1). �

Set

Pt(x) := (1− t)x+ tP∂Ω(x).

By Lemma 4.15, we have

det(DPt(x)) ≥ (1− t)
(

1− t+ t
r

r + d(x, ∂Ω)

)d−1

.

Set y := Pt(x). As d(y, ∂Ω) = (1 − t)d(x, ∂Ω), then the Jacobian at y satisfies the following
estimate
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Jt(y) :=
1

det(DPt(x))
≤ 1

1− t

(
r + d(x, ∂Ω)

r + (1− t)d(x, ∂Ω)

)d−1

=
1

(1− t)d

(
(1− t)r + d(y, ∂Ω)

r + d(y, ∂Ω)

)d−1

.

Now, suppose f ∈ L∞(Ω) and let σ be the transport density between f and (P∂Ω)#f . Then,
we have the following pointwise inequality

σ(y) ≤‖ f ‖L∞(Ω)

∫ 1− d(y,∂Ω)
l(y)

0

d(y, ∂Ω)

(1− t)d+1

(
(1− t)r + d(y, ∂Ω)

r + d(y, ∂Ω)

)d−1

dt.

Hence,

σ(y) ≤ C ‖ f ‖L∞(Ω)

∫ 1− d(y,∂Ω)
l(y)

0

d(y, ∂Ω)

(1− t)d+1

(1− t)d−1 rd−1 + (d(y, ∂Ω))d−1

(r + d(y, ∂Ω))d−1
dt

≤ C d(y, ∂Ω) ‖ f ‖∞
(r + d(y, ∂Ω))d−1

(∫ 1− d(y,∂Ω)
l(y)

0

1

(1− t)2
dt+ (d(y, ∂Ω))d−1

∫ 1− d(y,∂Ω)
l(y)

0

1

(1− t)d+1
dt

)
.

Yet,

∫ 1− d(y,∂Ω)
l(y)

0

1

(1− t)2
dt + (d(y, ∂Ω))d−1

∫ 1− d(y,∂Ω)
l(y)

0

1

(1− t)d+1
dt ≤ C

d(y, ∂Ω)
.

Then,

σ(y) ≤ C ‖ f ‖∞
(r + d(y, ∂Ω))d−1

.

This provides a very useful and pointwise estimate on σ. It shows that σ is bounded as soon
as r > 0, or if we are far from the boundary ∂Ω. By interpolation (see [86]), we also get that σ
belongs to Lp(Ω) provided that f ∈ Lp(Ω). So as a particular case, we get the results of Section
4.2 in the case g = 0 whenever r > 0.

4.4. Technical proofs

In this section, we want to give the proofs of Propositions 4.9 & 4.10. First of all, suppose
that Ω is a round polyhedron and set

Ωi := {x = (x1, x2, ....., xd) ∈ Ω : T (x) ∈ Fi},
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where Fi ⊂ ∂B(bi, r) is the ith part in the boundary of Ω, contained in a sphere centered at bi
and with radius r > 0 (see Figure 2). Then, we have the following:

Proposition 4.16. For all x ∈
◦
Ω, there is no pair (i, j) with i 6= j such that T (x) ∈ Fi∩Fj .

Proof. Suppose that this is not the case at some point x ∈
◦
Ω, i.e. there exist two different

faces Fi and Fj such that T (x) ∈ Fi ∩ Fj . By Proposition 4.7, the segment [x, T (x)] cannot
intersect the boundary of Ω at an interior point. Then, taking into account the geometric
form of Ω, we infer that there exist two tangent vectors vi and vj in T (x) on Fi and Fj ,
respectively, such that

x− T (x) = αivi + αjvj ,

for some two positive constants αi and αj . Let γi and γj be two curves plotted on Fi and Fj ,
respectively, so that γ′i(0) = vi and γ′j(0) = vj . For t ≥ 0 small enough, we define the following
functions

fi(t) := |x− γi(t)|+ g(γi(t))

and
fj(t) := |x− γj(t)|+ g(γj(t)).

By optimality of T (x) = γi(0) = γj(0), we infer that fi and fj reach a minimum at t = 0
and so, f ′i(0), f ′j(0) ≥ 0. Hence,

− x− T (x)

|x− T (x)|
· γi′(0) +∇g(T (x)) · γi′(0) ≥ 0

and

− x− T (x)

|x− T (x)|
· γj ′(0) +∇g(T (x)) · γj ′(0) ≥ 0.

Now, if we multiply the first inequality by αi, the second one by αj and we take the sum, we get

−|x− T (x)| + ∇g(T (x)) · (x− T (x)) ≥ 0

and
1 ≤ |∇g(T (x))| ≤ λ,

which is a contradiciton. �

Proposition 4.17. For every x ∈ Ωi\Σ, there is a neighborhood of x contained in Ωi.

Proof. Suppose that this is not the case at some point x. Then, there exists a sequence
(xn)n such that xn → x and T (xn) ∈ Fj for some j 6= i. Yet, up to a subsequence, we can
assume that T (xn)→ y ∈ Fj . By definition of T , we have

|xn − T (xn)|+ g(T (xn)) ≤ |xn − z|+ g(z) for all z ∈ ∂Ω.
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Passing to the limit, we get

|x− y|+ g(y) ≤ |x− z|+ g(z) for all z ∈ ∂Ω,

which is in contradiction with Proposition 4.16. �

Consider Ω1 (eventually it will be the same for the other Ωi). Suppose that Proposition
4.9 is true and fix x ∈ Ω1\Σ̄. After a translation and rotation of axis, we can suppose that the
tangent space at T (x) on F1 is contained in the plane xd = 0. Let ϕ : U 7→ R, where U ⊂ Rd−1,
be a parameterization of F1, i.e. for any z := (z1, ..., zd) ∈ F1, we have z̄ := (z1, ..., zd−1) ∈ U
and zd = ϕ(z̄) (notice that an explicit formula of ϕ is not needed in the sequel). Set

ξ(z̄) :=
√
|x̄− z̄|2 + (xd − ϕ(z̄))2 + g(z̄, ϕ(z̄)) for all z̄ ∈ U.

For any i ∈ {1, ...., d− 1}, one has

∂ξ

∂zi
(z̄) =

(zi − xi)− (xd − ϕ(z̄)) ∂ϕ∂zi (z̄)√
|x̄− z̄|2 + (xd − ϕ(z̄))2

+
∂g

∂zi
(z̄, ϕ(z̄)) +

∂g

∂zd
(z̄, ϕ(z̄))

∂ϕ

∂zi
(z̄).

Set T (x) := (T̄ (x), ϕ(T̄ (x))), where T̄ (x) := (T1(x), ..., Td−1(x)). Then, we have

T̄ (x) = argmin{ξ(z̄), z̄ ∈ U}.

By Proposition 4.16, T̄ (x) ∈
◦
U . Hence,

∂ξ

∂zi
(T̄ (x)) = 0 for all i ∈ {1, ...., d− 1}

or equivalently,

(4.4)
Ti(x)− xi
τ(x)

+
∂g

∂zi
(T (x))− (xd − ϕ(T̄ (x)))

τ(x)

∂ϕ

∂zi
(T̄ (x)) +

∂g

∂zd
(T (x))

∂ϕ

∂zi
(T̄ (x)) = 0,

for all i ∈ {1, ...., d − 1}, where τ(x) := |x − T (x)|. Yet, by Proposition 4.17, the equality
in (4.4) holds in a neighborhood of x. Then, differentiating (4.4) with respect to xj and taking
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into account the fact that in this new system of coordinates we have

∂ϕ

∂zi
(T̄ (x)) = 0 for all i ∈ {1, ...., d− 1},

we get

∂Ti
∂xj

(x)− (xi − Ti(x))

τ(x)2

d−1∑
k=1

(xk − Tk(x))
∂Tk
∂xj

(x) + τ(x)

d−1∑
k=1

∂2g

∂zi∂zk
(T (x))

∂Tk
∂xj

(x)

− (xd − ϕ(T̄ (x)))
d−1∑
k=1

∂2ϕ

∂zi∂zk
(T̄ (x))

∂Tk
∂xj

(x) + τ(x)
∂g

∂zd
(T (x))

d−1∑
k=1

∂2ϕ

∂zi∂zk
(T̄ (x))

∂Tk
∂xj

(x)(4.5)

= δij −
(xi − Ti(x))(xj − Tj(x))

τ(x)2

for all i, j ∈ {1, ..., d− 1}.

On the other hand, we have

DTt(x) = (1− t)I + tDT (x) =



1− t+ t∂T1
∂x1

t∂T1
∂x2

... t∂T1
∂xd

t∂T2
∂x1

1− t+ t∂T2
∂x2

... t∂T2
∂xd

...

0 ... 0 1− t


.

Then,

det(DTt(x)) = (1− t) det(A),

where A :=
(

(1− t)δij + t ∂Ti∂xj
(x)
)
i,j=1,....,d−1

.

Set

P :=

(
δij −

(xi − Ti(x))(xj − Tj(x))

τ(x)2

)
ij

and

N :=

(
τ(x)

∂2g

∂zi∂zj
(T (x))− (xd − ϕ(T̄ (x)))

∂2ϕ

∂zi∂zj
(T̄ (x)) + τ(x)

∂g

∂zd
(T (x))

∂2ϕ

∂zi∂zj
(T̄ (x))

)
ij

.
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Suppose that P +N is invertible for a.e. x ∈ Ω (see Proposition 4.18 below). Then, from (4.5),
we observe that (

∂Ti
∂xj

(x)

)
i,j=1,....,d−1

= (P +N)−1P.

Hence,

A = (1− t)I + t(P +N)−1P = (P +N)−1(P + (1− t)N)

and

det(A) =
det(P + (1− t)N)

det(P +N)
.

We note that the matrix P + N = τ(x)D2ξ(T̄ (x)) and so, by optimality of T̄ (x), it is non-
negative. On the other hand, as D2ϕ(T̄ (x)) = −1

r I and D2g ≤MI, then

P +N ≤ C(d,diam(Ω), λ, r,M)I

and so,

(4.6) det(P +N) ≤ C(d,diam(Ω), λ, r,M).

From (4.4), we have

xi − Ti(x)

|x− T (x)|
=
∂g

∂zi
(T (x)), for any i ∈ {1, ..., d− 1}.

Then,

|x̄− T̄ (x)| ≤ λ|x− T (x)|.

Yet, this implies that

< Pz, z > = |z|2 −
(
x̄− T̄ (x)

|x− T (x)|
· z
)2

≥ |z|2 − |x̄− T̄ (x)|2

|x− T (x)|2
|z|2

≥ (1− λ2)|z|2.

Hence, P ≥ (1 − λ2)I. Now, we are ready to give a lower bound for det(A). First, if t ≥ 1
2 ,

then we have

P + (1− t)N = tP + (1− t)(P +N) ≥ 1

2
P ≥ 1− λ2

2
I
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and so,

(4.7) det(P + (1− t)N) ≥
(

1− λ2

2

)d−1

.

If t < 1
2 , then one has

P + (1− t)N ≥ (1− t)(P +N) ≥ 1

2
(P +N),

which implies that

(4.8) det(P + (1− t)N) ≥ 1

2d−1
det(P +N).

Combining (4.6), (4.7) & (4.8), we infer that there is a constant C > 0 depending only on
d, diam(Ω), λ, r and M , for some constant M with D2g ≤MI, such that

det(A) ≥ C

or equivalently,
det(DTt(x)) ≥ C(1− t).

Finally, we introduce the proof of the proposition 4.9.

Proof. Set h := (hi)i=1,...,d−1, where for any i,

hi(x, y) :=
yi − xi√

|x̄− y|2 + (xd − ϕ(y))2
+

∂g

∂zi
(y, ϕ(y)) − xd − ϕ(y)√

|x̄− y|2 + (xd − ϕ(y))2

∂ϕ

∂zi
(y)

+
∂g

∂zd
(y, ϕ(y))

∂ϕ

∂zi
(y)

for all (x, y) ∈ Ω1 × U .

By Proposition 4.18 (see below), the matrix (∂hi∂yj
(x, T̄ (x)))1≤i,j≤d−1 is invertible at a.e. x. Yet,

we have h(x, T̄ (x)) = 0. Then, by the implicit function theorem, there exist an open neighbor-
hood V1 ⊂ Ω1 of x, a neighborhood V2 ⊂ U of T̄ (x) and a function q : V1 → V2 of class C1

such that, for all x′ ∈ V1 and y ∈ V2, we have

h(x′, y) = 0⇔ y = q(x′).

But, for all x′ ∈ V1, one has h(x′, T̄ (x′)) = 0. Hence, T̄ = q and T is a C1 function on
V1. Moreover, we can also suppose that V1 ⊂ Ω1\Σ. Indeed, if this is not the case, then
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there exists a sequence (xn)n such that xn → x and, for all n, xn ∈ Σ (i.e., for all n, there
exist zn, wn ∈ argmin {|xn − y|+ g(y), y ∈ ∂Ω} such that zn 6= wn). As x /∈ Σ, then (zn)n
and (wn)n converge to T (x). In particular, z̄n, w̄n ∈ U , h(xn, z̄n) = h(xn, w̄n) = 0 and so,
z̄n = w̄n = q(xn), which is a contradiction. �

It remains to prove the following:

Proposition 4.18. The matrix P +N is invertible at a.e. point x ∈ Ω.

Proof. It is enough to prove that the matrix P +N is not invertible only at a countable
number of points on each transport ray, since in this case one can use Proposition 1.5, to infer
that the set of all these points is in fact negligible. To do that, fix x ∈ Ω and set y := Tt(x),
where t ∈ (0, 1]. In fact, the matrix P is constant along the transport ray passing through x.
Moreover, if N ′ plays the role of the matrix N for the point y, then we have N ′ = (1 − t)N .
Hence,

P +N ′ = P + (1− t)N > 0.

Consequently, P +N is invertible at a point x ∈ Ω as soon as x is not a lower boundary point
of some transport ray (i.e., if x /∈ S+). �

Finally, we get that the closure Σ̄ of the set of double points Σ is negligible. In addition, T is
a C1 function on Ω\Σ̄.





CHAPTER 5

Lack of regularity of the transport density

In this chapter, we provide a family of counter-examples to the regularity of the transport density in

the classical Monge-Kantorovich problem. In particular, we prove that the W 1,p regularity of the source

and target measures does not imply that the transport density σ is W 1,p, that the BV regularity of f±

does not imply that σ is BV and that f± ∈ C∞ does not imply that σ is W 1,p, for large p.

This chapter is taken from my article [55], which will be published in Journal de
Mathématiques Pures et Appliquées.

The higher order regularity of the transport density σ is the object of a wide debate; the only
positive known results are in R2 : if f± are two positive densities, continuous and have compact,
disjoint, convex support, then the “monotone optimal transport map” T is continuous except
on a negligible set (the endpoints of transport rays) and the transport density σ is actually con-
tinuous everywhere [61]. Moreover, in [83], the authors prove the continuity of the same map
T under the assumptions that f± are two positive densities, continuous with spt(f+) ⊂ spt(f−)
and one of the sets {f+ > f−}, {f− > f+} is convex and, the transport density σ is also con-
tinuous in this case. Other results exist as far as the regularity in some directions is concerned:
in [58], it has been proven that when f± are Lipschitz continuous with disjoint supports (and
with some extra technical conditions on the supports), then the transport density is locally Lip-
schitz continuous “along transport rays”. Also in [31], the authors have a more general result
for the case of just summable f± without any extra conditions on supports; they prove that if
f± ∈ Lp(Ω), then for a.e. x ∈ Ω, the restriction of the transport density σ to the transport ray

passing through x is in W 1,p
loc . A conjecture of Buttazzo was the following: “if f+ and f− are

smooth, then the transport density between them is Lipschitz”. As one can see, the W 1,p(Ω)
(resp. C0,α(Ω), BV (Ω), ...) regularity of the transport density σ is an interesting question, and
the aim of this chapter is to give a (negative) answer to it !

In this chapter we focus on examples relating the regularity of the initial data f± with the
regularity of the transport density σ. As a starting point, the following example shows that in
general, the transport density σ is not more regular than the initial data: consider χ+ :=
[0, 1]2, χ− := [2, 3] × [0, 1] and set f+(x1, x2) := f1(x1)f2(x2), where we suppose that f+

is concentrated on χ+, and take f−(x1, x2) := f+(x1 − 2, x2), for every (x1, x2) ∈ χ−. In
this case, it is easy to compute the transport density σ between f+ and f−, so we get
σ(x1, x2) = (

∫ x1

0 f1(t) dt)f2(x2) for every x := (x1, x2) ∈ χ+. Hence, the transport density
σ has the same regularity as f± in the x2-variable. Yet, we will give examples where the regu-
larity of the transport density σ is worse than the regularity of the initial data f±. In particular,
we will prove among others the following statements:

89
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f± ∈ BV (Ω) 6⇒ σ ∈ BV (Ω),(5.1)

for all p > 1, f± ∈W 1,p(Ω) 6⇒ σ ∈W 1,p(Ω),(5.2)

f± ∈ C∞(Ω̄) 6⇒ σ ∈W 1,3(Ω),(5.3)

for all α ∈ (0, 1), f± ∈ C0,α(Ω) 6⇒ σ ∈ C0,α(Ω),(5.4)

for all ε > 0, f± ∈ C∞(Ω̄) 6⇒ σ ∈ C0, 1
2

+ε(Ω).(5.5)

5.1. Main Results

Inspired by [45, 84], we will construct a family of counter-examples by, first, choosing which
lines will be transport rays. Set γ > 0 and consider the following transport rays:

(5.6) la :=

{
(x1, x2) ∈ R2 : x2 =

aγ

2
(x1 + a), x1 ∈ (−a, 1)

}
, a ∈ [0, 1].

It is clear that the segments (la)a do not mutually intersect. The domain representing both
source and target will be ∆ ⊂ R2 (see Figure 1), where

(5.7) ∆ := interior of the triangle with vertices (−1, 0), (1, 0) and (1, 1).

The initial and final density will have the form

(5.8) f+(x1, x2) = 1, f−(x1, x2) = 1 + β(ζ ′′(x1) + η′′(x2)) for all (x1, x2) ∈ ∆,

where ζ(x1) := −x2
1(x1 − 1)2 (the choice of ζ is made essentially in such a way that ζ(1) =

ζ ′(1) = 0), η is a C2 function with η(0) = η′(0) = 0 and β > 0 is chosen so that f− will be a
non-negative density. Note that η is constructed in such a way that the following mass balance
condition for the region in the domain below each la is satisfied:

(5.9)

∫
∆a

f+ =

∫
∆a

f− for all a ∈ [0, 1],

where ∆a is the subgraph of la in ∆, namely the triangle formed by (−a, 0), (1, 0) and (1, a
γ

2 (1+
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la

−a

Figure 1

a)); or equivalently, (5.9) can be rewritten as

−
∫

∆a

ζ ′′(x1) dx1 dx2 =

∫
∆a

η′′(x2) dx1 dx2 for all a ∈ [0, 1].

Yet, it is easy to see that

−
∫

∆a

ζ ′′(x1) dx1 dx2 = −
∫ aγ

2
(1+a)

0

∫ 1

2
aγ
x2−a

ζ ′′(x1) dx1 dx2

=

∫ aγ

2
(1+a)

0
ζ ′
(

2

aγ
x2 − a

)
dx2

=
aγ+2

2
(1 + a)2

and as η(0) = η′(0) = 0, we have

∫
∆a

η′′(x2) dx1 dx2 =

∫ 1

−a

∫ aγ

2
(x1+a)

0
η′′(x2) dx2 dx1

=

∫ 1

−a
η′
(
aγ

2
(x1 + a)

)
dx1

=
η(a

γ

2 (1 + a))
aγ

2

.

Then,

η(s) = s2a2(s), ∀ s ∈ (0, 1)
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where a(s) is the unique solution of

(5.10) s =
aγ

2
(1 + a).

In fact, by the implicit function theorem, it is easy to see that there exists a C∞ function
h defined in a neighborhood of 0 such that

s =
h(s)

2
1
γ

(1 + h(s))
1
γ .

Hence, h(s
1
γ ) is a solution to (5.10) and η(s) = s2h2(s

1
γ ). After tedious computations, we

can check that

η′(s) = 2s h2(s
1
γ ) +

2

γ
s

1
γ

+1
h(s

1
γ )h′(s

1
γ ),

η′′(s) = 2h2(s
1
γ ) +

(
6

γ
+

2

γ2

)
s

1
γ h(s

1
γ )h′(s

1
γ ) +

2

γ2
s

2
γ ( (h′(s

1
γ ))2 + h(s

1
γ )h′′(s

1
γ )),

η′′′(s) =

(
4

γ
+

6

γ2
+

2

γ3

)
s

1
γ
−1
h(s

1
γ )h′(s

1
γ ) +

(
6

γ3
+

6

γ2

)
s

2
γ
−1

( (h′(s
1
γ ))2 + h(s

1
γ )h′′(s

1
γ ))

+
6

γ3
s

3
γ
−1

h′(s
1
γ )h′′(s

1
γ ) +

2

γ3
s

3
γ
−1

h(s
1
γ )h′′′(s

1
γ ),

and

η′′′′(s) =

(
14

γ4
+

12

γ3
− 2

γ2

)
s

2
γ
−2

(h′(s
1
γ ))2 +

(
2

γ4
+

4

γ3
− 2

γ2
−4

γ

)
s

1
γ
−2
h(s

1
γ )h′(s

1
γ ) +

6

γ4
s

4
γ
−2

(h′′(s
1
γ ))2

+

(
14

γ4
+

12

γ3
− 2

γ2

)
s

2
γ
−2

h(s
1
γ )h′′(s

1
γ ) +

(
36

γ4
+

12

γ3

)
s

3
γ
−2

h′(s
1
γ )h′′(s

1
γ ) +

8

γ4
s

4
γ
−2
h′(s

1
γ )h′′′(s

1
γ )

+

(
12

γ4
+

4

γ3

)
s

3
γ
−2

h(s
1
γ )h′′′(s

1
γ ) +

2

γ4
s

4
γ
−2
h(s

1
γ )h′′′′(s

1
γ ).

Hence,

(5.11)



η(|.|) ∈ C∞[−1, 1] if γ = 1
2 ,

η ∈ C∞[0, 1] and η(|.|) ∈ C4,1[−1, 1] if γ = 1,

η(|.|) ∈ C3, 2
γ
−1

[−1, 1] if 1 < γ < 2,

η ∈ C3[0, 1] and η(|.|) ∈ C2,1[−1, 1] if γ = 2,

η(|.|) ∈ C2, 2
γ [−1, 1] ∩W 3, γ

γ−2
−ε

(−1, 1) if γ > 2, ε > 0.
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Now, we will introduce the following key propositions, whose proofs, for simplicity of expo-
sition, are postponed to Section 5.2.

Proposition 5.1. The transport density σ between f+ and f− is not in W 1,p(∆) for all p
satisfying

p ≥ min

{
γ

γ − 1
,
γ + 2

γ

}
.

Then, we get the following

Corollary 5.2. We have the following statements:

for all p > 1, ε > 0, f± ∈W 1,p(∆) 6⇒ σ ∈W 1, 2p+ε
p+1 (∆),(5.12)

f± ∈ C1(∆̄) 6⇒ σ ∈ H1(∆),(5.13)

for all α ∈ (0, 1), f± ∈ C1,α(∆) 6⇒ σ ∈W 1,2+α(∆),(5.14)

f± ∈ C∞(∆̄) 6⇒ σ ∈W 1,3(∆).(5.15)

Proof. These statements follow immediately from (5.11) and the proposition 5.1. Indeed,

for γ > 2 : η′′ ∈W 1, γ
γ−2
−ε

(0, 1) (for any ε > 0) and the transport density σ is not in W
1, γ
γ−1 (∆),

so (5.12) follows. To prove (5.13), take γ = 2 and then, in this case, we have that η′′ ∈ C1[0, 1]

and σ /∈ H1(∆). For 1 < γ < 2 : η′′ ∈ C
1, 2
γ
−1

[0, 1] and σ /∈ W
1, γ+2

γ (∆), so (5.14) follows.
Finally, for γ = 1 : η ∈ C∞[0, 1] and σ /∈W 1,3(∆) and the statement (5.15) follows. �

Proposition 5.3. The transport density σ between f+ and f− is not in C
0, 1
γ+1

+ε
(∆), for

every ε > 0.

Corollary 5.4. We have the following statements:

for all α ∈ (0, 1), ε > 0, f± ∈ C0,α(∆) 6⇒ σ ∈ C0, α
α+2

+ε(∆),(5.16)

for all ε > 0, f± ∈ C1(∆̄) 6⇒ σ ∈ C0, 1
3

+ε(∆),(5.17)

for all α ∈ (0, 1), ε > 0, f± ∈ C1,α(∆) 6⇒ σ ∈ C0, 1+α
3+α

+ε(∆),(5.18)

for all ε > 0, f± ∈ C∞(∆̄) 6⇒ σ ∈ C0, 1
2

+ε(∆).(5.19)
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∆

∆′

Figure 2

Proof. These statements follow immediately from (5.11) and Proposition 5.3. Indeed, for

γ > 2 : η′′ ∈ C0, 2
γ [0, 1], for γ = 2 : η′′ ∈ C1[0, 1], for 1 < γ < 2 : η′′ ∈ C1, 2

γ
−1

[0, 1] and, finally,

for γ = 1 : η ∈ C∞[0, 1]. Yet, in all these cases, the transport density σ /∈ C0, 1
γ+1

+ε
(∆), for all

ε > 0. �

To obtain counter-examples to interior regularity of the transport density, it suffices to reflect
the domain across the x1-axis. Let ∆′ be the reflection of ∆ with respect to the x1-axis (see
Figure 2) and set Ω := ∆∪∆′. Extend the functions f± to Ω so that they are symmetric with
respect to the x1-axis. Let T be an optimal transport map from f+ onto f−, and let σ be
the transport density between them, then it is easy to prove that the map S, which is equal to
T on ∆ and to the reflection of T with respect to the x1-axis on ∆′, is an optimal transport
map between the extended densities and the transport density between them is equal to σ on
∆ and to the reflection of σ, with respect to the x1-axis, on ∆′. Using this fact and (5.11), we
get the following statements:

for all p > 1, ε > 0, f± ∈W 1,p(Ω) 6⇒ σ ∈W
1, 2p+ε
p+1

loc (Ω),(5.20)

for all α ∈ (0, 1), ε > 0, f± ∈ C0,α(Ω) 6⇒ σ ∈ C
0, α
α+2

+ε

loc (Ω),(5.21)

for all ε > 0, f± ∈ C0,1(Ω) 6⇒ σ ∈ H1
loc(Ω) ∪ C0, 1

3
+ε

loc (Ω),(5.22)

for all α ∈ (0, 1), ε > 0, f± ∈ C1,α(Ω) 6⇒ σ ∈W 1,2+α
loc (Ω) ∪ C

0, 1+α
3+α

+ε

loc (Ω),(5.23)

for all ε > 0, f± ∈ C2,1(Ω) 6⇒ σ ∈W 1,3
loc (Ω) ∪ C0, 1

2
+ε

loc (Ω),(5.24)

for all ε > 0, f± ∈ C∞(Ω̄) 6⇒ σ ∈W 1,5
loc (Ω) ∪ C0, 2

3
+ε

loc (Ω).(5.25)
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5.2. Proof

In this section, we want to prove Propositions 5.1 & 5.3. Firstly, we will compute the trans-
port density σ between f+ and f−. To do that, let us observe that the family {la, a ∈ (0, 1)},
where la is defined as in (5.6), covers ∆ so that for every x := (x1, x2) ∈ ∆, there exists a
unique pair (t, a) ∈ (0, 1)2 such that x ∈ la and |x− (−a, 0)| = tL(a), where L(a) is the length
of the segment la. In other words, we have

x =

(
−a+ (1 + a)t , (1 + a)

taγ

2

)
.

Fix (t, a) ∈ (0, 1)2 and set,

ωε :=

{(
− s+ (1 + s)τ, (1 + s)

τsγ

2

)
, (τ, s) ∈ (0, t)× (a, a+ ε)

}

where ε > 0 is small enough. Recalling (2.7) and integrating −∇ · (σ∇u) = f on ωε, we
get

(5.26) −
∫
∂ωε

σ∇u · n =

∫
ωε

f.

Suppose that the family of segments (la)a∈(0,1) are, in fact, all the transport rays on which

the optimal transport map, between f+ and f−, acts. In this case, we get that for every x ∈ la :

∇u(x) =
(−a, 0)− (1, (1 + a)a

γ

2 )

|(−a, 0)− (1, (1 + a)a
γ

2 )|
=
−(1, a

γ

2 )√
1 + (a

γ

2 )2
,

which means that ∇u(x) ·n = 0 if n is the unit orthogonal vector to la. Hence, (5.26) becomes

(5.27) −
∫
sε

σ∇u · n =

∫
ωε

f

where sε :=

{
(−s+ (1 + s)t, (1 + s) ts

γ

2 ), s ∈ [a, a+ ε]

}
. Yet, we have
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∫
ωε

f(x1, x2) dx1 dx2 =

∫
ωε

−β(ζ ′′(x1) + η′′(x2)) dx1 dx2

=

∫ a+ε

a

∫ t

0
−β
(
ζ ′′(−s+ (1 + s)τ) + η′′

(
(1 + s)

τsγ

2

))
J(τ, s) dτ ds,

where J(τ, s) := | det(D(τ,s)(x1, x2))|. But,

D(t,a)(x1, x2) :=

∂tx1 ∂ax1

∂tx2 ∂ax2

 =

 1 + a −1 + t

(1+a) aγ

2 (γ (1 + a) + a) ta
γ−1

2

 .

Then,

(5.28) J(t, a) = (1 + a)(γ (1 + a) t+ a)
aγ−1

2
.

On the other hand,

−∇u · n =
∂tx

|∂tx|
·R ∂ax

|∂ax|
=

J(t, a)

L(a)|∂ax|

where R :=

(
0 1
−1 0

)
is the rotation matrix. Hence,

−
∫
sε

σ∇u · n =

∫ a+ε

a
σ

(
− s+ (1 + s)t, (1 + s)

tsγ

2

)
J(t, s)

L(s)
ds.

By (5.27), we infer that

lim
ε→0+

1

ε

∫ a+ε

a
σ

(
− s+ (1 + s)t, (1 + s)

tsγ

2

)
J(t, s)

L(s)
ds

= lim
ε→0+

1

ε

∫ a+ε

a

∫ t

0
−β
(
ζ ′′(−s+ (1 + s)τ) + η′′

(
(1 + s)

τsγ

2

))
J(τ, s) dτ ds.
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Finally, we get

(5.29) σ(x) =
L(a)

∫ t
0 −β(ζ ′′(−a+ (1 + a)τ) + η′′((1 + a) τa

γ

2 )) J(τ, a) dτ

J(t, a)
.

Now, we are ready to prove Proposition 5.3. Indeed, for every ε > 0, let (tε, aε) be in (0, 1)2

such that

xε := (0, ε) =

(
− aε + (1 + aε)tε, (1 + aε)

tεa
γ
ε

2

)
.

As ζ ′′(0) < 0 and η′′(0) = 0, then, from (5.29), we can see easily that, close to the origin,
we have

σ ≈
∫ t

0 J(τ, a) dτ

J(t, a)

where the symbol ≈ stands for inequalities up to multiplicative constants depending on the
data, i.e. on f , but not on x. Yet, by (5.28), one has

∫ t

0
J(τ, a) dτ =

t

2

(
J(t, a) + (1 + a)

aγ

2

)
.

As tε = aε/(1 + aε) and ε = aγ+1
ε /2, we infer that tε ≈ ε

1
γ+1 . Hence, we get that the

value of the transport density σ at xε is

σ(xε) ≈ ε
1

γ+1 .

This completes the proof of the proposition 5.3. Next, to prove Proposition 5.1, we will only
look at ∂x2σ close to the origin and to do that, we want to compute, firstly, ∂tσ and ∂aσ. So,
differentiating (5.29) with respect to t and a respectively, we get

(5.30) ∂tσ(x) = L(a) f(x)− ∂tJ(t, a)

J(t, a)
σ(x),

and

(5.31) ∂aσ(x) =
L′(a)

L(a)
σ(x) +R1(t, a) +R2(t, a),

where
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R1(t, a) :=
L(a)

∫ t
0 −β(ζ ′′(−a+ (1 + a)τ) + η′′((1 + a) τa

γ

2 )) ∂aJ(τ, a) dτ

J(t, a)
− ∂aJ(t, a)

J(t, a)
σ(x)

and

R2(t, a) :=
L(a)

∫ t
0 −β(−(1− τ)ζ ′′′(−a+ (1 + a)τ) + τaγ−1

2 (γ(1 + a) + a)η′′′((1 + a) τa
γ

2 ))J(τ, a)dτ

J(t, a)
.

Now, we claim that, for any γ ≥ 1
2 ,

(5.32) ∂aσ ≈ t +

(
t

t+ a

)2

.

From Section 5.1, we have

|η′′′(x2)| ≤ C x
2
γ
−1

2 , for all x2 ∈ (0, 1).(5.33)

Then, ∣∣∣∣τaγ−1

2
(γ(1 + a) + a) η′′′

(
(1 + a)

τaγ

2

)∣∣∣∣ ≤ C τ 2
γ a.

Now, as ζ ′′′(0) > 0, we infer that

R2(t, a) ≈ t.

In addition, it is easy to see that

L′(a)

L(a)
σ(x) =

4 + a2γ + γ(1 + a) a2γ−1

(1 + a)(4 + a2γ)
σ(x) ≈ t.

On the other hand,

R1(t, a) =
L(a)

∫ t
0 f(−a+ (1 + a)τ, (1 + a) τa

γ

2 ) (J(t, a)∂aJ(τ, a)− J(τ, a)∂aJ(t, a)) dτ

J(t, a)2
.

Yet, by (5.28), we have

∂aJ(t, a) =
(
γ (γ − 1) (1 + a)2 t+ (γ (1 + a) (1 + 2t) + a) a

) aγ−2

2
.
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Then, it is not difficult to check that

J(t, a) ∂aJ(τ, a)− J(τ, a) ∂aJ(t, a) =
γ

4
(1 + a)2(t− τ)a2γ−2.

Using (5.28), we infer that

R1(t, a) ≈
(

t

t+ a

)2

,

which completes the proof of (5.32). On the other hand, we want to prove the following

(5.34) ∂tσ ≈ 1.

Fix ε > 0. As η′′(0) = 0, then we can assume that, close to the origin, we have

|f(x)− 2β| < ε.

From (5.30), we get

∂tσ(x) ≥ L(a)

(
2β − ε−

∫ t
0 (2β + ε) ∂tJ(t, a) J(τ, a)dτ

J(t, a)2

)
.

Yet,

∂tJ(t, a) =
γ

2
(1 + a)2 aγ−1

and then, ∫ t
0 ∂tJ(t, a)J(τ, a)dτ

J(t, a)2
=

1

2

(
1− a2

(γ (1 + a) t+ a)2

)
.

Hence,

∂tσ(x) ≥ β − 3ε

2
> 0,

for ε > 0 small enough. In the same way, one can also see that ∂tσ is bounded from above and
then, (5.34) follows.

Yet,
∂x2σ = ∂tσ ∂x2t + ∂aσ ∂x2a

and

D(x1,x2)(t, a) :=

∂x1t ∂x2t

∂x1a ∂x2a

 =
1

J(t, a)

(γ (1 + a) + a) ta
γ−1

2 1− t

− (1+a) aγ

2 1 + a

 .
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Hence, by (5.32) & (5.34), we get

∂x2σ ≈
1

J
and

||∂x2σ||
p
Lp(∆) ≈

∫
∆

1

J(t, a)p
dx1 dx2 ≈

∫ δ

0

∫ δ

0

1

J(t, a)p−1
dt da,

where δ > 0 is small enough. Recalling (5.28), we see that the Jacobian J ≈ aγ−1(t + a)
and so,

||∂x2σ||
p
Lp(∆) ≈

∫ δ

0

∫ δ

0

1

a(γ−1)(p−1)(t+ a)p−1
dt da

≈
∫ δ

0
r dr

∫ π
2

0

1

rγ(p−1) sin(θ)(γ−1)(p−1)(cos(θ) + sin(θ))p−1
dθ

≈
∫ δ

0

1

rγ(p−1)−1
dr

∫ π
2

0

1

sin(θ)(γ−1)(p−1)
dθ.

Then, the proposition 5.1 is proved. But, it remains to prove that the rays (la)a are all the
transport rays between f+ and f−. Firstly, we observe that, for every x := (x1, x2) ∈ ∆, there
exists a unique a := a(x) ∈ (0, 1) (note that a ∈ C1(∆)) such that x ∈ la, i.e.,

(5.35) x2 =
aγ

2
(x1 + a).

Differentiating the equality (5.35) with respect to the x1 and x2 variables, we get the following

(5.36) ∂x1a =
−a

γ(x1 + a) + a

and

(5.37) ∂x2a =
2

aγ−1(γ(x1 + a) + a)
.

Now, let va be the unit vector of la, i.e.

va :=
−(1, a

γ

2 )√
1 + a2γ

4

,
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then, we have

∇× va := −∂x1

( aγ

2√
1 + a2γ

4

)
+ ∂x2

(
1√

1 + a2γ

4

)
=

γ aγ−1

2(1 + a2γ

4 )
3
2

(
∂x1a+

aγ

2
∂x2a

)
.

Yet, by (5.36) and (5.37), we infer that va is an irrotational vector field, which implies that
there is a 1-Lipschitz function u such that

∇u(x) = va, for all x ∈ la.
Hence, we have

(5.38) u(x)− u(y) = |x− y| for all x, y ∈ la.

Finally, we want to prove that this function u is in fact the Kantorovich potential between
f+ and f−. To do that, let us consider the disintegration of f± with respect to the segments
(la)a∈(0,1). More precisely, we define a map R : ∆ 7→ {la, a ∈ (0, 1)}, valued in the set of all
segments la, a ∈ (0, 1), sending each point x ∈ ∆ into the unique segment la containing x. As
by construction of f− we have f+(∆a) = f−(∆a) for every a ∈ (0, 1), we infer that there is a
non-negative measure ν, defined on the set {la, a ∈ (0, 1)}, such that ν = R#f

+ = R#f
−. In

particular, we can write f± = f±a ⊗ ν. Now, set γa := f+
a ⊗ f−a and γ := γa ⊗ ν. Then, it is

clear that the plan γ belongs to Π(f+, f−). Moreover, one has that γ−a.e. pair (x, y) in Ω×Ω
is contained in spt(γa) for some a ∈ (0, 1), then both x and y are in la. Yet, this is sufficient
to conclude, since we get∫

Ω×Ω
|x− y|dγ =

∫
Ω×Ω

(u(x)− u(y)) dγ(x, y) =

∫
Ω
ud(f+ − f−),

which implies that γ is an optimal transport plan between f+ and f−, and u is the corre-
sponding Kantorovich potential.

5.3. BV counter-example

In this section, we will prove the statement (5.1). This means that we want to construct
two densities f± ∈ BV (Ω) such that the transport density σ between them is not in BV (Ω).
First of all, we can see easily that for any γ > 0, the densities f±, which are constructed in
Section 5.1, are in BV (Ω), but it will be also the same for the transport density σ between them.
Indeed, to get a counter-example to the W 1,p regularity of the transport density, for p→ 1, we
need a γ → ∞. Hence, to get a BV counter-example, we could collect an infinity of triangles
(constructed as in Section 5.1) with a sequence of exponents γn →∞ (where γn is the exponent
of the slopes of the transport rays in the n-th triangle, see (5.6)). Actually, if we play on other
parameters, we just need to take γn = γ > 1. To do that, let us define ∆n as follows:

∆n := triangle with vertices (−ln, 0),

(
1,− l

γ
n

2
(1 + ln)

)
and

(
1,
lγn
2

(1 + ln)

)
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(−1, 0)

Ω

∆′1

∆′2

∆′n

Figure 3

where ln := 1/n. Set, ∆′1 := ∆1 and, for all n ≥ 2, define ∆′n as a suitable roto-translation of
∆n:

∆′n := {(x1, x2) ∈ R2 : (cos(θn)(x1 + l1) + sin(θn)x2− ln,− sin(θn)(x1 + l1) + cos(θn)x2) ∈ ∆n},

where

θn :=

n−1∑
k=1

αk + αk+1

and

sin(αk) :=

lγk
2√

1 +

(
lγk
2

)2
, αk ∈

(
0,
π

2

)
.

Finally, set

Ω :=

∞⋃
n=1

∆′n.

Fix n ∈ N∗. Then, after a suitable roto-translation of axis, we can assume that ∆′n = ∆n. Set,

f+(x1, x2) := 1

and

f−(x1, x2) := f−n (x1, x2) := 1 + β(ζ ′′(x1) + η′′(|x2|)), for all (x1, x2) ∈ ∆′n,
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where ζ and η are the same functions which are constructed in the section 5.1. Let us de-
note by σ the transport density between f+ and f−. Then, the restriction of σ to ∆′n is the
transport density σn between f+

n := 1∆′n and f−n . Indeed, for all n ∈ N∗, if Tn is an optimal
transport map from f+

n onto f−n and if un is the corresponding Kantorovich potential such that
un(−1, 0) = 0, for all n ∈ N∗, then it is not difficult to check that

T (x) := Tn(x), for a.e. x ∈ ∆′n

is an optimal transport map from f+ onto f−, and the corresponding Kantorovich potential will
be

u(x) := un(x), for all x ∈ ∆′n.

By (2.1), we infer that the restriction of σ to ∆′n is σn. Yet, by Section 5.2, we have al-
ready shown that

|∇σn| ≈
1

Jn
,

where Jn is defined as in (5.28) on ∆n. Hence,

∞∑
n=1

||∇σn||L1(∆′n) ≈
∞∑
n=1

∫ ln

0

∫ δ

0
|∇σn(t, a)|Jn(t, a) dtda

≈
∞∑
n=1

ln =
∞∑
n=1

1

n
= +∞,

where δ > 0 is small enough.

Hence, the transport density σ is not in BV (Ω). On the other hand, we will show that the
target mass f− is in BV (R2). Using (5.33), it is easy to prove that

∞∑
n=1

||∇f−n ||L1(∆′n) ≤ C
∞∑
n=1

(lγn + l2n) < +∞.

In addition, for a fixed n ∈ N∗ and after a suitable roto-translation of axis so that ∆′n = ∆n,
we can assume that

f−n (x1, x2) = 1 + β(ζ ′′(x1) + η′′(|x2|))
and,

f−n+1(x1, x2) = 1 + β

(
ζ ′′(cos(θn+1)(x1 + ln) + sin(θn+1)x2 − ln+1)

+ η′′(| − sin(θn+1)(x1 + ln) + cos(θn+1)x2|)
)
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where
θn+1 := αn + αn+1 ≈ lγn+1.

Hence, it is not difficult to check that

∣∣∣∣f−n+1

(
x1,

lγn
2

(x1 + ln)

)
− f−n

(
x1,

lγn
2

(x1 + ln)

)∣∣∣∣ ≤ Cl2n.
Finally, we get

∞∑
n=1

∫
∂∆′n∩ ∂∆′n+1

|f−n+1(z)− f−n (z)|dz ≤ C
∞∑
n=1

l2n < +∞.

As f− is bounded and Per(Ω) ≈
∑
n

(lγn+l2n) < +∞, we infer that the target mass f− ∈ BV (R2)

and the statement (5.1) follows.

5.4. Counter-examples with compactly supported smooth densities on the whole
plane

In this section, we want to show that is also possible to construct the target measure f− so
that it will be regular on R2. Firstly, let us observe that the function ζ (see Section 5.1) can
be replaced by ψζ, where ψ is a C∞ function such that ψ = 1 on [−1, 1 − ε′] and ψ = 0 on
[1 − ε, 1], where 0 < ε < ε′ < 1. Let χ1, χ2 be two cut-off functions supported on ∆ ∪ R(∆),
where R is the reflection map with respect to the x1-axis, such that spt(χ2) ⊂ {χ1 = 1},
∆a0 ∩ {x : x1 ≤ 1 − ε} ⊂ {χ1 = 1} (where a0 ∈ (ε, 1) is such that spt(χ2) ⊂ ∆a0 ∪ R(∆a0)),
∆ε ∩ {x : x1 ≤ 1− ε} ⊂ {χ2 = 1} and χ1, χ2 are symmetric with respect to the x1-axis. Set,

f+ := χ1

and

f− := χ1 + β

((
(ψζ)′′(x1) + η′′(|x2|)

)
χ2 + ϕ(x1)c(a(x1, |x2|))

)
,

where ϕ is a non-negative C∞ function such that spt(ϕ) ⊂ (1 − ε′, 1 − ε) and c is to be de-
termined in such a way that ∫

∆a

f+ =

∫
∆a

f− for all a ∈ (0, 1),

which is equivalent to say that

−
∫

∆a

((ψζ)′′(x1) + η′′(x2))χ2(x1, x2) dx1 dx2 =

∫
∆a

ϕ(x1)c(a(x1, x2)) dx1 dx2, for all a ∈ (0, 1).
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Differentiating this equality with respect to a, we get

c(a) =
−
∫ 1
−a(γ(x1 + a) + a)((ψζ)′′(x1) + η′′(a

γ

2 (x1 + a)))χ2(x1,
aγ

2 (x1 + a)) dx1∫ 1
−a(γ(x1 + a) + a)ϕ(x1) dx1

, ∀ a ∈ (0, 1).

By (5.9), we have

−
∫ 1

−a
(γ(x1 +a)+a)(ψζ)′′(x1) dx1 =

∫ 1

−a
(γ(x1 +a)+a)η′′

(
aγ

2
(x1 +a)

)
dx1, for all a ∈ (0, 1).

Hence, for a < ε, we get

c(a) =

∫ 1
−a(γ(x1 + a) + a)η′′(a

γ

2 (x1 + a))(1− χ2(x1,
aγ

2 (x1 + a))) dx1∫ 1
−a(γ(x1 + a) + a)ϕ(x1) dx1

and

c′(a) =
1∫ 1

−a(γ(x1 + a) + a)ϕ(x1) dx1

(
(γ+1)

∫ 1

−a
η′′
(
aγ

2
(x1+a)

)(
1−χ2

(
x1,

aγ

2
(x1+a)

))
dx1

+
aγ−1

2

∫ 1

−a
(γ(x1+a)+a)2η′′′

(
aγ

2
(x1+a)

)(
1−χ2

(
x1,

aγ

2
(x1+a)

))
dx1−(γ+1)

(∫ 1

−a
ϕ(x1)dx1

)
c(a)

− aγ−1

2

∫ 1

−a
(γ(x1 + a) + a)2 η′′

(
aγ

2
(x1 + a)

)
∂x2χ2

(
x1,

aγ

2
(x1 + a)

)
dx1

)
.

Using (5.33), we infer that

c′(a) ≤ Ca

and,

||∇(ϕ c(a))||pLp(∆) ≈
∫ 1−ε

1−ε′

∫ ε

0

(
ϕ(x1)p

|c′(a)|p

J(t, a)p
+|∇ϕ(x1)|p|c(a)|p

)
dx2 dx1 ≈

∫ ε

0

1

a1−(γ−(γ−2)p)
da.

Hence, for γ > 2,

f− ∈W 1, γ
γ−2
−ε

(R2), for all ε > 0.



106 5. LACK OF REGULARITY OF THE TRANSPORT DENSITY

Similarly, we get that for γ = 1
2 : f− ∈ C∞(R2), for γ = 1 : f− ∈ C2,1(R2), for 1 < γ < 2 :

f− ∈ C1, 2
γ
−1

(R2) and, finally, for γ = 2 : f− ∈ C0,1(R2).



CHAPTER 6

Boundary-to-boundary transport densities, and applications to
the BV least gradient problem in 2D

The least gradient problem (minimizing the BV norm with given boundary data) is known to be equiv-

alent, in the plane, to the Beckmann minimal-flow problem with source and target measures located on

the boundary of the domain. Motivated by this fact, we prove Lp summability results for the solution

of the Beckmann problem in this setting, which improve upon previous results where the measures were

themselves supposed to be Lp. This provides results about the W 1,p regularity of the solution of the least

gradient problem in uniformly convex domains.

This chapter is taken from a joint article with F. Santambrogio, [56].

6.1. Introduction

A classical problem in calculus of variations, which is of interest both with applications in
image processing but also for its connection with minimal surfaces, is the so-called least gra-
dient problem, considered for instance in [65, 94, 89, 108, 91, 12]. This is the problem of
minimizing the total variation of the vector measure ∇u among all BV functions u defined on
an open domain Ω with given boundary datum. If we consider

(6.1) inf

{
|∇u|(Ω) : u ∈ BV (Ω), u|∂Ω = g

}
,

where u|∂Ω denotes the trace of u in the sense of BV functions and |∇u| denotes the total
variation measure of ∇u, this problem relaxes into

(6.2) min

{
|∇u|(Ω) +

∫
∂Ω
|u|∂Ω − g|dHd−1 : u ∈ BV (Ω)

}
.

This can also be expressed in the following way: extend g into a BV function g̃ defined on
a larger domain Ω′, and then consider

(6.3) min

{
|∇u|(Ω) : u ∈ BV (Ω′), u = g̃ on Ω′ \ Ω

}
.

107
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The boundary datum g should be taken as a possible trace of BV functions, i.e. in L1(∂Ω),
yet, the fact that the (a) solution u to (6.2) and (6.3) satisfies or not u|∂Ω = g could depend on
g (and on the domain). In case we have u|∂Ω = g, then u is also a solution of (6.1). In [64], the
author proves existence of solutions to (6.1) for boundary data in BV (∂Ω), while, in [106], the
authors give an example of a function g such that (6.1) has no solution (g was chosen to be the
characteristic function of a certain fat Cantor set, which does not lie in BV (∂Ω)).

In this chapter the least gradient problem will only be considered in the planar case Ω ⊂ R2,
and the boundary datum g will be at least in BV (∂Ω) (something which makes perfectly sense,
since ∂Ω is a closed curve, and we are just speaking about BV functions in 1D).

Following [65], we can see that there is a one-to-one correspondence between vector measures
∇u in (6.3) (considered as measures on Ω, so that we also include the part of the derivative of u
which is on the boundary, i.e. the possible jump from u|∂Ω to g) and vector measures w satisfy-

ing, in Ω, ∇·w = f where f is the measure obtained as the tangential derivative of g ∈ BV (∂Ω);
moreover, the mass of ∇u and of w are the same. Indeed, one just needs to take w = Rπ

2
∇u,

where Rθ denotes a rotation with angle θ around the origin, and w solves the Beckmann problem

(6.4) inf

{
|w|(Ω) : w ∈M2(Ω), ∇ · w = f

}
,

where we denote by M2(Ω) the space of finite vector measures on Ω valued in R2. If we
identify f = ∂g/∂t (t := R−π

2
n standing for the tangent vector to ∂Ω) with its restriction to the

boundary, we can also write the condition ∇ · w = f as ∇ · w = 0 in Ω, w · n = f on ∂Ω (when
we write ∇ · w = f we mean

∫
∇ϕ · dw = −

∫
ϕdf for every smooth test function ϕ, without

imposing ϕ to have compact support, i.e. we also include boundary conditions).

The study of the least gradient problem can consequently be done by studying (6.4), and the
question whether (6.1) has a solution becomes whether the solution to (6.4) gives mass to the
boundary or not.

From Chapter 2, we have already seen that the Beckmann problem is strongly related to optimal
transport theory, and is in some sense equivalent to the Monge-Kantorovich problem

(6.5) min

{∫
Ω×Ω
|x− y| dγ : γ ∈M+(Ω× Ω), (Πx)#γ = f+ and (Πy)#γ = f−

}
,

where f± represent the positive and negative parts of f , i.e. two positive measures with the
same mass. The scalar measure σ = |w| obtained from an optimal w is the transport density
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(see (2.1)). Of course, Lp summability of σ is equivalent to W 1,p regularity of the optimal u.
From Propositions 2.3 & 2.4, we have the following Lp summability results on the transport
density σ: in dimension d, for p < d/(d − 1), we have w ∈ Lp as soon as at least one between
f+ or f− is in Lp, while for general p (including p = ∞), this is proven when both f+ and
f− belong to Lp(Ω). But in the case of interest for applications to the least gradient problem,
the measures f± are singular (they are concentrated on the negligible set ∂Ω). The only result
obtained so far with measures concentrated on the boundary is the one that we presented in
Chapter 3, where we considered the case where f− is the projection of f+ on ∂Ω. On the other
hand, this is far from the setting that we want to study now, since, first, in Chapter 3, only one
of the two measures is on ∂Ω and, second, it is not an arbitrary measure but it is chosen to be
the projection of the other.

We can say that, so far, the Lp summability of w in the case where both the measures f+ and
f− are concentrated on the boundary is unknown. In particular, we do not know whether the
optimal flow w belongs or not to Lp(Ω,Rd) provided f± ∈ Lp(∂Ω).

The goal of the present chapter is exactly to investigate this kind of Lp summability results
under suitable assumptions on the domain Ω, and then applying them to the W 1,p regularity of
the solution of (6.1).

This chapter is organized as follows. In Section 6.2, we adapt some well known facts concerning
the usual Monge-Kantorovich problem to the precise setting of transport from the boundary
to the boundary. In Section 6.3, we show positive results on the Lp summability of σ in the
transport from a measure on the boundary to a measure on the boundary of a uniformly convex
domain, in arbitrary dimension d ≥ 2. In particular, we see that f± ∈ Lp(∂Ω) ⇒ σ ∈ Lp(Ω)
holds for p ≤ 2 (to go beyond L2 summability one needs extra regularity of the data). Section
6.4 gives indeed a counter-example where f ∈ L∞ but σ /∈ Lp for any p > 2. Section 6.5
summarizes the applications, in the case d = 2, of these results to the least gradient problem.
Finally, Section 6.6 is devoted to the study of the anisotropic case.

Many of the results that we recover were already known thanks to different methods, but we
believe that the connection with optimal transport and the technique we develop are interesting
in themselves. Moreover, we believe that the following one is novel: if Ω is a uniformly convex
domain in dimension 2, p ≤ 2 and g ∈ W 1,p(∂Ω), then the solution to (6.1) exists, is unique,
and belongs to W 1,p(Ω) (this is our Theorem 6.11).

6.2. Monge-Kantorovich and Beckmann problems from boundary to boundary

We begin this section by recalling that an optimal transport map T for the Monge problem
from f+ onto f− exists as soon as f+ � Ld (see Theorem 1.6). Since we are interested in
transport problems where f+ is concentrared on the negligible set ∂Ω, we will see later that the
same is also true in other cases without absolutely continuous measures, and in particular in the
case of interest for us.
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On the other hand, we also recall that every solution of the Beckmann problem (6.4) is of
the form w = wγ (see (2.6)) for an optimal transport plan γ (see Proposition 2.6). As in general
Problem (6.5) can admit several different solutions, also (6.4) can have non-unique solutions.
Yet, it is possible to prove that when either f+ or f− are absolutely continuous measures, then
all different optimal transport plans γ induce the same vector measure wγ ; but, this is not the
case now as both f+ and f− are concentrated on the boundary.

So, when the measures f+ and f− are concentrated on the boundary, we do not know yet,
for instance, if an optimal transport map T between them exists or not, or if we have unique-
ness of the transport density. Let us prove that any optimal γ in this case is induced by a
transport map, which also implies uniqueness of γ and of σγ . We first start from the case
d = 2, which is easier to deal with.

From now on we will suppose the condition that f+ and f− have no common mass, which
means that there exist two disjoint sets A+ and A− contained in ∂Ω with f± concentrated
on A± (beware that these sets are not necessarily the two supports of f+ and f−).

Proposition 6.1. Suppose that Ω is strictly convex, and d = 2. Then, if f+ is atomless
(i.e., f+({x}) = 0 for every x ∈ ∂Ω) and f+ and f− have no common mass, there is a unique
optimal transport plan γ for (6.5), between f+ and f−, and it is induced by a map T .

Proof. Let γ be an optimal transport plan between f+ and f−. Let D be the set of
double points, that is those points whose belong to several transport rays. Take x ∈ D and let
r±x be two different transport rays starting from x. Let ∆x ⊂ Ω be the region delimited by r+

x ,
r−x and ∂Ω. As Ω is strictly convex, then we see easily that |∆x| > 0 and the interior parts of
all these sets ∆x, x ∈ D, are disjoint. This implies that the set D is at most countable and
so f+(D) = 0 as f+ is atomless. On the other hand, for every x ∈ A+ \ D there is a unique
transport ray rx starting from x, and this ray rx intersects A− in - at most - one point, which
will be denoted by T (x). Hence, we get that γ = (Id, T )#f

+, which is equivalent to saying that
γ is, in fact, induced by a map T . The uniqueness follows in the usual way: if two plans γ and
γ′ optimize (6.5), the same should be true for (γ + γ′)/2. Yet, for this measure to be induced
by a map, it is necessary to have γ = γ′. �

The higher-dimensional counterpart of the above result should replace the assumption that f+

is atomless with the assumption that f+ gives no mass to (d− 2)-dimensional sets (i.e. sets of
codimension 1 within the boundary). Yet, this seems more complicated to prove, and we will
just stick to an easier result, in the case where f+ is absolutely continuous w.r.t. to the Hd−1

measure on ∂Ω (that we simply write f+ ∈ L1(∂Ω)).

Proposition 6.2. Suppose that Ω is strictly convex, and d ≥ 2. Then, if f+ ∈ L1(∂Ω)
and f+ and f− have no common mass, there is a unique optimal transport plan γ for (6.5),
and it is induced by a map T .
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Proof. Let γ be an optimal transport plan between f+ and f−. According to the strategy
above, it is enough to prove that for f+-a.e. x ∈ A+ there is at most a unique point y ∈ A− such
that (x, y) ∈ spt γ. We will parametrize A± via variables s± ∈ Rd−1. This is for sure possible
since both A± do not fill the whole boundary ∂Ω, and every proper subset of such a boundary
is homeomorphic to a subset of Rd−1, via an homeomorphism which can also be chosen to be
locally bi-Lipschitz. Up to removing a negligible set, we can also assume that it is differentiable
everywhere. Under this parameterization, we face a new transport problem in Rd−1, with a new
cost function c(s+, s−) := |x(s+) − y(s−)|, where s+ 7→ x(s+) and s− 7→ y(s−) are the above
parameterization of A+ and A−.

Using standard arguments from optimal transport theory (see [103, Chapter 1]) one can see
that the Kantorovich potentials in this new transport problem are locally Lipschitz continuous,
and hence differentiable a.e. Thus it is enough to check that c satisfies the twist condition to
prove that γ is necessarily induced by a map T , and that it is unique. Computing the gradient
of c w.r.t. the variable s+ one gets

∇s+c(s+, s−) =
x(s+)− y(s−)

|x(s+)− y(s−)|
Dx(s+),

where Dx(s+) is the Jacobian matrix of the diffeomorphism x. We need to prove that this
expression is injective in s−. Having two different values of s− (say, s−0 and s−1 ) where these ex-
pressions coincide means, using that s+ 7→ x(s+) is a diffeomorphism, that the two unit vectors
x(s+)− y(s−i )/|x(s+)− y(s−i )| have the same projection onto the tangent space to ∂Ω at x(s+)

(note that, from A+ ∩A− = ∅, we can assume x(s+) 6= y(s−i )). Since they are unit vectors, and
they both point to the interior of Ω, which is convex, then they should fully coincide. But this
means that the direction connecting x(s+) to the points y(s−i ) is the same, and since all these

points lie on the boundary of a strictly convex domain, we have y(s−0 ) = y(s−1 ). �

For the sake of the next section, we want stability results on the transport density. Suppose that
f+ and f− are fixed, and that a unique optimal transport plan γ exists in the transportation
from f+ to f−. In this case we will directly write σ instead of σγ , if no ambiguity arises. Given
the optimal transport plan γ, let us define the measure ft via

(6.6) ft = (Πt)#(|x− y| · γ)

where Πt(x, y) := (1 − t)x + ty. From (2.1), the transport density σ may be easily written
as

σ =

∫ 1

0
ft dt.

We also define a sort of partial transport density that will be useful in the sequel: given τ ≤ 1, set
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(6.7) σ(τ) =

∫ τ

0
ft dt.

Note that σ(τ) really depends on γ, i.e., differently from σ, it is not in general true that dif-
ferent optimal plans γ induce the same σ(τ). On the other hand, we will only use this partial
transport density in cases where the optimal γ is unique. In this case we can also obtain

Proposition 6.3. Suppose f+ ∈ M+(Ω) is fixed and f−n ⇀ f−. Let γn be an optimal
transport plan between f+ and f−n and suppose that there is a unique optimal transport plan

between f+ and f−. Fix τ ≤ 1 and define σ
(τ)
n according to (6.6) and (6.7) using γn, and σ(τ)

using γ. Then, we have σ
(τ)
n ⇀ σ(τ).

Proof. This is a simple consequence of Proposition 1.3, of the continuity of the function
(x, y) 7→ |x− y|, and of the uniqueness of the optimal γ. �

6.3. Lp summability of boundary-to-boundary transport densities

In all that follows, Ω is a compact and uniformly convex domain in Rd, f+ and f− are two
non-negative Borel measures concentrated on the boundary, and at least one of them will belong
to L1(∂Ω). Since we are only interested in the transport density between these two measures,
we can always assume that they have no common mass, as the transport density only depends
on the difference f+ − f− and common mass can be subtracted to both of them. Then, by
Propositions 6.1 and 6.2, there will exist one unique optimal transport plan between these two
measures. We will make use of the transport density σ and of σ(τ), defined in (6.7) and provide
estimate on them. The main point is the following estimate.

Proposition 6.4. Suppose that the domain Ω is uniformly convex, with all its curva-
tures bounded from below by a constant κ > 0, take p > 1 and f+ ∈ Lp(∂Ω). Moreover, if
p > 2 also suppose

∫
f+(x)pd(x, spt(f−))2−pdHd−1(x) < +∞. Then, there exists a constant

C = C(κ,diam(Ω)) such that we have

∫
Ω
|σ(τ)|pdx ≤ C

(∫ τ

0

1

(1− t)(d−1)(p−1)
dt

)∫
∂Ω
f+(x)pD(x)2−pdHd−1(x),

where D(x) := |x − T (x)| is the distance between each point x ∈ ∂Ω and its image T (x) in
the optimal transport map which induces the optimal plan γ.

Proof. Following the same strategy as in Chapter 2, we first assume that the target measure
f− is finitely atomic (the points (xj)j=1,...,m being its atoms). Let T be the optimal transport
map from f+ onto f−. For all j ∈ {1, ...,m}, consider T−1({xj}) ⊂ ∂Ω, and partition it in
finitely many smaller part, so that each can be represented by a single smooth chart parameter-
izing a part of ∂Ω. We will call (χi)i=1,...,n these parts. Let us call Ωi the union of all transport
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rays starting from points in χi, all these rays pointing to a common point xj(i) (but we will

write xi for simplicity). Call Ω
(τ)
i the set of points of the form (1 − t)x + txi, with x ∈ χi

and t ≤ τ . The sets Ωi (and hence also Ω
(τ)
i ) are essentially disjoint (the mutual intersections

between them are Lebesgue-negligible). Set σ
(τ)
i := σ(τ) Ωi, for every i ∈ {1, ..., n}. Of course,

σ
(τ)
i is concentrated on Ω

(τ)
i . In order to get Lp estimates on σ(τ), we want to give an explicit

formula of each σ
(τ)
i . Fix i ∈ {1, ..., n} and let αi be a regular function such that, up to choosing

a suitable system of coordinates, χi is contained in the graph of s 7→ αi(s), with s ∈ χ̃i ⊂ Rd−1

(hence, the sets χ̃i are the (d− 1)-dimensional domains where the charts are defined). For every

y ∈ Ω
(τ)
i , there are a unique point x = (s, αi(s)) ∈ χi and t ∈ [0, τ ] such that

y := (y′, yd) = (1− t)x+ txi = ((1− t)s+ tx′i, (1− t)αi(s) + txi,d),

where we write xi := (x′i, xi,d) by separating the last (vertical) coordinate from the others.
For all ϕ ∈ C(Ωi), we get

∫
Ωi

ϕ(y) dσ
(τ)
i (y) =

∫
χi

∫ τ

0
ϕ((1− t)x+ txi)|x− xi|dtdf+(x)

=

∫
Ω

(τ)
i

ϕ(y)
|(s, αi(s))− xi| f+(s, αi(s))

√
1 + |∇αi(s)|2

Ji(t, s)
dy,

where Ji(t, s) := | det(D(s,t)(y
′, yd))|.

Hence,

σ(τ)(y) =
|(s, αi(s))− xi| f+(s, αi(s))

√
1 + |∇αi(s)|2

Ji(t, s)
, for a.e. y ∈ Ω

(τ)
i .(6.8)

Then, we have

||σ(τ)||pLp(Ω) =

n∑
i=1

∫
χ̃i

∫ τ

0
σ(τ)((1− t)x+ txi)

pJi(t, s) dtds

=
n∑
i=1

∫
χi

∫ τ

0

|x− xi|pf+(x)
p
(1 + |∇αi(s)|2)

p−1
2

Ji(t, s)p−1
dt dHd−1(x).

Compute

D(s,t)(y
′, yd) =

(
(1− t)I x′i − s

(1− t)∇αi(s) xi,d − αi(s)

)
,
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where I is the (d − 1) × (d − 1) identity matrix. Up to considering sets χi which are very
small, each one close to a point x ∈ ∂Ω, and choosing a coordinate system where the verti-
cal coordinate is parallel to the normal vector to ∂Ω at x, we can assume that ∇αi(s) is very
small. At the limit, we can compute the above determinant as if it vanished, and thus we get
Ji(t, s) = (1− t)d−1(xi,d − α(s)) (as well as 1 + |∇αi(s)|2 = 1). This allows to write the change-
of-variable coefficients in an intrinsic way, and thus obtain

||σ(τ)||pLp(Ω) =
n∑
i=1

∫
χi

∫ τ

0

|x− xi|pf+(x)
p

(1− t)(d−1)(p−1)
(
(xi − x) · n(x)

)p−1 dtdHd−1(x),

where n(x) is the inward normal vector to ∂Ω at x. Using the lower bound on the curva-
ture of ∂Ω we have, for every pair of points x and xi on ∂Ω:

(xi − x) · n(x) ≥ c|x− xi|2,

for a constant c = c(diam Ω, κ). Using then xi = T (x) for x ∈ χi, this provides the desired
formula

||σ(τ)||pLp(Ω) ≤ C
∫
∂Ω

∫ τ

0

|x− T (x)|2−pf+(x)
p

(1− t)(d−1)(p−1)
dtdHd−1(x).

This gives the desired result when f− is atomic. If not, take a sequence (f−n )n of atomic
measures converging to f− and concentrated on spt(f−). Call Tn the optimal maps from f+ to

f−n and Dn(x) = |x−Tn(x)|. By Proposition 6.3, the partial transport densities σ
(τ)
n converge to

the corresponding partial transport density σ(τ) and by Proposition 1.3 the optimal transport
maps Tn also converge a.e. to the optimal transport map T inducing γ (up to extracting a sub-
sequence, since L2(f+) convergence implies a.e. convergence up to a subsequence). Moreover,
we have

∫
∂ΩDn(x)2−pf+(x)

p
dHd−1(x) →

∫
∂ΩD(x)2−pf+(x)

p
dHd−1(x) by dominated conver-

gence, using either p ≤ 2 and f+ ∈ Lp(∂Ω) or
∫
∂Ω d(x, spt(f−))2−pf+(x)

p
dHd−1(x) < +∞,

according to our assumptions. Using semicontinuity on the left hand side, we get

||σ(τ)||pLp(Ω) ≤ lim inf
n
||σ(τ)

n ||
p
Lp(Ω) ≤ C

(∫ τ

0

1

(1− t)(d−1)(p−1)
dt

)∫
∂Ω
D(x)2−pf+(x)

p
dHd−1(x)

and the result is proven in general. �

From the above estimate, we can deduce many integrability results.
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Proposition 6.5. Suppose d ≥ 2 and f+ ∈ Lp(∂Ω) with p < d/(d− 1). Then, the trans-
port density σ between f+ and any f− ∈M+(∂Ω) is in Lp(Ω).

Proof. Note that our assumption on p implies p < 2. To prove this result it is enough to

use Proposition 6.4 with τ = 1, since in this case the integral
∫ 1

0
1

(1−t)(d−1)(p−1) dt converges, and

the term D(x)2−p is bounded. �

Proposition 6.6. Suppose that f+, f− ∈ Lp(∂Ω) with p ≤ 2. Then, the transport density
σ between these two measures is in Lp(Ω).

Proof. In this case the integral in the estimate of σ = σ(τ) with τ = 1 diverges, so we
need to adapt our strategy. Following again Chapter 2, we write

σ = σ+ + σ−,

where σ+ = σ(1/2) and σ− = σ − σ(1/2). In this case the Lp summability of f+ guarantees that
of σ+ since p ≤ 2 implies that D(x)2−p is bounded. Symmetrically, the Lp summability of f−

guarantees that of σ−. Note that, thanks to Propositions 6.1 and 6.2, we do not face the same
difficulties as in Chapter 2, where it was not obvious to glue together estimates on σ+ obtained
by approximating f− and estimates on σ− coming from the approximation of f+. �

We will see in Section 6.4 that the same result is false for p > 2, and that in order to obtain
higher integrability we need to assume much more on f+ and f−.

Remark 6.7. We do not discuss it here in details, but the summability result also works
for Orlicz spaces with growth less than quadratic, i.e. we have, for every convex and superlinear
function Ψ = R+ 7→ R+ with Ψ(s) ≤ C(s2 + 1),

∫
Ω

Ψ(σ(x))dx ≤ C
∫
∂Ω

Ψ(|f(x)|)dHd−1(x) + C.

This can be proven in similar ways with suitable manipulations on the function Ψ. In par-
ticular, this implies that f ∈ L1(∂Ω)⇒ σ ∈ L1(Ω).

Proposition 6.8. Suppose that f+, f− ∈ C0,α(∂Ω) for 0 < α ≤ 1. Then, the transport
density σ between these two measures is in Lp(Ω) for p = 2/(1− α) (with p =∞ for α = 1).

Proof. First, we check that we can apply Proposition 6.4, since in this case we need to
use p = 2/(1 − α) > 2. Consider a point x with f+(x) > 0, and take a point y ∈ spt(f−)
with |x − y| = d(x, spt(f−)). Then we have f+(y) = 0 (since f+ and f− have no mass in
common) and f+(x) = |f+(x) − f+(y)| ≤ C|x − y|α. This provides d(x, spt(f−))2−pf+(x)

p ≤
Cd(x, spt(f−))2−p+pα. With our choice of p, this quantity is bounded since the exponent is non-
negative (for α < 1 the choice p = 2/(1−α) provides a zero exponent; for α = 1 this exponent
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is equal to 2 for any p). This in particular guarantees
∫
∂Ω d(x, spt(f−))2−pf+(x)

p
dHd−1(x) <

+∞. Of course, the same can be performed on f−. Then, the same strategy as in Proposition
6.6 shows

||σ||pLp(Ω) ≤ C
(∫

∂Ω
|D(x)|2−pf+(x)

p
dHd−1(x) +

∫
∂Ω
|D−(x)|2−pf−(x)

p
dHd−1(x)

)
,

where D−(x) := |x−T−1(x)| is defined as D(x), but relatively to f−. Using D(x) = |x−T (x)| ≥
d(x, spt(f−)), the quantity D(x)2−pf+(x)

p ≤ CD(x)2−p+pα is bounded. Since a similar argu-
ment can be performed on f−, we obtain finiteness of the norm ||σ||Lp(Ω) (and for α = 1 we
obtain σ ∈ L∞ by passing to the limit p→∞). �

6.4. Counter-example to the L2+ε summability

In this section, we show that the Lp estimates for the transport density, in the case where
p > 2, fail even if we assume f± ∈ L∞(∂Ω). More precisely, we will construct an example of f±,
where f± ∈ L∞(∂Ω), but the transport density σ between them does not belong to L2+ε(Ω) for
any ε > 0. For simplicity, this will be done in dimension d = 2.

Let Ω be a disk and let (χ±n )n be a sequence of arcs in ∂Ω such that H1(χ±n ) = εn, for
some sequence εn to be chosen later. We will put these arcs one after the other, so that they
only have endpoints in common, and we assume that they are ordered in the following way:
χ+
n−1, χ

−
n−1, χ

−
n , χ

+
n , χ

+
n+1, χ

−
n+1, for all n (see Figure 1).

χ+
n−1

χ−n−1

χ−n

χ+
n

χ+
n+1

χ−n+1

∆n

Figure 1

Set f± = 1χ± , where χ± = ∪nχ±n , and let T be the optimal transport map from f+ to f−.

Correspondingly, let σ be the transport density. We see easily that the restriction of T to χ+
n

is the optimal transport map Tn between f+
n and f−n , where f±n is the restriction of f± to χ±n .

Moreover, if we denote by ∆n the union of all transport rays from f+
n onto f−n , then the restric-

tion of the transport density σ to ∆n is the transport density σn between f+
n and f−n . We want

to compute this density σn. Let s 7→ αn(s) be a parameterization of χ+
n ∪χ−n where s = 0 corre-

sponds to the boundary point between the two arcs. It is clear that Tn(s, αn(s)) = (−s, αn(s)),
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for all s ∈ [0, εn]. Then, for every y ∈ ∆n, there is a unique (t, s) ∈ [0, 1]× [0, εn] such that

y := (y1, y2) = (1− t)(s, αn(s)) + t(−s, αn(s)) = ((1− 2t)s, αn(s)).

Hence, for every ϕ ∈ C(∆n), we have

∫
∆n

ϕ(y)σn(y) dy =

∫
χ+
n

∫ 1

0
ϕ((1− t)x+ tTn(x))|x− Tn(x)|f+

n (x) dtdx

=

∫ εn

0

∫ 1

0
ϕ((1− 2t)s, αn(s)) 2s

√
1 + α ′n(s)2 dt ds

=

∫
∆n

ϕ(y)
2s
√

1 + α ′n(s)2

Jn(t, s)
dy,

where Jn(t, s) := |det(D(t,s)(y1, y2))| on ∆n.

Then, we get

σn(y) =
2s
√

1 + α ′n(s)2

Jn(t, s)
, for a.e. y ∈ ∆n.

Consequently, we obtain

||σ||pLp(Ω) =

∞∑
n=1

∫ εn

0

∫ 1

0
σn((1− 2t)s, αn(s))pJn(t, s) dt ds

≈
∞∑
n=1

∫ εn

0

∫ 1

0

sp

Jn(t, s)p−1
dt ds.

Computing

D(t,s)(y1, y2) =

(
−2s 1− 2t

0 α ′n(s)

)
,

we get

Jn(t, s) = 2s α ′n(s) ≈ s2.



118 6. W 1,p BOUNDS FOR THE BV LEAST GRADIENT PROBLEM IN 2D

Finally, we have

||σ||pLp(Ω) ≈
∞∑
n=1

ε3−p
n .

This immediately shows that with this construction we cannot have σ ∈ L3. Moreover, it
is enough to choose a sequence εn satisfying

∞∑
n=1

εn < +∞,
∞∑
n=1

εβn = +∞

for all β < 1, to prove σ /∈ Lp(Ω) for all p > 2. Take for instance εn = 1
n(log(1+n))2 .

6.5. Applications to the BV least gradient problem

We collect in this section some corollaries of the results of the previous sections, which give
interesting proofs for some properties of the BV least gradient problem in dimension d = 2.
We need to restrict to d = 2 because only in this framework rotated gradients have prescribed
divergence.

In all the cases, we will suppose g ∈ BV (∂Ω). Note that this assumption is required to ap-
ply the classical theory of optimal transport to f = ∂tg; this requires to transport a measure
onto another. If g was only in L1(∂Ω), then f would be the (one-dimensional) derivative of an
L1 function, i.e. an element of the dual of Lipschitz functions (since W−1,1 = (W 1,∞)′). It is
not surprising that a Monge-Kantorovich theory is also possible in this case (because formula
(1.2) characterizes the transport cost as the dual norm to the Lipschitz norm), see [16], but no
estimates are possible.

Proposition 6.9. If Ω ⊂ R2 is strictly convex and g ∈ BV (∂Ω), then Problem (6.1) has a
solution (i.e. Problems (6.2) and (6.3) have a solution whose trace is g).

Proof. We have already discussed the fact that we just need to exclude that the solution
of (6.2) or (6.3) has a part of its distributional derivative on the boundary. After the rotation,
this means that its trace agrees with g if and only if σ(∂Ω) = 0. Yet, in strictly convex domains,
the transport density does not give mass to the boundary, because of the representation formula
(2.2). �

Proposition 6.10. If Ω ⊂ R2 is strictly convex, and g ∈ (BV ∩ C0)(∂Ω), then Problem
(6.1) has a unique solution.

Proof. Using again the rotation trick, we just need to prove uniqueness of the transport
density. The condition g ∈ C0 implies that its tangential derivative has no atoms, and we can
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apply Proposition 6.1. �

The following result is probably the main contribution of this chapter to the understanding of
the least gradient problem, as we are not aware of similar results already existing in the literature.

Theorem 6.11. If Ω ⊂ R2 is uniformly convex, and g ∈ W 1,p(∂Ω) with p ≤ 2, then the
unique solution of Problem (6.1) belongs to W 1,p(Ω).

Proof. Setting f = ∂tg and using f+ and f− as its positive and negative parts, the condi-
tion g ∈ W 1,p(∂Ω) implies f± ∈ Lp(∂Ω). Hence, Proposition 6.6 implies σ ∈ Lp(Ω), and then
∇u ∈ Lp(Ω,R2). �

Proposition 6.12. Even if Ω ⊂ R2 is a disk, for every p > 2 there exists g ∈ Lip(∂Ω) such
that the unique u solution of Problem (6.1) is not in W 1,p(Ω).

Proof. It is enough to take g as the antiderivative of the function f = f+ − f− of the
counter-example of Section 6.4. �

Proposition 6.13. If Ω ⊂ R2 is uniformly convex, and g ∈ C1,α(∂Ω) with α < 1, then the
unique solution of Problem (6.1) belongs to W 1,p(Ω) for p = 2/(1− α).

Proof. This is a consequence of Proposition 6.8. �

Remark 6.14. Note that the above W 1,p regularity also implies Hölder bounds, since in
dimension d = 2 we have W 1,p ⊂ C0,1−2/p. In particular, using p = 2/(1 − α), we get
g ∈ C1,α(∂Ω) ⇒ u ∈ C0,α(Ω). Yet, this bound is not optimal, as it is known (see, for in-

stance, [108]) that we have g ∈ C1,α(∂Ω)⇒ u ∈ C0,(α+1)/2(Ω). It is interesting to note that one

would obtain exactly the desired C0,(α+1)/2 behavior if it was possible to use the Sobolev injection
of W 1,p corresponding to dimension 1 instead of dimension 2. This seems reasonable, using the
fact that level lines of u are transport rays in the transport problem from f+ to f−, hence are
line segments, but it is not easy to justify and goes beyond the scopes of this chapter.

Proposition 6.15. If Ω ⊂ R2 is uniformly convex, and g ∈ C1,1(∂Ω), then the unique
solution of Problem (6.1) is Lipschitz continuous.

Proof. This is also a consequence of Proposition 6.8. �

Remark 6.16. Note that the above Lipschitz result is optimal, and perfectly coherent with
the theory involving the bounded slope condition (see, for instance [107, 41]), since C1,1 func-
tions on the boundary of uniformly convex domains satisfy the bounded slope condition (see [66]).

We finish this section with the following last remark.
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Remark 6.17. We observe that we have not used Proposition 6.5 in this Section. Indeed,
in the framework of the least gradient problem assuming assumptions on f+ (i.e. on the posi-
tive part of the tangential derivative of the boundary datum) are not natural at all. Proposition
6.5 has been inserted in Section 6.3 just because it was an easy consequence of Proposition 6.4.
Also consider that a simple result which could have been proven in Section 6.3 was the impli-
cation f± ∈ Lp(∂Ω) ⇒ σ ∈ Lp(Ω) for arbitrary p (including p > 2) under the assumption
spt(f+) ∩ spt(f−) = ∅, but we did not considered it because this assumption, in terms of g, is
very innatural: it would mean that g has some flat regions separating those with positive and
negative derivatives.

6.6. Anisotropic least gradient problem

This section is devoted to the anisotropic least gradient problem [64, 88]. We will show
briefly that all our analysis could be done by replacing the Euclidean norm with another strictly
convex one. Let ϕ be a given norm in R2. So, we consider the following problem

(6.9) inf

{∫
Ω
ϕ(∇u) : u ∈ BV (Ω), u|∂Ω = g

}
,

where
∫

Ω ϕ(∇u) =
∫

Ω ϕ(νu(x)) d|∇u| (νu is the Radon-Nikodym derivative νu = d∇u
d|∇u|) and

g ∈ BV (∂Ω) is a given boundary datum. On the other hand, let || · || be the rotation-norm of
ϕ, i.e., ||ξ|| := ϕ(R−π

2
ξ), for every ξ ∈ R2. Recalling Section 6.1, we can see that the problem

(6.9) is equivalent to the following one

(6.10) inf

{
||w||(Ω) : w ∈M2(Ω), ∇ · w = f

}
,

where we denote by ||w|| the variation measure associated with the vector measure w, and
f = ∂g/∂t. More precisely, if u is a solution for (6.9), then w = Rπ

2
∇u solves (6.10) and, we

have ||w||(Ω) =
∫

Ω ϕ(∇u).

From Section 2.3, we have already seen that the problem (6.10) is also equivalent to the Monge-
Kantorovich problem, with c(x, y) = ||x− y|| as a transport cost,

(6.11) min

{∫
Ω×Ω
||x− y||dγ : γ ∈M+(Ω× Ω), (Πx)#γ = f+ and (Πy)#γ = f−

}
,

where f± represent the positive and negative parts of f . In addition, we showed in Propo-
sition 2.6 that if the norm ϕ (or equivalently, || · ||) is strictly convex, then any optimal flow w
of (6.10) comes from an optimal transport plan γ for (6.11), i.e., w = wγ (see (2.6)).
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Moreover, as soon as f+ is atomless, f+ and f− have no common mass, and Ω is strictly convex,
one can prove, exactly as in Proposition 6.1, that there is a unique optimal transport plan γ
for (6.11), between f+ and f−, and it is induced by a map T . This also gives the uniqueness
of the solution for (6.9).

Hence, it suffices to give Lp estimates on the transport density a := ||w||, where w is the
unique minimizer of (6.10), to get W 1,p estimates on the unique solution u of (6.9). Let T be
the optimal transport map between f+ and f−. Recalling (2.8), the transport density a may
be easily written as

a =

∫ 1

0
ft dt,

where
ft = (Tt)#(||x− T (x)|| · f+)

and
Tt(x) := (1− t)x+ tT (x).

Again, for every τ ≤ 1, we define

a(τ) =

∫ τ

0
ft dt.

Following the same lines of the proof of Proposition 6.4, one can prove, using the fact that
|| · || ≈ | · |, the following estimate∫

Ω
|a(τ)|pdx ≤ C

(∫ τ

0

1

(1− t)(p−1)
dt

)∫
∂Ω

||x− T (x)||p

|x− T (x)|2(p−1)
f+(x)p dHd−1(x)

≈ C

(∫ τ

0

1

(1− t)(p−1)
dt

)∫
∂Ω
|x− T (x)|2−pf+(x)p dHd−1(x).

Recalling also Proposition 6.6, we conclude that the transport density a is in Lp(Ω) as soon
as f± ∈ Lp(∂Ω) with p ≤ 2 and Ω is uniformly convex. Moreover, if f+, f− ∈ C0,α(∂Ω)
for 0 < α ≤ 1, then the transport density a between these two measures is in Lp(Ω) for
p = 2/(1− α) (with p =∞ for α = 1).

In terms of W 1,p regularity for the solution u of (6.9), we infer that u is in W 1,p(Ω) as
soon as g ∈ W 1,p(∂Ω) with p ≤ 2 and Ω is uniformly convex. In addition, if g ∈ C1,α(∂Ω),

then u is in W 1, 2
1−α (Ω), for 0 < α ≤ 1.





CHAPTER 7

Exit-time optimal control problems

The control problems considered in this chapter will be called “exit-time” because the terminal time of

the trajectories is not fixed, but it is the first one at which they reach a given target set. A typical example

is the minimum time problem, where one wants to steer a point to the target in minimal time under some

constraints on the dynamic. It is interesting to observe that the distance function can be regarded as the

value function of a particular minimum-time problem, and so the properties of the distance function may

serve as a guideline for the analysis of the general case. We first study the existence of optimal controls;

then we introduce the value function, show that it solves a Hamilton-Jacobi equation, give a result about

its Lipschitz continuity, analyze the optimality conditions and the properties of optimal trajectories and

prove that the value function is differentiable along optimal trajectories, except possibly their endpoints.

Finally, we prove the semi-concavity of the value function, with respect to x, under much weaker assump-

tions, on the smoothness of the dynamic with respect to time, than those in [37]. Some statements in

this chapter will be similar to those in [37], even if they are stated, here, in the non-autonomous case.

But anyway, the differentiability property and the sharp semi-concavity of the value function seem to be

novel.

The original results in this chapter will be included in a joint paper with G. Mazanti,
in preparation, [57].

7.1. Definition, existence and first properties

We begin by giving the definition of the control systems we are interested in.

Definition 7.1. The control system, we are interested in, consists of a pair (k, U), where
U ⊂ Rd is a compact set and k : R+ × Rd 7→ R+ is a continuous function. The set U is called
the control set, while k is called the dynamic of the system. The state equation associated with
the system is

(7.1)

{
γ′(t) = k(t, γ(t))u(t), for a.e. t ≥ t0,
γ(t0) = x,

where t0 ∈ R+, x ∈ Rd and u : [t0,∞) 7→ U is a measurable function (which is called a
control). We denote the solution of (7.1) by γt0,x,u and we call it the trajectory of the system
corresponding to the initial condition γ(t0) = x and to the control u.

Of course, this is only a very particular example of control system, but it is the simplest one
which allows to study interesting exit time problems. In order to assume that the maximal speed
of the trajectory γt0,x,u is bounded by the dynamic k, we take the control set U = B̄(0, 1).

123
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Moreover, we list some basic assumptions on the dynamic k:

0 < kmin := inf k ≤ kmax := sup k < +∞,(7.2)

|k(t, x1)− k(t, x2)| ≤ Lx |x1 − x2|, for all x1, x2 ∈ Rd and t ∈ R+.(7.3)

Notice that the assumption (7.3) ensures the existence of a unique global solution to the state
equation (7.1) for any choice of t0, x and u. Let Ω be a bounded domain in Rd: for a given
trajectory γ = γt0,x,u of the system, we set

τ t0,x,u = inf{τ ≥ 0 : γt0,x,u(t0 + τ) ∈ ∂Ω},

with the convention τ t0,x,u = +∞ if γt0,x,u(t0 + τ) /∈ ∂Ω for all τ ∈ [0,∞). This means
that we use ∂Ω as a target. We call τ t0,x,u the exit-time of the trajectory. If τ t0,x,u < +∞, we
set for simplicity

γt0,x,uτ := γt0,x,u(t0 + τ t0,x,u)

to denote the point where the trajectory reaches the target ∂Ω. As kmin > 0, one can see
easily that, for all x ∈ Ω and at each time t0 ∈ R+, there is always some control u such that
τ t0,x,u < +∞.

An optimal control problem consists of choosing the control strategy u in the state equation
(7.1) in order to minimize a given functional. Let g : ∂Ω 7→ R+ be a given continuous function.
At each time t0 ∈ R+ and for any initial point x ∈ Ω, we minimize the following quantity

(7.4) τ t0,x,u + g(γt0,x,uτ )

among all controls u. A control u and the corresponding trajectory γt0,x,u are called optimal
for the point x at time t0 if u minimizes (7.4). Now, suppose that

(7.5) |g(x)− g(y)| ≤ λ|x− y|, for all x, y ∈ ∂Ω

with λ < 1
kmax

. We note that this assumption is similar to the one in the problem studied

in Chapter 4. Then, under the assumptions (7.2), (7.3) and (7.5), we have the following exis-
tence result.
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Proposition 7.2. For each time t0 ∈ R+ and for any initial point x ∈ Ω, there exists an
optimal control u for (7.4).

Proof. Let (un)n be a minimizing sequence. We set for simplicity τn := τ t0,x,un , γn :=

γt0,x,un and zn := γt0,x,unτn . As g is continuous on ∂Ω, then (τn)n is bounded and, up to a
subsequence, τn converges to some τ̄ . For each n ∈ N, we can assume that un(t) = 0 for all
t > t0 + τn. In this way, we get that γn converges uniformly to some γ ∈ Lip([t0,∞),Ω) with
|γ′| ≤ kmax. In addition, for a.e. t ∈ (t0,+∞), we have

|γ′n(t)| ≤ k(t, γn(t)).

Letting n→ +∞, we infer that |γ′(t)| ≤ k(t, γ(t)), for a.e. t ∈ (t0,+∞), which is equivalent to
say that there is some control u such that γ is the associated trajectory to u with initial point
x, at time t0. On the other hand, we have

zn → γ(t0 + τ̄),

which implies that γ(t0 + τ̄) ∈ ∂Ω and τ := τ t0,x,u ≤ τ̄ . Yet, it is not possible to have τ < τ̄ .
Indeed, one has

lim
n
τn + g(zn) = τ̄ + g(γ(t0 + τ̄)) ≤ τ + g(γ(t0 + τ)),

which is a contradiction, as g is λ−Lipschitz with λ < 1/kmax. Thus, we have τ = τ̄ and
this completes the proof that γ is an optimal trajectory and u is the associated optimal con-
trol. �

Remark 7.3. The condition that g is λ−Lip with λ < 1
kmax

is crucial for this result.

Without this condition, one should replace τ + g(γ(τ)) with inf{t+ g(γ(t)) : γ(t) ∈ ∂Ω}.

The value function of the problem is defined by

(7.6) ϕ(t0, x) = min{τ t0,x,u + g(γt0,x,uτ ) : u is a control }, t0 ∈ R+, x ∈ Ω.

The first important fact is that the value function ϕ satisfies the so-called dynamic programming
principle:

Lemma 7.4. For any t0 ∈ R+, x ∈ Ω and u : [t0,∞) 7→ B̄(0, 1) a control, we have

ϕ(t0, x) ≤ t− t0 + ϕ(t, γt0,x,u(t)), for all t ∈ [t0, t0 + τ t0,x,u],

with equality if u is optimal.
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Proof. Let u be a control for x, at time t0, and fix t ∈ [t0, t0 + τ t0,x,u]. Set y = γt0,x,u(t)
and let v be an optimal control for y at time t, i.e., we have

ϕ(t, γt0,x,u(t)) = τ t,y,v + g(γt,y,vτ ).

Let us now define the control w as follows

w(s) :=

{
u(s) if s ∈ [t0, t)

v(s) if s ≥ t.

Therefore, one has

γt0,x,w(s) =

{
γt0,x,u(s) if s ∈ [t0, t)

γt,y,v(s) if s ≥ t
and,

ϕ(t0, x) ≤ τ t0,x,w + g(γt0,x,wτ ) = t− t0 + τ t,y,v + g(γt,y,vτ ).

Moreover, if the control u is optimal, then we get

ϕ(t, γt0,x,u(t)) ≤ τ t,y,u + g(γt,y,uτ ) = τ t0,x,u + t0 − t+ g(γt0,x,uτ ) = ϕ(t0, x) + t0 − t. �

Now, we want to show that the value function ϕ is a viscosity solution of a suitable partial
differential equation. In fact, we have the following classical result that we prove for complete-
ness.

Proposition 7.5. The value function ϕ is a viscosity solution of the following Hamilton-
Jacobi equation

(7.7) − ∂tϕ(t, x) + k(t, x) |∇xϕ(t, x)| − 1 = 0, (t, x) ∈ R+ ×
◦
Ω.

Moreover, one has ϕ(t, x) = g(x) for every (t, x) ∈ R+ × ∂Ω.

Proof. First, we prove that ϕ is a viscosity subsolution of (7.7). Let (t0, x0) ∈ R+ ×
◦
Ω

and φ be a C1 function such that φ(t0, x0) = ϕ(t0, x0) and φ(t, x) ≥ ϕ(t, x) for (t, x) in a
neighborhood of (t0, x0). Fix v ∈ Rd with |v| = 1. Let us consider the trajectory γv starting
from x0, at time t0, and corresponding to the constant control v. Hence, by Lemma 7.4, one
has, for h > 0 small enough, that

φ(t0, x0) = ϕ(t0, x0) ≤ h+ ϕ(t0 + h, γv(t0 + h)) ≤ h+ φ(t0 + h, γv(t0 + h))

and so,

0 ≤ h+ h ∂tφ(t0, x0) +

∫ t0+h

t0

γ′v(t) dt · ∇xφ(t0, x0) + o

(
h+

∣∣∣∣∫ t0+h

t0

γ′v(t) dt

∣∣∣∣)
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≤ h+ h ∂tφ(t0, x0) + (∇xφ(t0, x0) · v)

∫ t0+h

t0

k(t, γv(t)) dt+ o(h).

Thus, dividing by h and letting it to 0, one concludes that

1 + ∂tφ(t0, x0) + k(t0, x0)(∇xφ(t0, x0) · v) ≥ 0

and, since v is arbitrary, we then obtain

−∂tφ(t0, x0) + k(t0, x0) |∇xφ(t0, x0)| ≤ 1.

Let us now prove that ϕ is a viscosity supersolution of (7.7). Let (t0, x0) ∈ R+ ×
◦
Ω and φ be a

C1 function such that φ(t0, x0) = ϕ(t0, x0) and φ(t, x) ≤ ϕ(t, x) for (t, x) in a neighborhood of
(t0, x0). Let γ be an optimal trajectory for x0 at time t0. Using Lemma 7.4, for h > 0 small
enough, we have

φ(t0, x0) = ϕ(t0, x0) = h+ ϕ(t0 + h, γ(t0 + h)) ≥ h+ φ(t0 + h, γ(t0 + h)),

which implies that,

0 ≥ h+ h ∂tφ(t0, x0) +

∫ t0+h

t0

γ′(t) dt · ∇xφ(t0, x0) + o

(
h+

∣∣∣∣∫ t0+h

t0

γ′(t) dt

∣∣∣∣)

≥ h+ h ∂tφ(t0, x0)− |∇xφ(t0, x0)|
∫ t0+h

t0

k(t, γ(t)) dt+ o(h).

Thus, again dividing by h and letting it to 0, one concludes that

−∂tφ(t0, x0) + k(t0, x0) |∇xφ(t0, x0)| ≥ 1,

proving that ϕ is a viscosity supersolution of (7.7) on R+ ×
◦
Ω. Finally, the fact that ϕ(t, x) =

g(x), for all (t, x) ∈ R+ × ∂Ω, follows immediately by using the assumption (7.5). �

We denote by D+ϕ the superdifferential of ϕ, i.e., for every (t, x) ∈ R+ × Ω,

D+ϕ(t, x) :=

{
(h, p) ∈ R× Rd : lim sup

(s,y)→(t,x)

ϕ(s, y)− ϕ(t, x)− (h, p) · (s− t, y − x)

|(s− t, y − x)|
≤ 0

}
.

If we consider points along optimal trajectories different from the endpoints, we can prove
that the elements of D+ϕ satisfy also (7.7). So, the following result holds.

Proposition 7.6. Let γ : [t0, t0 + τ0] 7→ Ω be an optimal trajectory for x0, at time t0,
where τ0 = τ t0,x0,u; u being the associated optimal control. Then, for any t ∈ (t0, t0 + τ0), we
have

−pt + k(t, γ(t)) |px| − 1 = 0, for all (pt, px) ∈ D+ϕ(t, γ(t)).
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Proof. Let us take t ∈ (t0, t0 + τ0). We already know from the previous proof that

−pt + k(t, γ(t)) |px| − 1 ≤ 0, for all (pt, px) ∈ D+ϕ(t, γ(t)).

So, it suffices to prove that the converse inequality also holds. First, we observe that, by the
dynamic programming principle,

ϕ(t, γ(t)) = ϕ(t− h, γ(t− h))− h, 0 ≤ h ≤ t− t0.

On the other hand, if (pt, px) ∈ D+ϕ(t, γ(t)), we have

ϕ(t− h, γ(t− h))− ϕ(t, γ(t)) ≤ −pth− px · (γ(t)− γ(t− h)) + o(h).

Therefore, we find that

0 ≤ −pth− px · (γ(t)− γ(t− h))− h+ o(h)

= −pth−
∫ t

t−h
k(s, γ(s)) px · u(s) ds− h+ o(h)

≤ −pth+

∫ t

t−h
sup

s∈[t−h,t]
k(s, γ(s)) |px|ds− h+ o(h)

≤ h(−pt + sup
s∈[t−h,t]

k(s, γ(s)) |px| − 1) + o(h),

which yields the conclusion. �

Let us define now the minimum time function as follows:

T (t, x) = inf{τ t,x,u : u is a control}, (t, x) ∈ R+ × Ω.

An optimal control u in T (t, x) will be called time-optimal control. Notice that we have the
following

Lemma 7.7. For every (t, x) ∈ R+ × Ω, one has T (t, x) ≤ k−1
min d(x, ∂Ω).

Proof. Let γ be a geodesic (which is just a segment) from x to the boundary ∂Ω with
|γ′| = 1. Set γ̃(s) = γ(kmin(s − t)), for all s ∈ [t, t + k−1

min d(x, ∂Ω)]. It is clear that γ̃ is an
admissible trajectory, which means that there is a control u such that γ̃ = γt,x,u. Hence, by
definition of T , we infer that T (t, x) ≤ τ t,x,u = k−1

min d(x, ∂Ω). �

In addition, one can also show that the exit-time of an optimal control for (7.4) can be estimated
by the minimum time function T . More precisely, we have the following
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Proposition 7.8. For every (t, x) ∈ R+ ×Ω, if u is an optimal control for (7.4), then one
has

τ t,x,u ≤ 1 + λkmax

1− λkmax
T (t, x).

Proof. Let u be an optimal control for (7.4) and v be a minimal-time control for (t, x).
Then, we have

τ t,x,u + g(γt,x,uτ ) ≤ τ t,x,v + g(γt,x,vτ )

and so,

τ t,x,u ≤ τ t,x,v + λ|γt,x,vτ − γt,x,uτ | ≤ τ t,x,v + λkmax(τ t,x,v + τ t,x,u).

Consequently, we get

τ t,x,u ≤ 1 + λkmax

1− λkmax
τ t,x,v =

1 + λkmax

1− λkmax
T (t, x). �

Now, we want to give a result about the Lipschitz continuity of the value function ϕ. To do
that, we will, first, introduce the following estimates on the trajectories, which will be repeatedly
used in our analyis.

Proposition 7.9. For every x0, x1 ∈ Ω and t0, t ∈ R+, there exists c := c(t− t0) > 0 such
that

|γt0,x0,u(t)− γt0,x1,u(t)| ≤ c|x0 − x1|

for all controls u : [t0,∞) 7→ B̄(0, 1).

Proof. We have, by (7.3), that

|γt0,x0,u(t)− γt0,x1,u(t)| =

∣∣∣∣x0 − x1 +

∫ t

t0

(k(s, γt0,x0,u(s))− k(s, γt0,x1,u(s)))u(s) ds

∣∣∣∣
≤ |x0 − x1| + Lx

∫ t

t0

|γt0,x0,u(s)− γt0,x1,u(s)| ds.

Using Gronwall’s inequality, we get

|γt0,x0,u(t)− γt0,x1,u(t)| ≤ c |x0 − x1|. �

Now, we are ready to prove the following
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Proposition 7.10. Let our system satisfy properties (7.2), (7.3) & (7.5). Then, the value
function ϕ is Lipschitz continuous in R+ × Ω.

Proof. Take x0, x1 ∈ Ω and t ∈ R+. Suppose, without loss of generality, that ϕ(t, x0) ≤
ϕ(t, x1). Let u be an optimal control for x0 at time t. First, assume that τ0 := τ t,x0,u ≤ τ t,x1,u.
Set y0 := γt,x0,u(t+ τ0) and y1 := γt,x1,u(t+ τ0). Then, by the dynamic programming principle
(see Lemma 7.4), we have

ϕ(t, x1)− ϕ(t, x0) ≤ ϕ(t+ τ0, y1)− g(y0).

Now, let v be a time-optimal control for y1, at time t+ τ0. Then, using Lemma 7.7, we get

ϕ(t, x1)− ϕ(t, x0) ≤ T (t+ τ0, y1) + g(γt+τ0,y1,v
τ ) − g(y0)

≤ k−1
min d(y1, ∂Ω) + λ|γt+τ0,y1,v

τ − y0|

≤ k−1
min |y1 − y0| + λ|γt+τ0,y1,v

τ − y0|.
Since

|γt+τ0,y1,v
τ − y0| ≤ |γt+τ0,y1,v

τ − y1| + |y1 − y0|

≤ kmax T (t+ τ0, y1) + |y0 − y1|

≤
(

1 +
kmax

kmin

)
|y0 − y1|,

we conclude, from Proposition 7.9, that

|ϕ(t, x1)− ϕ(t, x0)| ≤ c|y0 − y1| ≤ c|x0 − x1|.

If τ t,x1,u < τ0: we have

ϕ(t, x1)− ϕ(t, x0) ≤ τ t,x1,u + g(γt,x1,u
τ )− τ t,x0,u − g(y0)

≤ τ t,x1,u − τ0 + λ |γt,x1,u
τ − y0|.

Set y? = γt,x0,u(t+ τ t,x1,u). Then, we have

|γt,x1,u
τ − y0| ≤ |γt,x1,u

τ − y?|+ |y? − y0|

≤ |γt,x1,u
τ − y?|+ kmax(τ0 − τ t,x1,u).

Hence, again by Proposition 7.9, we get



7.1. DEFINITION, EXISTENCE AND FIRST PROPERTIES 131

ϕ(t, x1)− ϕ(t, x0) ≤ (1− λkmax)(τ t,x1,u − τ0) + λ |γt,x1,u
τ − y?|

≤ c|x0 − x1|.

Now, take t0 ∈ R+, x0 ∈ Ω and let u be an optimal control for x0 at time t0. Then, using
Lemma 7.4, one has, for δ > 0 small enough, that

|ϕ(t0 + δ, x0)− ϕ(t0, x0)|

≤ |ϕ(t0 + δ, x0)− ϕ(t0 + δ, γt0,x0,u(t0 + δ))|+ |ϕ(t0 + δ, γt0,x0,u(t0 + δ))− ϕ(t0, x0)|

≤ c|γt0,x0,u(t0 + δ)− x0|+ δ

≤ (1 + c kmax)δ. �

Under the assumptions (7.2), (7.3) and (7.5), we have the following

Proposition 7.11. There exists c > 0 depending only on kmin, kmax, diam(Ω), λ and the
Lipschitz constant Lx of the dynamic k with respect to x, such that, for every x ∈ Ω and
t0, t1 ∈ R+ with t0 6= t1,

(7.8)
ϕ(t1, x)− ϕ(t0, x)

t1 − t0
≥ c− 1.

Proof. Suppose, without loss of generality, that t0 < t1. Let γ1 be an optimal trajectory
for x, at time t1, and u1 be the associated optimal control. Define φ : R+ 7→ R+ as a function
satisfying

(7.9)

 φ′(t) =
k(t, γ1(φ(t)))

k(φ(t), γ1(φ(t)))

φ(t0) = t1.

Set γ0(t) = γ1(φ(t)), for all t ≥ t0. By construction of φ, it is clear that there is a con-
trol u0 such that γ0 = γt0,x,u0 (more precisely, u0(t) = u1(φ(t)), ∀ t ≥ t0). Moreover, we
have τ0 := τ t0,x,u0 = φ−1(t1 + τ1) − t0, where τ1 := τ t1,x,u1 . So, φ(t0 + τ0) = t1 + τ1 and
φ(t0 + τ0) + g(γ0(t0 + τ0)) = t1 + ϕ(t1, x). On the other hand, from (7.9), it is easy to see that,
for all t, t̄ ≥ t0, one has ∫ φ(t̄)

φ(t)
k(s, γ1(s)) ds =

∫ t̄

t
k(s, γ1(φ(s))) ds.
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Now, set

G(θ) =

∫ φ(t̄)

θ
k(s, γ1(s)) ds, ∀ θ ∈ R+.

Then, using that G is bi-Lipschitz, we have

|φ(t)− t| =

∣∣∣∣G−1

(∫ t̄

t
k(s, γ1(φ(s))) ds

)
−G−1

(∫ φ(t̄)

t
k(s, γ1(s)) ds

)∣∣∣∣
≤ C

∣∣∣∣ ∫ t̄

t
k(s, γ1(φ(s))) ds−

∫ φ(t̄)

t
k(s, γ1(s)) ds

∣∣∣∣
≤ C

(
|φ(t̄) − t̄|+

∣∣∣∣ ∫ t̄

t
|k(s, γ1(φ(s)))− k(s, γ1(s))|ds

∣∣∣∣)

≤ C|φ(t̄) − t̄| + C

∣∣∣∣ ∫ t̄

t
|φ(s)− s| ds

∣∣∣∣.
Using the fact that φ(t0) = t1 > t0, we infer that φ(t) > t for every t ≥ t0. Now, set t̄ = t0 + τ0.
Then, by Gronwall’s inequality, we get

φ(t)− t ≤ CeC|t0+τ0−t|(φ(t0 + τ0)− (t0 + τ0)).

Setting t = t0, one has

c(t1 − t0) ≤ φ(t0 + τ0)− (t0 + τ0),

where c > 0 only depends on kmin, kmax, diam(Ω), λ and the Lipschitz constant Lx of the
dynamic k with respect to x. �

The proposition 7.11 yields a lower bound on the time derivative of the value function ϕ,
which can be used to obtain information on the gradient of ϕ thanks to the Hamilton–Jacobi
equation (7.7).

Corollary 7.12. There exists c > 0 (which only depends on kmin, kmax, diam(Ω), λ and
the Lipschitz constant Lx of the dynamic k with respect to x) such that ∂tϕ(t, x) ≥ c − 1 and
|∇xϕ(t, x)| ≥ c, for all (t, x) ∈ R+ × Ω where ϕ is differentiable.

7.2. Optimality conditions and Pontryagin Maximum Principle

Now, we analyze some optimality conditions for our control problem. Our aim is to obtain
results analogous to those in [37]; the statements and the methods of proof require suitable
adaptations due to the fact that the dynamic, here, also depends on time. From now on, we
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assume properties (7.2), (7.3), (7.5) and the following additional regularity requirements:

(7.10) ∂Ω is of class C1,1,

(7.11) ∇xk is continuous on R+ × Ω,

(7.12) g ∈ C1(∂Ω).

We begin by proving a version of Pontryagin’s maximum principle. We start with two pre-
liminary results.

Lemma 7.13. Let z ∈ ∂Ω and let n be the outer normal to ∂Ω at z. Let u? ∈ B̄(0, 1) be
such that u? ·n > 0 and consider, for t ∈ R+ and x ∈ Ω, the exit time τ t,x,u

?
under the constant

control u?. Then there exists a neighborhood of z, which we denote by V , such that

τ t,x,u
?

= − n · (x− z)
k(t, z) n · u?

+ o(|x− z|), ∀ x ∈ V.

Proof. Let us consider the signed distance function d± from ∂Ω, defined as

d±(x) :=

{
+d(x, ∂Ω) if x ∈ Ω,

−d(x, ∂Ω) else.

Our smoothness assumption (7.10) on ∂Ω implies that d± is differentiable near z and ∇d±(z) =
−n. For every t ∈ R+, we define

F t(x, s) = d±(γt,x,u
?
(s)), for all x ∈ Ω, s ≥ t.

Then F t is differentiable for (x, s) near (z, t) and satisfies

F t(z, t) = 0,
∂F t

∂s
(z, t) = −k(t, z) n · u? 6= 0.

By the implicit function theorem, we can find a neighborhood V of z, a number δ > 0 and
a function s : V 7→ (t− δ, t+ δ) such that for all x ∈ V and s ∈ (t− δ, t+ δ),

(7.13) d±(γt,x,u
?
(s)) = 0⇔ s = s(x).
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From (7.13) we see easily that s(x)− t coincides with τ t,x,u
?
, for all x ∈ V . Moreover, we have

∇s(z) = −∇xF
t(z, t)

∂F t

∂s (z, t)
= − n

k(t, z) n · u?
,

which implies

s(x)− t = ∇s(z) · (x− z) + o(|x− z|) = − n · (x− z)
k(t, z) n · u?

+ o(|x− z|). �

Lemma 7.14. Given z ∈ ∂Ω, let n be the outer normal to ∂Ω at z. Then, for every t ∈ R+,
there exists a unique µ > 0 such that k(t, z) |∇g(z)− µn| − 1 = 0.

Proof. Since g is λ−Lip with λ < 1
kmax

, we have k(t, z) |∇g(z)| − 1 < 0. Moreover,

we see that k(t, z) |∇g(z) − µn| − 1 → +∞ as µ → +∞. This implies that there exists
µ > 0 such that k(t, z) |∇g(z) − µn| − 1 = 0. Now we prove the uniqueness of µ. Arguing by
contradiction we suppose that there exist 0 < µ1 < µ2 such that 0 = k(t, z) |∇g(z)−µ1 n|−1 =
k(t, z) |∇g(z)− µ2 n| − 1. We have

k(t, z) |∇g(z)− µ2 n| − 1 ≥ k(t, z)
∇g(z)− µ1 n

|∇g(z)− µ1 n|
· (∇g(z)− µ2 n)− 1

(7.14) = (µ1 − µ2) k(t, z)
∇g(z)− µ1 n

|∇g(z)− µ1 n|
· n.

Yet,

−µ1 k(t, z)
∇g(z)− µ1 n

|∇g(z)− µ1 n|
· n = 1− k(t, z)

∇g(z)− µ1 n

|∇g(z)− µ1 n|
· ∇g(z) > 0.

Therefore,

(7.15)
∇g(z)− µ1 n

|∇g(z)− µ1 n|
· n < 0,

So, using (7.14), (7.15), and µ1 − µ2 < 0, we get

k(t, z) |∇g(z)− µ2 n| − 1 > 0,

which is a contradiction. �

We are now ready to state the Pontryagin Maximum Principle for this control problem.
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Theorem 7.15. Let properties (7.2), (7.3), (7.5), (7.10), (7.11) and (7.12) hold, let (t0, x0) ∈
R+ × Ω and let ū be an optimal control for x0, at time t0. Set for simplicity

γ := γt0,x0,ū, τ0 := τ t0,x0,ū, z := γt0,x0,ū
τ ,

and denote by n the outer normal to ∂Ω at z. Let µ > 0 be such that k(t0 + τ0, z) |∇g(z) −
µn| − 1 = 0 (µ is uniquely determined by the previous lemma). Let p : [t0, t0 + τ0] 7→ Rd be the
solution to the system

(7.16)

{
p′(t) = −∇xk(t, γ(t)) ū(t) · p(t),
p(t0 + τ0) = ∇g(z)− µn.

Then, for a.e. t ∈ [t0, t0 + τ0],

−p(t) · ū(t) = max
u∈B̄(0,1)

−p(t) · u.

Proof. Let t ∈ (t0, t0 + τ0) be a Lebesgue point for the function k(. , γ(.)) ū(.), i.e., a value
such that

(7.17) lim
h→0

1

h

∫ t+h

t−h
|k(s, γ(s)) ū(s)− k(t, γ(t)) ū(t)| ds = 0.

Let us fix u ∈ B̄(0, 1). For ε > 0 small, we define

uε(s) =


u, s ∈ [t− ε, t],
ū(s), s ∈ [t0, t0 + τ0]\[t− ε, t],
u?, s > t0 + τ0,

where u? = − ∇g(z)−µn
|∇g(z)−µn| . We set γε = γt0,x0,uε and τε = τ t0,x0,uε . From Lemma 7.13, we

see that τε is finite if ε is small enough (if τε > τ0, then τε ≤ τ0 + τ t0+τ0,γε(t0+τ0),u? ; yet,
γε(t0 + τ0)→ z when ε→ 0). Since ū is an optimal control for x0 at time t0, we have

0 ≤ τε + g(γε(t0 + τε))− ϕ(t0, x0) = τε − τ0 + g(γε(t0 + τε))− g(z).(7.18)

Taking into account (7.17), we find

γε(t)− γ(t) =

∫ t

t−ε
(k(s, γε(s))u− k(s, γ(s)) ū(s)) ds

= ε k(t, γ(t)) (u− ū(t)) + o(ε).

Therefore,

(7.19) γε(s) = γ(s) + εv(s) + o(ε), s ∈ [t, t0 + τ0],
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where v(.) is the solution to the linearized system{
v′(s) = ū(s)∇xk(s, γ(s)) · v(s)

v(t) = k(t, γ(t)) (u− ū(t)).

Let us observe that

(7.20)
d

ds
p(s) · v(s) = 0.

It is now convenient to treat separately the cases τε < τ0 and τε ≥ τ0.

• If τε < τ0:

We first observe that, by (7.19), the point γ(t0 +τε) has distance of order O(ε) from γε(t0 +τε) ∈
∂Ω, and so d∂Ω(γ(t0 + τε)) = O(ε). Since the optimal control ū steers γ(t0 + τε) to the target
in a time τ0 − τε, we obtain, from Lemma 7.7 & Proposition 7.8, that

(7.21) τ0 − τε = O(ε).

Moreover, we have

g(γε(t0 + τε))− g(z) = ∇g(z) · (γε(t0 + τε)− z) + o(|γε(t0 + τε)− z|).

By (7.2), (7.19) and (7.21) we have, for any s ∈ [t0 + τε, t0 + τ0],

|γε(s)− z| ≤
∫ t0+τ0

s
|k(r, γε(r))uε(r)| dr + |γε(t0 + τ0)− z|

≤ kmax(t0 + τ0 − s) + |εv(t0 + τ0) + o(ε)| = O(ε).

Therefore,

g(γε(t0 + τε))− g(z)

= ∇g(z) · (γε(t0 + τε)− z) + o(ε)

= ∇g(z) ·
(
−
∫ t0+τ0

t0+τε

k(s, γε(s))uε(s) ds+ εv(t0 + τ0)

)
+ o(ε)

= ∇g(z)·
(
−
∫ t0+τ0

t0+τε

k(t0+τ0, z)ū(s)ds−
∫ t0+τ0

t0+τε

(k(s, γε(s))−k(t0+τ0, z))ū(s)ds+εv(t0+τ0)

)
+o(ε)
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≤ ∇g(z) ·
(
−
∫ t0+τ0

t0+τε

k(t0 + τ0, z)ū(s)ds+ εv(t0 + τ0)

)

+ λ(τ0 − τε) sup
s∈[t0+τε,t0+τ0]

(k(s, γε(s))− k(t0 + τ0, z)) + o(ε)

= ∇g(z) ·
(
−
∫ t0+τ0

t0+τε

k(t0 + τ0, z) ū(s) ds+ εv(t0 + τ0)

)
+ o(ε).(7.22)

By the smoothness of ∂Ω we have, since γε(t0 + τε) ∈ ∂Ω, that

n · (z − γε(t0 + τε)) = O(|z − γε(t0 + τε)|2) = o(ε).

Recalling also that

k(t0 + τ0, z) |∇g(z)− µn| − 1 = 0 and |ū| ≤ 1,

we obtain

τε − τ0 −∇g(z) ·
∫ t0+τ0

t0+τε

k(t0 + τ0, z) ū(s) ds

≤ −µn ·
∫ t0+τ0

t0+τε

k(t0 + τ0, z) ū(s) ds

= −µn · (z − γ(t0 + τε))− µn ·
∫ t0+τ0

t0+τε

(k(t0 + τ0, z)− k(s, γ(s))) ū(s) ds

= −µn · (z − γ(t0 + τε)) + o(ε) = −µn · (γε(t0 + τε)− γ(t0 + τε))− µn · (z − γε(t0 + τε)) + o(ε)

= −ε µn · v(t0 + τε) + o(ε) = −ε µn · v(t0 + τ0) + o(ε).

Thus (7.18) implies, using also (7.22), that

0 ≤ ε(∇g(z)− µn) · v(t0 + τ0) + o(ε).

Dividing by ε and letting ε→ 0+ we obtain,

0 ≤ (∇g(z)− µn) · v(t0 + τ0) = k(t, γ(t)) p(t) · (u− ū(t)),

where last inequality comes from (7.20). Then,

p(t) · ū(t) ≤ p(t) · u.
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• Now, suppose that τε ≥ τ0:

By (7.19), γε(t0 + τ0) − z = εv(t0 + τ0) + o(ε); thus, for ε small enough, we can apply Lemma
7.13 to obtain

(7.23) τε−τ0 = τ t0+τ0,γε(t0+τ0),u? = −(γε(t0 + τ0)− z) · n
k(t0 + τ0, z)u? · n

+o(ε) = − ε v(t0 + τ0) · n
k(t0 + τ0, z)u? · n

+o(ε).

This implies in particular that

τε − τ0 = O(ε)

and

|γε(s)− z| ≤ |γε(s)− γε(t0 + τ0)|+ |γε(t0 + τ0)− z| = O(ε), ∀ s ∈ [t0 + τ0, t0 + τε].

Thus we have

γε(t0 + τε)− z =

∫ t0+τε

t0+τ0

k(s, γε(s))u
? ds+ γε(t0 + τ0)− z

= (τε − τ0) k(t0 + τ0, z)u
? + εv(t0 + τ0) + o(ε).

We get, from (7.18),

0 ≤ (τε − τ0) (1 + k(t0 + τ0, z)∇g(z) · u?) + ε∇g(z) · v(t0 + τ0) + o(ε).

By definition of u?, we have

1 + k(t0 + τ0, z)∇g(z) · u? = µk(t0 + τ0, z) n · u?.

So, using (7.23),

(τε − τ0)(1 + k(t0 + τ0, z)∇g(z) · u?) = µ(τε − τ0)k(t0 + τ0, z)u
? · n = −ε µ v(t0 + τ0) · n + o(ε).

Thus,

0 ≤ ε(∇g(z)− µn) · v(t0 + τ0) + o(ε).

Now we can divide by ε and let ε→ 0+ to obtain the conclusion as in the first step. Hence,

p(t) · ū(t) ≤ p(t) · u, for all u ∈ B̄(0, 1). �
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Lemma 7.16. Let t0, x0, τ0, γ, ū, µ and p be as in the statement of Theorem 7.15. Then
p(t) 6= 0, for every t ∈ [t0, t0 + τ0].

Proof. From (7.16), one obtains that, for every t ∈ [t0, t0 + τ0], |p′(t)| ≤ M |p(t)|. Hence,
we get

|p(t)| ≤ |p(s)| eM |t−s|

for every s, t ∈ [t0, t0 + τ0]. Hence, if there exists s ∈ [t0, t0 + τ0] such that p(s) = 0, one
concludes that p(t) = 0 for every t ∈ [t0, t0 + τ0], which is a contradiction as p(t0 + τ0) =
∇g(γ(t0 + τ0))− µn 6= 0, thanks to Lemma 7.14. �

Consequently, we get the following

Corollary 7.17. The optimal control ū is Lipschitz continuous on [t0, t0 + τ0]. And, the
associated optimal trajectory γ from x0, at time t0, belongs to C1,1([t0, t0 + τ0],Ω), as soon as
k is also Lipschitz with respect to t.

Proof. Since p(t) 6= 0 for every t ∈ [t0, t0 + τ0], it follows immediately from the theorem

7.15 that ū(t) = − p(t)
|p(t)| . Hence,

ū ′(t) = −
|p(t)| p′(t)− p(t)·p′(t)

|p(t)| p(t)

|p(t)|2

= −∇xk(t, γ(t)) + ū(t) · ∇xk(t, γ(t)) ū(t).

Hence, |ū ′(t)| ≤ C, for some constant C depending only on the Lipschitz constant Lx (w.r.t.
x) of the dynamic k. �

Suppose that

(7.24) |∇xk(t, x0)−∇xk(t, x1)| ≤ Lxx |x0 − x1|, for all x0, x1 ∈ Ω, t ∈ R+.

Then, this also provides that (γ, ū) is the unique solution of the following system

(7.25)


γ′(t) = k(t, γ(t))u(t),

u′(t) = −∇xk(t, γ(t)) + u(t) · ∇xk(t, γ(t))u(t),

γ(t0) = x0,

u|t=t0 = ū(t0).

Given an optimal trajectory γ for x0 at time t0, we will say that p is a dual arc associ-
ated with γ if it satisfies the properties of Theorem 7.15, that is, if it solves problem (7.16).
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We now prove that the dual arc p of the theorem 7.15 is included in the superdifferential, with
respect to x, ∇+ϕ of the value function ϕ, where for every t ∈ R+, x ∈ Ω,

∇+ϕ(t, x) :=

{
p ∈ Rd : lim sup

h→0

ϕ(t, x+ h)− ϕ(t, x)− p · h
|h|

≤ 0

}
.

As a simple consequence of the definitions of D+ϕ and ∇+ϕ, we have the following inclusion
Πx(D+ϕ(t, x)) ⊂ ∇+ϕ(t, x). Moreover, the reverse inclusion holds as soon as ϕ is semi-concave
(see, for instance, [37, Lemma 3.3.16]).

Proposition 7.18. Under the assumptions of Theorem 7.15, the arc p solution of system
(7.16) satisfies

p(t) ∈ ∇+ϕ(t, γ(t)), for all t ∈ [t0, t0 + τ0).

Proof. Fix t ∈ [t0, t0 + τ0). We will show that for all h ∈ Rd with |h| = 1,

ϕ(t, γ(t) + εh) ≤ ϕ(t, γ(t)) + εp(t) · h+ o(ε)

with o(ε) independent of h. Let us define a control strategy by setting

û(s) =

{
ū(s), s ∈ [t, t0 + τ0],

u?, s > t0 + τ0,

where u? = − ∇g(z)−µn
|∇g(z)−µn| . Now, let us consider the trajectory γε := γt,γ(t)+εh,û, associated

with û, starting from γ(t) + εh, at time t. Set

τε := τ t,γ(t)+εh,û.

Then we have, for all s ∈ [t, t0 + τ0],

γε(s) = γ(s) + εv(s) + o(ε),

where v is the solution of the linearized problem

{
v′(s) = ū(s)∇xk(s, γ(s)) · v(s), s ∈ [t, t0 + τ0]

v(t) = h,
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and o(ε) does not depend on h. We observe that

ϕ(t, γ(t) + εh)− ϕ(t, γ(t)) ≤ τε − (t0 + τ0 − t) + g(γε(t+ τε))− g(z).

The terms on the right-hand side can be estimated as the corresponding terms in formula (7.18).
Following the computations of the proof of Theorem 7.15, we obtain

ϕ(t, γ(t) + εh)− ϕ(t, γ(t)) ≤ ε (∇g(z)− µn) · v(t0 + τ0) + o(ε) = ε p(t) · h+ o(ε). �

On the other hand, the subdifferential satisfies an analogous property, with a reversed time
direction, as the next result shows. We denote by ∇−ϕ the subdifferential of ϕ with respect to
x, i.e., for every (t, x) ∈ R+ × Ω,

∇−ϕ(t, x) :=

{
p ∈ Rd : lim inf

y→x

ϕ(t, y)− ϕ(t, x)− p · (y − x)

|y − x|
≥ 0

}
.

Proposition 7.19. Let u be an optimal control for (t0, x0) ∈ R+ ×Ω and γ be its associ-
ated optimal trajectory. Let p : [t0, t0 + τ0] 7→ Rd be any solution of the adjoint equation

(7.26) p′(t) = −∇xk(t, γ(t))u(t) · p(t), t ∈ [t0, t0 + τ0],

where τ0 = τ t0,x0,u. Suppose that p(t0) ∈ ∇−ϕ(t0, x0), then p(t) ∈ ∇−ϕ(t, γ(t)), for all
t ∈ [t0, t0 + τ0).

Proof. Fix t ∈ (t0, t0 + τ0) and let h be any unit vector in Rd. Let v : [t0, t] 7→ Rd be the
solution of {

v′(s) = u(s)∇xk(s, γ(s)) · v(s), s ∈ [t0, t]

v(t) = h.

For any ε > 0, let us set γε = γt0,x0+εv(t0),u. Then, it is not difficult to see that

γε(s) = γ(s) + εv(s) + o(ε), s ∈ [t0, t].

By the dynamic programming principle (see Lemma 7.4), the assumption that p(t0) belongs to
∇−ϕ(t0, x0) and the fact that p · v is constant, we get
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ϕ(t, γε(t)) ≥ t0 − t+ ϕ(t0, x0 + εv(t0))

≥ t0 − t+ ϕ(t0, x0) + ε p(t0) · v(t0) + o(ε)

= ϕ(t, γ(t)) + ε p(t) · h+ o(ε).

On the other hand, by the Lipschitz continuity of ϕ (see Proposition 7.10), we have

ϕ(t, γε(t)) = ϕ(t, γ(t) + εv(t)) + o(ε) = ϕ(t, γ(t) + εh) + o(ε),

and so we conclude that

ϕ(t, γ(t) + εh) ≥ ϕ(t, γ(t)) + ε p(t) · h+ o(ε).

By the arbitrariness of h, we deduce that p(t) ∈ ∇−ϕ(t, γ(t)). �

7.3. Differentiability of the value function

In this section, we prove that the value function ϕ is differentiable along optimal trajecto-
ries, except possibly their endpoints. This kind of results is classical (see [37]) and one can even
obtain more (for instance, in [36] smoothness of the value function in a neighborhood of optimal
trajectories is proven under some suitable conditions). Yet, most of the literature is concerned
with the autonomous case (see in particular [37]), which makes the question non-trivial in the
non-autonomous one.

First of all, let us introduce the following result concerning the semi-concavity of the value
function ϕ. The proof is omitted since in Section 7.4 we will prove a much finer result. Before
that, we assume the following

(7.27) k ∈ C1,1(R+ × Ω),

(7.28) g is semi-concave on ∂Ω.

Proposition 7.20. Under the assumptions (7.2), (7.5), (7.10), (7.27) and (7.28), the value
function ϕ is semi-concave on R+ × Ω.

Proof. We refer, for instance, to [37, Theorem 8.2.7]. �
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Corollary 7.21. Let γ be an optimal trajectory for x0, at time t0, and u be the associ-
ated optimal control. If ϕ is differentiable at (t0, x0), then ϕ is differentiable at (t, γ(t)), for all
t ∈ [t0, t0 + τ0), where τ0 = τ t0,x0,u.

Proof. Fix t ∈ [t0, t0 + τ0). If ϕ is differentiable at (t0, x0), then the subdifferential
∇−ϕ(t0, x0) is a singleton, say ∇−ϕ(t0, x0) = {p0}. Now, let p be a solution of (7.26) with
initial condition p(t0) = p0. By Proposition 7.19, p(t) ∈ ∇−ϕ(t, γ(t)), which implies, in partic-
ular, that ∇−ϕ(t, γ(t)) 6= ∅. On the other hand, as ϕ is semi-concave (see Proposition 7.20),
then D+ϕ(t, γ(t)) 6= ∅ and so, ∇+ϕ(t, γ(t)) 6= ∅. Hence, ϕ is differentiable with respect to x at
(t, γ(t)). Now, take (pt, px) ∈ D+ϕ(t, γ(t)). Then, px = ∇ϕ(t, γ(t)). Yet, by Proposition 7.6, we
have

(7.29) − pt + k(t, γ(t)) |px| = 1,

which implies that pt is uniquely determined by ∇ϕ(t, γ(t)). Consequently, D+ϕ(t, γ(t)) is a
singleton and so, ϕ is differentiable at (t, γ(t)) (thanks again to the semi-concavity of the value
function ϕ). Notice that we are not able to extend this result to the final time t0 + τ0 as (7.29)
does not hold a priori at the endpoint of an optimal trajectory. �

Now, let us introduce the following lemma, which shows that the uniform limit of optimal
trajectories is an optimal trajectory.

Lemma 7.22. Let (tn, xn)n be a sequence in R+ × Ω such that tn → t and xn → x. For
each n, let γn be an optimal trajectory for xn, at time tn, and un be the associated optimal
control. Then, γn → γ and un → u uniformly, where γ is in fact an optimal trajectory for x,
at time t, and u is its associated optimal control.

Proof. The fact that γn → γ and un → u follows immediately using Corollary 7.17. Yet,
for every n, we have

γ′n(s) = k(s, γn(s))un(s), for a.e. s ≥ tn.

Passing to the limit as n→ +∞, we get

(7.30) γ′(s) = k(s, γ(s))u(s), for a.e. s ≥ t.

Moreover, γn(tn) = xn implies, at the limit, that γ(t) = x. Hence, γ is an admissible
trajectory for x, at time t, and u is its associated control. Now, set τn = τ tn,xn,un and
zn = γn(tn + τn) ∈ ∂Ω. From Lemma 7.7 & Proposition 7.8, we have that τn → τ̄ . In addition,
zn → γ(t+ τ̄) ∈ ∂Ω. Hence, τ := τ t,x,u ≤ τ̄ and,

ϕ(tn, xn) = τn + g(zn)→ τ̄ + g(γ(t+ τ̄)).

Yet, by the continuity of the value function ϕ (see, for instance, Proposition 7.10), we infer that

ϕ(t, x) = τ̄ + g(γ(t+ τ̄)) ≤ τ + g(γ(t+ τ))
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and then, thanks to (7.5), τ̄ = τ . �

On the other hand, we have the following result about the uniqueness of optimal control at
any interior point of an optimal trajectory.

Proposition 7.23. Let γ be an optimal trajectory from x0 at time t0, and set τ0 = τ t0,x0,u,
where u is the associated optimal control. Then, under the assumption (7.24), for every t ∈
(t0, t0 + τ0), u is the unique optimal control for γ(t), at time t.

Proof. Fix t ∈ (t0, t0 + τ0) and let v be an optimal control for x := γ(t), at time t. Set

ũ(s) =

{
u(s), if s < t,

v(s), if s ≥ t.

Then, it is clear that ũ is an optimal control for x0, at time t0. Indeed, we have ϕ(t0, x0) ≤
τ t0,x0,ũ + g(γt0,x0,ũ

τ ) = t − t0 + ϕ(t, x) and so, thanks to Lemma 7.4, the control ũ is in fact
optimal. Hence, by Corollary 7.17, ũ is continuous, which proves that u(t) = v(t) := q. The
fact that u(s) = v(s), for all s ≥ t, follows from the uniqueness of solution to the system (7.25)
with initial conditions γ(t) = x and u(t) = q. �

We recall that a vector (h, p) ∈ R+×Rd is called a reachable gradient of ϕ at (t, x) ∈ R+×
◦
Ω

if there is a sequence {(tk, xk)}k such that ϕ is differentiable at (tk, xk) for each k ∈ N, and

lim
k→∞

(tk, xk) = (t, x), lim
k→∞

Dϕ(tk, xk) = (h, p).

The set of all reachable gradients of ϕ at (t, x) is denoted by D?ϕ(t, x). It is easily seen
that D?ϕ(t, x) is a compact set: it is closed by definition and it is bounded since ϕ is Lipschitz.
From Rademacher’s Theorem it follows that D?ϕ(t, x) 6= ∅ for every (t, x) ∈ R+ × Ω. We have
the following

Proposition 7.24. Let t0, x0, γ, u, τ0 and p be as in the proposition 7.19. Fix t1 ∈ (t0, t0+
τ0) and set x1 := γ(t1). Suppose that p(t1) ∈ Πx(D?ϕ(t1, x1)), then p(t) ∈ Πx(D?ϕ(t, γ(t))),
for all t ∈ [t1, t0 + τ0].

Proof. If p(t1) ∈ Πx(D?ϕ(t1, x1)), then there is a sequence (t1,n, x1,n) ∈ R+ × Ω such
that t1,n → t1, x1,n → x1 and ϕ is differentiable at (t1,n, x1,n) with ∇ϕ(t1,n, x1,n) → p(t1).
As ϕ is differentiable at (t1,n, x1,n), then, by Corollary 7.21, ϕ is differentiable at (t, γn(t)),
for all t ∈ [t1,n, t1,n + τ1,n), where γn is an optimal trajectory for x1,n, at time t1,n, and
τ1,n = τ t1,n,x1,n,un ; un being the associated optimal control with γn. Let pn be the solution
of (7.26), associated with γn, with initial condition pn(t1,n) = ∇ϕ(t1,n, x1,n), i.e., pn is the so-
lution of the following system
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{
p′n(t) = −∇xk(t, γn(t))un(t) · pn(t), t ∈ [t1,n, t1,n + τ1,n]

pn(t1,n) = ∇ϕ(t1,n, x1,n).

By Proposition 7.19, we have pn(t) = ∇ϕ(t, γn(t)) for all t ∈ [t1,n, t1,n + τ1,n). Yet, it is
clear, from Lemma 7.22 & Proposition 7.23, that un → u and γn → γ uniformly, where u is
the unique optimal control for x1, at time t1, and γ is its associated optimal trajectory. So,
we also have pn → p uniformly. Now, fix t ∈ [t1, t0 + τ0] and let (tn)n be any sequence such
that tn ∈ (t1,n, t1,n + τ1,n), for all n, and tn → t. As pn(tn) = ∇ϕ(tn, γn(tn)), we get that
p(t) = limn∇ϕ(tn, γn(tn)), which means that p(t) ∈ Πx(D?ϕ(t, γ(t))). �

Proposition 7.25. Given (t0, x0) ∈ R+ × Ω, let γ : [t0, t0 + τ0] 7→ Ω be an optimal trajec-
tory for x0, at time t0, where τ0 = τ t0,x0,u; u being the associated optimal control. Then, ϕ is
differentiable at all points (t, γ(t)), with t ∈ (t0, t0 + τ0).

Proof. Let us argue by contradiction and suppose that D+ϕ(t, γ(t)) is not a singleton
for some t ∈ (t0, t0 + τ0). Then, D?ϕ(t, γ(t)) contains at least two elements, say (pt,0, px,0) and
(pt,1, px,1). Yet, from Proposition 7.6, we see that different elements of D?ϕ(t, γ(t)) have different
space components, i.e. px,0 6= px,1. For any θ ∈ (0, 1), we have (1− θ)(pt,0, px,0) + θ(pt,1, px,1) ∈
D+ϕ(t, γ(t)) and so, recalling again Proposition 7.6, one has the following

−pt,0 + k(t, γ(t)) |px,0| − 1 = 0

−pt,1 + k(t, γ(t)) |px,1| − 1 = 0

and

−(1− θ)pt,0 − θpt,1 + k(t, γ(t)) |(1− θ)px,0 + θpx,1| − 1 = 0.

Hence, we have

|(1− θ)px,0 + θpx,1| = (1− θ)|px,0|+ θ|px,1|,

which implies that px,1 = αpx,0, for some α > 0, α 6= 1. Now, let p0 and p1 be the so-
lutions of (7.26), associated to the optimal (γ, u), with initial conditions p0(t) = px,0 and
p1(t) = px,1, respectively. By the uniqueness of solution to (7.26), we see that p1 = αp0.
In particular, we have p1(t0 + τ0) = αp0(t0 + τ0). Yet, by Proposition 7.24, we know that
both p0(t0 + τ0) and p1(t0 + τ0) belong to Πx(D?ϕ(t0 + τ0, γ(t0 + τ0))). As ϕ(t, x) = g(x) at
every (t, x) ∈ R+ × ∂Ω, then ϕ is differentiable with respect to t on R+ × ∂Ω and, ∂tϕ = 0.
This implies that Πt(D

?ϕ(t0 + τ0, γ(t0 + τ0))) = {0}. Hence, we obtain, using Proposition 7.6,
that if q0, q1 ∈ Πx(D?ϕ(t0 + τ0, γ(t0 + τ0))), then |q0| = |q1|. This implies that |p0(t0 + τ0)| =
|p1(t0 + τ0)| = α|p0(t0 + τ0)|, which is a contradiction as α 6= 1. Hence, ϕ is differentiable at
(t, γ(t)), for all t ∈ (t0, t0 + τ0). �
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As a consequence of Theorem 7.15, Propositions 7.18 & 7.25, one can characterize an opti-
mal control u in terms of the normalized gradient, with respect to x, of the value function ϕ.
So, we finish this section by the following

Corollary 7.26. Let (t0, x0) ∈ R+ × Ω and γ = γt0,x0,u be an optimal trajectory for x0,
at time t0, where u is the associated optimal control. Then, for all t ∈ (t0, t0 + τ0), where
τ0 := τ t0,x0,u, one has

γ′(t) = −k(t, γ(t))
∇xϕ(t, γ(t))

|∇xϕ(t, γ(t))|
.

7.4. Sharp semi-concavity

In this section, we investigate the hypotheses under which the value function ϕ of our exit-
time optimal control problem is semi-concave with respect to x. Actually, we will refine the
semi-concavity result given in [37] by showing that, instead of assuming (7.27), only a lower
bound on ∂tk (and eventually, we assume that k is C1,1 with respect to x) is sufficient to get
the semi-concavity of ϕ with respect to x. On the other hand, we note that this property is
related not only to the regularity of the data, but also to the smoothness of the target ∂Ω. We
begin by the following

Proposition 7.27. For every x0, x1 ∈ Ω and t0 ∈ R+, we have, under the assumptions
(7.3) & (7.24), the following estimate

∣∣∣∣γt0,x0,u(t) + γt0,x1,u(t) − 2 γt0,
x0+x1

2
,u(t)

∣∣∣∣ ≤ c|x0 − x1|2, for all t ∈ [t0,∞),

where c := c(t− t0) > 0 and u : [t0,∞) 7→ B̄(0, 1) is any control strategy.

Proof. First of all, we have

∣∣∣∣γt0,x0,u(t) + γt0,x1,u(t) − 2 γt0,
x0+x1

2
,u(t)

∣∣∣∣
=

∣∣∣∣ ∫ t

t0

k(s, γt0,x0,u(s))u(s) ds +

∫ t

t0

k(s, γt0,x1,u(s))u(s) ds− 2

∫ t

t0

k(s, γt0,
x0+x1

2
,u(s))u(s) ds

∣∣∣∣.
Then, ∣∣∣∣γt0,x0,u(t) + γt0,x1,u(t) − 2 γt0,

x0+x1
2

,u(t)

∣∣∣∣
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≤
∫ t

t0

∣∣∣∣k(s, γt0,x0,u(s)) + k(s, γt0,x1,u(s))− 2k(s, γt0,
x0+x1

2
,u(s))

∣∣∣∣ ds

≤
∫ t

t0

∣∣∣∣k(s, γt0,x0,u(s)) + k(s, γt0,x1,u(s))− 2k

(
s,
γt0,x0,u(s) + γt0,x1,u(s)

2

)∣∣∣∣ ds
+ 2

∫ t

t0

∣∣∣∣k(s, γt0,x0,u(s) + γt0,x1,u(s)

2

)
− k(s, γt0,

x0+x1
2

,u(s))

∣∣∣∣ds.
Yet, by (7.3), one has

2

∫ t

t0

∣∣∣∣k(s, γt0,x0,u(s) + γt0,x1,u(s)

2

)
− k(s, γt0,

x0+x1
2

,u(s))

∣∣∣∣ ds
≤ Lx

∫ t

t0

∣∣∣∣γt0,x0,u(s) + γt0,x1,u(s) − 2 γt0,
x0+x1

2
,u(s)

∣∣∣∣ds.
On the other hand, as k is C1,1 with respect to x, we can estimate the first term as fol-
lows ∣∣∣∣k(s, γt0,x0,u(s)) + k(s, γt0,x1,u(s))− 2k

(
s,
γt0,x0,u(s) + γt0,x1,u(s)

2

)∣∣∣∣
≤ C|γt0,x0,u(s)− γt0,x1,u(s)|2.

Hence, by Proposition 7.9, we obtain

∫ t

t0

∣∣∣∣k(s, γt0,x0,u(s)) + k(s, γt0,x1,u(s)) − 2k

(
s,
γt0,x0,u(s) + γt0,x1,u(s)

2

)∣∣∣∣ds ≤ C1 |x1 − x0|2

and then, ∣∣∣∣γt0,x0,u(t) + γt0,x1,u(t)− 2 γt0,
x0+x1

2
,u(t)

∣∣∣∣
≤ C1 |x1 − x0|2 + C

∫ t

t0

∣∣∣∣γt0,x0,u(s) + γt0,x1,u(s)− 2γt0,
x0+x1

2
,u(s)

∣∣∣∣ ds.
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We conclude by using the Gronwall’s inequality. �

We recall that the property (7.10) (or more generally, a uniform exterior ball condition on Ω)

implies the semi-concavity of the distance function d(·,Rd\Ω) in Ω̄. Actually, the semi-concavity
of this distance function is needed in the proof of the semi-concavity of the value function ϕ. To
prove this semi-concavity result on ϕ, we need to assume that (7.2), (7.3), (7.5), (7.10), (7.11),
(7.12), (7.24) and (7.28) are satisfied. In addition, we suppose, instead of (7.27), that we only
have a lower bound on the derivative of the dynamic k with respect to t, i.e.,

(7.31) ∂tk ≥ −c.

Then, we have the following

Proposition 7.28. The value function ϕ is semi-concave w.r.t. x, and the semi-concavity
constant depends only on λ, kmin, kmax, κ, Lx, Lxx, M and || [∂tk]− ||∞, where κ is a bound on
the curvatures of ∂Ω, Lx is the Lipschitz constant of k with respect to x, Lxx is the Lipschitz
constant of ∇xk with respect to x and M is a constant such that D2g ≤MI.

Proof. First of all, we consider arbitrary x, x− h, x+ h ∈ Ω and we suppose, for simplic-
ity of exposition, that t0 = 0. We want to construct suitable trajectories steering the points
x, x − h, x + h to the target ∂Ω. More precisely, let us take a control u which is optimal
for x, at time 0, and consider the trajectories γ0,x,u, γ0,x−h,u, γ0,x+h,u starting from the points
x, x−h, x+h, at time 0, associated with the same control u. We treat separately two different
cases depending on which of these trajectories reaches the target first.

• τ0 := τ0,x,u ≤ min{τ0,x−h,u, τ0,x+h,u} :

Since u is optimal for x, at time 0, we have by the dynamic programming principle (see Lemma
7.4) that

ϕ(0, x− h) + ϕ(0, x+ h) − 2ϕ(0, x) ≤ ϕ(τ0, x
−) + ϕ(τ0, x

+) − 2g(γ0,x,u
τ ),

where, for simplicity, we set

x+ := γ0,x+h,u(τ0) and x− := γ0,x−h,u(τ0).

Let us now take u+, u− two optimal controls for x+ and x−, at time τ0, respectively. Let

us set for simplicity y± = γτ0,x
±,u±

τ to denote the terminal points of the corresponding trajec-
tories. Hence, we get

ϕ(τ0, x
−) + ϕ(τ0, x

+) − 2g(γ0,x,u
τ ) = τ− + g(y−) + τ+ + g(y+)− 2g(γ0,x,u

τ ),
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where τ± := τ τ0,x
±,u± . Yet, by Lemma 7.7 & Proposition 7.8, we have

τ± ≤ c d(x±,Rd\Ω).

As the distance function d(. ,Rd\Ω) is semi-concave, and taking into account that γ0,x,u
τ ∈ ∂Ω,

we obtain that

d(x+,Rd\Ω) + d(x−,Rd\Ω)

= d(x+,Rd\Ω) + d(x−,Rd\Ω)− 2d

(
x+ + x−

2
,Rd\Ω

)
+ 2

(
d

(
x+ + x−

2
,Rd\Ω

)
−d(γ0,x,u

τ ,Rd\Ω)

)

≤ c|x+ − x−|2 + |x+ + x− − 2γ0,x,u
τ | ≤ ch2,

where the last inequality follows from Propositions 7.9 & 7.27. On the other hand, from the
assumptions on g, we have

g(y−) + g(y+)− 2 g(γ0,x,u
τ ) = g(y−) + g(y+)− 2g

(
y+ + y−

2

)
+ 2

(
g

(
y+ + y−

2

)
− g(γ0,x,u

τ )

)

(7.32) ≤ c|y+ − y−|2 + λ|y+ + y− − 2 γ0,x,u
τ |.

Yet,

|y+ − y−| ≤ |y+ − x+|+ |x+ − x−|+ |x− − y−| ≤ |y+ − x+|+ |x− − y−|+ c|h|.

In addition, we have

|y± − x±| =
∣∣∣∣ ∫ τ0+τ±

τ0

k(s, γτ0,x
±,u±(s))u±(s) ds

∣∣∣∣ ≤ kmax τ
± ≤ ch2,

which implies that
|y+ − y−| ≤ c|h|.

For the second term in (7.32), we have
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|y+ + y− − 2 γ0,x,u
τ | ≤ |y+ − x+|+ |x+ + x− − 2 γ0,x,u

τ |+ |x− − y−| ≤ ch2.

Consequently,
ϕ(0, x− h) + ϕ(0, x+ h) − 2ϕ(0, x) ≤ ch2.

• τ0 := τ0,x−h,u ≤ min{τ0,x,u, τ0,x+h,u}:

The analysis of this case will conclude the proof since the remaining case which is τ0,x+h,u ≤
min{τ0,x,u, τ0,x−h,u} is entirely symmetric. By the dynaminc programming principle (see Lemma
7.4), we have

ϕ(0, x− h) + ϕ(0, x+ h) − 2ϕ(0, x) ≤ ϕ(τ0, x2)− 2ϕ(τ0, x1) + g(x0),

where, for simplicity, we set

x0 = γ0,x−h,u(τ0), x1 = γ0,x,u(τ0), x2 = γ0,x+h,u(τ0).

We recall that u is also an optimal control starting from x1, at time τ0, with τ1 := τ τ0,x1,u =
τ0,x,u − τ0. As x0 ∈ ∂Ω, then, by Lemma 7.7, Propositions 7.8 & 7.9, we get that

τ1 ≤ c d(x1,Rd\Ω) ≤ c|x1 − x0| ≤ c|h|.

We will use the control u?(t) := u( t+τ02 ) for the point x2, at time τ0. We have again two
cases which require a separate analysis:

• τ1 <
ττ0,x2,u

?

2 :

By the dynamic programming principle (see Lemma 7.4), we have

ϕ(τ0, x2)− 2ϕ(τ0, x1) + g(x0) ≤ ϕ(τ0 + 2τ1, γ
τ0,x2,u?(τ0 + 2 τ1)) + g(x0) − 2g(γτ0,x1,u

τ ).

Let z1 = γτ0,x1,u
τ ∈ ∂Ω and z2 = γτ0,x2,u?(τ0 + 2 τ1). Let v be an optimal control for z2, at

time τ0 + 2τ1, then, by Lemma 7.7 & Proposition 7.8, we have
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ϕ(τ0 + 2τ1, z2) + g(x0) − 2g(z1)

= τ τ0+2τ1,z2,v + g(γτ0+2τ1,z2,v
τ ) + g(x0) − 2g(z1)

≤ c d(z2,Rd\Ω) + g(γτ0+2τ1,z2,v
τ ) + g(x0) − 2g(z1)

= c d(z2,Rd\Ω)+2

(
g

(
x0 + γτ0+2τ1,z2,v

τ

2

)
−g(z1)

)
+g(γτ0+2τ1,z2,v

τ )+ g(x0)−2g

(
x0 + γτ0+2τ1,z2,v

τ

2

)
.

From (7.5) & (7.28), we infer that

ϕ(τ0+2τ1, z2) + g(x0) − 2g(z1) ≤ c d(z2,Rd\Ω) + c |γτ0+2τ1,z2,v
τ −x0|2 + λ |x0+γτ0+2τ1,z2,v

τ −2z1|.

Yet, using Proposition 7.9, we have

|γτ0+2τ1,z2,v
τ −x0| ≤ |γτ0+2τ1,z2,v

τ − z2|+ |z2−x2|+ |x2−x0| ≤ |γτ0+2τ1,z2,v
τ − z2|+ |z2−x2|+ c|h|.

In addition, by Lemma 7.7 & Proposition 7.8, one has

|γτ0+2τ1,z2,v
τ − z2| =

∣∣∣∣ ∫ τ0+2τ1+τv

τ0+2τ1

k

(
s, γτ0+2τ1,z2,v(s)

)
v(s) ds

∣∣∣∣ ≤ kmax τv ≤ c d(z2,Rd\Ω),

where τv := τ τ0+2τ1,z2,v. In the same way, we have

|z2 − x2| =
∣∣∣∣ ∫ τ0+2τ1

τ0

k

(
s, γτ0,x2,u?(s)

)
u?(s) ds

∣∣∣∣ ≤ 2kmax τ1 ≤ c |h|.

Moreover,

|x0 + γτ0+2τ1,z2,v
τ − 2z1| ≤ |x0 + z2 − 2z1| + |γτ0+2τ1,z2,v

τ − z2|

and

|γτ0+2τ1,z2,v
τ − z2| ≤ c d(z2,Rd\Ω).
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Hence, it remains to prove that

d(z2,Rd\Ω) + |x0 + z2 − 2z1| ≤ ch2.

Firstly, let us note that

d(z2,Rd\Ω) ≤ |z2 − 2z1 + x0| + d(2z1 − x0,Rd\Ω).

Yet,

d(2z1 − x0,Rd\Ω) = d(2z1 − x0,Rd\Ω) + d(x0,Rd\Ω) − 2d(z1,Rd\Ω),

as x0, z1 ∈ ∂Ω. Hence, by the semi-concavity of the distance function d(. ,Rd\Ω) and, us-
ing Proposition 7.9, we get that

d(2z1 − x0,Rd\Ω) ≤ c|z1 − x0|2 ≤ c(|z1 − x1|+ |x1 − x0|)2 ≤ ch2,

since, we have

|z1 − x1| =
∣∣∣∣ ∫ τ0+τ1

τ0

k

(
s, γτ0,x1,u(s)

)
u(s) ds

∣∣∣∣ ≤ kmax τ1 ≤ c|h|.

On the other hand, let n be the unit outward normal vector at z1 and let w := u(τ0 + τ1) =

− ∇g(z1)−µn
|∇g(z1)−µn| be the unit optimal control vector at z1, at time τ0 + τ1 (where µ is the unique

constant so that k(τ0 + τ1, z1)|∇g(z1)− µn| = 1; see Lemma 7.14). Then, there is a unit vector
e orthogonal to w such that

2z1 − x0 − z2 = αn + βe.

In fact,

|e · n| = |w · t| =
∣∣∣∣ ∇g(z1)− µn

|∇g(z1)− µn|
· t
∣∣∣∣ =

∣∣∣∣ ∇g(z1)

|∇g(z1)− µn|
· t
∣∣∣∣ = k(τ0 + τ1, z1)|∇g(z1) · t|,

where t is some unitary tangent vector on the boundary at z1. And, this implies that

(7.33) |e · n| ≤ λkmax < 1.

We have
(2z1 − x0 − z2) · n = α+ β e · n
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and

(2z1 − x0 − z2) · e = α e · n + β.

Then, (
(2z1 − x0 − z2) · n
(2z1 − x0 − z2) · e

)
=

(
1 e · n

e · n 1

)(
α
β

)

or equivalently, (
α
β

)
=

(
1 e · n

e · n 1

)−1(
(2z1 − x0 − z2) · n
(2z1 − x0 − z2) · e

)
.

One has

|2z1 − x0 − z2| ≤
C

1− (e · n)2

(
|(2z1 − x0 − z2) · n| + |(2z1 − x0 − z2) · e|

)
,

where the denominator can be estimated thanks to (7.33). Firstly, we note that

z2 − 2z1 + x0

= x0 + x2 − 2x1 +

∫ τ0+2τ1

τ0

k(s, γτ0,x2,u?(s))u?(s) ds− 2

∫ τ0+τ1

τ0

k(s, γτ0,x1,u(s))u(s) ds

= x0 + x2 − 2x1 +

∫ τ0+2τ1

τ0

k(s, γτ0,x2,u?(s))u

(
s+ τ0

2

)
ds− 2

∫ τ0+τ1

τ0

k(s, γτ0,x1,u(s))u(s) ds

= x0 + x2 − 2x1 + 2

∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0)) − k(s, γτ0,x1,u(s))

)
u(s) ds.

Hence,

(z2 − 2z1 + x0) · e

= (x0 + x2 − 2x1) · e + 2

∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0)) − k(s, γτ0,x1,u(s))

)
u(s) · e ds.

Yet, from Proposition 7.27, we have
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|(x0 + x2 − 2x1) · e| ≤ |x0 + x2 − 2x1| ≤ ch2.

To estimate the second term, let us observe, first, that

|u(s)− w| = |u(s)− u(τ0 + τ1)| =
∣∣∣∣ ∫ τ0+τ1

s
u′(t) dt

∣∣∣∣
and then, using (7.25), we get, for all s ∈ [τ0, τ0 + τ1], that

|u(s)− w| =

∣∣∣∣ ∫ τ0+τ1

s

(
−∇xk(t, γ0,x,u(t)) + (u(t) · ∇xk(t, γ0,x,u(t)))u(t)

)
dt

∣∣∣∣
≤ c(τ0 + τ1 − s) ≤ c|h|.

This implies that

|u(s) · e| = |(u(s)− w) · e| ≤ c|h|.

Hence,

∣∣∣∣ ∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0)) − k(s, γτ0,x1,u(s))

)
u(s) · e ds

∣∣∣∣
≤ 2 kmax

∫ τ0+τ1

τ0

|u(s) · e|ds ≤ c|h|τ1 ≤ ch2.

Consequently,

|(z2 − 2z1 + x0) · e| ≤ ch2.

On the other hand, we want to show that

|(2z1 − x0 − z2) · n| ≤ ch2.

Let x′0 (resp. z′2) be the projection of x0 (resp. z2) into the tangent space on ∂Ω at z1.
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Then, we have

(2z1 − x0 − z2) · n = (x′0 − x0) · n + (z′2 − z2) · n.

From (7.10) and the fact that |z1 − x0| ≤ c|h|, it is easy to see that

|x′0 − x0| ≤ ch2.

Moreover, as z2 ∈ Ω and |z2 − z1| ≤ c|h|, then

(z′2 − z2) · n ≥ −ch2.

Consequently,

|(2z1 − x0 − z2) · n| ≤ (2z1 − x0 − z2) · n + ch2.

Yet,
(2z1 − x0 − z2) · n

= −(x0 + x2 − 2x1) ·n − 2

∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0)) − k(s, γτ0,x1,u(s))

)
u(s) ·n ds.

From Proposition 7.27, we get again that

−(x0 + x2 − 2x1) · n ≤ |x0 + x2 − 2x1| ≤ ch2.

For the second term, we have

−
∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0)) − k(s, γτ0,x1,u(s))

)
u(s) · n ds

= −
∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0)) − k(s, γτ0,x2,u?(2s− τ0))

)
u(s) · n ds

−
∫ τ0+τ1

τ0

(
k(s, γτ0,x2,u?(2s− τ0)) − k(s, γτ0,x1,u(s))

)
u(s) · n ds.
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From (7.3), we have

∣∣∣∣ ∫ τ0+τ1

τ0

(
k(s, γτ0,x2,u?(2s− τ0)) − k(s, γτ0,x1,u(s))

)
u(s) · n ds

∣∣∣∣
≤ C1

∫ τ0+τ1

τ0

|γτ0,x2,u?(2s− τ0) − γτ0,x1,u(s)|ds.

Yet, by Proposition 7.9, one has

∣∣∣∣γτ0,x2,u?(2s− τ0) − γτ0,x1,u(s)

∣∣∣∣
=

∣∣∣∣x2 +

∫ 2s−τ0

τ0

k(t, γτ0,x2,u?(t))u?(t) dt − x1 −
∫ s

τ0

k(t, γτ0,x1,u(t))u(t) dt

∣∣∣∣
≤ |x2 − x1|+

∫ 2s−τ0

τ0

k(t, γτ0,x2,u?(t)) dt +

∫ s

τ0

k(t, γτ0,x1,u(t)) dt

≤ c|h|+ 3 kmax(s− τ0).

Hence, we get ∣∣∣∣ ∫ τ0+τ1

τ0

(
k(s, γτ0,x2,u?(2s− τ0)) − k(s, γτ0,x1,u(s))

)
u(s) · n ds

∣∣∣∣
≤
∫ τ0+τ1

τ0

(c|h| + 3 kmax (s− τ0)) ds ≤ ch2.

On the other hand, we have

w · n = − ∇g(z1)− µn

|∇g(z1)− µn|
· n = k(τ0 + τ1, z1)(−∇g(z1) · n + µ).

Yet,

|∇g(z1)− µn|2 = µ2 + |∇g(z1)|2 − 2µ∇g(z1) · n =
1

k(τ0 + τ1, z1)2
.

Then,

2µ(−∇g(z1) · n + µ) =
1

k(τ0 + τ1, z1)2
− |∇g(z1)|2 + µ2 >

1

kmax
2 − λ

2 > 0.
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Finally, using (7.31), one has

−
∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0)) − k(s, γτ0,x2,u?(2s− τ0))

)
u(s) · n ds

= −
∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0)) − k(s, γτ0,x2,u?(2s− τ0))

)
w · n ds

−
∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0)) − k(s, γτ0,x2,u?(2s− τ0))

)
(u(s)− w) · n ds

≤
∫ τ0+τ1

τ0

∫ 2s−τ0

s
−kt(t, γτ0,x2,u?(2s− τ0))w · n dtds + ch2 ≤ c(τ2

1 + h2) ≤ ch2.

• τ2 := τ τ0,x2,u? ≤ 2τ1:

Set again

z1 := γτ0,x1,u
τ ∈ ∂Ω.

In this case, we have

ϕ(0, x− h) + ϕ(0, x+ h) − 2ϕ(0, x)

≤ ϕ(τ0, x2)− 2ϕ(τ0, x1) + g(x0) ≤ τ2 + g(γτ0,x2,u?

τ )− 2τ1 − 2g(z1) + g(x0)

= τ2 − 2τ1 + 2

(
g

(
x0 + γτ0,x2,u?

τ

2

)
− g(z1)

)
+ g(γτ0,x2,u?

τ ) + g(x0) − 2g

(
x0 + γτ0,x2,u?

τ

2

)
.

From (7.28), we get

ϕ(τ0, x2) − 2ϕ(τ0, x1) + g(x0)

≤ τ2 − 2τ1 + c |γτ0,x2,u?

τ − x0|2 + 2

(
g

(
x0 + γτ0,x2,u?

τ

2

)
− g(z1)

)
.
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Using Proposition 7.9, we obtain that

|γτ0,x2,u?

τ − x0| ≤ |γτ0,x2,u?

τ − x2|+ |x2 − x0| ≤ |γτ0,x2,u?

τ − x2|+ c|h|.

Yet,

|γτ0,x2,u?

τ − x2| =
∣∣∣∣ ∫ τ0+τ2

τ0

k(s, γτ0,x2,u?(s))u?(s) ds

∣∣∣∣ ≤ 2kmax τ1 ≤ c|h|.

On the other hand, we have

g

(
x0 + γτ0,x2,u?

τ

2

)
− g(z1) ≤ 1

2
∇g(z1) · (x0 + γτ0,x2,u?

τ − 2z1) + O(|x0 + γτ0,x2,u?

τ − 2z1|2).

But, it is clear that

|x0 + γτ0,x2,u?

τ − 2z1| ≤ |x0 + x2 − 2x1| + 2

∫ τ0+τ1

τ0

|k(s, γτ0,x1,u(s))u(s)| ds

+

∫ τ0+τ2

τ0

|k(s, γτ0,x2,u?(s))u?(s)|ds,

which implies, using Proposition 7.27, that

|x0 + γτ0,x2,u?

τ − 2z1| ≤ ch2 + 4kmax τ1 ≤ c|h|.

So, it remains to prove that

τ2 − 2τ1 + ∇g(z1) · (x0 + γτ0,x2,u?

τ − 2z1) ≤ ch2.

Let n be the unit outward normal vector at z1. Then, there is a vector e, orthogonal to
n, such that

∇g(z1) = αn + βe

with α2 + β2 ≤ λ2. Hence, we get

∇g(z1) · (x0 + γτ0,x2,u?

τ − 2z1) = (αn + βe) · (x0 + γτ0,x2,u?

τ − 2z1)

= αn · (x0 + γτ0,x2,u?

τ − 2z1) + βe · (x0 + γτ0,x2,u?

τ − 2z1).

Recall that

|x0 − z1| + |z1 − γτ0,x2,u?

τ | ≤ c|h|.
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From (7.10), we infer that

αn · (x0 + γτ0,x2,u?

τ − 2z1) ≤ ch2.

Now, set

z := γτ0,x1,u

(
τ0 +

τ2

2

)
.

Then, one has

τ2 − 2τ1 + βe · (x0 + γτ0,x2,u?

τ − 2z1)

= τ2 − 2τ1 + βe · (x0 + γτ0,x2,u?

τ − 2z) + 2βe · (z − z1).

Let us observe that

|z − z1| =
∣∣∣∣ ∫ τ0+τ1

τ0+
τ2
2

k(s, γτ0,x1,u(s))u(s) ds

∣∣∣∣ ≤ kmax

(
τ1 −

τ2

2

)
.

Using kmax |β| ≤ kmax λ < 1, we infer that

τ2 − 2τ1 + βe · (x0 + γτ0,x2,u?

τ − 2z) + 2βe · (z − z1) ≤ βe · (x0 + γτ0,x2,u?

τ − 2z).

So, the aim, now, is to prove that

βe · (x0 + γτ0,x2,u?

τ − 2z) ≤ ch2.

Firstly, let us observe that

x0 + γτ0,x2,u?

τ − 2z

= x0 + x2 − 2x1 − 2

∫ τ0+
τ2
2

τ0

k(s, γτ0,x1,u(s))u(s) ds+

∫ τ0+τ2

τ0

k(s, γτ0,x2,u?(s))u?(s) ds

= x0 + x2 − 2x1 − 2

∫ τ0+
τ2
2

τ0

k(s, γτ0,x1,u(s))u(s) ds+

∫ τ0+τ2

τ0

k(s, γτ0,x2,u?(s))u

(
s+ τ0

2

)
ds

= x0 + x2 − 2x1 + 2

∫ τ0+
τ2
2

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x1,u(s))

)
u(s) ds
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= x0 + x2 − 2x1 + 2

∫ τ0+
τ2
2

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u?(2s− τ0))

)
u(s) ds

+ 2

∫ τ0+
τ2
2

τ0

(
k(s, γτ0,x2,u?(2s− τ0))− k(s, γτ0,x1,u(s))

)
u(s) ds.

Recall that

|x2 + x0 − 2x1| ≤ ch2.

From (7.3), we infer that

∣∣∣∣ ∫ τ0+
τ2
2

τ0

(
k(s, γτ0,x2,u?(2s− τ0))− k(s, γτ0,x1,u(s))

)
u(s) ds

∣∣∣∣
≤ Lx

∫ τ0+
τ2
2

τ0

∣∣∣∣γτ0,x2,u?(2s− τ0)− γτ0,x1,u(s)

∣∣∣∣ ds.
Yet, by Proposition 7.9, we have

∣∣∣∣γτ0,x2,u?(2s− τ0)− γτ0,x1,u(s)

∣∣∣∣
=

∣∣∣∣x2 +

∫ 2s−τ0

τ0

k(t, γτ0,x2,u?(t))u?(t) dt− x1 −
∫ s

τ0

k(t, γτ0,x1,u(t))u(t) dt

∣∣∣∣
≤ |x2 − x1|+

∣∣∣∣ ∫ 2s−τ0

τ0

k(t, γτ0,x2,u?(t))u?(t) dt

∣∣∣∣+

∣∣∣∣ ∫ s

τ0

k(t, γτ0,x1,u(t))u(t) dt

∣∣∣∣
≤ c|h|+ 3kmax (s− τ0).

Consequently, we get∣∣∣∣ ∫ τ0+
τ2
2

τ0

(
k(s, γτ0,x2,u?(2s− τ0))− k(s, γτ0,x1,u(s))

)
u(s) ds

∣∣∣∣ ≤ ch2.

On the other hand,
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∫ τ0+
τ2
2

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u?(2s− τ0))

)
u(s) ds

=

∫ τ0+
τ2
2

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u?(2s− τ0))

)
u(τ0 + τ1) ds

+

∫ τ0+
τ2
2

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u?(2s− τ0))

)
(u(s)− u(τ0 + τ1)) ds

≤
∫ τ0+

τ2
2

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u?(2s− τ0))

)
u(τ0 + τ1) ds + ch2.

We recall that

u(τ0 + τ1) = − ∇g(z1)− µn

|∇g(z1)− µn|
,

and so, using (7.31), we get

∫ τ0+
τ2
2

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u?(2s− τ0))

)
u(τ0 + τ1) · βeds

= −k(τ0 + τ1, z1)β2

∫ τ0+
τ2
2

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u?(2s− τ0))

)
ds

= k(τ0 + τ1, z1)β2

∫ τ0+
τ2
2

τ0

∫ 2s−τ0

s
−kt(t, γτ0,x2,u?(2s− τ0)) dtds ≤ ch2. �

We finish this section by the following remark

Remark 7.29. One can give an example showing that a lower bound on the derivative of
the dynamic k with respect to t is actually sharp ! To see that, let Ω be the unit ball in Rd. Let
κ be a differentiable real function with 0 < κmin ≤ κ ≤ κmax < +∞. Set k(t, x) := κ(t), for
every (t, x) ∈ R+×Ω. For a given x ∈ Ω, the optimal trajectory for x, at time 0, will be given by

γ′(s) = k(s, γ(s)) e(x) = κ(s) e(x),

where e(x) := x/|x|. Let ϕ be the value function associated with this control problem. Hence,
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we observe easily that ∫ ϕ(0,x)

0
κ(s) ds = 1− |x|.

Now, set

G(T ) :=

∫ T

0
κ(s) ds, for all T ≥ 0

and
H := G−1.

This yields that
ϕ(0, x) = H(1− |x|).

Consequently, we have

D2ϕ(0, x) = H ′′(1− |x|) e(x)⊗ e(x)− H ′(1− |x|)
|x|

(I − e(x)⊗ e(x)),

where

H ′ =
1

κ
◦H and H ′′ = − κ

′

κ3
◦H.

This shows that D2ϕ cannot be bounded from above unless κ′ is bounded from below.



CHAPTER 8

Minimal time Mean Field Games

Mean field games (MFG) theory has been introduced simultaneously by Lasry and Lions [79, 80, 81]
and by Huang, Malhamé and Caines [68, 69] in order to study large population differential games. In this
chapter, we are interested in the study of a MFG model motivated by the crowd motion. The understanding
of fast exit and evacuation situations in crowd motion research has received a lot of scientific interest in
the last decades (see, for instance, [28]). More precisely, we present a MFG model where agents want
to leave a given bounded domain in minimal time. Each agent is free to move in any direction, but its
maximal speed is assumed to be bounded in terms of the density of agents in order to take into account
congestion phenomena. We attack the problem by interpreting equilibria as measures in a space of arcs.
In such a relaxed setting, the existence of an equilibrium, in the case of a regular dynamic k, follows
by set-valued fixed point arguments (see also [87]). Then, we give the forward-backward system of PDEs
which couples a Hamilton-Jacobi equation (for the value function ϕ of the generic agent) with a continuity
equation (for the density ρ of agents). The equilibrium that we will found turns out to be a solution of
the following system of PDEs

(8.1)


∂tρ−∇ ·

(
ρ k ∇ϕ
|∇ϕ|

)
= 0 in R+ × Ω,

−∂tϕ + k |∇ϕ| = 1 in R+ × Ω,

ρ(0) = ρ0 in Ω, ϕ = g on R+ × ∂Ω,

where k : P(Ω) × Ω 7→ R+ is the dynamic and g : ∂Ω 7→ R+ is a given boundary cost. We note

that it is much simpler here to use the Lagrangean approach, instead of using the Schauder fixed point

Theorem applied to the Eulerian formulation (i.e. doing a fixed point on the PDE system, as in [38]),

to prove existence of a solution for (8.1); this is due to the fact that the velocity v = −k ∇ϕ
|∇ϕ| is a priori

non-regular. On the other hand, we are able to give Lp estimates on the density of agents ρt, at each

time t, as soon as the initial density ρ0 belongs to Lp. Moreover, thanks to these Lp estimates, we extend

the result of existence of an equilibrium to a case where the dynamic k is non-regular.

This chapter will be a part of a joint paper with G. Mazanti, in preparation, [57].

8.1. Existence of equilibria in the regular case

Let Ω be a compact domain in Rd. We denote by P(Ω) the family of all Borel probability
measures on Ω. Let k : P(Ω) × Ω 7→ R+ be a continuous function. We consider the following
optimal-exit problem: agents evolve in Ω, their distribution at time t being given by the prob-
ability measure ρt. The goal of each agent is to leave the boundary ∂Ω in minimal time (i.e.,
paying a minimal cost that is assumed to be given by the time to reach a possible exit-point
plus a boundary cost g at this point, where g : ∂Ω 7→ R+ is a given continuous function), but
we assume the speed of an agent in a position x at time t to be bounded by k(ρt, x). This

163
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means that, for a given agent, its trajectory γ depends on the distribution of all agents ρt, since
the speed of γ should not exceed k(ρt, x). On the other hand, the distribution of the agents
ρt itself depends on how agents choose their trajectories γ. Thus, we are interested here in the
equilibrium situations, i.e., in situations where, starting from a time evolution of the density of
agents ρ : R+ → P(Ω), the trajectories γ chosen by agents induce an evolution of the initial
distribution of agents ρ0 that is precisely given by ρ. For every point x ∈ Ω, we consider the
following problem

(8.2) inf

{
τγ + g(γτ ) : γ ∈ Γ[ρ, x]

}
,

where

Γ[ρ, x] :=

{
γ ∈ Γ, γ(0) = x, |γ′(s)| ≤ k(ρs, γ(s)) for a.e. s ∈ (0, τγ) and γ′(s) = 0 ∀ s > τγ

}
,

τγ := inf{s ≥ 0 : γ(s) ∈ ∂Ω},

γτ := γ(τγ) ∈ ∂Ω,

and Γ is the space of all continuous curves from R+ to Ω, equipped with the topology of uni-
form convergence on compact sets, with respect to which Γ is a Polish space (see, for instance,
[17]).

Remark 8.1. If γ belongs to Γ[ρ, x], then there is a control u : R+ 7→ B̄(0, 1) such that

(8.3)

{
γ′(t) = k(ρt, γ(t))u(t), for a.e. t,

γ(0) = x.

Moreover, (8.3) can be seen as a control system (see Chapter 7) where the dynamic is given

by k̃(t, x) = k(ρt, x) for every (t, x) ∈ R+×Ω. This point of view allows one to formulate (8.2)
as an optimal control problem.

Let us state some assumptions on the data. It is reasonable to suppose that the dynamic k
is bounded from above, since if this is not the case, the speed of an agent would be +∞, which
is not natural at all. For simplicity, and in order to affirm that there is at least one admissi-
ble trajectory γ, starting from a point x, that reaches the boundary in finite time, we want to
suppose also that the dynamic k is bounded from below. Thus, we assume (as in Chaptre 7) that

0 < kmin := inf k ≤ kmax := sup k < +∞.

Moreover, we suppose, as in the previous chapter, that the cost g is λ-Lipschitz with λ < 1/kmax.
In this way, from Proposition 7.2, we infer that (8.2) reaches a minimum.

Following almost the same ideas proposed in [11, 34], we define a “relaxed” notion of MFG
equilibria, for which we give existence result. Such a formulation consists of replacing curves
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of probability measures on Ω with measures on arcs in Ω. For any t ∈ R+, we denote by
et : Γ 7→ Ω the evaluation map defined by

et(γ) = γ(t), for all γ ∈ Γ.

Let P(Γ) be the set of all probability measures on Γ. For any η ∈ P(Γ), we define the curve ρη

of probability measures on Ω as follows

ρη(t) = (et)#η, for all t ∈ R+.

Since et : Γ 7→ Ω is continuous, we observe that if ηn, η ∈ P(Γ), n ≥ 1, is such that ηn ⇀ η,
then ρηn(t) ⇀ ρη(t) for all t ∈ R+. For any fixed ρ0 ∈ P(Ω), we denote by Pρ0(Γ) the set of
all Borel probability measures η on Γ such that (e0)#η = ρ0.

Remark 8.2. We note that Pρ0(Γ) is nonempty. Indeed, let j : Ω 7→ Γ be the continuous
map defined by

j(x)(t) = x, for all t ∈ R+.

Then,
η := j#ρ0 belongs to Pρ0(Γ).

For all x ∈ Ω and η ∈ Pρ0(Γ), we define

Γ′[ρη, x] :=

{
γ ∈ Γ[ρη, x] : J(γ) = min

Γ[ρη ,x]
J

}
,

where
J(γ) := τγ + g(γτ ).

Definition 8.3. Let ρ0 ∈ P(Ω). We say that η ∈ Pρ0(Γ) is a MFG equilibrium for ρ0 if

spt(η) ⊆
⋃
x∈Ω

Γ′[ρη, x].

In fact, we are able to prove that
⋃
x Γ′[ρη, x] is closed and so, η ∈ Pρ0(Γ) is a MFG equilibrium

for ρ0 if for η−a.e. γ̄ ∈ Γ, we have

J(γ̄) ≤ J(γ), for all γ ∈ Γ[ρη, γ̄(0)].

We recall that k is continuous on P(Ω)× Ω. Moreover, we assume that

|k(µ, x0)− k(µ, x1)| ≤ C|x0 − x1|, for all x0, x1 ∈ Ω, µ ∈ P(Ω).
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Then, we have the following main result.

Theorem 8.4. Under these assumptions, there exists a MFG equilibrium for ρ0.

Before proving this theorem, we introduce the following

Lemma 8.5. Let ηn, η ∈ Pρ0(Γ) be such that ηn ⇀ η. Let xn ∈ Ω be such that xn → x and
let γn ∈ Γ′[ρηn , xn] be such that γn → γ̄. Then γ̄ ∈ Γ′[ρη, x]. Consequently, (η, x) 7→ Γ′[ρη, x]
has a closed graph.

Proof. We set, for simplicity, τn := τγn and zn := γn(τn). Using Lemma 7.7 & Proposition
7.8, (τn)n is bounded and, up to a subsequence, τn converges to some τ̄ . On the other hand,
we see easily that γ̄ ∈ Lip(R+,Ω) with |γ̄′| ≤ kmax. In addition, we have

|γ′n(t)| ≤ k(ρηn(t), γn(t)), for a.e. t ∈ (0, τn).

Letting n→ +∞, we get that

|γ̄′(t)| ≤ k(ρη(t), γ̄(t)), for a.e. t ∈ (0, τ̄).

In the same way, one can prove that γ̄′(t) = 0 for all t > τ̄ . Moreover, we have

zn → γ̄(τ̄),

which implies that γ̄(τ̄) ∈ ∂Ω and τ := τγ̄ ≤ τ̄ . Define the trajectory γ ∈ Γ[ρη, x] as follows

γ(t) =

{
γ̄(t), if t ≤ τ,
γ̄(τ), if t > τ.

Suppose that γ /∈ Γ′[ρη, x]. Then, there is a trajectory γ̂ ∈ Γ′[ρη, x] such that J(γ̂) < J(γ),
which means that we have

τγ̂ + g(γ̂τ ) < τ + g(γτ ).

For each n, let γ̃n be a geodesic (which is a segment unless x ∈ ∂Ω) between xn and x such
that |γ̃n′| = 1 and let φn be a function satisfying{

φ′n(t) = k(ρηn (t),γ̂(φn(t)))
k(ρη(φn(t)),γ̂(φn(t))) ,

φn(k−1
mind(xn, x)) = 0.

Define

γ̂n(t) =

{
γ̃n(kmint) for all t ∈ [0, k−1

mind(xn, x)],

γ̂(φn(t)) else.
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It is clear that γ̂n ∈ Γ[ρηn , xn]. Moreover, we have

(8.4) J(γ̂n) = φ−1
n (τ γ̂) + g(γ̂τ ).

On the other hand, we see that there exists a limit φ such that, up to a subsequence, φn → φ
uniformly on compact sets of R+. In addition, it is easy to check that for all t ∈ R+,∫ φn(t)

0
k(ρη(s), γ̂(s)) ds =

∫ t

k−1
mind(xn,x)

k(ρηn(s), γ̂(φn(s))) ds.

So, letting n→ +∞, we get∫ φ(t)

0
k(ρη(s), γ̂(s)) ds =

∫ t

0
k(ρη(s), γ̂(φ(s))) ds.

Set

G(θ) =

∫ θ

0
k(ρη(s), γ̂(s)) ds, ∀ θ ∈ R+.

One has

|φ(t)− t| =

∣∣∣∣G−1

(∫ t

0
k(ρη(s), γ̂(φ(s))) ds

)
−G−1

(∫ t

0
k(ρη(s), γ̂(s)) ds

)∣∣∣∣
≤ C

∫ t

0
|k(ρη(s), γ̂(φ(s))) − k(ρη(s), γ̂(s))| ds

≤ C

∫ t

0
|φ(s) − s| ds.

By using Gronwall’s Lemma, we get that

φ(t) = t, for all t ∈ R+.

Passing to the limit in (8.4), we get

(8.5) lim
n
J(γ̂n) = lim

n
φ−1
n (τ γ̂) + g(γ̂τ ) = J(γ̂) < J(γ).

As g is λ−Lip with λ < 1/kmax, then

J(γ) ≤ τ̄ + g(γ̄(τ̄)).

Yet,

lim
n
J(γn) = lim

n
τn + g(zn) = τ̄ + g(γ̄(τ̄)).
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Using (8.5), we infer that, for n large enough,

J(γ̂n) < J(γn),

which is a contradiction, as γ̂n ∈ Γ[ρηn , xn] and γn ∈ Γ′[ρηn , xn]. In the same way, we see that
τ̄ = τ . Then, γ̄ ∈ Γ′[ρη, x]. �

Now, we want to prove Theorem 8.4 using a fixed point argument. We introduce the set-valued
map E : Pρ0(Γ) ⇒ Pρ0(Γ) by defining, for any η ∈ Pρ0(Γ),

E(η) =

{
η̃ ∈ Pρ0(Γ) : spt(η̃) ⊆

⋃
x∈Ω

Γ′[ρη, x]

}
.

Then, it is immediate to realize that η ∈ Pρ0(Γ) is a MFG equilibrium for ρ0 if and only if
η ∈ E(η). We will therefore show that the set-valued map E has a fixed point. For this pur-
pose, we will apply Kakutani’s Theorem [72]. The following lemmas are intended to check that
the assumptions of such a theorem are satisfied by E.

Lemma 8.6. For any η ∈ Pρ0(Γ), E(η) is a nonempty convex set.

Proof. First, we note that E(η) is a nonempty set. Indeed, by Lemma 8.5 and [5, 40], we
have that x 7→ Γ′[ρη, x] has a Borel measurable selection γγγη : x 7→ γηx ∈ Γ′[ρη, x]. Thus, the
measure η̂, defined by η̂ := γγγη#ρ0 belongs to E(η). On the other hand, it is clear that E(η) is a
convex set. �

Lemma 8.7. The multimap E : Pρ0(Γ) ⇒ Pρ0(Γ) has a closed graph.

Proof. Let ηn, η ∈ Pρ0(Γ) be such that ηn ⇀ η. Let η̂n ∈ E(ηn) be such that η̂n ⇀ η̂.
Since η̂n ⇀ η̂, we have that η̂ ∈ Pρ0(Γ). For k ∈ N?, let Vk := {γ ∈ Γ : d(γ,∪xΓ′[ρη, x]) ≤ 1

k}.
By Lemma 8.5, we see that there exists a neighborhood W of η such that

⋃
x Γ′[ρη̃, x] ⊂ Vk,

for every η̃ ∈ W . Then, for n large enough,
⋃
x Γ′[ρηn , x] ⊂ Vk. Since η̂n(

⋃
x Γ′[ρηn , x]) = 1,

one obtains that η̂n(Vk) = 1, for large n. Yet, η̂n ⇀ η̂ and Vk is closed, it follows that
η̂(Vk) ≥ lim supn η̂n(Vk) = 1 and thus, η̂(Vk) = 1. As this holds for every k ∈ N?, then one
concludes that η̂(

⋃
x Γ′[ρη, x]) = 1. Hence η̂ ∈ E(η), which proves that the graph of E is

closed. �

Let us denote by Γkmax the set of trajectories γ ∈ Γ such that γ is kmax−Lipschitz, i.e.,

Γkmax = {γ ∈ Γ : |γ′| ≤ kmax}.
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By the definition of E(η), we deduce that

E(η) ⊂ Pρ0(Γkmax), for all η ∈ Pρ0(Γ).

Remark 8.8. Notice that Pρ0(Γkmax) is a compact convex subset of Pρ0(Γ). The convexity
of Pρ0(Γkmax) follows immediately. As for compactness, let (ηk)k ⊂ Pρ0(Γkmax). Since Γkmax

is a compact set, (ηk)k is tight. So, by Prokhorov’s Theorem, one finds a subsequence which
converges weakly to some probability measure η ∈ Pρ0(Γkmax).

So, we will restrict our domain of interest to Pρ0(Γkmax). Hereafter, we denote by E the re-
striction E | Pρ0 (Γkmax ).

Conclusion:

By Remark 8.2 and Remark 8.8, Pρ0(Γkmax) is a nonempty compact convex set. Moreover,
by Lemma 8.6, E(η) is a nonempty convex set for any η ∈ Pρ0(Γkmax) and, by Lemma 8.7,
the set-valued map E has a closed graph. Then, the assumptions of Kakutani’s Theorem are
satisfied and so, there exists η ∈ Pρ0(Γkmax) such that η ∈ E(η).

We finish this section by characterizing the density ρt := ρη(t) = (et)#η, for some equilibrium
η, as a solution of a continuity equation of the form ∂tρ+∇x · (ρ v) = 0 for a particular velocity
field v. Let ϕ be the value function (see Chapter 7), associated to the control problem with

dynamic k̃(t, x) = k(ρt, x), for all (t, x) ∈ R+ × Ω. Then, under the assumption that k̃ ∈ C1,1,
we have the following:

Proposition 8.9. Let η ∈ Pρ0(Γ) be an equilibrium for ρ0. Then ρ : t 7→ ρη(t) is a solution
of

(8.6) ∂tρ(t, x)−∇ ·
(
ρ(t, x) k(ρt, x)

∇ϕ(t, x)

|∇ϕ(t, x)|

)
= 0 in (0,∞)×

◦
Ω.

Proof. Let φ ∈ C∞c ((0,∞) ×
◦
Ω). Then, recalling Proposition 7.25 & Corollary 7.26, we

have

−
∫ +∞

0

∫
Ω
∂tφ(t, x) dρt(x) dt +

∫ +∞

0

∫
Ω
k(ρt, x)∇xφ(t, x) · ∇ϕ(t, x)

|∇ϕ(t, x)|
dρt(x) dt

= −
∫ +∞

0

∫
Γ
∂tφ(t, γ(t)) dη(γ) dt +

∫ +∞

0

∫
Γ
k(ρt, γ(t))∇xφ(t, γ(t)) · ∇ϕ(t, γ(t))

|∇ϕ(t, γ(t))|
dη(γ) dt

= −
∫ +∞

0

∫
Γ
∂tφ(t, γ(t)) dη(γ) dt −

∫ +∞

0

∫
Γ
∇xφ(t, γ(t)) · γ′(t) dη(γ) dt
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= −
∫

Γ

∫ +∞

0

d

dt
(φ(t, γ(t))) dt dη(γ) = 0. �

Let η ∈ Pρ0(Γ) be an equilibrium, ρ = ρη, i.e. ρt = ρη(t) = (et)#η for every t ∈ R+, and ϕ
be the associated value function. Then, by Propositions 7.5 & 8.9, (ρ, ϕ) solves the following
system 

∂tρ(t, x)−∇ ·
(
ρ(t, x) k(ρt, x)

∇xϕ(t, x)

|∇xϕ(t, x)|

)
= 0, (t, x) ∈ (0,∞)× Ω,

− ∂tϕ(t, x) + k(ρt, x) |∇xϕ(t, x)| = 1, (t, x) ∈ R+ × Ω,

ϕ(t, x) = g(x), (t, x) ∈ R+ × ∂Ω,

ρ(0, x) = ρ0(x), x ∈ Ω.

8.2. Lp estimates

In this section, we will be interested in the case where the dynamic k is given by the following

k(ρ, x) = c

(∫
Ω
χ(x− y)ψ(y) dρ(y)

)
, for all (ρ, x) ∈ P(Ω)× Ω,

where χ is a non-negative C1,1 function on Rd, ψ is a cut-off function on Ω and c is a positive
C1,1 decreasing function on R+. The meaning of this dynamic k is that each agent evaluates
an average density of agents around him through the integral term, the convolution kernel χ
and the cut-off function ψ (which allows us to not take into account agents who have already
left the domain, and who remain on ∂Ω), and its maximum speed depends on this evaluation of
the density across c.

More precisely, we take ψ(x) := α(d(x, ∂Ω)), for every x ∈ Ω, where α is a non-negative C1,1

increasing function such that α = 0 on [0, ε/2] and α = 1 on [ε,+∞), where ε > 0 is small
enough. As we have

∫
Ω χ(x − y)ψ(y) dρ(y) ≤ M , for all (ρ, x) ∈ P(Ω) × Ω (we note that the

constant M is independent of ε), then

(8.7) 0 < cmin := min
[0,M ]

c ≤ k ≤ cmax := max
[0,M ]

c < +∞.

In addition, it is clear that k is (uniformly in ε) C1,1 with respect to the variable x and is
continuous in ρ. From Theorem 8.4, we infer that, for any ρ0 ∈ P(Ω), there exists an equilib-
rium η for ρ0, associated to our MFG model with the dynamic k. On the other hand, we have
k((et)#η, x) = c(

∫
Γ χ(x − γ(t))ψ(γ(t)) dη(γ)) and so, k is Lipschitz (but, not uniformly in ε)

with respect to t. Yet, we want to show that ∂tk ≥ −C, for some constant C independent of ε.
In fact, one has

∂tk = c′(·)
(
−
∫

Γ
∇χ(x− γ(t)) · γ′(t)ψ(γ(t)) dη(γ) +

∫
Γ
χ(x− γ(t))∇ψ(γ(t)) · γ′(t) dη(γ)

)
.
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We recall that η is concentrated on the optimal trajectories for the control problem associated
with the dynamic k. Fix such a trajectory γ (we recall from Corollary 7.17 that γ is C1,1) and
let u be its associated optimal control. We have

∇ψ(γ(t)) · u(t) = α′(d(γ(t), ∂Ω))∇d(γ(t), ∂Ω) · u(t).

From Theorem 7.15, we have

u(τγ) = − ∇g(γ(τγ))− µn

|∇g(γ(τγ))− µn|

and so,

∇d(γ(τγ), ∂Ω) · u(τγ) = n · ∇g(γ(τγ))− µn

|∇g(γ(τγ))− µn|
= k(τγ , γ(τγ))[−µ+∇g(γ(τγ)) · n].

Using Lemma 7.14, we infer that

∇d(γ(τγ), ∂Ω) · u(τγ) =
k(τγ , γ(τγ))

2µ

(
− µ2 + |∇g(γ(τγ))|2 − 1

k(τγ , γ(τγ))2

)
.

As |∇g| ≤ λ < 1
cmax

and µ ≥ 1
k − |∇g| ≥

1
cmax
− λ, we get

∇d(γ(τγ), ∂Ω) · u(τγ) ≤ −C,

for some constant C := C(λ, cmin, cmax) > 0. On the other hand, we have

d

dt
[∇d(γ(t), ∂Ω) · u(t)] = k((et)#η, γ(t))D2d(γ(t), ∂Ω)u(t) · u(t) +∇d(γ(t), ∂Ω) · u′(t).

Recalling (7.25), we obtain that, for γ(t) close to ∂Ω,

d

dt
[∇d(γ(t), ∂Ω) · u(t)] ≥ −M,

where M is a constant independent of ε. Hence, we get

∇d(γ(τγ), ∂Ω) · u(τγ)−∇d(γ(t), ∂Ω) · u(t) ≥ −M(τγ − t)
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and so, using Lemma 7.7 & Proposition 7.8, we infer that

−C +Md(γ(t), ∂Ω) ≥ −C +M(τγ − t) ≥ ∇d(γ(t), ∂Ω) · u(t).

Consequently, there is some finite constant C, independent of ε, such that ∂tk ≥ −C. Thanks
to Proposition 7.28, the value function ϕ, associated to the control problem with the dynamic
k, is (uniformly in ε) semi-concave with respect to x.

On the other hand, we see easily that k is C1,1 in R+ × Ω. Now, if η is a MFG equilib-
rium for ρ0 and ρt = 1 ◦

Ω
· (et)#η for all t ∈ R+, then, by Corollary 7.26, we get that the pair

(ρt, ϕ) solves the following continuity equation

∂tρt −∇ ·
(
ρt k(ρt, ·)

∇ϕ
|∇ϕ|

)
= 0.

So, thanks to the semi-concavity with respect to x of the value function ϕ, we are able to
find Lp estimates on the density of agents ρt, at time t. More precisely, we have the following

Proposition 8.10. For every t ∈ R+, ρt ∈ Lp(Ω) as soon as ρ0 belongs to Lp(Ω). More-
over, we have the following estimate

||ρt||Lp(Ω) ≤ C||ρ0||Lp(Ω),

for some constant C depending only on the semi-concavity constant (w.r.t. x) of the value func-
tion ϕ.

Proof. First of all, let us define the vector field v as follows: for all t ∈ R+, we set

vt(x) :=

{
−k(ρt, x) ∇ϕ(t,x)

|∇ϕ(t,x)| , if x ∈
◦
Ω,

0, else.

Thanks to the fact that the value function ϕ is semi-concave with respect to x (see Propo-
sition 7.28), |∇ϕ| is bounded from below (see Corollary 7.12), and k is Lipschitz with respect
to x, we have ∇ · vt ≥ −C. This bound implies a lower bound on the Jacobian determinant J
of the flux associated to {

X ′(t, x) = vt(X(t, x)),

X(0, x) = x.
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Indeed, if X ∈
◦
Ω, we have

d

dt
∇X = ∇vt(X)∇X.

Setting Jt := det(∇X(t, ·)), one has

d

dt
Jt(x) = ∇ · vt(X(t, x)) Jt(x)

≥ −C Jt(x).

Hence,

log(Jt(x))− log(J0(x)) ≥ −Ct.

Yet, J0 = 1. So, we get

Jt ≥ e−Ct, for all t ∈ R+.

As η is an equilibrium and ρt = 1 ◦
Ω
· (et)#η, then, by Corollary 7.26 and the definition of

the flow X, we infer that

ρt = 1 ◦
Ω
·X(t, ·)#ρ0,

or equivalently,

ρt = 1
Xt(Ω)∩

◦
Ω
· (ρ0/Jt) ◦ (Xt)

−1, for all t ∈ R+.

Hence,

||ρt||pLp(Ω) =

∫
Xt(Ω)∩

◦
Ω

ρ0((Xt)
−1(y))p

Jt((Xt)−1(y))p
dy =

∫
Ω

ρ0(x)p

Jt(x)p−1
1
X−1
t (

◦
Ω)

(x) dx ≤ eC(p−1)t ||ρ0||pLp(Ω).

Consequently,

||ρt||Lp(Ω) ≤ e
C(1− 1

p
)t ||ρ0||Lp(Ω).

These estimates are proved, first, for smooth velocity field v and then, by approximation for
non-smooth v with [∇ · vt]− ≤ C (see [2]), using the a.e. uniqueness of the flow of the non-
smooth vector fields v, which comes from the uniqueness of the optimal trajectories in optimal
control (see Proposition 7.23). �
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8.3. Existence of equilibria for less regular model

Thanks to the previous Lp estimates on ρt, we are able to prove existence of an equilibrium η
for ρ0 in the case where the dynamic k is given by

k(ρ, x) = c

(∫
Ω
χ(x− y)1 ◦

Ω
(y) dρ(y)

)
, for all (ρ, x) ∈ P(Ω)× Ω.

Notice that the lack of continuity of the dynamic k with respect to ρ prevents us from us-
ing the result of Section 8.1. So, the idea will be to consider a sequence of cut-off functions
(ψε)ε>0 constructed as in Section 8.2 and converging to 1 ◦

Ω
in Lq, for all q < +∞, when ε→ 0,

and to replace the dynamic k with kε, where kε is defined as follows

kε(ρ, x) = c

(∫
Ω
χ(x− y)ψε(y) dρ(y)

)
, for all (ρ, x) ∈ P(Ω)× Ω.

In this way, if ηε is a MFG equilibrium for ρ0, associated to the control problem with the
dynamic kε, then we prove that ηε ⇀ η where η is, in fact, a MFG equilibrium for ρ0, asso-
ciated to the control problem with the dynamic k. First of all, set ρεt = 1 ◦

Ω
· (et)#η

ε, for all

t ∈ R+, ε > 0. From Section 8.2, we recall that kε is uniformly bounded in ε. Moreover, kε is
uniformly C1,1 with respect to x and, we have

∂tkε ≥ −C,

where the constant C is, in fact, independent of ε. As a consequence of that, the value function
ϕε, associated to the control problem with the dynamic kε, will be (uniformly in ε) semi-concave
with respect to x (see Proposition 7.28). Then, the proposition 8.10 implies the following uniform
estimates

||ρεt ||Lp ≤ C||ρ0||Lp , for all t ∈ R+, ε > 0.

As ηε ∈ P(Γ) and spt(ηε) ⊂ Γcmax (we recall that Γcmax is the set of all cmax-Lip curves
in Γ, which is by the way a compact subset of it), then, up to a subsequence, ηε ⇀ η. Set
ρt := 1 ◦

Ω
· (et)#η, for every t ∈ R+. Hence, we have ρεt ⇀ ρt in Lp. In addition, ψε → 1 ◦

Ω
in

Lq, for all q < +∞. Using these facts, we get, for every (t, x) ∈ R+ × Ω, that

kε((et)#η
ε, x) = c

(∫
Ω
χ(x − y)ψε(y)ρεt (y) dy

)
→ c

(∫
Ω
χ(x − y)ρt(y) dy

)
= k((et)#η, x).

Moreover, for any x ∈ Ω, the function t 7→ k((et)#η, x) is continuous on R+. Indeed, if tn → t,
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then ρtn ⇀ ρt in Lp and so, we have

k((etn)#η, x) = c

(∫
Ω
χ(x − y)ρtn(y) dy

)
→ c

(∫
Ω
χ(x − y)ρt(y) dy

)
= k((et)#η, x).

Let us denote by ϕ the value function associated to the control problem with the dynamic
k. Then, we prove that ϕε → ϕ uniformly, which will be sufficient to infer that η is a MFG
equilibrium for ρ0, associated to the control problem with the dynamic k. In fact, we have the
following

Proposition 8.11. Let kε, k : P(Ω) × Ω 7→ R+ be such that, for every ε > 0, kε is con-
tinuous on P(Ω) × Ω and is Lipschitz with respect to the second variable. Let ηε be a MFG
equilibrium, associated to the control problem with dynamic kε, and let η be the limit of ηε in
P(Γ). In addition, assume the following:

• There exist two constants cmin and cmax such that 0 < cmin ≤ kε ≤ cmax < +∞.
• There exists a constant M independent of ε such that |∇xkε| ≤M.
• For a.e. t ∈ R+, we have kε((et)#η

ε, ·)→ k((et)#η, ·) when ε→ 0.
• t 7→ k((et)#η, ·) is continuous on R+.

If ϕε (resp. ϕ) is the value function associated to the control problem with dynamic kε (resp.
k), then ϕε → ϕ uniformly in R+ × Ω.

Proof. First of all, let us see that ϕε converges uniformly to some function ϕ̃ on R+ ×Ω.
Indeed, from Lemma 7.7 & Proposition 7.8, the sequence (ϕε)ε is equibounded. Moreover, by
Proposition 7.10, the value function ϕε is Lipschitz in R+ × Ω with a Lipschitz constant de-
pending only on the Lipschitz constant of the dynamic kε with respect to x, which is by the
way uniform in ε. Fix (t, x) ∈ R+×Ω. For every ε > 0, let γε be an optimal trajectory for x, at
time t, in the control problem with dynamic kε. It is easy to observe that γε → γ uniformly, for
some γ ∈ Γcmax . Yet, this γ is, in fact, an admissible trajectory for x, at time t, in the control
problem with dynamic k. Indeed, for a.e. s ∈ (t,∞), we have

|γ′ε(s)| ≤ kε((es)#η
ε, γε(s)).

So, letting ε→ 0, we get

|γ′(s)| ≤ k((es)#η, γ(s)), for a.e. s.

Let uε be the optimal control associated with γε and, set

τε := τ t,x,uε and zε := γε(t+ τε) ∈ ∂Ω.

It is clear that τε → τ̄ and zε → z ∈ ∂Ω. In particular, we have z = γ(t + τ̄) and τγ ≤ τ̄ .
Consequently, ϕ(t, x) ≤ τ̄ + g(z) = lim

ε→0
ϕε(t, x) = ϕ̃(t, x).
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On the other hand, let γ be an optimal trajectory for x, at time t, in the control problem
with dynamic k, and u be the associated optimal control with γ. Let φε be a solution of the
following

(8.8)

{
φ′ε(s) =

kε((es)#η
ε,γ(φε(s)))

k((eφε(s))#η,γ(φε(s)))
,

φε(t) = t.

Set
γε(s) = γ(φε(s)), for all s ∈ [t,∞).

It is clear that γε is admissible for x, at time t, in the control problem with dynamic kε (let uε
be the control associated with γε and set τε = τ t,x,uε). Hence, we have

(8.9) ϕε(t, x) ≤ τε + g(γε(t+ τε)).

Yet, we observe easily that τε = φ−1
ε (t+ τ)− t, where τ := τ t,x,u . From (8.8), we have∫ φε(s)

t
k((er)#η, γ(r)) dr =

∫ s

t
kε((er)#η

ε, γ(φε(r))) dr.

Set

Ψ(θ) =

∫ θ

t
k((er)#η, γ(r)) dr, for all θ ∈ [t,∞).

We have
|φε(s)− s|

=

∣∣∣∣Ψ−1

(∫ s

t
kε((er)#η

ε, γ(φε(r))) dr

)
−Ψ−1

(∫ s

t
k((er)#η, γ(r)) dr

)∣∣∣∣
≤ C

∫ s

t
|kε((er)#η

ε, γ(φε(r)))− k((er)#η, γ(r))|dr

≤ C
∫ s

t

(
|kε((er)#η

ε, γ(φε(r)))−k((er)#η, γ(φε(r)))|+ |k((er)#η, γ(φε(r)))−k((er)#η, γ(r))|
)

dr

≤ C
(∫ s

t
|kε((er)#η

ε, γ(φε(r)))− k((er)#η, γ(φε(r)))|dr +

∫ s

t
|φε(r)− r| dr

)
.

Yet,

|kε((er)#η
ε, γ(φε(r)))− k((er)#η, γ(φε(r)))|

≤
∣∣∣∣(kε((er)#η

ε, γ(φε(r)))− kε((er)#η
ε, γ(r))

)
−
(
k((er)#η, γ(φε(r)))− k((er)#η, γ(r))

)∣∣∣∣
+

∣∣∣∣kε((er)#η
ε, γ(r))− k((er)#η, γ(r))

∣∣∣∣
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≤ C|φε(r)− r|+
∣∣∣∣kε((er)#η

ε, γ(r))− k((er)#η, γ(r))

∣∣∣∣.
Hence, one has

|φε(s)− s|

≤ C
(∫ s

t

∣∣∣∣kε((er)#η
ε, γ(r))− k((er)#η, γ(r))

∣∣∣∣dr +

∫ s

t
|φε(r)− r|dr

)
.

Using Gronwall’s inequality, we get

|φε(s)− s| ≤ C

∫ s

t
eC(s−r)

∣∣∣∣kε((er)#η
ε, γ(r))− k((er)#η, γ(r))

∣∣∣∣ dr.
Consequently, φε → id, when ε→ 0. In particular, we have τε = φ−1

ε (t+τ)− t→ τ . So, passing
to the limit in (8.9), we get

ϕ̃(t, x) ≤ τ + g(γ(t+ τ)) = ϕ(t, x).

This proves that ϕε → ϕ uniformly in R+ × Ω. �

Under the same hypotheses of Proposition 8.11, we have the following

Proposition 8.12. η is an equilibrium for ρ0.

Proof. Let Γ[ρη
ε
, x] (resp. Γ[ρη, x]) be the set of all admissible trajectories for x, at

time 0, in the MFG model associated to the control problem with dynamic kε (resp. k), and
let Γ′[ρη

ε
, x] ⊂ Γ[ρη

ε
, x] (resp. Γ′[ρη, x] ⊂ Γ[ρη, x]) be the optimal ones. For k ∈ N?, let

Vk := {γ ∈ Γ : d(γ,∪xΓ′[ρη, x]) ≤ 1
k}. We claim that there is some ε0 > 0 such that, for all

0 < ε ≤ ε0, we have ∪xΓ′[ρη
ε
, x] ⊂ Vk. Indeed, if this is not the case, then, for all n ∈ N?, there

is some optimal trajectory γεn ∈ Γ′[ρη
εn
, xεn ]\Vk, for some xεn ∈ Ω. We see that xεn → x ∈ Ω

and γεn → γ for some γ ∈ Γcmax . Set

τεn := τγεn , for all n ∈ N?.

Then, using Lemma 7.7 & Proposition 7.8, we infer that τεn → τ̄ and γεn(τεn) → γ(τ̄) ∈ ∂Ω,
which implies that τγ ≤ τ̄ . Moreover, it is easy to check that γ is admissible in the control
problem with dynamic k. Yet, we have

ϕεn(0, xεn) = τεn + g(γεn(τεn)).

Then, passing to the limit when εn → 0, we obtain, from Proposition 8.11, that

ϕ(0, x) = τ̄ + g(γ(τ̄)) ≥ τγ + g(γ(τγ)).
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This implies that γ ∈ Γ′[ρη, x], which is a contradiction. Consequently, we have

η(Vk) ≥ lim
ε
ηε(Vk) ≥ lim

ε
ηε
(⋃

x

Γ′[ρη
ε
, x]

)
= 1.

Hence, η(Vk) = 1 and, since k is arbitrary, we infer that η

(⋃
x

Γ′[ρη, x]

)
= 1. This concludes

the proof that η is an equilibrium. �

Conclusion:

For any ρ0 ∈ Lp, there exists a MFG equilibrium η, for ρ0, associated to the control prob-
lem with the following dynamic

k(ρ, x) = c

(∫
Ω
χ(x− y)1 ◦

Ω
(y) dρ(y)

)
, for all (ρ, x) ∈ P(Ω)× Ω.



CHAPTER 9

Stationary case

This chapter is devoted to the study of the stationary Mean Field Games model of the one considered
in Chapter 8. In other words, we consider the following

(9.1)


−∇ ·

(
ρ k(ρ, ·) ∇ϕ

|∇ϕ|

)
= f in Ω

k(ρ, ·) |∇ϕ| = 1 in Ω

ϕ = 0 on ∂Ω.

We prove existence of a solution (ρ, ϕ) to (9.1) by studying existence of an equilibrium η for a sta-

tionary MFG model. For a regular dynamic k, the proof is similar to the one, given in Chapter 8, for

the non-stationary case. Moreover, we are able to give Lp estimates on the density ρ, which allow us

to extend our result of existence of an equilibrium (or equivalently, of a solution for (9.1)) to some less

regular model. In fact, we observe that (9.1) is nothing else than the Monge-Kantorovich system for the

transport of f onto the boundary, using the non-uniform Riemannian metric c = k(ρ, ·)−1 as a transport

cost. More precisely, the measure ρ will be, up to multiply it by the dynamic k, the transport density σ

between f and its projection on the boundary P#f (using the weighted distance dc in the definition of

P ). Hence, studying the Lp summability of the density ρ is equivalent to studying the Lp summability of

the transport density σ between f and P#f .

This chapter is not yet part of a submitted paper. It is based on discussions with
P. Pansu and F. Santambrogio.

9.1. Optimal transportation onto the boundary with weighted distances

In this section, we study an optimal transport problem between a given non-negative density
f ∈ L1(Ω), in the interior of a domain Ω, and the boundary ∂Ω in the presence of a non-uniform
Riemannian metric dc, where c is a given positive continuous function on Ω. In others words,
we consider the following problem

(9.2) min

{∫
Ω
dc(x, y) dλ : λ ∈M+(Ω× Ω), (Πx)#λ = f, (Πy)#λ ⊂ ∂Ω

}
,

where

dc(x, y) = inf

{∫ 1

0
c(γ(t))|γ′(t)|dt : γ ∈ C1([0, 1],Ω), γ(0) = x and γ(1) = y

}
, ∀ x, y ∈ Ω.

179
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Since the marginal (Πy)#λ on ∂Ω is completely arbitrary, then it is clear that the optimal
choice is to take it equal to P#f , where

P (x) = argmin {dc(x, y), y ∈ ∂Ω} for all x ∈ Ω,

which means that λ := (Id, P )#f is the unique optimal transport plan for (9.2), which is
also the same as

(9.3) min

{∫
Ω×Ω

dc(x, y) dλ : λ ∈ Π(f, P#f)

}
.

On the other hand, the following problem

(9.4) max

{∫
Ω
udf : |∇u| ≤ c, u = 0 on ∂Ω

}

is the dual of (9.2) (we note that |∇u| ≤ c is equivalent to say that u is 1-Lipschitz with
respect to the distance dc). In fact, for every admissible λ in (9.2) and every admissible u in
(9.4), we have ∫

Ω×Ω
dc(x, y) dλ ≥

∫
Ω×Ω

(u(x)− u(y)) dλ =

∫
Ω
udf

and then, sup (9.4)≤ min (9.2). Now, taking ϕ(x) := dc(x, ∂Ω), for all x ∈ Ω, we infer that
the equality sup (9.4)= min (9.2) holds and, ϕ is in fact a Kantorovich potential for (9.4).

In order to introduce the transport density, as it can be understood recalling (2.2), we have
first to define H1 γx for a geodesic γx between a point x and the boundary, which is the
1-dimensional Hausdorff measure on the path γx: formally, if φ ∈ C(Ω), it can be computed by

< H1 γx, φ >:=

∫ 1

0
φ(γx(t))|γ′x(t)|dt.

We can now define the transport density associated to the optimal transport plan λ: the direct
generalization of (2.2) turns out to be

σ :=

∫
Ω
H1 γx df(x)



9.1. OPTIMAL TRANSPORTATION ONTO THE BOUNDARY WITH WEIGHTED DISTANCES 181

or equivalently,

< σ, φ > =

∫
Ω

df(x)

∫ 1

0
φ(γx(t))|γ′x(t)| dt for all φ ∈ C(Ω).(9.5)

On the other hand, the Beckmann problem (3.1) becomes

(9.6) min

{∫
Ω
cd|w| : w ∈Md(Ω), ∇ · w = f in

◦
Ω

}
.

In fact, it is easy to see that sup (9.4) ≤ min (9.6). Indeed, for any function u ∈ C1
0 (Ω) with

|∇u| ≤ c and every vectorial measure w ∈Md(Ω) such that ∇ · w = f in
◦
Ω, we have

(9.7)

∫
Ω
udf = −

∫
Ω
∇u · dw ≤

∫
Ω
cd|w|.

Now, set

< w, ξ >=

∫
Ω

df(x)

∫ 1

0
ξ(γx(t)) · γ ′x(t) dt, for all ξ ∈ C(Ω,Rd).

As, for a.e. x ∈ Ω,

(9.8) γ′x(t) = −ϕ(x) c−1(γx(t))
∇ϕ(γx(t))

|∇ϕ(γx(t))|
, for all t ∈ [0, 1],

then

w = −σ ∇ϕ
|∇ϕ|

.

Yet, we see that
∫

Ω cdσ = min (9.2). Moreover, it is not difficult to check that ∇ · w = f

in
◦
Ω. Hence, the vector measure w solves (9.6). In addition, the most complicated version of

the system (3.2) becomes

(9.9)


−∇ ·

(
σ ∇ϕ|∇ϕ|

)
= f in Ω,

ϕ = 0 on ∂Ω,

|∇ϕ| ≤ c in Ω,

|∇ϕ| = c σ − a.e.
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The question that we consider now is whether the transport density σ from f to P#f (or
equivalently, the optimal vector field w in (9.6)) is in Lp(Ω) or not when f ∈ Lp(Ω). Via a
symmetrization trick, we have already seen that, in the Euclidean case (see Chapter 3), these
Lp estimates hold as soon as one has f ∈ Lp and Ω satisfies a uniform exterior ball condition.
However, this method does not work here, since the transport rays are no more segments but
actually geodesics. So, we show that the same Lp result will be true as well in the case where
the transport cost is given by a Riemannian metric c, via a different technique which will be
described in the next sections.

9.2. Summability of the transport density with weighted distances

Let σ be the transport density associated with the transport of f into P#f . By the defi-
nition of σ (see (9.5)), we have, for all φ ∈ C(Ω),

< σ, φ > =

∫
Ω

∫ 1

0
φ(γx(t)) |γ′x(t)| f(x) dt dx.

As c ≥ cmin > 0, then one has

(9.10) σ ≤ C
∫ 1

0
ft dt,

where

< ft, φ >:=

∫
Ω
φ(Pt(x)) dc(x, ∂Ω) f(x) dx, for all φ ∈ C(Ω),

and
Pt(x) := γx(t), for a.e. x ∈ Ω and for every t ∈ [0, 1].

Notice that in the definition of ft, as we did in Chapter 4, we need to keep the factor dc(x, ∂Ω),
which will be essential in the estimates. Now, we want to give an explicit formula of ft in terms
of f and P . We have, for all φ ∈ C(Ω),

∫
Ω
φ(y) dft(y) =

∫
Ω
φ(Pt(x)) dc(x, ∂Ω) f(x) dx.

Take a change of variable y := Pt(x). As the image of y and x by P is the same, i.e.
P (y) = P (x), then we have

dc(x, ∂Ω) = (1− t)−1 dc(y, ∂Ω).

Consequently, we get

∫
Ω
φ(y) dft(y) =

∫
Ωt

φ(y) (1− t)−1dc(y, ∂Ω) f
(
P−1
t (y)

)
|Jt(y)|dy,
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where Ωt := Pt(Ω) and Jt(y) := det(DPt(x))−1 for all y = Pt(x). Finally, we infer that

ft(y) = (1− t)−1dc(y, ∂Ω) f
(
P−1
t (y)

)
|Jt(y)| 1Ωt(y) for a.e. y.

Notice that y ∈ Ωt is equivalent to dc(y, ∂Ω) ≤ (1 − t)l(y), where l(y) is the length of the
maximal geodesic curve γ : [0, 1] 7→ Ω containing y such that P (γ(t)) = P (y), for all t ∈ [0, 1].

Now, we will introduce the following key proposition, whose proof, for simplicity of exposi-
tion, is postponed to Section 9.3.

Proposition 9.1. Suppose that Ω is a smooth domain with all its curvatures bounded from
below by a constant κ, and let c be a smooth positive function on Ω. Then, there exists a pos-
itive constant C depending only on d, κ, diam(Ω), cmin, cmax, ||∇c||∞ and ||D2c||∞ such that,
for a.e. x ∈ Ω, we have the following estimate

| det(DPt(x))| ≥ C(1− t).

We are now ready to prove the Lp summability of the transport density σ. We recall that a
domain Ω satisfies a uniform exterior ball of radius r > 0 if for all y ∈ ∂Ω, there exists some
x ∈ Rd such that B(x, r) ∩ Ω = ∅ and |x − y| = r (see Definition 3.6). We note that the
existence of a uniform exterior ball of radius r, for a domain Ω, implies that all its curvatures
are bounded from below by a constant κ ≥ −1

r .

Proposition 9.2. Suppose that Ω satisfies a uniform exterior ball of radius r > 0, and let
c be a C1,1 positive function on Ω. Then, the transport density σ, between f and P#f , belongs
to Lp(Ω) provided f ∈ Lp(Ω). In addition, we have the following estimate

||σ||Lp ≤ C||f ||Lp ,

where C = C(d, r, diam(Ω), cmin, cmax, ||∇c||∞, ||D2c||∞) < +∞.

These estimates will be similar to the ones given in Chapter 4. But, for completeness, we
want to give the proof.

Proof. From (9.10), we have

‖ σ ‖pLp(Ω) ≤ Cp
∫

Ω

(∫ 1

0
ft(y) dt

)p
dy

= Cp
∫

Ω

(∫ 1− dc(y,∂Ω)
l(y)

0
(1− t)−1dc(y, ∂Ω) f(P−1

t (y)) Jt(y) dt

)p
dy.
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Using Hölder’s inequality, we get

‖ σ ‖pLp(Ω)

≤ Cp
∫

Ω

(∫ 1− dc(y,∂Ω)
l(y)

0
(1− t)−p′ dc(y, ∂Ω)p

′
Jt(y) dt

) p
p′
(∫ 1− dc(y,∂Ω)

l(y)

0
f(P−1

t (y))p Jt(y) dt

)
dy,

where 1
p + 1

p′ = 1. Let us suppose, first, that Ω and c are smooth. Hence, we can apply

Proposition 9.1, with κ ≥ −1
r , to deduce that

(∫ 1− dc(y,∂Ω)
l(y)

0
(1− t)−p′ dc(y, ∂Ω)p

′
Jt(y) dt

) p
p′

≤ C
− p
p′

diam(Ω)p

p′
p
p′

.

Then,

‖ σ ‖Lp(Ω)≤ C−1 ‖ f+ ‖Lp(Ω),

where C = C(d, r,diam(Ω), cmin, cmax, ||∇c||∞, ||D2c||∞) > 0 and, this constant can be taken
independent of p. In particular, the estimate also holds for p =∞.

By approximation, as the constant C depends on the lower bound of all the curvatures of
∂Ω and, on cmin, cmax, ||∇c||∞, ||D2c||∞, we can check again that our result is still true for a
domain Ω satisfying a uniform exterior ball condition, with a Riemannian metric c ∈ C1,1. �

9.3. A geometric proof

In this section, we want to prove Proposition 9.1. First of all, let us recall that the distance
function ϕ(x) = dc(x, ∂Ω) is semi-concave as soon as Ω satisfies a uniform exterior ball con-
dition and c is C1,1 (to see that, the reader can refer to Proposition 7.28 in case ∂Ω ∈ C1,1,
or to Theorem 8.2.7 in [37]). Let the manifold Rd be equipped with the conformal metric dc.
Let [·, ·] be the Lie bracket and ∇ be the Levi-Civita connection on (Rd, dc). Let ν be the
unitary inner normal vector on ∂Ω. For every x ∈ Ω, it is clear that there exist s ∈ ∂Ω and
τ ∈ [0, l(s)], where l(s) is the length of the maximal geodesic γ (with |γ′| = 1) starting from s
with P (γ(τ)) = s for all τ ∈ [0, l(s)], such that x = Ψ(s, τ) := exps τν(s). Moreover, we have
that, for every t ∈ [0, 1], Pt(Ψ(s, τ)) = Ψ(s, (1− t)τ), for all s ∈ ∂Ω and τ ∈ [0, l(s)]. Then, we
get

(9.11) det(DPt(Ψ(s, τ))) det(DΨ(s, τ)) = (1− t) det(DΨ(s, (1− t)τ)).

Fix x ∈ Ω and set s := P (x). Let (e1, ..., ed) be an orthonormal basis of (Rd, dc) such that
e1, ..., ed−1 is an orthonormal basis of the tangent space Ts ∂Ω on ∂Ω at s and ed = ν(s).
Consider small variations of s, on ∂Ω, in the directions e1, ..., ed−1, denoted by s + δe1 +
o(δ), ..., s+ δed−1 + o(δ). Set
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Ji(s, τ) :=
d

dδ |δ=0
Ψ(s+ δei + o(δ), τ), for all i ∈ {1, ..., d− 1},

and

N(s, τ) :=
d

dδ |δ=0
Ψ(s, τ + δ).

Notice that the vector field Ji, for every i ∈ {1, ..., d−1}, have been obtained by differentiating a
family of geodesics depending on a parameter (which is, here, δ). Let γ be the maximal geodesic
starting from s such that P (γ(τ)) = s for all τ ∈ [0, l(s)], and let us parallel-transport along
the geodesic γ to define a new family of orthonormal basis (e1(τ), ..., ed(τ)), for all τ ∈ [0, l(s)].
Set

J(s, τ) := (J1(s, τ), ..., Jd−1(s, τ), N(s, τ)) = DΨ(s, τ).

The Jacobian of the map Ψ is defined by

J (s, τ) = detJ(s, τ).

Yet, this Jacobian J cannot vanish, except possibly at the endpoint of the geodesic γ; this
property can be seen as a result of the very special choice of the velocity field ν, which comes
from the gradient of a d2

c−convex function (see, for instance, [112]). So, the formula for the
differential, with respect to τ , of the determinant J (s, τ) yields

J ′(s, τ) = tr(J ′(s, τ) J(s, τ)−1)J (s, τ).

Set

(9.12) U(τ) = J ′(s, τ) J(s, τ)−1.

One has

(9.13) J ′(s, τ) = tr(U(τ))J (s, τ).

Let us denote by dΨ the differential map of Ψ. The fact that [∂ei , ∂ed ] = 0, for all i ∈
{1, ..., d− 1}, implies that

(9.14) [Ji, N ] =

[
dΨ(∂ei), dΨ(∂ed)

]
= dΨ[∂ei , ∂ed ] = 0.

As

Ji(s, τ) =

d∑
j=1

J(s, τ)ji ej(τ), for all i ∈ {1, ..., d− 1},

then

∇NJi = ∇γ′Ji =

d∑
j=1

J ′(s, τ)ji ej(τ) + J(s, τ)ji∇γ′ej(τ) =

d∑
j=1

J ′(s, τ)ji ej(τ)
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since ∇γ′ej(τ) = 0, for all j ∈ {1, ..., d}. On the other hand, from (9.14) and the fact that
[Ji, N ] = ∇JiN −∇NJi, we get that

∇NJi = ∇JiN =

d∑
j=1

J(s, τ)ji∇ej(τ)N.

Now, let V be the matrix, in the basis (ej(τ))j=1,...,d, associated with the endomorphism X 7→
∇XN (which is by the way the second fundamental form of the submanifold {ϕ = τ} in (Rd, dc)).
Then, one has

d∑
j=1

J(s, τ)ji∇ej(τ)N =

d∑
j,k=1

J(s, τ)ji Vkj ek(τ) =

d∑
k=1

(V J)ki ek(τ).

Hence,

J ′ = V J,

which means, recalling (9.12), that V = U . Consequently, U(τ) is the second fundamental form
of {ϕ = τ}. Yet, from the definitions of Ψ and N , we see easily that N = ∇ϕ. Hence, by the
semi-concavity of the distance function ϕ, we infer that

U(τ) ≤ CI

for some constant C := C(d, κ, diam(Ω), cmin, cmax, ||∇c||∞, ||D2c||∞) < +∞. As a conse-
quence of this, we obtain

tr(U(τ)) ≤ C,

which means, using (9.13), that

J ′(s, τ)

J (s, τ)
≤ C.

Then,

log(J (s, τ))− log(J (s, (1− t)τ)) ≤ Ctτ

and
J (s, (1− t)τ)

J (s, τ)
≥ e−Ctτ .

Recalling (9.11), we infer that there is a constant C > 0 such that

det(DPt(x)) ≥ C(1− t).
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9.4. Existence of equilibria for stationary MFG

In this section, we want to study the existence of an equilibrium for some regular/non-regular
stationary MFG models. We can consider the same MFG, introduced in Chapter 8, adding a
density ft at each time t; this means that we have an initial density ρ0 of agents evolving in Ω
and there is an additional density ft which is created in Ω at each time t. The goal of each agent
is to leave the domain Ω through the boundary ∂Ω in minimal time under the assumption
that the speed of an agent in a position x at time t is bounded by k(ρt, x), where ρt is the
distribution of agents at time t. In this case, the system (8.1) becomes

(9.15)


∂tρ−∇ ·

(
ρ k ∇ϕ|∇ϕ|

)
= f in R+ × Ω,

−∂tϕ + k |∇ϕ| = 1 in R+ × Ω,

ρ(0) = ρ0 in Ω, ϕ = 0 on R+ × ∂Ω.

In order to model (9.15) in the Lagrangian setting, we consider a time dependent measure on
curves η : t 7→ ηt ∈ P(Γ) with (e0)#η0 = ρ0, (et)#ηt = ft, for every t > 0, where the measure
ηt is the distribution of trajectories followed by agents starting at time t. Let us define the curve
ρη as follows

(9.16) ρηt :=

∫ t

0
(et)#ηs ds+ (et)#η0, for all t ∈ R+.

For such a family η, we consider, for every (t, x) ∈ R+ × Ω, the following minimal-time exit
problem

min

{
τ tγ : γ ∈ Γt[ρη, x]

}
,

where

τ tγ := inf{τ ≥ 0 : γ(t+ τ) ∈ ∂Ω}

and

Γt[ρη, x] :=

{
γ ∈ Γ, γ(t) = x, |γ′(s)| ≤ k(ρηs , γ(s)) for a.e. s ∈ (t, t+τ tγ), γ′(s) = 0 ∀ s > t+τ tγ

}
.

We may expect that there exists an equilibrium η for the above MFG model with initial density
ρ0 and source f , i.e., there is a curve η : t 7→ ηt ∈ P(Γ) with (e0)#η0 = ρ0, (et)#ηt = ft, for
every t > 0, such that ηt−a.e. γ ∈ Γ is an optimal trajectory for γ(t), at time t.

From now on, we assume that ft is independent of t. We are interested in the study of the
stationary MFG of (9.15); this means that we want to find an equilibrium η in such a way that
the distribution of agents ρt will be constant in t, i.e., ρt = ρ0, for all t ∈ R+. The stationary
version of (9.15) becomes
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(9.17)


−∇ ·

(
ρ k(ρ, ·) ∇ϕ|∇ϕ|

)
= f in Ω,

k(ρ, ·) |∇ϕ| = 1 in Ω,

ϕ = 0 on ∂Ω.

Let us define, first, a stationary MFG equilibrium. Take ρ ∈ P(Ω). So, for every x ∈ Ω,
we consider the following problem

(9.18) min

{
τγ : γ(0) = x, |γ′(s)| ≤ k(ρ, γ(s)) for a.e. s ∈ (0, τγ) and γ′(s) = 0 ∀ s > τγ

}
where

τγ := inf{τ ≥ 0 : γ(τ) ∈ ∂Ω}.

It is clear that if γ is an admissible trajectory in (9.18), then there is a control u : R+ 7→ B̄(0, 1)
such that

(9.19)

{
γ′(t) = k(ρ, γ(t))u(t), for a.e. t,

γ(0) = x.

In fact, (9.19) can be seen as an autonomous control system (see Chapter 7) where the dy-

namic is given by k̃(x) = k(ρ, x), for every x ∈ Ω, which means that one can formulate (9.18)
as an optimal control problem.

We recall, from Lemma 7.7, that min (9.18) ≤ k−1
min diam(Ω). Therefore, after a time T >

k−1
min diam(Ω), all the agents have already left the domain. For any η ∈ P(Γ), let us define the

non-negative measure ρη on Ω as follows

(9.20) ρη =

∫ T

0
(et)#η dt.

Notice that (9.20) can be obtained from (9.16) by taking t large enough. Indeed, if we sup-
pose ηs = η for all s > 0 (since we look for a stationary equilibrium) we have, from (9.16),
that

ρηt =

∫ t

0
(et)#ηs ds+ (et)#η0 =

∫ t

0
(et−s)#η ds+ (et)#η0 =

∫ t

0
(es)#η ds+ (et)#η0.

For t large enough, if we consider just the restriction of the density of agents to the interior of

Ω, we get (et)#η0 = 0 and
∫ t

0 (es)#η ds =
∫ T

0 (es)#η ds, for all t ≥ T . This yields that, for all

t ≥ T , we have ρηt = ρηT =
∫ T

0 (es)#η ds.
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Let us denote by Pf (Γ) the set of all probability measures on Γ such that (e0)#η = f . We
introduce the following

Definition 9.3. For f ∈ P(Ω), we say that η ∈ Pf (Γ) is a stationary MFG equilibrium
with source f if

spt(η) ⊆ {γ ∈ Γ : γ is an optimal trajectory for γ(0), with ρ := ρη}.

9.4.1. Regular case. Suppose that the dynamic k is continuous on P(Ω)× Ω and, Lip-
schitz with respect to the second variable x. Then, we have the following

Theorem 9.4. There exists a stationary MFG equilibrium with source f .

Proof. The strategy of the proof is almost the same as that one given in Chapter 8 (al-
though, it seems to be slightly simpler in this autonomous case). �

Moreover, we can characterize the density ρη, whenever η is a stationary MFG equilibrium with
source f , using the solution of the equation −∇ · (ρ v) = f , for a particular velocity field v. Let
ϕ be the value function (see Chapter 7) associated to the autonomous control problem with

dynamic k̃ = k(ρη, ·). Then, under the assumption that k̃ ∈ C1,1, we have the following

Proposition 9.5. Let η ∈ Pf (Γ) be a stationary MFG equilibrium with source f . Set

ρ := ρη and let ϕ be the value function with k̃ = k(ρ, ·). Then, we have

−∇ ·
(
ρ k(ρ, ·) ∇ϕ

|∇ϕ|

)
= f in

◦
Ω.

Proof. Let φ ∈ C∞c (
◦
Ω). Then, recalling Proposition 7.25 & Corollary 7.26, we have∫

Ω
k(ρ, x)∇φ(x) · ∇ϕ(x)

|∇ϕ(x)|
dρ(x)

=

∫ T

0

∫
Γ
k(ρ, γ(t))∇φ(γ(t)) · ∇ϕ(γ(t))

|∇ϕ(γ(t))|
dη(γ) dt = −

∫ T

0

∫
Γ
∇φ(γ(t)) · γ′(t) dη(γ) dt

= −
∫

Γ

∫ T

0

d

dt
(φ(γ(t))) dt dη(γ) =

∫
Γ
φ(γ(0)) dη(γ) =

∫
Ω
φ(x) df(x). �
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Consequently, if η ∈ Pf (Γ) is a stationary MFG equilibrium with source f , ρ = ρη and ϕ is the
associated value function, then, by Propositions 7.5 & 9.5, the pair (ρ, ϕ) solves the following
system 

−∇ ·
(
ρ k(ρ, ·) ∇ϕ

|∇ϕ|

)
= f in Ω,

k(ρ, ·) |∇ϕ| = 1 in Ω,

ϕ = 0 on ∂Ω.

9.4.2. Equilibrium densities are transport densities. Now, we want to explain the
relation between the equilibrium density ρ := ρη, for some stationary MFG equilibrium η with
source f , and the transport density σ between f and its projection onto the boundary P#f us-
ing the Riemannian metric c := k(ρ, ·)−1 as a transport cost. First, let us introduce the following

Proposition 9.6. There is a unique optimal flow w for (9.6).

Proof. Similarly to Lemma 2.5, we can prove that for every flow w with∇·w = f+−P#f
+,

there is an admissible traffic plan Q such that

∫
Ω
cd|w − wQ|+

∫
Ω
c diQ =

∫
Ω
cd|w|.

If w is optimal for (9.6), we get, using |wQ| ≤ iQ, that w = wQ and |w| = iQ. Hence,

∫
Ω
cd|w| =

∫
Ω
cdiQ =

∫
C
Lc(α) dQ(α) ≥

∫
C
dc(α(0), α(1))dQ(α)

=

∫
Ω×Ω

dc(x, y)d((e0, e1)#Q)(x, y),

where Lc(α) :=
∫ 1

0 c(α(t))|α′(t)| dt, for all α ∈ C. Yet, min(9.6)= min(9.2) and w is opti-
mal for (9.6). Then, for Q−a.e. α ∈ C, one has dc(α(0), α(1)) = Lc(α), which means that α is a
geodesic. Moreover, γ := (e0, e1)#Q must be an optimal transport plan for (9.2) and so, by the
uniqueness of the minimizer for (9.2), we infer that γ = (Id, P )#f

+. Consequently, we get that
w = wQ = wγ . �

Proposition 9.7. Take f ∈ P(Ω) and let η be a stationary MFG equilibrium with source
f , and dynamic k. Let ρ := ρη be an equilibrium density associated with η and σ be the trans-
port density between f and P#f , where P is the projection map onto the boundary, using the
Riemannian metric dc with c = k(ρ, ·)−1. Then, σ = k(ρ, ·) ρ.
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Proof. Let ϕ be the value function, associated to the control problem with dynamic k(ρ, ·).
Set

v := −ρ k(ρ, ·) ∇ϕ
|∇ϕ|

.

Thanks to Proposition 9.5, v is admissible in (9.6). Let w be another admissible flow in (9.6).
It is clear that we have

|w|
k(ρ, ·)

≥ |v|
k(ρ, ·)

+
v

k(ρ, ·)|v|
· (w − v) =

|v|
k(ρ, ·)

− ∇ϕ
k(ρ, ·)|∇ϕ|

· (w − v) =
|v|

k(ρ, ·)
−∇ϕ · (w − v).

Hence, we get ∫
Ω
c|w| dx ≥

∫
Ω
c|v| dx−

∫
Ω
∇ϕ · (w − v) dx =

∫
Ω
c|v|dx,

where the last equality follows from the fact that ∇ · v = ∇ · w = f in
◦
Ω and ϕ = 0 on

∂Ω. Consequently, v is an optimal flow for (9.6). From Proposition 9.6, we infer that |v| is the
transport density σ between f and P#f , i.e. one has σ = k(ρ, ·) ρ. �

Corollary 9.8. Suppose that Ω satisfies a uniform exterior ball of radius r > 0 and that
the dynamic k is C1,1 in x with 0 < kmin ≤ k ≤ kmax < +∞. Let η be a stationary MFG
equilibrium with source f . Then, the equilibrium density ρ := ρη belongs to Lp(Ω) as soon as
the source f is in Lp(Ω). Moreover, we have the following estimate

||ρ||Lp ≤ C||f ||Lp ,

where the constant C depends only on d, r, diam(Ω), kmin, kmax, ||∇xk||∞ and ||∇2
xk||∞.

Proof. This follows immediately from Propositions 9.2 & 9.7. �

Again, these Lp estimates on ρ allow us to prove existence of a stationary MFG equilibrium
in some case where the dynamic k is non-regular.

9.4.3. Non-regular case. Now, we will generalize the result of existence of a stationary
MFG equilibrium to the case where the dynamic k is defined as follows

k(ρ, x) = h

(∫
Ω
χ(x− y)1 ◦

Ω
(y) dρ(y)

)
, for all (ρ, x) ∈ P(Ω)× Ω,

where χ is a given non-negative C1,1 function, and h is decreasing, positive and C1,1. Again as
in Chapter 8, one can prove existence of a stationary MFG equilibrium in this non-regular case
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by using an approximation of the dynamic k with regular ones kε (ε > 0). So, let us define the
dynamic kε as follows

kε(ρ, x) = h

(∫
Ω
χ(x− y)ψε(y) dρ(y)

)
, for all (ρ, x) ∈ P(Ω)× Ω,

where ψε is a cut-off function, which converges (in Lp, for all p < +∞) to 1◦
Ω

. For every

ε > 0, let ηε be a stationary MFG equilibrium (associated to (9.17) with dynamic kε). It
is clear that, up to a subsequence, ηε ⇀ η, for some η ∈ P(Γ). As a consequence of this,

ρε :=
∫ T

0 (et)#η
ε dt ⇀ ρ :=

∫ T
0 (et)#η dt. Yet, from Corollary 9.8, we have that (ρε)ε is bounded

in Lp as soon as f ∈ Lp and Ω satisfies a uniform exterior ball condition. Hence, ρε ⇀ ρ in Lp.
And, this is sufficient to show that cε := kε(ρ

ε, ·)−1 converges uniformly to c := k(ρ, ·)−1, which
also implies that ϕε := dcε(·, ∂Ω) converges uniformly to ϕ := dc(·, ∂Ω). Recalling Proposition
8.12, we infer that there is a stationary MFG equilibrium η with source f , associated to (9.17)
with dynamic k.

9.4.4. Local case. We finish this section by observing that, in this stationary framework,
different relations between k and ρ can be considered. Indeed, for the general theory presented
in Theorem 9.4 (exactly as for the time-dependent case of Chapter 8), the non-local behavior of
k was crucial, so that it was a continuous function of ρ and x. Yet, we can consider for instance
the case where the dynamic k is given by k(ρ, x) = ρ(x)−α (α > 0). Of course, this dynamic
k is non-regular and we cannot use Theorem 9.4 to infer the existence of a stationary MFG
equilibrium in such a case. The system we have to consider is the following:

(9.21)


−∇ ·

(
ρ1−α ∇ϕ

|∇ϕ|

)
= f in Ω,

ρ−α |∇ϕ| = 1 in Ω,

ϕ = 0 on ∂Ω,

which becomes −∇ ·
(
|∇ϕ|

1
α
−2∇ϕ

)
= f in Ω,

ϕ = 0 on ∂Ω.

This equation is nothing but the p−Laplacian equation with p = 1/α (hence, we need to
take α < 1), i.e., we have

−∆ 1
α
ϕ = f.

Hence, existence of a stationary MFG equilibrium can be proven just by noting that (9.21)
has a solution, by standard PDE arguments. Note the similarity of this stationary congested
model with the models related to continuous Wardrop equilibria in [21, 39].
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The regularity and the estimates on the solution could of course retrieved from results which are
nowadays standard concerning the second order regularity of the solution of the p−Laplacian
equation, see [19, 85, 111, 92, 105].

A current work with B. Fall consists in a shape optimization problem in order to place an
obstacle ω ⊂ Ω and minimize the total evacuation time

∫
fϕ =

∫
ρ, but this work is not devel-

opped enough to be included in this thesis.
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[13] G. Bouchitté and G. Buttazzo, Characterization of optimal shapes and masses through Monge-
Kantorovich equation, J. Eur. Math. Soc., 3 (2), 139–168, 2001.
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[29] G. Buttazzo, É. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions,
in Variational methods for discontinuous structures, 41–65, vol 51 of PNLDE, Birkhäuser, Basel, 2002.
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[65] W. Górny, P. Rybka and A. Sabra, Special cases of the planar least gradient problem, Nonlinear Analysis,

151, pp. 66–95, 2017.
[66] P. Hartman, On the bounded slope condition, Pacific J. Math., Vol. 18 (3), 495–511, 1966.
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Titre : Problèmes de transport et de contrôle avec des coûts sur le bord : régularité et 
sommabilité des densités optimales et d'équilibre

Mots clés : Transport Optimal, Contrôle Optimal, MFG

Résumé :   Une première partie de cette thèse
est dédiée à l'étude de la régularité de la densité
de transport σ dans le problème de Monge entre
deux mesures f^+ et f^− sur un domaine Ω. Tout
d’abord, on étudie la question de la sommabilité
L^p  de  cette  densité  de  transport  entre  une
mesure f^+ et sa projection sur le bord (P_∂Ω )#
f^+,  qui  ne  découle  pas  en  fait  des  résultats
connus (dus à De Pascale -  Evans -  Pratelli  -
Santambrogio) sur la densité de transport entre
deux  densités  L^p,  comme  dans  notre  cas  la
mesure cible est singulière. Par une méthode de
symétrisation,  dès  que  Ω  est  convexe  ou
satisfait  une  condition  de  boule  uniforme
extérieure,  nous  prouvons les  estimations  L^p
(si f^+  L^p , alors σ  L^p). En plus, nous∈ ∈
analysons  le  cas  où  on  paye  des  coûts
supplémentaires  g^±  sur  le  bord,  en  prouvant
que la densité de transport σ est dans L^p dès
que  f^±   L^p,  Ω  satisfait  une  condition  de∈
boule  uniforme  extéieure  et,  g^±   sont   λ^±
−Lipschitiziens avec λ^± < 1 et semi-concaves.
Ensuite,  on  s’attaque  à  la  régularité  d’ordre
supérieur (W^{1,p} , C^{0,α}, BV · · · ) de la
densité  de  transport  σ  entre  deux  densités
régulières  f^+  et  f^−.  Plus  précisément,  nous
fournissons une famille de contre-exemples à la
régularité  supérieure:  nous  prouvons  que  la
régularité W^{1,p} des mesures source et cible,
f^+  et  f^−,  n’implique  pas  que  la  densité  de
transport  est  W^{1,p},  de  même  pour  la
régularité BV, et même f^±  C^∞ n’implique∈
pas  que  σ  est  dans  W^{1,p},  pour  p  grand.
Ensuite, nous  étudions la sommabilité L^p de
la densité de transport entre deux mesures f^+ et
f^− concentrées sur le bord. Plus précisément,
nous  prouvons  que  si  f^+  et  f^−  sont  dans
L^p(∂Ω),  alors  la  densité  de transport  σ entre
eux  est  dans  L^p(Ω)  dès  que  Ω  est
uniformément convexe et p ≤ 2; de plus, nous
introduisons un contre-exemple montrant que ce
résultat n’est plus vrai si p > 2. Cela fournit des
résultats de régularité W^{1,p} sur la solution u
du problème de gradient minimal avec donnée
au bord g dans des domaines uniformément 

convexes (si g  W^{1,p}(∂Ω)  u  W^{1,p}∈ ⇒ ∈
(Ω)). 

Dans  une  deuxième  partie,  nous  étudions  un
problème  de  contrôle  optimal  motivé  par  un
modèle de jeux à champ moyen. D’abord, nous
montrons  des  résultats  de  différentiabilité  et
semi-concavité  sur  la  fonction valeur  associée
au  problème de  contrôle  (le  résultat  de  semi-
concavité  est  optimal  en  ce  qui  concerne  les
hypothèses sur la régularité en temps). Ensuite,
nous démontrons que la densité des agents ρ_t,
dans le  modèle  MFG considéré,  est  dans L^p
dès que la densité initiale ρ_0  L^p. En plus,∈
nous  arrivons  à  prouver  l’existence  d’un
équilibre pour le problème MFG considéré dans
un cas où la dynamique n’est pas régulière. 

Dernièrement,  nous  considérons  le  problème
stationnaire  associé  au  problème  MFG.  Nous
montrons  que  la  densité  d'équilibre  n’est  rien
d’autre  que  la  densité  de  transport  entre  une
densité source f et sa projection sur le bord en
utilisant  une  métrique  Riemannienne  non-
uniforme comme coût  de transport.  Cela nous
permet de démontrer que la densité d’équilibre
ρ est  dans L^p dès que la densité source f ∈
L^p.  Par  conséquent,  nous  arrivons  à  prouver
aussi  l’existence  d’un  équilibre  stationnaire
dans un cas où la dynamique n’est pas régulière.
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optimal and equilibrium densities
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Abstract : A first part of this thesis is dedicated
to the study of the regularity of the transport
density σ in the Monge problem between two
measures f^+ and f^− on a domain Ω. First, we
study the question of L^p summability of this
transport density between a measure f^+ and its
projection on the boundary (P_∂Ω)# f^+, which
does not actually follow from the known results
(due  to  De  Pascale,  Evans,  Pratelli,
Santambrogio)  on  the  transport  density
between two L^p densities, as in our case the
target measure is singular. By a symmetrization
trick,  if  Ω  is  convex  or  satisfies  a  uniform
exterior  ball  condition,  we  prove  the  L^p
estimates  (if  f^+   L^p,  then  σ   L^p).  In∈ ∈
addition,  we  analyze  the  case  where  we  pay
additional costs g^± on the boundary, proving
that the transport density σ is in L^p as soon as
f^±  L^p, Ω satisfies a uniform exterior ball∈
condition and, g^± are λ^± −Lip with λ^± < 1
and semi-concave.  Then we attack the higher
order regularity (W^{1,p}, C^{0,α}, BV · · · )
of the transport density σ between two regular
densities  f^+  and  f^−.  More  precisely,  we
provide  a  family  of  counter-examples  to  the
higher  regularity:  we prove that  the W^{1,p}
regularity  of  the  source  and  target  measures,
f^+ and f^− , does not imply that the transport
density  is  in  W^{1,p},  the  same  for  the  BV
regularity, and even f^±  C^∞ does not imply∈
that  σ  is  in  W^{1,p},  for  large  p.  Next,  we
study  the  L^p  summability  of  the  transport
density  between  two  measures,  f^+  and  f^−,
concentrated on the boundary. More precisely,
we prove that if f^+ and f^− are in L^p(∂Ω),
then the transport density σ between them is in
L^p(Ω) as soon as Ω is uniformly convex and p
≤ 2; moreover, we introduce a counter-example
showing that this result is no longer true if p >
2. This provides W^{1,p} regularity results on
the solution u of the minimal gradient problem
with  boundary  datum g  in  uniformly  convex
domains (if g  W^{1,p}(∂Ω)  u  W^{1,p}∈ ⇒ ∈
(Ω)).

In a second part, we study an optimal control
problem motivated by a model  of  mean field
games. First, we show differentiability and 

semi-concavity  results  on  the  value  function
associated with the control problem (the semi-
concavity result will be sharp in regards to the
hypotheses on the regularity in time). Then we
show  that  the  density  of  agents  ρ_t,  in  the
considered MFG model,  is in L^p as soon as
the initial density ρ_0  L^p. In addition, we∈
prove  existence  of  an  equilibrium  for  the
considered MFG problem in a case where the
dynamic is non-regular. 

Lastly,  we  consider  the  stationary  problem
associated with the MFG model. We show that
the  equilibrium  density  is  nothing  but  the
transport  density  between  a  source  density  f
and its projection on the boundary using a non-
uniform Riemannian metric as a transport cost.
This  allows  us  to  show  that  the  equilibrium
density  ρ  is  in  L^p  as  soon  as  the  source
density  f   L^p.  Therefore,  we  also  prove∈
existence of a stationary equilibrium in a case
where the dynamic is non-regular.


