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Abstract: A higher dimensional generalization of the cross product is associated with an adequate matrix
multiplication. This index-free view allows for a better understanding of the underlying algebraic struc-
tures, among which are generalizations of Grassmann’s, Jacobi’s and Room’s identities. Moreover, such
a view provides a higher dimensional analogue of the decomposition of the vector Laplacian, which itself
gives an explicit index-free Helmholtz decomposition in arbitrary dimensions ≥n 2.
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1 Introduction

The interplay between different differential operators is at the basis not only of pure analysis but also of
many applied mathematical considerations. One possibility is to study, instead of the properties of a linear
homogeneous differential operator with constant coefficients
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approach to look and algebraically operate with the vector differential operator ∇ in a manner of a vector is
also referred to as vector calculus or formal calculations.

An example of such a differential operator is the derivative D itself, but also div, curl, Δ or inc. One of
the most prominent relations in vector calculus is ∇ ≡ζcurl 0 for scalar fields ( )∈

∞ζ C Ωc , ⊆ �Ω 3 open,
which, from an algebraic point of view, reads × =b b 0 for all ∈ �b 3 (where a scalar factor can be and
is omitted).
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In this paper, we take a closer look at a higher dimensional analogue of the curl or rather the underlying
generalized cross product. An extension of the usual cross product of vectors in�3 to vectors in�n depends
on which properties are to be fulfilled. The three basic properties of the vector product are the linearity in
both arguments, that the vector ×a b is perpendicular to both ∈ �a b, 3 (and thus belongs to the same
space) and that its length is the area of the parallelogram spanned by a and b. Gibbs uses these properties
also to define the cross product, see [1, Chapter II]. It turns out that such a vector product exists only in three
and seven dimensions, cf. [2]. However, the seven-dimensional vector product does not satisfy Jacobi’s
identity but rather a generalization of it, namely theMalcev identity, cf. [3, p. 279] and the references at the
end of the section therein. We do not follow these constructions here and instead generalize the cross
product to all dimensions by omitting one of its basic properties. These considerations are usually carried
out using coordinates, i.e., index notations. However, we are concerned with their matrix representation,
which provides a better understanding of the underlying algebraic structures. Such a view has already
proved very useful in extending Korn inequalities for incompatible tensor fields to higher dimensions, cf.
[4], where first results in these matrix representations have been obtained. In the present paper, we catch
up with the underlying algebraic structures, among which are generalizations of Grassmann’s, Jacobi’s and
Room’s identities. Moreover, such a view provides a higher dimensional analogue of the decomposition of
the vector Laplacian which itself gives an explicit index-free Helmholtz decomposition in arbitrary dimen-
sions ≥n 2.

2 Notations

As usual, ⊗. . and ⟨ ⟩.,. denote the dyadic and the scalar product, respectively. We write ⋅. . to highlight the
scalar multiplication of a scalar with a vector or a matrix. The space of symmetric ( )×n n -matrices is
denoted by ( )nSym and the space of skew-symmetric ( )×n n -matrices by ( )so n . We use lower-case Greek
letters to denote scalars, lower-case Latin letters to denote column vectors and upper-case Latin letters to
denote matrices, with the exceptions for the dimensions: if not otherwise stated we have ∈ �n m N, , and

≥n 2. The identity matrix is denoted by In. For the symmetric part, the skew-symmetric part and the
transpose of a matrix P we write Psym , Pskew and PT , respectively.

3 Algebraic view of a generalized cross product

3.1 Inductive introduction

From an algebraic point of view the components of the usual cross product ×a b are of the form −α β α βi j j i

for ≤ < ≤i j1 3 sorted (and multiplied with −1) in such a way that the resulting vector is perpendicular to

both a and b. For a general ∈ �n we have ( )−n n 1
2

combinations of the form −α β α βi j j i with ≤ < ≤i j n1 and
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wherefrom the bilinearity and anti-commutativity follow immediately. We show in Section 3.3 that this
generalized cross product ×n also satisfies the area property:

‖ × ‖ = ‖ ‖ ‖ ‖ − ⟨ ⟩ ∀ ∈ �a b a b a b a b, , .n
n2 2 2 2

Remark 3.1. The anti-commutativity of the (usual or generalized) cross product is a consequence of the area
property. Indeed, let ∈ �n d, , ≥n 2 and × × →� � �: n n d be a bilinear map which satisfies the area
property

‖ × ‖ = ‖ ‖ ‖ ‖ − ⟨ ⟩ ∀ ∈ �a b a b a b a b, , .n2 2 2 2 (3.4)

Then for =a b we obtain:

‖ × ‖ = ‖ ‖ ‖ ‖ − ⟨ ⟩ = ⇒ × = ∀ ∈ �b b b b b b b b b, 0 0 .n2 2 2 2 (3.5)

Linearizing the last equality leads to

( ) ( )= + × + = × + × + × + × ⇔ × = − × ∀ ∈ �a b a b a a a b b a b b a b b a a b0 , .n (3.6)

Furthermore, in case =d n, we call× a vector product to emphasize that the vector ×a b is in the same space
as a and b. In this situation, we can further talk about orthogonality of the vector ×a b to both a and b.
Massey [2] showed that assuming these three properties, i.e., bilinearity, area property and orthogonality,
a vector product exists only in the dimension =n 3 or =n 7. However, there are many cross products, differ-
ent from each other, depending on the properties one requires to hold. In the present paper, we drop the
orthogonality condition since we consider the case ( )

=
−d n n 1

2 and introduce in (3.3) the generalized cross
product by induction over the space dimension n. This is equivalent to the coordinate-wise expression from
(3.1) but allows for a better understanding of the algebraic properties of the generalized cross product ×n.

3.2 Relation to skew-symmetric matrices

To establish the connection of the generalized cross product ×a bn to the entries of ( )⊗a bskew we start
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Thus, the generalized cross product ×a bn can be written as

( ) ( ( ))× = ⊗ − ⊗ = ⋅ ⊗a aa b a b b a a b2 skew ,n n n (3.9a)

or, equivalently,

( )× = ⊗ − ⊗ ∈A �a b a b b a a bis true for all , .n n
n (3.9b)

3.3 Lagrange identity

In three dimensions, Lagrange’s identity reads in terms of the usual cross product and the scalar product

⟨ × × ⟩ = ⟨ ⟩⟨ ⟩ − ⟨ ⟩⟨ ⟩ ∀ ∈ �a b c d a c b d a d b c a b c d, , , , , , , , 3 (3.10)

and for =c a and =d b becomes

‖ × ‖ = ‖ ‖ ‖ ‖ − ⟨ ⟩ ∀ ∈ �a b a b a b a b, , ,2 2 2 2 3 (3.11)

meaning that the length of the vector × ∈ �a b 3 is equal to the area of the parallelogram spanned by the
vectors ∈ �a b, 3.

In higher dimensions, the inductive definition (3.3) can be used to directly deduce an analogue to
Lagrange’s identity, namely:
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so that (3.12) follows by induction over ∈ �n , ≥n 2. Especially, for =c a and =d b we obtain for the
squared norm of the generalized cross product
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meaning that the length of the vector
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�a bn
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2 is equal to the area of the parallelogram spanned by
the vectors ∈ �a b, n.

Two (non-zero) vectors ∈ �a b, n are linearly dependent (and thus parallel) if and only if × =a b 0n .
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3.4 Matrix representation

It is well known that an identification of the usual cross product × with an adequate matrix multiplication
facilitates some of the common proofs in vector algebra and allows one to extend the cross product of
vectors to a cross product of a vector and a matrix, cf. [5–9].

Our next goal is to achieve a similar identification of the generalized cross product ×n with a corre-
sponding matrix multiplication. Indeed, since for a fixed ∈ �a n the operation ×a n. is linear in the second

component there exists a unique matrix denoted by
( )
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Remark 3.2. The entries of the generalized cross product ×a b3 , with ∈ �a b, 3, are permutations (with a
sign) of the entries of the classical cross product ×a b. Remember that the operation ×a . can be identified
with the left multiplication by the following skew-symmetric matrix
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which differs from the expression 〚 〛×a 3 for ( )=a α α α, , T
1 2 3 , cf. (3.16), and also form ( )A a3 which reads
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Thus, in three dimensions, it holds for the usual cross product

( )× = ∀ ∈ �a b a b a bAnti , .3 (3.19)

Also the notations Ta, ( )W a or even [ ]×a are used for ( )aAnti ; however, the latter emphasizes that we deal
with a skew-symmetric matrix. For the analysis and the properties of such matrices we refer to [5–9].

Remark 3.3. Also the seven-dimensional vector product ×a . for ∈ �a 7 (which differs from ×a 7.) can be
represented with a left multiplication by a skew-symmetric matrix from ( )so 7 , see [10–13].

3.5 Scalar triple product

In case of the usual cross product in three dimensions, the scalar triple product remains unchanged under
a circular shift of the three vectors (from the same space):

( ) ( )⟨ × ⟩ = ⟨ ⟩ = −⟨ ⟩ = ⟨ × ⟩ ∀ ∈ �a b c a b c b a c a b c a b c, , Anti Anti , , , , , .3 (3.20)
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three vectors coming from the same vector space but rather instead:
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so that with =c b we have:

( )

⟨〚 〛 ⟩ = ∀ ∈ ∈
×

−

a a � �b b b, 0 , .T n
n

n n 1
2 (3.21b)

Note the slight difference from the case of the usual cross product. The latter can be represented by a left
multiplication with a square skew-symmetric matrix, whereas for the generalized cross product by matrices
of the form (3.15) which are neither square (except the case =n 3) nor skew-symmetric matrices. These
matrices 〚 〛×. n also appear in further identities involving the generalized cross product and are very impor-
tant in the subsequent considerations.

3.6 Grassmann identity

In three dimensions, the usual vector triple product fulfills
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where the relation to scalar products, marked by ∗, is referred to as Grassmann identity.
However, in a generalization of a vector triple product we cannot expect the double appearance of the

generalized cross product but focus on the matrices〚 〛×. n, as in the generalization of the scalar triple. Thus,
as a generalization of Grassmann’s identity we obtain for ∈ �a b c, , n
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It remains to prove the first equality ( )3.23 1. In the dimension =n 2, we have
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Furthermore, with ( ) ( ) ( )= = =a a α b b β c c γ, , , , ,n
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and on the other hand:
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so that ( )3.23 1 follows by induction over ∈ �n , ≥n 2.
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3.7 Jacobi identity

In three dimensions, the usual cross product satisfies Jacobi’s identity:

( ) ( ) ( )× × + × × + × × = ∀ ∈ �a b c b c a c a b a b c0 , , ,3 (3.27)

which follows directly from the usual Grassmann identity (3.22) for the usual vector triple product. Simi-
larly, having established the generalization of Grassmann’s identity involving the generalized cross product
×n in the previous section, we obtain the following generalization of Jacobi’s identity:

( ) ( ) ( )
( )

〚 〛 × + 〚 〛 × + 〚 〛 × = ∀ ∈
× × ×

�a b c b c a c a b a b c0 , ,T
n

T
n

T
n

n3.23
n n n

1 (3.28a)

or, equivalently:

( ) ( ) ( )
( )

× + × + × =A A Ab c a c a b a b c 0.n n n n n n
3.23 4 (3.28b)

Surely, the relation (3.23) can also be used to obtain (3.12).

3.8 Cross product with a matrix

Furthermore, the generalized cross product can be written as

( )× = − × = 〚 − 〛 = 〚 − 〛× ×
a b b a b a a b .n n

T T T
n n

(3.29)

This allows us to define a generalized cross product of a vector ∈ �b n and a matrix ∈
×�P m n from the right

and with a matrix ∈
×�B n m from the left, where ∈ �m , via

( )

× ≔ 〚 − 〛 ∈ -
×

×
−

�P b P b seen as row wise cross productn
T m

n

n n 1
2 (3.30a)

and

( )

× ≔ 〚 〛 ∈ -×
×

−

�b B b B seen as column wise cross product ,n
m

n

n n 1
2 (3.30b)

and they are connected via

( )× = 〚 〛 = − × ∀ ∈ ∈
×

×� �b B B b B b B b, .n
T T T T

n
n m n

n
(3.30c)

So, especially for the identity matrix =P In we obtain

× = 〚 − 〛 × = 〚 〛
× ×I b b b I band .n n
T

n nn n (3.31)

Moreover, for ∈ �a m and ∈ �b c, n it follows

( ) ( ) ( ) ( )⊗ × = 〚 − 〛 = 〚 − 〛 = − × = ⊗ ×
× ×a b c ab c a c b a c b a b c ,n

T T T
n

T
nn n (3.32a)

and especially for =c b:

( )⊗ × = ∈ ∈� �a b b a b0 for all and all .n
m n (3.32b)

As a consequence, we obtain

( ) ( ) ( )

( ) ( ( ))

( )

( ) ( )

⊗ × = ⋅ ⊗ × = − ⋅ ⊗ ×

= ⊗ × = ⋅ ⊗ ⊗ ∈a �

b a b a b b a b b

b a b b a b a b

2 sym 2 skew

2 skew for all , .
n n n

n n
n

3.32b

3.32a 3.9
(3.32c)

1336  Peter Lewintan



3.9 Another vector triple

Already in the scalar triple product we come across the expression 〚 〛 ∈
×

a �b T n
n

. Hence, we may also

consider the following vector triple product for
( )

∈
−

a �
n n 1

2 and ∈ �b c, n:

( ) ( )
( )

〚 〛 × = 〚〚 〛 〛 = − × 〚 〛 = −〚 〛 〚 〛 = 〚 〛 × ∈
× × × × × × ×

−

a a a a a �b c b c c b c b c b .T
n

T
n

T T
nn n n n n n n

n n 1
2 (3.33)

Again, the corresponding relations to (3.23) and (3.33) for the usual cross product coincide, whereas the
situation is different for the generalized cross product due to the non-symmetry of the matrices 〚 〛×. n.

The inductive view ( )3.15 1 on the appearing matrix in (3.33) shows for all ∈ �a b, n:

⎛

⎝
⎜

⎞

⎠
⎟

〚 〛 × = 〚 〛 〚− 〛 =

=

〚 〛 × · 〚 〛

· 〚 〛 − ⊗ − ·

∈

× × ×

× − ×

× −

×− −

−

( − ) ( − )

�

a b a b

a b β a

α b a b α β I
,

n
T

n n

n
T

n n n

1

1

n n n

n n

n

n n n n1 1

1

1
2

1
2

(3.34)

and especially for =a b:

⎛

⎝

( ) ⎞

⎠
〚 〛 × = −〚 〛 〚 〛 ∈

−

× × ×
b b b b n nSym 1

2
.n

T
n n n

(3.35)

Moreover, we may also consider the following matrix multiplication:

( )

〚 〛 ∈ ∈×
× ×

−

P P� �b form n m
n

n n 1
2 (3.36)

and, like in (3.30), related by transposition also ( )〚 〛
×

b .T
n

for an ( )

( )×
− mn n 1

2 -matrix.

3.10 Room identity

Surely, the considerations in the previous subsections were inspired by the corresponding relations known
for the usual cross product. So, from the usual Grassmann identity (3.22) one can deduce the usual Jacobi
(3.27) and Lagrange (3.10) identities. Moreover, the usual Grassmann identity (3.22) for the vector triple in
three dimensions allows also to conclude that

( ) ( ) ( )= × = ⊗ − ⟨ ⟩⋅ ∀ ∈ �a b a b b a a b I a bAnti Anti Anti , , .3
3 (3.37)

This algebraic relation is already contained in [5, p. 691 (ii)]. For this reason, let us call it Room identity.
The relation (3.37) turned out to be very important also from an application point of view, cf. [9,14] and
references therein.

Returning to the n-dimensional case, we have for arbitrary ∈ �a b, n:

( ) ( )
( )

〚 〛 〚 〛 = 〚 〛 × = ⟨ ⟩⋅ − ⊗ ∀ ∈
× × ×

�a b x a b x b a I b a x x, ,T T
n n

n3.23
n n n

(3.38)

so that as an analogue to Room’s identity it follows

〚 〛 〚 〛 = ⟨ ⟩⋅ − ⊗ ∈ ∀ ∈
× ×

×� �a b b a I b a a b, , ,T
n

n n n
n n (3.39)

and especially for =a b:

( )〚 〛 〚 〛 = ‖ ‖ ⋅ − ⊗ ∈
× ×b b b I b b nSym .T

n
2

n n (3.40)

Note that the minus sign is missing in the generalized Room identity (3.39) due to the lack of skew-
symmetry of the matrix 〚 〛

×
a T

n
.

Interchanging the roles of a and b in (3.39) we further deduce that

( )
( )

〚 〛 〚 〛 − 〚 〛 〚 〛 = ⊗ − ⊗ = ×
× × × × Aa b b a a b b a a b .T T

n n
3.9

n n n n
(3.41)
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Since ( )⊗ = ⟨ ⟩a b a btr , , the expression (3.39) shows that the entries of 〚 〛 〚 〛
× ×a bT

n n are linear combinations
of the entries of the dyadic product ⊗a b. Also, the converse holds true:

⊗ =

〚 〛 〚 〛

−

⋅ − 〚 〛 〚 〛
× ×

× ×b a
a b

n
I a b

1
,

T

n
Tn n

n n
(3.42)

where we leave it as a short exercise for the reader to verify (e.g., by induction) that

( ) ( )〚 〛 〚 〛 = ⟨〚 〛 〚 〛 ⟩ = − ⟨ ⟩
× × × ×a b a b n a btr , 1 , .T

n n n n (3.43)

Recall that the associated matrix ( )Anti . with the usual cross product × in �3 is a (skew-symmetric) square
matrix, while the associated matrix〚 〛×. n with the generalized cross product×n is an

( )

( )×
− nn n 1

2 -matrix and

therefore is a square matrix only in the case of =n 3. Hence, despite the situation in Room’s identity (3.37)
we may also interchange the matrices in its n-dimensional analogue (3.39), i.e., consider the expression
in (3.34).

Returning to the usual Room identity we have

( ) ( ) ( ( ) )× = ⊗ ⊗ = × ∀ ∈ �a b L a b a b L a b a bAnti and Anti , ,3 (3.44a)

denoting by ( )L . a corresponding linear operator with constant coefficients, not necessarily the same in any
two places here and in the following.

On one hand, we associate with the matrix ( )Anti . a representation of the usual cross product. Room’s
identity can be generalized to higher dimensions in three different ways. We have already seen in (3.39) and
(3.42) an extension to:

( ) ( )〚 〛 〚 〛 = ⊗ ⊗ = 〚 〛 〚 〛 ∀ ∈
× × × × �a b L a b a b L a b a band , .T T n

n n n n (3.44b)

However, a similar result to (3.44a) also holds true for the generalized cross product of the matrix coming
from the matrix representation of the generalized cross product with a vector, see [4]:

( ) ( )〚 〛 × = ⊗ ∀ ∈ ≥ ⊗ = 〚 〛 × ∀ ∈ ≥× ×� �a b L a b a b n a b L a b a b n, , 2 and , , 3.n
n

n
n

n n (3.44c)

These relations also apply to the case of × 〚 〛 = 〚 〛 〚 〛 = −〚 〛 ×
× × × ×a b a b a bn
T T

nn n n n , which for =n 2 is only
a scalar, so that the last relation in (3.44c) is only valid for ≥n 3.

On the other hand, Room’s identity in three dimensions can also be seen as an expression for the cross
product of a skew-symmetric matrix with a vector:

( ( ) ) ( ) ( ) ( )× = ⊗ ⊗ = × ∀ ∈ ∈so �A b L A b A b L A b A baxl and axl 3 , ,3 (3.44a’)

where ( ) →so �axl : 3 3 denotes the inverse of ( )Anti . . It is interesting that a similar result holds true for
( )×n n -skew symmetric matrices in all dimensions ≥n 2, see [4]:

( ( ) ) ( ) ( ) ( )× = ⊗ ⊗ = × ∀ ∈ ∈a a so �A b L A b A b L A b A n band , ,n n n n
n (3.44d)

where (3.44c)1 and (3.44d)1 follow directly from the definition of the generalized cross product of a matrix
and a vector but for (3.44c)2 and (3.44d)2 inductive proofs are needed, cf. [4].

Remark 3.4. We have seen that Room’s identity (3.37) admits three different generalizations to higher
dimensions (3.44b), (3.44c), (3.44d) which coincide in three dimensions when considering the usual cross
product and the associated matrix with it, since the latter is a skew-symmetric (square) matrix. However,
Grassmann’s and Jacobi’s identities generalize only in the ways presented in (3.23) and (3.28). Indeed, these
relations are comparable to the situation in three dimensions when considering the usual triple vector
product ( ) ( )( )× × = ×a b c a b cAnti since ( ) ( )= −a aAnti AntiT .
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3.11 Simultaneous cross product

Of special interest is a simultaneous cross product of a square matrix ∈
×�P n n and a vector ∈ �b n from

both sides:

(( ) )
( ) ( ) ( )

× × = 〚 〛 〚 − 〛 = − × × ∈× ×

×
− −

�b P b b P b P b b ,n n
T

n
T

n
T3.30c

n n

n n n n1
2

1
2 (3.45)

where, due to the associativity of matrix multiplication, we can omit parenthesis. Since

( )
( )

× × = −〚 〛 〚 − 〛 = × ×× ×
b P b b P b b P bn n

T T T
n

T
n

3.45
n n

(3.46a)

it follows for ( )∈S nSym and ( )∈ soA n immediately:

⎛

⎝

( ) ⎞

⎠

⎛

⎝

( ) ⎞

⎠
× × ∈

−
× × ∈

−
sob S b n n b A b n nSym 1

2
and 1

2n n n n (3.46b)

and for all ∈
×�P n n:

( ) ( )× × = × × × × = × ×b P b b P b b P b b P bsym sym , skew skew .n n n n n n n n (3.46c)

For =P In the identity matrix we obtain

⎛

⎝

( ) ⎞

⎠

( )
× × = 〚 〛 〚 − 〛 = 〚 〛 × ∈

−

× × ×b I b b b b b n nSym 1
2

.n n n
T

n
3.35

n n n (3.47)

Moreover, for ∈ �a b c, , n it follows that

( ) ( ) ( )
( )

× ⊗ × = × ⊗ ×b a c b b a c b ,n n n n
3.32a (3.48a)

and especially for =c b that

( ) ( )

( )

( )

× ⊗ × = × ⊗ ×

= × ⊗ ×

= × ⊗ × =

b a b b b b a b
b a b b
b a b b

sym
skew 0.

n n n n

n n

n n

(3.48b)

Furthermore, for a square matrix
( ) ( )

∈
×

− −

P �
n n n n1

2
1

2 and a vector ∈ �b n we obtain

〚 〛 〚 〛 ∈
× ×

×P �b b ,T n n
n n (3.49)

which has comparable properties to the simultaneous cross product above, for instance:

( )〚 〛 〚 〛 = 〚 〛 〚 〛
× × × ×P Pb b b b ,T T T T

n n n n (3.50a)

which gives:

( )〚 〛 〚 〛 = 〚 〛 〚 〛
× × × ×P Pb b b bsym sym ,T T

n n n n (3.50b)

as well as

( )〚 〛 〚 〛 = 〚 〛 〚 〛
× × × ×P Pb b b bskew skew .T T

n n n n (3.50c)

And for the identity matrix ( )= −P In n 1
2

we obtain:

( )
( )〚 〛 〚 〛 = 〚 〛 〚 〛 = ‖ ‖ ⋅ − ⊗

× × × ×
−b I b b b b I b b.T T

n
3.40 2

n
n n n n n1

2
(3.51)

Again, the corresponding expressions to (3.45) and (3.49) coming from the usual cross product in three
dimensions just coincide:

( ) ( )× × = ∈ ∈ ∈
× ×� � �b P b b P b b PAnti Anti for , .3 3 3 3 3 (3.52)
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4 Differential operators

Let us now come back to the interplay between a linear homogeneous differential operator with constant
coefficients and its symbol, thus replacing b by the vector differential operator ∇ in the algebraic relation
presented in the previous sections. For that purpose, let ⊆ �Ω n be open, ≥n 2 and ∈ �n m, . As usual,
the derivative and the divergence of a vector field rely on the dyadic product and the scalar product,
respectively:

( ) ( )

( ) ( ) ( )

≔ ⊗ ∇ ∈ ∈

≔ ⟨ ∇⟩ = ∇ = ∈ ∈

∞ × ∞

∞ ∞

� �

� �

a a C a C
a a a a C a C

D Ω, for Ω, ,
div , tr D Ω, for Ω, ,

c
m n

c
m

T
c c

n (4.1)

where the latter can be generalized to a matrix divergence in a row-wise way:

( ) ( )≔ ∇ ∈ ∈
∞ ∞ ×� �P P C P Cdiv Ω, for Ω, .c

m
c

m n (4.2)

In three dimensions, the usual curl is seen as

( ) ( ) ( ) ( )≔ × −∇ = ∇ × = ∇ = ⋅ ∈ =
∞ �a a a a a a C ncurl Anti 2 axl skewD for Ω, , 3.c

3 (4.3)

Similarly, in arbitrary dimension ≥n 2 the generalized curl is related to the generalized cross product via

( )

( ) ( ) ( )
( ) ( )

≔ × −∇ = ∇ × = 〚∇〛

= ⋅ ∈ ∈

×

∞ ∞
−

a � �

a a a a

a C a C

curl

2 skewD Ω, for Ω, ,

n n n

n c c
n3.9

n

n n 1
2

(4.4)

where the latter expression is usually considered in index notation to introduce the generalized curl.
Furthermore, we consider the new differential operation

( ) ( )
( )

〚∇〛 ∈ ∈
×

∞ ∞
−

a a� �C CΩ, for Ω, ,T
c

n
cn

n n 1
2 (4.5)

which differs from the usual curl and from ( )− acurl n n 1
2

also in the three-dimensional case:

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=

∂ − ∂

∂ − ∂

∂ − ∂

=

∂ − ∂

∂ − ∂

∂ − ∂

〚∇〛 =

−∂ − ∂

∂ − ∂

∂ + ∂

×

α
α
α

α α
α α
α α

α
α
α

α α
α α
α α

α
α
α

α α
α α
α α

curl , curl , .T
1
2
3

2 3 3 2

3 1 1 3

1 2 2 1

3

1
2
3

1 2 2 1

1 3 3 1

2 3 3 2

1
2
3

2 1 3 2

1 1 3 3

1 2 2 3
3

(4.6)

To the best of our knowledge, the operator ( ) ( )
( )

〚∇〛 →
×

∞ ∞
−

� �C C: Ω, Ω,T
c c

n
n

n n 1
2 has not received any atten-

tion in the literature so far, not even in index notation. However, this differential operator plays the
counterpart in the integration by parts formula for the generalized curln, see (4.31a) below. This adjoint
differential operator appears here because the matrix associated with the generalized cross product has no
symmetry.

Furthermore, it is the matrix representations of the cross product which allow us to introduce also
a row-wise generalized matrix curl operator:

( ) ( )
( )

≔ × −∇ = 〚∇〛 ∈
×

∞ ×�P P P P Ccurl for Ω, ,n n
T

c
m n3.30a

n
(4.7)

which is connected to the column-wise differential operation:

[ ] ( )
( )

∇ × ≔ 〚∇〛 = ∈×

∞ ×�B B B B Ccurl for Ω, ,n n
T T

c
n m3.30c

n
(4.8)

and like in the three dimensional setting can be referred to as curln
T .

Moreover, the matrix representation of the curl operation offers also a further differential operator

( )〚∇〛×. n for
( )

( )×
−m n n 1

2 -matrix fields:

( ) ( )
( )

〚∇〛 ∈ ∈×

∞ × ∞ ×
−

P P� �C CΩ, for Ω, ,c
m n

c
m

n

n n 1
2 (4.9)

i.e., the row-wise differentiation from (4.5), and again related by transposition also ( )〚∇〛
×

.T
n

for ( )

( )×
− mn n 1

2
-matrix fields.
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Surely, it follows from (3.32b):

( ) ( )∇ ≡ ∈
∞ �α α Ccurl 0 for Ω, ,n c (4.10a)

or even

( ) ( )≡ ∈
∞ �a a Ccurl D 0 for Ω, ,n c

m (4.10b)

and from (3.32c):

( ) ( ) ( )

[ ] [ ( )] ( )

= − ⋅ = ⋅

= = ⋅ ∈
∞a �

a a a
a a a C

curl D 2 curl symD 2 curl skewD
D curl 2 D skewD for Ω, .

n
T

n n

n
T

n
T

c
n (4.11)

And, as analogue to the usual ∘ ≡div curl 0, we have in n-dimensions:

( )
( ) ( )

〚∇〛 ≡ ∈
×

∞
−

a a �Cdiv 0 for Ω, .T
c

3.21b
n

n n 1
2 (4.12)

We recall the following definition.

Definition 4.1. Let ⊆ �Ω n be open. A linear homogeneous differential operator with constant coefficients
( ) ( )→

∞ ∞� �� C C: Ω, Ω,c
m

c
N is said to be elliptic if its symbol ( ) ( )∈� � �b Lin ,m N is injective for all

{ }∈ �b \ 0n .

It follows from × =b b 0 for ∈ �b 3 that the usual curl operator is not elliptic. Similarly, also the generalized
curln is not elliptic.

Since the kernel of ⎜ ⎟
⎛

⎝

⎞

⎠

−

→� �
β
β

:2

1

2 consists only of 0 for all ⎜ ⎟
⎛

⎝

⎞

⎠

{ }∈ �
β
β

\ 01

2

2 , the operator〚∇〛
×

T
2
is elliptic.

To see that 〚∇〛
×

T
n
is not elliptic for all ≥n 3 we consider

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

− =

− −

− − =

×













β
β
β

β
β
β

β β
β β

β β

β
β
β

0
0

0
0,

T
1

2

3

3

2

1

2 3

1 3

1 2

3

2

1
3

(4.13)

which gives the non-ellipticity of〚∇〛
×

T
3
and the non-ellipticity in the higher dimensional cases follows from

the inductive structure.

4.1 Nye formulas

Denoting by curl the matrix curl operator related to the usual curl for vector fields in �3, Room’s identity
(3.44a) becomes after interchanging b by ∇:

( ( )) ( ) ( ( )) ( )= = ∈
∞ �a L a a L a a Ccurl Anti D and D curlAnti for Ω, ,c

3 (4.14a)

where ( ) ⊆ �Ω open 3 for a moment. More precisely, they read

( ( )) ( )= ⋅ −a a I acurl Anti div D T
3 (4.14b)

and

( ( ))
( ( ))= ⋅ −a a I aD tr curlAnti

2
curlAnti T

3 (4.14c)

and are better known as Nye formulas [15, equation (7)]. Surely, ( )a4.14 1 is not surprising at all, but ( )a4.14 2

implies that the entries of the derivative of a skew-symmetric matrix field are linear combinations of the
entries of the matrix curl:

( ) ( ( ))= ∈
∞ soA L A A CD curl for Ω, 3 .c (4.14d)
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Returning to the higher dimensional case we conclude, from (3.42) or (3.44b), that

( ) ( )= 〚 〛 〚∇〛 ∈
× ×

∞ �a L a a CD for Ω, ,T
c

n
n n (4.15)

and from (3.44c)

( ) ( )= 〚 〛 ∈ ≥×

∞ �a L a a C nD curl for Ω, , 3.n c
n

n (4.16)

Note, however, that the latter expression is (in general) not related to acurln . Finally, from (3.44d) we
deduce that

( ) ( ) ( ( ))= ∈
∞a soA L A A C nD curl for Ω, ,n n c (4.17)

which implies (4.14d) in all dimensions ≥n 2:

( ) ( ( ))= ∈
∞ soA L A A C nD curl for Ω, ,n c (4.18)

a relation that is usually derived in index notations.

4.2 Incompatibility operator

In three dimensions, the incompatibility inc is usually defined via

[( ) ] ( )≔ = −∇ × × ∇ ∈ =
∞ ×�P P P P C ninc curl curl for Ω, , 3.T T
c

3 3 (4.19)

In higher dimensions, for ( )∈
∞ ×�P C Ω,c

n n we consider the generalized incompatibility operator (where for
simplicity we drop the transposition and the minus sign) given by:

≔ ∇ × × ∇ = −〚∇〛 〚∇〛× ×
P P Pincn n n

T
n n

(4.20)

[ (( ) )]
( ) ( ) ( )

( )= − ∈
∞ ×

− −

�P Ccurl curl Ω, .n n
T T

c
3.45 n n n n1

2
1

2 (4.21)

It possesses the properties known from the usual incompatibility operator in three dimensions, it follows
namely from (3.46c) that

= =P P P Pinc inc inc incsym sym and skew skewn n n n (4.22)

and from (3.48) for ( )∈
∞ �a C Ω,c

n :

( ) ( ) ( )= = = ≡a a a ainc inc inc incD D symD skewD 0.n n
T

n n (4.23)

Furthermore, for matrix fields ( )
( ) ( )

∈
∞ ×

− −

P �C Ω,c
n n n n1

2
1

2 we consider the new differential operation

( )〚∇〛 〚∇〛 ∈
× ×

∞ ×P �C Ω,T
c

n n
n n (4.24)

with similar properties to the generalized incompatibility operator, see Section 3.11. Especially for
( )∈

∞ �ζ C Ω,c we obtain:

( )
( )〚∇〛 ⋅ 〚∇〛 = ⋅ − ∇

× ×
−ζ I ζ I ζΔ D ,T

n
3.51

n
n n n1

2
(4.25)

where we have used that from an algebraic point of view the Laplacian = ‖∇‖Δ 2 behaves like a scalar and
where ∇ζD is the Hessian matrix of ζ . The latter expression reminds of the known identity in =n 3 dimen-
sions for the usual incompatibility operator:

( )⋅ = ⋅ − ∇ζ I ζ I ζinc Δ D .3 3 (4.26)

It is clear from the integration by parts formula for the generalized curl (4.31b), how the operator
( )〚∇〛 〚∇〛

× ×.T
n n plays the counterpart in the corresponding integration by parts formula for the generalized

incompatibility operator. For the corresponding formula in the usual three-dimensional case we refer
to [16].
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Remark 4.2. In three dimensions, the usual incompatibility operator inc occurs, e.g., in the modeling of
dislocated crystals or in the modeling of elastic materials with dislocations, where the notion of incompat-
ibility is at the basis of a new paradigm to describe the inelastic effects, see e.g. [16–21]. The index-free view
presented above should provide a better understanding of such phenomena also in higher dimensions.

4.3 Vector Laplacian

Recalling (3.40) we have for all ∈ �a b, n:

( )
〚 〛 × = 〚 〛 〚 〛 = ‖ ‖ ⋅ − ⋅⟨ ⟩

× × ×b b a b b a b a b b a, .T
n

T 3.40 2
n n n

(4.27)

Thus, interchanging b by ∇ we deduce

( )= ∇ + 〚∇〛 ∈ ≥
×

∞ �a a a a C nΔ div curl for Ω, , 2,T
n c

n
n

(4.28)

which is the generalization of the known expression for the vector Laplacian in =n 3 dimensions:

( )= ∇ − ∈
∞ �a a a a CΔ div curl curl for Ω, ,c

3 (4.29)

and the appearance of the minus sign comes from the fact that the matrix associated with the usual cross
product is a skew-symmetric matrix.

Since the matrix divergence and matrix curl act row-wise, we obtain

( ) ( )= + 〚∇〛 ∈×

∞ ×�P P P P CΔ D div curl for Ω, ,n c
m n

n (4.30)

for ∈ �m n, , ≥n 2, meaning that the entries of the Laplacian of a matrix field P are linear combinations of
the entries of the derivative of the matrix curl and of the entries of the derivative of the matrix divergence.

4.4 Integration by parts

For the sake of completeness, we include the integration by parts formula for the generalized matrix curl:
Let ⊂ �Ω n be an open and bounded set with Lipschitz boundary ∂Ω and outward unit normal ν. For all

( )∈ �a C Ω, n1 and all ( )
( )

∈
−

a �C Ω,1 n n 1
2 , we have

( )∫ ∫⟨ ⟩ + ⟨ 〚∇〛 ⟩ = ⟨ × − ⟩
×

∂

a a aa a x a ν Scurl , , d , d ,n
T

n

Ω Ω
n (4.31a)

so that for matrix fields ( )∈
×�P C Ω, m n1 and ( )

( )

∈
×

−

P �C Ω, m1 n n 1
2 it follows

( )∫ ∫⟨ ⟩ + ⟨ 〚∇〛 ⟩ = ⟨ × − ⟩×

∂

P P PP P x P ν Scurl , , d , d ,n n

Ω Ω

n (4.31b)

and we refer to [4] for a coordinate-free proof for square matrix fields P.

4.5 Helmholtz decomposition

It is well known that any vector field ( )∈
∞ � �a C ,c

n n admits a decomposition into a divergence-free vector
field and a gradient field, i.e., a curln-free part, see e.g. [22] and for a deviation from the Hodge decom-
position see [23]. Let us denote the divergence-free part by adiv and the curln-free by acurln, so having
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= +a a adiv curln. At the end of our vector calculus, we give the explicit index-free expressions of these parts
and provide the Helmholtz decomposition explicitly in all dimensions ≥n 2. More precisely, we show that

( ) ( ) ( )
( )

∫= ∇ ⋅

�

a x G x y a y y, div dx
n

curln

n
(4.32a)

( ) ( ( ))∫= − ⋅ ‖ − ‖
−

�
nω

x y x y a y y1 div d
n

n

n
(4.32b)

and

( ) ( ) ( )
( )

∫= 〚∇ 〛 ⋅
×

�

a x G x y a y y, curl dx
T n

ndiv n
n

(4.32c)

( ( ))∫= 〚 − 〛 ‖ − ‖ ⋅
×

−

�
nω

x y x y a y y1 curl d ,
n

T n
n

n
n (4.32d)

where ( )
( )G x y,n denotes the normalized fundamental Green function for the Laplacian for the entire space

�n and is given by

( )

⎧

⎨

⎪

⎩
⎪ ( )

( )
=

‖ − ‖ =

−

‖ − ‖ ≥
−

G x y π
x y n

n n ω
x y n

,

1
2

ln , for 2,

1
2

, for 3,
n

n

n2
(4.33)

denoting by ωn the volume of the unit ball in�n, see [24, Section 2.4]. Indeed, the first expressions in (4.32)
follow from the decomposition of the vector Laplacian in (4.28) since for ( )∈

∞ � �a C ,c
n n we have

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

= ⋅ = ⋅

= ∇ ⋅ + 〚∇ 〛 ⋅

= ∇ ⟨ ∇ ⟩ + 〚∇ 〛 ∇ ×

= ∇ ⟨ −∇ ⟩ + 〚∇ 〛 × ∇

= ∇ ⋅ + 〚∇ 〛 ⋅

×

×

∗

×

∗∗

×

� �

� �

� �

� �

� �

a x a y G x y y a y G x y y

a y G x y y a y G x y y

a y G x y y G x y a y y

a y G x y y a y G x y y

G x y a y y G x y a y y

Δ , d Δ , d

div , d curl , d

, , d , d

, , d , d

, div d , curl d ,

x
n

x
n

x x
n

x
T

n x
n

x x
n

x
T

x
n

n

x y
n

x
T

n y
n

x
n

x
T n

n

4.28
,

n n

n
n

n

n
n

n

n
n

n

n
n

n

where in ( )∗ we used that ( ) ( )
( ) ( )

∇ = −∇G x y G x y, ,x
n

y
n and in ( )∗∗ the relations

( ) ( )⋅ = ⟨∇ ⟩ + ⋅ = ∇ × + ⋅α a α a α a α a α a α adiv , div and curl curl ,n n n (4.34)

for ( )∈
∞α C Ωc and ( )∈

∞ �a C Ω,c
n . Since we have

( ) ( )
( )

∇ = ‖ − ‖ ⋅ − ≥
−G x y

nω
x y x y n, 1 for 2,x

n

n

n (4.35)

we obtain

( ) ( ) ( ( ))∫= − ⋅ ‖ − ‖
−

�

a x
nω

x y x y a y y1 div d ,
n

n
curln

n
(4.36a)

( ) ( ( ))∫= 〚 − 〛 ‖ − ‖ ⋅
×

−

�

a x
nω

x y x y a y y1 curl d ,
n

T n
ndiv

n
n (4.36b)

and end up with Riesz potential of order 1, see [25, Section V.1].
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4.6 Robbin’s proof of the div-curl lemma in higher dimensions

In this last section, we show that the proof of the div-curl lemma presented in [26] in three dimensions can
be directly adopted to all dimensions using the matrix representation of the generalized cross product
presented above. More precisely, we show

Lemma 4.3. Let ≥n 2, ⊆ �Ω n be open and the sequences of functions → �u v, : Ωk k n satisfy

( )⇀ → ∞�u u in L for kΩ, ,k n2 (4.37a)

( )⇀ → ∞�v v in L for kΩ,k n2 (4.37b)

and

{ } ( )∈

− ��u compact set in Hdiv Ω, ,k
k

n
loc

1 (4.38a)

{ } ( )
( )

∈

−
−

��v compact set in Hcurl Ω, .n
k

k loc
1 n n 1

2 (4.38b)

Then in the sense of distributions we have

⟨ ⟩ → ⟨ ⟩ → ∞u v u v for k, , ,k k (4.39)

i.e., it holds for all ( )∈
∞ �φ C Ω,c :

∫ ∫⟨ ⟩ → ⟨ ⟩ → ∞φ u v x φ u v x for k, d , d .k k

Ω Ω

It is not the most general formulation of the div-curl lemma, and we refer to [27,28] and references therein
for both historical comments and generalizations. The main objective here is to demonstrate that the
algebraic view advocated in the previous sections allows us to carry out the proof from [26] even in all
dimensions without introducing the language of differential geometry. In three dimensions, Robbin’s proof
is based on the decomposition of the vector Laplacian (4.29). In the previous section, we have obtained
the desired decomposition in all dimensions, see (4.28).

Furthermore, multiplying (3.40) with 〚 〛×b n from the left we deduce for all ∈ �b n:

( ) ( )〚 〛 〚 〛 〚 〛 = ‖ ‖ ⋅〚 〛 − 〚 〛 ⊗ = ‖ ‖ ⋅〚 〛 − × ⊗ = ‖ ‖ ⋅〚 〛× × × × × ×

=

×b b b b b b b b b b b b b b bT
n

2 2

0

2
n n n n n n n (4.40)

so that in the language of vector calculus it becomes:

( )〚∇〛 = ∈
×

∞ �a a a Ccurl curl Δcurl for Ω, .n
T

n n c
n

n
(4.41)

Now we have prepared all the relations between differential operators that we need to follow Robbin’s
proof.

Proof of Lemma 4.3. It suffices to assume that the functions uk and vk have compact support, see [26] and
the corresponding relations (4.34). Let us extend uk by zero to the entire space �n and denote by wk the
unique solution in ( )�L Ω, n2 of

=w uΔ .k k (4.42)

Thus, we write

=
−w uΔk k1 (4.43)

and set

= =gψ w wdiv and curl ,k k k
n

k (4.44)
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so that

( ) ( )
∇ + 〚∇〛 = ∇ + 〚∇〛 = =

× ×
gψ w w w udiv curl Δ .k T k k T

n
k k k4.28 4.42

n n
(4.45)

Next, we show that −Δ 1 commutes with the div and curln operators in all dimensions ≥n 2:

( )
( )

( )

= = ∇ + 〚∇〛

= ∇ = =

− − − −

×

−

− − − − −

f f f

f f f

Δ div Δ divΔΔ Δ div div curl Δ

Δ div divΔ Δ ΔdivΔ divΔ

T
n

1 1 1 4.28 1 1

4.12 1 1 1 1 1

n (4.46)

as well as

( )
( )

( ) ( )

= = ∇ + 〚∇〛

= 〚∇〛 = =

− − − −

×

−

−

×

− − − −

f f f

f f f

Δ curl Δ curl ΔΔ Δ curl div curl Δ

Δ curl curl Δ Δ Δcurl Δ curl Δ .

n n n
T

n

n
T

n n n

1 1 1 4.28 1 1

4.10a 1 1 4.41 1 1 1

n

n

(4.47)

And we can conclude as in [26]:

( )∇ = ∇ = ∇ = ∇ → ∇
− − �ψ w u u ψ Ldiv divΔ Δ div in Ω,k k k k n1 1 2 (4.48)

at least for a subsequence by (4.38a). Moreover,

( )〚∇〛 = 〚∇〛 → 〚∇〛
×

−

≕

×

−

×
f

f

   �v v Lcurl Δ Δ curl in Ω,T
n

k T
n

k T n1 1 2
n

k
n n (4.49)

at least for a subsequence by (4.38b). Furthermore,

( ) ( )
( )

→ 〚∇〛 ⇀ 〚∇〛
× ×

−

g g g g� �L Lin Ω, , in Ω,k T k T n2 2n n

n n

1
2 (4.50)

and for ≔
−ϕ vdivΔk k1 :

( ) ( )→ ∇ ⇀ ∇� �ϕ ϕ L ϕ ϕ Lin Ω, , in Ω, .k k n2 2 (4.51)

With the above results the proof completes as in [26]. □

5 Conclusion

In the present paper, we have studied the algebraic structures underlying the generalized cross product, by
relating it to an adequate matrix multiplication. The situation differs from that of the usual cross product in
three dimensions, where a matrix representation results in a skew-symmetric matrix. The lack of symmetry
in the general case leads to the fact that the known algebraic identities have to be adapted in an appropriate
way and that also other combinations must be included. In vector calculus, this led not only to the general-
ized curln but also to a new operator〚∇〛

×

T
n
. The importance of the latter has been highlighted in the previous

sections, in particular by the fact that the image of the 〚∇〛
×

T
n
operator lies in the kernel of the divergence

operator, see (4.12). Here we have thoroughly examined the matrix analysis behind such operations. Such a
view has already proved very useful in extending Korn inequalities for incompatible tensor fields to higher
dimensions, cf. [4], where first results in these matrix representations have been obtained. With the better
understanding presented here, we are now in a position to further extend Korn-Maxwell-Sobolev-type
inequalities. This will be the subject of a forthcoming paper.
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