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1. Introduction

The most common models of viscoelasticity with long memory, such as the
Maxwell model (see [4], [5], [6], [15]), lead to a dynamic evolution governed
by a system of partial differential equations of the form

ü(t)− div((A + B)eu(t)) +

∫ t

−∞

1

β
e−

t−τ
β div(Beu(τ))dτ = `(t) (1.1)

in Ω for t ∈ [0, T ], where Ω ⊂ Rd is the reference configuration, [0, T ] is the
time interval, u(t) and eu(t) are the displacement at time t and the symmetric
part of its gradient, A and B are the elasticity and viscosity tensors, β > 0
is a material constant, and `(t) is the external load at time t. This system is
complemented by boundary and initial conditions

u(t) = z(t) on ∂Ω for t ∈ [0, T ], (1.2)

u(t) = uin(t) in Ω for t ∈ (−∞, 0], (1.3)

where z and uin are prescribed functions, the latter representing the history
of the displacement for t ≤ 0. Existence and uniqueness for (1.1)–(1.3) can
be found in [3].

In this paper we study the quasistatic limit of the solutions to this
problem, i.e., the limit of these solutions when the rate of change of the data
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tends to zero. More precisely, given a small parameter ε > 0, we consider the
solution uε of (1.1)–(1.3) corresponding to `(εt), z(εt), and uin(εt). To study
the asymptotic behaviour of uε as ε → 0+ it is convenient to introduce the
rescaled solution uε(t) := uε(t/ε), which turns out to be the solution of the
system

ε2üε(t)− div((A + B)euε(t)) +

∫ t

−∞

1

βε
e−

t−τ
βε div(Beuε(τ))dτ = `(t) (1.4)

in Ω for t ∈ [0, T ], with boundary and initial conditions (1.2) and (1.3).

Under different assumptions on `(t), z(t), and uin(t) we prove (Theo-
rems 3.6 and 3.7) that uε(t) converges, as ε → 0+, to the solution u0(t) of
the stationary problem

−div(Aeu0(t)) = `(t) in Ω for t ∈ [0, T ], (1.5)

with boundary condition (1.2).

By using just the energy-dissipation inequality, it is not difficult to prove
a similar result for the Kelvin-Voigt model, in which the viscosity term

−div(Beu(t)) +

∫ t

−∞

1

β
e−

t−τ
β div(Beu(τ))dτ (1.6)

is replaced by −div(Beu̇(t)). On the other hand, in the case of the equation of
elastodynamics without damping terms, i.e., when B = 0, by using the Fourier
decomposition with respect to the eigenfunctions of the operator −div(Aeu),
we can easily see that the convergence of uε to u0 does not hold in general.
The purpose of this paper is to prove that the non-local damping term (1.6)
is enough to obtain the convergence of the solutions of the evolution problems
to the solution of the stationary problem.

Our result can be considered in the framework of the study of the qua-
sistatic limits, i.e. the convergence of the solutions to second order evolution
equations with rescaled times towards the solutions to the corresponding sta-
tionary equations. Similar problems in finite dimension have been studied in
[1, 10, 13, 7]. A special case involving the wave equations on time-dependent
intervals in dimension one has been studied in [9, 12]. The main novelty of
our problem is the the non-local form of the damping term, given by (1.6).

The main tools to prove our results are two different estimates (Lemmas
3.8 and 5.2), related to the energy-dissipation balance (2.25) and to the ellip-
tic system (5.17) obtained from (1.4) via Laplace Transform. After a precise
statement of all assumptions, more details on the line of proof will be given
after Theorem 3.7.

2. Hypotheses and statement of the problem

Let d be a positive integer and let Ω ⊂ Rd be a bounded open set with Lips-
chitz boundary. We use standard notation for Lebesgue and Sobolev spaces.
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Let Rd×dsym be the space of all symmetric d×d matrices. For convenience we set

H := L2(Ω;Rd), H̃ := L2(Ω;Rd×dsym),

V := H1(Ω;Rd), V0 := H1
0 (Ω;Rd), V ′0 := H−1(Ω;Rd),

(2.1)

and we always identify the dual of H with H itself. The symbols (·, ·) and

‖ · ‖ denote the scalar product and the norm in H or in H̃, according to the
context. The duality product between V ′0 and V0 is denoted by 〈·, ·〉. Given
u ∈ V , its strain eu is defined as the symmetric part of its gradient, i.e.,
eu := 1

2 (∇u + ∇uT ), where ∇u is the Jacobian matrix, whose components
are (∇u)ij := ∂jui for i, j = 1, . . . , d.

Under these assumptions, the Second Korn Inequality (see, e.g., [11,
Theorem 2.4]) states that there exists a positive constant CK = CK(Ω) such
that

‖∇u‖ ≤ CK
(
‖u‖2 + ‖eu‖2

)1/2
for every u ∈ V. (2.2)

Moreover, there exists a positive constant CP = CP (Ω) such that the follow-
ing Korn-Poincaré Inequality holds (see, e.g., [11, Theorem 2.7]):

‖u‖ ≤ CP ‖eu‖ for every u ∈ V0. (2.3)

Thanks to (2.2) we can use on the space V the equivalent norm

‖u‖V := (‖u‖2 + ‖eu‖2)1/2 for every u ∈ V.
Let L (Rd×dsym;Rd×dsym) be the space of all linear operators from Rd×dsym into

itself. We assume that the elasticity and viscosity tensors A and B, which
depend on the variable x ∈ Ω, satisfy the following assumptions:

A,B ∈ L∞(Ω; L (Rd×dsym;Rd×dsym)), (2.4)

and for a.e. x ∈ Ω

A(x)ξ1 · ξ2 = ξ1 · A(x)ξ2,

B(x)ξ1 · ξ2 = ξ1 · B(x)ξ2
for every ξ1, ξ2 ∈ Rd×dsym, (2.5)

cA|ξ|2 ≤ A(x)ξ · ξ ≤ CA|ξ|2,
cB|ξ|2 ≤ B(x)ξ · ξ ≤ CB|ξ|2

for every ξ ∈ Rd×dsym, (2.6)

where cA, cB, CA, and CB are positive constants independent of x, and the
dot denotes the Euclidean scalar product of matrices.

Let us fix T > 0 and β > 0. To give a precise meaning to the notion of
solution to problem (1.2)–(1.4) we introduce the function spaces

V := L2(0, T ;V ) ∩ H1(0, T ;H) ∩H2(0, T ;V ′0),

V0 := L2(0, T ;V0) ∩H1(0, T ;H) ∩H2(0, T ;V ′0),

Vloc := L2
loc(−∞, T ;V ) ∩H1

loc(−∞, T ;H) ∩H2
loc(−∞, T ;V ′0).

Remark 2.1. By the Sobolev Embedding Theorem, if u ∈ V (resp. u ∈ Vloc),
then

u ∈ C0([0, T ];H) ∩ C1([0, T ];V ′0),

(resp. u ∈ C0((−∞, T );H) ∩ C1((−∞, T );V ′0)).
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We study problem (1.2)–(1.4) with `, z, and uin depending on ε. Let us
consider ε > 0 and

fε ∈ L2(0, T ;H), gε ∈ H1(0, T ;V ′0), zε ∈ H2(0, T ;H) ∩H1(0, T ;V ), (2.7)

uε,in ∈ C0((−∞, T );H) ∩ C1((−∞, T );V ′0) such that

uε,in(0) ∈ V, uε,in(0)− zε(0) ∈ V0,

u̇ε,in(0) ∈ H,
∫ 0

−∞

1

βε
e
τ
βε ‖uε,in(τ)‖V dτ < +∞.

(2.8)

The notion of solution to (1.2)–(1.4) is made precise by the following
definition.

Definition 2.2. We say that uε is a solution to the viscoelastic dynamic system
(1.2)–(1.4), with forcing term ` = fε + gε, boundary condition zε, and initial
condition uε,in, if

uε ∈ Vloc and uε − zε ∈ V0, (2.9a)

ε2üε(t)− div((A + B)euε(t)) +

∫ t

−∞

1

βε
e−

t−τ
βε div(Beuε(τ))dτ

= fε(t) + gε(t) for a.e. t ∈ [0, T ], (2.9b)

uε(t) = uε,in(t) for every t ∈ (−∞, 0]. (2.9c)

In the next remark we shall see that (2.9) can be reduced to the following
problem starting from 0:

uε ∈ V and uε − zε ∈ V0, (2.10a)

ε2üε(t)− div((A + B)euε(t)) +

∫ t

0

1

βε
e−

t−τ
βε div(Beuε(τ))dτ

= ϕε(t) + γε(t) for a.e. t ∈ [0, T ], (2.10b)

uε(0) = u0ε in H and u̇ε(0) = u1ε in V ′0 , (2.10c)

with ϕε ∈ L2(0, T ;H), γε ∈ H1(0, T ;V ′0), u0ε ∈ V , u0ε − zε(0) ∈ V0, u1ε ∈ H.

Remark 2.3. It is easy to see that uε is a solution according to Definition 2.2
if and only if its restriction to [0, T ], still denoted by uε, solves (2.10) with

ϕε = fε, γε = gε − pε, u0ε = uε,in(0), u1ε = u̇ε,in(0), (2.11)

where

pε(t) := e−
t
βε g0ε with g0ε :=

∫ 0

−∞

1

βε
e
τ
βε div(Beuε,in(τ))dτ. (2.12)

To solve problem (2.10) it is enough to study the corresponding problem
with homogeneous boundary condition:

vε ∈ V0, (2.13a)

ε2v̈ε(t)− div((A + B)evε(t)) +

∫ t

0

1

βε
e−

t−τ
βε div(Bevε(τ))dτ



Quasistatic limit of a dynamic viscoelastic model with memory 5

= hε(t) + `ε(t) for a.e. t ∈ [0, T ], (2.13b)

vε(0) = v0ε in H and v̇ε(0) = v1ε in V ′0 , (2.13c)

with

hε ∈ L2(0, T ;H), `ε ∈ H1(0, T ;V ′0), v0ε ∈ V0, v1ε ∈ H. (2.14)

Remark 2.4. The function uε is a solution to (2.10) if and only if vε = uε−zε
solves (2.13) with

hε(t) = ϕε(t)− ε2z̈ε(t),

`ε(t) = γε(t) + div((A + B)ezε(t))−
∫ t

0

1

βε
e−

t−τ
βε div(Bezε(τ))dτ,

v0ε = u0ε − zε(0), v1ε = u1ε − żε(0), (2.15)

Therefore, existence and uniqueness for (2.13) imply existence and uniqueness
for (2.10).

Remark 2.5. In [3] problem (2.13) has been studied with initial conditions
taken in the sense of interpolation spaces. Given two Hilbert spaces X and
Y , the symbol [X,Y ]θ denotes the interpolation space between X and Y
of exponent θ ∈ (0, 1). Thanks to [8, Theorem 3.1] we have the following
inclusions:

L2(0, T ;V0) ∩H1(0, T ;H) ⊂ C0([0, T ];V
1
2
0 )

L2(0, T ;H) ∩H1(0, T ;V ′0) ⊂ C0([0, T ];V
− 1

2
0 ),

where V
1
2
0 := [V0, H] 1

2
and V

− 1
2

0 := [H,V ′0 ] 1
2
. Consequently

V0 ⊂ C0([0, T ];V
1
2
0 ) ∩ C1([0, T ];V

− 1
2

0 ).

Therefore, the initial conditions in (2.13) are satisfied also in the stronger
sense

vε(0) = v0ε in V
1
2
0 and v̇ε(0) = v1ε in V

− 1
2

0 . (2.16)

The following proposition provides the main properties of the solutions.
We recall that, if X is a Banach space, C0

w([0, T ];X) denotes the space of all
weakly continuous functions from [0, T ] to X, namely, the vector space of all
functions u : [0, T ]→ X such that for every x′ ∈ X ′ the function t 7→ 〈x′, u(t)〉
is continuous from [0, T ] to R.

Proposition 2.6. Given ε > 0, assume (2.7) and (2.8). Then there exists
a unique solution uε to the viscoelastic dynamic system (2.9). Moreover, it
satisfies

uε ∈ C0([0, T ];V ) ∩ C1([0, T ];H). (2.17)

Proof. By Remarks 2.3 and 2.4 it is enough to prove the theorem for (2.13).
Existence and uniqueness are proved in [3], taking into account Remark 2.5
about the equivalence between the initial conditions in the sense of (2.13)
and (2.16).
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After an integration by parts with respect to time, it easy to see that
the weak formulation (2.13) is equivalent to the following one:

− ε2
∫ T

0

(v̇ε(t), ϕ̇(t))dt+

∫ T

0

((A + B)evε(t)−
∫ t

0

1

βε
e−

t−τ
βε Bevε(τ), eϕ(t))dt

=

∫ T

0

[
(hε(t), ϕ(t)) + 〈`ε(t), ϕ(t)〉

]
dt for every ϕ ∈ C∞c (0, T ;V ). (2.18)

In [14], in a more general context, it has been proved that if vε satisfies (2.18)
and the initial conditions in the sense of (2.13), then it satisfies also

vε ∈ C0
w([0, T ];V ) and v̇ε ∈ C0

w([0, T ];H), (2.19)

lim
t→0+

‖vε(t)− v0ε‖V = 0 and lim
t→0+

‖v̇ε(t)− v1ε‖ = 0.

We fix s ∈ [0, T ). We want to prove

lim
t→s+

‖vε(t)− vε(s)‖V = 0 and lim
t→s+

‖v̇ε(t)− v̇ε(s)‖ = 0. (2.20)

Thanks to the theory developed in [3] there exists a unique ṽε ∈ L2(s, T ;V0)∩
H1(s, T ;H) ∩H2(s, T ;V ′0) such that

ε2 ¨̃vε(t)− div((A + B)eṽε(t)) +

∫ t

s

1

βε
e−

t−τ
βε div(Beṽε(τ))dτ

= hε(t) + `ε(t)−
∫ s

0

1

βε
e−

t−τ
βε div(Bevε(τ))dτ for a.e. t ∈ [s, T ], (2.21)

lim
t→s+

‖ṽε(t)− vε(s)‖ = 0 and lim
t→s+

‖ ˙̃vε(t)− v̇ε(s)‖V ′0 = 0. (2.22)

By the results in [14] the function ṽε satisfies also

lim
t→s+

‖ṽε(t)− vε(s)‖V = 0 and lim
t→s+

‖ ˙̃vε(t)− v̇ε(s)‖ = 0. (2.23)

Since clearly vε satisfies (2.21) and (2.22), by uniqueness we have ṽε(t) = vε(t)
for every t ∈ [s, T ]. In particular, from (2.23) we deduce that (2.20) holds.

To complete the proof we need the following proposition about the
energy-dissipation balance, where H̃ is defined by (2.1), and Wε(t) represents
the work done in the interval [0, t].

Proposition 2.7. Given ε > 0, we assume (2.14). Let vε be the solution to

(2.13) and let wε : [0, T ]→ H̃ be defined by

wε(t) := e−
t
βε

∫ t

0

1

βε
e
τ
βε evε(τ)dτ for every t ∈ [0, T ]. (2.24)

Then wε ∈ H1(0, T ; H̃) and the following energy-dissipation balance holds for
every t ∈ [0, T ]:

ε2

2
‖v̇ε(t)‖2 +

1

2
(Aevε(t), evε(t))
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+
1

2
(B(evε(t)− wε(t)), evε(t)− wε(t)) + βε

∫ t

0

(Bẇε(τ), ẇε(τ))dτ

=
ε2

2
‖v1ε‖2 +

1

2
((A + B)ev0ε , ev

0
ε) + Wε(t), (2.25)

where

Wε(t) : = 〈`ε(t), vε(t)〉 − 〈`ε(0), v0ε〉

+

∫ t

0

(hε(τ), v̇ε(τ))dτ −
∫ t

0

〈 ˙̀ε(τ), vε(τ)〉dτ.

Proof. It is convenient to extend the data of our problem to the interval
[0, 2T ] by setting

hε(t) := 0 and `ε(t) := `ε(T ) for every t ∈ (T, 2T ].

It is clear that hε ∈ L2(0, 2T ;H) and `ε ∈ H1(0, 2T ;V ′0). By uniqueness
of the solution to (2.13), the solution on [0, 2T ] is an extension of vε, still
denoted by vε. We also consider the extension of wε on [0, 2T ] defined by
(2.24).

Since evε ∈ L2(0, 2T ; H̃), it follows from (2.24) that wε ∈ H1(0, 2T ; H̃),
and

βεẇε(t) = evε(t)− wε(t) for a.e. t ∈ [0, 2T ]. (2.26)

Thanks to (2.20) in [0, 2T ] and (2.26) there exists a representative of ẇε such
that

lim
t→s+

‖ẇε(t)− ẇε(s)‖ = 0 for every s ∈ [0, 2T ). (2.27)

Moreover, since vε satisfies (2.13) in [0, 2T ], we have for a.e. t ∈ [0, 2T ]

ε2v̈ε(t)− div(Aevε(t))− div(B(evε(t)− wε(t))) = hε(t) + `ε(t). (2.28)

Multiplying (2.26) and (2.28) by ψ ∈ H̃ and ϕ ∈ V0, respectively, and then
integrating over Ω and adding the results, for a.e. t ∈ [0, 2T ] we get

ε2〈v̈ε(t), ϕ〉+ (Aevε(t), eϕ) + (B(evε(t)− wε(t)), eϕ− ψ)

+ βε(Bẇε(t), ψ) = (hε(t), ϕ) + 〈`ε(t), ϕ〉. (2.29)

Given a function r from [0, 2T ] into a Banach space X, for every η > 0
we define the sum and the difference σηr, δηr : [0, 2T − η]→ X by

σηr(t) := r(t+ η) + r(t) and δηr(t) := r(t+ η)− r(t).

For a.e. t ∈ [0, 2T−η] we have σηvε(t), δ
ηvε(t) ∈ V0 and σηwε(t), δ

ηwε(t) ∈ H̃.
For a.e. t ∈ [0, 2T − η] we use (2.29) first at time t and then at time t + η,
with ϕ := δηvε(t) and ψ := δηwε(t). By summing the two expressions and
then integrating in time on the interval [0, t] we get∫ t

0

[ε2Kη(τ) +Aη(τ) +Bη(τ) + εDη(τ)]dτ =

∫ t

0

Wη(τ)dτ, (2.30)

where for a.e. τ ∈ [0, 2T − η]

Kη(τ) := 〈ση v̈ε(τ), δηvε(τ)〉,
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Aη(τ) := (Aσηevε(τ), δηevε(τ)),

Bη(τ) := (B(σηevε(τ)− σηwε(τ)), δηevε(τ)− δηwε(τ)),

Dη(τ) := β(Bσηẇε(τ), δηwε(τ)),

Wη(τ) := (σηhε(τ), δηvε(τ)) + 〈ση`ε(τ), δηvε(τ)〉.

An integration by parts in time gives∫ t

0

Kη(τ)dτ = (ση v̇ε(t), δ
ηvε(t))− (ση v̇ε(0), δηvε(0))

−
∫ t

0

(ση v̇ε(τ), δη v̇ε(τ))dτ

=

∫ t+η

t

(ση v̇ε(t), v̇ε(τ))dτ −
∫ η

0

(ση v̇ε(0), v̇ε(τ))dτ

−
∫ t

0

‖v̇ε(τ + h)‖2dτ +

∫ t

0

‖v̇ε(τ)‖2dτ

=

∫ t+η

t

[
(ση v̇ε(t), v̇ε(τ))− ‖v̇ε(τ)‖2

]
dτ

−
∫ η

0

[
(ση v̇ε(0), v̇ε(τ))− ‖v̇ε(τ)‖2

]
dτ. (2.31)

Moreover∫ t

0

Aη(τ)dτ =

∫ t+η

t

(Aevε(τ), evε(τ))dτ −
∫ η

0

(Aevε(τ), evε(τ))dτ, (2.32)∫ t

0

Bη(τ)dτ =

∫ t+η

t

(B(evε(τ)− wε(τ)), evε(τ)− wε(τ))dτ

−
∫ η

0

(B(evε(τ)− wε(τ)), evε(τ)− wε(τ))dτ, (2.33)∫ t

0

Dη(τ)dτ = β

∫ t

0

∫ τ+η

τ

(Bσηẇε(τ), ẇε(s))dsdτ, (2.34)∫ t

0

Wη(τ)dτ =

∫ t

0

∫ τ+η

τ

(σηhε(τ), v̇ε(s))dsdτ +

∫ t

t−η
〈ση`ε(τ), vε(τ + η)〉dτ

−
∫ t

η

∫ τ+η

τ−η
〈 ˙̀ε(s), vε(τ)〉dsdτ −

∫ η

0

〈ση`ε(τ), vε(τ)〉dτ. (2.35)

We now divide by η all terms of (2.31)–(2.35). Observing that

σηhε −−−−→
η→0+

2hε strongly in L2(0, T ;H),∫ t

0

∥∥∥ −∫ τ+η

τ

v̇ε(s)ds− v̇ε(τ)
∥∥∥2dτ −−−−→

η→0+
0,∫ t

η

∥∥∥ −∫ τ+η

τ−η
˙̀
ε(s)ds− ˙̀

ε(τ)
∥∥∥2
V ′0

dτ −−−−→
η→0+

0,
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thanks to (2.20) in [0, 2T ) and (2.27), we can pass to the limit as η → 0+,
and from (2.30) we obtain that (2.25) is satisfied for every t ∈ [0, T ]. �

Proof of Proposition 2.6 (Continuation). Now we want to prove (2.17). By
using (2.25), for every t ∈ [0, T ] we can write

ε2

2
‖v̇ε(t)‖2 +

1

2
((A + B)evε(t), evε(t))

=
ε2

2
‖v1ε‖2 +

1

2
((A + B)ev0ε , ev

0
ε) + Wε(t)

− 1

2
(Bwε(t), wε(t)) + (Bevε(t), wε(t))− βε

∫ t

0

(Bẇε(τ), ẇε(τ))dτ. (2.36)

Let Ψε : [0, T ]→ [0,+∞) be defined by

Ψε(t) :=
ε2

2
‖v̇ε(t)‖2 +

1

2
((A + B)evε(t), evε(t));

since wε ∈ C0([0, T ]; H̃), thanks to (2.19) and (2.36) we have Ψε ∈ C0([0, T ]).
Now we fix t ∈ [0, T ]. Given a sequence {tk}k ⊂ [0, T ] such that tk → t

as k → +∞, we define

Ek :=
ε2

2
‖v̇ε(tk)− v̇ε(t)‖2 +

1

2
((A + B)(evε(tk)− evε(t)), evε(tk)− evε(t)).

By elementary computations we have

Ek = Ψε(tk) + Ψε(t)− ε2(v̇ε(tk), v̇ε(t))− ((A + B)evε(tk), evε(t)),

therefore, by (2.3) and (2.6) there exists a positive constant C = C(A,B,Ω)
such that

ε2‖v̇ε(tk)− v̇ε(t)‖2 + ‖vε(tk)− vε(t)‖2V

≤ C
(

Ψε(tk) + Ψε(t)− ε2(v̇ε(tk), v̇ε(t))− ((A + B)evε(tk), evε(t))
)
.

The right-hand side of the previous inequality tends to 0 as k → +∞ because
of (2.19) and the continuity of Ψε. Since zε ∈ C0([0, T ];V ), by (2.7), and
uε = vε + zε, we obtain (2.17). �

3. Statement of the main results

In this section we present the main results about the convergence, as ε→ 0+,
of the solutions uε. We assume the following hypotheses on the dependence
on ε > 0 of our data:

(H1) {fε}ε ⊂ L2(0, T ;H) and {gε}ε ⊂ H1(0, T ;V ′0) such that

fε −−−−→
ε→0+

f strongly in L2(0, T ;H),

gε −−−−→
ε→0+

g strongly in W 1,1(0, T ;V ′0);

(H2) {zε}ε ⊂ H2(0, T ;H) ∩H1(0, T ;V ) such that

zε −−−−→
ε→0+

z strongly in W 2,1(0, T ;H) ∩W 1,1(0, T ;V );
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(H3) {uε,in}ε ⊂ C0((−∞, 0];V )∩C1((−∞, 0];H), uin ∈ C0((−∞, 0];V ), and
there exist a > 0 such that

uε,in −−−−→
ε→0+

uin strongly in C0([−a, 0];V ),

εu̇ε,in −−−−→
ε→0+

0 strongly in C0([−a, 0];H),∫ −a
−∞

1

βε
e
τ
βε ‖uε,in(τ)‖V dτ −−−−→

ε→0+
0,∫ −a

−∞

1

βε
e
τ
βε ‖uin(τ)‖V dτ −−−−→

ε→0+
0.

Remark 3.1. Let u0ε = uε,in(0), u1ε = u̇ε,in(0), and u0 = uin(0). Hypothesis
(H3) implies

u0ε −−−−→
ε→0+

u0 strongly in V and εu1ε −−−−→
ε→0+

0 strongly in H.

Our purpose is to show that the solutions uε converge, as ε→ 0+, to the
solution u0 of the stationary problem (1.5) with boundary condition (1.2).
The notion of solution to this problem is the usual one:{

u0(t) ∈ V, u0(t)− z(t) ∈ V0, for a.e. t ∈ [0, T ],

−div(Aeu0(t)) = f(t) + g(t) for a.e. t ∈ [0, T ].
(3.1)

Remark 3.2. The existence and uniqueness of a solution u0 to (3.1) follows
easily from the Lax-Milgram Lemma. Since f+g ∈ L2(0, T ;V ′0), the estimate
for the solution implies also u0 ∈ L2(0, T ;V ).

We shall sometimes use the corresponding problem with homogeneous
boundary conditions:{

v0(t) ∈ V0 for a.e. t ∈ [0, T ],

−div(Aev0(t)) = h(t) + `(t) for a.e. t ∈ [0, T ],
(3.2)

with h ∈ L2(0, T ;H) and ` ∈ H1(0, T ;V ′0).

Remark 3.3. The function u0 is a solution to (3.1) if and only if v0 = u0 − z
is a solution to (3.2) with

h(t) = f(t) and `(t) = g(t) + div(Aez(t)).

The following lemma will be used to prove the regularity with respect
to time of the solution to (3.1).

Lemma 3.4. Let m ∈ N and p ∈ [1,+∞). If f = 0, g ∈ Wm,p(0, T ;V ′0),
and z ∈ Wm,p(0, T ;V ), then the solution u0 to problem (3.1) satisfies u0 ∈
Wm,p(0, T ;V ).

Proof. By Remark 3.3 it is enough to consider the case z = 0. Let R : V ′0 → V0
be the resolvent operator defined as follows:

R(ψ) = ϕ ⇐⇒

{
ϕ ∈ V0,
−div(Aeϕ) = ψ.
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Since u0(t) = R(g(t)), the conclusion follows from the continuity of the linear
operator R. �

Remark 3.5. If f = 0, since g ∈ W 1,1(0, T ;V ′0) and z ∈ W 1,1(0, T ;V ), we
can apply Lemma 3.4 to obtain that the solution u0 to (3.1) belongs to
W 1,1(0, T ;V ), hence u0 ∈ C0([0, T ];V ).

In the final statement of the next theorem, besides (H1)–(H3) we assume
fε = 0 and the following compatibility condition: there exists an extension of
g (still denoted by g) such that

g ∈W 1,1(−a, T ;V ′0) and − div(Aeuin(t)) = g(t) for t ∈ [−a, 0]. (3.3)

The meaning of (3.3) is that uin(t) is in equilibrium with external loads for
t ∈ [−a, 0]. This condition must be required if we want to obtain uniform
convergence of uε to u0 also near t = 0.

We are now in a position to state the main results of this paper.

Theorem 3.6. Let us assume (H1)–(H3). Let uε be the solution to the vis-
coelastic dynamic system (2.9) and let u0 be the solution to the stationary
problem (3.1). Then

uε −−−−→
ε→0+

u0 strongly in L2(0, T ;V ), (3.4)

εu̇ε −−−−→
ε→0+

0 strongly in L2(0, T ;H). (3.5)

If, in addition, fε = 0 for every ε > 0, then

uε −−−−→
ε→0+

u0 strongly in L∞(η, T ;V ) for every η ∈ (0, T ), (3.6)

εu̇ε −−−−→
ε→0+

0 strongly in L∞(η, T ;H) for every η ∈ (0, T ). (3.7)

If fε = 0 for every ε > 0 and the compatibility condition (3.3) holds, then we
have also

uε −−−−→
ε→0+

u0 strongly in L∞(0, T ;V ), (3.8)

εu̇ε −−−−→
ε→0+

0 strongly in L∞(0, T ;H). (3.9)

In the case of solutions to problems (2.10) we have the following results,
assuming that

u0ε −−−−→
ε→0+

u0 strongly in V and εu1ε −−−−→
ε→0+

0 strongly in H. (3.10)

Theorem 3.7. Let us assume (H1), (H2), and (3.10). Let uε be the solution
to the viscoelastic dynamic system (2.10), with ϕε = fε and γε = gε, and let
u0 be the solution to the stationary problem (3.1). Then (3.4) and (3.5) hold.
Moreover, if fε = 0 for every ε > 0, then (3.6) and (3.7) hold.

Theorems 3.6 and 3.7 will be proved in several steps. First, we prove
(3.8) and (3.9) when fε = 0 and the compatibility condition (3.3) holds
(Theorem 4.1). For g ∈ H2(0, T ;V ′0) the proof is based on the estimate in
Lemma 3.8 below, which is derived from the energy-dissipation balance (2.25).
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The general case is obtained by an approximation argument based on the
same estimate.

Next, we prove that (3.4) holds for the solutions of (2.10) if γε = γ = 0,
zε = 0, u0ε = 0, and u1ε = 0 (Proposition 6.1). The proof is obtained by means
of a careful estimate of the solutions to the elliptic system (5.17) obtained
from (2.13) via Laplace Transform (Section 5). Under the general assumptions
(H1), (H2), and (3.10) the same result is deduced from the previous one by
an approximation argument based again on Lemma 3.8 below.

Then, (3.5) is obtained from (3.4) using a suitable test function in (2.10)
(Theorem 6.3). A further approximation argument gives (3.4) and (3.5) under
the assumptions (H1), (H2), and (H3) (Theorem 6.4).

Finally, if fε = 0, we obtain (3.6) and (3.7) from (3.4) and (3.5) (Lemma
7.1), concluding the proof of Theorems 3.6 and 3.7.

The following lemma, derived from the energy-dissipation balance (2.25)
of Proposition 2.7, will be frequently used to approximate the solutions of
(2.13) by means of solutions corresponding to more regular data.

Lemma 3.8. Given ε > 0, ϕε ∈ L2(0, T ;H), `ε ∈ H1(0, T ;V ′0), v0ε ∈ V0, and
v1ε ∈ H, let vε be the solution to (2.13) with hε = εϕε. Then there exists a
positive constant CE = CE(A,B,Ω, T ), independent of ε, such that

ε2‖v̇ε‖2L∞(0,T ;H) + ‖vε‖2L∞(0,T ;V )

≤ CE
(
ε2‖v1ε‖2 + ‖v0ε‖2V + ‖ϕε‖2L1(0,T ;H) + ‖`ε‖2W 1,1(0,T ;V ′0 )

)
.

Proof. By the energy-dissipation balance (2.25) proved in Proposition 2.7
and by (2.3) and (2.6) there exists a positive constant C = C(A,B,Ω) such
that for every t ∈ [0, T ] we have

ε2‖v̇ε(t)‖2 + ‖vε(t)‖2V ≤ C
(
ε2‖v1ε‖2 + ‖v0ε‖2V + Wε(t)

)
, (3.11)

where the work is now defined by

Wε(t) = 〈`ε(t), vε(t)〉 − 〈`ε(0), v0ε〉

−
∫ t

0

〈 ˙̀ε(τ), vε(τ)〉dτ +

∫ t

0

(ϕε(τ), εv̇ε(τ))dτ. (3.12)

Let Kε := ε‖v̇ε(t)‖L∞(0,T ;H) and Eε := ‖vε(t)‖L∞(0,T ;V ), which are finite by
(2.17). Thanks to (3.11) and (3.12) for every t ∈ [0, T ] we get

ε2‖v̇ε(t)‖2 + ‖vε(t)‖2V

≤ C
(
ε2‖v1ε‖2 + ‖v0ε‖2V +

(
3 + 2

T

)
‖`ε‖W 1,1(0,T ;V ′0 )

Eε + ‖ϕε‖L1(0,T ;H)Kε

)
.

By passing to the supremum with respect to t and using the Young Inequality
we can find a positive constant CE = CE(A,B,Ω, T ) such that

K2
ε + E2

ε ≤ CE
(
ε2‖v1ε‖2 + ‖v0ε‖2V + ‖ϕε‖2L1(0,T ;H) + ‖`ε‖2W 1,1(0,T ;V ′0 )

)
,

which concludes the proof. �
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In the proof of Theorem 3.6 we shall use the following lemma, which
ensure that it is enough to consider the case zε = 0 and z = 0.

Lemma 3.9. If Theorem 3.6 holds when zε = 0 for every ε > 0, then it holds
for arbitrary {zε}ε and z satisfying (H2).

Proof. It is not restrictive to assume div(Bezε(0)) = div(Bez(0)) = 0. Indeed,
if this is not the case, we can consider the solutions z0ε and z0 to the stationary
problems{

z0ε ∈ V0,
−div(Bez0ε) = div(Bezε(0)),

and

{
z0 ∈ V0,
−div(Bez0) = div(Bez(0)),

and we can replace zε(t) and z(t) by z̃ε(t) := zε(t) + z0ε and z̃(t) := z(t) + z0.
It is clear that div(Bez̃ε(0)) = div(Bez̃(0)) = 0 and that problems (2.9) and
(3.1) do not change passing from zε and z to z̃ε and z̃.

Let ψε, ψ : [0, T ]→ V ′0 be the functions defined by

ψε(t) :=


0 if t ∈ (−∞, 0),

div(Bezε(t)) if t ∈ [0, T ],

div(Bezε(T )) if t ∈ (T,+∞),

(3.13)

ψ(t) :=


0 if t ∈ (−∞, 0),

div(Bez(t)) if t ∈ [0, T ],

div(Bez(T )) if t ∈ (T,+∞).

(3.14)

Since

div(Bezε(0)) = div(Bez(0)) = 0, zε ∈ H1(0, T ;V ), z ∈W 1,1(0, T ;V ),

we obtain ψε ∈ H1
loc(R;V ′0) and ψ ∈ W 1,1

loc (R;V ′0). Moreover, thanks to (H2)
we have

ψε −−−−→
ε→0+

ψ strongly in W 1,1
loc (R;V ′0). (3.15)

Since uε is the solution to (2.9), by Remark 2.3 it solves (2.10) with
γε = gε − pε and initial conditions defined by (2.11), where pε is defined by
(2.12). By Remark 2.4 the function vε = uε−zε is the solution to (2.13) with

hε(t) = fε(t)− ε2z̈ε(t),
`ε(t) = gε(t)− pε(t) + div((A + B)ezε(t))

−
∫ t

0

1

βε
e−

t−τ
βε div(Bezε(τ))dτ, (3.16)

and initial conditions v0ε and v1ε defined by (2.15). We define the family of
convolution kernels {ρε}ε ⊂ L1(R) by

ρε(t) :=

{
1
βεe−

t
βε if t ∈ [0,+∞),

0 if t ∈ (−∞, 0),
(3.17)
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and notice that, by (3.14) and (3.13), the integral in (3.16) coincides with
(ρε ∗ ψε)(t), hence

`ε(t) = gε(t)−pε(t) + div(Aezε(t)) +ψε(t)− (ρε ∗ψε)(t) for every t ∈ [0, T ].

By Remark 3.3 the function v0 = u0 − z is the solution to (3.2) with
h = f and ` = g + div(Aez). By the definition of vε and v0 it is clear that
to prove the theorem it is enough to show that the conclusions of Theorem
3.6 holds for vε and v0. To this aim, we introduce the solution ṽε to (2.13)
with hε = fε, `ε = gε − pε + div(Aezε), and v0ε , v1ε defined by (2.15). Then
the function v̄ε := vε − ṽε satisfies (2.13) with hε = −ε2z̈ε, `ε = ψε − ρε ∗ψε,
and homogeneous initial conditions. By Lemma 3.8 we can write

ε2‖ ˙̄vε‖2L∞(0,T ;H) + ‖v̄ε‖2L∞(0,T ;V )

≤ CE
(
ε2‖z̈ε‖2L1(0,T ;H) + ‖ψε − ρε ∗ ψε‖2W 1,1(0,T ;V ′0 )

)
. (3.18)

By (3.15) and by classical results on convolutions we obtain

ψε − ρε ∗ ψε −−−−→
ε→0+

0 strongly in W 1,1(0, T ;V ′0).

Since {z̈ε}ε is bounded in L1(0, T ;H) by (H2), from (3.18) we deduce

vε − ṽε −−−−→
ε→0+

0 strongly in L∞(0, T ;V ), (3.19)

ε(v̇ε − ˙̃vε) −−−−→
ε→0+

0 strongly in L∞(0, T ;H). (3.20)

By Remark 2.3 the function ṽε is the solution to (2.9) with gε replaced
by gε + div(Aezε) and zε = 0. Thanks to (H1) and (H2) we have

gε + div(Aezε) −−−−→
ε→0+

g + div(Aez) strongly in W 1,1(0, T ;V ′0).

Since by hypothesis, Theorem 3.6 holds in the case of homogeneous boundary
condition, its conclusions are valid for ṽε and v0. Thanks to (3.19) and (3.20)
the same results hold for vε and v0. This concludes the proof. �

In a similar way we can prove the following result.

Lemma 3.10. If Theorem 3.7 holds when zε = 0 for every ε > 0, then it holds
for arbitrary {zε}ε and z satisfying (H2).

4. The uniform convergence

In this section we shall prove (3.8) and (3.9) of Theorem 3.6 under the com-
patibility condition (3.3).

Theorem 4.1. Let us assume (H1)–(H3), the compatibility condition (3.3),
and fε = 0 for every ε > 0. Let uε be the solution to the viscoelastic dynamic
system (2.9) and let u0 be the solution to the stationary problem (3.1), with
f = 0. Then (3.8) and (3.9) hold.

To prove the theorem we need the following lemma, which gives the
result when g is more regular.
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Lemma 4.2. Under the assumptions of Theorem 4.1, if g ∈ H2(0, T ;V ′0), then
(3.8) and (3.9) hold.

Proof. Thanks to Lemma 3.9 we can suppose z = 0 and zε = 0 for every ε > 0.
Let pε be defined by (2.11). Since uε is the solution to (2.9), thanks to Remark
2.3 it solves (2.13) with hε = 0, `ε = gε−pε, v0ε = uε,in(0), and v1ε = u̇ε,in(0).
We fix b > a > 0 and we extend the function g in (3.3) to (−∞, T ) in such a
way g ∈ W 1,1(−∞, T ;V ′0) and g(t) = 0 for every t ∈ (−∞,−b]. Since z = 0
we can extend u0 by solving the following problem:{

u0(t) ∈ V0 for every t ∈ (−∞, T ],

−div(Aeu0(t)) = g(t) for every t ∈ (−∞, T ].

We observe that u0 = 0 on (−∞,−b] and u0 = uin on [−a, 0] by the compat-
ibility condition (3.3).

Assume g ∈ H2(0, T ;V ′0). By Lemma 3.4 (with z = 0) we have u0 ∈
H2(0, T ;V ), hence by (3.1) we get for a.e. t ∈ [0, T ]

ε2ü0(t)− div((A + B)eu0(t)) +

∫ t

0

1

βε
e−

t−τ
βε div(Beu0(τ))dτ

= ε2ü0(t) + g(t)− div(Beu0(t)) + (ρε ∗ div(Beu0))(t)− p̃ε(t), (4.1)

where ρε is defined by (3.17) and

p̃ε(t) := e−
t
βε g̃0ε with g̃0ε :=

∫ 0

−b

1

βε
e
τ
βε div(Beu0(τ))dτ.

Let qε := gε − g + div(Beu0) − (ρε ∗ div(Beu0)) − pε + p̃ε. By (4.1)
the function ūε := uε − u0 satisfies (2.13) with hε = −ε2ü0, `ε = qε, v

0
ε =

uε,in(0)− u0(0), and v1ε = u̇ε,in(0)− u̇0(0).
Since g ∈ W 1,1(−∞, T ;V ′0) and g = 0 on (−∞,−b], by Lemma 3.4 we

obtain u0 ∈ W 1,1(−∞, T ;V ) and therefore div(Beu0) ∈ W 1,1(−∞, T ;V ′0).
Then the properties of convolutions imply

ρε ∗ div(Beu0) −−−−→
ε→0+

div(Beu0) strongly in W 1,1(−∞, T ;V ′0). (4.2)

As we have already observed, by the compatibility condition (3.3) we
have u0 = uin on [−a, 0], hence

‖g̃0ε − g0ε‖V ′0 ≤
∫ −a
−∞

1

βε
e
τ
βε
(
‖ div(B(euε,in(τ))‖V ′0 + ‖ div(B(eu0(τ))‖V ′0

)
dτ

+ ‖div(B(euε,in − euin))‖L∞(−a,0;V ′0 ).

Thanks to (H3) we obtain g̃0ε − g0ε → 0 strongly in V ′0 as ε→ 0+. Hence

p̃ε − pε −−−−→
ε→0+

0 strongly in W 1,1(0, T ;V ′0). (4.3)

By (H1), (4.2), and (4.3) we have

qε −−−−→
ε→0+

0 strongly in W 1,1(0, T ;V ′0). (4.4)
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Since u0(0) = uin(0), (H3) gives

u0ε,in := uε,in(0)− u0(0) −−−−→
ε→0+

0 strongly in V , (4.5)

εu1ε,in := ε(u̇ε,in(0)− u̇0(0)) −−−−→
ε→0+

0 strongly in H. (4.6)

By using Lemma 3.8 we get

ε2‖ ˙̄uε‖2L∞(0,T ;H) + ‖ūε‖2L∞(0,T ;V )

≤ CE
(
ε2‖u1ε,in‖2 + ‖u0ε,in‖2V + ε2‖ü0‖2L1(0,T ;H) + ‖qε‖2W 1,1(0,T ;V ′0 )

)
,

therefore thanks to (4.4), (4.5), and (4.6) we obtain the conclusion. �

In the proof of Theorems 4.1, 6.2, and 6.4 we shall use the following
density result.

Lemma 4.3. Let X,Y be two Hilbert spaces such that X ↪→ Y continuously,
with X dense in Y . Then for every m,n ∈ N with m ≤ n, and p ∈ [1, 2] the
space Hn(0, T ;X) is dense in Wm,p(0, T ;Y ).

Proof. Since every simple function with values in Y can be approximated by
simple functions with values in X, it is easy to see that L2(0, T ;X) is dense
in Lp(0, T ;Y ).

To prove the result for m = 1 we fix u ∈ W 1,p(0, T ;Y ). By the density
of L2(0, T ;X) in Lp(0, T ;Y ) we can find a sequence {ψk}k ⊂ L2(0, T ;X)
such that ψk → u̇ strongly in Lp(0, T ;Y ) as k → +∞. By the density of X
in Y there exists {u0k}k ⊂ X such that u0k → u(0) strongly in Y as k → +∞.
Now we define

uk(t) :=

∫ t

0

ψk(τ)dτ + u0k.

It is easy to see that {uk}k ⊂ H1(0, T ;X) and

uk −−−−−→
k→+∞

u strongly in W 1,p(0, T ;Y ).

Arguing by induction we can prove that for every integer m ≥ 0 the
space Hm(0, T ;X) is dense in Wm,p(0, T ;Y ). Since Hn(0, T ;X) is dense in
Hm(0, T ;X), the conclusion follows. �

We are now in a position to deduce Theorem 4.1 from Lemma 4.2 by
means of an approximation argument.

Proof of Theorem 4.1. Thanks to Lemma 3.9 we can suppose z = 0 and
zε = 0 for every ε > 0. We fix δ > 0. By Lemma 4.3 there exists a function
ψ ∈ H2(0, T ;V ′0) such that

‖ψ − g‖W 1,1(0,T ;V ′0 )
< δ. (4.7)

By (H1) there exists a positive number ε0 = ε0(δ) such that

‖ψ − gε‖W 1,1(0,T ;V ′0 )
< δ for every ε ∈ (0, ε0). (4.8)

Let pε be defined by (2.12). Since uε is the solution to (2.9) with fε = 0
and zε = 0, thanks to Remark 2.3 it solves (2.13) with hε = 0, `ε = gε − pε,
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v0ε = uε,in(0), and v1ε = u̇ε,in(0). Moreover, let ũε be solution to (2.13) with
hε = 0, `ε = ψ − pε, v

0
ε = uε,in(0), and v1ε = u̇ε,in(0), and let ũ0 be the

solution to (3.2) with h = 0 and ` = ψ. Thanks to Remark 2.3 the function
ũε is the solution to (2.9) with fε = 0, gε = ψ, and zε = 0, hence by Lemma
4.2 we have

ũε −−−−→
ε→0+

ũ0 strongly in L∞(0, T ;V ), (4.9)

ε ˙̃uε −−−−→
ε→0+

0 strongly in L∞(0, T ;H). (4.10)

We now consider the functions ū0 := ũ0 − u0 and ūε := ũε − uε. Since
ū0 is the solution to (3.2), with h = 0 and ` = ψ − g, by the Lax-Milgram
Lemma we get

‖ū0‖L∞(0,T ;V ) ≤
C2
P+1
cA
‖ψ − g‖L∞(0,T ;V ′0 )

≤ C2
P+1
cA

(1 + 1
T )‖ψ − g‖W 1,1(0,T ;V ′0 )

.

(4.11)
Moreover, since ūε is the solution to (2.13), with hε = 0, `ε = ψ− gε, v0ε = 0,
and v1ε = 0, thanks to Lemma 3.8 we get

ε2‖ ˙̄uε‖2L∞(0,T ;H) + ‖ūε‖2L∞(0,T ;V ) ≤ CE‖ψ − gε‖
2
W 1,1(0,T ;V ′0 )

. (4.12)

By combining (4.7), (4.8), (4.11), and (4.12), we can find a positive constant
C = C(A,B,Ω, T ) such that

ε‖ ˙̄uε‖L∞(0,T ;H) + ‖ūε‖L∞(0,T ;V ) + ‖ū0‖L∞(0,T ;V ) ≤ Cδ (4.13)

for every ε ∈ (0, ε0). Since

‖uε − u0‖L∞(0,T ;V ) ≤ ‖ūε‖L∞(0,T ;V ) + ‖ũε − ũ0‖L∞(0,T ;V ) + ‖ū0‖L∞(0,T ;V ),

ε‖u̇ε‖L∞(0,T ;H) ≤ ε‖ ˙̄uε‖L∞(0,T ;H) + ε‖ ˙̃uε‖L∞(0,T ;H),

by (4.9), (4.10), and (4.13) we have

lim sup
ε→0+

‖uε − u0‖L∞(0,T ;V ) ≤ Cδ and lim sup
ε→0+

‖εu̇ε‖L∞(0,T ;H) ≤ Cδ.

The conclusion follows from the arbitrariness of δ > 0. �

5. Use of the Laplace Transform

In this section we shall use the Laplace Transform to prepare the proof of
the convergence, as ε→ 0+, of the solutions of the problems

vε ∈ V0, (5.1a)

ε2v̈ε(t)− div((A + B)evε(t)) +

∫ t

0

1

βε
e−

t−τ
βε div(Bevε(τ))dτ = hε(t)

for a.e. t ∈ [0, T ], (5.1b)

vε(0) = 0 in H and v̇ε(0) = 0 in V ′0 , (5.1c)
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to the solution v0 of the problem{
v0(t) ∈ V0 for a.e. t ∈ [0, T ],

− div(Aev0(t)) = h(t) for a.e. t ∈ [0, T ],
(5.2)

when {hε}ε ⊂ L2(0, T ;H), h ∈ L2(0, T ;H), and

hε −−−−→
ε→0+

h strongly in L2(0, T ;H), (5.3)

This partial result will be the starting point for the proof of the convergence
in L2(0, T ;V ) under the general assumptions of Theorem 3.6.

5.1. The Laplace Transform for functions with values in Hilbert spaces

Given a complex Hilbert space X, let r ∈ L1
loc(0,+∞;X) be a function such

that ∫ +∞

0

e−αt‖r(t)‖X dt < +∞ for every α > 0, (5.4)

and let C+ := {s ∈ C : <(s) > 0}. The Laplace Transform of r is the function
r̂ : C+ → X defined by

r̂(s) :=

∫ +∞

0

e−str(t)dt for every s ∈ C+. (5.5)

Besides r̂, we shall also use the notation L(r), which is sometimes written as
Lt(r(t)), with dummy variable t. In the particular case r ∈ L∞(0,+∞;X)
we have

‖r̂(s)‖X ≤
1

s1
‖r‖L∞(0,+∞;X) for every s = s1 + is2 ∈ C+, with s1, s2 ∈ R.

There is a close connection between the Laplace Transform and the
Fourier Transform, defined for every ρ ∈ L1(R;X) as the function F(ρ) ∈
L∞(R;X) given by

F(ρ)(ξ) =

∫ +∞

−∞
e−iξtρ(t)dt for every ξ ∈ R. (5.6)

For F(ρ) we use also the notation Ft(ρ(t)) with dummy variable t. For the
main properties of the Fourier and Laplace Transforms of functions with
values in Hilbert spaces we refer to [2].

We extend the function r satisfying (5.4) by setting r(t) = 0 for every
t < 0. By (5.5) and (5.6) we have

Lt(r(t))(s) = Ft(e−s1tr(t))(s2) for every s = s1 + is2 ∈ C+, s1, s2 ∈ R.
We remark that the Laplace Transform commutes with linear transfor-

mations, as shown in the following proposition (see, for instance [2, Proposi-
tion 1.6.2]).

Proposition 5.1. Let X and Y be two complex Hilbert spaces, let r ∈ L1
loc(0,+∞;X),

and let T be a continuous linear operator from X to Y . Then T ◦ r ∈
L1
loc(0,+∞;Y ). If in addition, r satisfies (5.4), then the same property holds

also for T ◦ r, with X replaced by Y , and L(T ◦ r)(s) = (T ◦ r̂)(s) for every
s ∈ C+.
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Now we consider the Inverse Laplace Transform. Let R : C+ → X be
a function. Suppose that there exists r ∈ L1

loc(0,+∞;X) such that (5.4)
holds and L(r)(s) = R(s) for every s ∈ C+. In this case we say that r is
the Inverse Laplace Transform of R, and we use the notation r = L−1(R) or
r = L−1s (R(s)) with dummy variable s. It can be proven that r is uniquely
determined up to a negligible set (see [2, Theorem 1.7.3]). Moreover, r can
be obtained by the Bromwich Integral Formula:

r(t) = L−1(R)(t) =
es1t

2π
lim

k→+∞

∫ k

−k
eis2tR(s1 + is2)ds2, (5.7)

where s1 is an arbitrary positive number. Clearly (5.7) can be expressed in
terms of the Inverse Fourier Transform, namely

r(t) = L−1s (R(s))(t) = es1tF−1s2 (R(s1 + is2))(t), (5.8)

where F−1s2 (R(s1 + is2)) denotes the Inverse Fourier Transform with respect
to the variable s2.

To use the Laplace Transform, we extend our problems from the interval
[0, T ] to [0,+∞). To do this, we extend the functions hε and h, introduced
in (5.3), by setting them equal to zero in (T,+∞), and we consider the
solution to (5.1) in [0,+∞), which we still denote vε. Moreover, we consider
the solution to (5.2) in [0,+∞), which we still denote v0. Notice that, thanks
to the choice of the extension we have

hε −−−−→
ε→0+

h strongly L2(0,+∞;H).

By Proposition 3.8 and by using the equality hε = 0 on (T,+∞), we
get

vε ∈ L∞(0,+∞;V0) and v̇ε ∈ L∞(0,+∞;H). (5.9)

Since h ∈ L2(0, T ;H) and h = 0 on (T,+∞), by means of standard estimates
for the solution to (5.2) we obtain

v0 ∈ L2(0,+∞;V0) and v0 = 0 on (T,+∞). (5.10)

From (2.4), (5.1), and (5.9) we can deduce

v̈ε ∈ L2(0, T ;V ′0) ∩ L∞(T,+∞;V ′0). (5.11)

To study our problem by means of the Laplace Transform we introduce
the complexification of the Hilbert spaces H, V0, and V ′0 defined by

Ĥ := L2(Ω;Cd), V̂0 := H1(Ω;Cd), V̂ ′0 := H−1(Ω;Cd).

The symbols (·, ·) and ‖·‖ denote the hermitian product and the norm in Ĥ or

in other complex L2 spaces. For every s ∈ C+ the Laplace Transforms ĥε(s)

and ĥ(s) of hε and h in Ĥ are well defined. Thanks to (5.9) and (5.10) the

Laplace Transforms v̂ε(s) and v̂0(s) in V̂0 are well defined for every s ∈ C+.

By (5.11) the Laplace Transform ˆ̈vε(s) of v̈ε(s) in V̂ ′0 is well defined for every
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s ∈ C+. Using (5.9) we can integrate by parts two times in the integral which

defines ˆ̈vε and, since vε(0) = 0 and v̇ε(0) = 0, we obtain

ˆ̈vε(s) = s2v̂ε(s) for every s ∈ C+. (5.12)

By considering the operators SA, SB : V̂0 → V̂ ′0 defined by

SA(ψ) := −div(Aeψ) and SB(ψ) := −div(Beψ),

we can rephrase (5.1) and (5.2) for a.e. t ∈ [0,+∞) as equalities in V̂ ′0 :

ε2v̈ε(t) = SB

(∫ t

0

1

βε
e−

t−τ
βε vε(τ)dτ

)
− (SA + SB)(vε(t)) + hε(t), (5.13)

SA(v0(t)) = h(t). (5.14)

Now we want to consider the Laplace Transforms, in the sense of V̂ ′0 , of
both sides of these equations. By Proposition 5.1 we can say

L(SA(vε)) = SA(v̂ε), L(SB(vε)) = SB(v̂ε), L(SA(v0)) = SA(v̂0), (5.15)

where v̂ε and v̂0 are the Laplace Transforms of vε and v0, respectively, in the
sense of V̂0. Moreover, since we have

sup
t∈[0,+∞)

∥∥∥ ∫ t

0

1

βε
e−

t−τ
βε vε(τ)dτ

∥∥∥
V0

≤ ‖vε‖L∞(0,+∞;V0),

this integral admits Laplace Transform in the sense of V̂0, which for every
s ∈ C+ satisfies

Lt
(∫ t

0

1

βε
e−

t−τ
βε vε(τ)dτ

)
(s) =

1

βεs+ 1
v̂ε(s).

Hence, by using Proposition 5.1 again, we obtain

Lt
(
SB

(∫ t

0

1

βε
e−

t−τ
βε vε(τ)dτ

))
(s) =

1

βεs+ 1
SB(v̂ε(s)). (5.16)

5.2. Properties of the Laplace Transform of the solutions

Thanks to (5.12), (5.15), and (5.16) we can apply the Laplace Transform to
both sides of (5.13) and (5.14) to deduce for every s ∈ C+ the following

equalities in V̂ ′0 :

ε2s2v̂ε(s)− div((A + B)ev̂ε(s)) +
1

βεs+ 1
div(Bev̂ε(s)) = ĥε(s), (5.17)

−div(Aev̂0(s)) = ĥ(s). (5.18)

Our purpose is to prove that for every s1 > 0 we have∫ +∞

−∞
‖v̂ε(s1 + is2)− v̂0(s1 + is2)‖2

V̂0
ds2 −−−−→

ε→0+
0. (5.19)

To prove (5.19) we need two lemmas. In the first one we deduce from
(5.17) an estimate for v̂ε(s), which is used in the second lemma to prove a
convergence result for v̂ε(s).
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Lemma 5.2. For every s ∈ C+ there exists a positive constant M(s) such that

‖v̂ε(s)‖V̂0
≤M(s)‖ĥε(s)‖ for every ε ∈ (0, 1). (5.20)

Proof. We fix ε ∈ (0, 1) and for every s ∈ C+ we define the operator

Sε(s) : V̂0 → V̂ ′0 in the following way:

Sε(s)(ψ) := ε2s2ψ−div((A+B)eψ)+
1

βεs+ 1
div(Beψ) for every ψ ∈ V̂0.

Since Sε(s)(v̂ε(s)) = ĥε(s) by (5.17), the Lax-Milgram Lemma, together with
the Korn-Poincaré Inequality (2.3), implies (5.20) if we can show that for
every s ∈ C+ there exists a positive constant K(s), independent of ε, such
that

|〈Sε(s)(ψ), ψ〉| ≥ cAK(s)‖eψ‖2 for every ψ ∈ V̂0, (5.21)

where

|〈Sε(s)(ψ), ψ〉| = |(βε
3s3 + ε2s2)‖ψ‖2 + βεs((A + B)eψ, eψ) + (Aeψ, eψ)|

|βεs+ 1|
.

We can suppose ψ ∈ V̂0 \ {0}, otherwise the inequality is trivially satis-
fied, and we set

a :=
(Aeψ, eψ)

‖ψ‖2
and b :=

((A + B)eψ, eψ)

‖ψ‖2
,

which satisfy, thanks to the Korn-Poincaré Inequality (2.3) and to (2.4)–(2.6),
the following relations

a ≥ cA‖eψ‖2

‖ψ‖2
≥ cA
C2
P

=:a0, b ≥ (cA + cB)‖eψ‖2

‖ψ‖2
≥ cA + cB

C2
P

=: b0,

a ≤ c0a ≤ b ≤ c1a,
(5.22)

where c0 := 1 + cB
CA

and c1 := 1 + CB
cA

. Therefore, to prove (5.21) it is enough
to obtain∣∣∣∣βε3s3 + ε2s2 + βbεs+ a

βεs+ 1

∣∣∣∣ ≥ K(s) a for every s ∈ C+. (5.23)

For simplicity of notation we set z = εs and we consider two cases.
Case b > 2

3β2 . In this situation, thanks to (A.2) and (A.3) we know that the

polynomial βz3 + z2 + βbz + a has one real root z0 and two complex and
conjugate ones w and w̄. Therefore, thanks to Lemmas A.1 and A.2, we can
write∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ =

∣∣∣∣β(z − z0)(z − w)(z − w̄)

βz + 1

∣∣∣∣
≥
∣∣∣∣β(z − z0)

βz + 1

∣∣∣∣ |<(w)||=(w)|

=

∣∣∣∣β(z − z0)

βz + 1

∣∣∣∣ |<(w)|
√

3|<(w)|2 +
2

β
<(w) + b
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≥
∣∣∣∣β(z − z0)

βz + 1

∣∣∣∣α√b− 1

3β2

≥
∣∣∣∣β(z − z0)

βz + 1

∣∣∣∣α
√
b

2
≥ α√

3

∣∣∣∣ z

βz + 1

∣∣∣∣ , (5.24)

where in the last inequality we used z0 < 0.
If a ≤ 2|z|2, then |z| ≥ a

2|z| and, thanks to (5.24), we deduce∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ ≥ α

2
√

3

a

|z(βz + 1)|
. (5.25)

For a > 2|z|2 we have

1

a

∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ =

∣∣∣∣z2a +
βbz + a

a(βz + 1)

∣∣∣∣ ≥ ∣∣∣∣ βbz + a

a(βz + 1)

∣∣∣∣− 1

2
,

and, by writing z = x+ iy, we obtain∣∣∣∣ βbz + a

a(βz + 1)

∣∣∣∣ =

∣∣∣∣ βbx+ a+ iβby

βax+ a+ iβay

∣∣∣∣ =

√
(βbx+ a)2 + β2b2y2

(βax+ a)2 + β2a2y2
≥ 1,

which implies ∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ ≥ a

2
. (5.26)

By (5.25) and (5.26) in the case b > 2
3β2 we conclude∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ ≥ min
{1

2
,
α

2
√

3

1

|z(βz + 1)|

}
a. (5.27)

Case b0 ≤ b ≤ 2
3β2 . In this case, thanks to (5.22), we have a0 ≤ a ≤ 2

3β2 . We

define

R :=

√
2(2 + c1)

3β2
.

Then for z ∈ C+, with |z| > R, we get

1

a

∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ =

∣∣∣∣z2a +
βbz + a

a(βz + 1)

∣∣∣∣
≥ 3β2|z|2

2
− b

a

∣∣∣∣ βz

βz + 1

∣∣∣∣− 1

|βz + 1|
≥ 1, (5.28)

where we used the inequalities |βz| ≤ |βz + 1| and 1 ≤ |βz + 1|.
To deal with the case z ∈ C+, with |z| ≤ R, we define

I :=
{
a, b ∈ R : b0 ≤ b ≤ 2

3β2 , a0 ≤ a ≤ 2
3β2

}
,

γ := min

{∣∣∣∣βz3 + z2 + βbz + a

a(βz + 1)

∣∣∣∣ : <(z) ≥ 0, |z| ≤ R, a, b ∈ I
}
,

and we claim γ > 0. Indeed the function under examination is continuous
with respect to (z, a, b), and by Lemma A.1 it does not vanish in the compact
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set considered in the minimum problem. By using also (5.28) we conclude that
for b0 ≤ b ≤ 2

3β2 we have∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ ≥ min{γ, 1}a. (5.29)

for every z ∈ C+ and every a satisfying (5.22). Since ε ∈ (0, 1) we have

1

|εs(βεs+ 1)|
≥ 1

|s(βs+ 1)|
,

therefore, by setting

K(s) := min
{1

2
,
α

2
√

3

1

|s(βs+ 1)|
, γ
}
,

from (5.27) and (5.29) we obtain (5.23), which concludes the proof. �

5.3. Convergence of the Laplace Transform of the solutions

We begin by proving the pointwise convergence.

Lemma 5.3. For every s ∈ C+ we have

v̂ε(s) −−−−→
ε→0+

v̂0(s) strongly in V̂0.

Proof. Thanks to (5.3) and to the Hölder Inequality for every s ∈ C+ we get

‖ĥε(s)− ĥ(s)‖ ≤
∫ +∞

0

e−<(s)t‖hε(t)− h(t)‖dt

≤ 1√
2<(s)

‖hε − h‖L2(0,T ;H) −−−−→
ε→0+

0. (5.30)

Consequently, thanks to Lemma 5.2, for every s ∈ C+ there exist two con-
stants M̄(s) > 0 and ε(s) ∈ (0, 1) such that

‖v̂ε(s)‖V̂0
≤ M̄(s) for every ε ∈ (0, ε(s)). (5.31)

By (5.31) we can say that for every s ∈ C+ there exist a sequence εj −→ 0+

and v∗(s) ∈ V̂0 such that

v̂εj (s) −−−−⇀
j→+∞

v∗(s) weakly in V̂0. (5.32)

Thanks to (2.5) and (5.32) for every ψ ∈ V̂0 we deduce

((A + B)ev̂εj (s), eψ) −−−−→
j→+∞

((A + B)ev∗(s), eψ),

|ε2js2(v̂εj (s), ψ)| ≤ ε2j |s|2M̄(s)‖ψ‖ −−−−→
j→+∞

0,∣∣∣ 1

βεjs+ 1
(Bev̂εj (s), eψ)− (Bev∗(s), eψ)

∣∣∣
≤
∣∣(B(ev̂εj (s)− ev∗(s)), eψ)

∣∣+
βεj |s|
|βεjs+ 1|

|(Bev̂εj (s), eψ)|

≤
∣∣(ev̂εj (s)− ev∗(s),Beψ)

∣∣+ βεj |s|CBM̄(s)‖eψ‖ −−−−→
j→+∞

0.
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Therefore by (5.30) we have{
v∗(s) ∈ V̂0,
−div(Aev∗(s)) = ĥ(s).

(5.33)

Since, by (5.18), v̂0(s) is a solution to (5.33), by uniqueness v∗(s) = v̂0(s).
Moreover, since the limit does not depend on the subsequence, the whole
sequence satisfies

v̂ε(s) −−−−⇀
ε→0+

v̂0(s) weakly in V̂0 for every s ∈ C+. (5.34)

To prove the strong convergence we use v̂ε(s) and v̂0(s) as test function
in (5.17) and (5.18), respectively. By subtracting the two equalities, we obtain

(Aev̂ε(s), ev̂ε(s))− (Aev̂0(s), ev̂0(s))

= (ĥε(s), v̂ε(s))− (ĥ(s), v̂0(s))− ε2s2‖v̂ε(s)‖2 −
βεs

βεs+ 1
(Bev̂ε(s), ev̂ε(s)),

from which we deduce

|(Aev̂ε(s), ev̂ε(s))− (Aev̂0(s), ev̂0(s))|

≤ |(ĥε(s), v̂ε(s))− (ĥ(s), v̂0(s))|+ ε2|s|2‖v̂ε(s)‖2 + βε|s|CB‖ev̂ε(s)‖2.

By using again (5.30), (5.31), and (5.34), we can deduce

lim
ε→0+

(Aev̂ε(s), ev̂ε(s)) = (Aev̂0(s), ev̂0(s)) for every s ∈ C+. (5.35)

Thanks to the coerciveness assumption (2.6), the conclusion follows from the
weak convergence (5.34) together with (5.35). �

Now we are in a position to prove the following result about the con-
vergence in the space L2 on the lines {s1 + is2 : s2 ∈ R}.

Proposition 5.4. The functions v̂ε and v̂0 satisfy (5.19).

Proof. For every s ∈ C+, by using v̂ε(s) as test function in (5.17) we obtain(
βε3s3 + ε2s2 + β

((A + B)ev̂ε(s), ev̂ε(s))

‖v̂ε(s)‖2
εs+

(Aev̂ε(s), ev̂ε(s))
‖v̂ε(s)‖2

)
‖v̂ε(s)‖2

= (βεs+ 1)(ĥε(s), v̂ε(s)). (5.36)

As before, we set

a :=
(Aev̂ε(s), ev̂ε(s))
‖v̂ε(s)‖2

and b :=
((A + B)ev̂ε(s), ev̂ε(s))

‖v̂ε(s)‖2
, (5.37)

and we observe that (5.22) holds. Therefore, thanks to (5.24), Lemma A.1,
and (5.29) we can deduce∣∣∣∣βε3s3 + ε2s2 + βbεs+ a

βεs+ 1

∣∣∣∣ ≥ ∣∣∣∣β(εs− z0)

βεs+ 1

∣∣∣∣α
√
b

2

≥ β |z0|α
√
a

2
≥ βα2

√
2

√
a for b >

2

3β2
,
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βεs+ 1

∣∣∣∣ ≥ min{γ, 1}a ≥ min{γ, 1}
√
a0
√
a for b ≤ 2

3β2
,

where in the first line we used the inequality |z0(βεs + 1)| ≤ |εs − z0| for
every s ∈ C+, which follows from the condition z0 < 0.

As a consequence of these inequalities and of (5.36) there exists a posi-
tive constant C = C(α, β, γ, a0) such that for every s ∈ C+ we have

‖v̂ε(s)‖2 =

∣∣∣∣ βεs+ 1

βε3s3 + ε2s2 + βbεs+ a

∣∣∣∣ |(ĥε(s), v̂ε(s))| ≤ C√
a
‖ĥε(s)‖‖v̂ε(s)‖.

Therefore, by using (5.37) and the coerciveness assumption (2.6), we can
write

√
cA‖ev̂ε(s)‖ ≤

√
(Aev̂ε(s), ev̂ε(s)) ≤ C‖ĥε(s)‖,

from which, recalling (2.3), we deduce

‖v̂ε(s)‖V̂0
≤ (CP + 1)

C
√
cA
‖ĥε(s)‖ for every s ∈ C+. (5.38)

By extending the function hε to (−∞, 0) with value 0, we can write

ĥε(s) =

∫ +∞

0

e−sthε(t)dt =

∫ +∞

−∞
e−sthε(t)dt = Ft(e−s1thε(t))(s2).

Since for every s = s1 + is2 ∈ C+ the function t 7→ e−s1thε(t) belongs to
L2(R;H), by the properties of the Fourier Transform we deduce that s2 7→
ĥε(s1 + is2) belongs to L2(R; Ĥ) for every ε > 0. Moreover, by using (5.3)
and the Plancherel Theorem, we can write∫ +∞

−∞
‖ĥε(s1 + is2)− ĥ(s1 + is2)‖2ds2

=

∫ +∞

−∞
‖Ft(e−s1t(hε(t)− h(t)))(s2)‖2ds2

=

∫ +∞

−∞
‖e−s1t(hε(t)− h(t))‖2 dt

≤
∫ T

0

‖hε(t)− h(t)‖2 dt −−−−→
ε→0+

0. (5.39)

Since v̂ε(s)→ v̂0(s) strongly in V̂0 by Lemma 5.3 and ĥε(s)→ ĥ(s) strongly

in Ĥ by (5.30), thanks to (5.38) and (5.39) we can apply the Generalized
Dominated Convergence Theorem to get the conclusion. �

6. L2 convergence

In this section we shall prove (3.4) and (3.5) under the assumptions of The-
orems 3.6 and 3.7. We begin by proving the following partial result.
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Proposition 6.1. Let {hε}ε ⊂ L2(0, T ;H) and h ∈ L2(0, T ;H) be such that
(5.3) holds. Let vε and v0 be the solutions to problems (5.1) and (5.2). Then

vε −−−−→
ε→0+

v0 strongly in L2(0, T ;V ).

Proof. By the Plancherel Theorem we deduce from (5.8) and Proposition 5.4
that for every s1 > 0

‖vε − v0‖2L2(0,T ;V ) =

∫ T

0

‖vε(t)− v0(t)‖2V dt =

∫ T

0

‖L−1(v̂ε − v̂0)(t)‖2V dt

≤ es1T
∫ +∞

−∞
‖F−1s2 (v̂ε(s1 + is2)− v̂0(s1 + is2))(t)‖2V dt

= es1T
∫ +∞

−∞
‖v̂ε(s1 + is2)− v̂0(s1 + is2)‖2

V̂0
ds2 −−−−→

ε→0+
0,

which concludes the proof. �

Theorem 6.2. Let us assume (H1), (H2), and (3.10). Let uε be the solution
to the viscoelastic dynamic system (2.10), with ϕε = fε and γε = gε, and let
u0 be the solution to the stationary problem (3.1). Then (3.4) holds.

Proof. Thanks to Lemma 3.10 it is enough to prove the theorem in the case
z = 0 and zε = 0 for every ε > 0. We divide the proof into two steps.

Step 1. The case u1ε = 0. We reduce the problem to the case of homo-
geneous initial conditions by considering the functions

vε(t) := uε(t)− u0ε and v0(t) := u0(t)− u0 for a.e. t ∈ [0, T ]. (6.1)

Let us define

qε(t) := gε(t) + div(Aeu0ε) + e−
t
βε div(Beu0ε) for every t ∈ [0, T ], (6.2)

q(t) := g(t) + div(Aeu0) for every t ∈ [0, T ]. (6.3)

Since u1ε = 0, it is easy to see that vε satisfies (2.13) with hε = fε, `ε = qε,
v0ε = 0, and v1ε = 0, while v0 satisfies (3.2) with h = f and ` = q. By (3.10)
and (6.1), to prove (3.4) it is enough to show that

vε −−−−→
ε→0+

v0 strongly in L2(0, T ;V ). (6.4)

In order to apply Proposition 6.1, we approximate the forcing terms
of the problems for vε and v0 by means of functions in H1(0, T ;H) and we
consider the corresponding solutions ṽε and ṽ0, for which Proposition 6.1
yields ṽε → ṽ0 strongly in L2(0, T ;V ) as ε → 0+. Finally we show that
‖ṽε − vε‖L2(0,T ;V ) and ‖ṽ0 − v0‖L2(0,T ;V ) are small uniformly with respect to
ε, and this leads to the proof of (6.4).

Let us fix δ > 0. Thanks to the density of H in V ′0 and to Lemma 4.2
we can find ψ ∈ H1(0, T ;H) and h0A, h

0
B ∈ H such that

‖ψ − g‖W 1,1(0,T ;V ′0 )
< δ, (6.5)

‖h0A − div(Aeu0)‖V ′0 < δ, ‖h0B − div(Beu0)‖V ′0 < δ. (6.6)
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Thanks to (H1) and (3.10) there exist ε0 = ε0(δ) ∈ (0, 1
β ) such that for every

ε ∈ (0, ε0) we have

‖ψ − gε‖W 1,1(0,T ;V ′0 )
< δ, (6.7)

‖h0A − div(Aeu0ε)‖V ′0 < δ, ‖h0B − div(Beu0ε)‖V ′0 < δ. (6.8)

Let ϕε, ϕ : [0, T ]→ H be defined for every t ∈ [0, T ] by

ϕε(t) := ψ(t) + h0A + e−
t
βεh0B and ϕ(t) := ψ(t) + h0A. (6.9)

By (6.2), (6.3), (6.5), (6.6), (6.7), (6.8), and (6.9) for every ε ∈ (0, ε0) we
obtain

‖ϕε − qε‖W 1,1(0,T ;V ′0 )
≤ ‖ψ − gε‖W 1,1(0,T ;V ′0 )

+ T‖h0A − div(Aeu0ε)‖V ′0
+ (βε+ 1)‖h0B − div(Beu0ε)‖V ′0 ≤ (3 + T )δ, (6.10)

‖ϕ− q‖L∞(0,T ;V ′0 )
≤ (1 + 1

T )‖ψ − g‖W 1,1(0,T ;V ′0 )
+ ‖h0A − div(Aeu0ε)‖V ′0

≤ (2 + 1
T )δ. (6.11)

Since t 7→ e−
t
βεψ0

B converges to 0 strongly in L2(0, T ;H) as ε→ 0+, by (6.9)
we have

ϕε −−−−→
ε→0+

ϕ strongly in L2(0, T ;H). (6.12)

Let ṽε be the solution to (5.1) with hε = fε + ϕε and let ṽ0 be the
solution to (5.2) with h = f + ϕ. By (H1) and (6.12) we have

fε + ϕε −−−−→
ε→0+

f + ϕ strongly in L2(0, T ;H),

hence Proposition 6.1 yields

ṽε −−−−→
ε→0+

ṽ0 strongly in L2(0, T ;V ). (6.13)

To estimate the difference ṽε − vε we observe that it solves (2.13) with
hε = 0, `ε = ϕε − qε, v0ε = 0, and v1ε = 0. Therefore, by Lemma 3.8 we have

‖ṽε − vε‖L2(0,T ;V ) ≤
√
CET‖ϕε − qε‖W 1,1(0,T ;V ′0 )

. (6.14)

To estimate the difference ṽ0 − v0 we observe that it solves (3.2) with h = 0
and ` = ϕ− q. Therefore by the Lax-Milgram Lemma we obtain

‖ṽ0 − v0‖L2(0,T ;V ) ≤
√
T (C2

P+1)
cA

‖ϕ− q‖L∞(0,T ;V ′0 )
. (6.15)

By (6.10), (6.11), (6.14), and (6.15) there exists a positive constant
C = C(A,B,Ω, T ) such that

‖ṽε − vε‖L2(0,T ;V ) + ‖ṽ0 − v0‖L2(0,T ;V ) ≤ Cδ,

hence

‖vε − v0‖L2(0,T ;V )

≤ ‖vε − ṽε‖L2(0,T ;V ) + ‖ṽε − ṽ0‖L2(0,T ;V ) + ‖ṽ0 − v0‖L2(0,T ;V )

≤ ‖ṽε − ṽ0‖L2(0,T ;V ) + Cδ.
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This inequality, together with (6.13), gives

lim sup
ε→0+

‖vε − v0‖L2(0,T ;V ) ≤ Cδ.

By the arbitrariness of δ > 0 we obtain (6.4), which concludes the proof of
Step 1.

Step 2. The general case. Let ũε be the solution to (2.13) with hε = fε,
`ε = gε, v

0
ε = u0ε, and v1ε = 0. By Step 1

ũε −−−−→
ε→0+

u0 strongly in L2(0, T ;V ). (6.16)

The function uε − ũε is the solution to (2.13) with all data equal to 0 except
v1ε , which is now equal to u1ε. Therefore, Lemma 3.8 and (3.10) yield

‖uε − ũε‖L∞(0,T ;V ) ≤ ε
√
CE‖u1ε‖ −−−−→

ε→0+
0,

which, together with (6.16), gives (3.4). �

In the following theorem, under the assumptions of Theorem 3.7 we
deduce (3.5) from (3.4).

Theorem 6.3. Let us assume (H1), (H2), and (3.10). Let uε be the solution
to the viscoelastic dynamic system (2.10), with ϕε = fε and γε = gε, and let
u0 be the solution to the stationary problem (3.1). Then (3.5) holds.

Proof. Thanks to Lemma 3.10 we can suppose z = 0 and zε = 0 for every
ε > 0. It is convenient to extend the data of our problem to the interval
[0, 2T ] by setting for every t ∈ (T, 2T ]

fε(t) := 0, f(t) := 0, gε(t) := gε(T ), g(t) := g(T ).

Since (H1) holds, it is clear that {fε}ε ⊂ L2(0, 2T ;H), {gε}ε ∈ H1(0, 2T ;V ′0),

fε −−−−→
ε→0+

f strongly in L2(0, 2T ;H) (6.17)

gε −−−−→
ε→0+

g strongly in W 1,1(0, 2T ;V ′0). (6.18)

Moreover, the solution to (2.10) on [0, 2T ] with the extended data is an
extension of uε, which is still denoted by uε. Similarly, the solution to (3.1)
on [0, 2T ] is still denoted by u0. Since (6.17) and (6.18) hold, Theorem 6.2
gives

uε −−−−→
ε→0+

u0 strongly in L2(0, 2T ;V ). (6.19)

We further extend uε to R by setting uε(t) = 0 for every t ∈ R \ [0, 2T ], and
we define

wε(t) :=

∫ t

0

1

βε
e−

t−τ
βε euε(τ)dτ = (ρε ∗ euε)(t) for every t ∈ R,

where ρε is as in (3.17). By the properties of convolutions and (6.19) we get

euε − wε −−−−→
ε→0+

0 strongly in L2(R; H̃). (6.20)
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Thanks to (6.19) and (6.20), by using (2.10) and (3.1) we obtain

ε2üε −−−−→
ε→0+

0 strongly in L2(0, 2T ;V ′0). (6.21)

Since

ε2u̇ε(t) = ε2u1ε + ε2
∫ t

0

üε(τ)dτ for every t ∈ [0, 2T ],

(3.10) and (6.21) imply

ε2u̇ε −−−−→
ε→0+

0 strongly in L2(0, 2T ;V ′0). (6.22)

By (6.19) and (6.22) there exists a sequence εj −→ 0+ such that for a.e.
t ∈ [0, 2T ] we have

uεj (t) −−−−→
j→+∞

u0(t) strongly in V , (6.23)

ε2j u̇εj (t) −−−−→
j→+∞

0 strongly in V ′0 . (6.24)

We choose T0 ∈ (T, 2T ) such that (6.23) and (6.24) hold at t = T0. This
implies

ε2j (u̇εj (T0), uεj (T0)) = 〈ε2j u̇εj (T0), uεj (T0)〉 −−−−→
j→+∞

0. (6.25)

Since zε = 0 for a.e. t ∈ [0, T0] we can use uε(t) ∈ V0 as test function in
(2.10). Then we integrate by parts in time on the interval (0, T0) to obtain

−ε2j
∫ T0

0

‖u̇εj (t)‖2dt+

∫ T0

0

(Aeuεj (t), euεj (t))dt

+

∫ T0

0

(B(euεj (t)− wεj (t)), euεj (t))dt =

∫ T0

0

(fεj (t), uεj (t))dt

+

∫ T0

0

〈gεj (t), uεj (t)〉dt− ε2j (u̇εj (T0), uεj (T0)) + ε2j (u
0
εj , u

1
εj ).

Thanks to (3.1), (3.10), (6.17), (6.19), (6.20), and (6.25) the first term on the
left-hand side of the previous equation tends to 0 as j → +∞. Since T0 > T
we have

ε2j

∫ T

0

‖u̇εj (t)‖2dt −−−−→
j→+∞

0.

By the arbitrariness of the sequence {εj}j we have

ε2
∫ T

0

‖u̇ε(t)‖2dt −−−−→
ε→0+

0,

which concludes the proof. �

We now use Theorems 6.2 and 6.3 to obtain (3.4) and (3.5) under the
assumptions of Theorem 3.6.

Theorem 6.4. Let us assume (H1)–(H3). Let uε be the solution to the vis-
coelastic dynamic system (2.9) and let u0 be the solution to the stationary
problem (3.1). Then (3.4) and (3.5) hold.
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Proof. Thanks to Lemma 3.9 we can suppose z = 0 and zε = 0 for every
ε > 0. Let pε be defined by (2.12). Since zε = 0, by Remark 2.3 the function
uε solves (2.13) with hε = fε, `ε = gε − pε, v0ε = uε,in(0), and v1ε = u̇ε,in(0).
To obtain (3.4) and (3.5) we cannot apply Theorems 6.2 and 6.3 directly,
because {pε}ε does not converge to 0 in W 1,1(0, T ;V ′0) as ε → 0+ and, in
general, pε /∈ L2(0, T ;H).

To overcome this difficulty we construct a family {qε}ε ⊂ H1(0, T ;H)
such that ‖qε − pε‖W 1,1(0,T ;V ′0 )

is uniformly small and qε → 0 strongly in

L2(0, T ;H) as ε → 0+. Then we can apply Theorems 6.2 and 6.3 to the
solutions vε to (2.13) with pε replaced by qε, obtaining that vε → u0 strongly
in L2(0, T ;V ) and εv̇ε → 0 strongly in L2(0, T ;H). Finally, we show that
‖vε − uε‖L2(0,T ;V ) and ε‖v̇ε − u̇ε‖L2(0,T ;H) are small uniformly with respect
to ε, and this leads to the proof of (3.4) and (3.5).

To construct qε we consider g0ε introduced in (2.12) and we define

g̃0ε :=

∫ 0

−∞

1

βε
e
τ
βε div(Beuin(τ))dτ = (ρε ∗ div(Beuin))(0),

where ρε is the convolution kernel in (3.17). By (H3) we have div(Beuin) ∈
C0((−∞, 0];V ′0), hence the properties of convolutions imply

g̃0ε −−−−→
ε→0+

g0 := div(Beuin(0)) strongly in V ′0 . (6.26)

Since

‖g0ε − g̃0ε‖V ′0 ≤
∫ −a
−∞

1

βε
e
τ
βε
(
‖div(B(euε,in(τ))‖V ′0 + ‖div(B(euin(τ))‖V ′0

)
dτ

+ ‖div(B(euε,in − euin))‖L∞(−a,0;V ′0 ),

thanks to (H3) we have g0ε − g̃0ε → 0 strongly in V ′0 as ε → 0+, hence (6.26)
implies

g0ε −−−−→
ε→0+

g0 strongly in V ′0 . (6.27)

Let us fix δ > 0. By the density of H in V ′0 we can find h0 ∈ H such
that ‖h0 − g0‖V ′0 < δ. By (6.27) there exists ε0 = ε0(δ) ∈ (0, 1

β ) such that

‖h0 − g0ε‖V ′0 < δ for every ε ∈ (0, ε0). (6.28)

Let qε ∈ H1(0, T ;H) be defined by qε(t) := e−
t
βεh0 for every t ∈ [0, T ]. Then

qε −−−−→
ε→0+

0 strongly in L2(0, T ;H). (6.29)

Since pε(t) = e−
t
βε g0ε , by (6.28) we have also

‖qε−pε‖W 1,1(0,T ;V ′0 )
≤ (βε+1)‖h0−g0ε‖V ′0 ≤ 2δ for every ε ∈ (0, ε0). (6.30)

Let vε be the solution to (2.13) with hε = fε−qε, `ε = gε, v
0
ε = uε,in(0),

and v1ε = u̇ε,in(0). By (H1) and (6.29) we have

fε − qε −−−−→
ε→0+

f strongly in L2(0, T ;H)

gε −−−−→
ε→0+

g strongly in W 1,1(0, T ;V ′0).
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By (H3) we have

uε,in(0) −−−−→
ε→0+

uin(0) strongly in V

εu̇ε,in(0) −−−−→
ε→0+

0 strongly in H.

Therefore we can apply Theorems 6.2 and 6.3 to obtain

vε −−−−→
ε→0+

u0 strongly in L2(0, T ;V ) (6.31)

εv̇ε −−−−→
ε→0+

0 strongly in L2(0, T ;H). (6.32)

To estimate the difference vε − uε we observe that it solves (2.13) with
hε = 0, `ε = pε−qε, v0ε = 0, and v1ε = 0. Therefore, by Lemma 3.8 and (6.30)
we have

ε2‖v̇ε− u̇ε‖2L2(0,T ;H) +‖vε−uε‖2L2(0,T ;V ) ≤ CE‖qε−pε‖
2
W 1,1(0,T ;V ′0 )

≤ 4CEδ
2.

(6.33)
Since by (6.33)

‖uε − u0‖L2(0,T ;V ) ≤ ‖uε − vε‖L2(0,T ;V ) + ‖vε − u0‖L2(0,T ;V )

≤ ‖vε − u0‖L2(0,T ;V ) + 2
√
CEδ,

ε‖u̇ε‖L2(0,T ;H) ≤ ε‖u̇ε − v̇ε‖L2(0,T ;H) + ε‖v̇ε‖L2(0,T ;H)

≤ ε‖v̇ε‖L2(0,T ;H) + 2
√
CEδ,

thanks to (6.31) and (6.32) we have

lim sup
ε→0+

‖uε − u0‖L2(0,T ;V ) ≤ 2
√
CEδ,

lim sup
ε→0+

ε‖u̇ε‖L2(0,T ;H) ≤ 2
√
CEδ.

By the arbitrariness of δ > 0 we obtain (3.4) and (3.5), which concludes the
proof. �

7. The local uniform convergence

In this section we shall prove (3.6) and (3.7) under the assumptions of The-
orems 3.6 and 3.7. The proof is based on the following lemma.

Lemma 7.1. Let {`ε}ε ⊂ H1(0, T ;V ′0) and ` ∈W 1,1(0, T ;V ′0) be such that

`ε −−−−→
ε→0+

` strongly in W 1,1(η, T ;V ′0) for every η ∈ (0, T ). (7.1)

Let vε be a solution to the viscoelastic dynamic system (2.13) with hε = 0
and arbitrary initial data. Moreover, let v0 be the solution to the stationary
problem (3.2) with h = 0. We assume that

vε −−−−→
ε→0+

v0 strongly in L2(0, T ;V ), (7.2)

εv̇ε −−−−→
ε→0+

0 strongly in L2(0, T ;H). (7.3)
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Then

vε −−−−→
ε→0+

v0 strongly in L∞(η, T ;V ) for every η ∈ (0, T ), (7.4)

εv̇ε −−−−→
ε→0+

0 strongly in L∞(η, T ;H) for every η ∈ (0, T ). (7.5)

Proof. We divide the proof into two steps.

Step 1. Let us assume `ε = ` ∈ H2(0, T ;V ′0) for every ε > 0. By Lemma
3.4 (with z = 0) we have v0 ∈ H2(0, T ;V ), hence recalling (3.2) we get for
a.e. t ∈ [0, T ]

ε2v̈0(t)− div((A + B)ev0(t)) +

∫ t

0

1

βε
e−

t−τ
βε div(Bev0(τ))dτ

= ε2v̈0(t) + `(t)− div(Bev0(t)) +

∫ t

0

1

βε
e−

t−τ
βε div(Bev0(τ)). (7.6)

Now we define v̄ε := vε − v0 and observe that by (7.2) and (7.3) we have

v̄ε −−−−→
ε→0+

0 strongly in L2(0, T ;V ), (7.7)

ε ˙̄vε −−−−→
ε→0+

0 strongly in L2(0, T ;H). (7.8)

Let us consider

qε(t) := div(Bev0(t))−
∫ t

0

1

βε
e−

t−τ
βε div(Bev0(τ))dτ.

Since vε satisfies (2.13) with hε = 0, by (7.6) the function v̄ε satisfies (2.13)
with hε = −ε2v̈0 and `ε = qε. After two integrations by parts in time we
deduce∫ t

0

1

βε
e−

t−τ
βε div(Bev0(τ))dτ = div(Bev0(t))− e−

t
βε div(Bev0(0))

− βεdiv(Bev̇0(t)) + βεe−
t
βε div(Bev̇0(0)) + βε

∫ t

0

e−
t−τ
βε div(Bev̈0(τ))dτ,

hence

qε −−−−→
ε→0+

0 strongly in W 1,1(η, T ;V ′0) for every η ∈ (0, T ). (7.9)

Now we fix δ ∈ (0, T ), and we consider η ∈ (0, δ) and ζ ∈ (η, δ). We

define the family of functions {w̄ε}ε ⊂ H1(0, T ; H̃) by

w̄ε(t) :=

∫ t

0

1

βε
e−

t−τ
βε ev̄ε(τ)dτ = (ρε ∗ ev̄ε)(t) for every t ∈ [0, T ],

where ρε is defined by (3.17) and v̄ε is extended to R by setting v̄ε(t) = 0 on
R \ [0, T ]. By properties of convolutions we have

ev̄ε − w̄ε −−−−→
ε→0+

0 strongly in L2(0, T ; H̃). (7.10)
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By the energy-dissipation balance (2.25) of Proposition 2.7, for every
t ∈ [η, T ] and s ∈ (η, ζ) we can write

ε2

2
‖ ˙̄vε(t)‖2 +

1

2
(Aev̄ε(t), ev̄ε(t)) +

1

2
(B(ev̄ε(t)− w̄ε(t), ev̄ε(t)− w̄ε(t))

+ βε

∫ t

s

(B ˙̄wε(τ), ˙̄wε(τ))dτ =
ε2

2
‖ ˙̄vε(s)‖2 +

1

2
(Aev̄ε(s), ev̄ε(s))

+
1

2
(B(ev̄ε(s)− w̄ε(s), ev̄ε(s)− w̄ε(s)) + Wε(t, s), (7.11)

where the work is defined by

Wε(t, s) = 〈qε(t), v̄ε(t)〉 − 〈qε(s), v̄ε(s)〉

−
∫ t

s

〈q̇ε(τ), v̄ε(τ)〉dτ − ε
∫ t

s

(v̈0(τ), ε ˙̄vε(τ))dτ.

Now we take the mean value with respect to s of all terms of (7.11) on (η, ζ),
and we pass to the supremum with respect to t on [η, T ]. Thanks to (2.3) and
(2.6) we deduce

ε2

2
‖ ˙̄vε‖2L∞(η,T ;H) +

cA
2(C2

P + 1)
‖v̄ε‖2L∞(η,T ;V )

≤ ε2

2
−
∫ ζ

η

‖ ˙̄vε(s)‖2ds+
CA

2
−
∫ ζ

η

‖v̄ε(s)‖2V ds

+
CB

2
−
∫ ζ

η

‖ev̄ε(s)− w̄ε(s)‖2ds+ −
∫ ζ

η

sup
t∈[η,T ]

|Wε(t, s)|ds. (7.12)

Notice that for every s ∈ (η, ζ) we have

sup
t∈[η,T ]

|Wε(t, s)| ≤
(
2‖qε‖L∞(η,T ;V ′0 )

+ ‖q̇ε‖L1(η,T ;V ′0 )

)
‖v̄ε‖L∞(η,T ;V )

+ ε‖v̈0‖L1(η,T ;H)‖ε ˙̄vε‖L∞(η,T ;H)

≤
(
3 + 2

T

)
‖qε‖W 1,1(η,T ;V ′0 )

‖v̄ε‖L∞(η,T ;V )

+ ε‖v̈0‖L1(η,T ;H)‖ε ˙̄vε‖L∞(η,T ;H),

hence thanks to the Young Inequality and (7.12) there exists a positive con-
stant C = C(A,B,Ω, T ) such that

ε2‖ ˙̄vε‖2L∞(η,T ;H) + ‖v̄ε‖2L∞(η,T ;V ) ≤ C
(
ε2 −
∫ ζ

η

‖ ˙̄vε(s)‖2ds+ −
∫ ζ

η

‖v̄ε(s)‖2V ds

+ −
∫ ζ

η

‖ev̄ε(s)− w̄ε(s)‖2ds+ ‖qε‖2W 1,1(η,T ;V ′0 )
+ ε2‖v̈0‖2L1(η,T ;H)

)
. (7.13)

By passing to the limit in (7.13) as ε→ 0+, thanks to (7.7), (7.8), (7.9),
and (7.10) we obtain

ε‖ ˙̄vε‖L∞(η,T ;H) + ‖v̄ε‖L∞(η,T ;V ) −−−−→
ε→0+

0,

which, by the definition of v̄ε, concludes the proof of (7.4) and (7.5) in the
case ` ∈ H2(0, T ;V ′0).
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Step 2. In the general case ` ∈ W 1,1(0, T ;V ′0) we use an approximation
argument. Given δ > 0, by Lemma 4.3 there exists a function ψ ∈ H2(0, T ;H)
such that

‖ψ − `‖W 1,1(0,T ;V ′0 )
< δ. (7.14)

Thanks to (7.1) for every σ ∈ (0, T ) there exists a positive number ε0 =
ε0(δ, σ) such that

‖ψ − `ε‖W 1,1(σ,T ;V ′0 )
< δ for every ε ∈ (0, ε0). (7.15)

Let ṽε be the solution to (2.13) in the interval [σ, T ] with hε = 0, `ε = ψ,

ṽε(σ) = vε(σ), and ˙̃vε(σ) = v̇ε(σ), and let ṽ0 be the solution to (3.2) in the
interval [0, T ] with h = 0 and ` = ψ. By applying Step 1 in the interval [σ, T ]
we obtain

ṽε −−−−→
ε→0+

ṽ0 strongly in L∞(η, T ;V ) for every η ∈ (σ, T ), (7.16)

ε ˙̃vε −−−−→
ε→0+

0 strongly in L∞(η, T ;H) for every η ∈ (σ, T ). (7.17)

We set v̄0 := ṽ0−v0 and v̄ε := ṽε−vε. We observe that v̄0 is the solution
to (3.2) with h = 0 and ` replaced by ψ−`, hence by the Lax-Milgram Lemma
we get

‖v̄0‖L∞(0,T ;V ) ≤
C2
P+1
cA
‖ψ − `‖L∞(0,T ;V ′0 )

≤ C2
P+1
cA

(1 + 1
T )‖ψ − `‖W 1,1(0,T ;V ′0 )

.

(7.18)
Moreover, v̄ε is the solution to (2.13) in the interval [σ, T ] with hε = 0, `ε
replaced by ψ − `ε, and homogeneous initial conditions. Thanks to Lemma
3.8 we obtain

ε‖ ˙̄vε‖2L∞(σ,T ;H) + ‖v̄ε‖2L∞(σ,T ;V ) ≤ CE‖ψ − `ε‖
2
W 1,1(σ,T ;V ′0 )

. (7.19)

By combining (7.14), (7.15), (7.18), and (7.19), we can find a positive constant
C = C(A,B,Ω, T ) such that

ε‖ ˙̄vε‖L∞(σ,T ;H) + ‖v̄ε‖L∞(σ,T ;V ) + ‖v̄0‖L∞(σ,T ;V ) ≤ Cδ. (7.20)

Since for every η ∈ (σ, T ) we have

‖vε − v0‖L∞(η,T ;V ) ≤ ‖v̄ε‖L∞(η,T ;V ) + ‖ṽε − ṽ0‖L∞(η,T ;V ) + ‖v̄0‖L∞(η,T ;V ),

ε‖v̇ε‖L∞(η,T ;H) ≤ ε‖ ˙̄vε‖L∞(η,T ;H) + ε‖ ˙̃vε‖L∞(η,T ;H),

thanks to (7.16), (7.17), and (7.20) we obtain

lim sup
ε→0+

‖vε − v0‖L∞(η,T ;V ) ≤ Cδ and lim sup
ε→0+

‖εv̇ε‖L∞(η,T ;H) ≤ Cδ,

for every η ∈ (σ, T ). By the arbitrariness of δ > 0 and σ > 0 we conclude. �

Now we are in a position to prove (3.6) and (3.7).

Theorem 7.2. Let us assume (H1), (H2), (3.10), and fε = 0 for every ε > 0.
Let uε be the solution to the viscoelastic dynamic system (2.10), with ϕε = 0
and γε = gε, and let u0 be the solution to the stationary problem (3.1), with
f = 0. Then (3.6) and (3.7) hold.
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Proof. By Theorems 6.2 and 6.3 we obtain (3.4) and (3.5). Since fε = 0 and
gε → g strongly in W 1,1(0, T ;V ′0) as ε → 0+ by (H1), we can apply Lemma
7.1 to conclude. �

Theorem 7.3. Let us assume (H1)–(H3) and fε = 0 for every ε > 0. Let
uε be the solution to the viscoelastic dynamic system (2.9) and let u0 be the
solution to the stationary problem (3.1), with f = 0. Then (3.6) and (3.7)
hold.

Proof. Thanks to Lemma 3.9 we can suppose z = 0 and zε = 0 for every
ε > 0. By Theorem 6.4 we obtain (3.4) and (3.5). Since uε is a solution to
(2.9) with fε = 0, by Remark 2.3 it solves (2.13) with hε = 0 and `ε = gε−pε,
where pε is defined by (2.12). Since

gε − pε −−−−→
ε→0+

g strongly in W 1,1(η, T ;V ′0) for every η ∈ (0, T ),

we can apply Lemma 7.1 to conclude. �

Finally we can prove Theorems 3.6 and 3.7.

Proof of Theorem 3.6. It is enough to combine Theorems 4.1, 6.4, and 7.3.
�

Proof of Theorem 3.7. It is enough to combine Theorems 6.2, 6.3, and 7.2.
�

Appendix A.

Throughout this section we fix a0 > 0, b0 > 0, and c1 ≥ c0 > 1. For every
a, b with

c0a ≤ b ≤ c1a, b ≥ b0, a ≥ a0, (A.1)

we consider the polynomial p(z) := βz3 + z2 + βbz + a depending on the
complex variable z. The following result about the roots of this polynomial
is used in the proof of Lemma 5.2 and Proposition 5.4.

Lemma A.1. There exists a positive constant α = α(β, a0, b0, c0, c1) such that,
for every a, b ∈ R satisfying (A.1), the roots of the polynomial p have real
parts in the interval (− 1

β ,−α).

Proof. Let us set z := x+ iy with x, y ∈ R. Then p(z) = 0 if and only if{
βx3 + x2 + βbx− (3βx+ 1)y2 + a = 0,

y(−βy2 + 3βx2 + 2x+ βb) = 0,

from which we derive{
q(x) := βx3 + x2 + βbx+ a = 0,

y = 0,
(A.2)
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{
r(x) := 8βx3 + 8x2 + 2

(
1
β + βb

)
x+ b− a = 0,

y2 = 3x2 + 2
βx+ b.

(A.3)

By recalling a > 0 and b−a ≥ (c0−1)a > 0, for every x ≥ 0 we have q(x) > 0
and r(x) > 0, and so the real part of the roots cannot be positive or zero.
Moreover, since for every x ≤ − 1

β we have βx3 + x2 ≤ 0, we obtain

q(x) ≤ −b+ a ≤ (1− c0)a < 0

r(x) ≤ b− a− 2
(

1
β2 + b

)
= −b− a− 2

β2 < 0,

which imply that the real part of the roots does not belong to (−∞,− 1
β ].

Therefore, by calling z1, z2, z3 ∈ C the three roots of the polynomial p, we
can say

<(zi) ∈ (− 1
β , 0) for i = 1, 2, 3. (A.4)

Case 1: there is only one real root. In this case by (A.3) there exists a
unique x1 ∈ (− 1

β , 0) which satisfies r(x1) = 0 and 3x21 + 2
βx1 + b > 0. Indeed

by setting y1 :=
√

3x21 + 2
βx1 + b we obtain that x1 + iy1 and x1 − iy1 are

two distinct non-real roots of p. Since

r(− 1
2β ) = − 1

β2 + 2
β2 − 1

β2 − b+ b− a = −a < 0,

r(− β(b−a)
2(bβ2+1) ) = β2(b−a)2((a+b)β2+2)

(bβ2+1)3 > 0,

then x1 ∈ (− 1
2β ,−

β(b−a)
2(bβ2+1) ). Moreover

q(− 1
β ) = − 1

β2 + 1
β2 − b+ a = −b+ a < 0,

q(− a
βb ) = − a3

b3β2 + a2

b2β2 − a+ a = a2(b−a)
b3β2 > 0,

hence there exists x0 ∈ (− 1
β ,−

a
βb ) such that q(x0) = 0. As a consequence of

this, (x0, 0) satisfies the system in (A.2), which implies that x0 is the real root

of p, hence we have <(zi) ∈ (− 1
β ,max{− a

βb ,−
β(b−a)

2(bβ2+1)}). Thanks to (A.1) we

can say − a
βb ≤ −

1
c1β

and − β(b−a)
2(bβ2+1) ≤

β(1−c0)a
2(c1aβ2+1) ≤

β(1−c0)a0
2(c1a0β2+1) , where in the

last inequality we use the decreasing property of the function a 7→ β(1−c0)a
2(c1aβ2+1) .

This implies

<(zi) ∈ (− 1
β ,max{− 1

c1β
, β(1−c0)a0
2(c1a0β2+1)}) for i = 1, 2, 3. (A.5)

Case 2: there are only real roots. In this case we have b ≤ 1
3β2 , otherwise

q′(x) > 0 for every x ∈ R, which forces p to have also non-real roots. Thanks

to (A.1) we have also a < b ≤ 1
3β2 . By setting b̃0 := 1−

√
1− 3b0β2, we can

write

−b̃0a0β ≥ −b̃0aβ ≥ −(1−
√

1− 3bβ2)aβ >
−1+
√

1−3bβ2

3β > − 1
β ,

which implies

q′(x) > 0 for every x ∈ [−b̃0a0β,+∞). (A.6)
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Since

q(−b̃0a0β) ≥ β2b̃20a
2
0(1− β2b̃0a0) + a0(1− β2b̃0b)

> a0(1 + β2b̃20a0)(1− β2b̃0b) > 0,

thanks to (A.1), (A.4), and (A.6) we get

<(zi) ∈ (− 1
β ,−b̃0a0β), for i = 1, 2, 3. (A.7)

By combining (A.5) and (A.7), we obtain the conclusion with

α := min{b̃0a0β,
1

c1β
,
β(c0 − 1)a0

2 (c1a0β2 + 1)
}.

�

The following easy estimate is used in the proof of Lemma 5.2.

Lemma A.2. For every z, w ∈ C with <(z) > 0 and <(w) < 0 the following
inequality holds:

|(z − w)(z − w̄)| ≥ |<(w)||=(w)|.

Proof. Without loss of generality we can suppose =(w) > 0, otherwise we
exchange the role of w with w̄. If =(z) > 0, then

|z − w| ≥ |<(z − w)| = |<(z) + <(−w)| = <(z) + <(−w) ≥ |<(w)|,
|z − w̄| ≥ |=(z − w̄)| = |=(z) + =(w)| = =(z) + =(w) ≥ |=(w)|,

which give the conclusion in this case. If =(z) < 0, then

|z − w| ≥ |=(z − w)| = | − =(−z)−=(w)| = =(−z) + =(w) ≥ |=(w)|,
|z − w̄| ≥ |<(z − w̄)| = |<(z) + <(−w)| = <(z) + <(−w) ≥ |<(w)|,

which conclude the proof. �
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