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Abstract

Starting from a motivation in the modeling of crowd movement, the paper presents the
topics of gradient flows, first in Rn, then in metric spaces, and finally in the space of prob-
ability measures endowed with the Wasserstein distance (induced by the quadratic trans-
port cost). Differently from the usual theory by Jordan-Kinderlehrer-Otto and Ambrosio-
Gigli-Savaré, we propose an approach where the optimality conditions for the minimizers
of the optimization problems that one solves at every time step are obtained by looking
at perturbation of the form ρε = (1 − ε)ρ+ ερ̃ instead of ρε = (id+ εξ)#ρ. The ideas
to make this approach rigorous are presented in the case of a Fokker-Planck equation,
possibly with an interaction term, and then the paper is concluded by a section, where
this method is applied to the original problem of crowd motion (referring to a recent
paper in collaboration with B. Maury and A. Roudneff-Chupin for the details).

1 Introduction

The goal of this paper, as well of the talk I gave at Séminaire X-EDP is to present some
ideas from the theory of Gradient Flows in the space of probability measures, motivated by
applications in crowd movement and, more generally, in the motion of fluids under a density
constraint (imposing that particles cannot be “too dense”).

In many vehicular traffic models with congestion a discrete network is considered and
the speed of every vehicle is supposed to decrease with the density of other vehicles nearby,
possibly tending to 0 when it approaches a threshold density. For instance one can take
v = (1 − ρ)u, where u is the spontaneous velocity in the absence of other vehicles, v is the
true velocity which will be actually realized, and ρ ≤ 1 is the density. Pedestrian motion
models (see [4, 6, 7, 9, 10, 11, 20], just to make a short list of some of the recent models)
usually replace the network with a 2D framework, but in many cases the dependence of the
velocity on the density stays similar. Both the 1D and 2D cases are studied either under a
continuous approach (i.e. looking at the evolutions of densities and velocities as functions of
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(t, x) ∈ [0, T ] × Ω) or under a discrete one, looking separately at every particle and at its
interactions with the others.

A more drastic viewpoint is the one presented by Maury and Venel in [16, 17], where the
idea is that particles can move as they want as far as they are not too dense, and if a density
constraint is saturated, then their velocity field will change from the spontaneous u to another,
less concentrating and typically slower, v. Maury and Venel are concerned with the discrete
case, so that the density constraint is interpreted as a non-superposition constraint: particles
cannot overlap, but as soon as they are not in touch their motion is unconstrained. The
problem that arises is a strange ODE which is studied by the authors both from a theoretical
and numerical point of view, putting it in the framework of differential inclusions, maximal
monotone operator and gradient-flow in ΩN (N being the number of particles).

This discrete model will be briefly sketched in the next section, together with its continuous
counterpart, which is the main motivation of this paper. The reader may refer to the paper
[15] in preparation, which will deal with various aspects of the problem, and in particular with
the comparison between the microscopic and the macroscopic versions. What arises in the
continuous (macroscopic) model is a PDE of the form

∂

∂t
ρt +∇ ·

(
ρtvt

)
= 0

where vt is defined as the projection of a given field ut on the set of admissible velocities
“infinitesimally preserving” the density constraint ρ ≤ 1. This set depends on ρt (more
precisely, on the region where ρt = 1) and, as a consequence, the velocity field v has globally
two regularity problems: first, in general, for fixed ρt and ut, the field vt is not Lipschitz
continuous, since it is obtained through an L2 projection; second, it does not depend in a
smooth way on ρ, and is very sensitive to small perturbations of ρ. This implies that it is very
difficult to insert this PDE into a wide classical theory, and leads to the need for some other
tools.

It happens, as it has been intensively studied in the last years, that the concept of gradient
flow in metric spaces, applied to the case of probability measures endowed with the Wasserstein
distance (i.e. the distance induced by the quadratic transport cost in Monge-Kantorovitch
theory, see [13, 21, 22]), is very useful for applications to certain nonlinear evolution PDEs. In
Section 3, we will give the step-by-step variational interpretation of gradient flows, with the
way to adapt it to metric spaces (following De Giorgi and Ambrosio, [8, 1]). After that, we
will introduce the tools we need in optimal transport, together with the way of getting some
PDEs. The first ideas of this theory date back to [12], and the subject has been systematically
studied in [2, 3], but here in this paper there is an important different idea that we will see:
actually, when computing the optimality conditions for the variational problems that one gets
when discretizing in time, we use vertical perturbations

ρε = (1− ε)ρ+ ερ̃ instead of ρε = (id+ εξ)#ρ,

the latter being also called horizontal perturbations or intrinsic, because they are the most
natural when one looks at the Wasserstein space as a sort of Riemannian manyfold.

For some reasons, it happens that these alternative perturbations have not been that used
up to now, especially in evolutionary problems (they actually appear in some papers more
related to convex analysis and statical optimization, and an example can be seen in [5]). Yet,
they allow very often to get some powerful results for variational or gradient flow problems,
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and it could be the case that some results are easier to obtain in this way rather than through
the usual theory of [2], even if I do not claim that this alternative viewpoint necessarily allows
for wider or stronger or better results (but I think it deserves being explored). This is why
in Section 4 we will see the procedure giving existence of the solutions to some evolutionary
PDEs via this ideas. For the sake of clarity, Section 4 will stick to a sloppy presentation,
with ideas from the time-discretized problem, followed by a rigorous proof in the easiest cases.
These case include linear terms, like inthe Heat or Focker-Planck equations, but also non-
local terms, corresponding to interaction energies, provided some compactness properties are
satisfied. I’m also currently studying how to extend these results to other nonlinear cases,
where compactness is not straightforward (it is the case for the porous media equation), but
this requires a more refined analysis, and will hopefully appear in a forthcoming paper. Let
me stress the fact that the only goal of this approach is to prove existence results (under no
geodesic convexity assumptions, which are crucial in the theory of [2]) and when I say existence
I mean “existence of a weak solution of the associated PDE”.

Anyway, to come back to the original motivation, in Section 5 we will see a functional whose
gradient flow is supposed to give our crowd motion PDE, and then, via vertical perturbations,
we show that this is exactly the case. The reader may refer to [14] for all the estimates, which
are non-trivial, and we only give the main ideas. The choices of the structure of the functional
will be discussed in relation with the modelization goals of this study.

2 Microscopic and Macroscopic models for crowd motion

This section is devoted to the modelization of a density-constrained motion of a particle
population. Let us suppose that each particle, if alone, would follow its own velocity u (which
could a priori depend on time, position, on the particle itself. . . ). Yet, these particles are
modeled by rigid disks that cannot overlap, hence, it is not clear whether the actual velocity
can be u, in particular if u tends to concentrate the masses. Hence, we will call v the actual
velocity that each particle will have, and the main assumption of the model is that v =
Padm(q)(u), where q is the particle configuration, adm(q) is the set of velocities that do not
induce overlapping starting from the configuration q, and Padm(q) the projection on this set.

The simplest example is the one where every particle is a disk with the same radius R and
center located at qi. In this case we define the admissible set of configurations K through

K := {q = (qi)i ∈ ΩN : |qi − qj | ≥ 2R for all i 6= j}.

In this way the set of admissible velocities is easily seen to be

adm(q) = {v = (vi)i : (vi − vj) · (qi − qj) ≥ 0 ∀(i, j) : |qi − qj | = 2R}.

The evolution equation which has to be solved for following the motion of q is then

q′(t) = Padm(q(t))u(t) (1)

(with q(0) given).
The typical case is the one where the spontaneous velocity of the i−th particle only depends

on its position, and in particular we are interested in a gradient structure: ui(q) = −∇D(qi).
In the modelization, the function D is often supposed to be a distance function to a target
set, like D(x) = d(x,Γ) and Γ is a subset of ∂Ω representing the exit door that the particles
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located in the domain Ω aim to reach (and if Ω is not convex it is better to consider as d the
geodesic distance).

The equation (1) itself is not easy from a mathematical point of view (proving existence
of a solution, uniqueness, finding an algorithm to approximate it, possibly by time discretiza-
tion. . . ). The main problem is the fact that q 7→ Padm(q)u is not regular (Lipschitz). On the
other hand, in this specific case where u = −∇D, it may be written in the following way

−q′(t) ∈ ∂(F + IK)(q(t)),

where ∂ denotes the Frechet subgradient and F (q) :=
∑
iD(qi). Notice that, independently

of the possible convexity of F , the sum F + IK (IK being the indicator function of the set
K, equal to 0 on K and to +∞ on its complement) is not convex since the set K itself is not
convex. Yet, the set K is not far from being convex, since it is prox-regular (i.e. it admits a
neighborhood where the projection on K is well-defined and Lipschitz), and hence it allows for
some proofs similar to the convex case. This is the point which has been exploited by Maury
and Venel ([16, 17]) to make a complete theory of this equation.

We are now interested in the simplest continuous counterpart of this microscopic model.
In this framework, which does not pretend to be any kind of homogenized limit of the discrete
particle approaches, but only an easy re-formulation in a density setting, the main ingredients
are the following.

• The particles population will be described by a probability density ρ ∈ P(Ω);

• the constraint of non-overlapping will be replaced by a density constraint using the set
K = {ρ ∈ P(Ω) : ρ ≤ 1} (where ρ denotes, by abuse of notation at the same time
the probability and its density, since anyway our set K imposes ρ << Ld and that the
density is bounded a.e. by 1);

• for every time t, we consider ut : Ω → Rd a vector field, possibly depending on time or
on ρ;

• the set of admissible velocities will be described by the sign of the divergence on the
saturated region {ρ = 1}: adm(ρ) =

{
v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1}

}
;

• we will consider a projection P , which will be either the projection in L2(Ld) or in L2(ρ)
(this will turn out to be the same, since the only relevant zone is {ρ = 1});

• we will solve the equation

∂

∂t
ρt +∇ ·

(
ρt
(
Padm(ρt)ut

))
= 0. (2)

Formula (2) is motivated by the fact that the equation satisfied by the evolution of a
density ρ when each particle follows the velocity field v is exactly the continuity equation
∂
∂tρt +∇·

(
ρtvt

)
= 0 (with v ·n = 0 on ∂Ω, so that the density does not exit Ω). Here we only

insert the fact that v is the projection of u.
The main difficulty is the fact that the vector field v = Padm(ρt)ut is nor regular (since

it is obtained as an L2 projection, and may only be expected to be L2 a priori), neither it
depends regularly on ρ (it is very sensitive to small changes in the values of ρ: for instance
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passing from a density 1 to a density 1− ε completely changes the saturated zone, and hence
the admissible set of velocities and the projection onto it).

Before entering the ideas which are necessary to overcome these difficulties, we need to
make a little bit more precise the definitions above. Actually, instead of considering the
divergence of vector fields which are only supposed to be L2, it is more convenient to give a
better description of adm(ρ) by duality :

adm(ρ) =

{
v ∈ L2(ρ) :

∫
v · ∇p ≤ 0 ∀p ∈ H1(Ω) : p ≥ 0, p(1− ρ) = 0

}
.

In this way we characterize v = Padm(ρ)(u) through

u = v +∇p, v ∈ adm(ρ),

∫
v · ∇p = 0,

p ∈ press(ρ) := {p ∈ H1(Ω), p ≥ 0, p(1− ρ) = 0},

where press(ρ) is the space of functions p used as test functions in the dual definition of
adm(ρ), which play the role of a pressure affecting the movement. The two cones ∇press(ρ)
and adm(ρ) are orthogonal cones and this allows for an orthogonal decomposition ut = vt+∇pt.
This also gives the alternative expression of Equation (2), i.e.

∂

∂t
ρt +∇ ·

(
ρt(ut −∇pt)

)
= 0. (3)

3 Gradient flows in Rn, in metric spaces and in W2

A gradient-flow in Rn is nothing but an evolution equation (an ODE) of the form x′(t) =
−∇F (x(t)) (i.e. the trajectories follow the steepest descent lines of a function F ). If F ∈
C1,1 this equation falls into the usual theorems for ODE, and in particular Cauchy-Lipschitz
theorem. Yet the advantage of those ODE having a gradient structure is the fact that they
may be analyzed under much weaker assumptions. For instance, a complete theory of existence
and uniqueness results for λ−convex functions F (i.e. such that F (x)− λ

2 |x|
2 is convex, which

means a lower bound on the second derivatives) is available. However, in this paper we are
mainly concerned with the existence of a solution (instead of uniqueness or other properties).

To prove such existence, a powerful tool is the time discretization used by Ambrosio and
De Giorgi (see [8, 1]), to define the so-called minimizing movements in general framework.
Actually, if one recursively solves

xτk+1 ∈ argmin
x

F (x) +
1

2τ
|x− xτ (k)|2,

where τ > 0 is a fixed time step and x0 is given, he finds a sequence of points xτ (k) that may
be interpreted as the value of a discrete trajectory at time kτ .

If one looks at the optimality conditions on the optimal point xτk+1 he finds

xτk+1 − xτ (k)

τ
+∇F (xτk+1) = 0,

which corresponds to an implicit Euler scheme to solve x′(t) = −∇F (x(t)). A solution of
this ODE will then be found as a limit τ → 0. It is interesting to notice that, if F is convex
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but non-smooth, this method provides a solution to x′(t) ∈ −∂F (x(t)), and is able to provide
existence for less regular functions F .

Besides the less-demanding regularity requirements, another advantage of this formulation
is the fact that it may easily be adapted to a general metric space. Indeed, one can simply
replace |x − xτ (k)| with d(x, xτ (k)) and pass to this more general framework. In particular,
it can also be used to study evolution problems for a density ρ when we use the space P(Ω)
endowed with a suitable distance.

The distance that we consider is the so-called Wasserstein distance, induced by the Monge-
Kantorovitch optimal transport problem. If two probabilities µ, ν ∈ P(Ω) are given on a
domain Ω ⊂ Rd (that we take compact for simplicity), such a problem reads

min

{∫
Ω×Ω

|x− y|2 dγ : γ ∈ Π(µ, ν)

}
,

where Π(µ, ν) is the set of the so-called transport plans, i.e.

Π(µ, ν) = {γ ∈ P(Ω× Ω) : (px)#γ = µ, (py)#γ = ν, },

px and py being the two projections of Ω×Ω onto Ω. It is an extension of the Monge problem,
which is

inf

{∫
|x− T (x)|2dµ : T : Ω→ Ω, T#µ = ν

}
(in the sense that to any transport map T we can associate a transport plan γT by taking
γT = (id × T )#µ, that the cost of T in the Monge problem is the same as that of γT in
Kantorovitch’s one, and that, under some additional assumption on µ, the minimum over the
transport plans is realized by a plan of the form γT ).

However, independently of the fact that the minimum is realized by a transport map or
not, we define the distance W2(µ, ν) between two measures µ and ν as the square root of the
minimal value. It can be proven that this is a distance on P(Ω). The index 2 refers to the
quadratic cost, and other distances Wp are possible as well with other exponents 1 ≤ p ≤ ∞.

The main fact that we need to know for the sequel about optimal transport is the following.
For any pair (µ, ν) there exists a function φ : Ω → R, called Kantorovitch potential, which is
Lipschitz continuous (and semi-concave), with the following properties :

• if φ is differentiable µ−a.e. (which is the case, for instance, if µ << Ld), then there is a
unique optimal transport plan, which is of the form γT , and the optimal map T is given
by T (x) = x−∇φ(x);

• the function φ also plays the role of the derivative of 1
2W

2
2 (·, ν) : we have

d

dε

1

2
W 2

2 (µ+ εχ, ν)|ε=0 =

∫
φdχ.

Pay attention to the notation for these functional derivatives: given a functional G :
P(Ω)→ R we call δGδρ (ρ), if it exists, the only function such that d

dεG(ρ+εχ)|ε=0 =
∫
δG
δρ (ρ)dχ

for every perturbation χ such that, at least for ε ∈ [0, ε0], the measure ρ+εχ belongs to P(Ω).

Hence, in the case of the Kantorovitch potential, we are saying
δ
(

1
2W

2
2 (·,ν)

)
δρ = φ
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With this distance in mind, we consider now a functional F over P(Ω) endowed with the
W2 distance. We consider the time-discretized problem, i.e. we look for

ρτk+1 ∈ argmin
ρ

F (ρ) +
W 2

2 (ρ, ρτ (k))

2τ
.

Which are the discrete optimality conditions? roughly speaking we should have

δF

δρ
(ρτk+1) +

φ

τ
= const

(where the reasons for having a constant instead of 0 is the fact that, in the space of probability
measures, only zero-mean densities are considered as admissible perturbations).

More precise statements and proofs of this optimality conditions will be presented in the
next section. Here we look at the consequences we can get. Actually, if we combine the fact
that the above sum is constant, and that we have T (x) = x−∇φ(x) for the optimal T , we get

T (x)− x
τ

= −∇φ(x)

τ
= ∇

(δF
δρ

(ρ)
)
(x). (4)

We will denote by −v the ratio T (x)−x
τ . Why? because, as a ratio between a displacement

and a time step, it has the meaning of a velocity, but since it is the displacement associated
to the transport from ρτk+1 to ρτk, it is better to view it rather as a backward velocity (which
justifies the minus sign).

Since here we have v = −∇
(
δF
δρ (ρ)), this suggests (and we will analyze it in the next

section) that at the limit τ → 0 we will find a solution of

∂ρ

∂t
−∇ ·

(
ρ∇
(δF
δρ

(ρ)
))

= 0.

Before entering some proof details, we want to present some examples of this kind of
equations. The three main classes of examples are the functionals considered by McCann in
[18], where he proves some convexity properties of such functionals. Consider

F (ρ) =

∫
f(ρ(x))dx, G(ρ) =

∫
V (x)dρ, H(ρ) =

∫ ∫
W (x− y)ρ(dx)ρ(dy),

where f : R → R is a convex superlinear function (and the functional F is set to +∞ if ρ is
not absolutely continuous w.r.t. the Lebesgue measure) and V : Ω→ R and W : Rd → R are
regular enough (and W is taken symmetric, i.e. W (z) = W (−z), for simplicity). In this case
it is quite easy to realize that we have

δF

δρ
(ρ) = f ′(ρ),

δG

δρ
(ρ) = V,

δH

δρ
(ρ) = 2W ∗ρ.

An interesting example is the case f(t) = t ln t. In such a case we have f ′(t) = ln t + 1
and ∇(f ′(ρ)) = ∇ρ

ρ : this means that the gradient flow equation associated to the functiona F

would be the Heat Equation ∂ρ
∂t −∆ρ = 0, and that for F +G we would have the Fokker-Planck

Equation ∂ρ
∂t −∆ρ−∇ · (ρ∇V ) = 0.
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The case of the interaction functional H gives on the contrary a non-local (and nonlinear)
equation ∂ρ

∂t −∇ · (ρ(∇W ∗ ρ)) = 0 (where the non-local term may also be combined with the
others).

It is a general fact that this formulation/interpretation in terms of gradient flows, through
its time-discretization, has several advantages: it allows for easy existence results, and for some
uniqueness proofs (more difficult, under some convexity assumptions on the functionals) in a
very general framework. Moreover, it also directly provides a time-discretization algorithm. In
this short paper we will see how to approach the easiest equations to justify : the Fokker-Planck
one (which is linear), with possibly a non-local term (because of compactness properties of
the convolution operator). We will only deal with existence issues, independently of convexity
assumptions. Wider generalizations to more delicate cases, including possibly the Porous-
Media equation (i.e. the case of the functional F with f(t) = tm, see for instance [19]) will be
left to a forthcoming study.

4 Getting gradient flows PDEs via vertical perturbations

This section presents some proofs or references to make what presented in Section 3 rigorous.
There are three main points to analyze: the optimality conditions in the time-discretized

problems; the interpolation of the discrete trajectories ρτ (k) and how to get a limit curve ρ
that solves the continuity equation together with its velocity v; the fact that v has still the
form − δFδρ (ρ), even at the limit τ → 0.

Our proof will be complete only for the case

F (ρ) =

∫
Ω

ρ ln ρ+

∫
Ω

V dρ+

∫
Ω

∫
Ω

W (x− y)dρ(x)dρ(y),

where V and W are Lipschitz functions on the compact domain Ω, and a starting measure
ρ0 ∈ P(Ω) such that F (ρ0) < +∞ is fixed.

Optimality conditions at each time step. We consider the minimization of F (ρ) +
W 2

2 (ρ, ρτ (k))/2τ among probability measures ρ ∈ P(Ω). Let us suppose that this minimiza-
tion problem admits a solution, which is the case for the choice of the functional F above.
Actually, the three parts of the functional are weakly-l.s.c., and this is the case for W2 as well.
Hence, Ω being compact, this is sufficient for the existence (notice anyway that more refined
considerations could handle the case of unbounded domains as well).

Now, take an optimal measure ρ̄ and compute variations with respect to perturbations of
the form ρε := (1− ε)ρ̄+ ερ̃, where ρ̃ is any other probability measure. This means choosing
a perturbation χ = ρ̃ − ρ̄, which guarantees that, for ε > 0, the measure ρε is actually a
probability over Ω.

We now compute the first variation and, due to optimality, we have

0 ≤ d

dε

(
F (ρ̄+ εχ) +

1

τ

W 2
2 (ρ̄+ εχ, ρτ (k))

2

)
|ε=0

=

∫ (
δF

δρ
(ρ) +

φ

τ

)
dχ.

If we set for a while ψ = δF
δρ (ρ) + φ

τ we would have∫
ψ dχ ≥ 0 i.e.

∫
ψ dρ̃ ≥

∫
ψ dρ̄ for all ρ̃ ∈ P(Ω).

8



This means that ρ̄ also minimizes ρ 7→
∫
ψ dρ, and it is clear that the minimizers of such a

quantity must be concentrated on argminψ. In particular this implies that ψ has a constant
value ρ−a.e.

For the case we are considering, where the optimal ρ̄ must be absolutely continuous because
of the entropy part, one gets, for the density ρ̄(x)

ln(ρ̄(x)) + V (x) + 2(W ∗ ρ̄)(x) +
φ(x)

τ
= C a.e. on {ρ̄ > 0}

ln(ρ̄(x)) + V (x) + 2(W ∗ ρ̄)(x) +
φ(x)

τ
≥ C everywhere.

This in particular implies that ρ̄ is actually positive a.e. and that it holds

ρ̄(x) = exp

(
C − V (x)− 2(W ∗ ρ̄)(x))− φ(x)

τ

)
,

which provides Lipschitz regularity for ρ̄. Then, one differentiates and gets the equality (4).

Interpolation between time steps. With this time-discretized method, we have obtained,
for each τ > 0, a sequence (ρτ (k))k. We can use it to build at least two interesting curves in
the space of measures:

• first we can define some piecewise constant curves, i.e. ρτt := ρτ (k+1) for t ∈]kτ, (k+1)τ ];
associated to this curve we also define the velocities vτt = vτ (k+ 1) for t ∈]kτ, (k+ 1)τ ],
where vτ (k) is obtained from (4), defining vτ (k) = (id− T )/τ , taking as T the optimal
transport from ρτk+1 to ρτ (k); we also define the momentum variable Eτ = ρτvτ ;

• then, we can also consider the densities ρ̃τt that interpolate the discrete values (ρτ (k))k
along geodesics:

ρ̃τt =

(
kτ − t
τ

vτ (k) + id

)
#

ρτ (k), for t ∈](k − 1)τ, kτ [; (5)

the velocities ṽτt are defined so that (ρ̃τ , ṽτ ) satisfy the continuity equation, taking

ṽτt = vτt ◦
(
kτ − t
τ

vτ (k) + id

)−1

;

as before, we define: Ẽτ = ρ̃τ ṽτ .

After these definitions we consider some a priori bounds on the curves and the velocities
that we defined. We start from some estimates which are standard in the framework of
Minimizing Movements. The sequence (ρτ (k))k satisfies an estimate on its variation which
gives a Hölder and H1 behavior. From the minimality of ρτ (k), compared to ρτ (k − 1), one
gets

W 2
2 (ρτ (k), ρτ (k − 1)) ≤ 2τ

(
F (ρτ (k))− F (ρτ (k − 1))

)
.

This also says that F (ρτ (k)) is monotone decreasing, which implies a uniform bound on F (ρτt )
for every t and τ . Morevoer, we also get W 2

2 (ρτ (k), ρτ (k−1)) ≤ Cτ (discrete Hölder behavior),
as well as, if we sum up over k and use F (ρ0) < +∞,∑

k

τ

(
W2(ρτ (k), ρτ (k − 1))

τ

)2

≤ C, (6)
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which is the discrete version of an H1 estimate. As for ρ̃τt , it is an absolutely continuous curve
in the Wasserstein space and its velocity on the time interval [(k−1)τ, kτ ] is given by the ratio
W2(ρτ (k − 1), ρτ (k))/τ . Hence, the L2 norm of its velocity on [0, T ] is given by∫ T

0

|ρ̃′τ |2W2
(t)dt =

∑
k

W 2
2 (ρτ (k), ρτ (k − 1))

τ
, (7)

and, thanks to (6), it admits a uniform bound independent of τ . Here we use the notation
|σ′|(t) for the metric derivative of a curve σ and |σ′|W2

(t) means that this metric derivative
is computed according to the distance W2. In our case, thanks to well-known results on
the continuity equation and the Wasserstein metric, this metric derivative is also equal to
||ṽτt ||L2(ρ̃τt ). This gives compactness of the curves ρ̃τ , as well as an Hölder estimate on their

variations (since H1 ⊂ C0,1/2). The characterization of the velocities vτ and ṽτ allow to
deduce bounds on these vector fields from the bounds on W2(ρτ (k − 1), ρτ (k))/τ .

Considering all these facts, one can collect the following results.

• The norm of vτ in L2((0, T ), L2
ρτ (Ω)) is τ -uniformly bounded.

• In particular, the bound is valid in L1 as well, which implies that Eτ is bounded in the
space of measures over [0, T ]× Ω.

• The very same estimates are true for ṽτ and Ẽτ .

• The curves ρ̃τ are bounded in H1([0, T ],W2(Ω)) and hence compact in C0([0, T ],W2(Ω)).

• Up to a subsequence, one has ρ̃τ → ρ, as τ → 0, uniformly according to the W2 distance.

• From the estimate W2(ρτt , ρ̃
τ
t ) ≤ Cτ1/2 one gets that ρτ converges to the same limit ρ in

the same sense.

• If we denote by E a weak limit of Ẽτ , since (ρ̃τ , Ẽτ ) solves the continuity equation, by
linearity, passing to the weak limit, also (ρ,E) solves the same equation.

• It is possible to prove (see [14], Section 3.2, Step 1) that the weak limits of Ẽτ and Eτ

are the same.

• From the bounds in L2 one gets that also at the limit the measure E is absolutely
continuous w.r.t. ρ and has an L2 density, so that we have for a.e. time t a measure Et
of the form ρtvt.

• It is only left to prove that one has vt = − δFδρ (ρt) for a.e. t. This is done (in the following

step), by noticing that we have, for every t and τ , the equality Eτt = −ρτt δFδρ (ρτt ), and
letting it pass to the limit as τ → 0. It is crucial in this step to consider the limit of
(ρτ , Eτ ) instead of (ρ̃τ , Ẽτ ).

Passing to the limit the relation between ρ and v. The fact that (ρτ , Eτ ) weakly
converges to (ρ,E) let easily any linear condition pass to the limit. For non-linear terms, this
is more difficult and requires some compactness.
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The example that we decided to consider is anyway quite easy, since one can decompose
Eτ into two parts: Eτ = Lτ + Iτ , where

Lτ := ρτ∇ (ln ρτ + V ) = ∇ρτ + ρτ∇V ; Iτ := ρτ∇(2W ∗ ρτ ) = 2ρτ [(∇W ) ∗ ρτ ] ,

i.e. we have splitted the momentum into a linear part and an interaction part, which has more
compactness properties. Since we had supposed W to be Lipschitz, the function (∇W ) ∗ ρτ is
uniformly bounded, which gives a uniform bound on Iτ in the space of measures. This implies
that both parts separately are compact as measures, and hence they converge to L and I,
respectively, and E = L+ I.

L and Lτ being linear w.r.t. ρ, it is clear that we must have, as a consequence of the
weak convergence of ρτt to ρt, Lt = ∇ρt + ρt∇V . Actually, ∇ρτt converges to ∇ρt, at least in
the sense of distributions. For the term with ∇V , one can notice that the uniform bound on
F (ρτt ) implies a bound on the entropy

∫
ρτt ln ρτt (since both V and W are supposed bounded

from below), and this bound turns the weak convergence ρτt ⇀ ρt as measures into a weak
convergence in L1 as a consequence of Dunford-Pettis theorem (the densities ρτt are equi-
integrable). Once we have weak convergence in L1, multiplying times a fixed L∞ function, i.e.
∇V , preserves the same convergence.

The interaction part I is far from being linear, but the convolution implies more compact-
ness. Actually, ∇W being L∞, we get a uniform bound in L∞ on (∇W ) ∗ ρτt . Moreover, it is
clear that ρτt ⇀ ρt implies the pointwise convergence of (∇W ) ∗ ρτt to (∇W ) ∗ ρt, since[

(∇W ) ∗ ρτt
]
(x) =

∫
∇W (x− y)ρτt (y)dy →

∫
∇W (x− y)ρt(y)dy =

[
(∇W ) ∗ ρt

]
(x),

the convergence of the integrals being justified by the fact that ∇W is L∞ and ρτt ⇀ ρt in L1.
We claim now that the product of an equi-integrable sequence of functions weakly converg-

ing in L1 (here it is ρτt ⇀ ρt) times a sequence uniformly bounded in L∞ which is pointwisely
converging (here it is (∇W ) ∗ ρτt → (∇W ) ∗ ρt) does converge to the product of the limits (in
the weak sense of L1).

This fact is easy to see: take fj → f in L1, gj → g pointwisely and suppose that (fj)j is
equi-integrable and |gj |(x) ≤ C; take a test function ψ ∈ L∞ and prove

∫
fjgjψ →

∫
fgψ.

To do that, use the fact that the equi-integrability of (fj)j means that for every ε > 0 there
exists a δ > 0 such that

∫
A
|fj | < ε provided the measure of A is smaller than δ; moreover,

every pointwise convergence is uniform, up to a set of arbitrarily small measure. This means
that there exists a set A of measure smaller than δ such that gj → g uniformly on A. Then
one can see that fjIA ⇀ fIA, still weakly in L1, and get∣∣∣∣∫

Ω

fjgjψ −
∫
A

fjgjψ

∣∣∣∣ , ∣∣∣∣∫
Ω

fgψ −
∫
A

fgψ

∣∣∣∣ < ||ψ||L∞Cε,

∫
A

fjgjψ →
∫
A

fgψ,

where the last convergence is due to the weak convergence of fjIA and the uniform convergence
of gjψ to gψ. The number ε being arbitrary, this gives the desired convergence

∫
Ω
fjgjψ →∫

Ω
fgψ.
This allows to let the interaction term pass to the limit in the equation and conclude.

5 Back to crowd motion

In this section we come back to the case we were interested in for crowd motion modelling.
Differently from the easier cases of Section 4, here the PDE is neither linear nor based on a
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convolution (and regularizing) kernel. If the PDE is written in the form given in (3), we have

∂

∂t
ρt +∇ ·

(
ρt(ut −∇pt)

)
= 0,

where pt is a pressure, i.e. pt ≥ 0 and pt(1 − ρt) = 0. Thanks to this last relation, the
product ρt∇pt may also be written simply as ∇pt, since pt (and its gradient) vanish where
ρt is not equal to 1. This reduces the nonlinearity, since there is no more a bilinear term
in the continuity equation, but, still, the relation between p and ρ is nonlinear. We will see
what is the key point to let it pass to the limit, but first we want to recover the optimality
conditions at each step, after properly defining the functional F we will use in the gradient
flow procedure.

The functional we choose and some hints on the proof. We consider the case u =
−∇D and K = {ρ ∈ P(Ω) : ρ ≤ 1}. We first define the functional F we will consider:

F (ρ) =

{∫
D(x)dρ if ρ ∈ K,

+∞ if ρ /∈ K.

The discrete iterative method is, as usual,

ρτk+1 ∈ argmin
ρ

F (ρ) +
W 2

2 (ρ, ρτ (k))

2τ
= argmin

ρ∈K

∫
D(x)dρ+

W 2
2 (ρ, ρτ (k))

2τ

If we come back to the optimality conditions in terms of δF
δρ , and we forget for a while the

constraint ρ ∈ K, we would get that the optimal ρ̄ is concentrated on argminψ = D+ φ
τ . This

was a consequence of the fact that ρ̄ also optimized the linear functional ρ 7→
∫
ψdρ.

Since we need to take into account the constraint ρ ∈ K, and K is a convex set (notice
that it is also a geodesically convex set, but we do not need this notion here), we can perform
variations ρε = (1− ε)ρ̄+ ερ̃, for ρ̃ ∈ K. In this case we only get

∫
ψdρ̃ ≥

∫
ψdρ ∀ρ̃ ∈ K.

Once a function ψ is given, which are the measures that optimize
∫
ψdρ in K? the answer

is easy: it is sufficient to concentrate ρ on a level set of ψ, and to put the maximal possible
density (i.e .1) on it. This means that there is a constant t such that

ρ̄ =


1 on ψ < t,

0 on ψ > t,

∈ [0, 1] on ψ = t

It is useful to define the function p := (t−ψ)+. This function satisfies p ≥ 0 and p(1− ρ̄) = 0.
This means that it is an admissible pressure! Afterwards, it is easy to pass to the gradients
ρ̄−a.e. and get ∇p = −∇ψ = −∇D − ∇φτ = u − v a.e.. This gives v = u −∇p, which is the
desired velocity field. Hence, this discrete scheme is consistent with the equation that we want
to consider, even if the fact that, at the limit, this brings a solution of the PDE is still to be
established.
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The details are contained in [14]: here we only give an idea of the proof. Most of the
ingredients are the same as in the previous section. By using the fact that ρτ∇pτ = ∇pτ and
taking a weak limit p of pτ it is easy to see that the PDE is satisfied by ρ, p and u at the limit.
We are only left to prove that pt(1− ρt) = 0 for a.e. (t, x).

This is not trivial since a priori we have a product of two weak convergences. Yet, the key

point is the fact that we have an L2 bound on vτ (coming from
∫ T

0

∫
|vτ |2ρτ =

∫ T
0

∫
|ṽτ |2ρ̃τ =∫ T

0
|(ρ̃τ )′|2W2

dt ≤ C) and that vτ = uτ − ∇pτ . Since uτ is supposed to be bounded (take D
Lipschitz continuous), this implies an L2 bound on ∇pτ , and gives∫ T

0

∫
|∇pτ |2 =

∫
|∇pτ |2ρτ ≤ C.

Hence, pτ satisfies an H1 bound, and its weak convergence turns into a strong L2 convergence!
Moreover, the convergence ρτ ⇀ ρ is weak as measures but also weak-* in L∞, since they are
all bounded by the same constant, and this should allow to conclude the proof.

The only delicate point is the fact that we do not have an H1 bound in [0, T ] × Ω, but
only an H1 bound in space, integrated in time. This makes the possibility of exploiting this
compactness property more tricky, but in the end it works for almost any time t. The details
are, again, in [14].

Modify the functional for modelization purposes If we consider the model above as
the description of a crowd leaving a panic area, we choose D(x) = d(x,Γ), where Γ ⊂ ∂Ω
represents the door.

The density evolves by minimizing this mean distance to the door. . . but never leaves Ω.
For t → ∞ it is likely to fill a neighborhood of the door with density ρ = 1, which is the
configuration that minimizes F . In particular, if the particles stand for people trying to reach
the door so as to escape from a fire, they will all die! this requires a modification of the model,
in order to allow the particles to leave Ω.

A first possibility could be to consider a larger domain, such as Rd \ (∂Ω\Γ), i.e. the whole
space without the part of the boundary of Ω which stands for the hard walls (the door Γ being
included in the domain). This has some problems, since in particular a domain like that will
not be convex, and most of the analysis is easier in convex domains. Some new developments
are in progress concerning non-convex domains, but anyway they could not concern this kind of
domain whose complement is too “thin” (more precisely, the results of the previous paragraph
may be extended to closed non-convex domains, but the closure of the previous domain is the
whole Rd, which is not what we want to consider).

Hence, both for mathematical and modeling reasons, we decided to consider a different
situation, where we give a new definition of the admissible set K:

K := {ρ ∈ P(Ω) : ρ = ρΓ + ρΩ, ρΩ ≤ 1 , supp(ρΓ) ⊂ Γ}

The reason for this choice is the following: we consider that as soon as a particle reaches Γ,
it is safe (D = 0), and then, instead of following its movement after Γ, we leave it on Γ. This
is done for simplicity, but it only means that we are no longer concerned with what happens
to the particles that have reached Γ, not that they are really blocked on the door. Obviously,
we need to withdraw the density constraint on Γ, so as to let particles stay on it (think that
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usually |Γ| = 0, so that the density constraint would prevent ρ to give mass to Γ), and also to
represent the fact that Γ stands actually for everything that happens at the door and beyond.

The mathematical problem with this modified Γ is much trickier. One of the difficulties,
that prevent the usual theory to be applied, is the fact that the set K loses some of the
properties that it had previously (in particular it is no more geodesically convex: the geodesic
- for the W2 distance - between two points of K could go out of K).

To appreciate this approach one needs to think that the general theory mainly deals with
geodesically convex functionals even if, for existence purposes, something more can be said
when the slope of the functional is l.s.c. (see [2] for these concepts). However, this seems
difficult to check here since it is not evident what the slope of the constrained functional F
is. This is why the vertical perturbation method turns out to be useful in this setting, and it
provides a proof for the existence of a solution for Ω convex, with or without the exit door Γ,
thanks to the limit τ → 0.
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