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ON C2 UMBILICAL HYPERSURFACES

CARLO MANTEGAZZA

ABSTRACT. We show by an elementary argument that the second fundamental form of a
connected, totally umbilical hypersurface of class C2 is a constant multiple of the metric
tensor. It follows that the hypersurface is smooth and it is either a piece of a hyperplane
or of a sphere.

1. INTRODUCTION

We deal with totally umbilical, connected, n–dimensional hypersurfaces S of Rn+1, that
is, the second fundamental form B satisfies

Bp = λ(p)gp (1.1)

at every p ∈ S. Chosen a unit normal vector field ν, the symmetric bilinear form B is
defined as B(X, Y ) =

〈
∇Rn+1

X Y, ν
〉
, for every pair of tangent vector fields to the hyper-

surface, g is the induced metric on S and λ : S → R.
If S is of class C3 at least, hence ∇B is well defined, the Codazzi–Mainardi equations

must be satisfied (see [9], for instance). In local coordinates,

∇iBjk = ∇jBik .

which implies, taking traces, divB = ∇H, that is∇iH = gjk∇jBik.
Then, taking the divergence of both sides of equation (1.1), we get

∇H = divB = ∇λ

and taking instead first the trace, then the gradient, we have

∇H = n∇λ .

Hence, for n ≥ 2 we conclude that λ = H/n is constant. It follows easily that S is either
a piece of a hyperplane (λ = 0) or of a sphere (λ 6= 0) in Rn+1, see the final part of the
proof of the theorem below (or [3, Chapter 7, Theorem 5.1], for instance).

We want to discuss here the case of S only C2, so Codazzi–Mainardi equations are not
(immediately) available. Actually, the C3–regularity of S can be obtained (as said in [2]),
by means of the regularity theory for solutions of elliptic equations, then the Codazzi–
Mainardi equations can be used as above. We are going to show the same result by
means of an elementary geometric argument.
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Theorem 1.1. The second fundamental form of a connected, totally umbilical hypersurface of
class C2 is a constant multiple of the metric tensor and S is either a piece of a hyperplane or of a
sphere.

Acknowledgement . I wish to thank Nicola Fusco and Massimiliano Morini for asking the
question, Giacomo Ascione and Marco Pozzetta for the figure and some suggestions on the proof
of the theorem.

Note . During the redaction of this document, we were informed by Mario Santilli, that
the same result was first proved by P. Hartman [1] in 1947, then the proof was simplified
by R. Souam and E. Toubiana [7, (Portuguese)] in 2006 (see also [8]) and, independently,
by A. Pauly [4, (german)] in 2008. These proofs deal with surfaces in R3 but the argu-
ments can be easily extended to any dimension. The same Mario Santilli showed that
the conclusion also holds in the C1,1 case in [6] (see also [5, Section 3]).

2. PROOF OF THEOREM 1.1

Proof. Referring to equation (1.1), if λ ≡ 0 we are done, then we are going to show that
λ is locally constant on the set where it is nonzero, this implies, as S is connected, that λ
is constant.

So, we suppose that for p ∈ S, we have λ(p) 6= 0 and possibly changing the sign of
ν, we can assume it is positive. Then, by choosing suitable coordinates of Rn+1, we can
assume that locally around p, the hypersurface is given by the graph of a C2 function
f : Ω ⊆ TpS ≈ Rn → R, that is, by the map

Ω 3 (x1, x2, . . . , xn) 7→ ϕ(x1, x2, . . . , xn) =
(
x1, x2, . . . , xn, f(x1, x2, . . . , xn)

)
∈ Rn × R ,

where Ω is a convex open neighborhood of 0 ∈ Rn and p is the point 0 ∈ Rn+1, that is,
f(0, 0, . . . , 0) = 0, ∇f(0, 0, . . . , 0) = (0, 0, . . . , 0). The unit normal vector field ν (of class
C1) to S is given by

ν =
(−∇f, 1)√
1 + |∇f |2

,

hence,
Hessf ij√
1 + |∇f |2

= Bij = λgij ,

which implies that f is strictly convex, as B is positive definite, thus f ≥ 0 and f(x) = 0
if and only if x = 0.
Then, by the Gauss–Weingarten equations (see [9], for instance)

∂ν

∂xi
= −Bijg

jk ∂ϕ

∂xk
= −λgijgjk

∂ϕ

∂xk
= −λ ∂ϕ

∂xi
, (2.1)

hence, on the (n+ 1)–component, we get
∂

∂xi
1√

1 + |∇f |2
= −λ ∂f

∂xi
,
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for every i ∈ {1, 2, . . . , n}, that is

∇ 1√
1 + |∇f |2

= −λ∇f . (2.2)

and
∂νj

∂xi
= −λδij (2.3)

for every i, j ∈ {1, 2, . . . , n}.

Lemma 2.1. Let F,G : Ω → R be two C1 functions on an open set Ω ⊆ Rn such that ∇G =
λ∇F , with ∇F 6= 0 in Ω, for some continuous function λ : Ω → R. Then, if the level sets of
F are connected, there exists H : ImageF → R of class C1, such that G = H ◦ F . Moreover,
λ(x) = H ′(F (x)), hence λ is constant on the level sets of F .

Proof. Let us prove that G is constant on every level set of F . Let x, y ∈ Ω with F (x) =
F (y) = c and γ : [0, 1] → Ω a C1 curve in the level set {F = c} such that γ(0) = x and
γ(1) = y (which always exists by the connectedness of the level sets of F ). Then, as
F (γ(t)) = c, we have 〈∇F (γ(t)), γ̇(t)〉 = 0, for every t ∈ [0, 1] and

G(y) =G(γ(0)) +

∫ 1

0

d

dt
G(γ(t)) dt = G(x) +

∫ 1

0

〈∇G(γ(t)), γ̇(t)〉 dt

=G(x) +

∫ 1

0

λ(γ(t))〈∇F (γ(t)), γ̇(t)〉 dt = G(x) .

The existence of the functionH is then immediate and the fact that it is C1 can be shown
as follows: let t0 ∈ R in the image of F , that is F (x0) = t0 and σ : (t0 − ε, t0 + ε)→ Ω be
a C1 integral curve of the field∇F/|∇F |2 with σ(t0) = x0, hence F (σ(t0)) = t0, then

F (σ(t)) = F (σ(t0)) +

∫ t

t0

〈∇F (σ(s)), σ̇(s)〉 dt = t0 + (t− t0) = t ,

then, around t0 ∈ R, we have H(t) = H(F (σ(t)) = G(σ(t)), which shows that H is of
class C1. The last assertion is trivial. �

By the strict convexity of f , its only critical point is at x = 0, then choosing F = f ,
G = 1/

√
1 + |∇f |2 in this lemma and possibly restricting Ω to coincide with the sublevel

{f < c} \ {0}, for a suitable positive constant c, the level sets of f are connected and we
can conclude that λ (in coordinates) is constant on each one of them. That is, λ : S → R
is constant on the (n− 1)–dimensional submanifolds of Rn+1 given by the intersections
of the hyperplanes parallel and close enough to TpM with S.

Choosing a point q ∈ S close to p and repeating this argument for q, we have a hy-
perplane Q parallel to TqS passing by p such that λ is constant, hence equal to λ(p), on
the intersection Q ∩ S (red in the figure below, in the case of surfaces n = 2). Since any
hyperplane P parallel to TpS close enough to p intersects Q ∩ S at least at some point
r = P ∩Q ∩ S, the function λ is constant and equal to λ(r) = λ(p) on P ∩ S (cyan in the
figure). It clearly follows that in a neighborhood of p the function λ is constant.
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If λ is constantly zero, by equation (2.1), the unit normal vector field is constant and
this easily implies that S is a piece of a hyperplane of Rn+1. If λ 6= 0, up to rescaling,
we can assume that λ = 1 and in the notations above, we consider the function defined
by O(x) = (x, f(x)) + ν(x) for x ∈ Ω, which represents the point in the “inner” normal
direction at distance 1 from the point (x, f(x)) of S.
For the (n+ 1)–component of O(x) we have

On+1(x) = f(x) +
1√

1 + |∇f(x)|2
.

which is constant equal to 1, by equation (2.2) and On+1(0) = 1.
For the other componentsOj(x) = xj +νj(x), for j ∈ {1, 2, . . . , n}, since by equation (2.3)
there hold ∇Oj(x) = 0, they are also constant on Ω. We conclude that the map O : Ω→
Rn+1 is constant, which clearly means that S is locally a subset of the sphere of radius
one and center (0, 0, . . . , 0, 1) ∈ Rn+1. By the connectedness of S, the last statement of
the theorem follows.

�
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