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We minimize elastic energies on framed curves which
penalize both curvature and torsion. We also discuss
critical points using the infinite dimensional version
of the Lagrange multipliers’ method. Finally, some
examples arising from the applications are discussed
and also numerical experiments are presented.

1. Introduction
The study of elastic curves was initiated in 1691 by
Jacob Bernoulli and it was continued by Euler who
introduced, in his book of 1744, the methods of Calculus
of Variations. In his masterpiece, Euler introduced a
complete characterization of elasticae curves. Since then,
the name elasticae refers to curves which are critical points
for the energy functional∫

r
κ2 ds

where κ is the curvature of the curve r. Since the
fundamental papers by Langer and Singer [17–19], where
the equations of elasticae have been integrated, the study
of the Euler functional has been widely developed. We
refer here, for instance, to a recent and very interesting
research on the elastic networks (see [1,11] and references
therein).

Elastic energies play an important role in physical
applications: we just mention, for instance, the study
of slender biological systems, like DNA, knotted or
unknotted proteins [7,9,27,29], or the construction of
engineering structures, like cables or pipelines [25]. In
the literature, we can find also energy functionals that
penalize both curvature and torsion. For instance, in 1930
Sadowsky [22,23] (see [15,16] for an English translation)
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studied the equilibria of a developable Möbius strip by minimizing the bending energy. He
argued that when the Möbius strip shrinks to its centerline, the energy reduces to a functional
which depends on the curvature and the torsion of the centerline itself. The original form of the
Sadowsky energy functional is given by∫

r

(κ2 + τ2)2

κ2
ds

where τ is the torsion of r. Later, also Langer and Singer [20] considered an energy functional
which penalizes both the curvature and the torsion of the centerline of an elastic rod. Precisely,
they considered the functional

λ1

∫
r
ds+ λ2

∫
r
τ ds+ λ3

∫
r

κ2

2
ds.

In this paper, we want to study a more general energy density function depending both on
the curvature κ and the torsion τ of the curve. We consider also an explicit dependence on the
curvilinear abscissa (see paragraph (a) for some explanation). In other words, we are dealing
with the following type of elastic energy functional:∫

r
f(s, κ, τ) ds. (1.1)

We are interested in the existence of minimizers of (1.1) among closed curves with fixed length,
and in a characterization of its critical points. The corresponding Euler-Lagrange equations
without constraints have already been obtained, up to our knowledge, for curves of class at least
C2: for instance, in [6,26] the authors employ the Serret-Frenet frame to describe the geometry of
the curves and to compute the first variation. Differently, using our approach, we obtain a system
of first-order differential equations which is not in normal form but which embeds the closure of
the curve, a fact generally difficult to implement.

In order to introduce a model for an elastic curve as physical as possible [8], we proceed
differently from classical approaches [19], where the independent variable of the energy
functional is a parametrized curve. Here, we wish to deal with C1 curves but not necessarily
C2. By this, we cannot adopt the Serret-Frenet frame description, for which the regularity of the
curve has to be at least C2. We adopt then the approach of the framed curves with the constraints
of C1-closedness and a natural condition t′ · b= 0, where here t and b can be thought as the unit
tangent vector and the binormal to the given curve, respectively. Framed curves were introduced
by Schuricht et al. [14] to describe the physical behavior of elastic curves under additional
topological constraints (see also [24]), while the condition t′ · b= 0 arises in a natural way from a
Gamma-limit procedure exploited by Freddi et al. [10] to investigate the dimensional reduction
of an elastic Möbius strip.

The paper is organized as follows. First of all, in Section 2, we introduce the mathematical
setting of the framed curves showing how to reconstruct a space curve starting from its (weak)
curvature and torsion and we introduce the elastic energy functional. Next, in Section 3, we
prove the first main result, i.e. the existence of energy minimizers (Theorem 3.1). Even if Theorem
3.1 is very similar to [14, Thm. 1], we will give a complete proof since our set of constraints
is different. Then, in Section 4, we find as a second result, the first-order necessary conditions
for minimizers (Theorem 4.2) using essentially the infinite-dimensional version of the Lagrange
multipliers’ method under suitable regularity and growth assumptions on the integrand function.
Up to our knowledge, this approach seems to be new at least in this context. We obtain a system
of ordinary differential equations (see (4.3)) which is not in normal form, it contains some of the
Lagrange multipliers and it makes sense even at points where κ= 0. We stress the fact that the
complete elimination of the Lagrange multipliers from (4.3) needs to work at points where the
curvature is not zero. In Theorem 4.4, we report the equations obtained though this elimination,
which have already been obtained by Capovilla et al. in [6] (see their Eq. (77) and (78)). Precisely,
different from our approach, they derived such a conditions using Serret-Frenet frame and they
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did not consider the explicit dependence on s. Finally, in Section 5, we consider some examples
arising from biological or engineering applications and we perform some numerical examples to
visualize the shape of critical points. In particular, we apply Theorem 4.2 to minimizers of Euler
elastic energy. Euler functional had been widely studied (see [17–19]) but assuming regularity a
priori and using the Serret-Frenet moving frame. Our approach requires less regularity a priori
and in order to eliminate the Lagrange multipliers we have to show that the curvature is not zero
at almost any point, see Theorem 5.1.

The variational analysis of functionals of type (1.1) is a fundamental preliminary in view to
consider the more complicated physical situation where a soap film spans an elastic inextensible
curve. This study will be managed in the spirit of the one carried out for the Kirchhoff-Plateau
problem (see [3–5,12,13] and references therein) and it will be the content of a forthcoming paper.

2. Framed curves and elastic energy
We introduce framed curves following, up to some variants, the approach presented in [14]. We
denote by SO(3) the set of all 3× 3 rotation matrices: in other words, (u|v|w)∈ SO(3) means
that {u,v,w} is a positively oriented orthonormal basis of R3. Fix L> 0 and p > 11. On a triple
(t|n|b)∈W 1,p((0, L);SO(3)) we put the following constraints:

t′ · b= 0, a.e. on (0, L), (2.1)∫L
0
t ds= 0, (2.2)

t(L) = t(0), (2.3)

where t(L) and t(0) are intended in the sense of traces. We let

W = {(t|n|b)∈W 1,p((0, L);SO(3)) : (2.1)-(2.2)-(2.3) hold true}.

On W we put the norm of W 1,p((0, L);R3×3), namely

‖A‖W = (‖A‖p + ‖A′‖p)1/p

where the p-norm of an X = (xij)∈R3×3 is given by

‖X‖p =

 3∑
i,j=1

|xij |p
1/p

.

Let f : [0, L]× R× R→R be measurable. We define the energy functional E : W →R ∪ {+∞} as

E(t|n|b) =

∫L
0
f(s, t′ · n,n′ · b) ds.

(a) Geometrical interpretation
Fix (t|n|b)∈W and x0 ∈R3. We consider the map rx0 : [0, L]→R3 defined by

rx0(s) =x0 +

∫s
0
t dr.

In other words, rx0 is the curve clamped at the point x0 and generated by the orthonormal
frame {t,n, b}. First of all rx0 is parametrized by the arclength since |r′x0

|= |t|= 1. Condition
(2.2) says that rx0 is a closed curve, that is rx0(0) = rx0(L). Moreover, condition (2.3) says
that the tangent vector to rx0 is continuous, that is r′x0

(0) = r′x0
(L). We also point out that

rx0 belongs to W 2,p((0, L);R3) but, in general, it does not belong to W 3,p((0, L);R3) even if

1There is no practical reason for interest in p 6= 2, but the mathematics is the same, hence we decide to take any p > 1.
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n∈W 1,p((0, L);R3). Hence, the regularity of admissible curves is in between C1 and C2. Finally,
we let

κ= t′ · n, τ =n′ · b.

Notice that κ, τ ∈Lp(0, L). It is easy to see that condition (2.1) implies that the following system
holds 

t′ = κn,

n′ =−κt+ τb,

b′ =−τn,
(2.4)

which looks like the usual Serret-Frenet system of rx0 . For that reason, κ and τ can be regarded
as the (signed) weak curvature of rx0 and the weak torsion of rx0 respectively. However, we remark
that while in classical Differential Geometry the torsion of a space curve is not defined at a point
where the curvature vanishes, for us the quantity n′ · b is defined in a weak sense regardless of
how big is the set where κ= 0. We want also to point out that the explicit dependence of f in
the variable s is in this case physical because s is the curvilinear abscissa on the solution curve,
and also on every other competitor for the minimum, since lengths are conserved. Therefore,
a particular feature of f in s0 ∈ [0, L] refers to a well-defined material point on the curve. An
explicit example of s-dependence could be simply the following one: take an admissible curve
r0 ∈W 2,p((0, L);R3), define κ0 as its signed curvature and consider the functional

E0(t|n|b) =

∫L
0

(t′ · n− κ0)2 ds.

The curvature κ0 can be regarded as a sort of spontaneous curvature. Of course, r0 is a minimizer
for E0 (in the sense that any moving frame generating r0 is a minimizer). Notice also that in this
case we have a minimizer which is C1 but not necessarily C2 if r0 is C1 but not C2.

3. Minimizers of E
Our first main result is the existence of minimizers for E .

Theorem 3.1. Assume that:

f(·, a, b)∈L1(0, L) for any a, b∈R, (3.1)

f(s, ·) is continuous and convex for any s∈ [0, L], (3.2)

f(s, a, b)≥ c1|a|p + c2|b|p + c3 for any a, b∈R, (3.3)

for some c1, c2 > 0, c3 ∈R. Then E has a minimizer on W .

Proof. We divide the proof into three steps.

Step 1. We claim that infW E <+∞. Consider

t∗(s) =− sin

(
2πs

L

)
e1 + cos

(
2πs

L

)
e2,

n∗(s) =− cos

(
2πs

L

)
e1 − sin

(
2πs

L

)
e2,

and
b∗(s) = e3

where {e1, e2, e3} is the canonical basis of R3. It is easy to see that (t∗|n∗|b∗)∈W . Moreover,

κ= (t∗)′ · n∗ =
4π2

L2
, τ = (n∗)′ · b∗ = 0.
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Hence

E(t∗|n∗|b∗) =

∫L
0
f

(
s,

4π2

L2
, 0

)
ds

(3.1)
< +∞

from which the claim follows.

Step 2. We prove that W is sequentially closed with respect to the weak convergence of
W 1,p((0, L);R3×3). In order to prove this, let (th|nh|bh) be a sequence in W that converges
weakly in W 1,p((0, L);R3×3) to (t|n|b). In particular, ‖th‖1,p, ‖nh‖1,p, ‖bh‖1,p are bounded.
Taking into account the Sobolev compact embedding W 1,p((0, L);R3) ↪→C0([0, L];R3) we can
say that, up to a subsequence not relabeled, (th|nh|bh)→ (t|n|b) uniformly on [0, L]. Now,
since for any s∈ [0, L] we have (th(s)|nh(s)|bh(s))∈ SO(3) and SO(3) is closed in R3×3 we
deduce that (t(s)|n(s)|b(s))∈ SO(3) for any s∈ [0, L] since the uniform convergence implies the
pointwise convergence. For the same reason condition (2.2) is preserved in the limit as well as the
constraint (2.3). It remains to prove that (2.1) passes to the limit. Since t′h→ t

′ weakly in Lp(0, L)

and bh→ b uniformly on [0, L] we can say that t′h · bh→ t
′ · bweakly in Lp(0, L). Hence

‖t′ · b‖p ≤ lim inf
h→+∞

‖t′h · bh‖p = 0

from which we obtain t′ · b= 0.

Step 3. The proof now uses the Direct Method of the Calculus of Variations. Let (th|nh|bh) be
a minimizing sequence for E on W , that is (th|nh|bh)∈W for any h∈N and

lim
h→+∞

E(th|nh|bh) = inf
W
E .

Since infW E <+∞, by (3.3) we can say that ‖(th|nh|bh)‖1,p is bounded. Then, up to a
subsequence (not relabeled), we get (th|nh|bh)⇀ (t|n|b)∈W because of the weak closure of
W . As before, notice that t′h · nh→ t

′ · n and n′h · bh→n
′ · b both weakly in Lp(0, L). Since

condition (3.2) guarantees the lower semicontinuity of E with respect to the weak topology of
Lp(0, L) we conclude that

E(t|n|b)≤ lim inf
h→+∞

E(th|nh|bh) = inf
W
E

which ends the proof.

4. Critical points of E
In this section we want to find the first-order necessary conditions for minimizers of E . We
first recall some notation, see for instance [2, Sec. 1.3]. If X,Y are real Banach spaces we denote
by L(X,Y ) the space of all linear and continuous functionals X→ Y . On L(X,Y ) we put the
operator norm, namely for any T ∈L(X,Y ) we let

‖T‖= sup
‖x‖X=1

‖T (x)‖Y .

Let x0 ∈X . A mapF : X→ Y is said to be Fréchet differentable at x0 if there existsF ′(x0)∈L(X,Y )

such that

lim
‖v‖→0

F(x0 + v)−F(x0)−F ′(x0)(v)

‖v‖ = 0.

We also say thatF ∈C1(X,Y ) if x 7→ F ′(x) is continuous as a mapX→L(X,Y ). It turns out that
if there exists L(x0)∈L(X,Y ) such that

L(x0)(v) =
d

dσ
F(x0 + σv)|σ=0

andL : X→L(X,Y ) is continuous at x0 thenF is Fréchet differentable at x0 andF ′(x0) =L(x0).
In particular, if L is continuous then F ∈C1(X,Y ).
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We now recall the infinite-dimensional version of the Lagrange multipliers’ method (see, for
instance, [28, Sec. 4.14]).

Theorem 4.1. LetX,Y be two real Banach spaces,F ∈C1(X) and G ∈C1(X;Y ). Assume that G′(x) 6=
0 whenever G(x) = 0. Let x0 ∈X be such that

F(x0) = min{F(x) : x∈X} and G(x0) = 0.

Then there exists a Lagrange multiplier λ∈L(Y,R) such that

F ′(x0) = λ(G′(x0)).

Applying Theorem 4.1 we are ready to obtain a system of first-order necessary conditions for
minimizers under suitable regularity and growth assumptions on f . In the sequel, fξ will stand
for ∂f∂ξ for short.

Theorem 4.2. Assume that f is of class C1 and satisfies

f(s, a, b)≤ c(1 + |a|p + |b|p) (4.1)

and

|fa(s, a, b)| ≤ c(1 + |a|p−1 + |b|p−1), |fb(s, a, b)| ≤ c(1 + |a|p−1 + |b|p−1) (4.2)

for all s∈ [0, L] and any a, b∈R and for some c≥ 0. Let (t|n|b)∈W be a minimizer of E and let κ=

t′ · n, τ =n′ · b. Then, fa, fb ∈W 1,1(0, L) and there exist µ∈Lp
′
(0, L) with µ′ ∈Lp(0, L) andλ∈R3

such that the following conditions hold a.e. on (0, L):
fb(s, κ, τ)′ = µκ

−fa(s, κ, τ)′ = µτ + λ · n
κfb(s, κ, τ)− τfa(s, κ, τ) =−µ′ + λ · b.

(4.3)

Proof. Let X =W 1,p((0, L);R3×3). The free variable in X will be denoted again by (t|n|b). We
define the functional F : X→R by

F(t|n|b) =

∫L
0
f(s, t′ · n,n′ · b) ds.

Fix (η1|η2|η3)∈X . Thanks to (4.2) we can differentiate under the integral sign obtaining

d

dσ
F(t+ ση1|n+ ση2|b+ ση3)|σ=0

=

∫L
0
fa(s, t′ · n,n′ · b)(n · η′1 + t′ · η2) ds+

∫L
0
fb(s, t

′ · n,n′ · b)(b · η′2 + n′ · η3) ds

=:L(η1,η2,η3),

where L is a linear operator. It is easy to see that

|L(η1|η2|η3)| ≤m‖(t|n|b)‖X‖(η1|η2|η3)‖X

for a suitable constant m> 0 by (4.2), the Hölder inequality and the continuous embeddings

W 1,p((0, L);R3) ↪→C0([0, L];R3), Lp((0, L);R3) ↪→L1((0, L);R3).

Therefore, L is also continuous and

|L(η1|η2|η3)| ≤m‖(t|n|b)‖X
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whenever ‖(η1|η2|η3)‖X = 1. We can then conclude that F ∈C1(X) and

F ′(t|n|b)(η1|η2|η3)

=

∫L
0
fa(s, t′ · n,n′ · b)(n · η′1 + t′ · η2) ds+

∫L
0
fb(s, t

′ · n,n′ · b)(b · η′2 + n′ · η3) ds

for any (η1|η2|η3)∈X . Next, we consider the constraints. We let

Y =Lp(0, L)× Lp(0, L)× Lp(0, L)× Lp((0, L);R3)× Lp(0, L)× R3 × R3

equipped with the product topology in order to get a Banach space. We define G : X→ Y as

G(t|n|b) =

(
t · t− 1,n · n− 1, t · n, b− t× n, t′ · b,

∫L
0
t ds, t(L)− t(0)

)
.

Using the same argument as before, we can easily see that G ∈C1(X,Y ) and

G′(t|n|b)(η1|η2|η3)

=

(
2t · η1, 2b · η2, t · η2 + n · η1,η3 + n× η1 − t× η2, b · η′1 + t′ · η3,∫L

0
η1 ds,η1(L)− η1(0)

)
.

Moreover, G′(t|n|b) 6= 0 for any (t|n|b)∈X such that G(t|n|b) = 0. Then, by construction a
minimizer of E is a constrained minimizer of F on {G = 0}. From now on (t|n|b) will denote such
a minimizer and for brevity we also let fa = fa(s, κ, τ) and fb = fb(s, κ, τ). Applying Theorem
4.1, we can say that there exist Lagrange multipliers λ1, λ2, λ3 ∈Lp

′
(0, L), λ4 ∈Lp

′
((0, L);R3),

µ∈Lp
′
(0, L), λ∈R3 such that∫L

0
fan · η′1 ds+

∫L
0
fat
′ · η2 ds+

∫L
0
fbb · η′2 ds+

∫L
0
fbn
′ · η3 ds

=

∫L
0

(2λ1t+ λ3n+ λ4 × n+ λ) · η1 ds+

∫L
0
µb · η′1 ds

+

∫L
0

(2λ2n+ λ3t− λ4 × t) · η2 ds+

∫L
0

(λ4 + µt′) · η3 ds

(4.4)

for any (η1|η2|η3)∈W 1,p
0 ((0, L);R3×3). Using η1 = η2 = 0 and the arbitrariness of η3 we easily

obtain
λ4 =−µt′ + fbn

′ .

Now, using η1 = η3 = 0 and η2 =ϕbwith ϕ∈C1
c (0, L) we deduce that

−f ′b =λ4 · n=−µ t′ · n

which is (4.3)1. Next, taking η1 = η3 = 0 and η2 =ϕtwe easily get

λ3 = 0.

Finally, considering η2 = η3 = 0 and η1 =ϕn or η1 =ϕbwe arrive at

−f ′a =λ · n+ µn′ · b,

which is (4.3)2 and
(t′ · n)fb − (n′ · b)fa =−µ′ + λ · b.

which is exactly (4.3)3, and the proof is complete.

Remark 4.3. We point out that from (4.4) we can deduce other conditions that permit us to find
λ1 and λ2. Actually, we did not consider these relations in the previous proof since they are not
necessary to get (4.3).
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Assuming a priori regularity we can eliminate the Lagrange multipliers in the system (4.3)
obtaining the following result.

Theorem 4.4. Assume that f is of class C3 and let (t|n|b)∈W be a solution of the system (4.3) with
t,n, b of class C4. Then at any point where κ 6= 0 we have

2(τfa)′ − τ ′fa −
(
f ′b
κ

)′′
+
τ2

κ
f ′b − (κfb)

′ = 0

−κf ′a − τf ′b =

(
f ′′a
κ
− τ2

κ
fa +

2τ

κ

(
f ′b
κ

)′
+ τ ′

f ′b
κ2

+ τfb

)′ (4.5)

where fa = fa(s, κ, τ) and fb = fb(s, κ, τ).

Proof. We add the proof for completeness since it is just the computation to eliminate the Lagrange
multiplier. Let us take a point where κ 6= 0. From (4.3)1 we get

µ=
f ′b
κ
.

Now, differentiating (4.3)3, using the fact that b′ =−τn and inserting (4.3)2 we easily get(
f ′b
κ

)′′
=−κ′fb − κf ′b + τ ′fa +

τ2

κ
f ′b + 2τf ′a

which gives (4.5)1. Next, differentiating (4.3)2, using the fact that n′ =−κt+ τb and inserting
(4.3)3 we obtain

λ · t=
f ′′a
κ
− τ2

κ
fa +

2τ

κ

(
f ′b
κ

)′
+ τ ′

f ′b
κ2

+ τfb

and then, since t′ = κn,

−κf ′a − τf ′b =

(
f ′′a
κ
− τ2

κ
fa +

2τ

κ

(
f ′b
κ

)′
+ τ ′

f ′b
κ2

+ τfb

)′
which is (4.5)2.

5. Some examples
In this section we discuss some explicit examples arising from the applications.

(a) The Euler elastica
As recalled in the introduction, the study of the Euler elastica functional∫L

0
κ2 ds

has been widely developed. We refer here to the papers by Langer and Singer [17–19]. First of
all, they proved that the global (and local) minimizer among all W 2,2 curves C1-periodics is
essentially unique, and it is represented by any circumference with length L. Concerning critical
points, there is essentially another planar closed andC1-periodic critical point, which is known in
literature as lemniscate (an eight-figure). Moving to spatial curves, a great variety of space critical
points in the same class of admissible curves can be obtained and all of them lie on an embedded
torus of revolution. Finally, many other critical points can be found if we do not assume the
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closedness of the curve (for a complete characterization at least in the plane, we refer to [19]).
Langer and Singer in [18], also prove that the general equations of elasticae are given by{

2κ′′ − 2κτ2 + κ3 − c1κ= 0

κ2τ = c2
(5.1)

where c1, c2 are constants (the so-called free elasticae, that is critical curves without length
constraints, are obtained for c1 = 0). We remark again that curves arising from the integration
of (5.1) do not need to be closed curve.

Following our notation, we get the Euler functional choosing f(s, a, b) = a2. In this case
condition (3.3) is not satisfied so we are not able to apply Theorem 3.1 in order to get minimizers,
at least for space curves. Nevertheless, conditions (4.1) and (4.2) are satisfied, so that, we are able
to apply Theorem 4.2, since we know, using Langer and Singer [17–19], that at least a minimizer
exists. We point out that Langer and Singer [18] obtained (5.1) in the smooth case using essentially
the Serret-Frenet moving frame. Our approach does not require regularity a priori but we have
to eliminate the Lagrange multipliers from the system (4.3), and this is not obvious because the
elimination of the Lagrange multipliers from (4.3) needs to work at points where κ 6= 0. For all of
these reasons, even if we obtain the same conclusions, we prefer to give the complete proof of the
next result.

Theorem 5.1. Let E : W →R ∪ {+∞} be given by

E(t|n|b) =

∫L
0
κ2 ds.

Let (t|n|b)∈W be a minimizer of E . Let S = {s∈ [0, L] : κ(s) = 0}. Then S is a set of zero measure.
Moreover, κ∈W 2,2(0, L), τ ∈W 1,2(0, L) and there exist c1, c2 ∈R such that{

2κ′′ − 2κτ2 + κ3 − c1κ= 0

κ2τ = c2
(5.2)

everywhere on [0, L].

Proof. Since f(s, a, b) = a2 we get fa = 2a and fb = 0. We are in position to apply Theorem 4.2. The
system (4.3) reads as 

µκ= 0

λ · n=−2κ′ − µτ
λ · b=−2κτ + µ′

(5.3)

for some µ∈W 1,2(0, L) and λ∈R3. In particular, (5.3)2 gives κ∈W 1,2(0, L). Now we divide the
proof into some steps.

Step 1. Since (5.3)1 we get µ|[0,L]\S
= 0. Hence, from (5.3)3 we obtain τ|[0,L]\S

∈W 1,2([0, L] \ S).

Step 2. We prove now that κ∈W 2,2(0, L). Since κ is continuous, S is relatively closed in [0, L].
Hence, we can write it as

S =

+∞⋃
h=0

Sh

where Sh are pairwise disjoint and Sh is either a singleton or a closed interval with non-empty
interior. On each Sh = [ah, bh] with ah < bh we change τ as follows:

τ̄(s) = τ(a−h ) +
τ(b+h )− τ(a−h )

bh − ah
(s− ah), ∀s∈ [ah, bh],

where τ(a−h ), τ(b+h ) are the left and right traces of τ respectively at ah and bh, with the
convention τ(0−) = τ(L+) = 0. By construction, we obtain τ̄ ∈W 1,2(0, L) and τ̄ = τ on [0, L] \ S.
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Let (t̄|n̄|b̄)∈W 1,2((0, L);R3) be the unique solution of the Cauchy problem

t̄′ = κn̄

n̄′ =−κt̄+ τ̄ b̄

b̄′ =−τ̄ n̄
t̄(0) = t(0)

n̄(0) =n(0)

b̄(0) = b(0).

It is easy to see that (t̄|n̄|b̄)∈W (notice that actually t̄= t everywhere). Moreover, E(t̄|n̄|b̄) =

E(t|n|b), hence (t̄|n̄|b̄) is still a minimizer of E . Applying Theorem 4.2 again, we deduce that
µ̄κ= 0

λ̄ · n̄=−2κ′ − µ̄τ̄
λ̄ · b̄=−2κτ̄ + µ̄′

(5.4)

for some µ̄∈W 1,2(0, L) and λ̄∈R3. As a consequence of (5.4)2 we obtain κ∈W 2,2(0, L).

Step 3. We claim that for any relatively open interval I ⊆ ([0, L] \ S) there exists cI ∈R such that

2κ′′ − 2κτ2 + κ3 − cIκ= 0, on I . (5.5)

First, on I the system (5.3) reduces to {
λ · n=−2κ′

λ · b=−2κτ.
(5.6)

Differentiating (5.6)1 we get λ · n′ =−2κ′′. Since n′ =−κt+ τbwe obtain

2κ′′ =−κλ · t+ τλ · b∈W 1,2(I),

from which κ∈W 3,2(I). In particular, κ∈C2(I). Combining n′ =−κt+ τb with (5.6)2 we
deduce

2κ′′

κ
− 2τ2 =λ · t, on I . (5.7)

As a consequence we obtain

(
2κ′′

κ
− 2τ2 + κ2

)′
=λ · t′ + 2κκ′ = κλ · n+ 2κκ′ = 0

where the last equality follows from (5.6)1. Then, since I is an interval, there exists cI ∈R such
that

2κ′′

κ
− 2τ2 + κ2 = cI , on I,

which proves the claim.

Step 4. We prove that the measure of S is zero. First of all, it cannot be κ= 0 everywhere, because
of the constraint (2.2). In order to see that the measure of S is zero it is sufficient to show that in
the decomposition of {Sh}h∈N there is no Sh with non-empty interior. Assume by contradiction
that there exists Sh = [ah, bh] with ah < bh. Then, either ah ∈ (0, L) or bh ∈ (0, L). Without loss of
generality we can assume bh ∈ (0, L) (the argument for ah is the same). Then κ 6= 0 on (bh, bh + δ)
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for some δ > 0, so that κ∈C2([bh, bh + δ]) and using (5.5) we can say that

2κ′′ − 2κτ2 + κ3 − chκ= 0, on (bh, bh + δ)

for some ch ∈R. As a consequence we deduce that κ is a solution of the Cauchy problem
2κ′′ − 2κτ2 + κ3 − chκ= 0, on (bh, bh + δ)

κ(bh) = 0

κ′(bh) = 0

which means that κ= 0 on (bh, bh + δ), since the previous boundary values problem has a unique
solution, and this is a contradiction.

Step 5. We can now conclude the proof. Since S has zero measure, we immediately deduce that
τ ∈W 1,2(0, L). It remains to show (5.2). Observe that the function

2κ′′

κ
− 2τ2 + κ2

is piecewise constant and it coincides with λ · t a.e. t∈ [0, L], As a consequence,

2κ′′

κ
− 2τ2 + κ2

must be constant, which ends the proof.

(i) Numerical results

In this paragraph we show some numerical results obtained using the software Mathematica
(Wolfram Inc., version 12) concerning solutions of the system (5.2). We do separate analysis for
planar curves and for space curves.

Planar curves. In this case c2 = 0. First of all, we pass to the general Cauchy problem for κ, namely
2κ3κ′′ + κ6 − c1κ4 = 0,

κ(0) = κ0,

κ′(0) = κ1.

(5.8)

The idea is to integrate numerically the system (5.8) and then try to reconstruct the shape of the
curve. Without loss of generality we can look for the curve r : [0, L]→R2

r(s) =

∫s
0
t dr

where the tangent vector t= (t(1), t(2)) solves the system
(t(1))′ =−κt(2)

(t(2))′ = κt(1)

t(1)(0) = 1

t(2)(0) = 0.

(5.9)

In other words, we require the curve to be clamped at the origin which “starts” with the canonical
orthonormal frame. However, we point out that in general it is not necessarily true that r is
admissible: for instance we do not have implemented any closedness of r. From Differential
Geometry, it is known that the necessary and sufficient conditions for a planar curve to be closed



12

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

c1 κ0 κ1 L

Circumference (Fig. 1a) 1.00824 1.01227 0.0003 2π

Lemniscate (Fig. 1b) 0.07911031 0.0442 0.046801 12π

Table 1: Numerical values for the circumference and the lemniscate.

are the following identities

∫L
0

cos

(∫ t
0
κ(s) ds

)
dt=

∫L
0

sin

(∫ t
0
κ(s) ds

)
dt= 0.

We also anticipate the fact that for space curves there are no similar conditions on κ, τ in order to
guarantee that the curve is closed. For details we refer to [21]. Actually, for numerical reasons we
decide to introduce a stop condition in the numeric integration of (5.8)–(5.9): we vary randomly
the constants c1, κ0, κ1 until the inequality

d= |r(L)|+ |t(L)− (1, 0)|< 10−6 (5.10)

is satisfied. Condition (5.10) formally implies that the obtained curve r is almost closed as well as
its tangent vector.

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

(a) Circumference

-6 -4 -2 0 2 4
-6

-4

-2

0

2

4

6

(b) Lemniscate

Figure 1: Closed elasticae: the circumference (A) (the only one stable), and the lemniscate (B)
(unstable, see [19, Ex. 3]).

As expected, in the plane, the only two curves we obtain are the circumference, as the one in
Fig. 1a, and the lemniscate, see Fig. 1b, with the values reported in Table 1. Moreover, not imposing
Eq. (5.10), we obtain the open planar curves of [19]
Space curves. In this case we do not have c2 = 0, so we have to deal with the complete system (5.2).
Again, we can look for the curve r : [0, L]→R3 given by

r(s) =

∫s
0
t dr
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c1 c2 κ0 κ1 L

Fig. 2a 1.25316 3.92702 1.58313 0.528316 16π

Fig. 2b 0.08 5.06 2.53458 4.04 3π

Fig. 2c 2.06465 4.38778 1.51781 1.47094 16π

Fig. 2d 1.62767 4.08942 2.85503 0.669953 30π

Table 2: Numerical values chosen to plot the elasticae in Fig. 2.

where now the tangent vector t is the solution of

t′ = κn,

n′ =−κt+ τb,

b′ =−τn,
t(0) = (1, 0, 0),

n(0) = (0, 1, 0),

b(0) = (0, 0, 1),

To find closed spatial curves, we use the stop condition

d= |r(L)|+ |t(L)− (1, 0, 0)|< 10−6, (5.11)

similar to the one introduced in the plane. The results for closed elasticae are reported in Fig. 2 and
in the corresponding Table 2 the values we used to obtain such a figures. Remarkably, eliminating
Eq. (5.11), we can even obtain open curves.

(b) The model case in the biological applications
One of the most common energies arising from the applications to Biophyiscs [26] takes the form∫L

0

κ2 + τ2

2
ds. (5.12)

Following our notation, let

f(s, a, b) = f(a, b) =
a2 + b2

2
.

It is straightforward to see that f satisfies all the assumptions (3.1)-(3.2)-(3.3)-(4.1)-(4.2) with the
choice p= 2. As a consequence we have existence of minimizers. Of course, since planar curves
have τ = 0 as in the case of the Euler elastica, any circumference of length L is still a minimizer.
Concerning critical points, first of all, we notice that f is smooth and we have fa = a and fb = b.
Then the system (4.3) reads as 

τ ′ = µκ,

λ · n=−κ′ − µτ,
λ · b= µ′.

(5.13)

It is easy to see that the solutions κ, τ of that system are smooth and we can therefore apply
Theorem 4.4. Then, on any interval I where κ 6= 0 we have

τκ′ −
(
τ ′

κ

)′′
+
τ2τ ′

κ
= 0

−κκ′ − ττ ′ =

(
κ′′

κ
+

2τ

κ

(
τ ′

κ

)′
+

(τ ′)2

κ2

)′
.

(5.14)
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(a)
(b)

(c)
(d)

Figure 2: Examples of closed elasticae in the space.

These equations look quite difficult and hold true only when κ 6= 0. The only fact we put in
evidence is that (5.14)2 can be rewritten as

−
(
κ2 + τ2

2

)′
=

(
κ′′

κ
+

2τ

κ

(
τ ′

κ

)′
+

(τ ′)2

κ2

)′
,

that is

κ′′

κ
+

2τ

κ

(
τ ′

κ

)′
+

(τ ′)2

κ2
+
κ2 + τ2

2
= c
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for some constant c. At the end we can reduce the analysis to
τκ′ −

(
τ ′

κ

)′′
+
τ2τ ′

κ
= 0,

κ′′

κ
+

2τ

κ

(
τ ′

κ

)′
+

(τ ′)2

κ2
+
κ2 + τ2

2
= c.

(5.15)

Concerning the numerical analysis we tried to reproduce the same arguments to solve (5.15).
However, we did not succeed in varying randomly the constant c and the initial conditions for
κ, τ , since it is very likely that κ= 0 at some time, thus stopping the numerical procedure.

(c) The Sadowsky energy functional
Following our notation, the Sadowsky energy functional takes the form∫L

0

(κ2 + τ2)2

κ2
ds.

As said in the Introduction, Sadowsky [15,16,22,23] obtained such an energy functional as a
limit of an elastic Möbius which reduces to its centerline. Some authors tried to give a rigorous
justification of such a limit process. We mention only the paper by Freddi et al. [10] (further
references can be found therein), where the authors studied the Γ -limit of the bending energy on
the Möbius strip with respect to a topology that ensures the convergence of the minimizers. In
this way, they obtain as Γ -limit the functional∫L

0
f(κ, τ) ds

where f : R2→R is given by

f(a, b) =


(a2 + b2)2

a2
if |a|> |b|,

4b2 if |a| ≤ |b|.

(5.16)

Such a functional turns out to be the corrected version of the Sadowsky functional. It is easy to
see that f is continuous and convex: in order to see the convexity, we notice that that if f1 : R2 \
{(a, b)∈R2 : a> 0}→R and f2 : R2→R are given by

f1(a, b) =
(a2 + b2)2

a2
, f2(a, b) = 4b2,

then f1, f2 are both of class C1 and convex and∇f1(a, b) =∇f2(a, b) whenever a= |b|> 0. Then,
(3.2) is satisfied. Moreover,

(a2 + b2)2

a2
= a2 + 2b2 +

b4

a2
≥ a2 + 2b2

while if |a| ≤ |b|we get 4b2 ≥ 2b2 + 2a2 ≥ a2 + 2b2. As a consequence,

f(a, b)≥ a2 + 2b2

which shows (3.3) with p= 2. We are therefore in position to apply Theorem 3.1, hence we have
existence of minimizers.

Remark 5.2. The system of critical points for the Sadowsky functional takes a very complicated
form due to the complexity of the energy density Eq. (5.16), hence we are not going to write
explicitly the first-order conditions for minimizers.
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