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MASS CONCENTRATION IN

RESCALED FIRST ORDER INTEGRAL FUNCTIONALS

by Antonin Monteil & Paul Pegon

Abstract. — We consider first order local minimization problems of the form min
´
RN f(u,∇u)

under a mass constraint
´
RN u = m. We prove that the minimal energy function H(m) is

always concave, and that relevant rescalings of the energy, depending on a small parame-
ter ε, Γ-converge towards the H-mass, defined for atomic measures

∑
i miδxi as

∑
i H(mi).

We also consider Lagrangians depending on ε, as well as space-inhomogeneous Lagrangians and
H-masses. Our result holds under mild assumptions on f , and covers in particular α-masses in
any dimension N ⩾ 2 for exponents α above a critical threshold, and all concave H-masses in
dimension N = 1. Our result yields in particular the concentration of Cahn-Hilliard fluids into
droplets, and is related to the approximation of branched transport by elliptic energies.

Résumé (Concentration de masse dans des fonctionnelles intégrales d’ordre 1 rééchelonnées)
Nous considérons des problèmes de minimisation locaux d’ordre 1 de la forme min

´
RNf(u,∇u)

sous contrainte de masse
´
RN u = m. Nous prouvons que la fonction d’énergie minimale H(m)

est toujours concave, et que des rééchelonnements appropriés de l’énergie, dépendant d’un
petit paramètre ε, Γ-convergent vers la H-masse, définie pour les mesures atomiques

∑
i miδxi

par
∑

i H(mi). Nous considérons également des lagrangiens dépendant de ε, et des lagrangiens
et H-masses spatialement inhomogènes. Notre résultat est valable sous de faibles hypothèses
sur f , et couvre les α-masses en toute dimension N ⩾ 2 pour des exposants α au-dessus
d’un seuil critique, et toutes les H-masses concaves en dimension N = 1. Notre résultat
donne en particulier la concentration des fluides de Cahn-Hilliard en gouttelettes, et est lié à
l’approximation du transport branché par des énergies elliptiques.
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432 A. Monteil & P. Pegon

Notation
Br(x) open ball of radius r centered at x;
Br open ball Br(0);

M (RN ) set of finite signed Borel measures on RN ;
M+(RN ) set of finite positive Borel measures on RN ;

Φ♯µ pushforward of a measure µ ∈ M (RN ) by a map Φ : RN → Rk,
defined as A 7→ µ(Φ−1(A));

τxµ Borel measure A 7→ µ(A− x) if µ ∈ M (RN ) and x ∈ RN ;
cBµ Borel measure τ−x(µ B) if B is the ball Br(x);

µℓ
C ′

0−−⇀ µ weak convergence of measures, i.e., weak-⋆ convergence in duality
with the space C0(RN ) of continuous functions vanishing at
infinity;

µℓ
C ′

b−−⇀ µ narrow convergence of measures, i.e., weak-⋆ convergence in
duality with the space Cb(RN ) of continuous and bounded
function;

Σ set of increasing maps σ : N → N;
σ1 ⪯ σ2 σ1, σ2 ∈ Σ are such that σ1(Jn,+∞K) ⊆ σ2(N) for some n ∈ N ;

± fixed to either + or − in the whole statement or proof, and
∓ = −(±).

1. Introduction

1.1. Setting. — Let N ∈ N∗ and let f : RN ×R×RN → [0,+∞] be a Borel function
such that f(·, 0, 0) ≡ 0. Consider the following energy functional, defined for any fixed
x ∈ RN on the set of finite Borel measures M (RN ) on RN by

(1.1) Ex
f (µ) =


ˆ
RN

f(x, u(y),∇u(y)) dy if µ = uLN , u ∈ W 1,1
loc (R

N ),

+∞ otherwise.

The minimization of this energy under a mass constraint gives rise to the notion of
minimal cost function, valued in [0,+∞] and defined by

(1.2) Hf (x,m) := inf

{
Ex
f (uL

N ) : u ∈ W 1,1
loc ∩ L1(RN ) such that

ˆ
RN

u = m

}
.

As a preliminary result, which applies to (1.1) and deserves interest on its own,
we will establish the following:

Theorem 1.1. — Let f : R×RN → [0,+∞] be Borel measurable such that f(0, 0) = 0.
The function defined for every m ∈ R by

(1.3) Hf (m) := inf

{ˆ
RN

f(u,∇u) : u ∈ W 1,1
loc ∩ L1(RN ,R),

ˆ
RN

u = m

}
vanishes at 0 and it is either identically +∞ on (0,+∞), or it is everywhere finite,
continuous, concave and non-decreasing on [0,+∞). The symmetric statement on
(−∞, 0] holds as well.
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Mass concentration in rescaled first order integral functionals 433

The proof is very simple and works with no further assumptions on f .
Our main purpose is to prove that if (fε)ε>0 is a family of functions

fε : RN × R× RN −→ [0,+∞]

which converges pointwise to f as ε → 0 and satisfies some conditions, then the
rescaled energy functionals Eε, defined for each ε > 0 on M (RN ) by
(1.4)

Eε(µ) =


ˆ
RN

fε(x, ε
Nu(x), εN+1∇u(x))ε−N dx if µ = uLN , u ∈ W 1,1

loc (R
N ),

+∞ otherwise,

Γ-converge as ε → 0, for the narrow or weak convergence of measures, to the Hf -mass,
defined on M (RN ) by (see Definition 2.2):

MHf (µ) :=

ˆ
RN

Hf (x, µ({x})) dH0(x)

+

ˆ
RN

H ′
f (x, 0

+) dµd
+(x) +

ˆ
RN

H ′
f (x, 0

−) dµd
−(x).

where µ = µa + µd is the decomposition of µ into its atomic part µa and its diffuse
part µd, µd = µd

+ − µd
− is the Jordan decomposition of µd into positive and negative

parts, and H ′
f (x, 0

±) is the recession at 0, that is

H ′
f (x, 0

±) := lim
m→0±

Hf (x,m)

|m|
∈ [0,+∞].

Notice that the exponents over ε in the definition of Eε are tuned so that if Br(x0)⊆RN

and uε is a mass-preserving rescaling of vε given by uε(x) =: ε−Nvε(ε
−1(x − x0)),

then̂

Br(x0)

fε(x, ε
Nuε(x), ε

N+1∇uε(x))ε
−N dx =

ˆ
Br/ε

fε(x0 + εy, vε(y),∇vε(y)) dy,

so that the energy contribution of a mass m ⩾ 0 contained in a ball Br(x0) should
be of the order of Hf (x0,m). This explains why MHf is expected to be the Γ-limit
of Eε. Nevertheless, it is not true in general (see Section 1.3 below), and we will need
a couple of assumptions on f and fε detailed in the next section.

This kind of singular limit of integral functionals is reminiscent of several variational
models with physical relevance which have been the object of intensive mathematical
analysis, such as Cahn-Hilliard fluids with concentration on droplets [BDS96] (which
we recover in Section 5.5) or on singular interfaces [MM77], toy models for micromag-
netism and liquid crystals like Aviles-Giga [AG99] and Landau-de Gennes [BPP12],
or Ginzburg-Landau theory of superconductivity [BBH17].

1.2. Assumptions and main result. — Our first two assumptions are rather standard
and guarantee the sequential lower semicontinuity of the functionals Ex

f ,
(H1) f : RN × R× RN → [0,+∞] is lower semicontinuous,
(H2) f(x, u, ·) is convex for every x ∈ RN , u ∈ R.
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434 A. Monteil & P. Pegon

In order for vanishing parts to have no energetic contribution, we will impose
(H3) f(x, 0, 0) = 0 for every x ∈ RN .
We also need continuity in the spatial variable,
(H4) f(·, u, ξ) is continuous for every u ∈ R, ξ ∈ RN .
Next, we need a compactness assumption which ensures relative compactness in the

weak topology of W 1,p
loc (RN ) for sequences of bounded energy Ex

f and bounded mass;
it will also be needed in obtaining lower bounds for the energy (see Proposition 3.8):

(H5) there exist α, β∈(0,+∞), p∈(1,+∞) such that for all (x, u, ξ)∈RN×R×RN ,

f(x, u, ξ) ⩾ α|ξ|p − βu.

We also impose a comparison condition on the slopes of f(x, ·, ξ) and Hf (x, ·) at the
origin, which will be needed in order to show that the Γ- lim inf is bounded from below
by the Hf -mass, and which rules out some non-trivial scale invariant Lagrangians for
which the expected Γ-convergence result fails (see Section 1.3):

(H6) for every x0 ∈ RN ,

(1.5) H ′
f (x0, 0

±) ⩽ f ′
−(x0, 0

±, 0) := lim inf
(x,u,ξ)→(x0,0±,0)

f(x, u, ξ)

|u|
.

We give a general assumption (simple in dimension one but quite technical in dimen-
sion N ⩾ 2) depending only on the Lagrangian f so as to guarantee such a condition
(see (S) and Corollary 2.7 in Section 2.3).

Since our aim is not to care much about the dependence on x, we shall impose a
spatial quasi-homogeneity condition:

(H7) there exists C < +∞ such that for every x, y ∈ RN , u ∈ R, ξ ∈ RN ,

f(y, u, ξ) ⩽ C(f(x, u, ξ) + u).

Last of all, we need the family of functions fε : RN×R×RN → [0,+∞] to converge
towards f in a suitable sense, namely, we assume

(H8) fε ↑ f and f ′
ε,−(·, 0±, 0) ↑ f ′

−(·, 0±, 0) as ε → 0.
Notice that this assumption is empty if fε does not depend on ε.

Our main result is the following:

Theorem 1.2. — If (fε)ε>0 satisfies (H8) with each fε satisfying (H1)–(H5) and the
limit f satisfying (H6)–(H7), then MHf is the Γ-limit as ε → 0 of the function-
als Eε, defined in (1.4), for both the weak convergence and the narrow convergence of
measures.

In particular, as a Γ-limit, the functional MHf must be lower semicontinuous for
the weak convergence of measures (and so for the narrow convergence as well). This
implies that Hf is lower semicontinuous on RN × R (see Proposition 2.4).

We point out that for the Γ- lim sup, we need weaker assumptions on fε and f (see
Proposition 4.2), which will be useful for some applications (see Section 5.5).
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We will allow ourselves slight abuses of notation. First of all, we will sometimes
consider Lagrangians defined on R× RN which do not depend on x and still refer to
hypotheses (H1)–(H8) ; we will use the notation Ef instead of Ex

f in (1.1) and consider
Hf as a function of m only in (1.2). Besides, we will often identify functions u ∈ L1

loc

with the measures µ = uLN , so as to concisely write Ef (u) instead of Ef (uL
N ).

Finally, we will also consider Lagrangians defined only for u ∈ R+, which may be
thought as defined for u ∈ R, set to +∞ when u is negative.(1) The resulting minimal
cost function Hf and its associated Hf -mass may be thought as defined on R+ and
M+(RN ) respectively, as they will be infinite on the respective complements.

1.3. Remarks and applications. — We start with two situations where the expected
Γ-convergence fails and which justify the importance of (H3) and (H6), then we provide
examples and applications of our result, as a short summary of Section 5, where full
details are provided. We restrict our attention to positive measures and Lagrangians
defined for u ⩾ 0.

Vanishing parts do not contribute to energy. — By assumption (H3) no energy is given
to any set where a function u vanishes. It is a necessary condition for MHf to be
lower semicontinuous (a necessary condition to be a Γ-limit) and not identically +∞.
Indeed if MHf is lower semicontinuous and finite for some measure µ ∈ M (RN )

then (see Remark 2.1) MHf (tµ) ⩽ MHf (µ) for every t ∈ (0, 1) hence MHf (0) ⩽
lim inft→0+ MHf (tµ) ⩽ MHf (µ) < +∞. Thus MHf is not identically +∞ if and only
if MHf (0) < +∞, i.e.,

´
RN Hf (x, 0) dH

0(x) < +∞. But since Hf (x, 0) = (+∞) ×
f(x, 0, 0) this can only happen if f(·, 0, 0) ≡ 0. This justifies imposing (H3).

Scale invariant Lagrangians. — In Section 5.1, we will see that in the particular case
fε(x, u, ξ) = u−p(1−1/p⋆)|ξ|p for p ∈ (1, N) and p⋆ = pN/(N − p), our Γ-convergence
result does not hold as a consequence of the fact that Eε does not depend on ε. Note
that in this case, the slope assumption (H6) does not hold, and we also provide a
simple variant of such energies which satisfies all our assumptions except (H6) where
the Γ-convergence towards MHf also fails, thus justifying the need for such a slope
condition.

Concave H-masses in dimension one. — Consider the energy given for µ = uLN by

Ef (µ) =

ˆ
RN

|∇u|2 + c(u) with Lagrangian f(x, u, ξ) = |ξ|2 + c(u).

In dimension N = 1, it is shown in [Wir19] that for any concave continuous function H

with H(0) = 0, there exists a suitable c ⩾ 0 such that Hf = H. As explained in
Section 5.2, Theorem 1.2 implies that the rescaled energies

(1.6) Eε(µ) =

ˆ
RN

f(εNu, εN+1∇u)ε−N =

ˆ
RN

εN+2|∇u|2 + ε−Nc(εNu).

(1)Notice that if any of our assumptions is satisfied for a Lagrangian defined for u ∈ R+, then it
holds also for the Lagrangian extended to R in this way.
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436 A. Monteil & P. Pegon

Γ-converge to MH , leading to an elliptic approximation of any concave H-mass in di-
mension one. In dimension N ⩾ 2, we will show that Hf must be concave on [0,+∞),
and strictly concave after the possible initial interval where it is linear (see Proposi-
tion 2.8) ; however, we have no solution to the inverse problem, consisting in char-
acterizing the class of attainable minimal cost functions H = Hf for Lagrangians f

satisfying our assumptions.

Homogeneous H-masses in any dimension. — We consider the functional given for µ =

uLN by

(1.7) Ef (µ) =

ˆ
RN

f(u,∇u) =

ˆ
RN

|∇u|p + us, p > 1, s ∈ (−p′, 1].

Then, the rescaled energies

Eε(µ) =

ˆ
RN

f(εNu, εN+1∇u)ε−N =

ˆ
RN

εpN+p−N |∇u|p + ε−(1−s)Nus

Γ-converge to a non-trivial multiple of some α-mass Mα := M t7→tα where the expo-
nent α = (1− s/p+ s/N)(1− s/p+ 1/N)−1 ranges over (1− 2/N + 1, 1] when (s, p)

varies in its range and N ⩾ 1. More details are given in Section 5.3.

Space-inhomogeneous H-masses. — We may consider for example functionals given,
for µ = uLN , by

Ef (µ) =

ˆ
RN

a(x)g(u(x),∇u(x)) dx,

where a : RN → R is a continuous function valued in [M−1,M ] for some M ∈ (0,+∞)

and g : R×RN → [0,+∞] satisfies our assumptions (H1)–(H6), e.g. g(u, ξ) = |ξ|p+us

with s ∈ (−p′, 1]) as above. In the latter case we obtain Γ-convergence towards a
space-inhomogeneous α-mass for some α ∈ (0, 1] given by

MHf (µ) =


C

∑
1⩽i⩽ℓ

a(xi)m
α
i if µ =

∑ℓ
i=1 miδxi

,

+∞ otherwise,

for some constant C ∈ (0,+∞).

Cahn-Hilliard approximations of droplets models. — Following the works of [BDS96,
Dub98], we consider the functionals

(1.8) Wε(u) =

ˆ
RN

ε−ρ(W (u) + ε|∇u|2),

where W (t) ∼t→+∞ ts for some exponent s ∈ (−2, 1). As shown in Section 5.5,
we way rewrite these functionals to fit our general framework, and recover known
Γ-convergence results, under slightly more general assumptions, as stated in Theo-
rem 5.1. The Γ-limit is a non-trivial multiple of the α-mass with α = 1−s/2+s/N

1−s/2+1/N .

J.É.P. — M., 2024, tome 11



Mass concentration in rescaled first order integral functionals 437

Elliptic approximations of branched transport. — The energy of branched transport
(see [BCM09] for an account of the theory), in its Eulerian formulation, is an H-mass
defined this time on vector measures w whose divergence is also a measure,

(1.9) MH
1 (w) :=

ˆ
Σ

H(x, θ(x)) dH1(x) +

ˆ
Rd

H ′(x, 0+) d|w⊥|,

where w = θξ ·H1 Σ+w⊥ is the decomposition of w into its 1-rectifiable and 1-diffuse
parts (see Section 5.4 for more details). An elliptic approximation of Modica-Mortola
type has been introduced in [OS11] for H(m) = mα, α ∈ (0, 1), and their Γ-con-
vergence result in dimension d = 2 has been extended to any dimension in [Mon15]
by a slicing method which relates the energy of w to the energy of its slicings. The same
slicing method, together with Theorem 1.2, would allow to prove the Γ-convergence
of the functionals
(1.10)

Eε(w) =

{´
Rd fε(x, ε

d−1|v|(x), εd|∇v|(x))ε1−d dx if w = vLd, v ∈ W 1,1
loc (Rd,Rd),

+∞ otherwise,

toward M
Hf

1 for Lagrangians fε → f satisfying (H1)–(H8), thus covering a wide range
of concave H-masses over vector measures with divergence.

1.4. Structure of the paper. — In Section 2, we prove the concavity of the minimal
cost function Hf with respect to the mass variable m in full generality (Theorem 1.1),
we establish useful properties of general H-masses, and we identify the slope at the
origin of Hf in terms of f under our assumption (Proposition 2.5 and Proposition 2.6).
In Section 3, we apply a concentration-compactness principle to provide a profile de-
composition theorem for sequences of positive measures (Theorem 3.2), which is used
to obtain our main lower bound for the energy Ef (Proposition 3.10) and also yields an
existence criterion for profiles with minimal energy under a mass constraint (Proposi-
tion 3.12). Section 4 is dedicated to proving lower and upper bounds on the rescaled
energies Eε (Proposition 4.1 and Proposition 4.2) that imply in particular our main
Γ-convergence result (Theorem 1.2). Last of all, in Section 5, we provide counterex-
amples and several examples of energy functionals that fall into our framework, as
summarized in the previous section.

2. Minimal cost function and H-mass

In this section, we study the properties of general H-masses, of costs Hf associated
with general Lagrangians f , and we relate the slope of Hf at m = 0 to that of f at
(u, ξ) = (0, 0) in the variable u, under particular conditions.

2.1. Concavity and lower semicontinuity of the minimal cost function. — Before
proving Theorem 1.1, let us note that it covers the case where we have a constraint
(u,∇u) ∈ A, where A ⊆ R × RN is Borel measurable, by considering Lagrangians f

taking infinite values.
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438 A. Monteil & P. Pegon

Proof of Theorem 1.1. — Let us first assume that f(u, ξ) = +∞ when u < 0, so as
to restrict ourselves to non-negative functions. We first prove that Hf is concave on
(0,+∞). Let m > 0 and u ∈ W 1,1

loc ∩ L1(RN ,R+) such that
´
RN u = m. We pick a

non-zero vector v ∈ RN and for every t ∈ R, we set ut(·) = u(·+ tv) and

u ∧ ut(·) = min{u(·), ut(·)}, u ∨ ut(·) = max{u(·), ut(·)}.

We have u ∧ ut + u ∨ ut = u+ ut. Hence

(2.1)
ˆ
RN

u ∧ ut +

ˆ
RN

u ∨ ut = 2

ˆ
RN

u = 2m.

Moreover, it is standard that u∧ut = u−(ut−u)− ∈ W 1,1
loc (RN ) with ∇(u∧ut) = ∇u

a.e. in {u ⩽ ut} and ∇(u∧ ut) = ∇ut a.e. in {u > ut}. Since u∨ ut = u+ ut − u∧ ut,
we have similar identities for u ∨ ut, and we obtain

(2.2) Ef (u ∧ ut) + Ef (u ∨ ut) = Ef (u) + Ef (u
t) = 2Ef (u).

Let M : t 7→
´
RN u∧ut. In view of (2.1), (2.2), and by definition of H, we have proved

(2.3) Hf (M(t)) +Hf (2m−M(t)) ⩽ 2Ef (u).

By continuity of translations in L1 and since the map (x, y) 7→ x∧y is Lipschitz on R2,
we have that M is continuous on R with M(0) = m. Moreover limt→+∞ M(t) = 0

by dominated convergence. So, by the intermediate value theorem M(R) ⊇ (0,m].
Hence, we have proved Hf (θ) + Hf (2m − θ) ⩽ 2Ef (u) for every θ ∈ (0,m]. Taking
the infimum over u such that

´
RN u = m, we obtain

Hf (θ) +Hf (2m− θ)

2
⩽ Hf (m), ∀θ ∈ (0,m],

that is, Hf is midpoint concave on (0,+∞). Since Hf is also bounded below (by 0),
we can deduce that Hf is concave (0,+∞) (see [RV73, §72]), and since Hf ⩾ 0, either
Hf is identically +∞ on (0,+∞), or it is finite everywhere, continuous, concave and
non-decreasing on (0,+∞).

We now justify that if Hf (m) < +∞ for some m > 0 and f(0, 0) = 0, then
limm→0+ Hf (m) = 0 = Hf (0). Let u ∈ W 1,1

loc (RN ,R+) such that
´
RN u = m > 0 and

Ef (u) < +∞, and set

t∗ := sup{t ⩾ 0 : M(t) > 0} ∈ [0,+∞], where M(t) =

ˆ
RN

u ∧ ut.

Since M is continuous with M(0) =
´
RN u > 0 and limt→+∞ M(t) = 0 as seen above,

we have that t∗ ∈ (0,+∞], limt→t∗ M(t) = 0 and M(t) does not vanish identically
near t∗. Moreover, if t∗ = +∞, since ut → 0 locally in measure, by dominated
convergence,

lim sup
m→0+

Hf (m) ⩽ lim sup
t→+∞

Ef (u ∧ ut) = lim sup
t→+∞

ˆ
{u<ut}

f(u,∇u) +

ˆ
{u−t⩾u}

f(u,∇u)

⩽ 2f(0, 0)|{u = 0}| = 0.
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If t∗ < +∞, we have u ∧ ut∗ = 0 a.e. and ut → ut∗ locally in measure as t → t∗ by
continuity of translation in L1. Thus using dominated convergence again,

lim sup
m→0+

Hf (m) ⩽ lim sup
t→(t∗)−

Ef (u ∧ ut) = lim sup
t→(t∗)−

ˆ
{u<ut}

f(u,∇u) +

ˆ
{u−t⩾u}

f(u,∇u)

=

ˆ
{u<ut∗}

f(u,∇u) +

ˆ
{u−t∗⩾u}

f(u,∇u)

= Ef (u ∧ ut∗) = f(0, 0)× (+∞) = 0.

Finally, we treat the general case (without assuming that f(u, ξ)=+∞ if u<0) For
this, notice that for every u ∈ W 1,1

loc ∩L1(RN ) such that
´
RN u = m ⩾ 0, denoting by u+

the positive part of u and m+ =
´
RN u+, since f(0, 0) = 0 we have

´
RN f(u,∇u) ⩾´

RN f(u+,∇u+) ⩾ Hg(m+), where g is defined by g(u, ξ) = f(u, ξ) if u ⩾ 0 and is
set to +∞ if u < 0. Since Hg is non-decreasing and m+ ⩾ m, it yields Hf (m) ⩾
Hg(m+) ⩾ Hg(m). The another inequality Hf (m) ⩽ Hg(m) being trivial, Hf = Hg

on R+. □

Remark 2.1. — Let us remark two things about the proof.
First, we actually proved the concavity and monotonicity of

m 7→ Hf (m) := inf

{ˆ
RN

f(u,∇u) : u ∈ W 1,1
loc (R

N ,R+),

ˆ
RN

u = m

}
on (0,+∞) for f Borel, without assuming f(0, 0) = 0.

Second, the end of the proof shows that under this extra assumption, minimizing
among signed profiles or non-negative (resp. non-positive) profiles is equivalent when
m ⩾ 0 (resp m ⩽ 0).

2.2. Definition and relaxation of the H-mass

Definition 2.2. — Let H : RN ×R → [0,+∞] be a Borel measurable function having
left/right slopes at the origin defined for each x ∈ RN by

(2.4) H ′(x, 0±) := lim
m→0±

H(x,m)

|m|
∈ [0,+∞].

For every finite signed Borel measure µ ∈ M (RN ), we set

H(µ) := H(·, µ({·}))H0 +H ′(·, 0+)µd
+ +H ′(·, 0−)ud

−,

where µ = µa+µd is the decomposition of u into its atomic part µa and its diffuse (or
non-atomic) part µd, µd = µd

+ − µd
− is the Jordan decomposition of µd into positive

and negative parts.
The H-mass of µ is then defined as the total variation of H(µ), that is:

MH(µ) :=

ˆ
RN

H(x, µ({x})) dH0(x)

+

ˆ
RN

H ′(x, 0+) dµd
+(x) +

ˆ
RN

H ′(x, 0−) dµd
−(x).
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The previous definitions and notations extend in the obvious way to the case of
functions H : R → [0,+∞] with no space variable x, interpreted as functions inde-
pendent from x.

MH is a natural spatially non-homogeneous extension (depending on the posi-
tion x) of the H-mass of k-dimensional flat currents(2) from Geometric Measure The-
ory, introduced by [Fle66] (see also the more recent works [DPH03, CDRMS17]).

We say that H : RN ×R → [0,+∞] is mass-concave if m 7→ H(x,m) is concave on
(0,+∞) and (−∞, 0) for every x ∈ RN . From [BB90], we have the following result:(3)

Proposition 2.3 ([BB90, Th. 3.3]). — Assume that H : RN × R → [0,+∞] is lower
semicontinuous, mass-concave and H(·, 0) ≡ 0. Then MH is sequentially lower semi-
continuous on M (RN ) for the weak topology.

From another work from the same authors [BB93, Th. 3.2], we know that under
some further assumptions on H, MH is the relaxation for the weak topology of the
functional

MH
atom(µ) =

{∑k
i=1 H(xi,mi) if µ =

∑k
i=1 miδxi with k ∈ N∗, xi ∈ RN , mi ∈ R,

+∞ otherwise.

We need a slightly different result,(4) namely that for any function H : RN × R →
[0,+∞] satisfying all the assumptions of Proposition 2.3 except the lower semiconti-
nuity, the relaxation of MH

atom for the narrow sequential convergence is MHlsc , where
Hlsc is the lower semicontinuous envelope of H, which can be expressed as

Hlsc(x,m) = sup{G(x,m) : G ⩽ H with G lower semicontinuous}.(2.5)

It is worth noticing that if H(·, 0) ≡ 0 and H is mass-concave, then these properties
hold also for Hlsc.

Proposition 2.4. — Let H : RN × R → [0,+∞] be a function which is mass-concave
and such that H(·, 0) ≡ 0. Then, the sequentially lower semicontinuous envelope of
MH

atom in the narrow topology of M (RN ) is given by MHlsc , namely we have:

(2.6) MHlsc = sup
{
F : F ⩽ MH

atom, F sequentially narrowly l.s.c. on M (RN )
}
.

We point out that for a general H, for MH to be sequentially lower semicontinuous
(for the narrow topology) it is necessary that H is lsc on RN × (0,+∞). However,
neither the subadditivity of H in m nor its lower semicontinuity on RN×R+ are neces-
sary. Indeed, MH is sequentially lower semicontinuous if for instance H(x,m) = +∞
when x ̸= 0,m > 0, H(x, 0) = 0 when x ̸= 0 and H(0, ·) is any lower semicontinuous

(2)In the case k = 0, since signed measures are merely 0-currents with finite mass.
(3)In the notation of this paper, we take µ = 0 and f(x, s) = |s|2; we have φf (x, 0) = 0 and

φf (x, s) = +∞ if s ̸= 0.
(4)In [BB93, Th. 3.2], H is assumed to be lower semicontinuous and the authors make a further

coercivity assumption (assumption (3.5) in the paper) that we want to avoid.
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function. Nevertheless the subadditivity in the mass m and the lower semicontinuity
would be necessary if H did not depend on x.

Proof of Proposition 2.4. — Since Hlsc is lower semicontinuous and mass-concave, we
know from Proposition 2.3 that MHlsc is sequentially lower semicontinuous in the
weak topology hence also in the narrow topology of M (RN ). Since MHlsc ⩽ MH

atom,
we deduce that MHlsc is lower or equal than the sequentially lower semicontinuous
envelope of MH

atom in the narrow topology, i.e., the right hand side in (2.6), which we
denote by F : M (RN ) → R+. We shall see that F ⩽ MHlsc .

We first prove that

(2.7) F ⩽ MHlsc
atom.

For this, we let µ =
∑k

i=1 miδxi
be a finitely atomic positive measure and we let

µn :=
∑k

i=1 mi,nδxi,n
where for each i ∈ {1, . . . , k}, (xi,n)n∈N is a sequence of

points converging to xi and (mi,n)n∈N is a sequence converging to mi such that
Hlsc(xi,mi) = limn→∞ H(xi,n,mi,n). Then (µn)n∈N converges narrowly to µ and, by
lower semicontinuity,

F (µ) ⩽ lim inf
n→∞

F (µn) ⩽ lim inf
n→∞

MH
atom(µn)

= lim
n→∞

k∑
i=1

H(xi,n,mi,n) =

k∑
i=1

Hlsc(xi,mi),

so that F (µ) ⩽ MHlsc
atom(µ) as wanted.

We now prove that F ⩽ MHlsc . Let µ ∈ M (RN ) and µ = µa + µd be the de-
composition of µ into its atomic part µa =

∑k
i=1 miδxi , with k ∈ N ∪ {+∞} (here,

k = 0 if there is no atom), and its diffuse part µd, and let µd = µd
+ − µd

− be the
Jordan decomposition of µd into positive and negative parts. We then discretize µd

±
by taking n ∈ N∗, a partition (Qn

i )i∈{1,...,(n2n)N} of [−n, n)N by means of cubes of
the form Qn

i = cni + 2−n[−1, 1)N with cni ∈ RN , and we define

µn :=

n∧k∑
i=1

miδxi
+

(n2n)N∑
i=1

µd
+(Q

n
i )δxn

i
−

(n2n)N∑
i=1

µd
−(Q

n
i )δyn

i
,

where for each i ∈ {1, . . . , (n2n)N}, xn
i , y

n
i ∈ Q

n

i are some points such that

(2.8) Hlsc
′(xn

i , 0
+) = inf

x∈Q
n
i

Hlsc
′(x, 0+), Hlsc

′(yni , 0
−) = inf

x∈Q
n
i

Hlsc
′(x, 0−).

Such points exist since Q
n

i is compact and since by concavity,

(2.9) Hlsc
′(x, 0±) = sup

±m>0

Hlsc(x,m)

|m|
,

so that H ′
lsc(·, 0±) are lower semicontinuous as suprema of lower semicontinuous func-

tions.
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The sequence (µn)n∈N converges narrowly to µ. We deduce by lower semicontinuity
of F ,

F (µ) ⩽ lim inf
n→∞

F (µn)
(2.7)
⩽ lim inf

n→∞
M lsc

atom(µn)

= lim inf
n→∞

n∧k∑
i=1

Hlsc(xi,mi) +

(n2n)N∑
i=1

(
Hlsc(x

n
i , µ

d
+(Q

n
i )) +Hlsc(y

n
i ,−µd

−(Q
n
i ))

)
,

(2.9)
⩽ lim inf

n→∞

n∧k∑
i=1

Hlsc(xi,mi) +

(n2n)N∑
i=1

Hlsc
′(xn

i , 0
+)µd

+(Q
n
i )

+

(n2n)N∑
i=1

Hlsc
′(yni , 0

−)µd
−(Q

n
i )

(2.8)
⩽ lim inf

n→∞

n∧k∑
i=1

Hlsc(xi,mi) +

(n2n)N∑
i=1

ˆ
Qn

i

Hlsc
′(·, 0+) dµd

+ +

ˆ
Qn

i

Hlsc
′(·, 0−) dµd

−

=

k∑
i=1

Hlsc(xi,mi) +

ˆ
RN

Hlsc
′(·, 0+) dµd

+ +

ˆ
RN

Hlsc
′(·, 0−) dµd

−

= MHlsc(µ),

where we have used monotone convergence in the last but one equality. □

2.3. Slope at the origin of the minimal cost function. — In this section we provide
a technical assumption, that is simple in dimension N = 1, on the Lagrangian f and
which implies the comparison condition on the slopes (H6).

(S) for every x0 ∈ RN ,

(2.10) f ′
−(x0, 0

±, 0) = lim inf
(x,u,ξ)→(x0,0±,0)

f(x, u, ξ)

|u|
⩾ lim sup

u→0±
sup
|ξ|=1

f(x0, u, ρ(|u|)ξ)
|u|

,

with ρ ≡ 0 if N = 1 and for some ρ ∈ C ((0, 1], (0,+∞)) satisfying
ˆ 1

0

( ˆ 1

y

dt

ρ(t)

)N

dy < +∞ if N ⩾ 2.

Proposition 2.5. — Let f : R+ × RN → [0,+∞] be a lower semicontinuous function
such that f(0, 0) = 0, with N ⩾ 2. For every function ρ ∈ C ((0, 1], (0,+∞)) such that

(2.11)
ˆ 1

0

(ˆ 1

y

dt

ρ(t)

)N

dy < +∞,

the function Hf defined in (1.3) satisfies

(2.12) lim
m→0+

Hf (m)

m
⩽ lim sup

u→0+
sup

ξ∈SN−1

f(u, ρ(u)ξ)

u
.
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Proof. — For every y ⩾ 0, we let

F (y) =

ˆ 1

y

dt

ρ(t)
∈ [0,+∞].

The function F is decreasing, and belongs to C 1((0, 1]) and LN ((0, 1]) by assumption.
We now consider the solution of the ODE v′ε = −ρ(vε), with vε(0) = ε, given by

vε(r) =

{
F−1(F (ε) + r), if 0 ⩽ r < F (0)− F (ε),
0 if r ⩾ F (0)− F (ε),

with F (0) possibly equal to +∞. Notice that vε ∈ W 1,1
loc (R+) because it is non-

increasing and bounded, hence it has finite total variation, and because it is of class C 1

except possibly at rε := F (0) − F (ε), where it has no jump. As a consequence the
radial profile defined by uε(x) := vε(|x|) belongs to W 1,1

loc (RN ) and we compute, using
the change of variables s = vε(r) (i.e., r = F (s)− F (ε)) and an integration by parts
combined with monotone convergence.

mε :=

ˆ
RN

uε = |SN−1|
ˆ ∞

0

vε(r)r
N−1 dr

= −|SN−1|
ˆ ε

0

s(F (s)− F (ε))N−1F ′(s) ds

= |SN−1| lim
t↓0

(ˆ ε

t

(F (s)− F (ε))N

N
ds−

[
s
(F (s)− F (ε))N

N

]ε
t

)
= |SN−1|

ˆ ε

0

(F (s)− F (ε))N

N
ds −−−→

ε→0
0.

The equality on the last line holds because limt→0+
´ ε
t
(F − F (ε))N < +∞ (since

F ∈ LN ((0, 1])), hence limt→0 t(F (t)− F (ε))N exists by existence of the limit in the
previous line, and it must be zero (again, because F ∈ LN ((0, 1])).

Moreover, since sup[0,+∞) vε = ε,

E(uε) =

ˆ ∞

0

ˆ
SN−1

f(vε(r), v
′
ε(r)ξ)r

N−1 dHN−1(ξ) dr ⩽ mε sup
u⩽ε, |ξ|=1

f(u, ρ(u)ξ)

u
.

By assumption, we deduce that

lim sup
m→0+

Hf (m)

m
⩽ lim sup

ε→0+

E(uε)

mε
⩽ lim sup

u→0+
sup

ξ∈SN−1

f(u, ρ(u)ξ)

u
. □

In dimension N = 1, we need no other assumption than Hf < +∞, as stated
below.

Proposition 2.6. — Let f : R+ × RN → [0,+∞] be Borel measurable with N = 1.
The minimal cost function Hf is either identically infinite on (0,+∞), or it satisfies
(2.12) with ρ ≡ 0, i.e.,

lim
m→0+

Hf (m)

m
⩽ lim sup

u→0+

f(u, 0)

u
.
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Proof. — One can assume that there exists u ∈ W 1,1
loc (R,R+) with 0 <

´
R u < +∞

and E(u) < +∞. In particular, up to changing the value of u on a negligible set, u is
continuous on R. Let ε ∈ (0, supR u), set Aε := {x : u(x) = ε} which is non-empty by
the intermediate value theorem and integrability of u, and define

aε =

{
inf Aε if inf Aε > −∞,
any point in (−∞,−ε−1) ∩Aε otherwise,

bε =

{
supAε if supAε < +∞,
any point in (ε−1,+∞) ∩Aε otherwise.

By continuity and integrability of u, u(aε) = u(bε) = ε and

sup
x∈R∖[aε,bε]

u(x) ⩽ ε ∨ sup
|x|>ε−1

u(x) −−−→
ε→0

0.

Moreover aε, bε converge to points −∞ ⩽ a ⩽ b ⩽ +∞, hence u = 0 on R∖ (a, b) and
by dominated convergence, since ∇u = 0 a.e. on {u = 0},

+∞ > lim
ε→0+

ˆ
R∖[aε,bε]

u+ f(u,∇u) = f(0, 0)L(R∖ (a, b)).

Notice that this limit is necessary zero. Let m > 0. If ε is small enough, then´
R∖[aε,bε]

u < m so that we can take Rε > 0 such that εRε = m −
´
R∖[aε,bε]

u.
We then define

uε(x) =


u(x) if x ⩽ aε,
ε if aε < x < aε +Rε,

u(bε + x− (aε +Rε)) if x ⩾ aε +Rε,

so that
´
R vε = m. Moreover,

E(vε) = E(u,R∖ [aε, bε]) +Rεf(ε, 0).

Hence, as Rε = (m+ o(1))/ε as ε → 0,

Hf (m) ⩽ lim sup
ε→0+

E(vε) = m lim sup
ε→0+

f(ε, 0)

ε
. □

From Proposition 2.5 and Proposition 2.6 we obtain the following corollary.

Corollary 2.7. — Let f : R× RN → [0,+∞] satisfy (H1), (H3) and (S). Assume in
addition that Hf < +∞ if N = 1. Then (H6) holds.

Proof. — If N = 1 we apply Proposition 2.6 to get

lim
m→0+

Hf (m)

m
⩽ lim sup

u→0+

f(u, 0)

u

(S)
⩽ lim inf

m→0+

f(u, 0)

u
= f ′

−(0
+, 0),

and if N = 2 taking a function ρ as in (S) and applying Proposition 2.5 yields

lim
m→0+

Hf (m)

m
⩽ lim sup

u→0±
sup
|ξ|=1

f(x0, u, ρ(|u|)ξ)
|u|

(S)
⩽ lim inf

m→0+

f(u, 0)

u
= f ′

−(0
+, 0).

J.É.P. — M., 2024, tome 11



Mass concentration in rescaled first order integral functionals 445

The analogous inequality when m → 0− is obtained by considering the symmetric
Lagrangian (u, ξ) 7→ f(−u,−ξ). □

2.4. Strict concavity of the minimal cost function in dimension N ⩾ 2

We show that in dimension N ⩾ 2, the minimal cost function must be strictly
concave away from the possible initial interval where it is linear:

Proposition 2.8. — Assume that N ⩾ 2 and that f : R × RN ∋ (u, ξ) 7→ f(u, ξ) ∈
[0,+∞] satisfies (H1), (H2), (H3), (H5) and (H6). Let

m∗ = sup{m ⩾ 0 : Hf is linear on [0,m]},

where Hf is defined in (1.3). Then, Hf is strictly concave on (m∗,+∞). A similar
statement holds on R−.

A similar result does not hold in dimension 1 since any continuous concave function
H : R+ → R+ with H(0) = 0 can be written as H = Hf with f satisfying all our
assumptions (H1)–(H8) (see Section 5.2).

We denote by Mf
m the set of non-negative minimizers of mass m ∈ R+:

(2.13) Mf
m :=

{
u ∈ W 1,1

loc (R
N ,R+) : Ef (u) = Hf (m) and

ˆ
RN

u = m
}
.

The proof of Proposition 2.8 is based on the following observation:

Lemma 2.9. — Let f : R+×RN → [0,+∞] be Borel measurable and let ui ∈ Mf
mi

with
mi ∈ R+ for i = 1, 2. Let also u∗ := min{u1, u2}, u∗ := max{u1, u2}, m∗ :=

´
RN u∗

and m∗ :=
´
RN u∗. If Hf is affine on [m∗,m

∗] then u∗ ∈ Mf
m∗

and u∗ ∈ M
f
m∗ .

Proof of Lemma 2.9. — We use the same observations as in the proof of Theorem 1.1.
In particular, we have m∗ +m∗ = m1 +m2; since Hf is affine on [m∗,m

∗], it yields

Hf (m∗) +Hf (m
∗) = Hf (m1) +Hf (m2).

But we have also

Hf (m∗) +Hf (m
∗) ⩽ Ef (u∗) + Ef (u

∗) = Ef (u1) + Ef (u2) = Hf (m1) +Hf (m2),

so that the inequalities we used, i.e., Hf (m∗) ⩽ Ef (u∗) and Hf (m
∗) ⩽ Ef (u

∗), are
actually equalities. □

We also use an elementary Sobolev type inequality:

Lemma 2.10. — Let N ⩾ 2, p ∈ (1,+∞) and ω ⊂ RN−1 be a bounded open set. For
every u ∈ W 1,p

loc (R× ω),
ˆ
ω

∥u(·, x′)∥L∞(R) dx
′ ⩽ ∥u∥L1(R×ω) + |ω|(p−1)/p

∥∥∥ ∂u

∂x1

∥∥∥
Lp(R×ω)

.
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Proof of Lemma 2.10. — We prove the lemma when u ∈ C 1(R× ω); the general case
follows by approximation. For every x1, y1 ∈ R, x′ ∈ ω, we have

u(x1, x
′) = u(y1, x

′) +

ˆ x1

y1

∂u

∂x1
(t, x′) dt.

By averaging in the variable y1, we deduce

|u(x1, x
′)| ⩽

ˆ x1+1/2

x1−1/2

|u(y1, x′)|dy1 +
ˆ x1+1/2

x1−1/2

∣∣∣ ∂u
∂x1

(t, x′)
∣∣∣dt.

The result follows from Hölder inequality after integrating over ω. □

Proof of Proposition 2.8. — Assume by contradiction that the concave function Hf is
not strictly concave on (m∗,+∞) which means that there exists m ∈ (m∗,+∞) and
η > 0 such that Hf is affine on [m− η,m+ η]. (Note that η ⩽ m−m∗ by definition
of m∗.) Moreover, we will see in Proposition 3.12 that Mf

m is not empty because Hf

is not linear on [0,m]. We let u ∈ Mf
m.

As before, we shall use the notations ∧ and ∨ for the minimum and maximum;
we also let (e1, . . . , eN ) be the canonical basis of RN . Knowing that τ 7→ u(· + τ) is
continuous in RN for every u ∈ L1(RN ), that u 7→ u(·+ τ) is isometric in L1(RN ) for
every τ ∈ RN , that the map (x, y) 7→ x ∧ y is Lipschitz on RN × RN , and since the
set Mm+η/2 is compact in L1 up to translations in view of Remark 3.13, we deduce
that there exists δ0 > 0 such that

(2.14) ∥u ∧ u(·+ δe2)∥L1(RN ) > m for all δ ∈ (0, δ0) and u ∈ M
f
m+η/2.

We now construct by induction a sequence (tn)n∈N in R+ and a sequence (un)n∈N in
Mf

m such that

(2.15) tn+1 ⩾ tn + δ0 and un(x) ⩽ U(x) ∧ U(x+ tne2) ∀x ∈ RN ,

where we have set
U(x) := ess sup

t∈R
u(x+ te1).

To this aim, we first set u0 := u and t0 = 0. Then, if we assume that tn and un are
constructed as before, we first pick an δ1n ∈ R+ such that

vn := un ∨ un(·+ δ1ne1) satisfies
ˆ
RN

vn = m+
η

2
,

which is possible since η ⩽ m, as we argued in the proof of Theorem 1.1. Similarly, we
pick a δ2n ∈ R+ such that un+1 := vn∧vn(·+ δ2ne2) satisfies

´
RN un+1 = m, and we set

tn+1 = tn+δ2n. By Lemma 2.9, vn ∈ M
f
m+ η

2
and un ∈ Mf

m. By (2.14), we have δ2n ⩾ δ0,
thus insuring the first condition in (2.15). For the second condition, we observe that
for all x = (x1, x

′) ∈ RN ,

un+1(x) ⩽ (sup
t∈R

un(x+ te1)) ∧ (sup
t∈R

un(x+ te1 + δ2ne2)) ⩽ U(x) ∧ U(x+ tn+1e2),

where in the last inequality we have used the induction hypothesis (2.15).
We now show that the sequence (un L

N )n∈N is vanishing which will contradict the
compactness of Mf

m in L1 up to translations.
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For this, we let (xk)k∈N be a sequence in RN and (unk
)k∈N be a subsequence of

(un)n∈N such that

lim sup
n→∞

sup
x∈RN

ˆ
x+[0,1)N

un = lim
k→∞

ˆ
xk+[0,1)N

unk
.

By (H5), we have ∂u/∂x1 ∈ Lp(RN ). Using this fact, estimate (2.15), and
Lemma 2.10 with ω a unit cube in RN−1, we obtain

lim
k→∞

ˆ
xk+[0,1)N

unk
⩽ lim inf

k→∞

ˆ
xk+[0,1)N

U ∧
ˆ
xk+tnk

e2+[0,1)N
U

⩽ lim inf
k→∞

(
∥u∥L1({0⩽(x−xk)·e2⩽1}) +

∥∥∥∥ ∂u

∂x1

∥∥∥∥
Lp({0⩽(x−xk)·e2⩽1})

)
∧ lim inf

k→∞

(
∥u∥L1({tnk

⩽(x−xk)·e2⩽tnk
+1}) +

∥∥∥∥ ∂u

∂x1

∥∥∥∥
Lp({tnk

⩽(x−xk)·e2⩽tnk
+1})

)
,

and the conclusion follows since the sequences (xk · e2)k∈N and (tnk
+ xk · e2))k∈N

cannot be both bounded as limk→∞ tnk
= ∞. □

3. Lower bound for the energy and existence of optimal profiles

Our main tool to localize the energy and obtain a lower bound relies on a pro-
file decomposition for bounded sequences of positive measures, which is reminiscent
of the concentration-compactness principle of P.-L. Lions. This differs from classical
strategies to localize the energy which are based on suitable cut-offs. Naturally, this
concentration-compactness result also provides a criterion for the existence of optimal
profiles in (1.2). Nothing can be said beyond existence of a minimizer at this level of
generality. Further properties such as uniqueness and radial symmetry would require
conditions on the Lagrangian f and not only on the cost function Hf . We deal with
these questions in a particular case in Section 5.3.

3.1. Profile decomposition by concentration-compactness. — We prove a profile
decomposition theorem for bounded sequences of positive measures over RN , which
is essentially equivalent to [Mar14, Th. 1.5] in the Euclidean case. We have added
an extra information on mass conservation that will be useful, and provide a self-
contained simple proof. We start with a definition.

Definition 3.1. — A sequence of positive measures (µn)n∈N∈M+(RN ) is vanishing if

sup
x∈RN

µn(B1(x)) −−−−→
n→∞

0.

Any bounded sequence of positive measures over RN may be decomposed (up to
subsequence) into a countable collection of narrowly converging “bubbles” and a van-
ishing part, accounting for the total mass of the sequence, as stated in the following
theorem.
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Theorem 3.2. — For every bounded sequence (µn)n∈N of positive Borel measures
on RN , there exists a subsequence (µn)n∈σ(N), σ ∈ Σ, a non-decreasing sequence of in-
tegers (kn)n∈σ(N) converging to some k ∈ N∪{+∞}, a sequence of non-trivial positive
Borel measures (µi)0⩽i<k, and for every n ∈ σ(N), a collection of balls (Bi

n)0⩽i<kn

centered at points of suppµn such that, writing for all n ∈ σ(N),

(3.1) µn = µb
n + µv

n, where µb
n =

∑
0⩽i<kn

µn Bi
n,

(A) bubbles emerge: (cBi
n
µn)n∈σ(N)

C ′
b−−−−⇀

n→∞
µi for every i < k,(5)

(B) bubbles split: min0⩽i<j<kn
dist(Bi

n, B
j
n) −−−−→

n→∞
+∞,

(C) bubbles diverge: min0⩽i<kn
diam(Bi

n) −−−−→
n→∞

+∞,
(D) the bubbling mass is conserved: ∥µb

n∥ −−−→
ℓ→∞

∑
0⩽i<k∥µi∥,

(E) the remaining part is vanishing: supx∈RN µv
n(B1(x)) −−−−→

n→∞
0.

Before proving Theorem 3.2, we introduce the “bubbling” function of a sequence
of finite signed measures (µn)n∈N:

(3.2) m((µn)n∈N) := sup
{
∥µ∥ : (τ−xσ(ℓ)

µσ(ℓ))ℓ∈N
C ′

0−−⇀ µ, σ ∈ Σ, xσ(ℓ) ∈ RN (∀ℓ)
}
.

Although we will use this function on signed measures, we will start from a sequence
of positive measures and use the following characterization of vanishing sequences,
which holds only in the case of positive measures:

Lemma 3.3. — A sequence (µn)n∈N of finite positive measures over RN is vanishing
if and only if m((µn)n∈N) = 0.

Proof. — Assume that (µn)n∈N is vanishing and that (τ−xσ(ℓ)
µσ(ℓ))ℓ∈N

C ′
0−−⇀ µ for some

σ ∈ Σ and some sequence of points (xσ(ℓ))ℓ∈N. Then, for every x ∈ RN ,
µ(B1(x)) ⩽ lim inf

ℓ→∞
τ−xσ(ℓ)

µσ(ℓ)(B1(x)) = lim inf
ℓ→∞

µσ(ℓ)(B1(x+ xσ(ℓ))) = 0,

i.e., µ = 0 and thus m((µℓ)ℓ∈N) = 0.
Conversely, if (µn)n∈N is not vanishing, then there exists ε > 0, σ ∈ Σ and a

sequence of points (xn)n∈σ(N) in RN such that µn(B1(xn)) ⩾ ε for every n ∈ σ(N).

Up to further extraction, one can assume that (τ−xσ(ℓ)
µσ(ℓ))ℓ∈N

C ′
0−−⇀ µ ∈ M (RN ).

We have
µ(B1(0)) ⩾ lim sup

ℓ→∞
τ−xσ(ℓ)

µσ(ℓ)(B1(0)) = lim sup
ℓ→∞

µσ(ℓ)(B1(xσ(ℓ))) ⩾ ε > 0,

which entails m((µℓ)ℓ∈N) ⩾ ε > 0. □

Proof of Theorem 3.2. — If (µn)n∈N is vanishing, then we take σ = Id and k = 0,
so that µσ(ℓ) = µℓ = µv

ℓ , (A) to (D) are empty statements and (E) is satisfied since
(µn)n∈N is vanishing. Assume on the contrary that (µn)n∈N is not vanishing. We shall
construct the bubbles by induction and prove their properties in several steps.

(5)Recall that cBµ = (x 7→ x− y)♯(µ B) if B = Br(y) and µ ∈ M (RN ).
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Step 1: construction of bubbles centers. — At first step (step 0), since m((µn)n∈N) > 0,
there exists σ0 ∈ Σ and a sequence of points (x0

n)n∈σ0(N), such that

(3.3) (τ−x0
n
µn)n∈σ0(N)

C ′
0−−⇀ µ0 ∈ M (RN ) with ∥µ0∥ ⩾

1

2
m((µn)n∈N).

We then set µ0
n := µn−τx0

n
µ0 and we continue by induction, starting from the sequence

(µ0
n)n∈σ0(N). More precisely, assume that for a fixed step k − 1 ∈ N, for every i ∈ N

such that 0 ⩽ i ⩽ k − 1, we have built µi ∈ M (RN ), σi ∈ Σ, points (xi
n)n∈σi(N) and

sequences (µi
n)n∈σi(N) ∈ M (RN ) such that for every i,

σi ⪯ σi−1,(3.4)

µi
n = µn −

∑
0⩽j⩽i

τxj
n
µj , (∀n ∈ σi(N)),(3.5)

(τ−xi
n
µi−1
n )n∈σi(N)

C ′
0−−⇀ µi,(3.6)

∥µi∥ ⩾
1

2
m((µi

n)n∈σi(N)) > 0,(3.7)

where σ−1 := Id, (µ−1
n ) := (µn). If m((µk−1

n )n∈σk−1(N)) = 0, we stop; otherwise, we
proceed to the next step k to build σk, µ

k, (xk
n)n∈σk(N), (µ

k
n) as we did at step k = 0,

starting with (µk−1
n )n∈σk−1(N). Either the induction stops at some step k − 1 ∈ N for

which m((µk−1
n )n∈σk−1(N)) = 0 or the previous objects are defined for every i ∈ N,

in which case we let k := +∞.

Step 2: splitting of bubbles centers. — We prove that

(3.8) lim
σi(N)∋n→∞

dist(xi
n, x

j
n) = +∞ for every i, j ∈ N with 0 ⩽ j < i < k.

Indeed, assume by contradiction that there is a first index i < k such that for some
j0 < i, (dist(xi

n, x
j0
n ))n∈σi(N) is not divergent. In particular, there exists σ ⪯ σi such

that (xi
n−xj0

n )n∈σ(N) → x ∈ RN . Moreover, (dist(xi
n, x

j
n))n∈σi(N) → ∞, for every j < i,

j ̸= j0 by minimality of i and the triangle inequality dist(xj
n, x

j0
n ) ⩽ dist(xj

n, x
i
n) +

dist(xi
n, x

j0
n ). Notice by (3.5) that for every n ∈ σ(N),

µi−1
n = µj0−1

n − τ
x
j0
n
µj0 −

∑
j0<j<i

τxj
n
µj ,

hence taking the translation τ−xi
n
,

τ−xi
n
µi−1
n = τ

x
j0
n −xi

n
(τ−x

j0
n
µj0−1
n − µj0)−

∑
j0<j<i

τxj
n−xi

n
µj ,

and passing to the weak limit, knowing that xj0
n − xi

n → −x and dist(xj
n, x

i
n) → +∞

for j0 < j < i,

µi = τ−x(µ
j0 − µj0)−

∑
j0<j<i

0 = 0.

This contradicts the fact that (τ−xi
n
µi−1
n )n∈σ(N)

C ′
0−−⇀ µi ̸= 0 and proves (3.8).
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Step 3: weak convergence of bubbles. — From (3.5) we get
(3.9) τ−xi

n
µi−1
n = τ−xi

n
µn −

∑
0⩽j<i

τ−xi
n+xj

n
µj ,

and by (3.8), the sum converges weakly to 0, and so

(3.10) (τ−xi
n
µn)n∈σi(N)

C ′
0−−⇀ µi for every i ∈ N with i < k.

Step 4: construction of the bubbles with mass conservation. — We now construct the
extraction σ ∈ Σ that we need by induction: we set σ(0) = 0 and, assuming that
σ(0) < · · · < σ(ℓ − 1), with ℓ ∈ N∗, have been constructed, we set σ(ℓ) := n with
n ∈ σℓ∧k−1(N) large enough so that n > σ(ℓ− 1) and for every i < ℓ ∧ k,

µn(Bℓ(x
i
n)) ⩽ ∥µi∥+ 2−ℓ,(3.11)

and
min
0⩽j<i

dist(xi
n, x

j
n) ⩾ 4ℓ.(3.12)

Such an n exists by (3.8) and (3.10), noticing that µn(Bℓ(x
i
n)) = (τ−xi

n
µn)(Bℓ). Then

for each n = σ(ℓ), ℓ ∈ N, we set kn = ℓ ∧ k, and for each i ∈ {0, . . . , kn − 1},
Bi

n := Bℓ(x
i
n).

Finally, for every n ∈ σ(N), we decompose µn as expected:
µn = µb

n + µv
n, where µb

n =
∑

0⩽i<kn

µn Bi
n.

Let us check the four first items (A)–(D). Notice that (C) is fulfilled because
diam(Bi

σ(ℓ)) = ℓ → +∞ as ℓ → ∞, and (B) because of (3.12). Since for every i < k,
limσ(N)∋n→∞ diam(Bi

n) = +∞ and cBi
n
µn = (τ−xi

n
(µn Bi

n)) for every n ∈ σi(N),
(cBi

n
µn)n∈σ(N) converges weakly to µi by (3.10), and together with (3.11) it implies

that
(cBi

n
µn)n∈σ(N)

C ′
b−−⇀ µi,

i.e., (A) is satisfied. Moreover, by (3.11) again,
lim sup
ℓ→∞

∑
0⩽i<kσ(ℓ)

µσ(ℓ)(B
i
σ(ℓ)) ⩽

∑
0⩽i<k

∥µi∥+ lim sup
ℓ→∞

(ℓ ∧ k)2−ℓ =
∑

0⩽i<k

∥µi∥,

and since kn → k, by Fatou’s lemma we have,∑
0⩽i<k

∥µi∥ ⩽ lim inf
ℓ→∞

∑
0⩽i<kσ(ℓ)

µσ(ℓ)(B
i
σ(ℓ)),

which proves (D) because
∑

0⩽i<kσ(ℓ)
µσ(ℓ)(B

i
σ(ℓ)) = ∥µb

σ(ℓ)∥.

Step 5: vanishing of the remaining part, proof of (E). — By Lemma 3.3, it suffices to
prove that m((µv

n)n∈σ(N)) = 0. We claim that:

(3.13) m((µv
n)n∈σ(N)) ⩽ m((µi

n)n∈σi(N)), for every i ∈ N with i < k,

which concludes since m((µk
n)n∈σk−1(N)) = 0 if k < ∞, and m((µi

n))n∈σi(N)) → 0 as
i → ∞ if k = ∞. Indeed, if k = ∞, we have by (3.7) and (D),

1

2

∑
i∈N

m((µi
n)n∈σi(N)) ⩽

∑
i∈N

∥µi∥ = lim
ℓ→∞

∥µb
σ(ℓ)∥ ⩽ lim inf

ℓ→∞
∥µσ(ℓ)∥ < ∞.
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Let us show (3.13). Let σ ⪯ σ and (xn)n∈σ(N) be a sequence of points such that

(τ−xn
µv
n)n∈σ(N)

C ′
0−−⇀ µ ∈ M (RN ).

We need to prove that ∥µ∥ ⩽ m((µi
n)n∈σi(N)) for every i < k. Assume without loss of

generality that ∥µ∥ > 0. Then for every i < k,

(3.14) (dist(xn, x
i
n))n∈σ(N) −→ ∞.

Otherwise, up to subsequence, (dist(xn, x
i
n))n would be bounded by some constant M ,

and for every r > 0,

(τ−xn
µv
n)(Br) ⩽ µv

n(Br+M (xi
n)) −−−−→

n→∞
0,

because µv
n is supported on RN ∖

⋃
0⩽i<kn

Bi
n and Br+M (xi

n) ⊆ Bi
n for n large

enough by (C). Hence µ would be 0, a contradiction. Up to further extraction, one
can assume that (τ−xnµn)n∈σ(N) converges weakly to a measure µ ∈ M (RN ). Since
µv
n ⩽ µn, we have µ ⩽ µ. Moreover by (3.5), for every i < k and n ∈ σ(N) large

enough,
τ−xnµ

i
n = τ−xnµn −

∑
0⩽j⩽i

τxj
n−xn

µj ,

and because of (3.14) the sum converges weakly to 0, so that τ−xn
µi
n

C ′
0−−⇀ µ, and

consequently,
∥µ∥ ⩽ ∥µ∥ ⩽ m((µi

n)n∈σi(N)),

which is what had to be proved.

Step 6: re-centering of the bubbles at points of suppµn. — By (3.10), (τ−xi
n
µn)n∈σ(N)

converges weakly to the non-trivial measure µi for every i < k, thus

(3.15) Ri/2 := lim sup
σ(N)∋n→+∞

dist(suppµn, x
i
n) < +∞.

Therefore, for every n large enough, there is a point x̃i
n such that |xi

n − x̃i
n| < Ri

and x̃i
n ∈ suppµn. After a further extraction, one may assume that for every i,

|xi
n− x̃i

n| < Ri < rni where diamBi
n = 2rin for every n, and (xi

n− x̃i
n)n∈σ(N) converges

to some pi ∈ RN . Finally, we set r̃ni := rni − Ri and B̃i
n := B(x̃i

n, r̃
n
i ) ⊆ Bi

n. After
replacing the balls Bi

n by B̃i
n, (B) and (C) are satisfied by definition. Notice that

(τ−x̃i
n
µn)n∈σ(N) converges weakly to µ̃i := τpiµ

i with ∥µ̃i∥ = ∥µi∥, and

lim sup
n

∥cBi
n
µn∥ = lim sup

n
µn(B̃

i
n) ⩽ lim sup

n
µn(B

i
n) = ∥µi∥

hence (A) holds. Besides, using Fatou’s lemma,

lim sup
n

∑
i<kn

µn(B̃
i
n) ⩽ lim sup

n

∑
i<kn

µn(B
i
n)

=
∑
i<k

∥µi∥ ⩽
∑
i<k

lim inf
n

µn(B̃
i
n) ⩽ lim inf

n

∑
i<kn

µn(B̃
i
n)
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so that limn

∑
i<kn

µn(B̃
i
n) =

∑
i∥µi∥ and (D) is satisfied. In particular,

lim
n

∑
i<kn

µn(B
i
n ∖ B̃i

n) = lim
n

∑
i<kn

µn(B
i
n)− lim

n

∑
i<kn

µn(B̃
i
n) = 0,

and (E) holds as well. □

Remark 3.4. — If the sequence of families of balls (Bi
n)0⩽i<kn satisfies the conclusion

of the theorem, i.e., (A)–(E), then it is also the case for any family of balls (B̃i
n)0⩽i<kn

with the same centers as those of Bi
n and with smaller but still divergent radii (i.e.,

satisfying (C)). It can be easily seen following the arguments at Step 6 of the proof.

3.2. Lower bound by concentration-compactness. — We will first establish a lower
bound for the minimal energy along vanishing sequences defined on varying subsets
of RN . We say that a sequence of Borel functions (un)n∈N, each defined on some
open set Ωn ⊆ RN , is vanishing if the sequence of measures (|un|LN Ωn)n∈N is
vanishing in the sense of Definition 3.1, namely if ∥un∥L1

uloc(Ωn) → 0 as n → ∞, where
L1
uloc(Ω) is the set of uniformly locally integrable functions on the open set Ω, i.e.,

Borel functions u on Ω such that

(3.16) ∥u∥L1
uloc(Ω) := sup

x∈RN

ˆ
Ω∩(x+[0,1)N )

|u| < +∞.

It will be convenient to first extend our Sobolev functions to a neighbourhood Ωδ of Ω
where for every δ > 0 and every set X ⊆ RN , we have set

Xδ := {x ∈ RN : dist(x,X) < δ}.

We will need to consider sufficiently regular domains for which we have an extension
operator W 1,p ∩L1

uloc(Ω) → W 1,p ∩L1
uloc(Ωδ). We will only apply it to domains with

smooth boundary, in which case we can use a reflection technique. Since we want
quantitative estimates, we will use the notion of reach of a set X ⊆ RN (see [Fed59]).
We say that X has positive reach if there exists δ > 0 such that every x ∈ Xδ has
a unique nearest point π(x) on X. The greatest δ for which this holds is denoted
by reach(X) and the map x ∈ Xreach(X) 7→ π(x) ∈ X is called the nearest point
retraction.

Example 3.5. — Assume that Ω is a perforated domain B0 ∖
⋃k

i=1 B
i where the Bi

are disjoint closed balls included in some open ball B0 (possibly B0 = RN ). Then,

reach(∂Ω) = inf{radius(Bi) : i = 0, . . . , k} ∪ {dist(∂Bi, ∂Bj) : i ̸= j}.

By [Fed59, Th. 4.8], we have

(i) if x, y ∈ Xδ with 0 < δ < δ0 := reach(X), then |π(x)− π(y)| ⩽ δ0
δ0−δ |x− y|,

(ii) if x ∈ X and Dx is the intersection of Xreach(X) with the straight line crossing
∂Ω orthogonally at x, then π(y) = x for every y ∈ Dx.
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Lemma 3.6 (Extension). — Let Ω ⊆ RN be an open set such that its boundary ∂Ω

is C 1 with positive reach.(6) Then, for every δ ∈ (0, reach(∂Ω)), every p ∈ [1,+∞)

and every u ∈ L1 ∩ W 1,p(Ω), there exists u ∈ L1 ∩ W 1,p(Ωδ) such that u = u a.e.
on Ω, and

∥u∥L1(Ωδ) ⩽ A∥u∥L1(Ω), ∥u∥L1
uloc(Ωδ) ⩽ A∥u∥L1

uloc(Ω), ∥∇u∥Lp(Ωδ) ⩽ A∥∇u∥Lp(Ω),

with a constant A < +∞ depending only on N, δ and reach(∂Ω).

Proof. — Let σ : (∂Ω)δ → (∂Ω)δ be the reflection through ∂Ω, defined by σ(x) =

2π(x) − x. By the properties (i) and (ii) of the nearest point retraction, we have
that σ = σ−1 (simply because π(σ(x)) = π(x)) and σ is L-Lipschitz with a constant
L < +∞ depending on δ and reach(∂Ω) only.

We define(7) u by u = u on Ω and u = u ◦ σ on Ωδ ∖ Ω. This map is well-defined
since σ(Ωδ ∖ Ω) ⊆ Ω. Indeed, if we had x, σ(x) ∈ Ωδ ∖ Ω, then the line segment
[x, σ(x)] would meet ∂Ω orthogonally at its center π(x), and would remain out of Ω,
because otherwise there would exist a point y belonging either to ∂Ω ∩ (x, π(x)) or
∂Ω ∩ (π(x), σ(x)) thus contradicting the definition of π(x). Such a situation is not
possible for a C 1 boundary.

Moreover, by the change of variable formula and the chain rule, u satisfies the
desired estimates since σ is bi-Lipschitz with its Lipschitz constants controlled in
terms of δ and reach(∂Ω). □

We will need a localized version of the Gagliardo–Nirenberg–Sobolev inequality in
a particular case:

Lemma 3.7. — Let Ω ⊆ RN be an open set such that ∂Ω is C 1 with positive reach,
let p ∈ [1,+∞), let r ⩾ p(1 + 1/N), and assume that r ⩽ pN/(N − p) when p < N .
Then for every u ∈ L1 ∩W 1,p(Ω),

∥u∥Lr(Ω) ⩽ C
(
∥∇u∥Lp(Ω) + ∥u∥L1(Ω)

)α∥u∥1−α
L1

uloc(Ω)
,

where α ∈ (0, 1] is the unique parameter such that 1/r = α(1/p− 1/N)+ (1−α), and
the constant C < +∞ depends on N, r, p and reach(∂Ω).

Proof of Lemma 3.7. — We let u ∈ L1 ∩ W 1,p(Ω) and we extend u to u ∈ L1 ∩
W 1,p(Ωδ) as in Lemma 3.6, with δ := reach(Ω)/2. By the Gagliardo–Nirenberg–
Sobolev inequality (see [Nir59]) on the hypercube Qδ = [−δ/

√
N, δ/

√
N)N ⊆ Bδ,

we have for some C depending on N, δ,

∥u∥Lr(Qδ) ⩽ C∥∇u∥αLp(Qδ)
∥u∥1−α

L1(Qδ)
+ C∥u∥L1(Qδ).

We then cover Ω with the disjoint hypercubes Qδ(c) = c+Qδ ⊆ Ωδ centered at points
c on the grid C := Ω ∩ (2δ/

√
N)ZN . Since r ⩾ p(1 + 1/N), we can check that

(3.17) rα =
r − 1

1 + 1/N − 1/p
⩾ p.

(6)Thanks to [Fed59, Rem. 4.20], ∂Ω is actually of class C 1,1.
(7)Note that u is not defined on ∂Ω, but this set is negligible.
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By superadditivity of s 7→ srα/p and of s 7→ srα, we obtain

∥u∥rLr(Ω) ⩽
∑
c∈C

∥u∥rLr(Qδ(c))

⩽ C ′
∑
c∈C

∥∇u∥p
rα
p

Lp(Qδ(c))
∥u∥r(1−α)

L1(Qδ(c))
+ C ′∥u∥rL1(Qδ(c))

⩽ C ′∥∇u∥rαLp(Ωδ)
∥u∥r(1−α)

L1
uloc(Ωδ)

+ C ′∥u∥rαL1(Ωδ)
∥u∥r(1−α)

L1
uloc(Ωδ)

⩽ C ′′(∥∇u∥Lp(Ω) + ∥u∥L1(Ω)

)rα∥u∥r(1−α)

L1
uloc(Ω)

. □

Proposition 3.8. — Assume that f : RN ×R×RN → [0,+∞] satisfies (H1) and (H5)
for some p ∈ (1,+∞). Consider a vanishing sequence (un)n∈N in W 1,1

loc (Ωn,R±), where
the Ωn ⊆ RN are open sets with C 1 boundary such that infn∈N reach(∂Ωn) > 0, and a
sequence (Φn)n∈N of Borel maps Φn : Ωn → RN such that supy∈Ωn

|Φn(y)−x0| → 0 as
n → +∞ for some x0 ∈ RN . If θn :=

´
Ωn

un ̸= 0 for every n and (θn)n∈N is bounded,
then:

lim inf
n→+∞

1

|θn|

ˆ
Ωn

f(Φn(y), un(y),∇un(y)) dy ⩾ f ′
−(x0, 0

±, 0),

where f ′
−(x0, 0

±, 0) was defined in (2.10).

Proof of Proposition 3.8. — Suppose for example that un ⩾ 0 a.e. for every n. Without
loss of generality, we may assume after extracting a subsequence that:

(3.18) K := sup
n

1

θn

ˆ
Ωn

f(Φn(y), un(y),∇un(y)) dy + θn < +∞.

For all n ∈ N, we consider the measure νn ∈ M+(RN × R × RN ) defined as the
pushforward of the probability measure µn = 1

θn
un L

N Ωn by the map (Φn, un,∇un),
that is:

νn := (Φn, un,∇un)♯(µn).

We are going to show in several steps that νn
C ′

b−−⇀ δ(x0,0,0) and deduce the result.
It suffices to show that the three projections νin := (πi)♯νn, i ∈ {1, 2, 3} converge
narrowly to δx0 , δ0 and δ0 respectively. Indeed, this would imply that (νn) converges
narrowly to a measure concentrated on (x0, 0, 0), hence to δ(x0,0,0) since the νn are
probability measures. First of all, since (νn) has bounded mass and (θn) is bounded,
we may take a subsequence (not relabeled) such that νn

C ′
0−−⇀ ν and θn → θ as n → ∞

for some ν ∈ M+(RN × R× RN ) and θ ⩾ 0.

Step 1: ν1n
C ′

b−−⇀ δx0
. — This is a direct consequence of the fact that ν1n is concentrated

on Φn(RN ) for every n and dist(Φn(RN ), x0) → 0 as n → ∞.

Step 2: ν2n
C ′

b−−⇀ δ0. — By (3.18) and our assumption (H5), there is a constant K1 > 0

with

(3.19)
ˆ
Ωn

|∇un|p ⩽ K1

ˆ
Ωn

un, n ∈ N.
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We deduce from Markov’s inequality, and Lemma 3.7 applied with r = p(1 + 1/N),
corresponding to α = N/(N + 1), that

ν2n([η,+∞)) =
1

θn

ˆ
{un⩾η}

un =
1

θn

ˆ
{un⩾η}

u1−r
n ur

n

⩽
1

θnηr−1

ˆ
Ωn

ur
n

⩽
C

θnηr−1

(
∥∇un∥Lp(Ωn) + ∥un∥L1(Ωn)

)rα∥un∥r(1−α)

L1
uloc(Ωn)

⩽
C ′

ηr−1

(
1 + θp−1

n

)
∥un∥r(1−α)

L1
uloc(Ωn)

,

where in the last inequality, we have used the identity αr = p and (3.19), and C,C ′

depend only on N, r, p and infn reach(∂Ωn).
Since (un)n∈N is vanishing and (θn)n∈N is bounded, the last term in the previous

inequality goes to zero as n → ∞ and it follows that ν2n
C ′

b−−⇀ δ0.

Step 3: ν3n
C ′

b−−⇀ δ0. — Fix M > 0 and η > 0. One has by (3.19),

ν3n([M,+∞)) =
1

θn

ˆ
{|∇un|⩾M}

un ⩽
1

θn

ˆ
{un<η}∩{|∇un|⩾M}

un +
1

θn

ˆ
{un>η}

un

⩽
η

θn
LN ({|∇un| ⩾ M}) + ν2n([η,+∞))

⩽
η

θn

1

Mp

ˆ
Ωn

|∇un|p + ν2n([η,+∞))

⩽
ηK1

Mp
+ ν2n([η,+∞)).

By the previous step, we know that limn→+∞ ν2n([η,+∞)) = 0, hence taking the
superior limit as n → +∞ then η → 0 we get limn→+∞ ν3n([M,+∞)) = 0. Since this
is true for every M > 0 we obtain ν3n

C ′
b−−⇀ δ0.

Step 4: conclusion. — By the previous steps, we deduce that νn
C ′

b−−⇀ δ(x0,0,0) as n →
+∞. We define g : RN ×R+×RN → [0,+∞] as the lower semicontinuous envelope of
RN × R∗

+ × RN ∋ (x, u, ξ) 7→ 1
uf(x, u, ξ). By (H1), we have g(x, u, ξ) = 1

uf(x, u, ξ) if
u > 0, and by definition of f ′

− (see (2.10)), we have g(x, 0, 0) = f ′
−(x, 0

+, 0) for every
x ∈ RN . Hence, by lower semicontinuity of g and weak convergence of (νn), we get

lim inf
n→∞

ˆ
Ωn

f(Φn, un,∇un) ⩾ lim inf
n→∞

ˆ
{un>0}

f(Φn, un,∇un)

un
un

= lim inf
n→∞

ˆ
RN×R×RN

g(x, u, ξ) dνn(x, u, ξ)

⩾
ˆ
RN

g(x, u, ξ) dδ(x0,0,0) = f ′
−(x0, 0

+, 0),

which ends the proof of the lemma. □
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As a corollary, we may now relate the slope at 0 of Hf to that of f .

Corollary 3.9. — Assume that f : RN × R × RN → [0,+∞] satisfies (H1), (H5)
for some p ∈ (1,+∞) and (H6). Fix x ∈ RN . If either N ⩾ 2 or (N = 1 and
Hf (x, ·) ̸≡ +∞ on R∗

±), then H ′
f (x, 0

±) = f ′
−(x, 0

±, 0).

Proof. — The inequality H ′
f (x, 0

±) ⩽ f ′
−(x, 0

±, 0) is precisely (H6), and the converse
inequality H ′

f (x, 0
±) ⩾ f ′

−(x, 0
±, 0) comes from Proposition 3.8. Indeed, if (un)n∈N ∈

W 1,1
loc (RN ,R±) is a sequence of functions of mass θn =

´
RN un going to 0 and which is

almost minimizing in the sense that limn→∞ Ex
f (un)/|θn| = lim infn→∞ H(x, θn)/θn

then (un)n∈N is vanishing and Proposition 3.8 yields

lim inf
n→∞

Ex
f (un)

|θn|
⩾ f ′

−(x, 0
±, 0). □

We now establish our main energy lower bound along sequences with bounded mass
(not necessarily vanishing):

Proposition 3.10. — Assume that (fε)ε>0 is a family of functions fε : RN×R×RN →
[0,+∞] satisfying (H1), (H2), (H5) and (H8) where f = limε fε. Let (εn)n∈N be a
sequence of positive numbers going to zero, (Rn)n∈N and (rn)n∈N be two sequences
in (0,+∞] such that limn→∞ rn = limn→∞ Rn − rn = +∞, (un)n∈N be a sequence
of functions un ∈ W 1,1

loc (BRn
,R±) with finite limit mass m := limn→∞

´
Brn

un, and
(Φn)n∈N be a sequence of Borel maps Φn : BRn

→ RN such that

(3.20) sup
y∈BRn

|Φn(y)− x0| −−−−→
n→∞

0 for some x0 ∈ RN .

Then there exists a family (ui)0⩽i<k of functions in W 1,1
loc (RN ,R±) with k ∈ N∪{+∞},

such that mi :=
´
RN ui ∈ R∗

± for every i, and

m = mv +
∑

0⩽i<k

mi with ±mv ⩾ 0,(3.21)

lim inf
n→∞

ˆ
BRn

fεn(Φn, un,∇un) ⩾ |mv|f ′
−(x0, 0

±, 0) +
∑

0⩽i<k

ˆ
RN

f(x0, u
i,∇ui).(3.22)

Proof. — Suppose for example that un ⩾ 0 a.e. for every n. We first assume, up to
subsequence, that the left hand side of (3.22) is a finite limit. We apply the profile
decomposition Theorem 3.2 to the sequence of positive measures µn = un L

N Brn

where, we assume the extraction σ to be the identity for convenience, and we use the
same notation as in Theorem 3.2. In particular, for each bubble Bi

n = Brin
(xi

n), with
0 ⩽ i < kn, we have xi

n ∈ suppµn ⊆ Brn . By assumption, we have limn→∞(Rn−rn) =

+∞; hence, up to reducing the radii of the balls Bi
n if necessary, in such a way that

their radii still diverge (see Remark 3.4), we can assume that

(3.23) Bi
n ⊆ BRn−1, 0 ⩽ i < kn.

For each 0 ⩽ i < kn, we let ui
n := un(·+xi

n). Since (3.22) is assumed to be finite, we
get that the sequence (ui

n)n is bounded in W 1,p
loc (RN ) by (H5). Hence, after a further
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extraction if needed, we get that (ui
n)n∈N ⇀ ui weakly in W 1,p

loc (RN ) for some limit ui,
for every 0 ⩽ i < k = lim kn. Setting mi =

´
RN ui for every i, by (D) in Theorem 3.2,

we have
mv := m−

∑
0⩽i<k

mi = lim
n→∞

ˆ
Brn∖

⋃
0⩽i<kn

Bi
n

un.

Fix ε > 0. We decompose the energy as

(3.24)
ˆ
BRn

fε(Φn, un,∇un) =

ˆ
BRn∖

⋃
0⩽i<kn

Bi
n

fε(Φn, un,∇un)

+
∑

0⩽i<kn

ˆ
Brin

fε(Φn(·+ xi
n), u

i
n,∇ui

n).

Note that the domains Ωn := BRn
∖

⋃
0⩽i<k B

i
n satisfy infn∈N reach(∂Ωn) > 0 as

noticed in Example 3.5, thanks to (3.23) and (B), (C) in Theorem 3.2. Hence, applying
Proposition 3.8 to the Lagrangian fε, we obtain

(3.25) lim inf
n→∞

ˆ
BRn∖

⋃
0⩽i<kn

Bi
n

fε(Φn, un,∇un) ⩾ mv(fε)
′
−(x0, 0

+, 0).

Moreover, by the lower semicontinuity of integral functionals (see [But89, Th. 4.1.1]),
in view of (3.20), we have for each i with 0 ⩽ i < k,

(3.26) lim inf
n→∞

ˆ
Brin

fε(Φn(·+ xi
n), u

i
n,∇ui

n) ⩾
ˆ
RN

fε(x0, u
i,∇ui).

Finally, by (3.24), (3.25), (3.26), (H8) together with monotone convergence, we deduce
that

lim inf
n→∞

ˆ
BRn

fεn(Φn, un,∇un) ⩾ lim
ε→0+

(
mv(fε)

′
−(x0, 0

+, 0) +
∑

0⩽i<k

ˆ
RN

fε(x0, u
i,∇ui)

)
= mvf

′
−(x0, 0

+, 0) +
∑

0⩽i<k

ˆ
RN

f(x0, u
i,∇ui).

The similar statement for non-positive functions is obtained in the same way. □

3.3. Existence of optimal profiles. — For the existence of an optimal profile
in (1.2), we need a criterion that rules out splitting and vanishing of minimizing
sequences:

Lemma 3.11. — Let H : R+ → R+ be a concave function. Then H is subadditive, and
if for some 0 < θ < m one has H(m) = H(m− θ)+H(θ), then H is linear on (0,m).

Proof. — By concavity, t 7→ H(t)/t is non-increasing. Hence,

H(m) = θ
H(m)

m
+ (m− θ)

H(m)

m
⩽ θ

H(θ)

θ
+ (m− θ)

H(m− θ)

m− θ
.

But, by assumption, the last inequality is an equality which means that H(m)/m =

H(θ)/θ = H(m− θ)/(m− θ). In particular, the monotone function t 7→ H(t)/t must
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be constant on [θ,m], i.e., H must be linear on [θ,m]. By concavity this is only possible
if H is linear on [0,m]. □

We can now state and prove our existence result:

Proposition 3.12. — Assume that f : R × RN ∋ (u, ξ) 7→ f(u, ξ) ∈ [0,+∞] satisfies
(H1), (H2), (H3), (H5) and (H6). Let m ∈ R+ (resp. m ∈ R−). If the cost function Hf ,
defined in (1.3), is not linear on [0,m] (resp. [m, 0]), then the minimization problem
in (1.3) admits a solution u ∈ W 1,1

loc (RN ), i.e.,
´
RN u = m and

´
RN f(u,∇u) = Hf (m),

such that u ⩾ 0 (resp. u ⩽ 0) in RN .

Proof. — We consider the case m ⩾ 0, the case m < 0 can then be deduced by consid-
ering f̃(u, ξ) = f(−u,−ξ). We assume without loss of generality that Hf is finite on
(0,+∞), otherwise by Theorem 1.1 there is nothing to prove. By Remark 2.1, the ad-
missible class in (1.3) can be reduced to non-negative functions. In particular, if m = 0,
then u = 0 is the only non-negative solution. If m > 0, we apply Proposition 3.10 in
the following situation: fε(x, u, ξ) = f(u, ξ) for every (x, u, ξ) ∈ RN ×R×RN , ε > 0,
Rn ≡ +∞, Φn ≡ x0 ∈ RN , (un)n∈N is a minimizing sequence for the minimization
problem in (1.3), and (rn)n∈N is a sequence of positive radii going to +∞ such that
limn→∞

´
Brn

un = m. We obtain

Hf (m) ⩾ mvf
′
−(0

+, 0) +
∑

0⩽i<k

ˆ
RN

f(ui,∇ui),

with k ∈ N ∪ {+∞}, ui ∈ W 1,p
loc (RN ,R+) and m =

∑
0⩽i<k mi + mv, where mi :=´

RN ui. By Proposition 2.5 and Proposition 2.6, in view of our assumption (H6),
and since Hf is assumed to be finite on (0,+∞) (for the case N = 1), we have
f ′
−(0

+, 0) ⩾ H ′
f (0

+). Moreover, by Theorem 1.1, we have mvH
′
f (0

+) ⩾ Hf (mv).
Hence, by definition of Hf ,

Hf (m) ⩾ Hf (mv) +
∑

0⩽i<k

Hf (mi).

Since the concave function Hf is not linear on [0,m], by Lemma 3.11, we have either
k = 1 and mv = 0, and we are done, or k = 0 and m = mv. But in the latter
case, we would have Hf (m) = mH ′

f (0
+) which implies that the monotone function

t 7→ Hf (t)/t is constant on [0,m], i.e., that Hf is linear on [0,m]. This contradicts
our assumption. □

Remark 3.13. — Notice that the end of the proof actually shows, under the given
assumptions, that the set of minimizers for a given mass m is compact in L1 modulo
translations.

4. Γ-convergence of the rescaled energies towards the H-mass

We establish lower and upper bounds for the Γ- lim inf and Γ- lim sup respectively,
from which we deduce the proof of our main Γ-convergence result. The upper bound on
the Γ- lim sup holds under more general assumptions and will be needed in Section 5.5.
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4.1. Lower bound for the Γ- lim inf. — Given a Borel function f : RN ×R×RN →
[0,+∞], we define for every (x,m) ∈ RN × R,

(4.1) H−
f (x,m) := Hf (x,m) ∧ (f ′

−(x, 0
±, 0)|m|), if ±m ⩾ 0,

recalling that Hf is defined in (1.2) and f ′
−(x, 0

±, 0) in (2.10), with the usual con-
vention (±∞)× 0 = 0. Notice that it is concave on R+ and R− by Theorem 1.1, and
under (H6) we have H−

f (x,m) = Hf (x,m).

Proposition 4.1. — Assume that (fε)ε>0 is a family of functions fε : RN ×R×RN →
[0,+∞] satisfying (H1), (H2), (H3), (H5) and (H8) where f = limε→0 fε. Let (εn)n∈N
be a sequence of positive numbers going to zero, (un)n∈N be a sequence in W 1,1

loc (RN ),
and let

en := fεn(·, εNn un, ε
N+1
n ∇un)ε

−N
n LN

be the energy measure associated with un. If un L
N C ′

0−−⇀ µ ∈ M (RN ) and en
C ′

0−−⇀ e ∈
M (RN ), then

(4.2) e ⩾ H−
f (µ).

In particular, Γ(C ′
0)- lim infε→0 Eε ⩾ MH−

f .

Proof of Proposition 4.1. — Set H := H−
f and recall that it is concave on R+ and R−

by Theorem 1.1. Let us assume first that un ⩾ 0 a.e. for every n. To obtain (4.2), it is
enough to prove that for every x0 ∈ RN ,

(4.3) e({x0}) ⩾ H(x0, µ({x0})).

and that if x0 ∈ suppµ is not an atom of µ, then

(4.4) lim sup
R→0+

e(BR(x0))

µ(BR(x0))
⩾ H ′(x0, 0

+),

Indeed (4.3) implies that e ⩾ (H(µ))a (the atomic part of the measure H(µ) defined
in Definition 2.2) while (4.4) implies that e ⩾ H ′(·, 0+)µd = (H(µ))d, by Radon-
Nikodỳm theorem (see [AFP00, Th. 2.22]); these two relations yield e ⩾ (H(µ))a +

(H(µ))d = H(µ) as required.
We fix x0 ∈ suppµ and proceed in several steps.

Step 1: blow-up near x0. — We first take two sequences of positive radii (Rℓ)ℓ∈N → 0

and (rℓ)ℓ∈N such that for every ℓ ∈ N, rℓ ∈ (0, Rℓ),

e(∂BRℓ
(x0)) = µ(∂Brℓ(x0)) = 0,(4.5)

and

lim
ℓ→∞

e(BRℓ
(x0))

µ(Brℓ(x0))
= lim sup

R→0+

e(BR(x0))

µ(BR(x0))
.(4.6)

This last property is obtained by taking first a sequence (ρℓ)ℓ such that

lim sup
R→0+

e(BR(x0))

µ(BR(x0))
= lim

ℓ→∞

e(Bρℓ
(x0))

µ(Bρℓ
(x0))

,
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then using monotone convergence the measures to get first rℓ then Rℓ such that

0 < rℓ < Rℓ < ρℓ, µ(Brℓ(x0)) ⩾ (1− 2−ℓ)µ(Bρℓ
(x0))

e(BRℓ
(x0)) ⩾ (1− 2−ℓ)e(Bρℓ

(x0)).and

By weak convergence and (4.5), according to [AFP00, Prop. 1.62 b)], we have for
every ℓ ∈ N,

lim
n→∞

en(BRℓ
(x0)) = e(BRℓ

(x0)) and lim
n→∞

ˆ
Brℓ

(x0)

un = µ(Brℓ(x0)).

Hence, there exists an extraction (nℓ)ℓ∈N ∈ Σ such that

(4.7) lim
ℓ→∞

rℓ
εnℓ

= +∞ and lim
ℓ→∞

Rℓ − rℓ
εnℓ

= +∞,

satisfying the following conditions:

µ({x0}) = lim
ℓ→∞

ˆ
Brℓ

(x0)

unℓ
, e({x0}) = lim

ℓ→∞
enℓ

(BRℓ
(x0)),(4.8)

and

lim sup
ℓ→∞

e(BRℓ
(x0))

µ(Brℓ(x0))
= lim

ℓ→∞

enℓ
(BRℓ

(x0))´
Brℓ

(x0)
unℓ

.(4.9)

We may rewrite the mass and energy in terms of the re-scaled map vℓ defined by

(4.10) vℓ(y) := εNnℓ
unℓ

(x0 + εnℓ
y), y ∈ RN , ℓ ∈ N,

as follows: ˆ
Brℓ

(x0)

unℓ
=

ˆ
B

ε
−1
nℓ

rℓ

vℓ,(4.11)

and

enℓ
(BRℓ

(x0)) =

ˆ
B

ε
−1
nℓ

Rℓ

fεnℓ
(x0 + εnℓ

y, vℓ(y),∇vℓ(y)) dy.(4.12)

Step 2: proof of (4.3). — By Proposition 3.10, we have

(4.13)

e({x0}) = lim
ℓ→∞

ˆ
B

ε
−1
nℓ

Rℓ

fεnℓ
(x0 + εnℓ

y, vℓ(y),∇vℓ(y)) dy

⩾ mvf
′
−(x0, 0

+, 0) +
∑

0⩽i<k

Hf (x0,mi).

Here k ∈ N ∪ {+∞} and m = mv +
∑

0⩽i<k mi, with mi > 0, mv ⩾ 0 and

m = lim
ℓ→∞

ˆ
B

ε
−1
nℓ

rℓ

vℓ = µ({x0}).

Since the function H = H−
f , defined in (4.1), is the infimum of two functions which

are mass-concave, it is mass-concave hence subadditive. From (4.13) we thus arrive at

e({x0}) ⩾ H(x0,mv) +
∑

0⩽i<k

H(x0,mi) ⩾ H
(
x0,mv +

∑
0⩽i<k

mi

)
= H(x0, µ({x0})).
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Step 3: proof of (4.4). — Fix ε > 0 and assume that m = µ({x0}) = 0. In that case,
we apply Proposition 3.8 to the sequence of functions (vℓ)ℓ∈N defined on the sets
Ωℓ = Bε−1

nℓ
rℓ

and the function fε to get, thanks to (H8):

lim sup
R→0+

e(BR(x0))

µ(BR(x0))
= lim

ℓ→∞

enℓ
(BRℓ

(x0))´
Brℓ

(x0)
unℓ

⩾ lim inf
ℓ→∞

1´
B

ε
−1
nℓ

rℓ

vℓ

ˆ
B

ε
−1
nℓ

rℓ

fε(x0 + εnℓ
y, vℓ(y),∇vℓ(y))

⩾ (fε)
′
−(x0, 0

+, 0).

Taking the limit ε → 0+, we deduce by (H8) and (4.1):

(4.14) lim sup
R→0+

e(BR(x0))

µ(BR(x0))
⩾ f ′

−(x0, 0
+, 0) ⩾ H ′(x0, 0

+).

In view of the discussion at the beginning of the proof, we have now proved (4.2).

Step 4: proof of (4.2) for signed (un)n. — Notice that the preceding reasoning for non-
negative un applies also to the case of non-positive un. Let us handle the case where
the (un)’s may change sign. We simply apply the above cases to the positive and
negative parts ((un)±)n which converge weakly as measures (up to subsequence) to
some measures µ± ∈ M+(RN ) which satisfy µ = µ+ − µ−, so that e ⩾ H(±µ±).
We know that the Jordan decomposition µ = µ+ − µ− is minimal, so that µ± ⩽ µ±

and µ+ ⊥ µ−. By monotonicity of the function Hf (see Theorem 1.1), we have
e ⩾ H(±µ±) ⩾ H(±µ±). Since H(µ+) ⊥ H(−µ−), we get

e ⩾ H(µ+) +H(−µ−) = H(µ).

Step 5: lower bound for the Γ- lim inf. — We justify that (4.2) implies the lower bound
Γ(C ′

0)- lim infε→0 Eε ⩾ MH . Indeed, fix µ ∈ M (RN ) and consider a family (uε)ε>0

weakly converging to µ as ε → 0. We need to show that MH(µ) ⩽ lim infε→0 Eε(uε).
Assume without loss of generality that the inferior limit is finite and take a se-
quence of positive numbers (εn)n∈N → 0 such that this inferior limit is equal to
limn→∞ Eεn(uεn). Now the energy measure en associated with un = uεn has bounded
mass and up to extracting a subsequence one may assume that it converges weakly
to some measure e ∈ M+(RN ). By the previous steps, e ⩾ H(µ), and by lower
semicontinuity and monotonicity of the mass:

lim inf
ε→0+

Eε(uε) = lim inf
n→∞

∥en∥ ⩾ ∥e∥ ⩾ ∥H(µ)∥ = MH(µ). □

4.2. Upper bound for the Γ- lim sup. — In this section, we introduce the following
substitute for (H4), (H7) and (H8), where f, (fε)ε>0 are Borel maps from RN×R → RN

to [0,+∞]:
(U) there exists C < +∞ such that for every x, y ∈ RN , u ∈ R and ξ ∈ RN ,

lim sup
ε→0+

fε(x+ εy, u, ξ) ⩽ f(x, u, ξ) and fε(y, u, ξ) ⩽ C(f(x, u, ξ) + u) ∀ε > 0.
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Proposition 4.2. — Assume that f, (fε)ε>0 satisfy (U) and (H3). If µ ∈ M (RN ),
then there exists (uε)ε>0 ∈ W 1,1

loc (RN ) such that uε L
N C ′

b−−⇀ µ when ε → 0 and which
satisfies

lim sup
ε→0+

Eε(uε) ⩽ MHf,lsc(µ),

where Hf,lsc ⩽ Hf stands for the lower semicontinuous envelope of Hf , defined
in (2.5). In other words, we have Γ(C ′

b)- lim supε→0 Eε ⩽ MHf,lsc .

Proof of Proposition 4.2. — Let F = Γ(C ′
b)- lim supε→0 Eε. As an upper Γ-limit, F is

sequentially lower semicontinuous in the narrow topology. Hence, by Proposition 2.4,
it is enough to prove that F (µ) ⩽ MHf (µ) whenever µ is finitely atomic. Let µ =∑k

i=1 miδxi
with k ∈ N, mi ∈ R, xi ∈ RN , and assume without loss of generality that

xi ̸= xj when i ̸= j and MHf (µ) < +∞. Fix η > 0. For each i = 1, . . . , k, there exists
ui ∈ W 1,1

loc (RN ) such that
´
RN ui = mi and

´
RN f(xi, ui,∇ui) ⩽ H(xi,mi)+ η < +∞.

We define for every i = 1, . . . , k,

ui
ε(x) = ε−Nui(ε

−1(x− xi)), x ∈ RN ,(4.15)

and

uε = max{ui
ε : i = 1, . . . , k},(4.16)

which converge narrowly as measures to u as ε → 0. We have by change of variables:

Eε(uε) ⩽
k∑

i=1

ˆ
{uε=ui

ε}
fε(x, ε

Nui
ε(x), ε

N+1∇ui
ε(x))ε

−N dx

⩽
k∑

i=1

Eε(u
i
ε) =

k∑
i=1

ˆ
RN

fε(xi + εx, ui,∇ui).

Using our assumption (U) and the dominated convergence theorem, one gets as ε → 0:

F (µ) ⩽ lim sup
ε→0

Eε(uε) ⩽
k∑

i=1

ˆ
RN

f(xi, ui,∇ui) ⩽
k∑

i=1

H(xi,mi) + kη = MH(µ) + kη.

The conclusion follows by arbitrariness of η > 0. □

4.3. Proof of the main Γ-convergence result. — We now explain how Theorem 1.2
follows from Proposition 4.1 and Proposition 4.2.

Proof of Theorem 1.2. — The lower bound Γ(C ′
0)- lim infε→0 Eε ⩾ MH−

f follows from
Proposition 4.1, and the upper bound Γ(C ′

b)- lim supε→0 Eε ⩽ MHf,lsc from Proposi-
tion 4.2, where the assumption (U) is a consequence of (H4), (H7) and (H8). By (H6)
and Theorem 1.1, H−

f = Hf , and since Hf ⩾ Hf,lsc by definition, both Γ- lim inf and
Γ- lim sup (for weak and narrow topologies) coincide with MHf . □
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5. Examples, counterexamples and applications

5.1. Scale-invariant Lagrangians and necessity of the slope assumption

Our assumption (H6) is not very standard, but we need a condition of this type
in order to get Γ-convergence of the rescaled energies Eε towards MHf , as shown by
the following class of scale-invariant Lagrangians:

(5.1) fε(x, u, ξ) = f(u, ξ) with f(u, ξ) =

{
up(1/p⋆−1)|ξ|p if u > 0,
0 else,

where p ∈ (1, N), N ∈ N∗ and p⋆ := pN/(N − p). By straightforward computations,
Eε(u) = Ef (u) :=

´
RN f(u,∇u) for every ε > 0 and u ∈ W 1,p

loc (RN ) in that case.
Moreover, the associated minimal cost function Hf is not trivial. Indeed, applying

the Gagliardo–Nirenberg–Sobolev inequality,(ˆ
RN

|v|p
⋆
)1/p⋆

⩽ C
( ˆ

RN

|∇v|p
)1/p

, ∀v ∈ Lp⋆

∩W 1,1
loc (R

N ),

to the function(8) v = u1/p⋆ , we obtain that for every u ∈ W 1,1
loc (RN ,R+) ∩ L1(RN ),(ˆ

RN

u

)p/p⋆

⩽

(
C

p⋆

)p ˆ
{u>0}

up/p⋆−p |∇u|p =

(
C

p⋆

)p

Ef (u).

Hence, for every m > 0, we have Hf (m) > 0, and even Hf (m) < +∞ since any
function u = vp

⋆ , with v ∈ W 1,p(RN ,R+), has finite energy. Replacing u by mu in
the infimum defining Hf in (1.2), we actually obtain

(5.2) Hf (m) = m1−p/NHf (1), 0 < Hf (1) < +∞.

In that case, it is clear that the Γ-limit of Eε ≡ E in the weak or narrow topology of
M+(RN ), that is the lower semicontinuous relaxation of Ef , does not coincide with
MHf ; indeed, the first functional is finite on diffuse measures whose density has finite
energy, while the second functional is always infinite for non-trivial diffuse measures
since H ′

f (0
+) = +∞.

These scaling invariant Lagrangians are ruled out by our assumption (H6). All the
other assumptions are satisfied except (H5). Note that the following perturbation of f ,

f̃(u, ξ) =
(
1 + up(1/p⋆−1)

)
|ξ|p

satisfies all the assumptions except (H6), and provides a counterexample to the Γ-con-
vergence. Indeed, MH

f̃
⩾ MHf

is still infinite on diffuse measures, while (the relax-
ation of) Ef̃ is finite for any diffuse measure whose density has finite energy.

We stress that an assumption like (H6) is actually needed, even for the lower semi-
continuity of the function Hf – recall that if MHf

is a Γ-limit, then it must be lower

(8)Actually, we apply it to vε = ϕε(u) where ϕε is a suitable approximation of (·)1/p⋆ and take
ε → 0.
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semicontinuous by [Bra02, Prop. 1.28], which in turn implies that the function Hf is
lower semicontinuous by Proposition 2.4. Indeed, consider the Lagrangians

f(x, u, ξ) =
(
1 + up(1/p⋆−1)

)
|ξ|p(x),

with p ∈ C 0(RN , (1, N)) such that p(0) = p ∈ (1, N) and p(x) > p when x ̸= 0. Then,
we have Hf (0,m) = m1−p/NH(1), but Hf (x, ·) ≡ 0 if x ̸= 0 as can be easily seen via
the change of function εNu(ε ·), with ε > 0 small.

5.2. General concave costs in dimension one. — It has been proved in [Wir19] that
for any continuous concave function H : R+ → R+ with H(0) = 0, there exists a
function c : R+ → R+ such that c(0) = 0, u 7→ c(u)/u is lower semicontinuous and
non-increasing on (0,+∞), and for every m ⩾ 0,

H(m) = inf

{ˆ
R
|u′|2 + c(u) : u ∈ W 1,1

loc (R,R+),

ˆ
R
u = m

}
.

The Lagrangians of the form fε(x, u, ξ) = |ξ|2 + c(u), in dimension N = 1, satisfy
all our assumptions (H1)–(H8), hence our Γ-convergence result stated in Theorem 1.2
yields the Γ-convergence of the functionals

Eε(u) =

ˆ
R
ε3|u′|2 + c(εu)

ε
, u ∈ W 1,2(R,R+),

towards MH for both the weak and narrow convergence of measures. Therefore, we
may find an elliptic approximation of any concave H-mass. Let us stress that c is
determined in [Wir19] from H through several operations including a deconvolution
problem, but no closed form solution is given in general; nonetheless, an explicit
solution is provided if c is affine by parts.

In higher dimension N ⩾ 2, Proposition 2.8 tells us that the class of functions
H = Hf with f satisfying (H1)–(H8) is smaller, namely, H must satisfy:

(5.3) ∃m∗ ⩾ 0,

{
H is linear on [0,m∗],

H is strictly concave (m∗,+∞).

We have no positive or negative answer to the inverse problem, consisting in finding f

satisfying our assumptions such that Hf = H, for a given continuous concave function
H : R+ → R+ satisfying (5.3).

5.3. Homogeneous costs in any dimension. — In this section, we provide La-
grangians f to obtain the α-mass Mα := M t 7→tα in any dimension N for a wide
range of exponents, including exponents α ∈

(
1− 1

N , 1
]
. We consider for every

p ∈ [1,+∞), s ∈ (−∞, 1] and N ∈ N∗, the energy defined for every u ∈ W 1,1
loc (RN ,R+)

by

(5.4) Ef (u) :=

ˆ
RN

f(u,∇u) :=

ˆ
RN

|∇u|p + us1u>0.

Notice that for p > 1, f satisfies all our hypotheses (H1)–(H6) ; in particular, (H6)
holds as a consequence of the stronger condition (S) (see Corollary 2.7) which is
satisfied with ρ(t) = t in dimension N ⩾ 2. Thus by Theorem 1.2 the re-scaled

J.É.P. — M., 2024, tome 11



Mass concentration in rescaled first order integral functionals 465

energies Γ-converge to the Hf -mass. In this case, we may show that Hf (m) = cmα

for some α ∈ (0, 1), c ∈ [0,+∞], and the constant c belongs to (0,+∞) if and only if
s ∈ (−p′, 1). Details are given hereafter.

Homogeneity of Hf . — In order to compute Hf , one may first express Hf (m) as the
minimum of a scaling invariant expression by optimizing Ef over all mass-invariant
rescalings uλ = λNv(λ·) of a given function u ∈ W 1,1

loc (RN ,R+) ; it yields

(5.5) Hf (m) = inf
{

inf
0<λ<+∞

λNp+p−N

ˆ
RN

|∇u|p + λNs−N

ˆ
{u>0}

us :

u ∈ W 1,1
loc (R

N ,R+),

ˆ
RN

u = m
}
.

Computing the infimum w.r.t. λ, we obtain

(5.6) Hf (m) = cN,p,s inf
{(ˆ

RN

|∇u|p
)α1

(ˆ
{u>0}

us
)α2

:

u ∈ W 1,1
loc (R

N ,R+),

ˆ
RN

u = m
}
,

with the two exponents

α1 :=
N(1− s)

Np+ p−Ns
, α2 :=

Np+ p−N

Np+ p−Ns

and the constant

cN,p,s :=
(Np+ p−Ns)(N −Ns)N(s−1)/(Np+p−Ns)

(Np+ p−N)(Np+p−N)/(Np+p−Ns)
.

In particular, substituting u with mu in (5.6) gives

(5.7) Hf (m) = mαHf (1), with α := pα1 + sα2 =
Np+ sp−Ns

Np+ p−Ns
.

It remains to ensure that this function is not trivial, i.e., 0 < Hf (1) < +∞.

Upper bound: Hf (1) < +∞. — In the case s ∈ [0, 1], any u ∈ C 1
c (RN ) has finite

energy, thus Hf is non-trivial for every p ∈ [1,+∞). In the case s < 0, consider the
competitor u : x 7→ (1−|x|)γ+ for γ > 0 to be fixed later. Then

´
RN |∇u|p < +∞ if and

only if t 7→ (1− t)(γ−1)p is integrable at 1−, that is if (γ − 1)p > −1 or, equivalently,
γ > 1 − 1/p. Similarly,

´
{u>0} u

s < +∞ if and only if γs > −1 or, equivalently,
γ < −1/s. Therefore, one may find γ > 0 satisfying both conditions, and ensure
that Hf is non-trivial, if

−p′ < s.

Lower bound: Hf (1) > 0. — Here, we can assume w.l.o.g. that Hf (1) < +∞. In the
case s = 1, taking any competitor u is with finite energy and λ → 0+ in (5.5) yields
Hf (m) = m for every m ⩾ 0. Hence, we may also assume that s < 1. Note that in
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view of (5.6) and (5.7), we know that Hf (1) is related to the greatest constant c ⩾ 0

such that the Gagliardo-Nirenberg-Sobolev (GNS) type inequality(9)

(5.8) c
(ˆ

RN

u
)
⩽

(ˆ
RN

|∇u|p
)Np(1−s)/(Np+sp−Ns)(ˆ

{u>0}
us
)(Np+p−N)/(Np+sp−Ns)

,

∀u ∈ W 1,1
loc (R

N )

holds true, namely, we have c =
(
Hf (1)/cN,p,s

)1/α

; hence, the inequality (5.8) holds
with c > 0 if and only if Hf (1) > 0. This is actually equivalent to proving existence
of a minimizer of Ef over functions u ∈ W 1,1

loc (RN ,R+) with
´
RN u = 1 in view of

Proposition 3.12. We prove this, together with uniqueness and basic properties of
optimal profiles in the next paragraph.

Existence, uniqueness and properties of optimal profiles. — It is well-known that
optimal profiles in the classical Gagliardo-Nirenberg-Sobolev inequalities do exist ;
besides, up to rescalings and translations they are unique, radially decreasing and
compactly supported. Existence of radially decreasing solutions is a consequence of
Pólya–Szegö inequality (see for instance [BZ88]), compactness of the support follows
for example from the compact support principle of Pucci, Serrin and Zou [PSZ99] or
Pohozaev-type identities, and uniqueness from the work of Serrin and Tang [ST00] for
instance. All these techniques may be adapted to our case for exponents s ∈ [0, 1), but
we did not find a comprehensive reference, even more so when s ∈ (−p′, 0), except for
p = 2 and s < 0 which is treated in [Dub98]. For this reason and for self-containedness,
we provide a sketch of proof for the existence, symmetry, compactness of the support
for s ∈ (−p′, 1]) of optimal profiles in (5.4). We are only able to justify uniqueness for
s ∈ (0, 1].

1. Existence of an optimal profile which is radially symmetric. — The radially symmetric
decreasing rearrangement u∗ of an admissible function u ∈ W 1,1

loc (RN ,R+) satisfies
∥∇u∗∥p ⩽ ∥∇u∥p by the Pólya–Szegö inequality, and we have

´
RN |u∗|s ⩽

´
RN |u|s by

equimeasurability. Hence,
Ef (u

∗) ⩽ Ef (u).

Thus we can restrict the minimization to radially symmetric non-increasing functions.
Take a minimizing sequence (un)n in this class: un(·) = vn(|·|) with vn : [0,+∞) non-
increasing,

´
RN un = m ∈ R+, and Ef (un) → Hf (m). (un)n is weakly precompact in

L1
loc(RN ), by compact Sobolev embedding, and even globally precompact in L1(RN ).

Indeed, when s > 0, the upper bound

|SN−1| vn(r)s
rN

N
⩽ |SN−1|

ˆ r

0

vn(t)
stN−1 dt ⩽ Ef (un) ⩽ C < +∞, ∀r ∈ R+,

(9)The notable difference with the classical GNS inequality is that the exponent s is smaller
than 1, and may even be negative.
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gives a uniform integrable decay in |x|−N/s at infinity ; when s ⩽ 0, we use the
elementary inequality t+ ts ⩾ 1 for all t > 0, to obtain

(5.9) |{un > 0}| ⩽
ˆ
{un>0}

(un + us
n) dx ⩽ m+ C < +∞,

so that the size of the support of un (a ball of radius Rn > 0) is uniformly bounded
with respect to n.

We deduce by lower semicontinuity of Ef , that, extracting a subsequence if neces-
sary, (un)n converges in L1 to a minimizer u of Ef with mass m, i.e., Ef (u) = Hf (m)

and
´
RN u = m. In particular,

Hf (1) > 0.

2. Euler-Lagrange equation and compactness of the support. — Let u(·) = v(|·|) be a
global minimizer of (5.4) with mass m > 0, with v : R+ → R+ non-increasing.
Let also B(0, R) be the support of u, with 0 < R ⩽ +∞. (Here, B(0, R) = RN

if R = +∞.) Computing the first order variation of the energy, we obtain that for
every test function w ∈ C1

c(RN ) which is compactly supported in B(0, R) and satisfies´
RN w(x) dx = 0, we have

(5.10) ⟨δEf (u) , w⟩ :=
ˆ
RN

(p(∇u)p−1 · ∇w + sus−1w) dx = 0.

In other words, u solves in the weak sense the Euler-Lagrange equation
−p∆pu+ sus−1 = λ, in B(0, R),

where λ ∈ R is the Lagrange multiplier associated to the mass constraint. One can
see that

λ = H ′
f (m) = αmα−1Hf (1).

Indeed, let u1 be a minimizer of Ef of mass 1 ; then a minimizer of Ef with mass m

is given by um(·) := mλN
mu1(λm ·), with λm = ms−p/(Np+p−Ns) (see (5.5)) ; hence,

(5.11) H ′
f (m) =

d

dm
Ef (um) = ⟨δEf (um) ,

d

dm
um⟩L2(RN )

= ⟨λ ,
d

dm
um⟩L2(RN ) =

d

dm
⟨λ , um⟩L2(RN ) =

d

dm
(λm) = λ.

In particular, λ is unique.
From the Euler-Lagrange equation, we also get that u is smooth in B(0, R) by

a bootstrap argument ; hence, u solves the Euler-Lagrange equation in the classical
sense. In terms of the profile v, the Euler-Lagrange equation rewrites

(5.12) −(pv′(r)p−1rN−1)′ + sv(r)s−1rN−1 = λrN−1, ∀r ∈ (0, R).

For every r ∈ (0, R), integrating (5.12) on (0, r) yields

(5.13) pv′(r)p−1rN−1 =

ˆ r

0

(sv(ρ)s−1 − λ)ρN−1 dρ.

The LHS in (5.13) is non-positive as v′ ⩽ 0 in (0, R). If s > 0 and R = +∞, the
RHS is +∞ since the integrand goes to +∞ as ρ → R, which is a contradiction. When
s ⩽ 0, we already saw in (5.9) that the support of v is bounded. In any case, we have
thus proved that

R < +∞.
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3. Uniqueness when s > 0. — We justify that there is a unique minimizer of the
energy with mass m. Once we know that v′ does not vanish on (0, R), the case of
equality in Pólya–Szegö inequality (see [BZ88, Th. 1.1]) implies that any minimizer u

satisfies u = u∗. Then, applying [ST00, Th. 1] yields the uniqueness of radial solution
to ∆pu+f(u) = 0 for the non-linearity f(t) = λ−sts−1, thus we get that v is unique.

We now prove that v′ < 0 on (0, R). Since the LHS in (5.13) is non-positive, the
non-decreasing function g : ρ 7→ sv(ρ)s−1 − λ, which tends to +∞ as ρ → R, must
be negative near 0. If we had v′(r) = 0 for some r ∈ (0, R), then the non-positive
function t 7→ pv′(t)p−1tN−1 would be maximal and its derivative would vanish at
t = r. By (5.13), this means that g(r) = sv(r)s−1 − λ = 0 so that g ⩽ 0 on [0, r], but
also that g(ρ)ρN−1 integrates to 0 on [0, r]. Hence, g ≡ 0 on [0, r], a contradiction.

Conclusion and range of α-masses obtained in this way. — To summarize, we have
shown that if −p′ < s ⩽ 1 then Hf is non-trivial. The converse is true. Indeed,
if Hf (1) < +∞ then, by the preceding, there exists a radial decreasing minimizer
u(·) = v(|·|) with v : [0,+∞) → R+ non-increasing and compactly supported on
[0, R], 0 < R < +∞. But, by the Young inequality,

Ef (u) ⩾ c

ˆ R

R/2

v(r)s/p
′
|v′(r)|rN−1 dr ⩾ cR

ˆ v(R/2)

0

ts/p
′
dt

with cR > 0, the latter being finite if and only if s/p′ > −1.
Since α, in (5.7), is a monotone function of s, one may easily compute the

range of parameters α that we obtain. If p and N are fixed, α ranges over
((N − 1)/(N + 1− 1/p), 1] when s ∈ (−p′, 1]. Hence, when N = 1 we obtain
the whole range α ∈ (0, 1], and at least the range α ∈ (1− 2/(N + 1), 1] when p

ranges over (1 +∞) in dimension N ⩾ 2.

5.4. Branched transport approximation: H-masses of normal 1-currents

Branched transport is a variant of classical optimal transport (see [San15] and
Section 4.4.2 therein for a brief presentation of branched transport, and [BCM09] for
a vast exposition) where the transport energy concentrates on a network, i.e., a 1-di-
mensional subset of Rd, which has a graph structure when optimized with prescribed
source and target measures. It can be formulated as a minimal flow problem,

min
{
MH

1 (w) : div(w) = µ− − µ+
}
,

where µ± are probability measures on Rd, H : Rd × R+ → R+ is mass-concave, and
the H-mass MH

1 is this time defined for finite vector measures w ∈ M (Rd,Rd) whose
distributional divergence is also a finite measure; in the language of currents, it is
called a 1-dimensional normal current. Any such measure may be decomposed into a
1-rectifiable part θξ ·H1 Σ where θ(x) ⩾ 0 and ξ(x) is a unit tangent vector to Σ for
H1-a.e. x ∈ Σ, and a 1-diffuse part w⊥ satisfying |w⊥|(A) = 0 for every 1-rectifiable
set A:

w = θξ ·H1 M + w⊥.
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The H-mass is then defined by:

(5.14) MH
1 (w) :=

ˆ
Σ

H(x, θ(x)) dH1(x) +

ˆ
Rd

H ′(x, 0) d|w⊥|.

In the case H(x,m) = mα with 0 < α < 1, a family of approximations of these
functional has been introduced in [OS11]:

(5.15) Eε(w) =

{´
Rd ε

γ1 |∇v|2 + ε−γ2 |v|β if w = vLd, v ∈ W 1,2
loc (Rd,Rd),

+∞ otherwise,

with β = (2− 2d+ 2αd)/(3− d+ α(d− 1)), γ1 = (d − 1)(1 − α) and γ2 = 3 − d +

α(d− 1). It has been shown in [OS11, Mon17] that the functionals Eε Γ-converge as
ε → 0+, in the topology of weak convergence of u and its divergence, to a non-trivial
multiple of the α-mass Mα

1 := MH
1 with H(x,m) = mα in dimension d = 2. The

result extends to any dimension d, by [Mon15], thanks to a slicing method that relates
the energy Eε with the energy of the sliced measures u = (w · ν)+ supported on the
slices Va = {x ∈ Rd : x · ν = a} ≃ RN , for any given unit vector ν ∈ Rd, defined by

Eε(u) =

ˆ
RN

εγ1 |∇u|2 + ε−γ2 |u|β .

The functionals Eε Γ-converge as ε → 0+, in the narrow topology, to cMα for some
non-trivial c, as shown in Section 5.3, and one may recover every α-mass in this way for
α ∈ ((2d− 4)/(2d+ 1), 1], and in particular every so-called super-critical exponents
for branched transport in dimension d, that is α ∈ (1− 1/d, 1].

The same slicing method would allow to extend our Γ-convergence result stated in
Theorem 1.2 to functionals defined on vector measure
(5.16)

Eε(w) =

{´
Rd fε(x, ε

d−1|v|(x), εd|∇v|(x))ε1−d dx if w = vLd, v ∈ W 1,1
loc (Rd,Rd),

+∞ otherwise,

for Lagrangians fε → f fitting the framework of Theorem 1.2. The expected Γ-limit,
for the weak topology of measures and their divergence measure, would be the func-
tional M

Hf

1 , with Hf defined in (1.2). Note that this approach would provide ap-
proximations of H-masses for more general continuous and concave cost functions
H : R+ → R+ satisfying H(0) = 0. By [Wir19], we would obtain all such H-masses
when N = 1 (corresponding to d = 2).

5.5. A Cahn-Hilliard model for droplets. — Following the works [BDS96] in the
one-dimensional case and [Dub98] in higher dimension, we consider functionals on
M+(RN ) of the form:

(5.17) Wε(µ) =


ˆ
RN

ε−ρ(W (u) + ε|∇u|2) if µ = uLN , u ∈ W 1,1
loc (RN ,R+),

+∞ otherwise,

where W : R+ → R+ is a Borel function satisfying W (t) ∼u→+∞ us for some exponent
s ∈ (−∞, 1). In [BDS96, Dub98], it is in particular proved, under some assumptions
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on the slope of W at 0 and its regularity, that the family (Wε)ε>0 Γ-converges to
a non-trivial multiple of the α-mass, α = 1−s/2+s/N

1−s/2+1/N , when s ∈ (−2, 1) and ρ =

ρ(s,N) := N(1−s)
(N+2)+N(1−s) . In this section, we recover this Γ-convergence result using

our general model.
Replacing ε with ε := ε(N+2)+N(1−s) and noticing that 1− ρ = N+2

(N+2)+N(1−s) , one
gets for every u ∈ W 1,1

loc (RN ,R+):

Wε(u) =

ˆ
RN

ε−N(1−s)W (u) + εN+2|∇u|2

=

ˆ
RN

(
[εNsW (ε−NεNu)] + |εN+1∇u|2

)
ε−N

=

ˆ
RN

fW
ε (x, εNu, εN+1∇u)ε−N ,

where fW
ε is defined for every x ∈ RN , u ∈ R+, ξ ∈ RN by

fW
ε (x, u, ξ) := Wε(u) + |ξ|2 and Wε(u) := εNsW (ε−Nu).

Therefore if we take fε = fW
ε in our general model (1.4) we exactly get Wε = Eε. The

fact that W (u) ∼ us as u → +∞ implies that Wε converges pointwise to the map
ws : u 7→ us if u > 0, ws(0) = 0, hence fW

ε converges to fs : (x, u, ξ) 7→ ws(u) + |ξ|2.

Theorem 5.1. — Assume that W : R+ → R+ satisfies:
(HW1) W is lower semicontinuous,
(HW2) {W = 0} = {0},
(HW3) W (u) ∼u→+∞ us for some s ∈ (−∞, 1),

(HW4) sup
u>0

W (u)

us
< +∞,

(HW5) 0 < lim inf
u→0+

W (u)

u
.

Then (Wε)ε>0 Γ-converges to MHfs , for both topologies C ′
0 and C ′

b , and if s ∈ (−2, 1]

then MHfs is a non-trivial multiple of Mα where α = 1−s/2+s/N
1−s/2+1/N .

To prove this theorem, we start with a simple lemma.

Lemma 5.2. — Assume that W satisfies (HW1)–(HW5). Then for every δ ∈ (0, 1),
there exists cδ ∈ (0,+∞) such that for every ε > 0 and every u ∈ R+,

(5.18) δ(us ∧ cδε
−N(1−s)u) ⩽ Wε(u).

Proof. — Fix δ ∈ (0, 1). There exists M > 0 such that δus ⩽ W (u) for every u ⩾ M .
Besides, the map w : u 7→ W (u)/u is lower semicontinuous and positive on (0,M ]

by (HW1) and (HW2), and since lim infu→0 w(u) > 0 by (HW5), w is necessarily
bounded from below on (0,M ] by some constant c > 0. As a consequence Wε(u) ⩾ δus

if u ⩾ εNM and Wε(u) ⩾ cεN(s−1)u if u ⩽ εNM , hence:

∀u ∈ R, Wε(u) ⩾ δ(us ∧ cε−N(1−s)u). □
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Proof of Theorem 5.1. — By (HW4), there exists a constant C such that fW
ε ⩽ Cfs

for every ε, and since fW
ε does not depend on the x variable and converges pointwise

to fs, (U) is satisfied and our Γ- lim sup result stated in Proposition 4.2 yields

MHfs ⩾ Γ(C ′
b)- lim sup

ε→0
Eε.

Fix δ ∈ (0, 1). By Lemma 5.2, there exists cδ such that

∀x, u, ξ, fW
ε (x, u, ξ) ⩾ δ(|ξ|2 + (us ∧ cδε

−N(1−s)u) =: fδ
ε (x, u, ξ).

It is easy to check that fδ
ε satisfies (H1), (H2) and (H5) for every ε > 0. Moreover

fδ
ε ↑ δfs and (fδ

ε )
′
−(·, 0+, 0) = δcδε

−N(1−s) ↑ (+∞) = (δfs)
′
−(·, 0+, 0) as ε → 0,

thus (H8) holds for the family (fδ
ε )ε>0, and by applying our Γ- lim inf result stated in

Proposition 4.1 to the energies Eδ
ε induced by fδ

ε we get:

Γ(C ′
0)- lim inf Eε ⩾ Γ(C ′

0)- lim inf Eδ
ε ⩾ MH−

δfs .

We get the result by taking the limit δ → 1, noticing that (fs)
′
−(·, 0+, 0) = +∞, so

that H−
δfs

= Hδfs = δHfs and MH−
δfs = M δHfs = δMHfs . □

Remark 5.3. — We recover the Γ-convergence results of [BDS96] and [Dub98] when
s ∈ (−2, 1) under slightly more general assumptions: besides (HW2) and (HW3), the
authors impose the existence of a non-trivial slope limu→0 W (u)/u ∈ (0,+∞) and a
regularity condition (either W is of class C 1 or continuous and non-decreasing close
to 0), which are stronger than (HW1), (HW4) and (HW5). Let us stress however that
these works also tackle the cases s < −2 in any dimension, where the exponent ρ has
to be fixed to ρ(−2, N), and the case s = −2 in dimension one, where a logarithmic
factor must be introduced, replacing ε−ρ with ε−ρ(−2,1)|log ε|−1 = ε−1/2|log ε|−1. This
implies that in our model we get a trivial Γ-limit when s ⩽ −2, namely Hfs ≡ +∞
on (0,+∞).
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[Mar14] M. Mariş – “Profile decomposition for sequences of Borel measures”, 2014, arXiv:
1410.6125.

[MM77] L. Modica & S. Mortola – “Un esempio di γ−-convergenza”, Boll. Un. Mat. Ital. B (5)
14 (1977), p. 285–299.

[Mon15] A. Monteil – “Elliptic approximations of singular energies under divergence constraint”,
PhD Thesis, Université Paris-Saclay, 2015.

[Mon17] , “Uniform estimates for a Modica–Mortola type approximation of branched
transportation”, ESAIM Control Optim. Calc. Var. 23 (2017), no. 1, p. 309–335.

[Nir59] L. Nirenberg – “On elliptic partial differential equations”, Ann. Scuola Norm. Sup. Pisa
Cl. Sci. 13 (1959), no. 2, p. 115–162.

[OS11] E. Oudet & F. Santambrogio – “A Modica-Mortola approximation for branched transport
and applications”, Arch. Rational Mech. Anal. 201 (2011), no. 1, p. 115–142.

[PSZ99] P. Pucci, J. Serrin & H. Zou – “A strong maximum principle and a compact support
principle for singular elliptic inequalities”, J. Math. Pures Appl. (9) 78 (1999), no. 8,
p. 769–789.

[RV73] A. Roberts & D. Varberg – Convex functions, Pure and Applied Math., vol. 57, Academic
Press, 1973.

[San15] F. Santambrogio – Optimal transport for applied mathematicians, Progress in nonlinear
differential equations and their applications, vol. 87, Springer International Publishing,
Cham, 2015.

[ST00] J. Serrin & M. Tang – “Uniqueness of ground states for quasilinear elliptic equations”,
Indiana Univ. Math. J. 49 (2000), no. 3, p. 897–923.

[Wir19] B. Wirth – “Phase field models for two-dimensional branched transportation problems”,
Calc. Var. Partial Differential Equations 58 (2019), no. 5, article no. 164 (31 pages).

Manuscript received 2nd March 2022
accepted 16th January 2024

Antonin Monteil, Université Paris-Est Créteil Val-de-Marne, LAMA,
61 avenue du Général de Gaulle, 94010 Créteil, France
E-mail : antonin.monteil@u-pec.fr
Url : https://perso.math.u-pem.fr/monteil.antonin/

Paul Pegon, Université Paris-Dauphine, CEREMADE & INRIA Paris, MOKAPLAN,
France
E-mail : pegon@ceremade.dauphine.fr
Url : https://www.ceremade.dauphine.fr/~pegon/

J.É.P. — M., 2024, tome 11

http://arxiv.org/abs/1410.6125
http://arxiv.org/abs/1410.6125
mailto:antonin.monteil@u-pec.fr
https://perso.math.u-pem.fr/monteil.antonin/
mailto:pegon@ceremade.dauphine.fr
https://www.ceremade.dauphine.fr/~pegon/

	Notation
	1. Introduction
	2. Minimal cost function and H-mass
	3. Lower bound for the energy and existence of optimal profiles
	4. Γ-convergence of the rescaled energies towards the H-mass
	5. Examples, counterexamples and applications
	References

