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Abstract. The approximation in the sense of Γ-convergence of nonisotropic
Griffith-type functionals, with p−growth (p > 1) in the symmetrized gradi-

ent, by means of a suitable sequence of non-local convolution type functionals

defined on Sobolev spaces, is analysed.
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1. Introduction

The scope of this paper is to provide a generalization of recent results, obtained
in [23], concerning the approximation of brittle fracture energies for linearly elastic
materials, by means of nonlocal functionals defined on Sobolev spaces, which are
easier to handle also from a computational point of view.

In [23] an approach originally devised by Braides and Dal Maso [6] for the ap-
proximation of the Mumford-Shah functional has been generalized to the linearly
elastic context. Namely, it was shown that, for a given bounded increasing function
f : R+ → R+ the energies

Fε(u) :=
1

ε

�
Ω

f

(
ε−
�
Bε(x)∩Ω

W (Eu(y)) dy

)
dx

Γ-converge to the functional

α

�
Ω

W (Eu(x)) dx+ 2βHd−1(Ju) ,

with α = f ′(0) and β = limt→+∞ f(t), in the L1(Ω)-topology. Above, W (Eu(y))
is a convex elastic energy depending on the linearized strain Eu, given by the sym-
metrized gradient of a vector-valued displacement u, whose jump set Ju represents
the cracked part of a material. The energy space of the limit functional is the one
of generalized functions with bounded deformation, introduced in [17].
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It is noteworthy that the above result allowed one for a general (convex) bulk
energy W having p-growth for p > 1. The proof strategy must then avoid, at
least when estimating the bulk part, any slicing procedure. This latter is instead
successful in the special case 1 W (ξ) = |ξ|p , considered for instance in [22]. There,
non-local convolution-type energies of the form

1

ε

�
Ω

f

(
ε

�
Rn
|Eu(y)|p ρε(x− y) dy

)
dx (1.1)

are considered, where ρ is a convolution kernel whose support is a convex bounded
domain and ρε(z) is the usual sequence of convolution kernels ρ(z/ε)/εd. The
Γ-limit of (1.1) with respect to the L1 convergence is given by�

Ω

|Eu(x)|p dx+

�
Ju

φρ(ν) dHd−1 ,

where the anisotropic surface density φρ depends on the geometry and on the size
of suppρ. A similar effort of generalizing the results of [6] to Mumford-Shah type
energies with non-isotropic surface part has been previously performed in [13].

In this paper, we extend the focus of [22, 23] by showing that general Griffith-
type functionals of the form

α

�
Ω

W (Eu(x)) dx+ 2β

�
Ju

φ(ν) dHd−1 , (1.2)

where φ is any norm on Rn, can be obtained as variational limit of non-local
convolution-type functionals

1

ε

�
Ω

f

(
ε

�
Rn
W (Eu(y))ρε(x− y) dy

)
dx .

Above, f is again a bounded nondecreasing function with α = f ′(0) and β =
limt→+∞ f(t), and the unscaled kernel ρ has the bounded convex symmetric domain
S := {ξ ∈ Rn : φ(ξ) ≤ 1} as its support. This is the analogue, in the linear elastic
setting, of the results in [13].

The proof strategy we devise is based on a localization method and involves
nontrivial adaptions to the method used in [23], in particular when estimating
the bulk term in the Γ-liminf inequality (Proposition 4.2). There, we have to
impose (and this is the only point in the paper) an additional restriction on the
convolution kernel ρ, namely of being nonincreasing with respect to the given norm
φ (see Assumption (N2) below). This is namely needed in order to be able to
estimate from below the size of the nonlocal approximations of the bulk term in
an anisotropic tubular neighborhood of the set where they exceed the threshold β

α ,
which heuristically corresponds to the breaking of the elastic bonds. With this, a set
K ′ε with small area and bounded perimeter, where the fracture energy concentrates
can be explicitly constructed. This yields an estimate of the Γ-liminf which has
an optimal constant in front of the bulk term, although being non-optimal for the
surface energy.

Another non-optimal estimate for the Γ-liminf, but with an optimal constant
for the surface energy can be instead obtained by a slicing procedure, involving a
comparison argument and the convexity of the open set S (Proposition 4.3). As
bulk and surface energy in (1.2) are mutually singular as measures, a localization
procedure entail then the Γ-liminf inequality (Proposition 4.6). Finally, the Γ-
limsup inequality (Proposition 5.1) can be obtained by a direct construction for
a regular class of competitors having a “nice” jump set, and which are dense in

1we remark that this particular case is however not the most relevant one from a mechanical
point of view, as even for an isotropic material additional terms in the bulk energy are expected

to appear.
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energy. Notice indeed that such an approximation (see Theorem 2.3 for a precise
statement) is possibile also with respect to an anisotropic norm φ, combining the
recent results in [8] with the ones in [12].

As a final remark, it would be desirable to get rid on the structural assumption
(N2) on the convolution kernels, which is used only in Proposition 4.2. It is our
opinion that this is going to require quite a delicate abstract analysis of the Γ-limit
of nonlocal functionals which approximate free-discontinuity problems in GSBD,
possibly including also finite-difference models which are well suited to numerical
approximations (see [15] for a recent discrete finite-difference approximation of some
Griffith-type functionals in GSBD). A similar analysis for the SBV setting has
been performed in [11], where integral representation formulas for the limit energy
have been provided. Furthermore, nontrivial sufficient conditions have been given
under which the bulk part of the energy can be recovered by only considering weakly
compact sequences in Sobolev spaces. We plan to defer this abstract analysis to a
forthcoming contribution. For the asymptotic analysis via Γ-convergence of local
free-discontinuity functionals in linear elasticity and the related issues, we refer the
reader to the very recent papers [7, 14, 20].

Outline of the paper: The paper is structured as follows. In Section 2.1 we fix the
basic notation and results on the function spaces we will deal with (Section 2.2),
together with some technical lemmas (Section 2.3) which will be useful throughout
the paper. In Section 3 we list the main assumptions, introduce our model (eq.
(3.4)), and state the main results of the paper, provided in Theorem 3.1 and The-
orem 3.2. Section 4 is devoted to the proof of the compactness statements in the
main Theorems (Proposition 4.1), and to the Γ-liminf inequality, which is proved
in Section 4.3 combining the estimates in Sections 4.1 and 4.2. The proof of the
upper bound is given in Section 5.

2. Notation and preliminary results

2.1. Notation. The symbol | · | denotes the Euclidean norm in any dimension,
while 〈·, ·〉 stands for the scalar product in Rn. We will always denote by Ω an open,
bounded subset of Rn with Lipschitz boundary, and by Sn−1 the (n−1)-dimensional
unit sphere. The Lebesgue measure in Rn and the s-dimensional Hausdorff measure
are written as Ln and Hs, respectively. A(Ω) stands for the family of the open
subsets of Ω.

Let S be a bounded, open, convex and symmetrical set, i.e. S = −S. For η > 0,
we denote by ηS the η-dilation of S and we will often use the shorthand S(x, η) in
place of x+ ηS. We consider | · |S the norm induced by S, defined as

|x|S := inf{η > 0 : x ∈ ηS} , (2.1)

whose unit ball {|x|S < 1} coincides with S, and, correspondingly, we introduce
the distance to a closed bounded set K ⊂ Rn; namely,

distS(x,K) := min
y∈K
|x− y|S , x ∈ Rn . (2.2)

2.2. GBD and GSBD functions. In this section we recall some basic definitions
and results on generalized functions with bounded deformation, as introduced in
[17]. Throughout the paper we will use standard notations for the spaces (G)SBV
and (G)SBD, referring the reader to [2] and [1, 3, 24], respectively, for a detailed
treatment on the topics.

Let ξ ∈ Rn\{0} and Πξ = {y ∈ Rn : 〈ξ, y〉 = 0}. If Ω ⊂ Rn and y ∈ Πξ we set
Ωξ,y := {t ∈ R : y + tξ ∈ Ω} and Ωξ := {y ∈ Πξ : Ωξ,y 6= ∅}. Given u : Ω → Rn,
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n ≥ 2, we define uξ,y : Ωξ,y → R by

uξ,y(t) := 〈u(y + tξ), ξ〉 , (2.3)

while if v : Ω→ R, the symbol vξ,y will denote the restriction of v to the set Ωξ,y;
namely,

vξ,y(t) := v(y + tξ) . (2.4)

Let ξ ∈ Sn−1. For any x ∈ Rn we denote by xξ and yξ the projections onto the
subspaces Ξ := {tξ : t ∈ R} and Πξ, respectively. For σ, r > 0 and x ∈ Rn we
define the cylinders

Cξσ,r(0) := {x ∈ Rn : |xξ| < σ , |yξ| < r} , Cξσ,r(x) := x+ Cξσ,r(0) .

Note that Cξσ,r(x) = (xξ − σ, xξ + σ)×Bn−1
r (yξ), where Bn−1 denotes a ball in the

(n− 1)-dimensional space Πξ.

Definition 2.1. An Ln-measurable function u : Ω → Rn belongs to GBD(Ω) if
there exists a positive bounded Radon measure λu such that, for all τ ∈ C1(Rn)
with − 1

2 ≤ τ ≤ 1
2 and 0 ≤ τ ′ ≤ 1, and all ξ ∈ Sn−1, the distributional derivative

Dξ(τ(〈u, ξ〉)) is a bounded Radon measure on Ω whose total variation satisfies

|Dξ(τ(〈u, ξ〉))| (B) ≤ λu(B)

for every Borel subset B of Ω.

If u ∈ GBD(Ω) and ξ ∈ Rn\{0} then, in view of [17, Theorem 9.1, Theorem 8.1],
the following properties hold:

(a) u̇ξ,y(t) = 〈Eu(y + tξ)ξ, ξ〉 for a.e. t ∈ Ωξ,y;

(b) Juξ,y = (Jξu)ξ,y for Hn−1-a.e. y ∈ Πξ, where

Jξu := {x ∈ Ju : 〈u+(x)− u−(x), ξ〉 6= 0} .

Definition 2.2. A function u ∈ GBD(Ω) belongs to the subset GSBD(Ω) of
special functions of bounded deformation if, in addition, for every ξ ∈ Sn−1 and
Hn−1-a.e. y ∈ Πξ, it holds that uξ,y ∈ SBVloc(Ωξ,y).

The inclusions BD(Ω) ⊂ GBD(Ω) and SBD(Ω) ⊂ GSBD(Ω) hold (see [17,
Remark 4.5]). Although they are, in general, strict, relevant properties of BD
functions are retained also in this weak setting. In particular, GBD-functions have
an approximate symmetric differential Eu(x) at Ln-a.e. x ∈ Ω. Furthermore the
jump set Ju of a GBD-function is Hn−1-rectifiable (this is proven in [17, Theorem
6.2 and Theorem 9.1], but it has been recently shown that this property is actually
a general one for measurable functions [18]).

Let p > 1. The space GSBDp(Ω) is defined as

GSBDp(Ω) := {u ∈ GSBD(Ω) : Eu ∈ Lp(Ω;Rn×nsym ) , Hn−1(Ju) < +∞} .

Every function in GSBDp(Ω) can be approximated with the so-called “piecewise
smooth” SBV -functions, denoted W(Ω;Rn), characterized by the three properties
u ∈ SBV (Ω;Rn) ∩Wm,∞(Ω \ Ju;Rn) for every m ∈ N ,
Hn−1(Ju \ Ju) = 0 ,

Ju is the intersection of Ω with a finite union of (n−1)-dimensional simplexes .

(2.5)
This is stated by the following result, which combines [8, Theorem 1.1] with [12,
Theorem 3.9].
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Theorem 2.3. Let φ be a norm on Rn. Let Ω ⊂ Rn be a bounded open Lipschitz
set, and let u ∈ GSBDp(Ω;Rn). Then there exists a sequence (uj) such that
uj ∈ W(Ω;Rn) and

uj → u in measure on Ω, (2.6)

Euj → Eu in Lp(Ω;Rn×nsym ), (2.7)�
Juj

φ(νuj )Hn−1 →
�
Ju

φ(νu)Hn−1 . (2.8)

Moreover, if
�

Ω
ψ(|u|) dx is finite for ψ : [0,+∞)→ [0,+∞) continuous, increasing,

with

ψ(0) = 0, ψ(s+ t) ≤ C(ψ(s) + ψ(t)), ψ(s) ≤ C(1 + sp), lim
s→+∞

ψ(s) = +∞

then

lim
j→+∞

�
Ω

ψ(|uj − u|) dx = 0 . (2.9)

As observed in [9, Remark 4.3], we may even approximate through functions u
such that, besides (2.5), have a closed jump set strictly contained in Ω made of
pairwise disjoint (n−1)-dimensional simplexes, with Ju ∩ Πi ∩ Πl = ∅ for any two
different hyperplanes Πi, Πl.

We recall the following general GSBDp compactness result from [10], which
generalizes [17, Theorem 11.3].

Theorem 2.4 (GSBDp compactness). Let Ω ⊂ Rn be an open, bounded set, and
let (uj)j ⊂ GSBDp(Ω) be a sequence satisfying

supj∈N
(
‖Euj‖Lp(Ω) +Hn−1(Juj )

)
< +∞.

Then there exists a subsequence, still denoted by (uj), such that the set A∞ := {x ∈
Ω : |uj(x)| → +∞} has finite perimeter, and there exists u ∈ GSBDp(Ω) such that

(i) uj → u in measure on Ω \A∞,
(ii) Euj ⇀ Eu in Lp(Ω \A∞;Rn×nsym ),

(iii) lim inf
j→∞

Hn−1(Juj ) ≥ Hn−1(Ju ∪ (∂∗A∞ ∩ Ω)) , (2.10)

where ∂∗ denotes the essential boundary of a set with finite perimeter.

Remark 2.5. If in the statement above one additionally assumes that

sup
j∈N

�
Ω

ψ(|uj |) dx < +∞

for a positive, continuous and increasing function ψ with lims→+∞ ψ(s) = +∞,
then A∞ = ∅, so that |u| is finite a.e., and (i) holds on Ω. Moreover, if ψ is
superlinear at infinity, that is

lim
s→+∞

ψ(s)

s
= +∞ ,

by the Vitali dominated convergence theorem one gets that u ∈ L1(Ω) and (i) holds
with respect to the L1-convergence in Ω.
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2.3. Some lemmas. We recall here (without adding the standard proofs) some
properties of integral convolutions in the setting of Sobolev spaces.

Proposition 2.6. Let w ∈ W 1,p(Ω;Rn) and ρ ∈ L∞(Rn) be a convolution kernel,
with supp ρ ⊂ S for some bounded, open and convex set S ⊂ Ω. Set ρθ(x) :=
1
θd
ρ
(
x
θ

)
. Then the following holds:

(i) let Ω′ ⊂⊂ Ω and 0 ≤ θ ≤ distS(Ω′, ∂Ω). The convolution

ϕθ(x) :=

�
Ω

w(y)ρθ(y − x) dy

belongs to W 1,p(Ω′;Rn). Moreover, it holds that

∇ϕθ(x) =

�
Ω

∇w(y)ρθ(y − x) dy a.e. on Ω′. (2.11)

(ii) assume that wε → w in L1(Ω;Rn) and let θε be any sequence with θε → 0
when ε→ 0. Then the sequence

ŵε(x) :=

�
Ω

wε(y)ρθε(y − x) dy

satisfies ŵε → cw in L1(Ω;Rn), where c =
�
Rn ρ(x) dx.

We also recall the following convergence property of one-dimensional sections of
averaged functions (see, e.g., [23, Lemma 2.7(ii)]).

Lemma 2.7. Assume that wε → w in L1(Ω;Rn) and let ηε be any sequence with
ηε → 0 when ε→ 0. Then for all ξ ∈ Sn−1 and a.e. y ∈ Πξ, the sequence

ŵξ,yε (t) := −
�
Bn−1
ηε (y)

wε(z + tξ) dz

satisfies ŵξ,yε → wξ,y in L1(Ωξ,y;Rn), where wξ,y(t) := w(y + tξ).

We will also make use of the following localization result, dealing with the supre-
mum of a family of measures (see, e.g., [4, Proposition 1.16]).

Lemma 2.8. Let µ : A(Ω) −→ [0,+∞) be a superadditive function on disjoint open
sets, let λ be a positive measure on Ω and let ϕh : Ω −→ [0,+∞] be a countable
family of Borel functions such that µ(A) ≥

�
A
ϕh dλ for every A ∈ A(Ω). Then,

setting ϕ := suph∈N ϕh, it holds that

µ(A) ≥
�
A

ϕdλ

for every A ∈ A(Ω).

Lower semicontinuous increasing functions can be approximated from below with
truncated affine functions. We refer the reader to [23, Lemma 2.10] for a proof of
the following result.

Lemma 2.9. Consider a lower semicontinuous increasing function f : [0,+∞)→
[0,+∞) such that there exist α, β > 0 with

lim
t→0+

f(t)

t
= α, lim

t→+∞
f(t) = β .

Then there exist two positive sequences (ai)i∈N, (bi)i∈N with

sup
i
ai = α, sup

i
bi = β

and min{ait, bi} ≤ f(t) for all i ∈ N and t ∈ R.
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2.4. Γ-convergence. Let (X, d) be a metric space. We recall here the definition
of Γ-convergence for families of functionals Fε : X → [−∞,+∞] depending on a
real parameter ε (see, e.g. [5, 16]).

For all u ∈ X, we define the lower Γ-limit of (Fε) as ε→ 0+ by

F ′(u) := inf

{
lim inf
j→+∞

Fεj (uj) : εj → 0+ , uj → u

}
, (2.12)

and the upper Γ-limit of (Fε) as ε→ 0+ by

F ′′(u) := inf

{
lim sup
j→+∞

Fεj (uj) : εj → 0+ , uj → u

}
. (2.13)

We then say that (Fε) Γ-converges to F : X → [−∞,+∞] as ε→ 0+ iff

F (u) = F ′(u) = F ′′(u) , for all u ∈ X.

2.5. A one-dimensional Γ-convergence result. The following one-dimensional
Γ-convergence result will be useful in the proof of the lower bound for the surface
term. In the statement below, functions in L1(I) with I ⊂ R are extended by 0
outside I, so that the functionals Hε are well-defined (actually, the result is not
affected by the considered extension).

Theorem 2.10. Let p > 1, let I ⊂ R be a bounded interval and consider a lower
semicontinuous, increasing function f : [0,+∞)→ [0,+∞) complying with

lim
t→0+

f(t)

t
= α, lim

t→+∞
f(t) = β

for some α, β > 0. Let Hε : L1(I)→ [0,+∞] be defined by

Hε(u) :=
1

ε

�
I

f

(
1

2

� x+ε

x−ε
|u′(y)|p dy

)
dx ,

where it is understood that

f

(
1

2

� x+ε

x−ε
|u′(y)|p dy

)
= β

if u 6∈ W 1,p(x − ε, x + ε). Then the functionals (Hε) Γ-converge as ε → 0+ to the
functional

H(u) :=

α
�
I

|u′|p dt+ 2β#(Ju) , if u ∈ SBV (I) ,

+∞ , otherwise

in L1(I).

Proof. The proof can be found, e.g., in [4, Theorem 3.30]. �

3. The non-local model and main results

In this section we list our assumptions and introduce the main results of the
paper. Let Ω ⊂ Rn be an open set with Lipschitz boundary, let 1 < p < +∞ and
f : [0,+∞)→ [0,+∞) a lower semicontinuous, increasing function satisfying

lim
t→0+

f(t)

t
= α > 0, lim

t→+∞
f(t) = β > 0 . (3.1)

Let ρ ∈ L∞(Rn; [0,+∞)) be a convolution kernel. The minimal assumption is that

(N1) ρ is Riemann integrable with ‖ρ‖1 = 1 and S = Sρ := {x ∈ Rn : ρ(x) 6= 0}
is a bounded, open, convex and symmetrical set.
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As every Riemann integrable function is continuous at almost every point, we may
also suppose, up to a modification on a null set, that ρ is lower semicontinuous.
Also notice that, by a simple scaling argument, one can always consider the case of
kernels with unit mass, up to modifying the constant α in (3.1).

A sequence (ρε)ε>0 of convolution nuclei is then obtained by setting, for every
x ∈ Rn and ε > 0,

ρε(x) :=
1

εn
ρ
(x
ε

)
.

For every v ∈ Rn we define

φρ(v) := 2 sup{|〈y, v〉| : y ∈ S} . (3.2)

Under the previous assumptions on S, the function φρ turns out to be a norm on
Rn.

To obtain our main result, we will have to couple (N1) with the additional
assumption that the convolution kernel is a non-increasing function with respect to
the norm | · |S , that is

(N2) |x|S ≥ |y|S =⇒ ρ(x) ≤ ρ(y) for all x, y ∈ Rn.

Equivalently, we require that it exists a non-increasing function % : R+ → R+ such
that ρ(x) = %(|x|S). Notice that, in the case S = B1, every non-increasing radial
function ρ complies with (N2).

Let W : Rn×n → R be a convex positive function on the subspace Mn×n
sym of

symmetric matrices, such that

W (0) = 0 , c|M |p ≤W (M) ≤ C(1 + |M |p) . (3.3)

For every ε > 0 we consider the functional Fε : L1(Ω;Rn)→ [0,+∞] defined as

Fε(u) =


1

ε

�
Ω

f

(
ε

�
Ω

W (Eu(y))ρε(x− y) dy

)
dx, if u ∈W 1,p(Ω;Rn) ,

+∞ , otherwise on L1(Ω;Rn).

(3.4)

We will deal with a localized version of the energies (3.4). Namely, for every
A ∈ A(Ω), we will denote by Fε(u,A) the same functional as in (3.4) with the set
A in place of Ω. When A = Ω, we simply write Fε(u) in place of Fε(u,Ω).

The following theorem is the first main result of this paper. We notice that the
additional assumption (N2) on the structure of the convolution kernel is required in
(ii) below only to obtain the optimal lower bound for the bulk term of the energy.

Theorem 3.1. Let ρ ∈ L∞(Rn; [0,+∞)) be a convolution kernel as in (N1), and
let Fε be defined as in (3.4). Under assumptions (3.1) and (3.3), it holds that

(i) there exists a constant c0 independent of ε such that, for all (uε) ⊂ Lp(Ω;Rn)
satisfying Fε(uε) ≤ C for every ε > 0, one can find a sequence uε ∈
GSBV p(Ω;Rn) with

uε − uε → 0 in measure on Ω

Fε(uε) ≥ c0
(�

Ω

W (Euε) dx+ 2Hn−1(Juε ∩ Ω)

)
.

(ii) If, in addition, ρ complies with (N2), then the functionals (Fε) Γ-converge,
as ε→ 0, to the functional

F (u) =

α
�

Ω

W (Eu) dx+ β

�
Ju

φρ(ν) dHd−1 , if u ∈ GSBDp(Ω) ∩ L1(Ω;Rn) ,

+∞ , otherwise on L1(Ω;Rn),

(3.5)
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with respect to the L1 convergence in Ω.

The L1-convergence on the whole Ω can be enforced with the addition of a
lower order fidelity term, as we have discussed in Remark 2.5. This motivates the
statement below, where we consider a continuous increasing function ψ : [0,+∞)→
[0,+∞) such that

ψ(0) = 0, ψ(s+ t) ≤ C(ψ(s) + ψ(t)), ψ(s) ≤ C(1 + sp), lim
s→+∞

ψ(s)

s
= +∞

(3.6)
and we set for every A ∈ A(Ω)

Gε(u,A) =

Fε(u,A) +

�
A

ψ(|u|) dx, if u ∈W 1,p(A;Rn) ,

+∞ , otherwise on L1(A;Rn).
(3.7)

As before, we simply write Gε(u) in place of Gε(u,Ω). Then we have the following
result.

Theorem 3.2. Under assumptions (3.1), (N1), (3.3), and (3.6) it holds that

(i) If (uε) ⊂ Lp(Ω;Rn) is such that Gε(uε) ≤ C for every ε > 0, then (uε) is
compact in L1(Ω;Rn).

(ii) If, in addition, (N2) holds, the functionals (Gε) Γ-converge, as ε → 0, to
the functional

G(u) =

F (u) +

�
Ω

ψ(|u|) dx , if u ∈ GSBDp(Ω) ∩ L1(Ω;Rn) ,

+∞ , otherwise on L1(Ω;Rn),

with respect to the L1 convergence in Ω.

4. Compactness and estimate from below of the Γ-limit

With the following proposition, we prove the compactness statements in Theo-
rem 3.1(i), and Theorem 3.2(i), respectively. These results can be easily inferred by
a comparison with non-local integral energies whose densities are averages of the
gradient on balls with small radii, for which a compactness result has been provided
in [23, Proposition 4.1]. In order to do that, we will only require assumption (N1)
on the convolution kernel ρ.

Proposition 4.1. Let A ∈ A(Ω), and let Fε, Gε be defined as in (3.4), and (3.7),
respectively, where ρ ∈ L∞(Rn; [0,+∞)) satisfies (N1). Then:

(i) Assume (3.1), (3.3). If (uε) ⊂ Lp(Ω;Rn) is such that Fε(uε, A) ≤ C for
every ε > 0, one can find a sequence uε ∈ GSBV p(A;Rn) with

uε − uε → 0 in measure on A

Fε(uε, A) ≥ c0
(�

A

W (Euε) dx+ 2Hn−1(Juε ∩A)

)
for some c0 > 0.

(ii) Assume (3.1), (3.3), and (3.6). If (uε) ⊂ Lp(Ω;Rn) is such that Gε(uε, A) ≤
C for every ε > 0, then (uε) is compact in L1(A;Rn).

Proof. Let η ∈ (0, 1) be fixed such that Bη(0) ⊂⊂ S, and denote by mη the min-

imum of ρ on Bη, which is strictly positive as we are assuming that ρ > 0 on S.
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Setting f̃(t) := f(mηωnη
nt) and for any ε > 0, we consider the energies

F̃ε(u) =


1

ε

�
Ω

f̃

(
ε−
�
Bηε(x)∩Ω

W (Eu(y)) dy

)
dx, if u ∈W 1,p(Ω;Rn) ,

+∞ , otherwise on L1(Ω;Rn).

(4.1)
Since Bη(0) ⊆ S and ρ ≥ mη on Bη(0), a simple computation shows that

F̃ε(u,A) ≤ Fε(u,A) (4.2)

for every u ∈ W 1,p(Ω;Rn) and A ⊆ Ω open set. By virtue of (4.2), to obtain (i)

it will suffice to apply the argument of [23, Proposition 4.1] to the sequence F̃ε in
(4.1). We then omit the details.

We now come to (ii). If additionally Gε(uε, A) ≤ C, following the argument for
[23, Proposition 4.1(ii)], it can be shown that the sequence (ūε) constructed in (i)
complies with�

A

ψ(|uε(x)|) dx+

�
A

|Euε(x)|p dx+Hn−1(Juε ∩A) ≤ C < +∞

for all ε. Therefore, in view of the growth assumption (3.6) on ψ, Theorem 2.4
and Remark 2.5 apply, and this provides the compactness of the sequence (uε) in
L1(A;Rn). Then, since uε − uε → 0 in measure on A, with the Vitali dominated
convergence Theorem we infer that (uε) is compact in L1(A;Rn) as well. This
concludes the proof of (ii). �

Now, we turn to provide a first estimate of the Γ-liminf of the functionals Fε. This
estimate is optimal, up to a small error, only for the bulk part of the energy, and this
is the only very point where we need to require the additional assumptions (N2) on
the convolution kernels (see Section 4.1). The proof of an optimal estimate for the
surface term, instead, will be derived separately by means of a slicing argument (see
Proposition 4.3 below) for more general kernels complying only with (N1) providing
the comparison estimate (4.2). As the two parts of the energy are mutually singular,
the localization method of Lemma 2.8 will eventually allow us to get the Γ-liminf
inequality.

4.1. Estimate from below of the bulk term. We begin by giving the announced
estimate for the bulk term.

Proposition 4.2. Let A ∈ A(Ω) with A ⊂⊂ Ω, and consider a sequence uε ∈
W 1,p(Ω;Rn) converging to u in L1(Ω;Rn). Assume (3.1) and (3.3), let η ∈ (0, 1)
be fixed and let ρ comply with (N1)–(N2). Suppose that

sup
ε>0

Fε(uε, A) ≤ C . (4.3)

Then, for every fixed 0 < δ < 1, there exist a constant Mδ,η only depending on f , δ
and η, a constant ση depending on ρ, η such that ση → 0 as η → 0, and a sequence
of functions (vδ,ηε ) ⊂ GSBV p(A;Rn) such that

(i) α(1− ση)2(1− δ)2n+1

�
A

W (Evδ,ηε (x)) dx ≤ Fε(uε, A);

(ii) Hn−1(Jvδ,ηε ) ≤Mδ,η Fε(uε, A);

(iii) vδ,ηε → u in L1(A;Rn) as ε→ 0.

Proof. We first consider the case f(t) = min{at, b}, with a, b > 0. For given η, we
introduce the truncated kernel ρη(x) := 1

1−ση ρ(x)(1− χηS(x)), where the constant
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ση is given by

ση :=

�
ηS

ρ(x) dx ,

and ση → 0 as η → 0. Notice that with this choice of ση one has
�
Rn ρ

η(x) dx = 1.
For fixed δ ∈ (0, 1), we then define

Cδ,η :=
1

(1− δ)n(1− ση)
, (4.4)

and the functions

ψη,δε (x) := ε

�
Ω

W (Euε(y))ρηε(1−δ)(y − x) dy

ψε(x) := ε

�
Ω

W (Euε(y))ρε(y − x) dy .

Observe that, since W ≥ 0, by the definition of ρη and assumption (N2), we get

ψη,δε (x) ≤ Cδ,ηψε(x) (4.5)

for all x ∈ A. Define now the following sets, depending on δ, η and S:

Kε :=

{
x ∈ A : ψη,δε (x) ≥ Cδ,η

b

a

}
, (4.6)

K ′ε :=
{
x ∈ A : distS(x,Kε) ≤ δηε

}
. (4.7)

We prove the inclusion

K ′ε ⊆
{
x ∈ A : ψε(x) ≥ b

a

}
. (4.8)

For this, if x ∈ K ′ε then there exists z ∈ Kε such that |x− z|S ≤ δηε. Now, by the
triangle inequality, for every y ∈ Ω it holds that

|x− y|S
ε

≤ δη +
|z − y|S

ε
,

whence
|x− y|S

ε
≤ |z − y|S

(1− δ)ε
if and only if |z − y|S ≥ (1 − δ)ηε. In this case, since ρ is non-increasing with
respect to | · |S , we have

ρ

(
y − x
ε

)
≥ (1− ση)ρη

(
y − z

(1− δ)ε

)
.

Notice that this inequality holds true also if |z−y|S < (1−δ)ηε. In this case, indeed,

one has y−z
(1−δ)ε ∈ ηS and hence ρη

(
y−z

(1−δ)ε

)
= 0 by definition of ρη. Rescaling the

kernels and using (4.4) we get

ρηε(1−δ)(y − z) ≤ Cδ,ηρε(y − x) ,

so that

ψε(x) ≥ ψη,δε (z)

Cδ,η
≥ b

a

and the proof of (4.8) is concluded.
Now, from the inclusion (4.8) and the fact that f(t) = b for t ≥ b

a , we deduce
that

Ln(K ′ε) ≤
ε

b
Fε(uε, A) . (4.9)
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Applying the coarea formula (see for instance [19, Theorem 3.14]) to the 1-Lipschitz
function g(x) := distS(x,Kε) in the open set {0 < g(x) < ηδε} ⊂ K ′ε we get

ε

b
Fε(uε, A) ≥ Ln(K ′ε) ≥

� ηδε

0

Hn−1({g = t}) dt .

It follows that we can choose 0 < δ′ε < ηδε such that, for

K ′′ε := {x ∈ A : distS(x,Kε) ≤ δ′ε} , (4.10)

it holds

Hn−1(∂K ′′ε ) = Hn−1({x ∈ A : distS(x,Kε) = δ′ε}) ≤
1

ηδb
Fε(uε, A) . (4.11)

We define a sequence (vδ,ηε ) of functions in GSBV p(A;Rn) as

vδ,ηε (x) :=


�

Ω

uε(y)ρη(1−δ)ε(y − x) dy if x ∈ A\K ′′ε ,

0 otherwise.
(4.12)

Since ‖ρη‖1 = 1, by Proposition 2.6(ii) (applied for θε = ε(1 − δ)) and the fact
that, by construction and (4.9), it holds Ln(K ′′ε ) → 0 when ε → 0, we have that
vδ,ηε → u in L1(A;Rn) as ε→ 0. We also have Hn−1(Jvδ,ηε ) ≤ Hn−1(∂K ′′ε ), so that

with (4.11) we deduce (ii) for Mδ,η = 1
ηδb .

Now, since Kε ⊂ K ′′ε and A ⊂⊂ Ω, it holds ψη,δε (x) < Cδ,η
b
a for all x ∈ K ′′ε . As

f(t) = min{at, b}, this gives

f(ψη,δε (x)) ≥ a

Cδ,η
ψη,δε (x) (4.13)

for all x ∈ A \ K ′′ε . Now, since the function f is concave and f(0) = 0, it holds
f(λt) ≥ λf(t) for all λ ∈ [0, 1]. Combining with the monotonicity of f and (4.5),
we have

f (ψε(x)) ≥ 1

Cδ,η
f
(
ψη,δε (x)

)
(4.14)

for all x ∈ A. With this, using (4.13), the Jensen’s inequality, (2.11), (4.12), and
since W (0) = 0, we get

Fε(uε, A) ≥ 1

ε

�
A\K′′ε

f (ψε(x)) dx

≥ 1

εCδ,η

�
A\K′′ε

f
(
ψη,δε (x)

)
dx ≥ a

εC2
δ,η

�
A\K′′ε

ψη,δε (x) dx

≥ a

C2
δ,η

�
A\K′′ε

W

(�
Ω

Euε(y)ρη(1−δ)ε(y − x) dy

)
dx

=
a

C2
δ,η

�
A\K′′ε

W (Evδ,ηε (x)) dx

= a(1− ση)2(1− δ)2n

�
A

W (Evδ,ηε (x)) dx .

For a general f complying with (3.1), use Lemma 2.9 to find aδ, bδ > 0 with aδ ≥
α(1− δ) and f(t) ≥ min{aδt, bδ} for all t ∈ R, and perform the same construction
as in the previous step. This gives (iii), (ii) (with Mδ := 1

δηbδ
) and

Fε(uε, A) ≥ aδ(1− ση)2(1− δ)2n

�
A

W (Evδ,ηε (x)) dx

≥ α(1− ση)2(1− δ)2n+1

�
A

W (Evδ,ηε (x)) dx ,

that is (i). �
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4.2. Estimate from below of the surface term. In this section we derive by
slicing a lower bound for the surface term in the energy. It is worth mentioning
that, by virtue of (4.17), the desired estimate could be probably also obtained by
adapting to the GSBD-setting the semi-discrete approach of [22, Proposition 6.4].
Nonetheless, that argument is quite delicate for our purposes, and more complicated
than we need. It indeed aimed to provide an optimal lower bound for both the bulk
and the surface terms in a unique proof by means of a slicing procedure. In our
case, the general form of the bulk energy we are considering does not comply with
slicing arguments. Therefore, on the one hand, the two terms have to be estimated
separately. On the other hand, an independent and simpler strategy can be followed
to provide a lower bound with optimal constant in front of the surface energy.

We set

τξ := H1({x ∈ S : x = tξ for t ∈ R}) , (4.15)

for every ξ ∈ Sn−1.

Proposition 4.3. Let ρ ∈ L∞(Rn; [0,+∞)) be a convolution kernel complying
with (N1), and let Fε be defined as in (3.4). Assume (3.1) and (3.3). Let δ ∈ (0, 1)
be fixed, and consider a sequence εj → 0. Let A ∈ A(Ω) and uj ∈ W 1,p(A;Rn)
converging to u in L1(A;Rn). Assume that

lim inf
j→+∞

Fεj (uj , A) < +∞ .

Then u ∈ GSBDp(A) and

lim inf
j→+∞

Fεj (uj , A) ≥ β(1− δ)
�
Jξu∩A

τξ|〈ν, ξ〉|dHn−1 (4.16)

for every ξ ∈ Sn−1.

Proof. It follows from Proposition 4.1 and Theorem 2.4 that u ∈ GSBDp(A). To
prove (4.16), we first note that, by virtue of the growth assumption (3.3), we have

W (Eu) ≥ c|Eu|p ≥ c|〈(Eu)ξ, ξ〉|p ,

for every ξ ∈ Sn−1. Thus, for every fixed ξ, since f is non-decreasing, it will be
sufficient to provide a lower estimate for the energies

F ξεj (uj , A) :=
1

εj

�
A

f

(
cεj

�
Sεj (x)

|〈(Euj(z))ξ, ξ〉|pρεj (z − x) dz

)
dx . (4.17)

We proceed by a slicing argument, and for each x ∈ A we denote by xξ and yξ the
projections of x onto Ξ and Πξ, respectively. Since S is open and convex, for every
fixed ξ ∈ Sn−1 we can find a radius r = r(δ, S) > 0 such that the cylinder

Cξ(1−δ),r = (−λξ,δ, λξ,δ)×Bn−1
r (0) ⊂⊂ S , (4.18)

where λξ,δ :=
τξ
2 (1 − δ) and τξ is the length of the section Sξ. Indeed, since S

is open, some η > 0 can be found such that Bη(0) is contained in S. Now, if
t = (1 − δ)s for some s ∈ Sξ and y ∈ ξ⊥ with |y| ≤ η, then tξ + δy ∈ S from the
convexity of S. Thus, it will suffice to choose r := δη.
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If we denote by mC the minimum of ρ on Cξ(1−δ),r, we then have

F ξεj (uj , A)

=

�
Πξ

dHn−1(yξ)

(
1

εj

�
Aξ,yξ

f

(
cεj

�
Sεj (x)

|〈(Euj(z))ξ, ξ〉|pρεj (z − x) dz

)
dxξ

)

≥
�

Πξ
dHn−1(yξ)

 1

εj

�
Aξ,yξ

f̃

 1

εn−1
j

�
Cξ

(1−δ)εj,rεj
(x)

|〈(Euj(z))ξ, ξ〉|p dz

 dxξ

 ,

(4.19)

where f̃(t) := f(cmCt). Note that f̃(t)→ β as t→ +∞.
We now set

F
ξ,yξ
εj (uj , Aξ,yξ) :=

1

εj

�
Aξ,yξ

f̃

 1

εn−1
j

�
Cξ

(1−δ)εj,rεj
(x)

|〈(Euj(z))ξ, ξ〉|p dz

 dxξ .

We denote (with a slight abuse of notation) still with z the (n − 1)-dimensional

variable in Bn−1
rεj (yξ). Set w

ξ,yξ
j (t) := −

�
Bn−1
rεj

(yξ)
〈uj(z + tξ)), ξ〉dz.

By virtue of Lemma 2.7(ii), applied with θεj = rεj , we have that w
ξ,yξ
j converges

to uξ,yξ in L1(Aξ,yξ) for a.e. yξ. Furthermore, setting g(t) := f̃(ωn−1r
n−1t),

Fubini’s Theorem, Jensen’s inequality and the monotonicity of f̃ entail that

F
ξ,yξ
εj (uj , Aξ,yξ)

=
1

εj

�
Aξ,yξ

f̃

(
1

εn−1
j

�
Bn−1
rεj

(yξ)

dz

� xξ+λξ,δεj

xξ−λξ,δεj
|〈(Euj(z + tξ))ξ, ξ〉|p dt

)
dxξ

=
1

εj

�
Aξ,yξ

f̃

(
1

εn−1
j

� xξ+λξ,δεj

xξ−λξ,δεj

(�
Bn−1
rεj

(yξ)

|〈(Euj(z + tξ))ξ, ξ〉|p dz

)
dt

)
dxξ

≥ 1

εj

�
Aξ,yξ

f̃

(
ωn−1r

n−1

� xξ+λξ,δεj

xξ−λξ,δεj

(
−
�
Bn−1
rεj

(yξ)

〈(Euj(z + tξ))ξ, ξ〉dz

)p
dt

)
dxξ

=
1

εj

�
Aξ,yξ

g

(� xξ+λξ,δεj

xξ−λξ,δεj
|ẇξ,yξj (t)|p dt

)
dxξ

= λξ,δ
1

λξ,δεj

�
Aξ,yξ

g

(� xξ+λξ,δεj

xξ−λξ,δεj
|ẇξ,yξj (t)|p dt

)
dxξ ,

(4.20)

Now, for the function t 7→ g(t) it still holds g(t) → β when t → +∞. Hence,
applying Theorem 2.10 to the one-dimensional energies

F̃
ξ,yξ
εj (w

ξ,yξ
j , Aξ,yξ) :=

1

λξ,δεj

�
Aξ,yξ

g

(� xξ+λξ,δεj

xξ−λξ,δεj
|ẇξ,yξj (t)|p dt

)
dxξ

we obtain the lower bound

lim inf
j→+∞

F̃
ξ,yξ
εj (w

ξ,yξ
j , Aξ,yξ) ≥ 2β#(J

uξ,yξ
∩Aξ,yξ) . (4.21)

Therefore, using (4.20) and (4.21) we deduce

lim inf
j→+∞

F
ξ,yξ
εj (uj , Aξ,yξ) ≥ λξ,δ lim inf

j→+∞
F̃
ξ,yξ
εj (w

ξ,yξ
j , Aξ,yξ)

≥ βτξ(1− δ)#(J
uξ,yξ

∩Aξ,yξ) .
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With (4.19) and Fatou’s Lemma we finally have

lim inf
j→+∞

Fεj (uj , A) ≥ lim inf
j→+∞

�
Πξ
F
ξ,yξ
εj (uj , Aξ,yξ) dHd−1(yξ)

≥
�

Πξ

(
lim inf
j→+∞

F
ξ,yξ
εj (uj , Aξ,yξ)

)
dHd−1(yξ)

≥ βτξ(1− δ)
�

Πξ
#(J

uξ,yξ
∩Aξ,yξ) dHd−1(yξ)

= βτξ(1− δ)
�
Jξu∩A

|〈νu, ξ〉| dHd−1 ,

where in the last equality we used the Area Formula. This concludes the proof of
(4.16). �

4.3. Proof of the Γ-liminf inequality. For any A ∈ A(Ω), we denote by F ′(u,A)
and G′(u,A) the lower Γ-limits of Fε(u,A) and Gε(u,A), respectively, as defined
in (2.12). It holds that G′(u,A) ≥ F ′(u,A) for each A ∈ A(Ω) and u ∈ L1(A;Rn)
(see, e.g., [16, Proposition 6.7]). The results of the previous subsection lead to the
following estimate.

Proposition 4.4. Assume (3.1), (3.3), and (3.6). Let Fε and Gε be defined as in
(3.4) and (3.7), respectively, and let ρ comply with (N1)-(N2). Let u ∈ L1(Ω;Rn),
A ∈ A(Ω), and define F ′(u,A) and G′(u,A) by (2.12) in correspondence of Fε and
Gε, respectively. If F ′(u,A) < +∞, then u ∈ GSBDp(A) and

(i) F ′(u,A) ≥ α
�
A

W (Eu) dx ,

(ii) G′(u,A) ≥ F ′(u,A) ≥ β
�
Jξu∩A

τξ|〈νu, ξ〉| dHd−1

for every ξ ∈ Sn−1. If in addition G′(u,A) < +∞ holds, then one also has

(iii) G′(u,A) ≥ α
�
A

W (Eu) dx+

�
A

ψ(|u|) dx.

Proof. With (2.12) and a diagonal argument, one may find (not relabeled) subse-
quences (uj) and (ũj) converging to u in L1(A;Rn) such that

F ′(u,A) = lim inf
j→+∞

Fεj (uj , A) , G′(u,A) = lim inf
j→+∞

Gεj (ũj , A) .

With the first equality and Proposition 4.3 we have that, if F ′(u,A) < +∞, then
u ∈ GSBDp(A). By the second one, the superadditivity of the liminf, Fatou’s
lemma and (2.12), we have

G′(u,A) = lim inf
j→+∞

Gεj (ũj , A) ≥ lim inf
j→+∞

Fεj (ũj , A) + lim inf
j→+∞

�
A

ψ(|ũj |) dx

≥ F ′(u,A) +

�
A

ψ(|u|) dx .

Hence, (iii) will follow once we have proved (i).
We therefore only have to check (i) and (ii). To this aim, let η, δ ∈ (0, 1) be fixed.

Then, by applying Proposition 4.2 to the sequence (uj), we can find a sequence

(vδ,ηj ) ⊂ GSBV p(A;Rn) such that vδ,ηj → u in L1(A) as εj → 0 and

(a) α(1− ση)2(1− δ)2n+1

�
A

W (Evδ,ηj (x)) dx ≤ Fεj (uj , A);

(b) Hd−1(Jvδ,ηj
∩A) ≤Mδ,ηFεj (uj , A).
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Now, the equiboundedness of Fεj (uj , A) combined with the bounds (a) and (b)

allows to apply the lower semicontinuity part of Theorem 2.4 to the sequence (vδ,ηj ).

Taking into account that A∞ = ∅ because u ∈ L1(A;Rn), by the convexity of W
and (2.10), (ii), we have

α(1− ση)2(1− δ)2n+1

�
A

W (Eu(x)) dx ≤ lim inf
j→+∞

�
A

W (Evδ,ηj (x)) dx

≤ lim inf
j→+∞

Fεj (uj , A) = F ′(u,A) .

We then obtain (i) by letting δ → 0 and η → 0 above.
For what concerns (ii), from (4.16) of Proposition 4.3 we get

β(1− δ)
�
Jξu∩A

τξ|〈νu, ξ〉|dHn−1 ≤ lim inf
j→+∞

Fεj (uj , A) = F ′(u,A)

for every ξ ∈ Sn−1, so that (ii) follows by taking the limit as δ → 0 again. �
For the proof of the Γ-liminf inequality, we need the following lemma, which can

be found in [22, Lemma 4.5].

Lemma 4.5. Let S ⊂ Rn be a bounded, convex and symmetrical set, and let φρ
and τξ be defined as in (3.2) and (4.15), respectively. Then

φρ(v) = sup
ξ∈Sn−1

τξ|〈v, ξ〉| . (4.22)

We are now in a position to prove the Γ-liminf inequality.

Proposition 4.6. Let ρ ∈ L∞(Rn; [0,+∞)) be a convolution kernel satisfying
(N1)-(N2). Assume (3.1), (3.3), and (3.6). Consider Fε, and Gε given by (3.4), and
(3.7), respectively. Let u ∈ L1(Ω;Rn) and let A ∈ A(Ω), and define F ′(u,A) and
G′(u,A) by (2.12) in correspondence of Fε and Gε, respectively. If F ′(u,A) < +∞,
then u ∈ GSBDp(A) and

F ′(u,A) ≥ α
�
A

W (Eu) dx+ β

�
Ju∩A

φρ(ν) dHn−1 .

If it additionally holds G′(u,A) < +∞, then

G′(u,A) ≥ α
�
A

W (Eu) dx+ β

�
Ju∩A

φρ(ν) dHn−1 +

�
A

ψ(|u|) dx .

Proof. The proof can be obtained by a standard localization method based on
Lemma 2.8. In order to prove, e.g., the second assertion containing an additional
term, we can apply Lemma 2.8 to the set function µ(A) := G′(u,A), which is
superadditive on disjoint open sets since Gε(u, ·) is superadditive as a set function:

G′(u,A1∪A2) ≥ G′(u,A1)+G′(u,A2) whenever A1, A2 ∈ A(Ω) with A1∩A2 = ∅ .
Then, we consider the positive measure λ(A) := Ln(A) + Hn−1(Ju ∩ A) and the
sequence (ϕh)h≥0 of λ-measurable functions on A defined as

ϕ0(x) :=

{
αW (Eu(x)) + ψ(|u(x)|) , if x ∈ A\Ju ,
0 , if x ∈ A ∩ Ju ,

ϕh(x) :=

{
0 , if x ∈ A\Ju ,
βφξh(x) , if x ∈ A ∩ Ju ,

where

φξh(x) =

{
τξh |〈νu(x), ξh〉| , if x ∈ Jξhu ∩A ,
0 , otherwise in Ju ∩A ,
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for (ξh)h≥1 a dense sequence in Sn−1.
Now, by virtue of Proposition 4.4 it holds that

µ(A) ≥
�
A

ϕhdλ

for every h = 0, 1, . . . , so that all the assumptions of Lemma 2.8 are satisfied. The
assertion then follows once we notice that, taking into account Lemma 4.5, it holds

sup
h≥0

ϕh(x) = ϕ(x) :=

{
αW (Eu(x)) + ψ(|u(x)|) , if x ∈ A\Ju ,
βφρ(νu(x)) , if x ∈ A ∩ Ju ,

for λ-a.e. x ∈ A. �

5. Estimate from above of the Γ-limit

We denote by F ′′ and G′′ the upper Γ-limits of (Fε) and (Gε), respectively, as
defined in (2.13).

Proposition 5.1. Let u ∈ GSBDp(Ω) ∩ L1(Ω;Rn). Then

F ′′(u) ≤ α
�

Ω

W (Eu) dx+ β

�
Ju

φρ(ν) dHn−1 . (5.1)

If, in addition, it holds that
�

Ω
ψ(|u|) dx < +∞, then

G′′(u) ≤ α
�

Ω

W (Eu) dx+ β

�
Ju

φρ(ν) dHn−1 +

�
Ω

ψ(|u|) dx . (5.2)

Proof. We only prove (5.1) by using the density result of Theorem 2.3, as (5.2)
follows by an analogous construction with the additional property (2.9).

In view of Theorem 2.3 and remarks below, since we perform a local costruction
and by a diagonal argument it is not restrictive to assume that u ∈ W(Ω;Rn) and
that Ju is a closed simplex contained in any of the coordinate hyperplanes, that we
denote by K.

For every h > 0, let Kh := ∪x∈KS(x, h) be the anisotropic h-neighborhood of
K. As K is compact and (n− 1)-rectifiable, it holds (see for instance [21, Theorem
3.7])

lim
h→0

1

h
Ln(Kh) =

�
K

φρ(ν) dHn−1 (5.3)

(observe that a factor 2 is already contained in our definition (3.2) of φρ). Let
γε > 0 be a sequence such that γε/ε→ 0 as ε→ 0. Notice that, for ε small,

K ⊂ Kγε ⊂⊂ Kγε+ε ⊂⊂ Ω ,

recalling that K ⊂ Ω. Let φε be a smooth cut-off function between Kγε and Kγε+ε,
and set

uε(x) := u(x)(1− φε(x)) .

Since u ∈ W 1,∞(Ω\Ju;Rn) we have uε ∈ W 1,∞(Ω;Rn). Note also that, by the
Lebesgue Dominated Convergence Theorem, uε → u in L1(Ω;Rn). Moreover, since
uε = u on S(x, ε) ∩ Ω if x 6∈ Kγε+ε, we have

Fε(uε) ≤
1

ε

�
Ω

f

(
ε

�
S(x,ε)∩Ω

W (Eu(y))ρε(y − x) dy

)
dx+ β

Ln(Kγε+ε)

ε
. (5.4)

Setting

wε(x) :=

�
S(x,ε)∩Ω

W (Eu(y))ρε(y − x) dy ,
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we have that wε(x) converges to w(x) := W (Eu(x)) in L1
loc(Ω) as ε → 0. Since f

complies with (3.1) and it is increasing, there exists α̃ > α such that f(t) ≤ α̃t for
every t ≥ 0. This gives

1

ε
f(εwε(x)) ≤ α̃wε(x) for every x ∈ Ω and every ε > 0 ,

and, taking into account that lim
t→0+

f(t)

t
= α, we also infer that

1

ε
f(εwε(x))→ αw(x) for a.e. x ∈ Ω .

Thus, by Lebesgue’s Dominated Convergence Theorem,

lim
ε→0

1

ε

�
Ω

f

(
ε

�
S(x,ε)∩Ω

W (Eu(y))ρε(y − x) dy

)
dx = α

�
Ω

W (Eu) dx .

As γε+ε
ε → 1 as ε→ 0, from (5.3), (5.4), the subadditivity of the limsup and (2.13)

we get (5.1). �

Proof of Theorems 3.1 and 3.2. The two results follow by combining Propositions
4.1, 4.6, and 5.1 �
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