
AREA MINIMIZING HYPERSURFACES MODULO p: A GEOMETRIC
FREE-BOUNDARY PROBLEM

CAMILLO DE LELLIS, JONAS HIRSCH, ANDREA MARCHESE, LUCA SPOLAOR,
AND SALVATORE STUVARD

Abstract. We consider area minimizing m-dimensional currents mod(p) in complete
C2 Riemannian manifolds Σ of dimension m + 1. For odd moduli we prove that, away
from a closed rectifiable set of codimension 2, the current in question is, locally, the
union of finitely many smooth minimal hypersurfaces coming together at a common C1,α

boundary of dimension m− 1, and the result is optimal. For even p such structure holds
in a neighborhood of any point where at least one tangent cone has (m− 1)-dimensional
spine. These structural results are indeed the byproduct of a theorem that proves (for any
modulus) uniqueness and decay towards such tangent cones. The underlying strategy of
the proof is inspired by the techniques developed by Simon in [14] in a class of multiplicity
one stationary varifolds. The major difficulty in our setting is produced by the fact that
the cones and surfaces under investigation have arbitrary multiplicities ranging from 1 to
bp2c.
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1. Introduction

In this paper we consider currents mod(p) (where p ≥ 2 is a fixed integer), for which we
follow the definitions and the terminology of [6] and [5]. In particular, given an open set
Ω ⊂ Rm+n and a relatively closed subset C ⊂ Ω, we denote by Rm(C) (resp. Fm(C)) the
space of those m-dimensional integer rectifiable currents T ∈ Rm(Ω) (resp. m-dimensional
integral flat chains T ∈ Fm(Ω)) with compact support spt(T ) contained in C. Currents
modulo p in C are defined introducing an appropriate family F p

K of pseudo-distances
on Fm(C), indexed by K ⊂ C compact, see [5, Section 1.1] and Appendix A. Two flat
chains T and S in C are then congruent modulo p if there is a compact set K ⊂ C with
spt(T − S) ⊂ K and such that F p

K(T − S) = 0. The corresponding congruence class
of a fixed flat chain T will be denoted by [T ], whereas if T and S are congruent we will
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write T ≡ Smod(p) or T = Smod(p). The symbols Rp
m(C) and F p

m(C) will denote
the quotient groups obtained from Rm(C) and Fm(C) via the above equivalence relation.
The boundary ∂p is defined accordingly as an operator on equivalence classes. In what
follows the closed set C will always be (a subset of) a sufficiently smooth submanifold,
more precisely a complete submanifold Σ of Rm+n without boundary.

Definition 1.1. Let p ≥ 2, Ω ⊂ Rm+n be open, and let Σ ⊂ Rm+n be a complete
submanifold without boundary of dimension m + n̄ and class C2. We say that an m-
dimensional integer rectifiable current T ∈ Rm(Σ) is area minimizing mod(p) in Σ ∩ Ω
if

M(T ) ≤M(T +W ) for any W ∈ Rm(Ω ∩ Σ) which is a boundary mod(p). (1.1)

Recalling [6], it is possible to introduce a suitable notion of mass and support mod(p)
for classes [T ] mod(p). With such terminology we can talk about mass minimizing classes
[T ], because (1.1) can be rewritten as

Mp([T ]) ≤Mp([T ] + ∂p[Z]) for all [Z] with sptp(Z) ⊂ Ω ∩ Σ. (1.2)

The set of interior regular points, denoted by Reg(T ), is then the relatively open set of
points x ∈ sptp(T ) in a neighborhood of which T can be represented by a regular oriented
submanifold of Σ with constant multiplicity, cf. [5, Definition 1.3]. Its “complement”, i.e.

Sing(T ) := (Ω ∩ sptp(T )) \ (Reg(T ) ∪ sptp(∂T )) , (1.3)

is the set of interior singular points.

1.1. Structural results. In the work [5] (building upon its companion paper [4]) we have
shown that (when Σ is of class C3,α) Sing(T ) can have Hausdorff dimension at most m−1.
For odd p, we have proved the stronger conclusion that Sing(T ) is countably (m − 1)-
rectifiable and has locally finite Hm−1 measure in Ω \ sptp(∂T ). In fact, there exists a
representative, not renamed, such that

• T is a locally integral current in Ω with spt(∂T ) ∩ Ω \ sptp(∂T ) ⊂ Sing(T );
• ∂T = p JSing(T )K in Ω \ sptp(∂T ) for some suitable orientation of Sing(T ). 1

Roughly speaking, at Sing(T ) p sheets of the smooth submanifold Reg(T ) come together:
Sing(T ) is “optimally placed” to minimize the mass of T and the problem of mass mini-
mization mod(p) can be thought of as a “geometric free boundary problem”. A classical
free boundary is however a more regular object, motivating the following definition.

Definition 1.2. Given an open set U we say that Sing(T )∩U is a classical free boundary
if the following holds for some positive α.

(i) Sing(T ) ∩ U is an orientable C1,α (m− 1)-dimensional submanifold of U ∩ Σ;
(ii) Reg(T )∩U consists of N ≤ p connected C1,α orientable submanifolds Γi with C1,α

boundary ∂Γi ∩ U = Sing(T ) ∩ U ;

1Note that, while in [5] we state that the multiplicity is an integer multiple of p, in fact Proposition 3.5
implies that the multiplicity is precisely p, up to choosing the orienting vector field τ appropriately, cf.
Remark 3.6.
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(iii) There are ki ∈ {1, . . . , bp2c} such that, after suitably orienting Sing(T ) ∩ U and Γi,

S :=
∑
i

ki JΓiK ≡ T U mod(p)

∂S U =
∑
i

ki JSing(T ) ∩ UK = p JSing(T ) ∩ UK .

A subset A ⊂ Sing(T ) is locally a classical free boundary if for every q ∈ A there exists
an open neighborhood U 3 q such that Sing(T ) ∩ U is a classical free boundary. We
let S ⊂ Sing(T ) be the smallest (relatively) closed set such that Sing(T ) \ S is locally a
classical free boundary.

Note that in the case of hypersurfaces (n̄ = dim(Σ)−m = 1) the Hopf maximum principle
implies that the sheets Γi “join transversally”, i.e. if νi are tangent fields to Γi orthogonal
to Sing(T ) and pointing “inward”, then {νi(y)} are all distinct at every y ∈ Sing(T ) ∩ U .
Furthermore a simple first variation argument shows the following balancing condition:∑

i

kiνi(y) = 0 . (1.4)

The first main result of the present paper is the following.

Theorem 1.3. Let p be odd and Σ, T , and Ω as in Definition 1.1. If dim(Σ) = dim(T )+1 =
m+1, then Sing(T ) is locally a classical free boundary outside of a relatively closed S which
is countably (m− 2)-rectifiable and has locally finite Hm−2 measure.

Since (a representative mod(p) of) an area-minimizing current T mod(p) induces a stable
varifold outside of sptp(∂T ), under the assumption that dim(Σ) = dim(T )+1 and for every
moduli p, the groundbreaking theorem proved in [19] for stable varifolds of codimension 1
gives the following:

(a) either a nontrivial portion of Sing(T ) is a classical free boundary;
(b) or the Hausdorff dimension of Sing(T ) is at most m− 7.

The latter statement, however, still leaves the possibility that, in case (a), the comple-
ment in Sing(T ) of the classical free boundary is pretty large (in fact for stable varifolds
of dimension m and codimension 1 it is not yet known that the singular set has zero Hm

measure!). After this work was completed, it was pointed out to us by Minter and Wick-
ramasekera that in fact Theorem 1.3 (except for the countable (m − 2) rectifiability and
local finiteness of Hm−2 measure of S), as well as Theorems 1.4 and 1.9 below, follow from
the theory developed in [19] in a relatively direct way, in particular from the decay results
of [19, Section 16], once our Proposition 3.5 below is known. The crucial point is that,
though the statements of the theorems of [19, Section 16] do not literally apply to our
case because the “α-structural hypothesis” is not satisfied (cf. the introduction of [19] for
the precise statement of the latter), a closer inspection of the inductive arguments given
there shows that the α-structural hypothesis is only used in a suitably weaker form that
is implied by our Proposition 3.5. For a more detailed explanation see [9].
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When p is even, the counterpart of Theorem 1.3 is still open. The main stumbling
block is the existence of flat singular points, namely singular points having a tangent cone
supported in an m-dimensional plane (see [5, Section 7] for the terminology). Such points
do exist, as can be shown already for m = 2 and p = 4 using the structure result of White
[16] (cf. [5, Example 1.6]). We can however prove the following.

Theorem 1.4. Let p ≥ 3 be arbitrary (i.e. odd or even) and Σ, T , and Ω as in Definition
1.1. If dim(Σ) = m + 1 then Sing(T ) is a classical free boundary in a neighborhood of
q ∈ Sing(T ) if and only if one tangent cone C to T at q is not flat 2 and it is invariant
with respect to translations along (m− 1) linearly independent directions.

In a series of forthcoming papers we plan to address the remaining issue of bounding
the Hausdorff dimension of the flat singular points in the case of even moduli. In fact we
believe that we will be able to extend the validity of the conclusions of Theorem 1.3 to
even moduli as well. One main obstacle is that uniqueness of the tangent plane at a flat
singular point is not known. A first important step towards such result can be actually
drawn as a consequence of the theory developed in the present paper. We can, indeed,
show the validity of the following corollary.

Corollary 1.5. Let p = 2Q be even and Σ, T , and Ω be as in Definition 1.1. Assume one
tangent cone to T at q is of the form Q JπK for some m-dimensional plane π. Then every
tangent cone to T at q is of the form Q Jπ′K for some m-dimensional plane π′.

For “small moduli” p ∈ {2, 3, 4} much stronger conclusions are available. When p = 2,
it is simple to use classical arguments to rule out the existence of cones C with (m − 1)-
dimensional and (m − 2)-dimensional spines in Rm+1. Thus using [11] and [10], one can
conclude that Sing(T ) is (m − 7)-rectifiable and has locally finite Hm−7 measure. Even
for minimizers of general uniformly elliptic integrands the dimension of Sing(T ) is strictly
less than m− 2, see [12]. In higher codimension there are again no cones C with (m− 1)-
dimensional spine, but there are cones with (m − 2)-dimensional spine, and thus one can
conclude, using [10], that the singular set is (m−2)-rectifiable and has locally finite Hm−2-
measure.

The case p = 3 is special as well as there is (up to rotations) a unique cone mod(3)
with (m− 1)-dimensional spine in Rm+n for any n. Moreover, it follows from [15] that in
codimension 1 there is no cone mod(3) with (m − 2)-dimensional spine. In particular in
that pioneering work Taylor proved that, for p = 3, m = 2 and Σ = R3, the entire singular
set is locally a classical free boundary. On the other hand combining [14], [15], [10], and
classical regularity theory, it is possible to reach the following.

Theorem 1.6. Let p = 3, and let Σ,Ω, and T be as in Definition 1.1. If dim(Σ) =
dim(T ) + 1 = m + 1, then S is empty for m ≤ 2, and it is (m− 3)-rectifiable with locally
finite Hm−3 measure for m ≥ 3. If dim(Σ) ≥ dim(T ) + 2 = m + 2, then S is (m − 2)-
rectifiable and has locally finite Hm−2 measure.

2We say that a tangent cone C to T at q is flat if spt(C) is contained in an m-dimensional linear
subspace of TqΣ. Moreover it is well known that the directions in which the cone is translation-invariant
form a vector space, commonly called the spine of C.
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We do not claim any originality in Theorem 1.6 and the statement above has been
included for completeness, while for the reader’s convenience we include the short argument
in the Appendix; see Appendix G. Finally, for p = 4 (and in codimension 1) [16] shows that
minimizers of uniformly elliptic integrands are represented by immersed manifolds outside
of a closed set of zero Hm−2 measure.

We finally notice that the structure theorems are optimal, in the sense that a simple
modification of a classical example in [15] yields the following

Proposition 1.7. For each p ≥ 3 there is a 2-dimensional integer rectifiable current T
in B2 ⊂ R3 which is an area-minimizing representative mod(p) and whose singular set
consists of a 1-dimensional circle which is a classical free boundary.

1.2. Uniqueness of tangent cones. Both Theorem 1.3 and Theorem 1.4 are in fact
corollaries of the following quantitative uniqueness/decay which holds for all p’s. To sim-
plify our statements, from now on a cone C as in Theorem 1.4 will be said to have an
(m− 1)-dimensional spine and we isolate an assumption which will be recurrent through-
out the paper. For the notation used in the assumption we refer to Section 2, in particular
we will use a second notion of flat distance F̂ p which has important technical advantages
over the original one used by Federer; see Appendix A.

Assumption 1.8. p ∈ N \ {0, 1, 2}, and C0 is an m-dimensional area-minimizing cone
mod(p) in Rm+n with (m− 1)-dimensional spine and supported in an (m+ 1)-dimensional
linear space; see Definition 3.3. Σ, T , and Ω are as in Definition 1.1 with dim(Σ) = m+ 1.
η > 0 and q ∈ sptp(T ) are such that B1(q) ⊂ Ω \ sptp(∂T ) and, setting Tq,1 := (ηq,1)]T for
ηq,λ(q̄) := λ−1(q̄ − q),

spt(C0) ⊂ TqΣ (1.5)

ΘT (q) ≥ p

2
(1.6)

F̂ p
B1

(Tq,1 −C0) ≤ η (1.7)

A + E0 := ‖AΣ‖L∞(B1(q)) +

ˆ
B1

dist2(q̄, spt(C0)) d‖Tq,1‖(q̄) ≤ η . (1.8)

Theorem 1.9 (Uniqueness of cylindrical blow-ups). Let p ∈ N \ {0, 1, 2} and C0 be as
in Assumption 1.8. There are constants η̄ > 0 and C depending only on p,m, n, and C0

with the following property. If T,Σ,Ω and q are as in Assumption 1.8 with η = η̄, then
the tangent cone C to T at q is unique, has (m− 1)-dimensional spine, and moreover the
following decay estimates hold for every radius r ≤ 1

1

rm+2

ˆ
Br(q)

dist2(q̄ − q, spt(C)) d‖T‖(q̄) ≤ C (E0 + A1/2)r
1
2 , (1.9)

F̂ p
B1

((ηq,r)]T −C) ≤ C(E
1/2
0 + A1/4)r

1
4 . (1.10)

In particular F̂ p
B1

(C−C0) ≤ C(E
1/2
0 + A1/4) + η̄.
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Our proof of Theorem 1.9 is influenced by the pioneering work of Simon [14]. In fact
we use many of the tools developed there, but the main difference is that in our case the
current T as well as the cones C and C0 in the above statement come with multiplicities.
This major issue forces us to significantly modify the arguments of [14] by developing
new tools and ideas: for this reason, even in the few points where we could have directly
adapted the proofs of [14], we have opted for giving all the details from scratch, making
the presentation self-contained.

1.3. Plan of the paper and description of the strategy. In Section 2 we introduce
some relevant notation, recall the relation between area minimizing currents mod(p) and
varifolds with bounded mean curvature, deal with some technical assumptions about the
ambient manifold Σ and finally introduce the modified flat distance F̂ p. As already men-
tioned above, the latter has some technical advantages over the flat distance originally
introduced by Federer, as it behaves in a much better way with respect to the operation
of restriction. Section 3 recalls the definition of tangent cones, their spines, and the usual
stratification of spt(T ) according to the maximal dimension of the spines of the tangent
cones at the given point. We then analyze the tangent cones C with (m− 1)-dimensional
spine. Two elementary facts will play an important role. First of all, any such C can be
described as the union of finitely many, but at least 3, half-hyperplanes Hi meeting at a
common (m − 1)-dimensional subspace V and counted with appropriate multiplicities κi.
Secondly, if the modulus p is odd, then the angle formed by a pair (Hi,Hj) of consecutive
half-hyperplanes is necessarily smaller than π − ϑ0(p), where ϑ0(p) is a positive geomet-
ric constant depending only on p. This is effectively the reason why for odd moduli our
conclusion is stronger.

In Section 4 we state the most important result of the paper, namely the Decay Theorem
4.5: the latter states, roughly speaking, that if the current T is sufficiently close, at a given
scale ρ, to a cone C as above around a point q where T has density at least p

2
, at a scale δρ

the distance to a suitable cone C′ with the same structure will decay by a constant factor.
This is the counterpart of a similar decay theorem proved by Simon in his pioneering work
on cylindrical tangent cones [14] of multiplicity 1 under the assumption that the cross
section satisfies a suitable integrability condition, which in turn is a far-reaching general-
ization of the work of Taylor in [15] for the specific case of 2-dimensional area-minimizing
cones mod 3 in R3 with 1-dimensional spines (to our knowledge, the first theorem of the
kind ever proved in the literature for a “singular cone”). While our paper builds on the
foundational work of Simon [14] on cylindrical tangent cones, substantial work is needed
to deal with the fact that the multiplicities are allowed to be larger than 1. In order to
perform our analysis, the theorem is proved for cones C which in turn are sufficiently close
to a fixed reference cone C0. While C0 is assumed to be area-minimizing mod(p), both C
and C′ are not. Theorem 1.9 is then proved by iterating Theorem 4.5 (accomplished in
Section 12), while Theorems 1.3 and 1.4 are a relatively simple consequence of Theorem
1.9, and their proofs are given in Section 13. The latter also contains the proof of Corollary
1.5 and Proposition 1.7. The remaining part of the paper is devoted to prove Theorem 4.5.
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As in many similar regularity proofs (starting from the pioneering work of De Giorgi
[3]) the main argument is a “blow-up” procedure: after scaling, we focus on a sequence of
area-minimizing currents Tk which are close at scale 1 to cones Ck, which in turn converge
to a reference cone C0. Ck and C0 are assumed to share the same spine V . The distance
between Tk and Ck (which is measured in an L2 sense) is the relevant parameter and
will be called excess, cf. Definition 4.3, and denoted by Ek. The distance between Ck

and C0 is not assumed to be related to Ek. The overall idea is then to approximate the
currents Tk and Ck with Lipschitz graphs over the halfplanes H0,i forming C0, consider the

differences between these graphs, renormalize them by E
−1/2
k , and study their limits. These

are proved to be harmonic (an idea that dates back to De Giorgi), while the remarkable
insight of Simon’s work [14] is used to prove suitable estimates (and compatibility relations)
at the spine V . This blow-up procedure is accomplished in Section 10 (cf. Definition 10.1,
Corollary 10.2, and Proposition 10.5), while in Section 11 we use the elementary properties
of harmonic functions to prove a suitable decay of the blow-up limits, cf. Proposition 11.1.
A fundamental realization of Simon is that, in order to accomplish the above program, one
needs to introduce an additional object, for which we propose the term binding function,
and whose role will be explained in a moment.

As already mentioned, the biggest source of complication is that the multiplicities κ0,i of
the halfplanes H0,i forming the support of C0 are typically larger than 1. In particular it
is necessary to use κ0,i (not necessarily all distinct) functions to approximate the portions
of the current Tk which are close to H0,i. Likewise, it is necessary to use κ0,i functions to
describe the portions of Ck which are close to H0,i. Notice that while we know that the
number Ni of distinct functions needed in the representation ranges between 1 and κ0,i and
that the multiplicities of the corresponding graphs are positive integers κi,j which sum up
to κ0,i, any choice of coefficients respecting these conditions is possible, and moreover the
choice might be different for Tk and Ck and depend on k.

In order to produce graphical parametrizations of the current Tk at appropriate scales,
we take advantage of the ε-regularity result proved by White in [17], but we also need to
show that each such parametrization is close to one of the linear functions describing the
cone Ck. This major issue is absent in Simon’s work [14] thanks to the multiplicity one
assumption, and we address it in the three separate Sections 5, 6, and 7. The relevant
“graphical approximation theorems” which follow from this analysis and will be used later
are Theorem 6.3 and Corollary 6.6.

First of all in Section 5 we show how to use [17] to gain a graphical parametrization
of T = Tk, cf. Theorem 5.8. Inspired by [14] we subdivide the support of the current
in regions Q of size comparable to their distance dQ from the spine of C0. For practical
reasons, dQ will range in a dyadic scale and we will put an order relation on all the regions
according to whether a region Q′ is lying “above” the region Q, cf. Definition 5.6 for the
precise definition. We then apply the regularity theorem of [17] on any “good” region, i.e.
any Q with the property that at Q and at every region above Q the current T is sufficiently
close to C = Ck. A simple argument (which uses heavily the fact that the codimension



SINGULARITIES OF AREA MINIMIZING HYPERSURFACES MODULO 2k + 1 9

of T in Σ is 1), allows to “patch” together the graphical approximations across different
regions to achieve p =

∑
i κ0,i “sheets” which approximate efficiently the current.

In section 6 we show that on each region Q each “graphical sheet” of T is close to some
sheet of C, cf. Lemma 6.7: the main ingredient is an appropriate Harnack-type estimate
for solutions of the minimal surface equation, cf. Lemma 6.8. While at this stage the choice
might depend on the region Q, in Section 7 an appropriate selection algorithm allows to
bridge across different regions and show that there is a single sheet of C to which each
single graphical sheet of T is close on every region Q, cf. Lemma 7.1. The latter selection
algorithm will in fact be used again twice later on. An important thing to be noticed is
that, since we use a one-sided excess, there might be some sheets of C which are not close
to any of the graphical sheets of T : this phenomenon, which is not present in [14], is due
to the fact that the multiplicities κ0,i might be higher than 1, and forces us to introduce

an intermediate cone C̃ which consists of those sheets of C which are close to at least one
graphical sheet of T .

We next appropriately modify the key idea of [14] that the remainder in the classical
monotonicity formula can be used to improve the estimates near the spine of the cone C0.
In Section 8 this is first done to estimate the distance of T to suitable shifted copies of
C̃, centered at points of high density of T , cf. Theorem 8.1. It is in this section that we
exploit crucially a reparametrization of the graphical sheets of T over C̃ (cf. Corollary

6.6) and, in particular, the fact that C̃ does not contain any “halfspace of C far from T”.
In Section 9 the mod(p) structure allows us to prove the so-called “no-hole condition”,
namely some point of high density of T must be located close to any point of the spine
of C̃ (which, we recall, is the same as the spine of C and C0), cf. Proposition 9.4. The
latter is combined with Theorem 8.1 to prove that, upon subtracting some suitable piece-
wise constant functions with a particular cylindrical structure (the binding functions of
Definition 9.2), the graphical sheets enjoy good estimates close to the spine, cf. Theorem
9.3. However, again caused by multiplicities κ0,i, unlike in [14], we need to introduce a
suitable correction to the binding functions, and a crucial point is that the size of the latter

can be estimated by the product of the excess E1/2 = E
1/2
k and the distance of C = Ck to C0.

Acknowledgments. C.D.L. acknowledges support from the National Science Foundation
through the grant FRG-1854147. J.H. was partially supported by the German Science
Foundation DFG in context of the Priority Program SPP 2026 “Geometry at Infinity”.
L.S. acknowledges the support of the NSF grant DMS-1951070.

2. Preliminaries

In this section we fix the main notation in use throughout the paper and recall some
preliminary facts

2.1. Notation. The following notation is of standard use in Geometric Measure Theory;
see e.g. [13, 6]. More notation will be introduced in the main text when the need arises.

BR(q) open ball in Rm+n centered at q ∈ Rm+n with radius R > 0;
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Bk
r (x) open disc in Rk (or in a k-dimensional linear subspace of Rm+n) centered at

x ∈ Rk with radius r > 0;

dist(·, E) distance function from a subset E ⊂ Rm+n, defined by dist(q, E) := inf{|q −
q̄| : q̄ ∈ E};

ωk Lebesgue measure of the unit disc in Rk;

|E| Lebesgue measure of E ⊂ Rm+n;

Hk k-dimensional Hausdorff measure in Rm+n;

µ E restriction of the measure µ to the Borel set E: it is defined by (µ E)(F ) :=
µ(E ∩ F ) for all Borel sets F ;

AΣ second fundamental form of a submanifold Σ ⊂ Rm+n of class C2;

Fm, (F p
m) integral flat chains (modulo p) of dimension m;

Rm, (Rp
m) integer rectifiable currents (modulo p) of dimension m; we write T = JM,~τ, θK

if T is defined by integration with respect to ~τ θHm M for a countably m-
rectifiable set M with locally finite Hm measure, oriented by the Borel mea-
surable unit m-vector field ~τ with locally integrable (with respect to Hm M)
multiplicity θ;

k JΓK integer rectifiable current JΓ, ~τ , kK defined by integration over an oriented em-
bedded submanifold Γ ⊂ Rm+n of class C1 (or a rectifiable set with locally
finite Hausdorff measure) with orientation ~τ ;

[T ] mod(p) equivalence class of T ∈ Fm;

M, (Mp) mass functional (mass modulo p);

‖T‖, (‖T‖p) Radon measure associated to a current T (to a class [T ]) with locally finite
mass (mass modulo p); ‖T‖ will also be used for the corresponding integral
varifold if T ∈ Rm;

∂T , ∂p[T ] boundary of the current T , boundary mod(p) of the class [T ]. The latter is
defined by ∂p[T ] := [∂T ];

spt(T ), sptp(T ) support and support mod(p) of T . The latter is defined as the intersection of
the supports of all chains T̃ ∈ [T ];

HV generalized mean curvature of a varifold V with locally bounded first variation;

HT same as H‖T‖ for an integer rectifiable current T whose associated varifold ‖T‖
has locally bounded first variation;

f]T , f]V push-forward of the current T , of the varifold V , through the map f ;

〈T, f, z〉 slice of the current T with the function f at the point z;

ηq,R the map Rm+n → Rm+n defined by ηq,R(q̄) := R−1(q̄ − q);
Θk(µ, q) k-dimensional density of the measure µ at the point q, defined by Θk(µ, q) :=

limr→0+
µ(Br(q))
ωk rk

whenever the limit exists;

ΘT (q) same as Θm(‖T‖, q) if T is an m-current with locally finite mass.

2.2. Varifolds and currents. We follow [5], and recall that an integer rectifiable current
T which is area minimizing mod(p) in Ω∩Σ as in Definition 1.1 is always a representative
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mod(p) in Ω. This means that if T = JM,~τ, θK then

‖T‖ Ω ≤ p

2
Hm (M ∩ Ω) in the sense of Radon measures ,

or equivalently that

|θ| ≤ p

2
Hm-a.e. on M ∩ Ω .

We also recall (cf. [5, Lemma 5.1]) that the varifold ‖T‖ induced by T is stationary in the
open set Ω \ sptp(∂T ) with respect to variations that are tangent to Σ, that is

δ‖T‖(χ) = 0 for all χ ∈ C1
c (Ω \ sptp(∂T ),Rm+n) tangent to Σ , (2.1)

and more generally that

δ‖T‖(χ) = −
ˆ
χ ·HT d‖T‖ for all χ ∈ C1

c (Ω \ sptp(∂T ),Rm+n) (2.2)

with ‖HT‖L∞ ≤ ‖AΣ‖L∞(Ω∩spt(T )).

2.3. The ambient manifold and preliminary reductions. Since the results of this
paper depend on a local analysis of the current T at its interior singular points, we can
always assume to be working in a small ball Bρ(q) centered at some point q ∈ Σ. The
regularity of Σ guarantees that if ρ is sufficiently small then Σ∩Bρ(q) is the graph of a C2

function of m+1 variables, and that Σ ∩Bρ(q) is a Lipschitz deformation retract of Rm+n.
As observed in [5], equivalence classes mod(p) in Σ ∩Bρ(q) do not depend on Σ. In other
words, in these circumstances it does not matter what the shape of Σ is outside of Bρ(q),
and thus we can assume without loss of generality that Σ is in fact an entire graph of m+1
variables. Also, since we are only interested in interior singularities of T , we can assume
that (∂T ) Bρ(q) = 0 mod(p). Furthermore, since the singularities we are interested in
belong to the top-dimensional stratum Sing∗(T ) (see (3.1) below), we can always assume as
a consequence of Proposition 3.5 that the m-dimensional density of T at q is ΘT (q) = p/2,
and in fact ΘT (q) ≥ p/2 is sufficient for our purposes. By a standard blow-up procedure,
we shall work on the rescaling Tq,ρ := (ηq,ρ)]T , and thus also the ambient manifold will
be translated and rescaled to Σq,ρ := ρ−1(Σ − q). Notice that, as ρ → 0+, the manifolds
Σq,ρ approach the tangent space TqΣ: for this reason, we can further assume without loss
of generality that the second fundamental form AΣ of Σ satisfies a global bound of the
form ‖AΣ‖L∞(Σ) =: A ≤ c0 for a (small) dimensional constant c0. We summarize these
reductions in an assumption, which will be taken as a hypothesis in most of our subsequent
statements.

Assumption 2.1. We establish the following set of assumptions.

(Σ) Σ is an entire (m + 1)-dimensional graph of a function Ψ: T0Σ → (T0Σ)⊥ of class
C2, and A := ‖AΣ‖L∞(Σ) ≤ c0.

(T ) T is a current in Rm(Σ) such that:
(T1) T is area minimizing mod(p) in Σ∩Ω for Ω = B2R0(0), where R0 is a geometric

constant;
(T2) 0 ∈ spt(T ) and ΘT (0) ≥ p/2;
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(T3) ∂T = 0 mod(p) in Ω = B2R0(0).

2.4. The modified p-flat distance. Throughout the paper, we will often make use of
a modified version of the flat distance mod(p) which is better behaved than F p with
respect to localization, and thus well suited to applications in regularity statements. More
precisely, if Ω ⊂ Rm+n is open, C ⊂ Ω is a relatively closed subset, T, S ∈ Fm(C), and
W ⊂⊂ Ω is open, we set

F̂ p
W (T − S) := inf

{
‖R‖(W ) + ‖Z‖(W ) : R ∈ Rm(Ω), Z ∈ Rm+1(Ω)

such that T − S = R + ∂Z + pP for some P ∈ Fm(Ω)
}
.

(2.3)

A complete discussion on the necessity of this alternative notion of p-flat distance and
its relationship with the classical F p is contained in Appendix A.

3. Tangent cones

Using the fact that ‖T‖ has locally bounded variation we can define (see [5, Sections 7
and 8]) the set of tangent cones to ‖T‖ at every point q ∈ spt(T ) \ sptp(∂T ), and stratify
spt(T ) \ sptp(∂T ) as

S0 ⊂ S1 ⊂ . . . ⊂ Sm−1 ⊂ Sm = spt(T ) \ sptp(∂T ) ,

according to the maximal dimension of their spines : more precisely, Sk is the subset of
points q ∈ spt(T ) \ sptp(∂T ) with the property that no tangent cone to ‖T‖ at q has spine
of dimension k + 1.

Of particular importance is the set

Sing∗(T ) := Sm−1 \ Sm−2 . (3.1)

All points q ∈ Sing∗(T ) are characterized by the following two properties:

(a) no tangent cone to ‖T‖ at q is supported in an m-dimensional subspace of TqΣ;
(b) there is at least one tangent cone to ‖T‖ at q with spine of dimension m− 1.

The following is an obvious corollary of Theorem 1.9:

Corollary 3.1. Let p ≥ 2, T , Ω, and Σ be as in Definition 1.1 and assume dim(Σ) =
dim(T ) + 1. Then a point q belongs to Sing∗(T ) if and only if (b) above holds.

More importantly, by [17] when p is odd and dim(Σ) = dim(T ) + 1 the existence of one
flat tangent cone at q guarantees the regularity of the point q: in that case we thus have
Reg(T ) = Sm \ Sm−1 and Sing∗(T ) = Sing(T ) \ Sm−2. Moreover [10] implies that Sm−2 is
(m− 2)-rectifiable; in Appendix F we will show that, as a consequence of the theory to be
developed, it also has locally finite Hm−2 measure. Therefore Theorem 1.3 and Theorem
1.4 can be unified in the following single statement

Theorem 3.2. Let p ≥ 2, T , Ω, and Σ be as in Definition 1.1 and assume dim(Σ) =
dim(T ) + 1. Then Sing∗(T ) is locally a classical free boundary.
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An important point in our analysis is that the tangent cones to the varifold ‖T‖ are in
fact induced by corresponding tangent cones to the current T , cf. [5, Theorem 5.2]. We
establish next the following terminology.

Definition 3.3 (Area minimizing cones mod(p)). An integer rectifiable current 3 C will
be called an area minimizing cone mod(p) in Rm+n provided the following conditions hold:

(a) C is locally area minimizing mod(p) in Rm+n, i.e. it is area minimizing mod(p) in
every open set W ⊂⊂ Rm+n;

(b) ∂C = 0 mod(p);
(c) the associated varifold ‖C‖ is a cone, namely (η0,λ)]‖C‖ = ‖C‖ for all λ > 0.

The spine of an area minimizing cone mod(p) is the spine of the associated varifold ‖C‖.

As shown in [5, Corollary 7.3] we then have

Proposition 3.4. Let p, Ω, Σ, and T be as in Definition 1.1. Let q ∈ sptp(T ) \ sptp(∂T )
and consider any sequence rk ↓ 0. Up to subsequences (ηq,rk)]T converges locally to a cone
C which is area minimizing mod(p) and is supported in the plane π := TqΣ. Moreover
(ηq,rk)]‖T‖ converges to ‖C‖ in the sense of varifolds.

The following proposition is the starting point of our analysis and gives the geometric
structure of m-dimensional area minimizing cones mod(p) with spine of dimension m− 1.

Proposition 3.5. Let p ≥ 2 be an integer, and let C be an m-dimensional area minimiz-
ing cone mod(p) in Rm+n with spine V of dimension m − 1. Let V ⊥ be the orthogonal
complement of V . Then:

(i) C = C′ × JV K for some 1-dimensional area minimizing cone mod(p) in V ⊥ (where
we assume to have fixed a choice of a constant orientation ~τ on V );

(ii) There exist N ≥ 3 distinct vectors v(1), . . . , v(N) ∈ Sn ⊂ V ⊥ and N positive
integers κ(1), . . . , κ(N) ∈ [1, p/2) ∩ Z such that

• if `(i) := {t v(i) : t ≥ 0} ⊂ V ⊥ is oriented in such a way that ∂ J`(i)K = − J0K,

then either C′ =
∑N

i=1 κ(i) J`(i)K or C′ = −
∑N

i=1 κ(i) J`(i)K;

•
∑N

i=1 κ(i)v(i) = 0.

(iii)
∑N

i=1 κ(i) = p, and hence the m-dimensional density of C at 0 is ΘC(0) = p
2
.

Moreover, when p is odd, the set of area minimizing cones mod(p) with spine of dimension
m− 1 is compact with respect to the flat topology.

Remark 3.6. As already observed in the Introduction, combined with [5, Corollary 1.10],
Proposition 3.5 allows to conclude that when p is odd the multiplicity of ∂T and Sing(T )
is precisely p, up to a suitable choice of the orientation of the rectifiable set Sing(T ).

3We remark explicitly that, following our definitions, integer rectifiable cones are, in fact, only locally
integer rectifiable currents, in the sense that their restriction to any compact set in Rm+n is integer
rectifiable. Nonetheless, in what follows we will avoid being too pedantic on the distinction between being
integer rectifiable and being locally integer rectifiable whenever that property refers to a cone.
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Remark 3.7. We notice explicitly that the compactness claimed at the end of the propo-
sition fails if p is an even integer, as in that case there area area minimizing cones mod(p)
with spine of dimension m− 1 that are arbitrarily close, with respect to the flat distance
in B1, to m-planes with multiplicity p/2.

Proof. First, observe that as a direct consequence of [5, Lemma 8.5] we can conclude that

C = C′ × JV K mod(p) , (3.2)

where C′ is a one-dimensional area minimizing cone mod(p) in V ⊥ ' Rn+1 with trivial
spine. In particular, the associated varifold vC′ is stationary in Rn+1 and singular. Hence,
vC′ consists of the union of N ≥ 3 distinct half-lines `(i) with multiplicities κ(i) such that,
if `(i) = {t v(i) : t ≥ 0} for some v(i) ∈ Sn ⊂ Rn+1 then

∑
i κ(i) v(i) = 0. Furthermore,

1 ≤ κ(i) ≤ p/2 for all i due to C′ being area minimizing mod(p). Observe that we cannot
exclude the case κ(i) = p/2 yet. Next, let J`(i)K be the multiplicity one integral current
supported on `(i) and oriented so that ∂ J`(i)K = − J0K. Since ∂p[C′] = 0, we may then
conclude that C′ =

∑
i κ̃(i) J`(i)K mod(p) with |κ̃(i)| = κ(i) for every i, with the equality

holding in the sense of classical currents if κ(i) 6= p/2 for every i. In order to complete the
proof of (ii), we will show that it is

either κ̃(i) = κ(i) for every i ∈ {1, . . . , N}
or κ̃(i) = −κ(i) for every i ∈ {1, . . . , N} .

Indeed, suppose towards a contradiction and w.l.o.g. that κ̃(1) < 0 < κ̃(2). Since N ≥ 3,
we can also assume w.l.o.g. that the vectors v(1) and v(2) do not lie on the same line, and
thus v(1) 6= −v(2). We consider then the current

S := J[0, v(1)]K− J[0, v(2)]K + J[v(1), v(2)]K ,

where [x, y] denotes the segment [x, y] := {x+ t(y − x) : t ∈ [0, 1]} in Rn+1 and J[x, y]K is
the associated current with multiplicity one endowed with the natural orientation. Since
∂S = 0, the current

W := C′ + S

has the same boundary of C′, but

‖W‖(Bn+1
1 )− ‖C′‖(Bn+1

1 ) = |v(1)− v(2)| − 2 < 0 ,

thus contradicting the minimality of C′.

Next, we prove (iii). Of course, ΘC(0) = ΘC′(0), so it suffices to work on C′. Assume
w.l.o.g. that κ̃(i) > 0 for every i, so that κ̃(i) = κ(i). Also observe that since ∂p[C′] = 0
it must be

2 ΘC′(0) =
∑
i

κ(i) = ν p

for some positive integer ν. The proof will be complete once we show that
∑

i κ(i) ≤ p, so
that it must necessarily be ν = 1. By contradiction, assume that

∑
i κ(i) ≥ 2 p. Let π0 be

a hyperplane in V ⊥ having the property that π0 ∩ `(i) = {0} for every i. The hyperplane
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π0

S−

S+

`−(1)

`+(3)

`−(2)

`+(2)`+(1)

Figure 1. The two hemispheres S+ and S− and the rays `+(j) and `−(l).
The points v+(j) and v−(l) are the intersections of the rays with the appro-
priate hemisphere.

π0 divides Sn into two relatively open hemispheres S± such that v(i) ∈ S+ ∪ S− for every
i. Let

{v+(1), . . . , v+(J)} = {v(i)} ∩ S+ , {v−(1), . . . , v−(L)} = {v(i)} ∩ S− ,

and define accordingly the positive integers κ+(j) for 1 ≤ j ≤ J and κ−(l) for 1 ≤ l ≤ L
and the halflines `+(j) and `−(l), cf. Figure 1.

Since
∑

i κ(i) ≥ 2 p, the hyperplane π0 can be chosen so that

J∑
j=1

κ+(j) ≥ p ,

and in fact we can select integers 1 ≤ m+(j) ≤ κ+(j) such that

J∑
j=1

m+(j) = p . (3.3)

If we define W =
∑J

j=1m
+(j) J`+(j)K and S = C′ − W , we can observe that ‖C′‖ =

‖W‖ + ‖S‖, W + S = C′ mod(p) and ∂p[W ] = 0 and thus conclude that both W and S
are area-minimizing currents mod(p).

Now, let z ∈ Rn+1 be such that

J∑
j=1

m+(j) |v+(j)− z| = min
y

J∑
j=1

m+(j) |v+(j)− y| .
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π0

S+

v+(3)

v+(2)v+(1)

z

Figure 2. The restriction of currents W and Z in Bn+1
1 : in this example,

the modulus is p = 3 and the multiplicities m+(j) are all equal to 1. The
current W is represented by the thicker lines connecting the points v+(j) to
the center of the circle, while the current Z is represented by the lighter lines
connecting the points v+(j) to their barycenter z.

The point z lies in the convex hull of {v+(1) , . . . , v+(J)} (in fact it can be explicitly com-

puted as the “weighted barycenter” z = 1
p

∑J
j=1m

+(j)v+(j)); therefore, since all vectors

v+(j) belong to S+, it is necessarily z 6= 0. In particular,

J∑
j=1

m+(j)|v+(j)− z| <
J∑
j=1

m+(j) . (3.4)

We define the integral current

Z :=
J∑
j=1

m+(j)
q
[z, v+(j)]

y
,

cf. Figure 2. Because of (3.3), ∂Z B1 = ∂W B1 mod(p), but M(Z B1) < M(W B1)
due to (3.4). This contradicts the minimality of W , thus completing the proof of (iii).

Next, we can use (iii) to prove that necessarily κ(i) < p/2 for every i. Indeed, since∑
i κ(i) = p, the existence of i such that κ(i) = p/2 is incompatible with the stationarity

condition
∑

i κ(i)v(i) = 0, unless spt(C′) is contained in a line. Since C′ is singular, the
latter condition cannot hold, and the proof of (ii) is complete.

Now we can use (ii) to upgrade (3.2) to the equality in the sense of rectifiable currents

C = C′ × JV K (3.5)

claimed in (i). Indeed, the proof of [5, Lemma 8.5] shows that once a constant orientation
is chosen on V so that

C′ × JV K =
N∑
i=1

κ̃(i) JH(i)K
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for m-dimensional half-planes H(i) with boundary V and κ̃(i) < 0 for all i or κ̃(i) > 0 for
all i, then we can represent C as

C =
N∑
i=1

θ(i) JH(i)K (3.6)

with |θ(i)| = |κ̃(i)| for every i. On the other hand, since |κ̃(i)| < p/2 for every i and
C = C′ × JV K mod(p), it has to be θ(i) = κ̃(i) for every i, which completes the proof of
(i).

Finally, observe that the class of area minimizing cones mod(p) is compact by [5, Proposi-
tion 5.2]. Hence, the compactness of the subset of area minimizing cones mod(p) with spine
of dimension m− 1 when p is an odd integer is a consequence of the following elementary
observation: there exists a constant c(p) > 0 such that

inf
{

F p

B1
(C−Q) : Q is a multiple mod(p) of an m-plane

}
≥ c(p) (3.7)

for every such cone C. Indeed, should (3.7) fail there would be an oriented m-dimensional
plane $ ⊂ Rm+n, an integer q ∈ {1, . . . , p−1

2
}, and a sequence {Cl}∞l=1 of area minimizing

m-cones mod(p) with (m−1)-dimensional spines such that F p

B1
(Cl, q J$K)→ 0 as l→∞.

By [5, Proposition 5.2], the varifolds induced by Cl converge to the varifold induced by
q J$K and in particular ωmq = liml ‖Cl‖(B1) = ωm

p
2
, contradicting that q is an integer. �

4. Excess-decay

The main analytic estimate towards the proof of Theorem 1.9 is an excess decay in the
spirit of the work of Simon [14], see Theorem 4.5 below. Before coming to its statement
we introduce some terminology.

Definition 4.1 (Open books). We call open book a closed set of Rm+n of the form S =
S′×V , where V is an (m−1)-dimensional linear subspace and S′ consists of a finite number
of halflines `1, . . . , `N originating at 0, all contained in a single 2-dimensional subspace, and
all orthogonal to V . The half spaces Hi = `i × V will be called the pages of the book S,
and ^(S) will denote the minimal opening angle between two pages of S. The symbol Bp

will denote the set of open books with at most p pages.
We say that the book is nonflat if it is not contained in a single m-dimensional plane.

Remark 4.2. Note that the support of a cone C0 as in Assumption 1.8 is necessarily a
nonflat open book in Bp. Moreover, except for the trivial case in which the book consists
of a single page, we can assign orientations and multiplicities to S so that it becomes
the support mod(p) of a cone C with ∂C = 0 mod(p). However, such assignment of
multiplicities is clearly not unique and in general there is no choice which would make C
area minimizing.

Definition 4.3. The excess E of a current T with respect to an open book S in a ball
BR(q) is

E(T,S, q, R) := R−(m+2)

ˆ
BR(q)

dist2(q̄,S) d‖T‖(q̄) . (4.1)
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As anticipated, the main estimate of our paper is contained in the decay Theorem 4.5
below. Before stating it we need to introduce the following quantity.

Definition 4.4. Consider a cone C0 which is nonflat, area-minimizing representative
mod(p), has (m− 1)-dimensional spine V and is contained in π0 := TqΣ. Let S0 = spt(C0)
be the corresponding open book, H0,i its pages, and κ0,i positive coefficients so that

C0 =

N0∑
i=1

κ0,i JH0,iK .

We say that a representative mod(p) cone C is coherent with C0 if spt(C) ⊂ π0 and there
is a rotation O of π0 with the following properties:

(i) O]C is a nonflat cone with spine V ;
(ii) The pages of the open book S := spt(C) can be ordered as Hi,j with 1 ≤ i ≤ N0,

1 ≤ j ≤ J(i) so that

C =
∑
i

∑
j

κi,j JHi,jK

for positive coefficients κi,j such that
∑

j κi,j = κ0,i;

(iii) The angles θ(O, i, j) between the pagesO(Hi,j) and H0,i are all smaller than 1
4
^(S0).

If C is coherent with C0 and O is the collection of rotations of π0 which satisfy the
conditions above, we denote by ϑ(C,C0) the quantity

min
O∈O

(
|O − Id|+ max

i,j
{θ(O, i, j)}

)
.

While ϑ(C0,C) is equivalent to the flat distance F̂B1(C−C0), it presents some technical
advantages as it makes it easier to iterate Theorem 4.5.

Theorem 4.5 (Decay estimate). Let p ≥ 2 be an integer and let C0 be as in Assumption
1.8 with q = 0. There are constants C, η > 0, and ρ > 0, depending only on m,n, p, and
C0 with the following property. Assume that Σ and T are as in the Assumption 2.1 with
R0 = 1, that F̂ p

B1
(T−C0) ≤ η and that C is a representative mod(p) cycle (not necessarily

area-minimizing), with the following properties:

(i) C is a cone coherent with C0 and ϑ(C,C0) ≤ η;
(ii) max{E(T, spt(C), 0, 1),A1/2} ≤ η.

Then there is a representative mod(p) cycle C′ which is a cone coherent with C0 and
satisfies the following estimates:

max{E(T, spt(C′), 0, ρ), (ρA)
1/2} ≤ ρ1/2 max{E(T, spt(C), 0, 1),A

1/2} , (4.2)

F̂ p
B1

((η0,ρ)]T −C′) ≤ C(E(T, spt(C), 0, 1) + A)
1/2 , (4.3)

ϑ(C′,C0) ≤ ϑ(C,C0) + C(E(T, spt(C), 0, 1) + A)
1/2 . (4.4)

The proof of the above theorem will occupy most of the remaining sections of this paper.
Before coming to them, we collect here a series of technical facts about L2, L∞, and flat
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distances, and how to compare them in our setting. The proofs of all of them are deferred
to the appendix.

4.1. Flat-excess comparison lemmas. We start with a qualitative comparison between
the excess and the flat distance.

Lemma 4.6. Let C be a representative of a mod(p) cycle whose support is a nonflat open
book S ∈ Bp and such that ΘC(0) = p

2
. Then there is η1 = η1(S) > 0 with the following

property. If Tj ∈ Rm(B2) are such that

sup
j
‖Tj‖(B3/2) <∞ , (∂Tj) B3/2 = 0 mod(p) , (4.5)

and
F̂ p

B1
(Tj −C) < η1 ∀j , (4.6)

then
lim
j→∞

E(Tj,S, 0, 1) = 0 =⇒ lim
j→∞

F̂ p
B1

(Tj −C) = 0 . (4.7)

The following lemma is a quantitative estimate of the (modified) p-flat distance between
a representative mod(p) T and a cone C in terms of the L1 distance of T from the open
book spt(C). By the Cauchy-Schwartz inequality, it implies a corresponding estimate with
respect to the L2 distance (which involves also the mass of T ), and thus it can be regarded
as a quantitative version of Lemma 4.6.

Lemma 4.7. If C and S are as in Lemma 4.6, then there are η2 = η2(S) > 0 and
C = C(S) > 0 with the following property. If T ∈ Rm(BR), R ≤ 1, with

(∂T ) B1 = 0 mod(p) , (4.8)

dist(q,S) < η2R for all q ∈ spt(∂p(T BR)) , (4.9)

F̂ p
BR

(T −C) < η2R
m+1 (4.10)

then

F̂ p
BR/2

(T −C) ≤ C

ˆ
BR

dist(·,S) d ‖T‖ . (4.11)

The next two lemmas give L∞-type estimates in the case of area-minimizing currents.

Lemma 4.8. Let Σ be as in Assumption 2.1. There is a constant C0 = C0(m) with the
following property. Let T be area minimizing mod(p) in Σ ∩ B3R with (∂T ) B3R =
0 mod(p). If S ∈ Rm(B3R) and spt(T ), spt(S) both intersect BR then, setting d(·) :=
dist(·, spt(S)), one has

min{1, d(q)} dm(q) ≤ C0 F̂ p
B2R

(T − S) for every q ∈ spt(T ) ∩BR .

Lemma 4.9. Let Σ be as in Assumption 2.1, and let K ⊂ Rm+n be a compact set with
0 ∈ K. If T is area minimizing mod(p) in Σ ∩B1 with (∂T ) B1 = 0 mod(p) then

distm+2(q,K) ≤ C0

ˆ
B1

dist2(·, K)d ‖T‖ for every q ∈ spt(T ) ∩B1/2 , (4.12)

for a constant C0 depending on m.
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Finally, we record the validity of the following immediate corollary of Lemmas 4.7 and
4.8.

Corollary 4.10. Let C and S be as in Lemma 4.6. There are η2 = η2(S) > 0 and
C = C(S) > 0 with the following property. Let Σ be as in Assumption 2.1, and let T be
area minimizing mod(p) in Σ ∩B3 and such that (∂T ) B3 = 0 mod(p). If R ≤ 1 is such
that

F̂ p
BR

(T −C) < η2R
m+1 , (4.13)

then

F̂ p
BR/2

(T −C) ≤ C Rm+1 E(T,S, 0, R)
1
2 . (4.14)

5. Graphical parametrization

This section is dedicated to construct a “multigraph” approximation of T under the
assumption that its excess with respect to a nonflat open book is sufficiently small. Before
proceeding we recall that the notation W⊥ and pW will be extensively used for the orthog-
onal complement of W and the orthogonal projection onto W . We start by detailing the
assumptions on the current T which will be relevant for the rest of this section.

Assumption 5.1. Σ and T satisfy the requirements of Assumption 2.1 with Ω = B2R0(0),
where R0 � 1 is a large constant which depends only on m. π0 denotes the tangent
space T0Σ. C0 is an m-dimensional area minimizing cone as in Assumption 1.8, so that
S0 := spt(C0) is a non-flat open book in Bp. We will assume that S0 ⊂ π0, and we will
call V ⊂ π0 the spine of S0. C is a representative of a mod(p) cycle whose support is a
nonflat open book S ∈ Bp contained in π0, with the same spine V as S0, and such that
ΘC(0) = p/2.

Assumption 5.2. Furthermore, we assume that

F̂ p
BR0

(T −C0) < ηS0 , F̂ p
BR0

(C−C0) < ηS0 , (5.1)

where, denoting θ(S0) := tan(^(S0)/2),

ηS0 := min

{
η1(S0), η2(S0),

θ(S0)

2M(m+1)

}
, (5.2)

for some large number M to be chosen (depending only on m).

It will be useful to set some notation for the rest of this section, more precisely

C0 =

N0∑
i=1

κ0,i JH0,iK , S0 =

N0⋃
i=1

H0,i , (5.3)
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where H0,i = `0,i × V and `0,i = {t v0,i : t ≥ 0}, v0,i ∈ S1 ⊂ V ⊥ ∩ π0 =: V ⊥0 , with v0,i

pairwise distinct. Moreover, we assume without loss of generality that

π0 = {0n−1} × Rm+1

V = {0n−1} × {02} × Rm−1

V ⊥ = Rn+1 × {0m−1}
V ⊥0 = {0n−1} × R2 × {0m−1} .

Thus every q ∈ Rm+n will be given canonical coordinates q = (x, y), with (x, 0) ∈ V ⊥ and
(0, y) ∈ V and for brevity we shall often identify x = (x, 0) and y = (0, y). In particular,
|x| will always denote the distance of q from V .

Remark 5.3. We note explicitly that the hypothesis (5.1), together with the choice of ηS0

specified in (5.2) imply that the cone C and its support S have the following structure:

C =

N0∑
i=1

κ0,i∑
j=1

JHi,jK , S =

N0⋃
i=1

κ0,i⋃
j=1

Hi,j , (5.4)

where Hi,j = `i,j × V with `i,j ⊂ V ⊥0 with possible repetitions.

5.1. Multigraphs, Whitney domains, and main approximation. The Lipschitz ap-
proximation of T will be reached through the following notion of p-multifunction over an
open book.

Definition 5.4. Let V , π0, and S be as in Assumptions 5.1 and 5.2 and Remark 5.3.
Given a subset U ⊂ [0,∞)×V , a p-multifunction u on U over S is a collection of functions
{ui,j} such that:

(a) i ∈ {1, . . . , N0} and for each i the index j ranges between 1 and κ0,i;
(b) for every i and j we let Ui,j := {z = (x, y) ∈ Hi,j : (|x|, y) ∈ U} and

ui,j : Ui,j ⊂ Hi,j → H⊥i,j . (5.5)

For every k ∈ N and α ∈ (0, 1] we say that a p-multifunction u on U over S is of class Ck,α

(shortly u ∈ Ck,α(U)) if ui,j ∈ Ck,α(Ui,j) for all i and j. Moreover, for z ∈ Ui,j we set

[Dui,j]α (z) := inf
R>0

sup

{
|Dui,j(z1)−Dui,j(z2)|

|z1 − z2|α
: z1 6= z2 ∈ Ui,j ∩BR(z)

}
. (5.6)

Furthermore, for every ζ ∈ U we set

|u(ζ)| := max
i,j
{|ui,j(zi,j)|} , where zi,j = (x, y) ∈ Ui,j, with (|x|, y) = ζ ,

and define analogously |Du(ζ)|, and [Du]α (ζ). Finally, we define

‖u‖C1,α(U) := sup
ζ=(t,y)∈U

(
t−1|u(ζ)|+ |Du(ζ)|+ tα [Du]α (ζ)

)
, (5.7)
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Figure 3. The Whitney decomposition of [0, 2]× [−2, 2]m−1. In the above
example the parameter M equals 2.

If u ∈ C1,α(U), given any orientation on V which naturally induces orientations on the
half spaces Hi,j for every i and j, we set

GS(u) :=

N0∑
i=1

κ0,i∑
j=1

Gui,j , (5.8)

where Gui,j := JMi,jK is the multiplicity-one current on

Mi,j := {z + ui,j(z) : z ∈ Ui,j} (5.9)

with the standard orientation induced by that of Ui,j ⊂ Hi,j.

Remark 5.5. In this section, we shall only be working with p-multifunctions over the cone
S0. In this case, Definition 5.4 applies verbatim with the identification Hi,j = H0,i for all
j ∈ {1, . . . , κ0,i}. In particular, if u = {ui,j} is a p-multifunction on U over S0 then we
shall simply denote Ui the common domain of the functions ui,j for j ∈ {1, . . . , κ0,i}.

The next step before stating the main theorem of the section is to identify the domain
on which the p-multigraph approximation of T is going to be defined. This will consist of a
union of cubes in a Whitney-type decomposition of (a subset of) [0,∞)× V with suitably
good properties. Preliminarily, consider the half-cube [0, 2]× [−2, 2]m−1 ⊂ [0,∞)×V , and
the collection Q of sub-cubes defined as follows. First, we partition [0, 2] into the dyadic
intervals {[2−k, 2−k+1]}k≥0. Then, we further divide each layer [2−k, 2−k+1]× [−2, 2]m−1 into
2mM ·2(m−1)(k+2) congruent sub-cubes of side-length 2−(k+M), where M is as in Assumption
5.2, cf. Figure 5.1. Notice that

2M+1

√
m

diam(Q) ≥ max
z∈Q

dist(z, V ) ≥ min
z∈Q

dist(z, V ) ≥ 2M√
m

diam(Q) ∀Q ∈ Q . (5.10)

For any Q ∈ Q, we shall denote cQ = (tQ, yQ) the center of Q and dQ the diameter of Q.

Definition 5.6. We establish the following partial order relation in Q: if Q,Q′ ∈ Q, we
say that Q is below Q′, and we write Q � Q′, if and only if pV (Q) ⊂ pV (Q′). Let T and C
be as in Assumptions 5.1 and 5.2, with S = spt(C) ∈ Bp, and let τ ∈ (0, 1). The Whitney
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domain of [0, 2] × [−2, 2]m−1 associated to (T,S, τ), denoted by W = W(T,S, τ), is the
subfamily of Q ∈ Q such that

E
(
T,S, yQ′ , M̄dQ′

)
< τ 2 ∀Q � Q′ , (5.11)

where M̄ = 2M+2/
√
m.

Remark 5.7. Note that Q ∈ W and Q � Q′ imply Q′ ∈ W , and that every cube Q̂ ∈ Q
for which there are no cubes above Q̂ (henceforth called cubes in the top sub-layer) belongs
to W as soon as E(T,S, 0, R0) is suitably small (depending on τ).

Since we will often deal with suitable dilations of the cubes in Q we introduce the
following notation. For λ > 0, λQ is the cube with the same center cQ as Q and diameter
dλQ = λ dQ. Considering U = λQ as in Definition 5.4, we let λQi be the corresponding
domains Ui ⊂ H0,i, as described in Definition 5.4(b) and Remark 5.5. Given a Whitney
domain W =W(T,S, τ) and λ > 0, we shall also denote by UλW the union

UλW :=
⋃
Q∈W

λQ , (5.12)

and, setting UW = U1W , we define the “distance” function %W : [−2, 2]m−1 → [0, 2] as

%W(y) := inf {t : (t, y) ∈ UW} . (5.13)

The graphicality region RW is the rotationally invariant set

RW :=
{
q = (x, y) ∈ Rm+n : y ∈ [−2, 2]m−1 and %W(y) ≤ |x| ≤ 2

}
. (5.14)

Theorem 5.8 (Graphical parametrization). Let T,Σ,C,S,C0, and S0 be as in Assump-
tions 5.1 and 5.2. For any β ∈

(
0, 1

2

)
there are τ > 0 and ε1 > 0, depending on

(m,n, p,S0, β) with the following property. If

A + E(C,S0, 0, R0) ≤ ε2
1 , (5.15)

and E := E(T,S, 0, R0) ≤ ε2
1 , (5.16)

then there is a p-multifunction u = {ui,j} over S0 of class C1, 1
2 on U4W with W =

W(T,S, τ) and with ui,j : (U4W)i ⊂ H0,i → H⊥0
0,i for all i and j such that, for some constant

C2 = C2(m,n, p,S0),

(i) every Q ∈ Q with dQ ≥ C2
E1/(m+2)

β
belongs to W;

(ii) ‖u‖
C1, 12 (U4W )

≤ β;

(iii) T RW = GS0(v) RW , where v is the p-multifunction on U4W over S0 defined by

vi,j(z) := ui,j(z) + Ψ(z + ui,j(z)) (5.17)

(Ψ is the map detailed in Assumption 2.1);
(iv) the following estimate holds:ˆ

B2\RW
|x|2 d‖T‖+

ˆ
B2\RW

|x|2 d‖C‖ ≤ C2 β
−(m+2) E , (5.18)

where, for q ∈ B2 \RW , |x| denotes, as usual, the distance of q from the spine V .
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5.2. White’s epsilon-regulary theorem. In what follows, we will use the shorthand
notation P0, pi, and p⊥i for the orthogonal projections pπ0 , pH0,i

and pH⊥0,i
(where, with

a slight abuse of notation, we are identifying H0,i with the m-dimensional linear plane
containing it). We shall then set T ′ := (P0)]T ; furthermore, given a cube Q ∈ Q, letting
Qi denote the corresponding cube in H0,i and λQi its dilation with center cλQi and diameter
dλQi we define

C(λQi, δ) :=
{
q ∈ π0 : pi(q) ∈ λQi and |p⊥i (q)| ≤ δM̄ dλQi

}
, (5.19)

and

C(λQ, δ) :=

N0⋃
i=1

C(λQi, δ) . (5.20)

In other words, for each i the set C(λQi, δ) is a cylinder in π0 with cross section λQi, axis
orthogonal to H0,i and height 2 M̄δ dλQi , while C(λQ, δ) is the union of all such cylinders.
With these notation in place, we can state and prove the following lemma, which is the
key technical step towards the proof of the main theorem of this section, Theorem 5.8.

Lemma 5.9. Let C0 and S0 be as in Assumptions 5.1 and 5.2. There exists δ0 =
δ0(m, p,S0) with the following property. Let δ ∈ (0, δ0] be arbitrary, and set

ε̄2
1 = τ̄ 2 :=

(
δ

16C0

)m+2

, (5.21)

where C0 is the constant from Lemma 4.9. If T and C are as in Assumptions 5.1 and 5.2,
C satisfies (5.15) for some ε1 < ε̄1, and

Q ∈ W(T,S, τ) for some τ < τ̄ , (5.22)

then:

(a) spt(T ) ∩ {(x, y) : (|x|, y) ∈ Q} ⊂ P−1
0 (C(4Q, δ));

(b) there exists a p-multifunction uQ = {uQi,j} ∈ C1, 1
2 (4Q) over S0 with uQi,j : 4Qi ⊂

H0,i → H⊥0
0,i for all i and j and

‖uQ‖
C1, 12 (4Q)

≤ C1 δ (5.23)

for some constant C1 = C1(m, p) > 0, and such that

T ′ C(4Q, δ) = GS0(uQ) . (5.24)

Proof. First, let us observe that since the manifold Σ is the graph of Ψ on π0, (Id + Ψ)◦P0

is the identity map on Σ. Letting δRm+n denote the standard Euclidean metric on Rm+n,
we can then define gΨ := (Id + Ψ)]δRm+n to be the associated pull-back metric on π0. The
current T ′ = (P0)]T is supported on π0 and area minimizing mod(p) in π0 ∩ B2R0 with
respect to the area functional relative to the metric gΨ, which falls in the class of elliptic
functionals in the sense of Almgren.

We are going to divide the proof into several steps.
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Step one. Let δ0 < ηS0 . We claim that for every Q ∈ W(T,S, τ) the following holds:

spt
(
TyQ,M̄dQ (B2 \B1/8(V ))

)
⊂
{
q = (x, y) ∈ Rm+n : dist(q,S0) < δ |x|

}
. (5.25)

Indeed, applying Lemma 4.9 with K = S and TyQ,M̄dQ in place of T , we find that

distm+2(q,S) ≤ C0

ˆ
B4

dist2(q′,S) d‖TyQ,M̄dQ‖(q
′) for every q ∈ spt(TyQ,M̄dQ) ∩B2 .

(5.26)
On the other hand, since S = spt(C), Lemma 4.9 implies that for any point w ∈ S∩B4

dist(w,S0)m+2 ≤ C0

ˆ
B8

dist2(·,S0) d‖C‖ . (5.27)

Thus, putting together (5.26) and (5.27) we deduce that for any q ∈ spt(TyQ,M̄dQ) ∩B2

dist(q,S0) ≤ C0

(
E(T,S, yQ, M̄dQ)1/(m+2) + E(C,S0, 0, R0)1/(m+2)

)
≤ C0 (τ 2/(m+2) + ε

2/(m+2)
1 ) <

δ

8
.

(5.28)

In particular, if q = (x, y) /∈ B1/8(V ) then |x| > 1/8, and thus the above estimate gives

dist(q,S0) < δ |x| for q = (x, y) ∈ spt(TyQ,M̄dQ) ∩ (B2 \B1/8(V )) . (5.29)

We observe in passing that (5.25) immediately implies conclusion (a).

Step two. Since δ is smaller than θ := tan(^(S0)/2), (5.25) implies that for every
Q ∈ W(T,S, τ) we can decompose

TyQ,M̄dQ (B2 \B1/8(V )) =

N0∑
i=1

T̃Qi , (5.30)

T̃Qi := TyQ,M̄dQ

(
(B2 \B1/8(V )) ∩ {q = (x, y) : dist(q,H0,i) < δ |x|}

)
, (5.31)

where each T̃Qi has no boundary mod(p) in B2 \B1/8(V ) by [5, Lemma 6.1] and

spt(T̃Qi ) ∩ spt(T̃Qi′ ) = ∅ whenever i 6= i′ , (5.32)

‖TyQ,M̄dQ‖(B2 \B1/8(V )) =

N0∑
i=1

M(T̃Qi ) . (5.33)

In particular, each T̃Qi is area minimizing mod(p) in Σ ∩ (B2 \ B1/8(V )). Rescaling back,
we have an analogous decomposition

T (B2M̄dQ(yQ) \BM̄dQ/8(V )) =

N0∑
i=1

TQi , (5.34)
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where each TQi has no boundary mod(p) in B2M̄dQ(yQ) \BM̄dQ/8(V ) and

spt(TQi ) ∩ spt(TQi′ ) = ∅ whenever i 6= i′ , (5.35)

‖T‖(B2M̄dQ(yQ) \BM̄dQ/8(V )) =

N0∑
i=1

M(TQi ) . (5.36)

In particular, each TQi is area minimizing mod(p) in Σ ∩ (B2M̄dQ(yQ) \BM̄dQ/8(V )).

Step three. From (5.34), we deduce that, for T ′ = (P0)]T , we have

T ′ (BM̄dQ(yQ) \BM̄dQ/8(V )) =

N0∑
i=1

(T ′)Qi , (5.37)

where each (T ′)Qi := [(P0)]T
Q
i ] (BM̄dQ(yQ) \BM̄dQ/8(V )) satisfies

spt((T ′)Qi ) ⊂
(
BM̄dQ(yQ) \BM̄dQ/8(V )

)
∩ {q = (x, y) ∈ π0 : dist(q,H0,i) < δ |x|} , (5.38)

by (5.31), and it is area minimizing mod(p) in π0 ∩
(
BM̄dQ(yQ) \BM̄dQ/8(V )

)
with respect

to the area functional relative to the metric gΨ on π0. Furthermore, since

sptp(∂TQi ) ⊂
(
∂B2M̄dQ(yQ) ∪ ∂BM̄dQ/8(V ))

)
∩ {q = (x, y) : dist(q,H0,i) ≤ δ |x|} ,

each (T ′)Qi has no boundary mod(p) in BM̄dQ(yQ) \BM̄dQ/8(V ).
Now, we observe that, due to (5.38),

spt((T ′)Qi ) ∩ {q ∈ π0 : pi(q) ∈ 32Qi} ⊂ C(32Qi, δ) , (5.39)

and that

C(32Qi, δ) ⊂ π0 ∩
(
BM̄dQ(yQ) \BM̄dQ/8(V )

)
(5.40)

as soon as M̄ is large enough (depending on m).
Finally, notice that the constancy lemma mod(p) implies that

(pi)][(T
′)Qi {q ∈ π0 : pi(q) ∈ 32Qi}] = κQi J32QiK mod(p) (5.41)

for some constant κQi ∈ Z ∩
(
−p

2
, p

2

]
.

Step four. In this step, we prove that

κQi = κ0,i, (5.42)

for every i ∈ {1, . . . , N0}: this will imply, in particular, that |κQi | < p/2.
Observe that to this aim it is sufficient to prove (5.42) with Q replaced by any cube Q′

with Q � Q′. Indeed, since for any two consecutive cubes Q̂ and Q̃ the cubes 32Q̂ and 32Q̃
overlap on a region of positive area, then by (5.41) the equality (5.42) would propagate
from Q′ to Q along a chain which connects them.

Let us then choose Q′ ∈ W such that Q � Q′ and there is no cube of Q above Q′. By
Remark 5.7 we infer that the conclusions of steps one, two, and three hold with Q′ in place
of Q.
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We claim now that there exists λ ∈ (16, 32) such that

F̂ p
BR0

(
(pi)][(T

′)Q
′

i {q ∈ π0 : pi(q) ∈ λQ′i}]− κ0,i JλQ′iK
)
< Hm(λQ′) , (5.43)

which, due to (5.41), implies in particular that (5.42) holds for the cube Q′, since the
(modified) p-flat distance between two m-currents supported on an m-dimensional cube is
the mass mod(p) of their difference.

In order to prove (5.43), we begin observing that

F̂ p
BR0

(T ′ −C0) < ηS0 .

This follows from (5.1) and the fact that T ′ − C0 = (P0)](T − C0), because P0 is a 1-
Lipschitz map.

Let R, S and Z be such that

T ′ −C0 = R + ∂S + pZ with ‖R‖(BR0) + ‖S‖(BR0) ≤ 2ηS0 . (5.44)

For each i, let us define the function fi : π0 → [0,∞) by

fi(q) := max
{

2M+1 |pi(q)− cQ′i |∞, 64 θ−1|p⊥i (q)|
}
, (5.45)

having denoted |v|∞ := max{|zh| : h = 1, . . . ,m} if v = (z1, . . . , zm) is a decomposition of
v in the orthonormal system of coordinates on H0,i having V as a coordinate hyperplane.
Using that there is no cube of Q above Q′, so that the side length of Q′ is 2−M , together
with the definition of M̄ , it is not difficult to see that the above definition of fi implies
that, for any 16 ≤ λ ≤ 32, the sublevel set {fi ≤ λ} coincides with the cylinder

{fi ≤ λ} = C

(
λQ′i,

θ λ

64 M̄dλQ′i

)
. (5.46)

By the slicing formula [13, Lemma 28.5], for almost every 16 ≤ λ ≤ 32 we have from
(5.44) that

(T ′−C0) {fi ≤ λ} = R {fi ≤ λ}+∂[S {fi ≤ λ}]−〈S, fi, λ〉+ pZ {fi ≤ λ} . (5.47)

Now, observe that, by the definition of θ, each cylinder

C

(
λQ′i,

θ λ

64 M̄dλQ′i

)
⊂ C

(
λQ′i,

θ

2 M̄dλQ′i

)
does not intersect H0,j for any j 6= i for M̄ large enough. Hence,

C0 {fi ≤ λ} = κ0,i JλQ′iK . (5.48)

Next, we claim that

T ′ {fi ≤ λ} = (T ′)Q
′

i {fi ≤ λ} = (T ′)Q
′

i {q ∈ π0 : pi(q) ∈ λQ′i} . (5.49)

Indeed we have

{fi ≤ λ} ∩
{
q = (x, y) : dist(q,H0,j) <

θ

2
|x|
}

= ∅ for every j 6= i ,
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and therefore, since δ < θ
2
, (5.37) and (5.38) imply the first identity in (5.49). The second

identity follows from (5.39) and (5.46), since, for δ < θ
29 , C(λQ′i, δ) ⊂ C

(
λQ′i,

θ λ
64 M̄dλQ′

i

)
.

Now by (5.48) and (5.49), we can rewrite (5.47) as

(T ′)Q
′

i {q ∈ π0 : pi(q) ∈ λQ′i} − κ0,i JλQ′iK
= R {fi ≤ λ}+ ∂[S {fi ≤ λ}]− 〈S, fi, λ〉+ pZ {fi ≤ λ} .

(5.50)

By [13, Lemma 28.5 (1)], we can find λ ∈ [16, 32] such that

M(〈S, fi, λ〉) ≤
1

16
Lip(fi) ‖S‖({fi ≤ 32}) ≤ 1

16
Lip(fi) ‖S‖(BR0) . (5.51)

In turn, using that Lip(fi) ≤ 64 θ−1 + 2M+1, (5.44) yields

F̂ p
BR0

(
(T ′)Q

′

i {q ∈ π0 : pi(q) ∈ λQ′i} − κ0,i JλQ′iK
)
≤ 2ηS0 (1 + 4 θ−1 + 2M−3)

< Hm(λQ′) , (5.52)

as soon as

ηS0 <
1

2m(M−2)(2 + 8 θ−1 + 2M−2)
,

whose validity is guaranteed by the choice of ηS0 in (5.2). Lastly, (5.43) follows from (5.52)
since pi is 1-Lipschitz.

Step five. By (5.39), (5.41), and (5.42), and recalling that 1 ≤ κ0,i < p/2, we see now

that, for each i ∈ {1, . . . , N0}, the currents (T ′)Qi satisfy the hypotheses of the regularity
theorem in [17, Theorem 4.5] in {q ∈ π0 : pi(q) ∈ 32Qi} as soon as δ0 is chosen such that

32 δ0M̄ ≤ δBW ,

where δBW = δBW (m, p) denotes the regularity threshold of [17, Theorem 4.5]. We can then
conclude from [11, Theorem 1] that there exist precisely κ0,i functions ui,j : 4Qi → H⊥0

0,i ' R
of class C1,1/2 such that

(i) ui,1 ≤ ui,2 ≤ . . . ≤ ui,κ0,i
in 4Qi;

(ii) given j, j′ ∈ {1, . . . , κ0,i} with j ≤ j′ it is either ui,j ≡ ui,j′ in 4Qi or ui,j(q) < ui,j′(q)
for every q ∈ 4Qi;

(iii) ‖ui,j‖C1, 12 (4Qi)
≤ C1 δ for every i and j, for some constant C1 = C1(m, p) > 0;

(iv) the current (T ′)Qi {q ∈ π0 : pi(q) ∈ 4Qi} coincides with the multigraph defined
by {ui,j}

κ0,i

j=1.

Finally, we let uQ denote the p-multifunction on Q over S0 defined by the functions {ui,j}
as also i is let vary in {1, . . . , N0}. Conclusion (iii) above readily implies (5.23), whereas
(5.24) follows from (iv) together with (5.37) and (5.39). �
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5.3. Proof of Theorem 5.8. Let Q ∈ Q, and, with the usual meaning of yQ and dQ,
observe that, whenever dQ ≥ σ it holds

E(T,S, yQ, M̄dQ) =
1

(M̄dQ)m+2

ˆ
BM̄dQ

(yQ)

dist2(q,S) d‖T‖ ≤
(
R0

M̄

)m+2
E

σm+2
. (5.53)

In particular, choosing σ = C2
E1/(m+2)

β
guarantees the validity of (i) as soon as

τ 2 ≥
(

R0

C2 M̄

)m+2

βm+2 . (5.54)

Next, fix δ := min
{

β
C1
, δ0

}
. If ε1 and τ are sufficiently small, explicitly if ε1 < ε̄1 and

τ < τ̄ with ε̄1 and τ̄ defined by (5.21) in correspondence with this choice of δ, we can apply
Lemma 5.9 to every cube Q ∈ W . We can therefore guarantee that the conclusion in (i) is
satisfied by choosing the constant C2 so that we can find an appropriate τ satisfying(

R0

C2 M̄

)m+2

βm+2 ≤ τ 2 < τ̄ 2 ≤
(

1

16C0C1

)m+2

βm+2 . (5.55)

From Lemma 5.9 it then follows that for every Q ∈ W there exists a p-multifunction
uQ ∈ C1, 1

2 (4Q) over S0 such that (5.23) and (5.24) hold true with β replacing C1 δ in the

right-hand side of (5.23). Since, for any two adjacent cubes Q̃ and Q̂ in W , the cubes 4Q̃

and 4Q̂ intersect on a set of positive measure, each function uQ is the restriction, on 4Q,
of a unique p-multifunction u of class C1, 1

2 on U4W =
⋃
Q∈W 4Q over S0 satisfying (ii). In

particular, it follows from (5.24) that, setting C4W,δ :=
⋃
Q∈W C(4Q, δ)

T ′ C4W,δ = GS0(u) . (5.56)

Recalling that T ′ = (P0)]T , and that, on the manifold Σ, P0 is invertible with inverse
Id + Ψ, the p-multifunction v on U4W over S0 defined by (5.17) satisfies

T P−1
0 (C4W,δ) = GS0(v) . (5.57)

Conclusion (iii) follows then at once from Lemma 5.9(a) which immediately implies that
spt(T ) ∩ (RW \ V ) ⊂ P−1

0 (C4W,δ).
We finally come to (iv). Observe first that

B2 \RW ⊂
⋃{

B%W (y)(y) : y ∈ [−2, 2]m−1 with %W(y) > 0
}
.

Next, we observe that, by the definition of %W(y) and the properties of cubes in Q, for each
y ∈ [−2, 2]m−1 with %W(y) > 0 there is a Q ∈ Q such that |y − yQ| ≤ C%W(y) ≤ CdQ and
E(T,S, yQ, M̄dQ) ≥ τ 2, where the constant C depends only on m and M . In particular,
for some other positive constant C̄(m,M),

E(T,S, y, C̄%W(y)) ≥ C̄−1τ 2 .
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Apply Vitali’s covering theorem to find pairwise disjoint balls Bri(yi) := BC̄%W (yi)(yi) such
that {B5ri(yi)} covers B2 \RW . Using the monotonicity formula, we then haveˆ

B2\RW
|x|2 d‖T‖+

ˆ
B1\RW

|x|2 d‖C‖

≤
∑
i

Cr2
i (‖T‖(B5ri(yi)) + ‖C‖(B5ri(yi))) ≤

∑
i

Crm+2
i

≤C̄ τ−2
∑
i

ˆ
Bri (yi)

dist2(·,S) d‖T‖ ≤ C̄ τ−2 E .

The estimate in (5.18) then follows from the choice of τ in (5.55). �

6. Linear selection I: local algorithm

We next observe that the the cone C is also a p-multigraph over S0. For this reason we
introduce linear multifunctions over S0.

Definition 6.1. A p-multifunction l = {li,j} over S0 will be called linear if, for each i and
j, li,j : H0,i → H⊥0,i is linear and vanishes on the spine V .

The following is then an obvious consequence of Theorem 5.8

Corollary 6.2. Let T , Σ, C, C0, S := spt(C), and S0 := spt(C0) be as in Theorem 5.8,
and consider the corresponding map v and U4W its domain. Then:

(i) there is a linear p-multifunction l over S0 such that C = GS0(l);
(ii) dist (q,S) = dist

(
q,∪h spt

(
GH0,i

(li,h)
))

for each q ∈ spt(GS0(vi,j));
(iii) there is a geometric constant C such that

C−1

ˆ
RW

dist(q,S)2 d‖T‖(q) ≤
∑
Q∈W

N0∑
i=1

ˆ
4Qi

κ0,i∑
j=1

min
1≤h≤κ0,i

|vi,j(z)− li,h(z)|2 dz ≤ C E . (6.1)

The main purpose of this and the next section is, roughly speaking, to take out of the
integral the min in (6.1).

Theorem 6.3 (Improved estimate). Let T , Σ, C, C0, S := spt(C), and S0 := spt(C0) be
as in Theorem 5.8, let u and U4W be the corresponding map and its domain, and let l be as
in Corollary 6.2(i). There are a geometric constant C and a selection function h : (i, j) 7→
h(i, j) ∈ {1, . . . κ0,i} such that if l̃ denotes the linear p-multifunction {l̃i,j = li,h(i,j)} and w
denotes the p-multifunction on U4W over S0 defined by

wi,j := ui,j − l̃i,j , (6.2)

then

sup
ζ=(t,y)∈U3W

t
m
2

+1
(
t−1|w(ζ)|+ |Dw(ζ)|+ t

1/2[Dw]1/2(ζ)
)
≤ C (E + A2)

1/2 , (6.3)

∑
Q∈W

N0∑
i=1

κ0,i∑
j=1

ˆ
3Qi

(|wi,j(z)|2 + |x|2|Dwi,j(z)|2) dz ≤ C (E + A2) , (6.4)
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where, for z ∈ 3Qi, |x| denotes, as usual, the distance of z from V .

The selection function (i, j) 7→ h(i, j) identifies a new cone C̃ and a new open book

S̃ ⊂ S as follows.

Definition 6.4. Let l̃ be the linear p-multifunction {l̃i,j = li,h(i,j)} from Theorem 6.3. We

denote by C̃ the cone given by GS0(l̃). The corresponding open book spt(C̃) is denoted

by S̃.

Remark 6.5. Observe that

S̃ =
⋃
i,j

Hi,h(i,j) =:
⋃
i,j

H̃i,j . (6.5)

Clearly the halfspaces appearing in (6.5) are not necessarily distinct, namely it might be

that H̃i,j = H̃i′,j′ for distinct pairs (i, j) and (i′, j′). Moreover

C̃ =
∑
i,j

q
Hi,h(i,j)

y
=
∑
i,j

r
H̃i,j

z
,

and thus each page H̃i,j is counted in C̃ with a multiplicity that equals the number of pairs
(i′, j′) such that h(i′, j′) = h(i, j).

However, since the ‖li,j‖∞ is suitably small compared to the minimal angle between

distinct pages of S0 (cf. (5.1) and (5.2)), we at least know that H̃i,j 6= H̃i′,j′ whenever
i 6= i′. In particular we can conclude that:

• S̃ has at least as many pages as S0;
• S̃ ⊂ S, so that in particular S̃ has no more pages than S
• H̃i,j has a multiplicity in C̃ which is at most κ0,i.

It is however possible that S̃ is a strict subset of S, i.e. that it has less pages than
S. Likewise, the multiplicities, in the respective cones C and C̃, of a page Hi,j which is

common to both S and S̃ are just two, typically unrelated, integer numbers in {1, . . . , κ0,i}.

An important corollary of Theorem 6.3 is that, in the graphicality region RW , the current
T coincides also with a p-multigraph over S̃.

Corollary 6.6. Let T,Σ,C,C0,S := spt(C), and S0 := spt(C0) be as in Theorem 6.3,

and let S̃ be the open book in Definition 6.4. There exists a p-multifunction ũ = {ũi,j} over

S̃ of class C1, 1
2 on U2W and with ũi,j : (Ũ2W)i,j ⊂ H̃i,j → H̃⊥0

i,j for all i and j such that

‖ũ‖
C1, 12 (U2W )

≤ β , (6.6)

and, denoting ṽ the p-multifunction on U2W over S̃ defined by

ṽi,j(z) := ũi,j(z) + Ψ(z + ũi,j(z)) , (6.7)

we have

T RW = GS̃(ṽ) RW (6.8)
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andˆ
(Ũ2W )i,j∩B2

(|ũi,j|2+|x|2|∇ũi,j|2) ≤ C

ˆ
(U3W )i∩B3

(|wi,j|2+|x|2|∇wi,j|2) ≤ C (E+A2) , (6.9)

where w is the p-multifunction over S0 defined in (6.2).
Finally, for every fixed η̃ > 0, if ε1 in (5.15)-(5.16) and ηS0 in (5.1) are chosen sufficiently

small, then

F̂ p
BR0

(C̃−C) < η̃ . (6.10)

In this section we will show that a suitable selection h(i, j) as in Theorem 6.3 exists at
the level of each cube in the Whitney domain W . Such local selection algorithm depends
on an appropriate Harnack-type estimate and will result in Lemma 6.7 below. How to
choose the same h(i, j) on all cubes of the Whitney domain so that the conclusions of
Theorem 6.3 and Corollary 6.6 hold will instead be explained in the next section.

Lemma 6.7 (Local linear selection). There is a constant C depending only on m and p
such that the following holds. Let T , Σ, C, C0, S := spt(C), and S0 := spt(C0) be as in
Theorem 5.8, let u, v and U4W = ∪Q∈W4Q be the corresponding maps and their domain,
and let l be as in Corollary 6.2(i). Consider any i and j and any cube Q ∈ W. Then there
is a h̄, which depends on i, j, and Q, such that

dmQ‖ui,j − li,h̄‖2
L∞(3Qi)

+ d2+m
Q ‖D(ui,j − li,h̄)‖2

L∞(3Qi)
+ d3+m

Q [Dui,j]
2
1
2
,3Qi

≤C
ˆ

4Qi

min
h
|ui,j(z)− li,h(z)|2 dz + CA2d2+m

Q (6.11)

(where we recall that dQ denotes the diameter of Q).

6.1. A Harnack type inequality. We start with the Harnack-type estimate which, as
explained in the paragraph above, is the main tool to obtain the local selection. It turns
out that the only property needed on the linear functions li is that they solve the minimal
surface equation and since the argument would not be any simpler, we state the lemma
under this more general assumption.

Lemma 6.8. For every N ∈ N, L > 0, and s > m there is a constant C = C(m,N,L, s)
with the following property. Set λQ := [−λ, λ]m ⊂ Rm, and assume that

(a1) g1 < g2 < · · · < gN is an ordered family of solutions to the minimal surfaces
equation in 4Q ⊂ Rm with ‖∇gj‖L∞(4Q) < L for every j = 1, . . . , N ;

(a2) u ∈ C2(4Q) with ‖∇u‖L∞(4Q) < L is a solution to

div

(
∇u√

1 + |∇u|2

)
= H ,

for some H of the form H = div(H1) +H2 with H1 ∈ Ls(4Q) and H2 ∈ Ls/2(4Q).
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Then

min
i=1,...,N

‖u− gi‖L∞(3Q) ≤ C

(ˆ
4Q

min
i=1,...,N

|u− gi|2 dz +
(
‖H1‖Ls(4Q) + ‖H2‖Ls/2(4Q)

)2
)1/2

.

(6.12)

Proof. Setting F (w) :=
w√

1 + |w|2
for w ∈ Rm, assumptions (a1) and (a2) read

div(F (∇gj)) = 0 for every j , and div(F (∇u)) = H in 4Q. (6.13)

We note that

DF (w) =
1√

1 + |w|2

(
Id− w ⊗ w

1 + |w|2

)
(6.14)

is a symmetric matrix with minimal and maximal eigenvalues λ(w) = (1 + |w|2)−
3
2 and

Λ(w) = (1 + |w|2)−
1
2 , respectively; in particular, DF (w) is positive-definite, and Λ/λ is

bounded uniformly on {|w| ≤ L}.

Arguing by induction on N ≥ 1, we will prove (6.12) with 3Q replaced by 2−NQ in the
left-hand side; the estimate in (6.12) will then follow by a classical covering argument.

Induction base: N = 1. In this situation the statement reduces to classical elliptic
regularity: using (6.13), the function w := u− gN solves

div(A∇w) = H on 4Q (6.15)

where A = A(z) :=
´ 1

0
DF (∇gN(z) + t∇w(z)) dt is uniformly elliptic by (6.14). Hence,

(6.12) follows from [7, Theorem 8.17].

Induction step: N−1→ N . We split the proof into two cases, depending on the validity
of

inf
2Q

(gN − u) ≥ 0 . (6.16)

First case: (6.16) holds. Set K(H) := ‖H1‖Ls(4Q) + ‖H2‖Ls/2(4Q), and suppose further
that, for a dimensional ε > 0 to be chosen,

0 ≤ inf
2Q

(gN − u) < max{ε inf
2Q

(gN − gN−1), K(H)} . (6.17)

Harnack’s inequality, see [7, Theorems 8.17, 8.18], then implies that, for some constant

Ĉ = Ĉ(m,L, s)

sup
2Q

(gN − u) ≤ Ĉ

(
inf
2Q

(gN − u) +K(H)

)
≤ 2Ĉ max{ε inf

2Q
(gN − gN−1), K(H)} .

If K(H) ≥ ε inf2Q(gN − gN−1) we conclude sup2Q(gN − u) ≤ 2Ĉ K(H), and thus (6.12)
follows. Otherwise, we deduce

sup
2Q

(gN − u) ≤ 2Ĉε inf
2Q

(gN − gN−1) <
1

2
inf
2Q

(gN − gN−1)
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for ε < 1

4Ĉ
. Hence, we have gN(z) − u(z) = mini=1,...,N |u(z) − gi(z)| for all z ∈ 2Q. The

estimate follows now as in the case N = 1. In conclusion, (6.12) holds true if (6.17) holds.
Assume now that (6.16) holds but (6.17) fails. Consider next a point z̄ ∈ 2Q. Should

arg min
i=1,...,N

|u(z̄)− gi(z̄)| = N , (6.18)

we must necessarily have u(z̄) ≥ gN−1(z̄), otherwise

|u(z̄)− gN−1(z̄)| = gN−1(z̄)− u(z̄) < gN(z̄)− u(z̄) = |gN(z̄)− u(z̄)| ,

a contradiction to (6.18). Owing again to (6.16), we then have

min
i=1,...,N−1

|u(z̄)− gi(z̄)| ≤ |u(z̄)− gN−1(z̄)| = u(z̄)− gN−1(z̄) ≤ gN(z̄)− gN−1(z̄)

≤ Ĉ inf
2Q

(gN − gN−1) ≤ Ĉ

ε
(gN(z̄)− u(z̄))

=
Ĉ

ε
min

i=1,...,N
|u(z̄)− gi(z̄)| .

On the other hand, if (6.18) fails at z̄, then

min
i=1,...,N−1

|u(z̄)− gi(z̄)| = min
i=1,...,N

|u(z̄)− gi(z̄)| .

This implies that for every z ∈ 2Q

min
i=1,...,N−1

|u(z)− gi(z)| ≤ Ĉ

ε
min

i=1,...,N
|u(z)− gi(z)| .

Hence by the induction step we conclude

min
i=1,...,N

sup
2−NQ

|u− gi|2 ≤ min
i=1,...,N−1

sup
2−(N−1)Q

2

|u− gi|2

≤ C

ˆ
2Q

min
i=1,...,N−1

|u− gi|2 + C K(H)2

≤ C

ε2

ˆ
2Q

min
i=1,...,N

|u− gi|2 + C K(H)2 (6.19)

(observe that the inductive statement has been applied by replacing the outer cube 4Q
with 2Q and the inner cube 2−(N−1)Q with 2−NQ = 2−(N−1)Q

2
; this can however be easily

achieved by scaling the original statement).

Second case: (6.16) fails. We will reduce the proof to the first case. As observed in
the induction base, the function w := u − gN solves (6.15), hence w+ := max{w, 0} is a
sub-solution to the same equation in 4Q, and therefore by [7, Theorem 8.17]

sup
3Q

(w+)2 ≤ C

(ˆ
4Q

(w+)2 +K(H)2

)
≤ C

(ˆ
4Q

min
i=1,...,N

|u− gi|2 +K(H)2

)
,
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where we have used that, by the ordering of the functions gi, w
+ = mini |u− gi| on the set

{w+ > 0}. Define g̃N := gN + CD where D2 =
´

4Q
mini=1,...,N |u− gi|2 +K(H)2, in such a

way that g̃N − u ≥ 0 in 3Q. Since

|u(z)− g̃N(z)| ≤ |u(z)− gN(z)|+ CD ,
the definition of D2 implies that, setting g̃i = gi for i < N ,ˆ

2Q

min
i=1,...,N

|u− g̃i|2 +K(H)2 ≤ CD2 .

Thus, the family {g̃i}Ni=1 and u satisfy the assumptions of the lemma as well as (6.16) with
g̃N in place of gN , and therefore by (6.19)

min
i=1,...,N

sup
2−NQ

|u− gi|2 ≤ 2 min
i=1,...,N

sup
2−NQ

|u− g̃i|2 + CD2

≤ C

(ˆ
2Q

min
i=1,...,N

|u− g̃i|2 +K(H)2

)
+ CD2 ≤ CD2 .

This closes the induction step, and completes the proof. �

6.2. Proof of Lemma 6.7. Let us fix i ∈ {1, . . . , N0} and j ∈ {1, . . . , κ0,i}, and consider
the corresponding function ui,j as well as all the linear functions {li,h} defined on the page
H0,i of the book S0. For brevity, we will drop the reference to the fixed pair (i, j), and
simply write κ0, H0 and u for κ0,i, H0,i and ui,j, respectively. Fix any m-dimensional cube
Q in the Whitney domainW and, following the same convention just explained, identify it
with Qi. Observe also that, since the estimate (6.11) is scaling invariant, we might assume,
without loss of generality, that the sidelength of the cube Q is 1.

By Theorem 5.8, the graph of the function z 7→ v(z) = u(z) + Ψ(z + u(z)) over 4Q is
stationary in Σ. Let gΨ := (Id + Ψ)]δRm+n be the metric on π0 defined in the proof of
Lemma 5.9. We fix an orthonormal basis {e1, . . . , em, em+1} of π0 with em+1 ∈ H⊥0 , and
define the function H0 × R× Rm 3 (z, ū, p̄) 7→ Φ(z, ū, p̄) ∈ R+ as

Φ(z, ū, p̄) :=
√

det
[
(gΨ)z+ūem+1(eα + p̄αem+1, eβ + p̄βem+1)

]
. (6.20)

Since ‖u‖C1 ≤ β (cf. Theorem 5.8(ii)), u is then a critical point of the energyˆ
4Q

Φ(z, u(z),∇u(z)) dz . (6.21)

Therefore, u is a solution to the Euler-Lagrange equation for (6.21), which reads

div (Dp̄Φ(z, u,∇u)) = DūΦ(z, u,∇u)︸ ︷︷ ︸
=:H2

. (6.22)

Since

Dp̄αΦ(z, ū, p̄)− p̄α√
1 + |p̄|2

= Rα(z, ū, p̄) with |Rα(z, ū, p̄)| ≤ C ‖DΨ‖∞ (1 + |p̄|) ,

|DūΦ(z, ū, p̄)| ≤ C
∥∥D2Ψ

∥∥
∞ (1 + |p̄|) ,
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we can then conclude that u solves

div

(
∇u

1 + |∇u|2

)
= div (−R(z, u,∇u))︸ ︷︷ ︸

=:H1

+H2 ,

with ‖Hi‖∞ ≤ C‖D2Ψ‖∞ (where we have used that ‖DΨ‖∞ ≤ C‖D2Ψ‖∞ given that
DΨ(0) = 0). On the other hand, the functions lh, being linear, solve the minimal surface
equation. We can thus apply (the rescaled version of) Lemma 6.8 with s =∞ to conclude
the estimate

min
h
‖u− lh‖2

L∞(3Q) ≤ C

ˆ
4Q

min
h
|u(z)− lh(z)|2 dz + Cd2

Q ‖D2Ψ‖2
L∞(4Q) .

We let then h̄ be the index such that ‖u− lh̄‖L∞(3Q) = minh ‖u− lh‖L∞(3Q), and we estimate
‖D(u − lh̄)‖L∞(3Q) and [D(u − lh̄)] 1

2
,3Q using standard Schauder theory for (6.22): since

Dlh is a constant, and therefore [D(u− lh)] 1
2
,3Q = [Du] 1

2
,3Q, (6.11) is achieved by observing

that ‖D2Ψ‖∞ ≤ C‖AΣ‖∞ = C A.

7. Linear selection II: global algorithm

In this section we complete the proof of Theorem 6.3 and Corollary 6.6. The key of
the proof of Theorem 6.3 is to show an analogue of Lemma 6.7 where the choice of h̄ is
independent of the cube Q. The relevant statement is thus the following.

Lemma 7.1 (Global linear selection). There is a constant C depending only on m and p
such that the following holds. Let T , Σ, C, C0, S := spt(C), and S0 := spt(C0) be as in
Theorem 5.8, let u, v and U4W = ∪Q∈W4Q be the corresponding maps and their domain,

and let l be as in Corollary 6.2(i). Consider any i and j, let Q̂ ∈ W be any cube which does

not have any element above (cf. the partial order relation of Definition 5.6) and let ĥ be

the index h̄ of Lemma 6.7 corresponding to i, j, and Q̂. Then the following two estimates
hold

sup
Q∈W

(
dmQ‖ui,j − li,ĥ‖

2
L∞(3Qi)

+ d2+m
Q ‖D(ui,j − li,ĥ)‖

2
L∞(3Qi)

+ d3+m
Q [Dui,j]

2
1
2
,3Qi

)
≤C

∑
Q∈W

ˆ
4Qi

min
h
|ui,j(z)− li,h(z)|2 dz + CA2 (7.1)

∑
Q∈W

dmQ

(
‖ui,j − li,ĥ‖

2
L∞(3Qi)

+ d2
Q ‖D(ui,j − li,ĥ)‖

2
L∞(3Qi)

)
≤C

∑
Q∈W

ˆ
4Qi

min
h
|ui,j(z)− li,h(z)|2 dz + CA2 . (7.2)

Proof of Theorem 6.3. Setting h(i, j) := ĥ from Lemma 7.1, and recalling the definition
for w given in (6.2), the estimates (6.3) and (6.4) follow immediately from (7.1) and (7.2),
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together with the simple observation that∑
Q∈W

ˆ
4Qi

min
h
|ui,j(z)− li,h(z)|2 dz ≤

∑
Q∈W

ˆ
4Qi

min
h
|vi,j(z)− li,h(z)|2 dz ≤ CE ,

where the last inequality is (6.1). �

Proof of Corollary 6.6. Consider each ui,j, defined on its respective domain (U4W)i ⊂ H0,i

as specified in Theorem 5.8. For any z ∈ (U4W)i, we let z̃ denote the orthogonal projection

of (z+ui,j(z)) on the page H̃i,j of S̃. It is easy to see that, if β (which controls the Lipschitz
constant of u, cf. Theorem 5.8(ii)) is sufficiently small, the map z 7→ z̃ is biLipschitz on
its image, so that, in particular, we can define the maps

ũi,j(z̃) := (z + ui,j(z))− z̃ ∈ H̃⊥0
i,j , ṽi,j(z̃) := ũi,j(z̃) + Ψ(z̃ + ũi,j(z̃)) .

Moreover, for every σ > 0 a suitable choice of β (depending on σ) entails, for z = (x, y)
and z̃ = (x̃, ỹ), that

ỹ = y , (1− σ)|x| ≤ |x̃| ≤ (1 + σ)|x| . (7.3)

We denote by Ũi,j the corresponding domain of ũi,j and ṽi,j. Observe that, differently

from u, v, and w, a domain Ũi′,j′ with (i′, j′) 6= (i, j) cannot be recovered from Ũi,j through
a rotation around the spine V . Nonetheless, by restricting each ũi,j to a suitable subset of

Ũi,j, we can regard the collection {ũi,j} (and thus, analogously, {ṽi,j}) as a p-multifunction

over S̃ on a domain which, in view of (7.3) (and for an appropriate choice of β), contains
U2W . In turn, the latter implies

spt(T −GS̃(ṽ)) ∩RW = ∅ . (7.4)

This proves (6.8). Concerning (6.9), the first inequality follows readily from the defini-
tions of the maps wi,j and ũi,j, whereas the second inequality is an immediate consequence
of (6.4). Finally, (6.10) is a simple compactness argument: fix η̃ and assume Tk,Σk,Ck

satisfy the corresponding assumptions with vanishing ε1(k) and ηS0(k). In particular, it

follows readily that Ck and C̃k converge to C0 as well, and for k sufficiently large we must
satisfy (6.10). �

We are then only left with the proof of Lemma 7.1.

Proof of Lemma 7.1. Fix i, j, and a cube Q̂ as in the statement. As in the proof of Lemma
6.7, we drop the subscripts i, j and we identify H0 = H0,i with [0,∞) × V . Let also
h̄ :W 3 Q→ {1, . . . , κ0} be a map which selects, for each cube Q ∈ W , the index h̄(Q) of
an L∞(3Q)-optimal linear function in {lh}κ0

h=1 as in Lemma 6.7.
In order to simplify the estimates, let us introduce the monotone function

µ(E) :=

ˆ
E

min
h
|u− lh|2 + |E|

m+2
m A2 for E ⊂ U4W Borel , (7.5)

so that (6.11) can be re-written as

dmQ

(
‖u− lh̄(Q)‖2

L∞(3Q) + d2
Q‖D(u− lh̄(Q))‖2

L∞(3Q) + d3
Q[Du]21

2
,3Q

)
≤ C µ(4Q) . (7.6)
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Q̂

Figure 4. An example of W (Q0).

Recall the partial order relation � of Definition 5.6 and Remark 5.7. For every Q0 ∈ W ,
let W (Q0) be the family of all cubes that are above Q0 together with a shortest path of

adjacent cubes in the top sub-layer that connects this family to Q̂ (cf. Figure 7). We index

the elements W (Q0) = {Q0, . . . , QN̂} with QN̂ = Q̂, and Qi either immediately above Qi−1

(when Qi−1 does not belong to the top sub-layer) or adjacent (if Qi−1 belongs to the top
sub-layer), and we say that Qi comes right after Qi−1.

Next we select κ0 + 1 elements φ(Q0, s) (with s ∈ {0, . . . , κ0}) from W (Q0), where the
function φ(Q0, ·) : {0, . . . , κ0} → W (Q0) is defined through the following recursive algo-
rithm:

(a) φ(Q0, κ0) := QN̂ = Q̂;
(b) for 0 ≤ s ≤ κ0 − 1 we define φ(Q0, s) by:

• Q0 if h̄(φ(Q0, s+ 1)) = h̄(Q0),
• otherwise φ(Q0, s) is the cube Qi such that i + 1 is the smallest index such

that h̄(Qi+1) = h̄(φ(Q0, s+ 1)).

In particular, the map φ enjoys the following properties:

(p1) φ(Q0, κ0) = Q̂ and φ(Q0, 0) = Q0 for all Q0 ∈ W ,
(p2) φ(Q0, s) ∈ W (Q0) for all s ∈ {0, . . . , κ0},
(p3) If s ≤ κ0 − 1 and Q> denotes the cube that comes right after Q, then

h̄((φ(Q0, s))
>) = h̄(φ(Q0, s+ 1)) .

Since lh are linear functions of the distance to the spine V , by (5.10) we have

‖lh − lh′‖L∞(3Q1) ≤ C
dQ1

dQ2

‖lh − lh′‖L∞(Q2) (7.7)
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for all h, h′ ∈ {1, . . . , κ0}, and for all cubes Q1, Q2 ∈ W . Hence, recalling ĥ = h̄(Q̂) we can
estimate

‖u− lĥ‖L∞(3Q0) ≤ ‖u− lh̄(Q0)‖L∞(3Q0) +

κ0−1∑
s=0

‖lh̄(φ(Q0,s+1)) − lh̄(φ(Q0,s))‖L∞(3Q0)

(7.7)

≤ ‖u− lh̄(Q0)‖L∞(3Q0) + C

κ0−1∑
s=0

dQ0

dφ(Q0,s)

‖lh̄(φ(Q0,s+1)) − lh̄(φ(Q0,s))‖L∞(φ(Q0,s))

≤ ‖u− lh̄(Q0)‖L∞(3Q0) + C

κ0−1∑
s=0

dQ0

dφ(Q0,s)

(
‖lh̄((φ(Q0,s))>) − u‖L∞(3(φ(Q0,s))>)

+‖u− lh̄(φ(Q0,s))‖L∞(3φ(Q0,s))

)
,

where in the last inequality we have used that Q ⊂ 3Q>. In turn, (7.6) allows to conclude

dmQ0
‖u− lĥ‖

2
L∞(3Q0) ≤C

(
µ(4Q0) +

κ0−1∑
s=0

(
dQ0

dφ(Q0,s)

)m+2 (
µ(4φ(Q0, s)) + µ(4 (φ(Q0, s))

>)
))

≤C
∑
Q∈W

µ(4Q) , (7.8)

which gives the L∞ bound of (7.1). Arguing similarly for the first derivative we conclude
the whole estimate.

Next, summing over Q0 the inequality (7.8), the left hand side of (7.2) is bounded by∑
Q0∈W

(
µ(4Q0) +

κ0−1∑
s=0

(
dQ0

dφ(Q0,s)

)m+2 (
µ(4φ(Q0, s)) + µ(4φ(Q0, s)

>)
))

=: I + II + II> .

Thus, we just need to show that II, II> ≤ C
∑

Q∈W µ(4Q). The two cases are analogous
and we just argue for II. Interchanging the summation, we have

II =
∑
Q∈W

µ(4Q)
∑

Q0 : ∃ s s.t. φ(Q0,s)=Q

(
dQ0

dQ

)m+2

. (7.9)

For fixed Q ∈ W , we aim at estimating the inner sum in (7.9) by analyzing separately the
contributions coming from each layer

[
2−k, 2−k+1

]
× [−2, 2]m−1. First of all observe that

if Q0 belongs to the same layer of Q, so that dQ0 = dQ, then either Q is above Q0 and
dQ0 = dQ, or both must belong to the top sub-layer: in particular the number of such Q0

is at most C(m,M). Moreover, for d ≥ 1 there are precisely 2M · 2d(m−1) cubes Q0 ∈ Q
such that Q is above Q0 and dQ0 = 2−d dQ. Hence,∑

Q0 : ∃ s s.t. φ(Q0,s)=Q

(
dQ0

dQ

)m+2

≤ C(m,M) +
∑
d≥1

2−d(m+2) · 2M · 2d(m−1) ≤ C(m,M) .



40 C. DE LELLIS, J. HIRSCH, A. MARCHESE, L. SPOLAOR, AND S. STUVARD

Inserting the latter inside (7.9) we conclude II ≤ C
∑

Q∈W µ(4Q). �

8. Hardt-Simon type estimates

This section implements one of the crucial ideas of Simon’s work [14] (cf. also [2]): close
to points of high density we can use the monotonicity formula to give an improved L2

estimate, see (8.1); in particular, such points of high density are bound to lie close to the
spine V at the scale of the excess E.

Theorem 8.1. There exists a constant β1 > 0 depending only on S0 with the following
property. Let T,Σ,C,C0,S, and S0 be as in Assumptions 5.1 and 5.2. For any β ∈ (0, β1)
there are constants C, η3, and 0 < ε2 ≤ ε1 (where ε1 was given in Theorem 5.8) depending
upon (m,n, p,S0, β) such that the following conclusion holds. Assume that:

(a) (5.1)-(5.2)-(5.15)-(5.16) are satisfied with ε2 and η3 in place of ε1 and ηS0;

(b) {l̃} = {li,h(i,j)} is the linear p-multifunction of Theorem 6.3 and S̃ denotes the open
book induced by it as in Definition 6.4;

(c) q0 = (x0, y0) ∈ (V ⊥ × V ) ∩B3/4 is a point with ΘT (q0) ≥ ΘC(0) = p
2
.

Then

|x0|2 +

ˆ
B1

dist2 (q − q0, S̃)

|q − q0|m+ 7
4

d‖T‖(q) ≤ C(E + A) . (8.1)

8.1. Corollaries of the monotonicity formula. We summarize in the following lemma
two consequences of the stationarity of the varifold ‖T‖.

Lemma 8.2. Let T and C be as in Theorem 8.1, and assume that g(q) = |q|k ĝ( q
|q|) for

some k ≥ 1 and some Lipschitz nonnegative function ĝ on the unit sphere. Then, for every
2 > α > 0 and R1 ≤ R0 we have

α

2

ˆ
BR1

g2(q)

|q|m+2k−α d ‖T‖ (q) ≤ m+ 2k

Rm+2k−α
1

ˆ
BR1

g2 d ‖T‖+
2

α

ˆ
BR1

|∇g(q)|2|q⊥|2

|q|m+2k−α d ‖T‖ (q)

+ CA‖ĝ‖2
∞
‖T‖ (BR1)

Rm−α
1

, (8.2)

where q⊥ := q−p~T (q) at Hm-a.e. q ∈ spt(T ) (here, p~T = p~T (q) is the orthogonal projection

onto span(~T (q))). Moreover, for every nonnegative f ∈ C1(R), upon setting F (t) :=

−
´ R1

t
f ′(s)sm ds, we haveˆ

BR1

f(|q|) d ‖C‖ (q)−
ˆ
BR1

f(|q|) d ‖T‖ (q) +m

ˆ
BR1

F (|q|) |q⊥|2

|q|m+2
d ‖T‖ (q)

≤−
ˆ
BR1

F (|q|) q⊥ ·HT (q)

|q|m
d ‖T‖ (q) . (8.3)

The proof, which follows standard computations, is given in the Appendix. This is the
point where one crucially uses the assumption that ΘT (0) ≥ p

2
= ΘC(0).

The rest of the section will be devoted to the proof of Theorem 8.1.
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8.2. Preliminary estimates. In the sequel we denote by ∂r the derivative in the radial
direction q

|q| and, given a p-multifunction u as in Theorem 6.3, we use the shorthand

notation
∣∣∣∂r ui(z)|z| ∣∣∣2 for the functions

∑
j

∣∣∣∣∂rui,j(z)

|z|

∣∣∣∣2
on the respective domains Ui = RW ∩H0,i.

Proposition 8.3. There exists a geometric constant β1 > 0 such that for any β ∈ (0, β1)
there are constants C and ε1 depending on (m,n, p,C0, β) with the following property. Let
T,Σ,C,C0,S, and S0 be as in Theorem 5.8, let u and U4W be the map defined in Theorem
5.8 and its domain, respectively. Then:ˆ

B11/6

dist(q,S)2

|q|m+ 7
4

d‖T‖+
∑
i

ˆ
B11/6∩Ui

|z|2−m
∣∣∣∣∂rui(z)

|z|

∣∣∣∣2 dz
≤C
ˆ
B11/6

|q⊥|2

|q|m+2
d‖T‖+ C(E + A) . (8.4)

Proof. We apply (8.2) with R1 = 11/6, g(q) = dist(q,S), and α = 1/4. Since g is 1-
homogeneous, and 1-Lipschitz, the fist integral in (8.4) can be bounded by the right hand
side.

To deduce the bound on the second element in the sum, first observe that∣∣∣∣∂rui,j(z)

|z|

∣∣∣∣ ≤ ∣∣∣∣∂r vi,j(z)

|z|

∣∣∣∣ .
Hence, since for q = z + vi,j(z) it holds

|q| ≤ C (1 + β) |z| ,

the inequality will follow if we can show that the pointwise estimate∣∣∣∣∂r vi,j(z)

|z|

∣∣∣∣2 ≤ 2
|(z + vi,j(z))⊥|2

|z|4
for every z ∈ B11/6 ∩ Ui (8.5)

holds for every i ∈ {1, . . . , N0} and j ∈ {1, . . . , κ0,i}.
Using that ∂r(z/|z|) = 0, we readily calculate

∂r
vi,j(z)

|z|
= ∂r

z + vi,j(z)

|z|
=
z + |z| ∂rvi,j(z)

|z|2
− z + vi,j(z)

|z|2
, (8.6)

so that, since z+|z| ∂rvi,j(z) is tangent to the graph of vi,j (and thus to spt(T )) at z+vi,j(z),
we have ∣∣∣∣∣

(
∂r
vi,j(z)

|z|

)⊥∣∣∣∣∣
2

=
|(z + vi,j(z))⊥|2

|z|4
. (8.7)
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Then, to conclude the validity of (8.5) we only have to estimate the tangential component.
To this aim, we recall the notation pi for the orthogonal projection onto (the m-plane

containing) H0,i, and using that pi

(
∂r

vi,j(z)

|z|

)
= 0 since vi,j(z) ∈ H⊥0,i, we deduce that, for

p~T = p~T (q) with q = z + vi,j(z),∣∣∣∣p~T

(
∂r
vi,j(z)

|z|

)∣∣∣∣ ≤ ‖p~T − pi‖O
∣∣∣∣∂r vi,j(z)

|z|

∣∣∣∣ ,
where ‖ · ‖O denotes operator norm. In particular, a suitable choice of β > 0 yields, due
to conclusion (ii) in Theorem 5.8,∣∣∣∣p~T

(
∂r
vi,j(z)

|z|

)∣∣∣∣2 ≤ 1

2

∣∣∣∣∂r vi,j(z)

|z|

∣∣∣∣2 , (8.8)

so that we can conclude (8.5) from (8.8) and (8.7). �

The goal of the next proposition is to show that, in fact, also the first addendum in
the right-hand side of (8.4) can be estimated by C (E + A), which can be thought as a
Caccioppoli-type inequality.

Proposition 8.4. Under the same assumptions of Proposition 8.3 (up to possibly choosing
a smaller value for β1) the following estimate holds. Denote by pV the orthogonal projection
on the spine V of C0, and for ‖T‖-a.e. q denote by p~T (q)⊥ the projection on the orthogonal
complement of the tangent plane to T at q. Then

ˆ
B11/6

(∣∣∣pV · p~T (q)⊥

∣∣∣2 +
|q⊥|2

|q|m+2

)
d‖T‖(q) ≤ C (E + A2) , (8.9)

where | · | is the Hilbert-Schmidt norm and the constant C depends upon (m,n, p,S0, β).

Proof. Let g ∈ C∞c (BR0), and, denoting pV ⊥ the orthogonal projection onto the comple-
ment V ⊥ to the spine V of C0, test the first variation formula (2.2) with the vector field
χ(q) = χ(x, y) := g2(q) pV ⊥(q) = g2(q)x to obtain

−
ˆ
g2 x ·HT d‖T‖ =

ˆ
div~T (g2x) d‖T‖ . (8.10)

In order to calculate div~T (g2x), where ~T = ~T (q) and x = pV ⊥(q), let us denote (τ1, . . . , τm)

and (νm+1, . . . , νm+n) orthonormal bases of ~T and ~T⊥ respectively, so that

div~T (g2x) =
m∑
i=1

τi · ∇τi(g
2x) = 2 g p~T (x) · ∇g + g2

m∑
i=1

τi · pV ⊥(τi) .

Concerning the first addendum, we see that

p~T (x) · ∇g = p~T (x) · (∇V ⊥g +∇V g) = p~T (x) · ∇V ⊥g − p~T⊥(x) · ∇V g ,
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since x · ∇V g = pV ⊥(q) · ∇V g = 0. Concerning the second addendum, instead, we write

m∑
i=1

τi · pV ⊥(τi) = m−
m∑
i=1

τi · pV (τi) ,

and since
m∑
i=1

τi · pV (τi) +
n∑
j=1

νm+j · pV (νm+j) = tr (pV ) = m− 1 ,

we deduce

m∑
i=1

τi · pV ⊥(τi) = 1 +
n∑
j=1

νm+j · pV (νm+j) = 1 + tr (pV · p~T⊥) = 1 + |pV · p~T⊥ |
2 .

Hence, Young’s inequality allows to estimate from (8.10)

−
ˆ
g2 x ·HT d‖T‖

=

ˆ
(1 + |pV · p~T⊥ |

2) g2 d‖T‖+

ˆ
2g (p~T (x) · ∇V ⊥g − p~T⊥(x) · ∇V g) d‖T‖

≥
ˆ

(1 + 1
2
|pV · p~T⊥|

2) g2 d‖T‖ − 2

ˆ (
|x⊥|2 |∇V g|2 − g (p~T (x) · ∇V ⊥g)

)
d‖T‖ . (8.11)

In particular we inferˆ
(1 + 1

2
|pV · p~T⊥|

2) g2 d‖T‖

≤ −
ˆ
g2 x ·HT d‖T‖+ 2

ˆ (
|x⊥|2 |∇V g|2 − g (p~T (x) · ∇V ⊥g)

)
d‖T‖ . (8.12)

We next consider the linear p-multifunction {li,h(i,j)} of Theorem 6.3 and the corresponding

cone C̃. Since C̃ has spine V , it is invariant with respect to scaling in the V ⊥ direction, so
that, if we define ιr(x, y) := (x

r
, y), then (ιr)]C̃ = C̃ for all r > 0. Hence, if we differentiate

in r the identity ˆ
g2 d‖C̃‖ =

ˆ
g2 d‖(ιr)]C̃‖

and evaluate for r = 1 we conclude

0 = −
ˆ (

2g (x · ∇V ⊥g) + g2
)
d‖C̃‖ ,

that is ˆ
g2 d‖C̃‖ = −

ˆ
2g (x · ∇V ⊥g) d‖C̃‖ . (8.13)
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Subtracting (8.13) from (8.12) we inferˆ
|pV · p~T⊥ |

2 g2d‖T‖+ 2

(ˆ
g2d‖T‖ −

ˆ
g2d‖C̃‖

)
≤ −2

ˆ
g2 x ·HT d‖T‖︸ ︷︷ ︸

=:(A)

+ 4

ˆ
|x⊥|2 |∇V g|2 d‖T‖︸ ︷︷ ︸

=:(B)

+ 4

ˆ
g (x · ∇V ⊥g) d‖C̃‖ − 4

ˆ
g (p~T (x) · ∇V ⊥g) d‖T‖︸ ︷︷ ︸

=:(C)

.

(8.14)

Choose next g(q) := γ(|q|), where γ is a smooth, nonnegative, and nonincreasing function
which equals 1 on [0, 11/6] and is supported in [0, 2). With this choice, and using (8.3),
the left-hand side of (8.14) dominates the left-hand side of (8.9) up to a summand CA.
Moreover, it is easy to bound (A) with CA and thus it remains to bound (B) and (C) with
C(E + A). We first use ‖∇g‖∞ ≤ C and (7.4) to achieve the bound

(B) ≤ C

ˆ
B2\RW

|x|2 d‖T‖+ C
∑
i,j

ˆ
B2

|x⊥|2 d‖Gṽi,j‖︸ ︷︷ ︸
=:(Bi,j)

,

where ṽ = {ṽi,j} is the p-multifunction over S̃ introduced in Corollary 6.6. The first
summand is bounded by C(E + A2) because of (5.18). As for the second summand, we
use the graphical structure to write it as an integral over Ũi,j. To that end, we write every

z ∈ Ũi,j ⊂ H1,i,j as z = (ξ, ζ) ∈ V ⊥ × V and denote by p⊥z the orthogonal projection
onto the normal space (Tz+ṽi,j(z)Gṽi,j)

⊥. Using the fact that the Lipschitz constant of ṽi,j
is bounded by Cβ, we then infer

(Bi,j) ≤ C

ˆ
Ũi,j∩B2

∣∣p⊥z (ξ + ũi,j(z) + Ψ(z + ũi,j(z)))
∣∣2 dz .

Next, consider that ‖p⊥z − pH⊥1,i,j
‖O ≤ C|∇ṽi,j(z)| ≤ C‖DΨ‖0 + C|∇ũi,j(z)| and since

pH⊥1,i,j
(ξ) = 0, we conclude ∣∣p⊥z (ξ)

∣∣ ≤ CA + C|ξ||∇ũi,j(z)| . (8.15)

On the other hand, ∣∣p⊥z (ũi,j(z) + Ψ(z + ũi,j(z)))
∣∣ ≤ C|ũi,j(z)|+ CA . (8.16)

In particular we conclude

(Bi,j) ≤ C

ˆ
Ũi,j

(
|ξ|2|∇ũi,j(z)|2 + |ũi,j(z)|2

)
dz + CA2

(6.9)

≤ C

ˆ
(U3W )i∩B3

(
|ξ|2|∇wi,j(z)|2 + |wi,j(z)|2

)
dz + CA2

and thus (Bi,j) ≤ C(E + A2) because of (6.4).
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We now come to estimating (C). To this aim, we first compute the two integrands,
namely

g(q)x · ∇V ⊥g(q) =
γ′(|q|)γ(|q|)
|q|

|x|2 =: λ(|q|) |x|2

g(q) p~T (q)(x) · ∇V ⊥g(q) =
γ′(|q|)γ(|q|)
|q|

p~T (q)(x) · x =: λ(|q|) p~T (q)(x) · x .

In both cases the integrands are bounded by C|x|2 due to the fact that |q|−1γ′(|q|) is
bounded. In particular, arguing as for (B) we can estimate

(C) ≤ C(E + A2) + 4
∑
i,j

∣∣∣∣∣
ˆ
Ũi,j

λ(|z|) |ξ|2 dz −
ˆ
λ(|q|) p~T (q)(x) · x d‖Gṽi,j‖(q)

∣∣∣∣∣ . (8.17)

If we introduce the projection pz onto the tangent Tz+ṽi,j(z)Gṽi,j and the Jacobian Jṽi,j(z),
we can then use the graphicality to express the second integral asˆ

Ũi,j

λ(|z + ṽi,j(z)|) pz(ξ + ṽi,j(z)) · (ξ + ṽi,j(z))︸ ︷︷ ︸
=:f(z)

Jṽi,j(z) dz . (8.18)

Recall first the classical Taylor expansion

|Jṽi,j(z)− 1| ≤ C|∇ṽi,j(z)|2 ≤ C|∇ũi,j(z)|2 + CA2 .

Since |f(z)| ≤ C|ξ|2 + |ṽi,j(z)|2 ≤ C|ξ|2 +CA2, up to an error term C|ξ|2|∇ũi,j(z)|2 +CA2

the integrand in (8.18) can be treated as

λ(|z + ṽi,j(z)|) pz(ξ + ṽi,j(z)) · (ξ + ṽi,j(z)) . (8.19)

Next note that λ vanishes on [0, 1], so that we can regard it as a smooth function of |q|2.
Since |z + ṽi,j(z)|2 − |z|2 = |ũi,j(z)|2 + |Ψ(z + ũi,j(z))|2 ≤ |ũi,j(z)|2 + CA2, up to an error
term C|ũi,j(z)|2 + CA2, the expression in (8.19) can be treated as

λ(|z|) pz(ξ + ṽi,j(z)) · (ξ + ṽi,j(z)) . (8.20)

Next observe that

pz(ξ+ṽi,j(z))·(ξ+ṽi,j(z)) = |pz(ξ+ṽi,j(z))|2 = |pz(ξ)|2+|pz(ṽi,j(z))|2+2 pz(ξ)·pz(ṽi,j(z)) .

Now, we clearly have

|pz(ṽi,j(z))|2 ≤ C|ũi,j(z)|2 + CA2 ;

furthermore, from the definition of pz one gets that

2 |pz(ξ) · pz(ṽi,j(z))| = 2 |ξ · pz(ṽi,j(z))| ≤ C |ξ| |∇ṽi,j(z)| |ṽi,j(z)|
≤ C |ξ|2 |∇ũi,j(z)|2 + C |ũi,j(z)|2 + CA2 .

Thus, up to an error term of type C |ξ|2 |∇ũi,j(z)|2 + C |ũi,j(z)|2 + CA2, (8.20) can be
treated as

λ(|z|)|pz(ξ)|2 .
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In turn we can write

|ξ|2 − |pz(ξ)|2 ≤ C|ξ|2|∇ṽi,j(z)|2 ≤ C|ξ|2|∇ũi,j(z)|2 + CA2 .

Since λ(|z|)|ξ|2 is the integrand in the first integral of (8.17), summarizing our considera-
tions we achieve ∣∣∣∣∣

ˆ
Ũi,j

λ(|z|) |ξ|2 dz −
ˆ
λ(|q|) p~T (q)(x) · x d‖Gṽi,j‖(q)

∣∣∣∣∣
≤CA2 + C

ˆ
Ũi,j∩B2

(|ξ|2|∇ũi,j(z)|2 + |ũi,j(z)|2) dz .

Hence, using again (6.9) and (6.4) we conclude the desired estimate (C) ≤ C(E + A2). �

8.3. Proof of Theorem 8.1. Before coming to the proof we isolate the following simple
remark:

Lemma 8.5. Under the assumptions of Theorem 8.1, if λ ∈ (1/2, 1) and provided ε2 and
η3 are chosen sufficiently small, the assumptions of Theorem 6.3 hold replacing T with
Tq0,λ = (ηq0,λ)]T , Σ with Σq0,λ := (Σ − q0)/λ, and the cones C0 and C with cones O(C0)
and O(C), where O is an isometry of Rm+n mapping T0Σ onto Tq0Σ with |O− Id| ≤ C0A.

Moreover, after introducing the cone C̃ of Corollary 6.6 corresponding to the new choices
Tq0,λ,Σq0,λ, O(C0), and O(C), the assumptions of Proposition 8.3 and Proposition 8.4 hold

with Tq0,λ and C̃ replacing T and C.

Proof. For the first part the main point is that the cones C and C0 are both invariant under
dilation and under translation along the spine V , while the assumption (c) in Theorem 8.1
ensures that, upon choosing η3 very small, we can assume that q0 is sufficiently close to V .
As for the second part of claim, observe that it suffices to apply Corollary 6.6 to ensure that
the conditions (5.1) and (5.2) are satisfied when replacing C with C̃. As for (5.15)-(5.16),
since we can apply Corollary 6.6 with Tq0,λ, they will follow from an appropriate choice of
ε2. �

Proof of Theorem 8.1. By Lemma 8.5, we can apply Proposition 8.3 and Proposition 8.4
with Tq0,λ and C̃ replacing T and C. Choosing λ ∈ (1/2, 1) such that B1 ⊂ Bλ 11/6(q0), we
conclude ˆ

B1

dist (q − q0, S̃)2

|q − q0|m+ 7
4

d‖T‖(q) ≤ C(E(T, S̃ + q0, 0, λR0) + A) . (8.21)

Next, observe that

dist(q, S̃ + q0) ≤ dist(q, S̃) + |x0| . (8.22)

In particular, using the invariance of C̃ along V , it can be readily checked that

E(T, S̃ + q0, 0, λR0) ≤ C|x0|2 + CE(T, S̃, 0, R0) ≤ C|x0|2 + C(A + E) ,
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where we have used that S̃ ⊂ S. Combining with (8.21) we achieveˆ
B1

dist (q − q0, S̃)2

|q − q0|m+ 7
4

d‖T‖(q) ≤ C(E + A) + C|x0|2 . (8.23)

We claim the existence of β1 and C1 depending only upon S0 such that, if

ρ ≥ max{C2E
1/(m + 2)β−1, C̄|x0|} , (8.24)

where C2 is the constant of Theorem 5.8(i) and C̄ depends only on C0, then

|x0|2 ≤ C1ρ
7
4

ˆ
B1

dist (q − q0, S̃)2

|q − q0|m+ 7
4

d‖T‖(q) + C1ρ
−m(E + A) . (8.25)

Using (8.25) with a fixed appropriately small ρ we then get from (8.23)ˆ
B1

dist (q − q0, S̃)2

|q − q0|m+ 7
4

d‖T‖(q) ≤ C(E + A) , (8.26)

which in turn we can combine again with (8.25) to achieve the desired estimate (8.1). Note
that in order to ensure that ρ can be chosen sufficiently small, we need E sufficiently small,
which in turn dictates a sufficiently small choice of ε2, depending on β, and |x0| smaller
than a constant depending on β and S0, which in turn requires η3 to be chosen sufficiently
small.

We now come to the proof of (8.25). We first choose a half plane H0,i which is furthest
away from q0, i.e.

|pH⊥0,i
(q0)| = |pH⊥0,i

(x0)| = max
j

{
|pH⊥0,j

(q0)|
}

= max
j

{
|pH⊥0,j

(x0)|
}
. (8.27)

Note that, since the open book S0 is nonflat, there is a positive constant c depending only
on C0 such that

4c|x0| ≤ |pH⊥0,i
(q0)| (8.28)

Next, consider the book O(S0), where O is the linear isometry of Lemma 8.5. Observe that

4c|x0| ≤ |pO(H0,i)⊥(q0)|+ CA

Observe that if |x0| ≤ CA, then (8.25) obviously holds and therefore we can assume,
without loss of generality

3c|x0| ≤ |pO(H0,i)⊥(q0)| .
Since in the rest of the proof the rotation O will just introduce additional error terms
controlled by CA, from now on we omit it from the discussion.

Consider now the orthogonal complement of H0,i in π0, namely H⊥0
0,i = H⊥0,i ∩ π0. The

latter is a line and we can identify it with {(t, 0, . . . , 0) : t ∈ R}. We now look at the
projection of q0 on this line, which is given by (t0, 0, . . . 0). Observe that, |pH⊥0,i

(q0)| ≤
|t0| + C0A|x0|, because q0 ∈ spt(T ) ⊂ Σ, where C0 is a geometric constant. In particular,
choosing ε2 sufficiently small, we can assume that |t0| ≥ 2c|x0|. If t0 = 0, it follows that
x0 = 0 and there is nothing to prove. We can thus assume, without loss of generality, that
t0 > 0. We now consider {H̃i,j}j as graphs over H0,i of functions taking values in H⊥0

0,i . We
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H0,i

Hi,j Hi,j
x

x̄

Figure 5. The picture on the left shows the books S0 (dashed lines) and

the book S̃ (solid lines).The page H0,i is pictured horizontal and the page

Hi,j is the “lowest page” of S̃ among those close to H0,i. The angle formed
between q0 and H0,i is larger than a geometric constant (depending only
on S0) and much larger than the angle between H0,i and Hi,j. The picture

on the right shows Hi,j, the translated book q0 + S̃ and a point x ∈ Hi,j

with the property that |x − q0| ≥ C|x0| for a suitable constant. Observe

that dist (x − q0, S̃) = dist (x, q0 + S̃) = |x̄ − x|, where x̄ is the point on

q0 + S̃ closest to x. Note that x̄ must belong to q0 + Hi,j and x̄− x must be
orthogonal it, in particular |x− x̄| = |pH⊥i,j

(q0)|.

then choose the j whose graph is lowest in the natural ordering induced by the variable t.
We then have

|pH̃⊥i,j
(q0)| ≥ |pH⊥0,i

(q0)| −
∣∣pH̃⊥i,j

− pH⊥0,i
||x0| .

Choosing η3 sufficiently small we can thus ensure

c|x0| ≤ |pH̃⊥i,j
(q0)| . (8.29)

On the other hand for any point x in H̃i,j with dist(x, V ) ≥ C̄|x0|, where the constant C̄
depends only upon S0, it follows that

dist(x− q0, S̃) = |pH̃⊥i,j
(q0)| ≥ c|x0| . (8.30)

In order to prove the latter claim we first observe that it suffices to show it for the point
pπ0(q0). Secondly, using the invariance of the cone along the spine V , we can assume as well
that q0, x ∈ V ⊥, thus reducing the claim to a simple 2-dimensional geometric consideration.
An illustration of why the latter holds is given in Figure 8.3 below.
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Fix a system of coordinates so that H̃i,j = {(x1, 0, . . . , 0, v) : v ∈ V, x1 ≥ 0}. Consider
now β < β1 fixed and let ε2 be chosen so small that the domain of the function ṽi,j contains
Ω := [ρ, 2ρ]×{0}×Bρ(y0). This is possible by choosing ε2 sufficiently small because of (8.24)
and Theorem 5.8. We also require that any point in Ω satisfies dist(x, V ) ≥ ρ ≥ C̄|x0|, so
that (8.30) holds.

The graph of ṽi,j over Ω belongs to T , and if q is a point on it and x is its projection

onto H̃i,j we can combine (8.30) and the triangle inequality to get

c|x0| ≤ dist(x− q0, S̃) ≤ dist(q − q0, S̃) + |ṽi,j(x)| ≤ dist(q − q0, S̃) + |ũi,j(x)|+ CA .

Squaring the latter inequality, integrating it over the domain Ω, and using that Ω ⊂ B1 if
ρ is small enough we reach

|x0|2 ≤ Cρ
7
4

ˆ
B1

dist(q − q0, S̃)2

|q − q0|m+ 7
4

d‖T‖(q) + Cρ−m
ˆ
B1∩H̃i,j

|ũi,j|2 + CA2

≤ Cρ
7
4

ˆ
B1

dist(q − q0, S̃)2

|q − q0|m+ 7
4

d‖T‖(q) + Cρ−m(E + A) ,

where we have used (6.9). �

9. No-hole condition, binding functions, and estimates on the spine

We start by summarizing the assumptions on the various currents and parameters.

Assumption 9.1. We let T,Σ,C0,C,S0, and S be as in Assumption 5.1. β1 is the constant
of Theorem 8.1, which depends only upon S0. For any fixed β < β1 we choose η3 and ε2,
depending upon (m,n, p,S0, β), as in Theorem 8.1 and we assume that

F̂ p
BR0

(T −C0) + F̂ p
BR0

(C−C0) < η3 , (9.1)

A + E(C,S0, 0, R0) + E(T,S, 0, R0) ≤ ε2
2 . (9.2)

In this section, we are going to adopt the following notation. Recall that Q defines a
collection of cubes in [0, 2]× [−2, 2]m−1 ⊂ [0,∞)× V , so that⋃

Q∈Q

Q = (0, 2]× [−2, 2]m−1 = [0, 2]× [−2, 2]m−1 \ V .

Recalling that

π0 = {0n−1} × R2 × Rm−1 ,

V = {0n−1} × {02} × Rm−1 ,

we will set

RQ :=
{
q = (0, x, y) ∈ π0 : 0 < |x| ≤ 2 and y ∈ [−2, 2]m−1} . (9.3)

Notice that RQ is invariant with respect to rotations around V in π0.
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Definition 9.2. A binding function is any Borel measurable function ξ : RQ → V ⊥ with
the property that ξ(q) = ξ(q′) for all q = (0, x, y) and q′ = (0, x′, y′) such that (|x|, y) and
(|x′|, y′) belong to the interior of the same Q ∈ Q.

The following is the main theorem of this section. In the statement, we will use the
notation

%∞ := ‖%W‖L∞([−2,2]m−1) , (9.4)

where %W is the function defined in (5.13) corresponding to a Whitney domain W .

Theorem 9.3. Let C0 be as in Assumption 1.8, with S0 = spt(C0) ⊂ π0 and let V be the
spine of C0. Let β1 be as in Assumption 9.1. For any β < β1 there exist positive constants
η4 ≤ η3, ε3 ≤ ε2, and C, depending upon (m,n, p,S0, β) with the following property. Let
T,Σ,C, and S be as in Assumption 9.1 such that (9.1)-(9.2) hold with η4 and ε3 in place
of η3 and ε2. Then, setting as usual |x|(q) = dist(q, V ), it holds

ˆ
B1/2

dist(q, S̃)2

max{%∞, |x|}1/2
d‖T‖(q) ≤ C(E + A) , (9.5)

where S̃ is the open book spt(C̃) = GC0(l̃) from Definition 6.4. Furthermore, let u, U4W ,

l̃, and w be as in Theorem 6.3. There exist a binding function ξ and a p-multifunction $
on UW over S0 such that

‖ξ‖2
∞ ≤ C(E + A) , (9.6)

sup
ζ∈UW

|$(ζ)|2 ≤ C (E + A) F̂ p
BR0

(C−C0)2 , (9.7)

N∑
i=1

κ0,i∑
j=1

ˆ
(UW )i∩B1/2

|wi,j −$i,j − p
H
⊥0
0,i

(ξ)|2

|x|5/2
+
|∇wi,j|2

|x|1/2
dz ≤ C(E + A) . (9.8)

9.1. No-holes property. The following “no-holes property” is the crucial tool towards
the proof of Theorem 9.3.

Proposition 9.4 (No-holes property). Let C0 be as in Assumption 1.8, with

S0 = spt(C0) ⊂ π0

and let V be the spine of C0. For every δ ∈
(
0, 1

8

)
, there exists εNH = εNH(m, p,S0, δ) > 0

with the following property. Let Σ be as in Assumption 2.1, and let T be area minimizing
mod(p) in Σ ∩B2 with (∂T ) B1 = 0 mod(p). If F̂ p

B1
(T −C0) < η1(S0) (where η1(S0) is

the parameter defined in Lemma 4.6), and if

A + E(T,S0, 0, 1) ≤ ε2
NH , (9.9)

then T satisfies the following δ-no-holes condition w.r.t. C0 in Bm−1
1/2 ⊂ V :

(NH) for any y ∈ Bm−1
1/2 , there exists q ∈ Bδ((0, y)) such that ΘT (q) ≥ ΘC0(0) = p/2.

We first prove the following lemma.
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Lemma 9.5. Let Σ be as in Assumption 2.1, and let T be area minimizing mod(p) in
Σ ∩B2 with (∂T ) B1 = 0 mod(p). If ΘT (q) < p/2 for every q ∈ B1, then (∂T ) B1 = 0.
In particular, T is an area minimizing integral current without boundary in B1.

Proof. First observe that, since {q ∈ B1 : ΘT (q) = p/2} = ∅, ∂T is a flat chain whose
support spt(∂T ) ∩ B1 is contained in the singular set Sing(T ) ∩ B1. By the standard
stratification of Sing(T ), given a point q ∈ spt(∂T )∩B1, one and only one of the following
(mutually exclusive) cases may occur:

(a) q ∈ Sm−2,
(b) q ∈ Sm−1 \ Sm−2,
(c) q ∈ [Sm \ Sm−1] ∩ Sing(T ).

By Proposition 3.5, the assumption that ΘT (q) < p/2 prevents case (b) to occur, and, since
T has codimension one in Σ, White’s regularity [17, Theorem 4.5] implies that the set of
points in (c) is empty. Thus, the only possible alternative is (a), whence dimH(spt(∂T ) ∩
B1) ≤ m − 2. Since ∂T is a flat chain of dimension m − 1, this implies that necessarily
∂T B1 = 0 (see e.g. [18, Theorem 3.1]). �

Remark 9.6. We observe explicitly that if Σ is of class C3,a0 for some a0 ∈ (0, 1) then
Lemma 9.5 holds true also when the codimension of T in Σ is larger than one. The proof is
the same, modulo the fact that White’s regularity theory cannot be invoked, and that the
set of points in (c) may in fact be not empty. Nonetheless, we can still bound its Hausdorff
dimension by m− 2 using [5, Theorem 1.7].

Proof of Proposition 9.4. Given the structure of area minimizing m-cones mod(p) with
(m−1)-dimensional spine as detailed in Proposition 3.5, we can assume that ∂C0 = p JV K
in Rm+n, for a suitable choice of a constant orientation on V . In particular, it holds

(∂C0) Bδ((0, y)) 6= 0 for every δ > 0 and for every y ∈ V . (9.10)

Now, suppose towards a contradiction that the proposition is false. Then, there are
0 < δ < 1/8, a sequence εj ↓ 0+, and currents Tj area minimizing mod(p) in Σj ∩B2 with

sptp(∂Tj) ∩B1 = ∅ , F̂ p
B1

(Tj −C0) < η1(S0) , Aj + E(Tj,S0, 0, 1) ≤ ε2
j , (9.11)

which do not satisfy (NH). That is, there are points yj ∈ Bm−1
1/2 ⊂ V such that ΘTj(q) <

p/2

for all q ∈ Bδ((0, yj)). Lemma 9.5 then yields

(∂Tj) Bδ((0, yj)) = 0 . (9.12)

First observe that, by a classical argument, it is easy to see that the second condition
in (9.11) together with the minimality mod(p) of Tj imply that the masses of Tj in, say,
B4/5 are uniformly bounded by a constant C(m, p). Moreover, since εj ↓ 0+, Lemma 4.6
implies that

F̂ p
B3/4

(Tj −C0)→ 0 as j →∞ . (9.13)
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Next, let y ∈ Bm−1

1/2 ⊂ V be a subsequential limit of the points yj. By slicing theory, if
we denote dy(q) = |q − (0, y)|, we have thatˆ δ

δ
2

M(〈Tj, dy, σ〉) dσ ≤ ‖Tj‖(Bδ((0, y))) ≤ ‖Tj‖(B3/4) ,

so that there exist a (not relabeled) subsequence of Tj and σ ∈
(
δ
2
, δ
)

with the property
that

lim
j→∞

M(〈Tj, dy, σ〉) ≤ C(m, p) δ−1 .

In particular, since
∂[Tj Bσ((0, y))] = 〈Tj, dy, σ〉

by (9.12) for all sufficiently large j, the sequence {Tj Bσ((0, y))}j satisfies the hypotheses
of the Federer-Fleming compactness theorem for integral currents, so that a further sub-
sequence converges, in the sense of currents and with respect to the classical flat distance
FBσ((0,y)), to an integral current T̂ , and (9.12) guarantees that

(∂T̂ ) Bδ/2((0, y)) = 0 . (9.14)

By [5, Proposition 5.2], T̂ is area minimizing mod(p), and by Proposition A.2 it holds

limj→∞ F̂ p
Bσ((0,y))(Tj Bσ((0, y))− T̂ ) = 0. In turn, using (9.13), the monotonicity of F̂ p

with respect to the localizing set, and Proposition A.1, we conclude that F̂ p
Bσ((0,y))((T̂ −

C0) Bσ((0, y))) = 0, so that, in particular,

T̂ Bδ/2((0, y)) = C0 Bδ/2((0, y)) mod(p) (9.15)

by Corollary A.3. In fact, since the multiplicities on C0 are all strictly less than p/2, the
identity in (9.15) holds in the sense of classical currents. The conditions (9.10) and (9.14)
are then incompatible, and we have reached a contradiction. �

9.2. Proof of Theorem 9.3. Step one. Recall the notation Q for the collection of cubes
Q ⊂ [0, 2]× [−2, 2]m−1 defined in Section 5. Select, thanks to (5.10), a number δ ∈

(
0, 1

4

)
such that

dist(4Q, V ) ≥ 2δdQ for every Q ∈ Q , (9.16)

and then let εNH be given by Proposition 9.4 in correspondence with this choice of δ. Let
y ∈ Bm−1

1/2 = B1/2 ∩ V be arbitrary, and let 2 > R > %(y). By definition of %(y) and the

structure of UW , then, there exists a cube Q ∈ W(T,S, τ) such that ζ = (R, y) ∈ Q. As
usual, let cQ = (xQ, yQ) be the center of Q, yQ = (0, yQ) the projection of cQ onto V , and
dQ the diameter of Q. Notice, in passing, that |y − yQ| < dQ/2. Also observe that, by
(5.10) and our choice of M̄ , it holds

1

4
M̄dQ ≤ R ≤ 1

2
M̄dQ . (9.17)

We claim now that, modulo possibly choosing a smaller value for τ , the current Ty,R :=
(ηy,R)]T satisfies the hypotheses of Proposition 9.4. It is clear, by the choice of R0, that

Ty,R is area minimizing mod(p) in Σy,R ∩B2, where Σy,R := Σ−y
R

, and that (∂Ty,R) B1 =
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0 mod(p). Next, Ay,R = ‖AΣy,R‖0 ≤ R ‖AΣ‖0 ≤ 2 A, and thus Ay,R ≤ ε2
NH as soon as

ε3 ≤ ε2
NH/2. Hence, we only have to check that

F̂ p
B1

(Ty,R −C0) < η1(S0) , E(Ty,R,S0, 0, 1) ≤ ε2
NH . (9.18)

For the excess estimate, using that E(Ty,R,S0, 0, 1) = E(T,S0, y, R) together with (9.17)
we deduce that

E(Ty,R,S0, 0, 1) ≤ C E(T,S, yQ, M̄dQ) + C distH(S ∩B1,S0 ∩B1)2 ≤ C τ 2 + C η2
4 .

Therefore, the second inequality in (9.18) is satisfied for suitable choices of τ and η4. In this
regard, notice that the quantity τ defining the Whitney domain was previously chosen so
that (5.55) is satisfied: the smallness condition of τ with respect to εNH forces, therefore, β
to be sufficiently small with respect to εNH, which translates into a smallness requirement
on the constant β1 of Theorem 8.1, depending on m, p, and S0.

Next, we prove the estimate on the modified flat distance. Of course, the estimate is
trivial (provided η4 is chosen small enough depending on the constantM) if R is comparable
to 1, so we can assume without loss of generality that Q is not contained in the top stratum
[1, 2] × [−2, 2]m−1, so that log1/2(M̄dQ) + 1 ≥ 0. The estimate is a simple consequence of

the following claim: for any integer 0 ≤ ` ≤ log1/2(M̄dQ) + 1 it holds

F̂ p
B1

(Ty,2−(`+1) −C0) ≤ C(S0,m) E(T,S0, y, 2
−`)

1
2 . (9.19)

To prove (9.19), first, notice that, by assumption, F̂ p
B1

(Ty,1 −C0) < η4. Thus, as long as
η4 ≤ η2(S0), Corollary 4.10 implies that

F̂ p
B1/2

(Ty,1 −C0) ≤ C(S0) E(T,S0, y, 1)
1
2 ,

and thus, by rescaling,

F̂ p
B1

(Ty,2−1 −C0) ≤ C(S0,m) E(T,S0, y, 1)
1
2 , (9.20)

which is (9.19) when ` = 0. Next, suppose that (9.19) is true for `− 1 ≥ 0, namely that

F̂ p
B1

(Ty,2−` −C0) ≤ C(S0,m) E(T,S0, y, 2
−(`−1))

1
2 , (9.21)

and let us prove it for `. Since `− 1 ≤ log1/2(M̄dQ), there exists a cube Q′ with diameter

dQ′ = 2−(`−2) and such that Q � Q′ (see Definition 5.6). By the definition of W , we then
have that

E(T,S, yQ′ , M̄dQ′) ≤ τ 2 ,

which in turn yields

E(T,S0, y, 2
−(`−1)) ≤ C E(T,S0, yQ′ , M̄dQ′)

≤ E(T,S, yQ′ , M̄dQ′) + C distH(S ∩B1,S0 ∩B1)2

≤ C τ 2 + C η2
4 .
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If τ and η4 are sufficiently small, depending only on m, p, and S0, (9.21) then implies that

F̂ p
B1

(Ty,2−` −C0) < η2(S0), so that Corollary (4.10) applies and gives

F̂ p
B1/2

(Ty,2−` −C0) ≤ C(S0) E(T,S0, y, 2
−`)

1
2 ,

that is, by rescaling, (9.19). When (9.19) is applied with ` = log1/2(M̄dQ) + 1, and
keeping (9.17) into account, we deduce the first inequality in (9.18) as soon as τ and η4

are sufficiently small.

Step two. As a first, immediate consequence of Step one, we see that for every y ∈ Bm−1
1/2

the hypotheses of Proposition 9.4 are satisfied when T is replaced by Ty,R with R = %∞.
In particular, for every y ∈ Bm−1

1/2 there exists a point ξ ∈ Bδ%∞((0, y)) with ΘT (ξ) ≥
ΘC0(0) = p/2. Let us write the left-hand side of (9.5) as

ˆ
B1/2

dist2(q, S̃)

max{%∞, |x|}1/2
d‖T‖(q) =

ˆ
B1/2∩B%∞ (V )

dist2(q, S̃)

%
1/2
∞

d‖T‖(q)

+

ˆ
B1/2\B%∞ (V )

dist2(q, S̃)

|x|1/2
d‖T‖(q) ,

(9.22)

and let us discuss here the first summand. For any y ∈ Bm−1
1/2 , letting ξ be a “no-hole”

point as above in Bδ%∞((0, y)), we can apply Theorem 8.1 to estimate

ˆ
B%∞ ((0,y))

dist2(q, S̃)

%
1/2
∞

d‖T‖(q) ≤ C %m+7/4−1/2
∞

ˆ
B%∞ ((0,y))

dist2(q − ξ, S̃)

|q − ξ|m+ 7
4

+ C %m−
1/2

∞ |pV ⊥(ξ)|2

≤ C%m−
1/2

∞ (E + A) .

We can then cover B1/2∩B%∞(V ) with N ≤ C%
−(m−1)
∞ balls {B%∞((0, yj))}Nj=1, and using

the Besicovitch covering theorem to arrange such balls in CB subfamilies each consisting
of pairwise disjoint balls we finally conclude that

ˆ
B1/2∩B%∞ (V )

dist2(q, S̃)

%
1/2
∞

d‖T‖(q) ≤ C(E + A) . (9.23)

Step three. Concerning the second term in the sum (9.22), we first notice that B1/2 \
B%∞(V ) ⊂ B1/2 ∩ RW . Then, we write RW =

⋃
Q∈W AQ, where AQ is the set of all points

q = (x, y) ∈ Rm+n such that (0, |x|, y) ∈ Q. Step one shows that for each cube Q ∈ W
whose center cQ has a projection yQ onto V in Bm−1

1/2 the hypotheses of Proposition 9.4 hold

for the current TyQ,RQ when RQ := minζ∈Q dist(ζ, V ). As a consequence, for each Q ∈ W
there exists a point ξQ ∈ BδRQ((0, yQ)) with ΘT (ξQ) ≥ p/2, and Theorem 8.1 gives

|pV ⊥(ξQ)|2 +

ˆ
B1

dist2(q − ξQ, S̃)

|q − ξQ|m+ 7
4

d‖T‖(q) ≤ C(E + A) . (9.24)
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We can then argue as in Step two, using in addition that |x| ≥ c(m)dQ when q ∈ AQ to
estimateˆ

B1/2∩AQ

dist2(q, S̃)

max{%∞, |x|}1/2
d‖T‖(q) ≤ C d

m+7/4−1/2
Q

ˆ
B1/2∩AQ

dist2(q − ξQ, S̃)

|q − ξQ|m+ 7
4

d‖T‖(q)

+ C d
m−1/2
Q |pV ⊥(ξQ)|2

≤ C d
m−1/2
Q (E + A) ,

(9.25)

where we have used (9.24) in the last inequality. Consider now that dQ is comparable to the
sidelength of the cube, and that such sidelength is given by 2−k for some positive integer
k. For each fixed k, consider the collection Ck of cubes in W which intersect B1/2 \B%∞(V )
and have sidelength 2−k. There are at most C(2−k)1−m such cubes. Therefore, we can
estimateˆ

B1/2\B%∞ (V )

dist2(q, S̃)

max{%∞, |x|}1/2
d‖T‖(q) ≤

∑
k

∑
Q∈Ck

ˆ
B1/2∩AQ

dist2(q, S̃)

max{%∞, |x|}1/2
d‖T‖(q)

≤
∑
k

C2−k/2(E + A) ≤ C(E + A) , (9.26)

thus completing the proof of (9.5).

Step four. Towards the proofs of (9.6)-(9.8), we will need to repeat the arguments
of Lemmas 6.7 and 7.1 leading to the definition of the selection function h = h(i, j) of
Theorem 6.3. Let us fix i ∈ {1, . . . , N0} and j ∈ {1, . . . , κ0,i}, drop the corresponding
subscripts, and identify H0 = H0,i with [0,∞)× V . We then write u = ui,j, v = vi,j, and

w = u − l̃ for the functions of Theorem 6.3 and Definition 6.4 on U4W . Let also {lh}κ0
h=1,

where κ0 = κ0,i, be the collection of all linear functions li,h defined on the page H0 = H0,i

and whose graph parametrizes S. Let us also fix a cube Q ∈ W , and let ξQ ∈ BδRQ((0, yQ))
be the corresponding point from Step three. Setting

q(z) := z + v(z) = z + u(z) + Ψ(z + u(z)) for all z ∈ 4Q ,

we see that for every z ∈ 4Q

dist2(q(z)− ξQ,S) ≥ min
1≤h≤κ0

inf
z̃∈H0

{
|z − pH0(ξQ)− z̃|2 + |u(z)− p

H
⊥0
0

(ξQ)− lh(z̃)|2
}

= min
1≤h≤κ0

inf
z̃∈H0

{
|z − z̃|2 + |u(z)− p

H
⊥0
0

(ξQ)− lh(z̃) + lh(pH0(ξQ))|2
}
,

where the first inequality was obtained by projecting on π0 = H0 ⊕H⊥0
0 (where, with a

slight abuse of notation, we are identifying H0 with the linear space containing it) and using
that the distance on the left-hand side is realized by pages in S parametrized as graphs
lh = li,h on H0 = H0,i due to the choice of δ in (9.16); and where the second identity was
obtained by simply replacing z̃ with z̃ + pH0(ξQ). Notice that, due to the invariance of
S (and, therefore, of the corresponding functions lh) with respect to translations along V ,
we may assume without loss of generality that pV (z) = pV (ξQ) = 0, and thus that also
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pV (z̃) = 0 in the above infimum. It is then a simple exercise in planar geometry to show
that

dist2(q(z)− ξQ,S) ≥ 1

2
min

1≤h≤κ0

|u(z)− p
H
⊥0
0

(ξQ)− lh(z) + lh(pH0(ξQ))|2 . (9.27)

Next, we proceed as in Lemma 7.1, letting h̄ denote a map Q ∈ W 7→ h̄(Q) ∈ {1, . . . , κ0}
which selects, for each Q ∈ W , the index h̄(Q) of an L∞(3Q)-optimal function in the
sense of Lemma 6.8 when u(z) is replaced by u(z) − p

H
⊥0
0

(ξQ) and gh(z) is replaced by

lh(z)− lh(pH0(ξQ)). Setting, for the sake of simplicity,

$Q := lh̄(Q)(pH0(ξQ)) , (9.28)

we then obtain the following estimate, similar to (6.11):

dmQ‖u− p
H
⊥0
0

(ξQ)− lh̄(Q) +$Q‖2
L∞(3Q) + d2+m

Q ‖D(u− lh̄(Q))‖2
L∞(3Q) + d3+m

Q [Du]21
2
,3Q

≤C
ˆ

4Q

min
h
|u(z)− p

H
⊥0
0

(ξQ)− lh(z) + lh(pH0(ξQ))|2 dz + CA2d2+m
Q . (9.29)

Combining (9.27) with (9.24) then yields

ˆ
4Q

min
h
|u(z)− p

H
⊥0
0

(ξQ)− lh(z) + lh(pH0(ξQ))|2 dz

≤C dm+ 7
4

Q

ˆ
4Q

dist2(q(z)− ξQ,S)

|q(z)− ξQ|m+ 7
4

dz

≤ C d
m+ 7

4
Q (E + A) , (9.30)

so that we achieve, through (9.29), the estimate

‖u−p
H
⊥0
0

(ξQ)− lh̄(Q) +$Q‖2
L∞(3Q) +d2

Q ‖D(u− lh̄(Q))‖2
L∞(3Q) +d3

Q [Du]21
2
,3Q
≤ Cd

7/4
Q (E+A) .

(9.31)

Next, we proceed verbatim as in the proof of Lemma 7.1. Letting Q̂ ∈ W be any cube
which does not have any element above, and setting ĥ := h̄(Q̂), for any Q0 ∈ W the
recursive algorithm and estimates from the proof of Lemma 7.1 (see the argument leading
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to formula (7.8)) yield the estimate

d−1
Q0
‖u− p

H
⊥0
0

(ξQ0)− lĥ +$Q0‖L∞(3Q0)

≤ d−1
Q0
‖u− p

H
⊥0
0

(ξQ0)− lh̄(Q0) +$Q0‖L∞(3Q0)

+ C

κ0−1∑
s=0

d−1
φ(Q0,s)

‖lh̄(φ(Q0,s+1)) − lh̄(φ(Q0,s))‖L∞(φ(Q0,s))

≤ d−1
Q0
‖u− p

H
⊥0
0

(ξQ0)− lh̄(Q0) +$Q0‖L∞(3Q0)

+ C

κ0−1∑
s=0

‖Dlh̄(φ(Q0,s+1)) −Dlh̄(φ(Q0,s))‖L∞(φ(Q0,s))

≤ d−1
Q0
‖u− p

H
⊥0
0

(ξQ0)− lh̄(Q0) +$Q0‖L∞(3Q0)

+ C

κ0−1∑
s=0

(
‖Dlh̄((φ(Q0,s))>) −Du‖L∞(3(φ(Q0,s))>) + ‖Du−Dlh̄(φ(Q0,s))‖L∞(3φ(Q0,s))

)
,

so that finally (9.31) gives

d−2
Q0
‖u− p

H
⊥0
0

(ξQ0)− lĥ +$Q0‖2
L∞(3Q0) ≤ C d

−1/4
Q0

(E + A) (9.32)

Standard elliptic estimates then imply also that

‖D(u− lĥ)‖
2
L∞(2Q0) + dQ0 [Du]21

2
,2Q0
≤ C d

−1/4
Q0

(E + A) . (9.33)

We set h∗ = h∗(i, j) := ĥ, and l∗i,j := li,h∗(i,j), and we can proceed to compare the linear

p-multifunction {l∗i,j} with the linear p-multifunction {l̃i,j} introduced in Theorem 6.3 and
corresponding to the selection h = h(i, j). By the triangle inequality, and still dropping
the subscripts i,j, we have for any Q ∈ W that

dm+2
Q ‖D(l∗ − l̃)‖2

L∞(2Q) ≤ C dm+2
Q ‖D(l∗ − u)‖2

L∞(2Q) + C dm+2
Q ‖D(l̃ − u)‖2

L∞(2Q)

(9.33)

≤ C d
m+ 7

4
Q (E + A) + C dm+2

Q ‖D(l̃ − u)‖2
L∞(2Q) .

Using that ‖D(l∗− l̃)‖L∞(2Q) is constant with respect to Q, we can sum the above inequality
over Q ∈ W : using (7.2) together with the fact that cubes Q ∈ W have side length lQ = 2−k

for some positive integer k, and that for every k the set Ck of cubes Q with side length
lQ = 2−k has cardinality ](Ck) = C (2−k)1−m, we obtain

|D(l∗ − l̃)|2 ≤ C (E + A) , (9.34)

and thus

‖l∗ − l̃‖2
L∞(3Q) ≤ C d2

Q (E + A) . (9.35)
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In particular, the estimates in (9.32) and (9.33) can be rewritten using the multifunction

{l̃} in place of {l∗}, that is it holds

d−2
Q ‖u− p

H
⊥0
0

(ξQ)− l̃ +$Q‖2
L∞(3Q) ≤ C d

−1/4
Q (E + A) , (9.36)

‖D(ui,j − l̃i,j)‖2
L∞(2Q) ≤ C d

−1/4
Q (E + A) . (9.37)

Step five. Recall the notation AQ introduced in Step three. We define the binding
function ξ on RQ by:

ξ(q) =

{
pV ⊥(ξQ) if q ∈ int(AQ) for some Q ∈ Q with yQ ∈ Bm−1

1/2 ,

0 elsewhere .
(9.38)

In particular, the L∞ estimate for the binding function ξ appearing in (9.6) is immediate
from (9.24). Next, we define the p-multifunction $ on UW over S0 as follows: for every
i ∈ {1, . . . , N} and j ∈ {1, . . . , κ0,i}, we let $i,j be given on (UW)i by

$i,j(z) :=

{
$i,j,Q if z = (x, y) and (|x|, y) ∈ int(Q) for some Q ∈ W with yQ ∈ Bm−1

1/2 ,

0 elsewhere .

(9.39)
where $i,j,Q is the constant $Q defined in (9.28). In particular, if ζ = (|x|, y) ∈ int(Q) for
some Q ∈ W , then for z = (x, y) it holds, thanks to (9.24),

|$i,j(z)|2 ≤ C ‖∇lh̄(i,j,Q)‖2
∞ (E + A) , (9.40)

which implies (9.7). Finally, we prove (9.8). Recalling that w = u− l̃, using the definitions
of ξ and $ as in (9.38) and (9.39), and taking into account that, for every Q ∈ W , the
diameter dQ is comparable to the distance from the spine, we can use (9.36) to estimate

N∑
i=1

κ0,i∑
j=1

ˆ
(UW )i∩B1/2

|wi,j −$i,j − p
H
⊥0
0,i

(ξ)|2

|x|5/2
dz ≤ C

∑
Q∈W

d
m− 3

4
Q (E + A)

≤ C
∑
k≥0

∑
Q∈Ck

d
m− 3

4
Q (E + A) ≤ C

∑
k≥0

(
1

21/4

)k
(E + A) .

This proves the first part of (9.8); the proof of the second part is analogous, using (9.37)
in place of (9.36). �

10. Blow up

In this section we consider “blow-up” sequences.

Definition 10.1. A blow-up sequence is given by

(a) submanifolds Σk as in Assumption 2.1 with T0Σk = π0 = {0n−1} × Rm+1;
(b) a sequence of currents Tk in Rm(Σk) which are area-minimizing mod(p) in Σk∩B2R0 ;
(c) a sequence of cones Ck supported in π0;

such that
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(i) ΘTk(0) ≥ p
2

for every k;
(ii) the cones Ck have the same (m− 1)-dimensional spine V = {0n−1}× {02}×Rm−1;

(iii) Ck converge in the flat topology to an area-minimizing cone C0 with spine V ;

(iv) the currents Tk converge, with respect to F̂ p
BR0

, to C0;

(v) upon denoting by Sk and S0 the books corresponding to Ck and C0, by Ek the
excesses E(Tk,Sk, 0, R0), and by Ak the quantities ‖AΣk‖L∞ , we have

Ek → 0 and
Ak

Ek

→ 0 , (10.1)

(where we implicitly assume Ek > 0).

Having fixed the constant β1 of Theorem 9.3, we let β = β1

2
and assume, without loss of

generality, that each pair (T,C) = (Tk,Ck) satisfies the assumptions of Theorem 9.3. In
particular we denote:

(α) by wk the corresponding p-multifunctions w over S0 and by Uk := U4Wk their
domains (here, Wk =W(Tk,Sk, τ) with τ depending only on (m,n, p,S0));

(β) by hk the selection functions h from Theorem 6.3;

(γ) by lk the corresponding linear p-multifuctions l̃;
(δ) by ξk the corresponding binding functions ξ;
(ε) by $k the corresponding p-multifunctions $.

Observe that under (10.1), by Theorem 5.8(i), the domains Uk “close around” the spine, in
the sense that, for any fixed cube Q ∈ Q, Q ⊂ Uk provided k is large enough. For further
reference, we let U∞ be the union of all 2Q for Q’s in Q. The following is then an easy
corollary of Theorem 9.3, whose proof is left to the reader.

Corollary 10.2. Consider a blow-up sequence (Tk,Ck) as in Definition 10.1, set β = β1

2

for β1 as in Theorem 9.3, consider wk, Uk, hk, lk, ξk, and $k as in (α)-(ε), and set w̄k :=

E
−1/2
k wk, ξ̄k := E

−1/2
k ξk, and $̄k := E

−1/2
k $k. Up to subsequences, the following holds:

(i) hk(i, j) is constant for every i and j;
(ii) w̄k converges locally in C1 to a p-multifunction w̄ on U∞ ∩ {|ζ| < 1/2} over S0

taking values in π0;
(iii) ξ̄k converges locally uniformly to a binding function ξ̄ defined on U∞ ∩ {|ζ| < 1/2},

whereas $̄k converges locally uniformly to zero;
(iv) The following estimates hold (for a geometric constant C which depends only on p,

m and n):

sup
ζ=(t,y)∈U∞

t
m
2

+1
(
t−1|w̄(ζ)|+ |Dw̄(ζ)|+ t

1/2[Dw̄]1/2(ζ)
)
≤ C (10.2)

∑
i,j

ˆ
B1/2∩U∞i

|z|2−m
∣∣∣∣∂r w̄i,j(z)

|z|

∣∣∣∣2 dz ≤ C (10.3)

∑
i,j

ˆ
B1/2∩U∞i

|w̄i,j − p
H
⊥0
0,i

(ξ̄)|2

|x| 52
+
|∇w̄i,j|2

|x| 12
dz ≤ C . (10.4)
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Remark 10.3. Observe that the open sets U∞i ⊂ H0,i do not include any portion of the
spine V , rather B1/2∩V is contained in the boundary of each U∞i . When we refer to “local
properties”, we understand them as taking place in compact subsets of the domain, i.e.
“away from V ”. In particular, precise formulations of points (ii) and (iii) in Corollary 10.2
are the following:

(ii) for every Q ∈ Q and for every i, upon ordering the sheets w̄ki,j, and w̄i,j monoton-

ically, each w̄ki,j (which is defined on 2Q for k large enough), converges in C1(2Q)
to w̄i,j;

(iii) for every Q ∈ Q the constant values taken by the ξ̄k on int(AQ) converge to the
constant value taken by ξ̄ (and $̄k converge to zero on Q).

The main point of this section is to show that the convergence of w̄k is strong in L2 and
to collect some relevant properties of the pair of functions w̄ and ξ̄ in Corollary 10.2. One
crucial property is (10.7) below, which is valid for cylindrical vector fields.

Definition 10.4. Let V be a linear subspace of Rm+n. A vector field W : Rm+n → Rm+n

is called cylindrical with respect to V if W (q) = W (q̄) for any pair of points q, q̄ such that
pV (q) = pV (q̄) and dist(q, V ) = dist(q̄, V ).

Proposition 10.5. Let Tk, w̄
k, ξ̄k, Uk, w̄, ξ̄, and U∞ be as in Corollary 10.2. Then:

(i) The converge of w̄k to w̄ is strong in the sense that, for |x|(q) = dist(q, V ),
ˆ
U∞∩B1/2

(|w̄|2+|x|2|Dw̄|2) d‖C0‖ = lim
k→∞

ˆ
Uk∩B1/2

(|w̄k|2+|x|2|Dw̄k|2) d‖C0‖ <∞ . (10.5)

(ii) The following estimate holds (for, we recall, Sk the open book spt(Ck))

lim sup
k→∞

1

Ek

ˆ
B1/2

dist(q,Sk)
2 d‖Tk‖ ≤

ˆ
B1/2∩U∞

|w̄|2 d‖C0‖ . (10.6)

(iii) w̄i,j is (locally) smooth in U∞i ∩B1/2 and ∆w̄i,j = 0, for every i and j;
(iv) for any W ∈ C∞c (B1/2,Rm+n) cylindrical with respect to V we have∑

i

ˆ
H0,i

∑
j

∇w̄i,j : ∇∂W
∂yl

dz = 0 ∀ l = 1, . . . ,m− 1 . (10.7)

Remark 10.6. In (10.7) each map w̄i,j, which takes values in H⊥0
0,i , is regarded as a map

taking values in Rm+n, while W is restricted on H0,i and regarded thus as a map from H0,i

to Rm+n. The corresponding product in (10.7) is thus understood as the usual Hilbert-
Schmidt product of the Jacobian matrices ∇w̄i,j and ∇∂W

∂yl
, where in both cases ∇ denotes

the differential with respect to the variables in H0,i. In a few computations we will use the
notation DW for the full Jacobian matrix of W , i.e. when the derivatives are taken with
respect to all variables. Observe however that, because of the special symmetry assumption
on W , ∂vW (q) = 0 for every q ∈ H0,i and any v ∈ H⊥0,i.
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Proof. Proof of (i). By the uniform convergence on compact subsets of B1/2 ∩U∞i for all
i, it suffices to show that there is no “concentration” at the spine. To that end, consider a
positive radius r and estimate, using the results of Theorem 9.3,ˆ

B1/2∩Br(V )∩Uk
(|w̄k|2 + |x|2|Dw̄k|2) d‖C0‖

≤E−1
k

ˆ
B1/2∩Br(V )∩Uk

(|wk −$k − p
H
⊥0
0,i

(ξk)|2 + |x|2|Dwk|2) d‖C0‖

+ CrE−1
k

(
‖ξk‖2

∞ + ‖$k‖2
∞
)

≤E−1
k r5/2

ˆ
B1/2∩Br(V )∩Uk

|wk −$k − p
H
⊥0
0,i

(ξk)|2

|x|5/2
+
|Dwk|2

|x|1/2
d‖C0‖

+ CrE−1
k

(
‖ξk‖2

∞ + ‖$k‖2
∞
)

≤C
(
r5/2 + r + r F̂ p

BR0
(Ck −C0)2

) (
1 + E−1

k Ak

)
.

Recalling that both E−1
k Ak and F̂ p

BR0
(Ck −C0) are infinitesimal, we conclude

lim sup
k→∞

ˆ
B1/2∩Br(V )∩Uk

(|w̄k|2 + |x|2|Dw̄k|2) d‖C0‖ ≤ Cr .

Proof of (ii). First of all observe that q = z+ lki,j(z)+wki,j(z)+Ψk(z+ lki,j(z)+wki,j(z)) ∈
spt(Tk) for every choice of k, i, j and every z ∈ Uk

i , while z + lki,j(z) ∈ spt(C̃k) = S̃k ⊂ Sk.

We thus have dist(q,Sk) ≤ |wk(z)| + C Ak. Moreover, the support of the current Tk
coincides with the graph of the multifunction uk + Ψk(· + uk) on B1 ∩ {dist(q, V ) ≥ σk}
for some infinitesimal sequence σk. Therefore we can write

lim sup
k→∞

E−1
k

ˆ
B1/2\Br(V )

dist(q,Sk)
2 d‖Tk‖(q)

≤ lim sup
k→∞

{
(1 + CLip(uk) + CAk)

ˆ
B1/2\Br(V )

E−1
k |w

k(z)|2 d‖C0‖(z) + CrE−1
k Ak

}
,

where we have used the area formula to estimate the area element on the graphical
parametrization of the current induced by the graph of uk+Ψk(·+uk) with 1+CLip(uk)+
CAk. Observe now that the Lipschitz constant of uk converges to 0 on any compact set in
B1 \ V and we can thus conclude

lim sup
k→∞

E−1
k

ˆ
B1/2\Br(V )

dist(q,Sk)
2 d‖Tk‖(q) ≤ lim sup

k→∞

ˆ
B1/2\Br(V )

|w̄k(z)|2 d‖C0‖(z)

≤
ˆ
B1/2

|w̄|2 d‖C0‖ .
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In order to prove (ii) we then need to show the nonconcentration estimate

lim
r↓0

lim sup
k→∞

E−1
k

ˆ
B1/2∩Br(V )

dist(q,Sk)
2 d‖Tk‖(q) = 0 .

Fix r and assume that k is large enough so that r > %k∞ (recall the definition of the latter
is given in (9.4)). We can then use (9.5) in Theorem 9.3 to bound

E−1
k

ˆ
B1/2∩Br(V )

dist(q,Sk)
2 d‖Tk‖(q)

≤E−1
k r1/2

ˆ
B1/2

dist(q,Sk)
2

max{%k∞, |x|}1/2
d‖Tk‖(q) ≤ C(1 + E−1

k Ak)r
1/2 .

Proof of (iii). We consider a cube Q ∈ U∞ and recall that, on 4Q, w̄k converges to w̄
in C1. Consider a single sheet uki,j = wki,j + lki,j, and recall that it is a critical point of the

area functional with respect to the metric (Id + Ψk)]δRm+n on π0; see formula (6.21). In
particular, uki,j is a solution to the corresponding Euler-Lagrange equation, which we can
rewrite as

div

 ∇uki,j(z)√
1 + |∇uki,j(z)|2

 = div (−Rk(z, u
k
i,j(z),∇uki,j(z))︸ ︷︷ ︸
=:fk(z)

+Sk(z, u
k
i,j(z),∇uki,j(z))︸ ︷︷ ︸

=:gk(z)

,

where the functions Sk and Rk satisfy the bounds |Rk(z, ū, p̄)| + |Sk(z, ū, p̄)| ≤ CAk(1 +
|ū|+ |p̄|). On the other hand we have

div

 ∇lki,j(z)√
1 + |∇lki,j(z)|2

 = 0 .

Subtract the two equations, divide by E
−1/2
k and consider that ck :=

√
1 + |∇lki,j(z)|2 is a

constant. We can then write

∆w̄ki,j(z) = ckdiv(E
−1/2
k fk) + ckE

−1/2
k gk + div

(
E
−1/2
k

(
ck√

1 + |∇uki,j(z)|2
− 1

)
︸ ︷︷ ︸

=:hk

∇uki,j

)

(10.8)

Let next k →∞: clearly the left hand side converges to ∆w̄ in the sense of distributions.
On the other hand we have the estimates ‖fk‖C0 + ‖gk‖C0 ≤ CAk and (since ck → 1)
the first two summands in the right hand side converge (distributionally) to 0. We next
estimate

|hk(z)| ≤ C|∇uki,j(z)−∇lki,j(z)| = C|∇wki,j(z)| ≤ C|x|−
m
2
−1(E

1/2
k + Ak) .
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Considering however that we are taking z ∈ 4Qi, we can estimate

E
−1/2
k ‖hk‖L∞(4Qi) ≤ Cd

−m
2
−1

Q .

Since ∇uki,j converges uniformly to 0 on 4Qi, we conclude that the third summand in (10.8)
converges to 0 as well.

Proof of (iv). Fix W as in the claim. We first observe that each map wki,j takes values

in the linear subspace V ⊥0 . We can therefore assume, without loss of generality, that W
takes values in V ⊥0 as well.

Fix next r > 0 and consider a cut-off function φr which is identically equal to 0 in a
neighborhood of 0, equals 1 on [r,∞) and satisfies the bound ‖φ′r‖0 ≤ Cr−1. Consider
then the vector field

Wr(x̄, y) = W (x̄, y)φr(|x̄|) +W (0, y)(1− φr(|x̄|)) .

Obviously Wr depends only on y in a neighborhood of V , while we have the estimate∣∣∣∣∇∂(W −Wr)

∂yl
(x̄, y)

∣∣∣∣ ≤ C‖D2W‖0 ∀ l = 1, . . . ,m− 1 .

Using that W −Wr = 0 outside of Br(V ), it thus follows easily that∣∣∣∣∣
ˆ
H0,i

∑
j

∇w̄i,j : ∇
(
∂(W −Wr)

∂yl

)∣∣∣∣∣ ≤ C‖D2W‖0

∑
j

ˆ
H0,i∩B1/2∩Br(V )

|∇w̄i,j|

≤ C‖D2W‖0 r
5/4
∑
j

(ˆ
H0,i∩B1/2

|∇w̄i,j|2

|x| 12
dz

)1/2

.

Since the left hand side converges to 0 as r ↓ 0 by (10.4), and since the vector fields Wr are
still cylindrical, it suffices to prove (iv) for a cylindrical vector field W which in addition
depends only upon the variable y in some neighborhood of V .

We then fix the index l ∈ {1, . . . ,m − 1}, set W̄ := ∂W
∂yl

and, summarizing the above

discussion, without loss of generality we assume:

(S) W̄ is cylindrical, it depends only on the variable y ∈ V in Br0(V ), and it takes
values on V ⊥0 (everywhere).

Next consider that:

• Since Ck is invariant in the direction yl and W̄ is a derivative along that direction
(of a compactly supported smooth vector field) then δCk(W̄ ) = 0;
• Since Tk is area minimizing mod(p) in Σk, we have |δTk(W̄ )| ≤ Ak‖W̄‖0.

In particular

lim
k→∞

E
− 1

2
k (δTk(W̄ )− δCk(W̄ )) = 0 . (10.9)

Next consider an r < r0 and a k large enough so that Tk is the graph of the multifunction
vk = uk + Ψk(·+ uk) outside Br(V ). We split both currents Tk and Ck into two pieces:
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• T g
k is the graph of the multifuction vk over S0 on Ur := {ζ = (t, y) : t > r}, while
T r
k is the remainder in B1/2 (i.e. (Tk − T g

k ) B1/2);
• likewise Cg

k is the graph of the multifunction lk over S0 on Ur and Cr
k := (Ck −

Cg
k) B1/2.

We denote by Ur,i the sets (Ur)i ⊂ H0,i and make the following claims:

lim sup
k→∞

E
−1/2
k

∣∣∣∣ˆ divTkW̄ d‖T r
k‖ −

ˆ
divCkW̄ d‖Cr

k‖
∣∣∣∣ ≤ Cr1/2 (10.10)

lim
k→∞

E
−1/2
k

(ˆ
divTkW̄ d‖T g

k ‖ −
ˆ

divCkW̄ d‖Cg
k‖
)

=
∑
i

ˆ
Ur,i

∑
j

∇w̄i,j : ∇W̄ . (10.11)

Since obviously

δTk(W̄ ) =

ˆ
divTkW̄ d‖T r

k‖+

ˆ
divTkW̄ d‖T g

k ‖

δCk(W̄ ) =

ˆ
divCkW̄ d‖Cr

k‖+

ˆ
divCkW̄ d‖Cg

k‖ ,

the combination of (10.10), (10.11), and (10.9) implies∣∣∣∣∣∑
i

ˆ
Ur,i

∑
j

∇w̄i,j : ∇W̄

∣∣∣∣∣ ≤ Cr1/2 .

Thus the desired conclusion follows from letting r ↓ 0.
We now come to the proof of (10.10) and (10.11). Concerning (10.10), observe that (S)

above implies that

divπW̄ = 0 in Br0(V )

for every vector space π which contains V and, in particular,

|divπW̄ | ≤ C‖DW̄‖ |pV · pπ⊥ | , (10.12)

for any arbitrary vector space π.
Since every tangent plane to Ck contains V , and since Cr

k is supported in Br0(V ), we
conclude ˆ

divCkW̄ d‖Cr
k‖ = 0 ,

while using (10.12) and the Cauchy-Schwartz inequality we get∣∣∣∣ˆ divTkW̄ d‖T r
k‖
∣∣∣∣ ≤ C

(
‖Tk‖(B1/2 ∩Br(V ))

)1/2

(ˆ
B1/2

∣∣∣pV · p~Tk(q)⊥

∣∣∣2 d‖Tk‖(q))1/2

.

The proof of (10.10) is then complete once we apply estimate (8.9) in Proposition 8.4 to
reach ∣∣∣∣ˆ divTkW̄ d‖T r

k‖
∣∣∣∣ ≤ CE

1/2
k

(
‖Tk‖(B1/2 ∩Br(V ))

)1/2 ≤ CE
1/2
k r1/2 .
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In order to show (10.11) we will decompose Cg
k and T g

k in the union of the graphs of lki,j
and of vki,j = lki,j +wki,j + Ψk(·+ lki,j +wki,j) and over the corresponding domain Ur,i. To that
end, ˆ

divTkW̄ d‖T g
k ‖ =

∑
i,j

ˆ
p−1
H0,i

(Ur,i)

divGH0,i
(vki,j)

W̄ d‖GH0,i
(vki,j)‖︸ ︷︷ ︸

=:I
(1)
k,i,jˆ

divCkW̄ d‖Cg
k‖ =

∑
i,j

ˆ
p−1
H0,i

(Ur,i)

divGH0,i
(lki,j)

W̄ d‖GH0,i
(lki,j)‖︸ ︷︷ ︸

=:I
(2)
k,i,j

.

Our task is then accomplished once we show that, for every i and j,

lim
k→∞

E
−1/2
k (I

(1)
k,i,j − I

(2)
k,i,j) =

ˆ
Ur,i

∇w̄i,j : ∇W̄ . (10.13)

From now on we fix i and j and, in order to simplify our notation, we drop both of them.
Next, fix an orthonormal frame e1, . . . , em+n such that e1, . . . , em is a basis of H0,i and define
the (m+n)×m matrices A(k) = (A1(k), . . . , Am(k)) and B(k) = (B1(k), . . . , Bm(k)), where
Aα(k) and Bα(k) are the following vectors in Rm+n:

Aα(k) := eα + ∂αv
k = eα + ∂αl

k + ∂αw
k + ψkα

Bα(k) := eα + ∂αl
k ,

where |ψkα| ≤ CA. Furthermore, given any matrix A = (A1, . . . , Am) ∈ R(m+n)×m we let
M(A) ∈ R(m+n)×(m+n) be the matrix

M(A) =
∑
α,β

√
detATA(ATA)−1

αβAα ⊗ Aβ .

We can then apply the well known formula for the variation of the area functional, leading
to

I(1)(k)− I(2)(k) =

ˆ
Ur,i

(
M(A(k))−M(B(k))

)
: DW̄ . (10.14)

We next compute

Aα(k)⊗ Aβ(k)−Bα(k)⊗Bβ(k)− (∂αw
k ⊗ eβ + eα ⊗ ∂βwk)

= ∂αw
k ⊗ ∂βlk + ∂αl

k ⊗ ∂βwk + ∂αw
k ⊗ ∂βwk + ψkα ⊗ Aβ(k) + Aα(k)⊗ ψkβ .

Recall next that over the domain Ur,i we have the estimate

‖∇wk‖L∞ ≤ C(Ek + Ak)
1/2

while ‖∇lk‖ = o(1). Furthermore, |Aα| = O(1), whereas |ψα| = o(E
1/2
k ) due to (10.1). We

therefore conclude

Aα(k)⊗ Aβ(k)−Bα(k)⊗Bβ(k) = ∂αw
k ⊗ eβ + eα ⊗ ∂βwk + o(E

1/2
k ) .
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Similarly

(A(k)TA(k))αβ = δαβ + ∂αl
k · ∂βlk + o(E

1/2
k ) = (B(k)TB(k))αβ + o(E

1/2
k )

(B(k)TB(k))αβ = δαβ + o(1) .

We then conclude that

M(A(k))−M(B(k)) =
∑
α

(∂αw
k ⊗ eα + eα ⊗ ∂αwk) + o(E

1/2
k ) . (10.15)

Recall next that, because of the special structure of W , ∂vW ≡ 0 on H0,i whenever v ∈ H⊥0,i.

Therefore, since ∂αw
k ∈ H⊥0,i, we conclude

(M(A(k)−M(B(k)) : DW̄ =
∑
α

(∂αw
k ⊗ eα) : DW̄ + o(E

1/2
k )

= ∇wk : ∇W̄ + o(E
1/2
k ) = E

1/2
k ∇w̄

k : ∇W̄ + o(E
1/2
k ) .

Combined with (10.14), the latter estimate gives (10.13). �

11. Decay for the linear problem

The aim of this section is to prove the fundamental integral decay property of the blow-up
map w̄ of Corollary 10.2.

Proposition 11.1. There is a constant C (which depends only on m) with the following
property. Let w̄ be as in Corollary 10.2. Then there are a linear map b : V → V ⊥0 and a
linear p-multifunction a = {ai,j} over S0 (taking also values in π0) such that ‖a‖L∞(S0∩B1)+
‖b‖L∞(S0∩B1) ≤ C and the following holds for all 0 < ρ < r < 1

2
:∑

i

ˆ
H0,i∩Bρ

∑
j

∣∣w̄i,j(x, y)− ai,j(x)− p
H
⊥0
0,i

(b(y))
∣∣2 ≤ C

(ρ
r

)m+4
ˆ
C0∩Br

|w̄|2 . (11.1)

11.1. Smoothness and properties of the average. An important step in the proof of
Proposition 11.1 is showing smoothness for the “average of the sheets”, which is defined
in the following way. First of all, we consider a linear isometry ι : Rm+1 → π0 with the
property that ι(0, y) ∈ V for every y ∈ Rm−1. In particular, by a small abuse of notation
we will denote {0} × Rm−1 as well by V . For each i we then select an angle θi such that

H0,i = {(t cos θi, t sin θi, y) : (t, y) ∈ R+ × V = Rm
+} .

The average of w̄ is then the function ω : B+
1/2 → Rm+n given by

ω(ζ) = ω(t, y) =
1

p

∑
i

∑
j

w̄i,j(t cos θi, t sin θi, y) , (11.2)

where we use the notation B+
r := {ζ = (t, y) ∈ Rm

+ : t2 + |y|2 < r2}. The sum in (11.2)
must be understood as a sum of vectors in Rm+n.

The relevant properties of ω are collected in the following

Lemma 11.2. Let w̄ be as in Corollary 10.2 and define ω as in (11.2). Then
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(i) ω is harmonic and can be extended to a harmonic function (still denoted ω) on

B1/2 ⊂ Rm with the property that ∂2ω
∂t∂yl

= 0 on V ∩B1/2 for every l = 1, . . . ,m− 1;

(ii) ω(0) = 0 and ω(0, y) takes values in V ⊥0;
(iii) There is a linear map L : Rm+n → V ⊥0, which depends only on C0, such that each

w̄i,j(0, y) = p
H
⊥0
0,i

(L(ω(0, y))) for every y ∈ V ∩B1/2. In particular, for each i the

functions {w̄i,j}j have the same trace on V ∩B1/2.

Proof. Proof of (i). The fact that ω is harmonic is an immediate consequence of Propo-
sition 10.5(iii). Next, recall that ω ∈ W 1,2 and that, by (10.4),ˆ

|∇ω|2

t1/2
<∞ , (11.3)

where ∇ denotes the gradient in the coordinates ζ = (t, y) on Rm
+ . Fix now any test

function ϕ ∈ C∞c (B1/2,Rm+n). Clearly, the vector field W ∈ C∞c (Rm+n,Rm+n) defined by

W (x, y) := ϕ(|x|, y)

is cylindrical, and therefore an admissible test in (10.7). We thus concludeˆ
∇ω : ∇∂ϕ

∂yl
= 0 ∀l = 1, . . . ,m− 1 . (11.4)

Observe next that ∂ω
∂t

is an L2 function because of (11.3), and we can thus regard its

trace on V ∩ B1/2 as a distribution in H−1/2: the action of the latter on a test function
ψ ∈ C∞c (V ∩B1/2,Rm+n) will, by abuse of notation, be denoted byˆ

V

∂ω

∂t
· ψ .

Having fixed any function ψ ∈ C∞c (B1/2 ∩ V,Rm+n), take a smooth extension to some
ϕ ∈ C∞c (B1/2,Rm+n). Integrating (11.4) by parts we then concludeˆ

V

∂ω

∂t
· ∂ψ
∂yl

= 0 ∀l ∈ {1, . . . ,m− 1} . (11.5)

The latter identity implies that the distribution ∂ω
∂t

is a constant, which we can denote by c.
But then ω − ct is an harmonic function which satisfies the Neumann boundary condition
and clearly we can extend it to an harmonic function on B1/2 using the Schwarz reflection
principle.

Proof of (ii). First of all recall that, by Corollary 10.2,
ˆ
B+

1/2

|ζ|−m
∣∣∣∣ζ · ∇ω(ζ)

|ζ|

∣∣∣∣2 <∞ . (11.6)

Using the C2 regularity of ω, we write

ω(ζ) = ω(0) +∇ω(0) · ζ+D2ω(0)[ζ]2 + ω̄(ζ) ,
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having used the notation A[ζ]2 for the quadratic form
∑

α,β Aαβζαζβ. Since ω̄ is C2 by

construction, and its first and second derivatives vanish at 0, ω̄(ζ)
|ζ| is a Lipschitz func-

tion, which means that its derivative is bounded. On the other hand, ∇ω(0) · ζ
|ζ| is a

0-homogeneous function, so that ζ ·∇∇ω(0)·ζ
|ζ| = 0. Instead, D2ω(0)[ζ]2

|ζ| is 1-homogeneous, and

thus ζ · ∇D2ω(0)[ζ]2

|ζ| = D2ω(0)[ζ]2

|ζ| , which is bounded.

We therefore conclude that

ζ · ∇ω(ζ)

|ζ|
− ω(0)ζ · ∇|ζ|−1

is a bounded function. Since ζ · ∇|ζ|−1 = −|ζ|−1, if ω(0) were different from 0 then the
integral in the left hand side of (11.6) would be infinite.

Consider next the linear map

P :=
1

p

∑
i

κ0,i pH
⊥0
0,i

(11.7)

and observe that the image of P is contained in V ⊥0 .
Consider next the binding function ξ̄ as a function on Rm

+ and note that, due to (10.4)ˆ
B+

1/2

t−5/2|ω(t, y)− P (ξ̄(t, y))|2 dy dt <∞ . (11.8)

In particular ˆ
B+

1/2

t−5/2|pV ω(t, y)|2 dy dt <∞ ,

which clearly implies ω(0, y) ∈ V ⊥0 for every y.

Proof of (iii). Observe that P is self-adjoint: in particular its image Z coincides with
its cokernel, and it is mapped into itself. We denote by P |−1

Z the inverse of the restriction
P |Z : Z → Z and let L := P |−1

Z ◦ pZ . Observe in particular that, since Z ⊂ V ⊥0 , L
maps the whole space on V ⊥0 . Moreover, if v ∈ Z, then P (L(v)) = v. In particular,
since ω(0, y) ∈ Z as a consequence of (11.8), it holds P (L(ω(0, y)) = ω(0, y). We therefore
conclude from the regularity of ω that |P (L(ω(t, y))) − ω(t, y)| ≤ Ct, so that from (11.8)
we obtain ˆ

B+
1/2

t−5/2
∣∣∣P(L(ω(t, y))− ξ̄(t, y)

)∣∣∣2 dy dt <∞ . (11.9)

Next observe that, since p
H
⊥0
0,i

is an orthogonal projection,∑
i

κ0,i|pH
⊥0
0,i

(L(ω(t, y))− ξ̄(t, y))|2

=
∑
i

κ0,i(pH
⊥0
0,i

(L(ω(t, y))− ξ̄(t, y))) · (L(ω(t, y))− ξ̄(t, y)) .
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In particular, using the boundedness of ξ̄ and the local boundedness of ω, for every r < 1/2
we conclude∑

i

κ0,i|pH
⊥0
0,i

(L(ω(t, y))− ξ̄(t, y))|2 ≤ C |P (L(ω(t, y))− ξ̄(t, y))| ∀(t, y) ∈ B+
r .

We can thus estimate
ˆ
B+
r

|p
H
⊥0
0,i

(L(ω(t, y))− ξ̄(t, y))|2

t5/4
<∞

using (11.9) and the Cauchy-Schwarz inequality. In turn, this easily implies, for every i
and j, that ˆ

Br∩H0,i

|w̄i,j(x, y)− p
H
⊥0
0,i

(L(ω(|x|, y)))|2

|x|5/4
<∞ .

The claim that p
H
⊥0
0,i

(L(ω(0, y))) is the trace of w̄i,j on V follows then at once. �

11.2. An elementary lemma on harmonic functions. In order to prove Proposition
11.1 we will appeal to classical decay lemmas for harmonic functions. On the other hand,
since our objects are actually defined on “half balls”, we will require the following estimate.

Lemma 11.3. There is a constant C = C(m) > 0 with the following property. Let
Br ⊂ Rm and ω ∈ L2(Br,RN) be a harmonic function such that ∂ω

∂t
is constant on V ∩Br.

Then ˆ
Br

|ω|2 ≤ C

ˆ
B+
r

|ω|2 . (11.10)

Proof. First of all, since we can argue componentwise, we can assume that N = 1 and,
by scaling, we can also assume that r = 1. Furthermore, the Schwarz reflection principle
shows that, denoting c := ∂ω

∂t
on V ∩ Br, the function ωe(t, x) := ω(t, x) − ct is even in t,

which in turn implies that ˆ
B1

ω2 =

ˆ
B1

(ω2
e + c2t2) .

Since ˆ
B1

ω2
e = 2

ˆ
B+

1

ω2
e ,

ˆ
B1

t2 = 2

ˆ
B+

1

t2 ,

it suffices to show the existence of a positive constant δ(m) > 0 such that

2

∣∣∣∣∣
ˆ
B+

1

cωet

∣∣∣∣∣ ≤ (1− δ)
ˆ
B+

1

(ω2
e + c2t2) (11.11)

for any ωe which belongs to the space He of even harmonic functions.
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Observe that, for any fixed ωe, the inequality is equivalent to the nonnegativity of the
two quadratic polynomials

P±(c) := (1− δ)‖ωe‖2
L2(B+

1 )
+ (1− δ)c2‖t‖2

L2(B+
1 )
± 2c〈ωe, t〉 ,

where we denote by 〈·, ·〉 the L2(B+
1 ) scalar product. Since both polynomials have a positive

coefficient in the quadratic monomial, their nonnegativity is equivalent to the nonpositivity
of their (common) discriminant, which in turn is the inequality

|〈ωe, t〉| ≤ (1− δ)‖ωe‖L2(B+
1 )‖t‖L2(B+

1 ) . (11.12)

Since the latter inequality is homogeneous in ωe, we can prove it under the additional
assumption that ‖ωe‖L2(B+

1 ) = 1. So assume by contradiction that a sequence {ωk} ⊂ He

satisfies ‖ωk‖L2 = 1 and violates the inequality (11.12) with δ = 1
k
, i.e. (upon changing a

sign) ˆ
B+

1

ωk t ≥
k − 1

k
‖t‖L2(B+

1 ) . (11.13)

Upon extraction of a subsequence we can assume that ωk converges to some ω∞ ∈ He

weakly in L2. By lower semicontinuity, ‖ω∞‖L2(B+
1 ) ≤ 1, and by weak convergence we have

ˆ
B+

1

ω∞ t ≥ ‖t‖L2(B+
1 ) . (11.14)

Using the Cauchy-Schwarz inequality we conclude that, on the other hand,ˆ
B+

1

ω∞t ≤ ‖ω∞‖L2(B+
1 )‖t‖L2(B+

1 ) . (11.15)

In particular ‖ω∞‖L2(B+
1 ) = 1 and thus (11.14) and (11.15) hold with equality. But this

would mean that ω∞ is collinear with t, i.e. ω∞ is a nontrivial even harmonic function
with ω∞(0, y) = 0 for every y. By Schwarz reflection, ω∞ must be odd in t as well, which
implies that ω∞ vanishes identically, contradicting ‖ω∞‖L2(B+

1 ) = 1. �

11.3. Proof of Proposition 11.1. First of all, consider the average ω as defined in (11.2),
and extended to the whole ball B1/2 as in Lemma 11.2. Then, define a linear function b1(y)
by

y 7→ ∇yω(0) · y .
Consider additionally c := ∂ω

∂t
(0). Since ω(0) = 0 by Lemma 11.2, classical estimates on

harmonic functions and Lemma 11.3 implyˆ
B+
ρ

|ω(t, y)− b1(y)− ct|2 ≤C
(ρ
r

)m+4
ˆ
Br

|ω|2 ≤ C
(ρ
r

)m+4
ˆ
B+
r

|ω|2

≤C
(ρ
r

)m+4
ˆ
Br∩C0

|w̄|2 . (11.16)
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Next fix i and j and, with a slight abuse of notation, identify H0,i with Rm
+ . Define then

the map ŵi,j as
ŵi,j(t, y) := w̄i,j(t, y)− p

H
⊥0
0,i

(L(ω(t, y))) .

By Lemma 11.2, the trace of ŵi,j on V is zero and we can therefore extend it to B1/2 as
a harmonic function, which is odd on t. The y derivative of ŵ at 0 vanishes, and if we let
di,j :=

∂ŵi,j
∂t

(0) we get, from classical estimates on harmonic functions,ˆ
B+
ρ

|ŵi,j(t, y)− di,jt|2 ≤ C
(ρ
r

)m+4
ˆ
B+
r

|ŵi,j|2 ≤ C
(ρ
r

)m+4
ˆ
Br∩C0

|w̄|2 (11.17)

If we now set b(y) := L(b1(y)) and ai,j(x) := di,j|x|+p
H
⊥0
0,i

(L(c))|x|, combining (11.16) and

(11.17) we reachˆ
Bρ∩H0,i

|w̄i,j(x, y)− p
H
⊥0
0,i

(b(y))− ai,j(x)|2 ≤ C
(ρ
r

)m+4
ˆ
Br∩C0

|w̄|2 (11.18)

Summing the latter inequality over i and j we reach the desired conclusion. �

12. Proofs of Theorem 4.5 and of Theorem 1.9

In this section we prove Theorem 4.5 and obtain Theorem 1.9 as a corollary.

12.1. The new cone. We start with a simple corollary of the analysis that we carried on
thus far.

Corollary 12.1. Let C0 be as in Assumption 1.8, with S0 = spt(C0) ⊂ π0 and let V be
the spine of C0. There are a threshold ρ+ ∈ (0, 1) and a constant C̄, depending only on
C0, m, n, and p, such that, if ρ− < ρ+ is a second positive number, then the following
properties hold, provided η5 = η5(ρ−) > 0 is chosen sufficiently small. Assume T,Σ,C,
and S are as in Theorem 9.3 with η5 replacing η3 and ε2 in (9.1)-(9.2). Assume in addition

that A ≤ η5E, and let l̃ = l̃i,j be the linear p-multifunction of Theorem 9.3. Then there are
a rotation O of π0 and a linear p-multifunction l+i,j with the following properties:

(i) |O − Id|+ ‖l+‖L∞(S0∩B1) ≤ C̄E1/2;

(ii) If C+ is the cone realized as p-multigraph over S0 of l̃i,j + l+i,j and C′ := O]C
+, then

ρ−m−2

ˆ
Bρ

dist(q, spt(C′))2d‖T‖(q) ≤ ρ

R0

E ∀ρ ∈ [ρ−, ρ+] . (12.1)

Before coming to the proof, we observe that C′ is coherent with C0 and that in addition

ϑ(C′,C0) ≤ϑ(C,C0) + C̃
(
|O − Id|+ ‖l+‖L∞(S0∩B1)

)
≤ ϑ(C,C0) + C̃E1/2 , (12.2)

for an appropriate constant C̃, which depends only on C0

Proof. First of all, the parameters C̄ and ρ+ will be chosen, respectively, sufficiently large
and sufficiently small, depending only on the constants R0 of Assumption 5.1 and C of
Theorem 9.3. We fix them for the moment and will specify their choices later. Hence we
fix any ρ− < ρ+ and in order to find the threshold η5 we argue by contradiction. If the
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statement is false, we then have a blow-up sequence Σk, Tk,Ck as in Definition 10.1 which
is violating the claim of the Corollary. In particular no matter how we choose l+ = lk,+

and O = Ok with |O − Id| + ‖l+‖L∞(S0∩B1) satisfying the bound (i), (12.1) (with T = Tk)
will fail for some ρ = ρk ∈ [ρ−, ρ+]. After extraction of a subsequence (not relabeled)
we can then apply Corollary 10.2 and Proposition 10.5. If we consider the corresponding
blow-up map w̄, we can then apply Proposition 11.1. Let a and b be the corresponding

maps. We then set lk,+ := E
1/2
k a. Moreover we observe that the vector field b (extended

to the whole π0 by b(x, y) = b(y)) is the infinitesimal generator of a one-parameter family
of linear transformations O(t, ·) of π0, i.e.{

O(0, x, y) = (x, y)
∂tO(0, x, y) = b(y) .

Observe that, if we take the matrix B which represents the linear transformation b, then
O(t, ·) is the linear transformation whose matrix is the exponential exp(tB). Since V ⊥0

is in the kernel of B and V ⊥0 = B(V ), we easily see that B is an antisymmetric matrix
and in particular exp(tB) is orthogonal. This means that O is a one-parameter family of

rotations. We then define the rotation Ok := O(E
1/2
k , ·). Observe that the bound (i) is

satisfied with this choice of lk,+ and Ok.
Next let C+

k be the graph over S0 of the multifunction lki,j + lk,+i,j and C′k := (Ok)]C
+
k . We

claim that, combining Proposition 10.2, Proposition 10.5, and Proposition 11.1, for every
fixed % > 0, we conclude

lim sup
k→∞

sup
ρ∈[ρ−,ρ+]

ρ−m−3E−1
k

ˆ
Bρ\B%(V )

dist(q, spt(C′k))
2d‖Tk‖(q)︸ ︷︷ ︸

=:Ik

≤ Cρ+ . (12.3)

Note first that each q ∈ spt(Tk)∩Bρ \B%(V ) is contained in the graph of a function vki,j for

all k sufficiently large. Fix q and let therefore z = (x, y) ∈ H0,i be such that z+vki,j(z) = q.
Consider now the following points

z+ := z − E
1/2
k pH0,i

(b(y))

q+ := z+ + lki,j(z
+) + lk,+i,j (z+)

q′ := O(E
1/2
k , q+) .

Observe that q′ ∈ spt(C′k) and thus

dist(q, spt(C′k)) ≤ |q − q′| .

On the other hand q − q′ = (q − q+) + (q+ − q′). First of all notice that:

q − q+ = E
1/2
k pH0,i

(b(y)) + uki,j(z)− lki,j(z+)− lk,+i,j (z+) + O(A)

= E
1/2
k pH0,i

(b(y)) + uki,j(z)− lki,j(z)− lk,+i,j (z) + (o(1) + O(E
1/2
k ))|z − z+|+ O(A) ,
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where we have used that ‖∇lki,j‖∞ ≤ CF̂ p
B1

(Ck,C0) = o(1) and ‖∇lk,+i,j ‖∞ = O(E
1/2
k ). In

particular we conclude

q − q+ = E
1/2
k pH0,i

(b(y)) + wki,j(z)− E
1/2
k ai,j(x) + o(E

1/2
k ) .

On the other hand, using that b is the generator of O(t, ·) we obviously have

q+ − q′ = −E
1/2
k b(y) + O(Ek) .

Summing the last two estimates we conclude that

|q − q′| = |wki,j(z)− E
1/2
k (ai,j(x) + p⊥0

H0,i
(b(y)))|+ o(E

1/2
k )

Thus we can estimate

Ik ≤

(
ρ−m−3E−1

k

∑
i

ˆ
H0,i∩Bρ\B%(V )

∑
j

|wki,j(z)− E
1/2
k (ai,j(x) + p

H
⊥0
0,i

(b(y)))|2
)

+ o(1) .

We can now apply Proposition 11.1 to estimate the term in the parenthesis, and, using
that the L2 norm of w̄ is bounded due to Proposition 10.5, conclude (12.3).

In addition, observe that in B1 we have dist(q, spt(C′k)) ≤ dist(q, spt(Ck)) +CE
1/2
k and

thus we can estimate

lim sup
k→∞

sup
ρ∈[ρ−,ρ+]

ρ−m−3E−1
k

ˆ
Bρ∩B%(V )

dist(q, spt(C′k))
2d‖Tk‖(q)

≤C(ρ−)−m−3%+ %1/2 lim sup
k→∞

sup
ρ∈[ρ−,ρ+]

ρ−m−3E−1
k

ˆ
Bρ∩B%(V )

dist(q, spt(Ck))
2

%1/2
d‖Tk‖(q)

≤C%1/2(ρ−)−m−3 .

Since ρ− is fixed, we can now choose % arbitrarily small to conclude

lim sup
k→∞

sup
ρ∈[ρ−,ρ+]

ρ−m−3E−1
k

ˆ
Bρ

dist(q, spt(C′k))
2d‖Tk‖(q) ≤ Cρ+

Obviously, choosing ρ+ so that 2Cρ+ < R−1
0 , for a sufficiently large k we actually reach a

contradiction with Ck = C+, as Ck, Ok, l
k,+ satisfy both the conclusions (i) and (ii) of the

Corollary. �

12.2. Proof of Theorem 4.5. First of all, by scaling, we can replace the outer radius 1
by R0, while of course the decay rate has to be replaced by ( ρ

R0
)1/2. Choose now ρ := ρ+,

coming from Corollary 12.1. The proof will distinguish between two regimes. If A ≤ η5E,
where η5 comes from Corollary 12.1, we will be able to apply Corollary 12.1, while in
the other regime we will let C′ be the cone C̃ obtained as the graph, over C0, of the
linear p-multifunction l̃ of Theorem 9.3. Observe that in both cases the claim (4.4) holds:
in the case A ≤ η5E it follows from (12.2), while in the other case it follows because
spt(C′) ⊂ spt(C).

Consider now the case A ≤ η5E, and choose C′ as in Corollary 12.1: then, the estimate
(4.2) is obvious, since both the quantities over which we maximize have the right decay.
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Consider next the situation in which A > η5E. Here we will choose η < η5 (and in fact
much smaller than η5). We know that

(R0A)1/2 ≥ R
1/2
0 η−1A ≥ η5R

1/2
0 η−1E .

Hence if we choose η sufficiently small, depending only on R0 e η5, we conclude

(R0A)1/2 = max{E(T, spt(C), 0, R0), (R0A)1/2} . (12.4)

By our choice of C′, we also have

E(T, spt(C′), 0, ρ) ≤ Cρ−m−2(E + A) ≤ Cη−1
5 ρ−m−2A

≤ Cη η−1
5 ρ−m−2−1/2 (ρA)1/2 .

Hence, by choosing η so small that

Cηη−1
5 ρ−m−2−1/2 ≤ 1

(which again is a choice depending only on η5 and ρ, which have been fixed), we achieve

(ρA)1/2 = max{E(T, spt(C′), 0, ρ), (ρA)1/2} . (12.5)

(12.4) and (12.5) give thus the desired decay in the regime A > η5E.

We now come to estimate (4.3). Observe first that, since now ρ is fixed and F̂ p behaves

nicely under restrictions and rescalings, it suffices to estimate F̂ p
B1/2

(T −C′). Observe also

that it suffices to estimate F̂ p
B1/2

(T − C̃), since in one regime we have C′ = C̃, while in the

other regime we can estimate F̂ p
B1/2

(C′ − C̃) ≤ ϑ(C′, C̃) ≤ CE1/2. Coming to C̃, we first

wish to extend the multifunction u = {ui,j} so that its domain of definition is S0 ∩ B1/2

and it satisfies the bounds

|x|−1|ui,j(x, y)|+ |∇ui,j(x)| ≤ C .

In order to achieve the latter extension, we first claim that ui,j is globally Lipschitz. In
fact pick two points (x, y), (x′, y′) and denote by Q and Q′ the corresponding cubes of the
Whitney domain which include them. If the two cubes are neighbors then we obviously
have

|ui,j(x, y)− ui,j(x′, y′)| ≤ (‖∇ui,j‖L∞(Q) + ‖∇ui,j‖L∞(Q′))|(x, y)− (x′, y′)| .
We can thus assume that they are not neighbors. In particular this implies that |(x′, y′)−
(x, y)| ≥ c0 max{dQ, dQ′} for a suitable geometric constant. Thus we can estimate

|ui,j(x, y)− ui,j(x′, y′)| ≤ |ui,j(x, y)|+ |ui,j(x′, y′)| ≤ C(dQ + dQ′) ≤ C|(x, y)− (x′, y′)| .
Having established the global Lipschitz bound, it suffices to first extend ui,j to V identically
0 and observe that such extension is still Lipschitz. Hence we can further extend ui,j to a
Lipschitz function defined on the whole B1/2∩H0,i. The estimate |ui,j(x, y)| ≤ C|x| follows
from the Lipschitz regularity and ui,j(0, y) = 0.

Next we extend the map v as well by simply setting

vi,j(z) = ui,j(z) + Ψ(z + ui,j(z)) .
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Observe that the extension obeys the estimateˆ
B%(V )∩B1/2

(|v|2 + |l̃|2) ≤C
ˆ
B1/2∩B%(V )

|x|2d‖GS0(v)‖+ C

ˆ
B1/2∩B%(V )

|x|2d‖GS0(l̃)‖+ O(A)

≤C
ˆ
B1/2∩B%(V )

|x|2d‖T‖+ C

ˆ
B1/2∩B%(V )

|x|2d‖C‖+ O(A)

≤C(E + A) ,

by Theorem 5.8(iv).
We now write

T B1 − C̃ = T −GS0(v) B1︸ ︷︷ ︸
=:R1

+ GS0(v) B1 −GS0(l̃) B1︸ ︷︷ ︸
=:R2

.

Then

F̂ p
B1/2

(R2) ≤
∑
i

ˆ
H0,i∩B1/2

∑
j

|vi,j − l̃i,j|

≤CA +

ˆ
S0∩B1/2\B%(V )

|w|+
ˆ
S0∩B1/2∩B%(V )

(|v|+ |l̃|) ≤ C(E + A)1/2 .

As for estimating F̂ p
B1/2

(R1), observe that R1 = 0 outside B%(V ). Hence consider the

homotopy H(t, x, y) := (tx, y), which is retracting Rm+n onto V . We then apply the
homotopy formula and conclude that

R1 B1 = −∂H](J[0, 1]K×R1) B1 mod(p)

and we can estimate

F̂ p
B1/2

(R1) ≤M(H](J[0, 1]K×R1) ≤ C

ˆ
B1/2∩B%(V )

|x| d‖T‖+ C

ˆ
B1/2∩B%(V )

|x| d‖GS0(v)‖

≤C(E + A)1/2 . �

12.3. Proof of Theorem 1.9. First of all, without loss of generality we assume q = 0.
Next we assume that η̄ < η is sufficiently small, where η is the constant of Theorem 4.5,
so that we can apply it setting C = C0. We then find a new cone C1 which satisfies

max{E((η0,ρ)]T, spt(C1), 0, 1), (ρA)1/2} ≤ ρ1/2(E0 + A1/2)

F̂ p
B1

((η0,ρ)]T −C1) ≤ C(E
1/2
0 + A1/4)

ϑ(C1,C0) ≤ C(E
1/2
0 + A1/4) .

Assume now that for a certain number of steps j = 1, . . . , k−1 we can apply Theorem 4.5 to
the triple (Tj,Cj,Σj) where Tj = (η0,ρj)]T and Σj = η0,ρj(Σ). Observe that ‖AΣj‖L∞(Σj) =
ρjA. Setting

m(j) := max{E(Tj, spt(Cj), 0, 1), (ρjA)1/2}
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we then get

m(k) ≤ρk/2(E0 + A1/2) ,

F̂ p
B1

(Tk −Ck) ≤C m(k − 1)1/2 ≤ Cρ(k−1)/4(E
1/2
0 + A1/4) ,

ϑ(Ck,C0) ≤C
k−1∑
j=0

m(j)1/2 ≤ C

k−1∑
j=0

ρj/4(E
1/2
0 + A1/4) . (12.6)

In particular we conclude that

‖AΣk‖L∞ =ρkA ≤ η̄ρk

E(Tk, spt(Ck), 0, 1) ≤m(k) ≤ ρk/2(E0 + A1/2) ≤ 2ρ(k−1)/2η̄ ,

F̂ p
B1

(Tk −C0) ≤F̂ p
B1

(Tk −Ck) + F̂ p
B1

(Ck −C0)

≤F̂ p
B1

(Tk −Ck) + Cϑ(Ck,C0) ≤ C
k−1∑
j=0

ρj/4(E
1/2
0 + A1/4) ≤ Cη̄1/2 ,

where the constant C is independent of both η̄ and k. If η̄ is chosen sufficiently small, the
latter estimates guarantee that we can keep applying Theorem 4.5 for all k ∈ N.

The conclusions of Theorem 1.9 thus follow at once, considering that the unique tangent
cone to T at q is simply the unique limit of the sequence Ck (which is a Cauchy sequence
in the flat distance by (12.6)). �

13. Proofs of the structure theorems

In this section we give the proof of the two structure Theorems 1.3 and 1.4, of Corollary
1.5, and of Proposition 1.7. In fact, the two theorems will be corollaries of the following
more precise consequence of Theorem 1.9.

Corollary 13.1. Consider Σ, T , and Ω as in Definition 1.1 and assume that dim(Σ) =
dim(T ) + 1 = m+ 1. Assume q ∈ spt(T ) is a point where a tangent cone C0 has (m− 1)-
dimensional spine V , i.e. it takes the form

C0 =

N0∑
i=1

κ0,i JH0,iK ,

where H0,i are the (distinct) pages of the open book S0 = spt(C0) and κ0,i ∈ N∩
[
1, p

2

)
are

such that
∑

i κ0,i = p. Then there is a neighborhood U of q such that Sing(T ) ∩ U is a
classical free boundary as in Definition 1.2, with the additional information that:

(i) The coefficients ki in Definition 1.2 coincide with κ0,i;
(ii) The tangent to Sing(T ) at q is V ;

(iii) The tangent to each Γi at q is H0,i.

The corollary is obviously a stronger version of Theorem 1.4 when p is even. As for
Theorem 1.3, in the case of odd p, observe that, using the terminology of the proof of
Lemma 9.5, White’s regularity theorem implies that Sm \ Sm−1 consists of regular points
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and thus Sm−1 is closed. Next observe that any point q ∈ Sm−1 \ Sm−2 falls in the
assumptions of Corollary 13.1, hence Sing∗(T ) = Sm−1 \ Sm−2 is locally a classical free
boundary of T . On the other hand, if q ∈ Sing(T ) has an open neighborhood U such
that Sing(T ) ∩ U is a classical free boundary, then T has, at q, a unique tangent cone
with (m − 1)-dimensional spine, which means that q ∈ Sing∗(T ). We conclude therefore
that S = Sm−2 is relatively closed in Sm−1. Furthermore, it is a simple consequence of
Theorem 1.9 and Corollary 13.1 that, when p is odd, Sm−2 coincides, locally, with the
quantitative stratum Sm−2

η for some η > 0; see Appendix F for the terminology and the

proof of this fact. Thus, by the Naber-Valtorta rectifiability theorem, cf. [10], S = Sm−2

is (m− 2)-rectifiable and it has locally finite (m− 2)-dimensional measure, thus giving the
conclusions of Theorem 1.3.

13.1. Stucture. We now come to Corollary 13.1.

Proof. Without loss of generality we let q = 0. We fix a small threshold η̂. First of all, by
rescaling, we can assume max{E(T,C0, 0, 4),A} < η̄ and since we are in the position of
applying Theorem 1.9, we conclude that C0 is the unique tangent cone to T at 0 and that
we actually have

1

rm+2

ˆ
Br

dist2(q̄, spt(C0)) d‖T‖(q̄) ≤ η̂r1/2 , (13.1)

F̂ p
B1

((η0,r)]T −C0) ≤ η̂1/2r
1
4 . (13.2)

for every r < 4. We moreover denote by V0 the spine of C0.
For every q ∈ B4(0)∩Σ consider πq := TqΣ and let Oq be a rotation of Rm+n which maps

TqΣ onto T0Σ. Oq can be chosen to have a C1 dependence on q and to satisfy Oq = Id
at q = 0. Consider now the currents (Oq)](Tq,1). Observe that the map q 7→ (Oq)](Tq,1)
is continuous in the flat topology. Hence, for a sufficiently small δ and for every q ∈
Bδ(0) ∩ spt(T ), it holds ˆ

B3

dist2(q̄,C0)2 d‖(Oq)]Tq,1‖(q̄) ≤ Cη̂ (13.3)

F̂ p
B3

((Oq)]Tq,1 −C0) ≤ Cη̂ . (13.4)

In particular, we are again in the position to apply Theorem 1.9 with C0 to the current
(Oq)](Tq,1), provided ΘT (q) ≥ p

2
. We thus conclude that, for every q ∈ Bδ, the following

alternative holds true:

(a) Either ΘT (q) < p
2
;

(b) Or ΘT (q) ≥ p
2
, in which case we can apply Theorem 1.9 and hence find a unique

tangent cone Cq to T at q, with m−1-dimensional spine Vq, and the decay properties

1

rm+2

ˆ
Br(q)

dist2(q̄ − q, spt(Cq)) d‖T‖(q̄) ≤ Cη̂r1/2 , (13.5)

F̂ p
B1

((ηq,r)]T −Cq) ≤ Cη̂1/2r
1
4 , (13.6)

for all radii r < 3
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Since we can apply a further rescaling to the current, from now on we assume that the
alternative in fact holds for every q ∈ B1∩spt(T ). Consider now two points q, q′ ∈ B1 with
ΘT (q),ΘT (q′) ≥ p

2
. If we set |q−q′| = r and we denote by τv the translations τv(z) = z+v,

we conclude easily from (13.6) that

F̂ p
B1

(Cq − (τr−1(q′−q))]Cq′) ≤ Cη̂1/2r
1
4 .

After scaling, the latter estimate implies

• dist(q, Vq′) + dist(q′, Vq) ≤ Cη̂1/2r5/4;
• |pVq − pVq′ | ≤ Cη̂1/2r1/4.

It thus turns out that the set {ΘT ≥ p
2
} is contained in the graph of a C1,1/4 map ψ : V0 →

V ⊥0 with ‖ψ‖1,1/4 ≤ Cη̂1/2.
Fix δ > 0 and consider now a point q0 ∈ V0 ∩ B1/2. Observe that Proposition 9.4

implies that (if η is chosen sufficiently small), then Bδ(q0) contains a point q̄1 ∈ spt(T )
with ΘT (q̄1) ≥ p

2
. We now consider the point q1 ∈ q̄1 +Vq̄1 such that pV0(q1) = pV0(q0) = q0

and observe that |q1− q̄1| ≤ 2δ. We are thus in the position to apply again Proposition 9.4
to the current (ηq̄1,1/2)]T , the cone Cq̄1 , and the spine Vq̄1 to find a point q̄2 with θT (q̄2) ≥ p

2

such that |q̄2 − q1| ≤ δ
2
. Hence we consider the unique point q2 ∈ q̄2 + Vq̄2 such that

pV0(q2) = pV0(q1) = q0, for which we have |q2 − q̄2| ≤ 2 δ
2
. Proceeding inductively we get

two sequences of points {qk}, {q̄k}, with the following properties:

|q̄k − qk−1| ≤2−k+1δ

|qk − q̄k| ≤2−k+2δ

ΘT (q̄k) ≥
p

2
pV0(qk) =q0 .

Both sequences converge to a unique point q∞ ∈ B4δ(q0), with pV0(q∞) = q0. The latter
argument implies that {Θ ≥ p

2
}∩B1/2 is indeed the graph Λ of a C1,1/4 map ψ : V0 → V ⊥0 .

Observe moreover that TqΛ = Vq ⊂ πq = TqΣ and that indeed Θ(T, q) = p
2

for all points
q ∈ Λ ∩B1/2.

We now choose a second rotation Uq of Rm+n with the property that Uq(T0Σ) = TqΣ,
Uq(V0) = Vq, and Uq has a C1/4 dependence on q. In fact we can see that

F̂ p
B1

(Cq − (Uq)]C0) ≤ Cη̂1/2|q|1/4 .

We can now apply the approximation Theorem 5.8 to the current (U−1
q )]Tq,r with C =

(U−1
q )]Cq and C0, for every r < R−1

0 .
Consider now the halfplanes Hq,i := Uq(H0,i). Fix a point z ∈ B(4R0)−1 \ Λ and let

q(z) ∈ Λ be a point such that r = |q(z)− z| = dist(z,Λ). Theorem 5.8 implies then that:

• z is a regular point of T , and indeed, in a neighborhood of z, T is a graph over
q(z) + Hq(z),i for some i;

• |pH⊥
q(z),i

(z − q(z))| ≤ Ĉη̂|z − q(z)|5/4, where Ĉ is a geometric constant.
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We therefore consider the open sets

Ui :=
{
q ∈ B(4R0)−1 : |pH⊥

q(z),i
(z − q(z))| ≤ Ĉη̂|z − q(z)|

}
.

We now restrict our attention to T Ui. Let H be the m-dimensional space which contains
H0,i, consider the projection λ := pH(Λ) and let ei be the unit normal to λ which is
contained in H0,i. Denote by Bρ the balls of radius ρ in H and observe that λ divides each
sufficiently small Bρ in two connected regions: we will call B+

ρ the one such that ei is the
interior unit normal at 0. We claim that, if ρ is sufficiently small, in the intersection of the
set Ui with the cylinder p−1

H (B+
ρ ), the current T is given by κ0,i Lipschitz graphs (which

are Lipschitz up to the boundary λ) of functions vj, j ∈ {1, . . . , κ0,i}. Observe that, if
Ψ0 : π0 → π⊥0 is the graphical parametrization of Σ over π0, each function will take the
form uj(ξ) = (ξ, uj(ξ),Ψ(ξ, uj(ξ))), where ξ ∈ H and uj(ξ) ∈ H⊥ ∩ π0. Since H⊥ ∩ π0 is
1-dimensional, we can identify it with R and order the functions uj from top to bottom.
Observe also that there is a function ψ0 : λ → H⊥ ∩ π0 such that Λ is the graph of the
map λ 3 ξ 7→ (ξ, ψ0(ξ),Ψ(ξ, ψ0(ξ))). As a consequence of our claim we will conclude that
uj|λ = ψ0 for every j.

Consider now the classical Whitney (or Calderon-Zygmund) decomposition of B+
2ρ. In

particular for each cube Q in the decomposition, we let ξ(Q) be a closest point on λ and
observe that the distance dQ of Q to ξ(Q) is comparable to the sidelength `(Q) of the cube.
We let q be the point q = (ξ(Q), ψ0(ξ(Q)),Ψ(ξ(q), ψ0(ξ(Q))) ∈ Λ. Apply now Theorem
5.8 to (U−1

q )]Tq,`(Q) with C0 and C = (U−1
q )]Cq. If we enlarge slightly the cube Q to a

concentric cube Q′ with slightly larger sidelength (say 9`(Q)/8) and we consider the region
R := p−1

H (Q′), then (U−1
q )]Tq,`(Q) Ui ∩ R consists of pieces of κ0,i graphs over H0,i with

controlled Lipschitz constant C. In rotating back to the original system of coordinates using
Uq, the graphical representation still holds because |Uq − Id| is small, and the Lipschitz
constants becomes slightly larger, but they are still controlled by a geometric constant. The
claimed graphicality is thus correct over each enlarged cube Q′, and since for neighboring
cubes the enlarged ones has a nontrivial overlap, the ordering of the sheets shows that the
functions uj (and hence the vj’s) can be defined coherently over the whole region B+

ρ . The
Lipschitz constant of the restriction of each uj (and hence vj) to every cube in the Whitney
decomposition is bounded by an absolute constant C. Observe however that we have as
well the bound

‖vj − ψ0(ξ(Q))‖L∞(Q) ≤ C`(Q)

for every cube Q, simply because the graphs are contained in the open sets Ui. It is now
simple to see that the graph vj is then globally Lipschitz. In fact consider z, z′ ∈ B+

ρ and
let Q and Q′ be the cubes of the Whitney decomposition which contain them. If the two
cubes are neighbors, then obviously

|vj(z)− vj(z)| ≤ C|z − z′| .
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If the two cubes are disjoint, notice that `(Q′) + `(Q) ≤ C|z − z′| and |ξ(Q) − ξ(Q′)| ≤
C|z − z′|. Hence

|vj(z)− vj(z′)| ≤|vj(z)− ψ0(ξ(Q))|+ |ψ0(ξ(Q))− ψ0(ξ(Q′))|+ |vj(z′)− ψ0(ξ(Q′))|
≤C(`(Q) + |ξ(Q)− ξ(Q′)|+ `(Q′)) ≤ C|z − z′| .

Having shown that each vj is a minimal Lipschitz graph and that uj|λ = ψ0, the C1,1/4

regularity of vj up to λ in B+
ρ/2 follows now from standard Schauder estimates.

However, because of the decay to the cone C0 at the point 0, the normal derivatives of
each vj at 0 is in fact 0. Observe that u1 ≤ u2 ≤ . . . ≤ uκ0,i

on their domain of definition.
In particular the Hopf maximum principle implies that all of these functions coincide.
Thus T Ui is, in a neighborhood U of 0, a single C1,1/4 graph with boundary Λ ∩ U and
multiplicity κ0,i. �

With the obvious modifications of the proof given above, one can prove the following
ε-regularity result:

Corollary 13.2 (ε-regularity). Let p ∈ N \ {0, 1, 2} and C0 be as in Assumption 1.8, with
(m− 1)-dimensional spine V , i.e. of the form

C0 =

N0∑
i=1

κ0,i JH0,iK ,

where H0,i are the (distinct) pages of the open book S0 = spt(C0) and κ0,i ∈ N ∩
[
1, p

2

)
are such that

∑
i κ0,i = p. Then there is a constant η̄ > 0 depending only on p,m, n and

C0 with the following property. If T,Σ,Ω and q are as in Assumption 1.8 with η = η̄,
then Sing(T )∩B1/10(q) is a classical free boundary as in Definition 1.2, with the additional
information that:

(i) The coefficients ki in Definition 1.2 coincide with κ0,i;
(ii) The tangent to Sing(T ) at q is V ;

(iii) The tangent to each Γi at q is H0,i.

13.2. Flat singular points for even moduli. We next come to the proof of Corollary
1.5. Fix thus T , p = 2Q, Σ, Ω, and q as in the statement. Clearly ΘT (q) = Q. Consider
the set Tan (T, q) of cones which are tangent to T at q and subdivide it into

Tanf := {S ∈ Tan (T, q) : S = Q JπK for some m-plane π}
and

Tannf := Tan (T, q) \ Tanf .

Consider now Z ∈ Tannf and let V be its spine, which is given by

V := {x : ΘZ(x) = Q} .
Since Z is not flat, dim (V ) ≤ m− 1. On the other hand if it were m− 1, then Proposition
3.5 and Theorem 1.4 would imply that Z is the unique tangent cone to T at q. So we must
necessarily have dim (V ) ≤ m− 2. Consider now a point x ∈ spt(Z) which is not regular,
i.e. x ∈ Sing(Z). If a tangent cone to Z at x is Q Jπ′K for some plane π′, then x ∈ V .
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If x ∈ Sing(T ) \ V then no tangent cone to Z can be flat, because the multiplicity would
have to be an integer k ∈ {1, . . . , Q− 1} and then x would be regular by White’s theorem
[17]. Next, by Proposition 3.5, if a tangent cone to Z at x has (m− 1)-dimensional spine,
then ΘZ(x) = Q and thus x ∈ V . We conclude that

• if x ∈ Sing(Z) \ V , then the spine of any tangent cone to Z at x has dimension at
most m− 2.

From the Almgren’s stratification theorem we then conclude that dimH(Sing(Z) \ V ) ≤
m− 2. But then the Hausdorff dimension of the whole Sing(Z) is at most m− 2. This in
turn implies that Z is a classical area-minimizing current without boundary. Indeed, take
first a connected component U of Reg(Z). On U the multiplicity of Z must be a constant
mod(p). On the other hand, since this regular part is not part of the spine of the cone, such
multiplicity cannot be congruent to p

2
= Q. It is thus simple to see that it can be chosen to

be constant as an integer valued function. Recalling that Z is a precise representative, we
conclude that the support of ∂Z must be contained in the singular set Sing(Z). Since ∂Z
is a flat chain supported in a set of zero Hn−1-dimensional measure, a well-known theorem
of Federer implies that ∂Z = 0.

We are now ready to show that Tannf = ∅. Assume otherwise and for each Z ∈ Tan (T, q)
consider now its spherical cross section 〈Z, | · |, 1〉. Observe that the space of such cross

sections is a compact subset of the space of mod(p) cycles in ∂B1 in the topology of F̂ p
B2

.
For each Z ∈ Tannf we consider the function

d(Z) := min{F̂ p
B2

(〈Z, | · |, 1)− 〈S, | · |, 1〉) : S ∈ Tanf} .
Now, d(Z) > 0. We claim that:

(Con) if Tannf 6= ∅ then there is σ0 > 0 such that

∀s ∈ (0, σ0) ∃Z ∈ Tan(T, q) such that d(Z) = s . (13.7)

The latter is an easy consequence of the observation that the function

d(r) := min{F̂ p
B2

(〈Tq,r, | · |, 1)− 〈S, | · |, 1〉) : S ∈ Tanf}
is continuous in r and that, if Tq,rk → Z, then d(rk)→ d(Z). Having these two properties in
mind, we let σ0 := d(Z0) for some fixed chosen Z0 ∈ Tannf . Then there is ρk ↓ 0 such that
Tq,ρk → Z0. On the other hand there is also rk ↓ 0 such that Tq,rk → S0 ∈ Tanf . W.l.o.g.
we can assume rk < ρk. Next, d(ρk)→ d(Z0) = σ0 and d(rk)→ 0. Fix therefore s ∈ (0, σ0).
Then for every sufficiently large k there must be a τk ∈ (rk, ρk) such that d(τk) = s. Since
by extraction of a subsequence we can assume Tq,τk → Z for some Z ∈ Tan (T, q), we then
conclude

d(Z) = lim
k→∞

d(τk) = s ,

thus proving (13.7). Next, consider s = 1
k

and let Zk be the corresponding element of

Tan(T, q) such that d(Zk) = 1
k
. Then Zk → Q JπK for some m-dimensional π in the flat

topology mod(p) on every bounded open set. On the other hand since both Zk and Q JπK
are integral cycles, the latter convergence takes place in the usual flat topology of integer
rectifiable cycles as well. In particular, since Zk is area-minimizing and has codimension 1
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in TqΣ, for a sufficiently large k the regularity theory implies that Zk is in fact everywhere
regular. But since Zk is a cone, it must then be a flat cone, i.e. Q JπkK for some m-
dimensional plane πk. On the other hand the latter conclusion would imply d(Zk) = 0,
while we know that d(Zk) = 1

k
> 0. �

13.3. Proof of Proposition 1.7. We fix coordinates x1, x2, x3 in R3, consider a cycle
mod(p) S which is invariant under rotations around the x3 axis and let T be an area-
minimizing current mod(p) with ∂pT = S. The following is a well-known fact:

Lemma 13.3. T is invariant with respect to rotations around the x3 axis.

Proof. Fix a minimizer T which is a representative mod(p) and let r : R3 → R+ be given

by r(x1, x2, x3) =
√
x2

1 + x2
2. We denote by Cδ the closed set {r ≤ δ} and observe that, by

the monotonicity formula,
‖T‖(Cδ) ≤ Cδ

for some constant C independent of δ. Moreover, up to a rotation around x3 we can assume
that ‖T‖({x2 = 0}) = 0. Introduce next the function θ(x1, x2, x3) which gives the angle
between (x1, x2, 0) and the x1 axis. We will assume that θ is defined on the complement of
H := {x2 = 0, x1 ≤ 0}. Even though θ is just locally Lipschitz, we can define the current
〈T, θ, α〉 r by taking the limit of the currents

〈Tδ, θ, α〉 r ,

where Tδ = T (Cδ ∪H)c. It follows easily thatˆ π

−π
M(〈T, θ, α〉 r) dα = M(T rdθ) ≤M(T ) .

So

essinfα M(〈T, θ, α〉 r) ≤ 1

2π
M(T ) .

On the other hand, for a set of full measure of α, if we construct an integer rectifiable
current by rotating the current 〈T, θ, α〉 around the x3 axis we find a current T ′ with
∂T ′ = Smod(p) and

M(T ) ≤M(T ′) = 2πM(〈T, θ, α〉 r) .

This shows that indeed M(T dθ) = M(T ), which in turn shows that T must be invariant
under rotations around the x3 axis. �

Using the notation of the Lemma we observe that 〈S, θ, 0〉 is a sum of Dirac masses∑
i

κi JPiK .

T is then obtained by rotating around the x3 axis the current T0 in {x1 > 0} with the
property that ∂T0 = S mod(p) and T0 minimizes the mass relative to the Riemannian
metric ĝ = x1(dx2

1 + dx2
2). It is easy to see that T0 consists of the union of finitely many

geodesic arcs (in the metric ĝ) with integer weights and which meet in a finite number
of singular points. In particular the singular set of T consists of finitely many circles γi
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contained in planes {x3 = ci} and centered at (0, 0, ci). It suffices to show that for an
appropriate choice of the Pi’s and of their weights at least one “singular” circle must be
present. This however can be arranged by choosing p distinct Pi’s and multiplicities κi = 1,
with the additional property that the Pi’s are not all contained in a single geodesic. �

Appendix A. On two notions of flat distance

Recall that, for any (relatively) closed subset C of an open set Ω ⊂ Rm+n, the group
Fm(C) of m-dimensional integral flat chains in C consists of all m-dimensional currents
T in Ω for which there exists a compact set K ⊂ C such that

T = R + ∂Z

for some integer rectifiable currents R and Z (of the appropriate dimensions) with support
spt(R), spt(Z) ⊂ K. Given an integer p ≥ 2, and following Federer [6], one endows Fm(C)
with a family of pseudo-distances as follows: if T ∈ Fm(C) and K ⊂ C is compact, then
one sets

F p
K(T ) := inf

{
M(R) + M(Z) : R ∈ Rm(K), Z ∈ Rm+1(K)

such that T = R + ∂Z + pP for some P ∈ Fm(K)
}
.

(A.1)

Then, if T, S ∈ Fm(C) one defines the flat distance modulo p between T and S in K to be
the quantity F p

K(T −S). Notice that such distance may be infinite. Given T, S ∈ Fm(C),
we say that T = Smod(p) if there exists a compact set K ⊂ C such that F p

K(T − S) = 0.

The definition of flat distance mod(p) proposed in (A.1) is ill-behaved with respect to
localization. Consider, as an examples, two integer rectifiable currents T, S ∈ Rm(B2)
such that spt(T −S) ⊂ B1. The quantity F p

B1
(T −S) is certainly finite, bounded above by

M(T −S). If, on the other hand, one wanted to measure the localized flat distance mod(p)
between T and S in, say, B1/2, the definition (A.1) would produce F p

B1/2
(T − S) = ∞

unless spt(T − S) ⊂ B1/2. An obvious solution to this apparently minor issue would be to
modify the definition so that F p

B1/2
(T − S) is given by F p

B1/2
((T − S) B1/2). Although

natural, such approach is not completely satisfactory either, since the resulting distances
F p

B1
(T − S) and F p

B1/2
(T − S) may not be comparable, and in particular it is false, in

general, that the former controls the latter. To see this, let R and Z be almost optimal for
F p

B1
(T − S), so that

T − S = R + ∂Z + pP and M(R) + M(Z) ≤ F p

B1
(T − S) + ε .

An obvious attempt would be to use R and Z as competitors to estimate the localized
distance F p

B1/2
(T − S). On one hand,

(T − S) B1/2 = R B1/2 + (∂Z) B1/2 + pP B1/2 ,
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so that a competitor decomposition of (T − S) B1/2 may be obtained by applying the
slicing formula [13, Lemma 28.5] to get

(T − S) B1/2 = R B1/2 − 〈Z, | · |, 1/2〉+ ∂(Z B1/2) + pP B1/2 .

On the other hand, the slice 〈Z, | · |, 1/2〉 at the given radius r = 1/2 may not even
be defined, and, even if it were, its mass may be arbitrarily large. Of course, any fixed
neighborhood of r = 1/2 contains radii r′ such that the corresponding slices enjoy good
mass estimates (which degenerate as the neighborhoods shrink), but the fact that (A.1)
does not allow to gain control at a fixed sub-scale makes its use rather inconvenient when
it comes to the regularity statements that are needed in the present paper.

In order to overcome these issues, we are going to define here an alternative notion of
flat (pseudo)-distance mod(p), inspired by that proposed by Simon in [13]. While the
two definitions are not metrically equivalent in a given compact set, they induce the same
notion of convergence on Fm(C) (see Proposition A.2 below) and, in particular, the same
equivalence classes mod(p). Let Ω and C be as above, and assume, for the sake of simplicity,
that C is a Lipschitz neighborhood retract of Rm+n. For any T ∈ Fm(C), and for any
open set W ⊂⊂ Ω, we define

F̂ p
W (T ) := inf

{
‖R‖(W ) + ‖Z‖(W ) : R ∈ Rm(Ω), Z ∈ Rm+1(Ω)

such that T = R + ∂Z + pP for some P ∈ Fm(Ω)
}
,

(A.2)

and then we let the modified flat distance modulo p between T, S ∈ Fm(C) in W to be

F̂ p
W (T − S).
Notice that, since integral currents are dense in the space of integral flat chains with

respect to (classical) flat distance, (A.2) is unchanged if we replace the condition P ∈
Fm(Ω) with P ∈ Im(Ω). Furthermore, since C is a Lipschitz neighborhood retract of
Rm+n, one could require the currents R,Z, and P to be (compactly) supported in C

rather than in Ω and obtain a comparable definition of F̂ p
W (T ) to the one in (2.3), with

comparison constant depending only on the Lipschitz constant of the retraction. Since we
are only interested in the notion of convergence induced by the family {F̂ p

W}W on Fm(C)
and the corresponding equivalence classes mod(p), we shall not enforce this requirement

here (see also [5, Remark 1.1]). Observe that the quantity F̂ p is monotone non-decreasing

with respect to set inclusion, namely F̂ p
W ′(T ) ≤ F̂ p

W (T ) if W ′ ⊂ W .

The following proposition shows that, when T is integer rectifiable, the value of F̂ p in
an open set depends only on the restriction of T to the open set itself.

Proposition A.1. Let Ω and C be as above, and let T ∈ Rm(C). For any open set
W ⊂⊂ Ω, it holds

F̂ p
W (T ) = F̂ p

W (T W ) . (A.3)
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Proof. For any δ > 0, let Rδ ∈ Rm(Ω), Zδ ∈ Rm+1(Ω), and P δ ∈ Im(Ω) be such that

T = Rδ + ∂Zδ + pP δ and ‖Rδ‖(W ) + ‖Zδ‖(W ) ≤ F̂ p
W (T ) + δ . (A.4)

We can then write

T W = T − T (Rm+n \W ) = Rδ − T (Rm+n \W ) + ∂Zδ + pP δ

so that
F̂ p
W (T W ) ≤ ‖Rδ‖(W ) + ‖Zδ‖(W ) ≤ F̂ p

W (T ) + δ ,

and thus the inequality

F̂ p
W (T W ) ≤ F̂ p

W (T ) (A.5)

follows from the arbitrariness of δ.

For the converse, for any δ > 0 let now Rδ ∈ Rm(Ω), Zδ ∈ Rm+1(Ω), and P δ ∈ Im(Ω)
be such that

T W = Rδ + ∂Zδ + pP δ and ‖Rδ‖(W ) + ‖Zδ‖(W ) ≤ F̂ p
W (T W ) + δ . (A.6)

We can then write

T = T W + T (Rm+n \W ) = Rδ + T (Rm+n \W ) + ∂Zδ + pP δ ,

which, since T (Rm+n \W ) is integer rectifiable with zero localized mass in W , yields

F̂ p
W (T ) ≤ ‖Rδ‖(W ) + ‖Zδ‖(W ) ≤ F̂ p

W (T W ) + δ , (A.7)

and the conclusion follows again from the arbitrariness of δ. �

The following proposition compares the values of F p and F̂ p for a given flat chain T .

Proposition A.2. Let C ⊂ Ω be a Lipschitz neighborhood retract of Rm+n, and let T be
in Fm(C).

(a) Let K ⊂ C be a compact set. Then

F̂ p
W (T ) ≤ F p

K(T ) (A.8)

for all open sets W ⊂⊂ Ω.

(b) Let W ⊂⊂ Ω be an open set. For every ε > 0 there exists an open set Uε ⊂ C ∩W
with dist(Uε,Rm+n \W ) < ε such that

F p

Uε
(T Uε) ≤ Cε F̂ p

W (T ) , (A.9)

where Cε →∞ as ε→ 0+.

Proof. Proof of (a). We can assume that F p
K(T ) < ∞, otherwise the inequality is

trivial. In particular, spt(T ) ⊂ K. For any δ > 0, let Rδ ∈ Rm(K), Zδ ∈ Rm+1(K), and
P δ ∈ Fm(K) be such that

T = Rδ + ∂Zδ + pP δ and M(Rδ) + M(Zδ) ≤ F p
K(T ) + δ .

In particular, since Rδ, Zδ, and P δ are supported in K, it holds

‖Rδ‖(W ′) + ‖Zδ‖(W ′) = M(Rδ) + M(Zδ) ≤ F p
K(T ) + δ
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for all open sets W ′ ⊂⊂ Ω such that K ⊂ W ′. Thus, for any W as in the statement, letting
W ′ ⊂⊂ Ω be any open set containing W ∪K we have

F̂ p
W (T ) ≤ ‖Rδ‖(W ) + ‖Zδ‖(W ) ≤ ‖Rδ‖(W ′) + ‖Zδ‖(W ′) ≤ F p

K(T ) + δ ,

so that (A.8) follows by letting δ ↓ 0.

Proof of (b). Let Rh ∈ Rm(Ω), Zh ∈ Rm+1(Ω), and Ph ∈ Im(Ω) be such that

T = Rh + ∂Zh + pPh , ‖Rh‖(W ) + ‖Zh‖(W ) ≤ F̂ p
W (T ) +

1

h
. (A.10)

Letting Π: Rm+n → C be a Lipschitz retraction, we can first replace the currents Rh, Zh,
and Ph with Π]Rh, Π]Zh, and Π]Ph, respectively, in such a way that the first part of (A.10)
holds with currents Rh, Zh, and Ph supported on C, whereas the inequality in the second
part still holds with the right-hand side multiplied by L := Lip(Π)m+1 in case Lip(Π) > 1.
Next, fix ε > 0, and let dW denote the function dW (q) := dist(q,Rm+n \ W ). By [13,
Lemma 28.5], it holdsˆ ε

0

M(〈Zh, dW , σ〉) dσ ≤ ‖Zh‖(W ) ≤ L

(
F̂ p
W (T ) +

1

h

)
, (A.11)

so that there exists σ ∈ (0, ε) and, for every δ > 0 there exists a subsequence h(`) such
that

sup
`≥1

M(〈Zh(`), dW , σ〉) ≤
L

ε
F̂ p
W (T ) + δ . (A.12)

Then, let

Uε := {q ∈ C : dW (q) > σ} , Kε := Uε . (A.13)

Notice that Uε ⊂ C ∩W is open, Kε is compact, and dist(Kε,Rm+n \W ) < ε by the
choice of σ. Next, we can write from (A.10) and the slicing formula

T Uε = Rh(`) Uε + (∂Zh(`)) Uε + pPh(`) Uε

= Rh(`) Uε + 〈Zh(`), dW , σ〉+ ∂(Zh(`)) Uε) + pPh(`) Uε ,

so that combining (A.10) and (A.12) yields

F p
Kε

(T Uε) ≤M(Rh(`) Uε) + M(Zh(`) Uε) + M(〈Zh(`), dW , σ〉)

≤ L

(
1 +

1

ε

)
F̂ p
W (T ) +

L

h(`)
+ δ .

(A.14)

and (A.9) follows by letting first `→∞ and then δ → 0+.
�

Corollary A.3. If T ∈ Rm(C) and W ⊂⊂ Ω is such that F̂ p
W (T ) = 0, then T U =

0 mod(p) for every U ⊂⊂ W .
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Proof. From Proposition A.2(b) it follows that there exists U ′ with C ∩ U ⊂ U ′ ⊂ C ∩W
such that F p

U ′
(T U ′) = 0, so that T U ′ = 0 mod(p). In particular, since T is integer

rectifiable there exists a rectifiable current R such that T U ′ = pR, which in turn gives
T U = pR U = 0 mod(p). �

Appendix B. Proof of Lemma 4.6

The Lemma will be a simple consequence of a compactness argument and of the following
extreme case.

Lemma B.1. Let C and S be as in Lemma 4.6. There exists η1 = η1(S) > 0 with the
following property. Let T be a representative mod(p) in B1 ⊂ Rm+n with ∂T B1 =
0 mod(p). If

E(T,S, 0, 1) = 0 and F̂ p
B1

(T −C) < 2 η1 (B.1)

then
T B1 = C B1 . (B.2)

Proof. To fix the notation, let κi ∈ [1, p/2) ∩ Z and Hi be such that

C =
N∑
i=1

κi JHiK .

Let T be as in the statement. The first hypothesis in (B.1) implies that spt(T ) ∩B1 ⊂ S.
Given that ∂T = 0 mod(p), the constancy lemma for currents mod(p) [5, Lemma 7.4]
applied on each page Hi of the book S implies that there are integers θi with |θi| ∈

[
0, p

2

]
such that

T B1 =
N∑
i=1

θi JHiK B1 mod(p) . (B.3)

Since there are only finitely many classes of integer rectifiable representatives mod(p) hav-
ing the structure (B.3) which are not congruent to C mod(p) in B1, the minimum of their

F̂ p
B1

-distance from C is positive by Corollary A.3. If we let 2 η1 be this value, the condition

F̂ p
B1

(T −C) < 2 η1 forces

T B1 = C B1 mod(p) . (B.4)

The conclusion in (B.2) then follows from the fact that T is representative and all multi-
plicities on C satisfy κi < p/2. �

Proof of Lemma 4.6. By (4.5) and standard slicing and compactness, there exist σ ∈
(1, 3/2) and a rectifiable current T in Bσ which is representative mod(p) with (∂T ) Bσ =

0 mod(p) such that F p

Bσ
(Tj Bσ−T )→ 0. In particular, F̂ p

B1
(Tj−T )→ 0 by Propositions

A.1 and A.2.
For every λ > 0, setting Uλ :=

{
q ∈ B1 : dist2(q,S) > λ

}
we have that

‖Tj‖(Uλ) ≤ λ−1

ˆ
B1

dist2(·,S) d‖Tj‖ = λ−1E(Tj,S, 1) . (B.5)
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Since Tj, T are representatives mod(p), and the mass mod(p) is lower semicontinuous with
respect to the flat convergence mod(p) in Uλ for almost every λ > 0, we conclude from
(B.5) that spt(T ) ∩B1 ⊂ S ∩B1, and thus E(T,S, 1) = 0. Lemma B.1 then implies that
T B1 = C B1, and the proof is complete. �

Appendix C. Proof of Lemma 4.7

We first prove the statement for R = 1, and then we show how to deduce (4.11) in full
generality. Let C be the cone C = C′ × JV m−1K, where C′ is a singular one-dimensional
cone in the orthogonal complement V ⊥ of V in Rm+n (with S′ := spt(C′) contained in some
two-dimensional linear subspace of V ⊥). We consider a retraction F ′ : V ⊥ ' Rn+1 → S′

satisfying the following properties:

(i) F ′ is 1-homogeneous
(ii) F ′|∂Bn+1

1
agrees with the closest point projection onto S′ ∩ ∂Bn+1

1 = {v(i)}Ni=1 in a

tubular neighborhood of this set;
(iii) F ′ is smooth outside of 0 and L-Lipschitz with Lipschitz constant L = L(S′);
(iv) |F ′(x)− x| ≤ C dist(x,S′) for some C = C(S′).

For instance F ′ can be constructed as follows (cf. Figure 6): we fix ρ ∈ (0, 1/8) and a
corresponding tubular neighborhood U2ρ := {x ∈ ∂Bn+1

1 : dist(x, {v(i)}Ni=1) < 2ρ} where
a closest point projection F ′0 : U2ρ → {v(i)}Ni=1 is uniquely defined. Then we extend F ′0 to
∂Bn+1

1 by setting

F ′1(x) := φ(|x− F ′0(x)|)F ′0(x) ,

where 0 ≤ φ(t) ≤ 1 is a smooth cut-off with φ(t) = 1 for t < ρ and φ(t) = 0 for t ≥ 2ρ.
Finally, we let F ′ : Rn+1 → S′ be the 1-homogenous extension

F ′(x) = |x|F ′1
(
x

|x|

)
.

We remark that ρ, and thus the Lipschitz constants of φ and F ′, depend on the smallest
opening angle between two distinct branches of C′. Now, if x is such that x

|x| ∈ Uρ we have

that

|F ′(x)− x| = |x|
∣∣∣∣F ′1( x

|x|

)
− x

|x|

∣∣∣∣ ≤ 2 dist(x,S′) .

If, instead, x
|x| /∈ Uρ then dist(x,S′) ≥ cρ |x|, whereas |F ′(x) − x| ≤ |x|, so that (iv) holds

for an appropriate constant C(S′).
Next, we extend F ′ to a retraction F : Rm+n → S by setting

F (q) := (F ′(x), y) for q = (x, y) ∈ V ⊥ × V ,
so that property (iv) implies

|F (q)− q| ≤ C(S) dist(q,S) for all q ∈ Rm+n . (C.1)

Consider now the linear homotopy H : [0, 1]× Rm+n → Rm+n defined by

H(t, q) := (1− t) q + t F (q) ,
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v(1)

v(2)

v(3)
v(4)

Figure 6. A visual illustration of the map F . In the nonshaded areas F
takes the constant value 0. In each of the four darker shaded areas F (x) is
the unique point in the central halfline such that |F (x)| = |x| (hence each
thick arc is mapped into its middle point v(i)). In the remaining lighter
shaded areas the map F is extended to be Lipschitz, while still taking values
in the nearest thick halfline.

and deduce from (C.1) that choosing η2 = η2(C) suitably small we can ensure that

|q| ≥ 3
4

and dist(q,S) < 2 η2 =⇒ |H(t, q)| ≥ 1

2
for all t ∈ [0, 1] . (C.2)

Let now T be as in the statement, and apply the polyhedral approximation theorem
mod(p) [8, Theorem 3.4] to the restriction T B1 in order to determine, by exploiting
the assumptions (4.8) and (4.9), a sequence {δk}∞k=1 of positive numbers with δk → 0+ as
k →∞ and a sequence {Pk}∞k=1 of representative mod(p) integral polyhedral chains in B1

such that

F p

B1
(T B1 − Pk) ≤ δk ,

M(Pk) ≤Mp(T B1) + δk ,

‖Pk‖
∗
⇀ ‖T‖ in B1 as k →∞ ,

Mp((∂Pk) B1−δk) ≤ δk ,

sptp(∂Pk) \B1−δ ⊂ {dist(·,S) ≤ η2 + δk} .

We can then apply the H-homotopy formula to each Pk, and if Sk is any representative
mod(p) of ∂Pk we can write

F]Pk − Pk = ∂ (H](J(0, 1)K× Pk))−H](J(0, 1)K× Sk) =: ∂Zk +Wk mod(p) . (C.3)

By the properties of Pk and (C.2), ‖Wk‖(B1/2) ≤ δk for all k sufficiently large. Hence, we
can estimate for all such k

F̂ p
B1/2

(F]Pk − Pk) ≤ δk + ‖Zk‖(B1/2) , (C.4)
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so that, letting T ′ denote a representative mod(p) of F](T B1), we have

F̂ p
B1/2

(T ′ − T ) ≤ lim inf
k→∞

(
F̂ p

B1/2
(T ′ − F]Pk) + 2 δk + C(S)

ˆ
B1

|F (q)− q| d‖Pk‖(q)
)

≤ lim inf
k→∞

(
F̂ p

B1/2
(T ′ − F]Pk) + 2 δk + C(S)

ˆ
B1

dist(·,S) d‖Pk‖
)

= C(S)

ˆ
B1

dist(·,S) d‖T‖ .

(C.5)

Finally we note that T ′ is supported in S, and that sptp(∂T ′) ∩B1/2 = ∅. Estimating

F̂ p
B1/2

(T ′ −C) = F̂ p
B1/2

(T ′ − F]C)

≤ lim inf
k→∞

(
F̂ p

B1/2
(T ′ − F]Pk) + Lip(F )m+1 F̂ p

B1/2
(Pk −C)

)
(4.10)

≤ Lip(F )m+1 η2

(C.6)

we see then that, modulo possibly choosing a smaller η2(S), we can apply Lemma B.1 and
conclude that T ′ B1/2 = C B1/2, which proves the statement for R = 1.

When R < 1, we can repeat the above proof replacing T B1 with TR B1, where
TR := (η0,R)]T . The assumptions (4.8) to (4.10) hold for TR by scaling, and if Pk is a
polyhedral approximation of TR B1 we can let T ′R be a representative mod(p) of F](TR B1)
so that, setting T ′ := (η0,R−1)]T

′
R, (C.5) becomes

F̂ p
BR/2

(T ′ − T ) ≤ C(S)Rm+1

ˆ
B1

dist(·,S) d‖TR‖ = C(S)

ˆ
BR

dist(·,S) d‖T‖ , (C.7)

and the statement follows by arguing as above that T ′ BBR/2
= C BR/2 by Lemma

B.1. �

Appendix D. Proofs of Lemma 4.8 and Lemma 4.9

Proof of Lemma 4.8. Let W,Z, P be such that T − S = W + ∂Z + pP in B3R and

‖W‖ (B2R) + ‖Z‖ (B2R) ≤ 2 F̂ p
B2R

(T − S) . (D.1)

Since both T and S have finite mass in B3R, we can assume that ‖∂Z‖(B2R) < ∞. Pick
q ∈ (spt(T ) \ spt(S)) ∩ BR, and set d = d(q) as in the statement. Observe that by
assumption we have 0 < d < 2R. By slicing theory, we may select d

4
< σ < d

2
such that

M(〈Z, %q, σ〉) ≤ 4 d−1 ‖Z‖ (Bd(q)), where %Y (q′) = |q′ − q|. Note that Bσ(q) ∩ spt(S) = ∅,
so that

T Bσ(q) = W Bσ(q)− 〈Z, %q, σ〉+ ∂(Z Bσ(q)) + pP Bσ(q).

Let us fix a Lipschitz retraction F : Rm+n → Σ. Since spt(T ) ⊂ Σ we have

T Bσ(q) = F] (W Bσ(q)− 〈Z, %q, σ〉) + ∂F](Z Bσ(q)) + pF](P Bσ(q)) . (D.2)
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Since T is area minimizing mod(p), (D.2) implies that, for some constant C = C(m),

1

C
σm ≤M(T Bσ(q)) ≤M(F](W Bσ(q)− 〈Z, %q, σ〉))

≤ Lip(F )m
(
‖W‖ (B2R) +

2

σ
‖Z‖ (B2R)

) (D.3)

where in the first inequality we have used the almost monotonicity of the mass density ratio
stemming from the minimality together with the assumption that ‖AΣ‖L∞ ≤ 1. Plugging
(D.1) into (D.3), we conclude that

min{1, σ}σm ≤ C F̂ p
B2R

(T − S)

which completes the proof. �

Proof of Lemma 4.9. Let q ∈ spt(T )∩B1/2\K, and set 2ρ := dist(q,K). Note that ρ < 1/4,
and that dist(q′, K) > ρ for all q′ ∈ Bρ(q). Hence using minimality and the resulting almost
monotonicity of the mass density ratio of T we deduce

1

C
ρm ≤M(T Bρ(q)) ≤ ρ−2

ˆ
Bρ(q)

dist2(q′, K) d ‖T‖ (q′) , (D.4)

which completes the proof. �

Appendix E. Proof of Lemma 8.2

In order to simplify our notation we write R for R1. For a fixed a ≥ 0, and for any
0 < r < R, we consider the vector field

Wa,r(q) :=

(
1

max(r, |q|)m+a
− 1

Rm+a

)+

q .

We then insert g2Wa,r in the first variation formula (2.2) to derive

−
ˆ
BR

g2Wa,r · ~HT d ‖T‖ =
m

rm+a

ˆ
Br

g2 d ‖T‖ − m

Rm+a

ˆ
BR

g2 d ‖T‖

− a
ˆ
BR\Br

g2(q)

|q|m+a
d ‖T‖ (q) + (m+ a)

ˆ
BR\Br

g2(q)
|q⊥|2

|q|m+a+2
d ‖T‖ (q)

+

ˆ
BR

W T
a,r · ∇g2 ‖T‖ ,

where W T
a,r(q) denotes the projection on the tangent plane to T at q of the vector Wa,r(q).

Observe that W T
a,r(q) is in fact parallel to qT . Now we can use the homogeneity of g and

the identity q = qT + q⊥ to deduce that

∇g2(q) · qT = 2kg2(q)− 2g(q)∇g(q) · q⊥ ≥
(

2k − ε

2

)
g2(q)− 2

ε
|∇g(q)|2|q⊥|2 .
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In particular we may choose a = 2k − α, ε = α to estimate

−
ˆ
BR

g2Wa,r · ~HT d ‖T‖ ≥
m+ 2k − α/2

rm+2k−α

ˆ
Br

g2 d ‖T‖ − m+ 2k − α/2

Rm+2k−α

ˆ
BR

g2 d ‖T‖

α

2

ˆ
BR\Br

g2(q)

|q|m+2k−α d ‖T‖ (q) + (m+ 2k − α)

ˆ
BR\Br

g2 |q⊥|2

|q|m+2k+2−α d ‖T‖ (q)

− 2

α

ˆ
BR

(
1

max(r, |q|)m+2k−α −
1

Rm+2k−α

)+

|∇g(q)|2|q⊥|2 d ‖T‖ (q) .

To bound the left hand side |g2Wa,r · ~HT |(q) ≤ C‖ĝ‖2
∞ARα|q|1−m, valid for |q| ≤ R, and

exploit the monotonicity formula to estimate
ˆ
BR

|q|1−md‖T‖(q) ≤ C
‖T‖(BR)

Rm
.

We thus conclude

α

2

ˆ
BR\Br

g2(q)

|q|m+2k−α d ‖T‖ (q) ≤ m+ 2k

Rm+2k−α

ˆ
BR

g2 d ‖T‖+ CA‖ĝ‖2
∞
‖T‖ (BR)

Rm−α

+
2

α

ˆ
BR

|∇g(q)|2|q⊥|2

max(r, |q|)m+2k−α d ‖T‖ (q) .

Letting r ↓ 0 we then conclude (8.2).
Next recall the ”classical” monotonicity formula (which in fact is a particular case of the

identities above, where we set a = 0, h = 1, R = ρ, and let again r ↓ 0):

ρmΘT (0)− ‖T‖ (Bρ) + ρm
ˆ
Bρ

|q⊥|2

|q|m+2
d ‖T‖ (q) = −ρ

m

m

ˆ
Bρ

q⊥ · ~HT (q)

|q|m
d ‖T‖ (q) . (E.1)

Next recall that

• ΘT (0) ≥ ΘC(0) = ρ−m‖C‖(Bρ);
• The identities ˆ

BR

f(|q|)dµ(q) =

ˆ R

0

f(t)
d

dt
(µ(Bt)) dt ,

ˆ
BR

F (|q|)dµ(q) =

ˆ R

0

f(t)
d

dt
(tmµ(Bt)) dt ,

valid for any nonnegative Radon measure µ such that µ({0}) = 0 (provided we
interpret the derivative d

dt
(µ(Bt)) distributionally as a nonnegative Radon measure

ν on [0, R]).

We conclude (8.3) by first differentiating (E.1) in ρ, then multiplying by f(ρ), and finally
integrating in ρ between 0 and R.
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Appendix F. Quantitative stratification and proof of Sm−2 = Sm−2
η

Recall the definition of the classical stratification

S0 ⊂ S1 ⊂ . . . ⊂ Sm−1 ⊂ Sm = spt(T ) \ sptp(∂T )

of spt(T ) \ sptp(∂T ) introduced in Section 3. Following [10] (see also [5]), we give the
following definition of a notion of local almost symmetry for an integral varifold V .

Definition F.1. Let V be an m-dimensional integral varifold in Rm+n. For k ∈ {1, . . . ,m}
and η > 0, we say that V is (k, η)-almost symmetric in a ball Bs(q) if there exists a varifold
cone C with spine of dimension k such that the varifold distance between C B1(0) and
((ηq,s)]V ) B1(0) is smaller than η.

Let now T be as in Definition 1.1, and suppose that sptp(∂T ) ∩ B2(0) = ∅, so that
the associated varifold ‖T‖ has bounded generalized mean curvature in B2(0). For k =
0, . . . ,m− 1, η > 0, and r > 0 we then introduce the set

Sk,rη :=
{
q ∈ B1(0) ∩ spt(T ) : ‖T‖ is not (k + 1, η)-almost symmetric

in Bs(q) for all s ∈ [r, 1)
}
,

as well as the quantitative strata

Skη :=
⋂
r>0

Sk,rη ,

so that
Sk ∩B1(0) =

⋃
η>0

Skη .

In this section we prove the following result, which follows as a simple consequence of the
theory developed in the paper.

Proposition F.2. Let p ≥ 3 be odd, and let T be as in Definition 1.1. Suppose that
dim(Σ) = m + 1, and that sptp(∂T ) ∩ B2(0) = ∅. Then, Sm−2 ∩ B1(0) = Sm−2

η for some
η > 0.

Proof. Suppose that the statement is false, and let, for h ≥ 1 integer, qh ∈ B1(0)∩ Sm−2 \
Sm−2
ηh

, where ηh → 0+. By definition of quantitative strata, there are then radii rh ∈ (0, 1)
and cones Ch with (m− 1)-dimensional spine such that

distvar(Th B1(0),Ch B1(0)) ≤ ηh , (F.1)

where Th := (ηqh,rh)]T and distvar denotes varifold distance. By the slicing formula mod(p)
and (F.1), both M(Th B1(0)) and Mp(∂(Th B1(0))) are uniformly bounded in h, so
that combining (F.1) with [5, Proposition 5.2] and Lemma 4.8 we deduce the existence
of a (not relabeled) subsequence such that, when h → ∞, the currents Th converge, both

with respect to the topology induced by F̂ p
B1

and in the sense of varifolds in B1(0), to a
representative mod(p) current C0 which is (the restriction to B1(0) of) an area minimizing
cone mod(p) with no boundary mod(p) in B1(0) and spine of dimension at least m − 1,
and such that the excess of Th in B1(0) with respect to spt(C0) converges to zero.
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Let now q be the limit of a (not relabeled) subsequence of qh. If ρ := lim suph→∞ rh > 0,
then evidently

T = q + C0 in Bρ/2(q) . (F.2)

In particular, C0 cannot be a flat plane, since q is a limit of singular points qh. Hence, C0

has (m − 1)-dimensional spine, and thus, in a neighborhood of q, all singular points of T
belong to Sm−1 \ Sm−2, contradicting the assumption on qh → q.

Therefore, we can assume that rh → 0+. Also in this case, we can exclude that C0 is
a flat plane: indeed, should that happen, White’s regularity theorem would readily imply
that Th are regular for all h sufficiently large, a contradiction. Hence, we can assume that
C0 has (m− 1)-dimensional spine V0, and, by minimality, that its support is contained in
π0 := TqΣ.

Now, fix δ ∈ (0, 1/8). By Proposition 9.4, we then have that for all h ≥ h0(δ) there is a
point q̃h ∈ Bδ(0) such that ΘTh(q̃h) ≥ p

2
. For δ sufficiently small and for all h sufficiently

large, the currents Th (and the manifolds Σh = r−1
h (Σ − qh)) satisfy the Assumptions of

Corollary 13.2 with q = q̃h and with C0 replaced by (Oh)]C0, where Oh is a rotation
of Rm+n such that Oh(π0) = Tq̃hΣh. In particular, Sing(Th) ∩ B1/10(q̃h) is a classical free
boundary. Rescaling back, we then deduce that, setting q̄h := qh+rh q̃h, Sing(T )∩Brh/10(q̄h)
is a classical free boundary for all h sufficiently large. Since |q̄h− qh| ≤ δ rh, up to possibly
choosing δ smaller, we then have that T has, at qh, a unique tangent cone with (m − 1)-
dimensional spine, a contradiction to qh ∈ Sm−2 which concludes the proof. �

Appendix G. Proof of Theorem 1.6

First of all, irrespectively of the codimension of T , note that at every point x ∈ Sm\Sm−1

there is at least one tangent cone which is flat, and which, because p = 3, has multiplicity
1. By Allard’s regularity Theorem, cf. [1], every such point is thus regular. Next, at every
point x ∈ Sm−1 \ Sm−2 at least one tangent cone consists of three half m-dimensional
planes meeting at 120 degrees at an (m − 1)-dimensional linear subspace. We can thus
apply the theory in [14] (because the multiplicity on the regular part is always 1) and thus
conclude that Sm−1\Sm−2 is locally a classical free boundary. Now, in general codimension,
Appendix F and [10] imply that Sm−2 is rectifiable and has locally finite Hm−2 measure,
while in codimension 1, [15] implies that Sm−2 \ Sm−3 is empty (because there are no
codimension 1 area minimizing cones mod 3 with (m − 2)-dimensional spine. We can
thus apply Appendix F and the theory in [10] and conclude that Sm−3 is rectifiable and
has locally finite Hm−3 Hausdorff measure.
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