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Abstract

We discuss a notion of weak solution for a semilinear wave equation that models the
interaction of an elastic body with a rigid substrate through an adhesive layer, relying on
results in [2]. Our analysis embraces the vector-valued case in arbitrary dimension as well as
the case of non-local operators (e.g. fractional Laplacian).
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1 Introduction
In recent years, there have been many works devoted to adhesion phenomena arising from

biophysics and engineering (see for instance [10, 16, 9, 14] and references therein). A rigorous
mathematical description of such phenomena is quite challenging, mainly because of the complex
underlying mechanisms at both microscopic and macroscopic levels. In order to reproduce some
essential features of these processes, increasingly accurate mathematical models are being proposed
(see for instance [4, 11, 13, 6, 1] and references therein).

Of particular interest is the study of the dynamic of an elastic body glued to a rigid substrate
through an adhesive layer. Consider, for example, a vibrating string oscillating in and out
a glue layer. The position of the evolving string is described by the scalar displacement u :
[0, T ]× [0, L]→ R, for T, L > 0. In the absence of an adhesive region, the dynamic is typically
described via a free wave equation, with either Dirichlet or Neumann boundary conditions. The
presence of adhesive regions can then be described via a “forcing” potential W . Hence, one is led
to consider the following semilinear wave equation

utt − uxx +W ′(u) = 0, (1)

coupled with suitable initial and boundary conditions. In [6], for example, the glue region is
assumed to cover [0, L]× [−u∗, u∗], for u∗ > 0, and W is selected to be

W (u) =
{
u2 if |u| ≤ u∗,
(u∗)2 if |u| > u∗.

(2)
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In this setting, the equation reduces to a free wave equation as soon as the string moves outside
the glue layer. Once we introduce (1), a suitable notion of weak solution that takes into account
the discontinuity of W ′ is immediately needed.

Motivated by the one dimensional model we just described, we consider here, for m > 0 and a
potential W : Rm → R, the generalized problem

utt + (−∆)su+∇uW (u) = 0 in (0, T )× Ω,
u(t, x) = 0 in [0, T ]× (Rd \ Ω),
u(0, x) = u0(x) in Ω,
ut(0, x) = v0(x) in Ω,

(3)

where Ω ⊂ Rd is an open bounded domain with Lipschitz boundary, u0 and v0 are suitable initial
conditions, and (−∆)s stands for the fractional Laplacian (s = 1 provides the standard Laplacian).
We are interested in possible notions of weak solutions for such a system. As self-evident, any
notion of solution for (3) heavily hinges on the regularity of the potential W . On one hand, for
regular W , i.e. W ∈ C1,1(Rm) and non-negative, existence of suitably defined weak solutions has
been provided in [2, Theorem 3]. On the other hand, less is known for less regular potentials like
(2). In this note, we aim to explore how far the notion of weak solution of [2] can reach, and
discuss its limitations.

In Section 2, we first recall the notion of fractional Laplacian and fractional Sobolev spaces, we
state the model problem (3) and in Definition 2 we recall the working notion of weak solution. In
Section 3, Theorem 3, we assume W ∈ C1(Rm) to be bounded and to have a bounded uniformly
continuous gradient, and prove existence of weak solutions for (3) via an approximation argument.
In Section 4, through Example 5, we discuss how the proposed notion of weak solution cannot be
adequate to less regular settings. Eventually, in Theorem 6, we prove existence of weak solutions
for potentials behaving like (2) under the restrictive assumption of small initial data.

2 Preliminaries and model problem
Let d,m ∈ N and s > 0. We define the fractional Laplacian operator (−∆)s as the operator

whose Fourier symbol is |ξ|2s, i.e., for any u ∈ L2(Rd;Rm), we set

F(−∆)su = |ξ|2sFu

where F denotes the Fourier transform. We denote by Hs the fractional Sobolev space of order s,
which is defined as

Hs(Rd) :=
{
u ∈ L2(Rd; Rm) :

∫
Rd

(1 + |ξ|2s)|Fu(ξ)|2 dξ < +∞
}
.

For u, v ∈ Hs(Rd), we consider the scalar product [u, v]s = 〈(−∆)s/2u, (−∆)s/2v〉L2(Rd;Rm),
the corresponding semi-norm [u]s =

√
[u, u]s = ||(−∆)s/2u||L2(Rd;Rm) and the norm ||u||2s =

||u||2
L2(Rd;Rm) + [u]2s. For Ω ⊂ Rd an open bounded set with Lipschitz boundary, we define

H̃s(Ω) := {u ∈ Hs(Rd;Rm) : u = 0 a.e. in Rd \ Ω},

and the corresponding dual space H−s(Ω) := (H̃s(Ω))∗. The set of smooth compactly supported
functions C∞c (Rd;Rm) is dense in Hs(Rd) (see [15]). We eventually recall and quickly prove the
following embedding (based on [15]).
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Lemma 1. Let s > 0, 2s > d and u ∈ Hs(Rd). Then, u ∈ C0(Rd;Rm) and there exists a constant
C independent of u such that

||u||C0(Rd;Rm) ≤ C||u||Hs(Rd). (4)

Proof. Let S(Rd;Rm) be the Schwartz space of rapidly decaying functions and fix f ∈ S(Rd;Rm).
One has

(2π)
d
2 |f(x)| =

∣∣∣(2π)
d
2F−1(f̂)(x)

∣∣∣ =
∣∣∣∣∫

Rd
eixξFf(ξ)dξ

∣∣∣∣ ≤ ∫
Rd
|Ff(ξ)|(1 + |ξ|s) 1

1 + |ξ|sdξ

≤
(∫

Rd

1
(1 + |ξ|s)2dξ

) 1
2
(∫

Rd
|Ff(ξ)|2(1 + |ξ|s)2dξ

) 1
2

≤
√

2
(∫

Rd

1
(1 + |ξ|s)2dξ

) 1
2
(∫

Rd
|Ff(ξ)|2(1 + |ξ|2s)dξ

) 1
2

≤
√

2
(∫

Rd

1
(1 + |ξ|s)2dξ

) 1
2
||f ||Hs(Rd).

Since we consider 2s > d,
∫
Rd

1
(1+|ξ|s)2dξ is finite. Thus, we obtain that

||f ||C0(Rd;Rm) ≤ C||f ||Hs(Rd), (5)

which is exactly (4). Fix now any u ∈ Hs(Rd). By the density of S(Rd;Rm) in Hs(Rd), there
exists a sequence {fn}n ⊂ S(Rd;Rm) such that fn converges to u in Hs(Rd). In particular, {fn}n
is a Cauchy sequence in Hs(Rd) and by (5) we obtain

||fk − fl||C0(Rd;Rm) ≤ C||fk − fl||Hs(Rd) for any k, l ∈ N. (6)

Inequality (6) amounts to say that {fn}n is a Cauchy sequence in C0(Rd;Rm), hence u ∈
C0(Rd;Rm), fn → u uniformly as n→∞ and

||u||C0(Rd;Rm) ≤ C||u||Hs(Rd).

2.1 Model problem.

For an open bounded set Ω ⊂ Rd with Lipschitz boundary and a potential W : Rm → [0,∞)
(whose regularity we specify later on), we look for a solution u : [0, T ]× Ω→ Rm of

utt + (−∆)su+∇uW (u) = 0 in (0, T )× Ω
u(t, x) = 0 in [0, T ]× (Rd \ Ω)
u(0, x) = u0(x) in Ω
ut(0, x) = v0(x) in Ω

(7)

with initial data u0 ∈ H̃s(Ω) and v0 ∈ L2(Ω;Rm) (we intend that v0 = 0 in Rd \ Ω). For m = d
one can conventionally interpret u as the displacement of an elastic body (see [7, Section 2]). A
notion of weak solution for problem (7) can be given as follows.

Definition 2 (Weak solution and energy). Let T > 0. We say u = u(t, x) is a weak solution of
(7) in (0, T ) if
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1. u ∈ L∞(0, T ; H̃s(Ω)) ∩W 1,∞(0, T ;L2(Ω)) and utt ∈ L∞(0, T ;H−s(Ω)),

2. for all ϕ ∈ L1(0, T ; H̃s(Ω))∫ T

0
〈utt(t), ϕ(t)〉dt+

∫ T

0
[u(t), ϕ(t)]s dt+

∫ T

0

∫
Ω
∇uW (u(t))ϕ(t) dxdt = 0 (8)

with
u(0, x) = u0 and ut(0, x) = v0. (9)

The energy of u is defined as

E(u(t)) = 1
2 ||ut(t)||

2
L2(Ω) + 1

2[u(t)]2s + ||W (u(t))||L1(Ω) for t ∈ [0, T ].

Existence of a weak solution in the sense of Definition 2 has been proved in [2, Theorem 3(i)]
for non-negative potentials W ∈ C1(Rm) with Lipschitz continuous gradient. We prove in the
next section the existence of weak solutions under slightly relaxed assumptions, i.e. W ∈ C1(Rm),
non-negative, uniformly bounded, with a bounded and uniformly continuous gradient. Less regular
potentials are then partially addressed in Section 4, where limitations of the current approach
are discussed in Example 5, and existence of weak solutions is provided, for 2s > d, under the
restrictive assumption of small initial data.

3 The case of continuous ∇W

This section is devoted to the proof of the following theorem.

Theorem 3. Let W ∈ C1(Rm), and W be non-negative. Assume there exists K > 0 such that
0 ≤ W (y) ≤ K and 0 ≤ |∇W (y)| ≤ K for all y ∈ Rm, with ∇W uniformly continuous. Then,
there exists a weak solution of (7) satisfying the energy inequality

E(u(t)) ≤ E(u(0)) for any t ∈ [0, T ]. (10)

The hypotheses of Theorem 3 reproduce prototypical settings modelling adhesive behaviours,
as in [12], where the forcing potential W is expected to have no influence outside a bounded
region, and thus we can assumed W to be constant outside said region. Our proof relies on an
approximating procedure and leverages existence results in [2] to provide existence of approximate
weak solutions. The given regularity of the potential will then ensure that we can pass to the
limit along the sequence of approximate solutions (see Step 3 in the proof below).

Proof of Theorem 3.
Step 1. Construction of regularized approximate weak solutions. Let us consider a family of
non-negative potentials (Wε)ε>0 in C2(Rm) such that:

(i) Wε converges uniformly to W ,

(ii) ∇Wε converges uniformly to ∇W ,

(iii) ∇Wε is Lipschitz continuous for each ε.
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Leveraging the existence result in [2, Theorem 3(i)], for each ε > 0 there exists a weak solution
uε of 

uεtt + (−∆)suε +∇uWε(uε) = 0 in (0, T )× Ω
uε(t, x) = 0 in [0, T ]× (Rd \ Ω)
uε(0, x) = u0(x) in Ω
uεt (0, x) = v0(x) in Ω

in the sense of Definition 2. In particular, we have∫ T

0
〈uεtt(t), ϕ(t)〉dt+

∫ T

0
[uε(t), ϕ(t)]s dt+

∫ T

0

∫
Ω
∇uWε(uε(t))ϕ(t) dxdt = 0 (11)

for all ϕ ∈ L1(0, T ; H̃s(Ω)), and, for any t ∈ [0, T ], we have

1
2 ||u

ε
t (t)||2L2(Ω) + 1

2[uε(t)]2s + ||Wε(uε(t))||L1(Ω) ≤
1
2 ||v0||2L2(Ω) + 1

2[u0]2s + ||Wε(u0)||L1(Ω). (12)

Step 2. Existence of a cluster point. Since Wε converges uniformly to W in Rm and W is bounded,
for sufficiently small ε we have a uniform bound on Wε. Thus, using (12), there exists a constant
C > 0 such that for any t ∈ [0, T ]

E(uε(t)) = 1
2 ||u

ε
t (t)||2L2(Ω) + 1

2[uε(t)]2s + ||Wε(uε(t))||L1(Ω) ≤ C. (13)

From this energy bound, via standard compactness arguments, as done in [2, Proposition 6], we
deduce that there exists u ∈ L∞(0, T ; H̃s(Ω))∩W 1,∞(0, T ;L2(Ω)) such that, up to a subsequence,
as ε→ 0, we have

(iv) uε → u in C0([0, T ];L2(Ω)),

(v) uεt ⇀∗ ut in L∞(0, T ;L2(Ω)),

(vi) uε(t) ⇀ u(t) in H̃s(Ω) for any t ∈ [0, T ],

(vii) uε ⇀∗ u in L∞(0, T ; H̃s(Ω)).

Step 3. Passage to the limit in the definition of weak solution. In order to prove that u is a weak
solution we pass to the limit in (11) as ε→ 0. To do so, observe that

• utt ∈ L∞(0, T ;H−s(Ω)) and uεtt ⇀∗ utt in L∞(0, T ;H−s(Ω))
Indeed, from (13), (11), and the uniform bound on |∇Wε|, we obtain that uεtt is uniformly
bounded in L∞(0, T ;H−s(Ω)). This implies that uεtt ⇀∗ utt in L∞(0, T ;H−s(Ω)).

• ∇uWε(uε) ⇀∗ ∇uW (u) in L∞(0, T ;H−s(Ω))
Indeed, uε → u for a.e. (x, t) ∈ (0, T ) × Ω due to the convergence of uε to u in
C0([0, T ];L2(Ω)). Thus, since∇Wε converges uniformly to∇W in Rm and∇Wε is uniformly
bounded, by the dominated convergence theorem we conclude that

∇uWε(uε)→ ∇uW (u) in L2((0, T )× Ω).

On the other hand, ∇uWε(uε) is uniformly bounded in L∞(0, T ;H−s(Ω)), therefore we can
conclude that ∇uWε(uε) ⇀∗ ∇uW (u) in L∞(0, T ;H−s(Ω)).
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Thus, letting ε→ 0 in (11) we obtain∫ T

0
〈utt(t), ϕ(t)〉dt+

∫ T

0
[u(t), ϕ(t)]s dt+

∫ T

0

∫
Ω
∇uW (u(t))ϕ(t) dxdt = 0 (14)

for all ϕ ∈ L1(0, T ; H̃s(Ω)). To conclude, observe that

• E(u(t)) ≤ E(u(0)) for each t ∈ [0, T ]
From the fact that uεtt is uniformly bounded in L∞(0, T ;H−s(Ω)), we deduce that uεt → ut
in C0([0, T ];H−s(Ω)). On the other hand, each uεt (t) is uniformly bounded in L2(Ω), thus
we obtain that uεt (t) ⇀ ut(t) in L2(Ω) for each t ∈ [0, T ]. For the convergence of Wε(uε),
let t ∈ [0, T ] and fix an arbitrary η > 0. Since Wε converges uniformly to W , for sufficiently
small ε we obtain that

|Wε(y)−W (y)| ≤ η (15)

for any y ∈ Rm. Hence,∫
Ω
|Wε(uε(t))−W (u(t))|dx ≤

∫
Ω
|Wε(uε(t))−W (uε(t))|dx+

∫
Ω
|W (uε(t))−W (u(t))|dx

≤ |Ω|η + max
y∈Rm

|∇W (y)| · max
t∈[0,T ]

||uε − u||L2(Ω)|Ω|
1
2

where we have made use of (15), Lipschitz continuity of W , and Hölder’s inequality. Thus,
from the fact that uε → u in C0([0, T ];L2(Ω)), we can deduce that, up to a subsequence,
Wε(uε) → W (u) in C0([0, T ];L1(Ω)). The energy inequality for u follows passing to the
limit in (12).

• u(0, x) = u0, ut(0, x) = v0

Since uε → u in C0([0, T ];L2(Ω)) and uεt → ut in C0([0, T ];H−s(Ω)), we have u(0, x) = u0
and ut(0, x) = v0.

Remark 4. Assume to have more regular initial data, i.e. u0 ∈ H̃2s(Ω) and v0 ∈ H̃s(Ω). For
these data, the weak solution u of (7) constructed in Theorem 3 is energy preserving. Indeed, by [2,
Theorem 3(ii)], the approximate solutions uε turn out to be more regular and energy preserving.
Moreover, by using the uniform boundedness of Wε and ∇Wε, one can show that the velocity of the
approximate solutions, namely (uεt )ε, is uniformly bounded in W 1,∞(0, T ; H̃s(Ω)). This implies
in the limit that ut ∈W 1,∞(0, T ; H̃s(Ω)), which in turn gives rise to the energy conservation of
u by using suitable test functions: by substituting the test function ϕ(t, x) = I[t1, t2](t) · ut(t, x)
in equality (8), where 0 ≤ t1 < t2 ≤ T , and I[t1, t2] is the indicator function on the time interval
[t1, t2], we obtain that∫ t2

t1
〈utt(t), ut(t)〉dt+

∫ t2

t1
[u(t), ut(t)]sdt+

∫ t2

t1

∫
Ω
∇uW (u(t, x))ut(t, x)dxdt = 0

⇐⇒
∫ t2

t1

dE(u(t))
dt

dt = 0

⇐⇒ E(u(t1)) = E(u(t2)),

which proves that E is constant inside the interval [0, T ].
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4 The case of discontinuous ∇W

We consider in this section W ∈ C(Rm) defined as

W (y) =
{
|y|2 if y ∈ B(0, 1)
1 if y /∈ B(0, 1)

(16)

where B(0, 1) = { y ∈ Rm | |y| < 1 }, B(0, 1) = { y ∈ Rm | |y| ≤ 1 }. This potential designates
∂B(0, 1) as the set of critical states serving as boundary of the adhesive dynamics: as in [6],
this corresponds to model the adhesive contribution through a sharply discontinuous behaviour
(adhesion inside B(0, 1), no adhesion outside).

Looking back at Definition 2, we notice that the sharp discontinuity of ∇W on ∂B(0, 1)
immediately jeopardizes the well-posedness of equality (8): indeed, the term ∇uW (u(t)) is in
principle not well-defined whenever u(t) ∈ ∂B(0, 1). One possible fix would be to arbitrarily
choose a-priori a value for ∇W on the discontinuity set, but doing so invalidates any attempt
to prove existence of weak solutions via an approximating approach. This is illustrated in the
following example, where we consider for simplicity a Neumann problem in order to be able to
write explicitly some approximate solutions and highlight why using (8) may not be adequate.

Example 5. Consider the 1-dimensional problem
utt − uxx +W ′(u) = 0 in (0, T )× (0, L)
ux(t, 0) = ux(t, L) = 0 in [0, T ]
u(0, x) = 1 in [0, L]
ut(0, x) = 0 in [0, L]

(17)

for
W (u) =

{
u2 if |u| ≤ 1
1 if |u| > 1

and W ′(u) =
{

2u if |u| ≤ 1
0 if |u| > 1.

Notice how we choose to set W ′(±1) = ±2. Consider now the sequence of approximate potentials
Wε with

W ′ε(u) =



(2− ε)u if |u| ≤ 1
2− ε
ε

(1 + ε− u) if 1 ≤ u ≤ 1 + ε

ε− 2
ε

(1 + ε+ u) if − 1− ε ≤ u ≤ 1

0 if |u| ≥ 1 + ε.

One can easily show that uε(t, x) = 1 + ε solves the approximate problems
uεtt − uεxx +W ′ε(uε) = 0 in (0, T )× (0, L)
uεx(t, 0) = uεx(t, L) = 0 in [0, T ]
uε(0, x) = 1 + ε in [0, L]
uεt (0, x) = 0 in [0, L].

These approximate solutions (uε)ε converge to the constant function 1 in C([0, T ]× [0, L]), satisfy
(8), but when attempting to pass to the limit we have

lim
ε→0

∫
Ω
W ′ε(uε(t))ϕ(t) dxdt = 0,
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while W ′(1) = 2. Hence, the limit does not satisfy (8), and generally we cannot pass to the
limit in any definition of weak solution involving (8). Indeed, the general lack of information on
the distribution of the values of the approximate solutions uε around the critical states of ∇W
prevents us from providing direct proofs by approximation. Hence, weaker notions of solutions
are needed.

By Example 5, the notion of weak solution provided by Definition 2 is not well-suited when
dealing with potentials with discontinuous gradients. A restrictive result can however be provided,
under the assumption of small initial data (i.e., when the troublesome region is completely
avoided).

Theorem 6. Consider 2s > d, W as defined in (16) and assume that

||u0||H̃s(Ω) ≤ ε1, ||v0||L2(Ω) ≤ ε2 (18)

for sufficiently small ε1, ε2. Then, there exists a weak solution of problem (7) in the sense of
Definition 2 with

|u(x, t)| < 1 for all (t, x) ∈ [0, T ]× Ω (19)

and
E(u(t)) ≤ E(u(0)) for any t ∈ [0, T ]. (20)

Proof. We repeat the approach used in the proof of Theorem 3: construct a family of non-negative
potentials (Wε)ε>0 in C2(R) such that:

(i) Wε converges uniformly to W in Rm,

(ii) ∇Wε converges pointwise to ∇W in Rm \ ∂B(0, 1), ∇Wε converges uniformly to ∇W in
B(0, 1), ∇Wε is uniformly bounded in Rm,

(iii) ∇Wε is Lipschitz for each ε.

For each ε > 0 there exists a weak solution uε in the sense of Definition 2 corresponding to Wε

with initial data u0, v0 such that for any t ∈ [0, T ] one has

1
2 ||u

ε
t (t)||2L2(Ω) + 1

2[uε(t)]2s + ||Wε(uε(t))||L1(Ω) ≤
1
2 ||v0||2L2(Ω) + 1

2[u0]2s + ||Wε(u0)||L1(Ω). (21)

Since Wε converges uniformly to W in Rm, for sufficiently small ε we have

|Wε(y)−W (y)| ≤ ε3 (22)

for any y ∈ Rm and ε3 > 0 fixed. This fact combined with (18) implies that

||Wε(u0)||L1(Ω) ≤ ||W (u0)||L1(Ω) + ε3|Ω| ≤ |Ω|ε2
1 + ε3|Ω|. (23)

Thus, combining (21) with estimates in (18) and (23), we obtain that

E(uε(t)) = 1
2 ||u

ε
t (t)||2L2(Ω) + 1

2[uε(t)]2s + ||Wε(uε(t))||L1(Ω) ≤ C(ε1, ε2, ε3,Ω) (24)
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for any t ∈ [0, T ]. On the other hand, we have

||uε(t)− uε(0)||2L2(Ω) =
∫

Ω

∣∣∣∣∫ t

0
uεt (s, x)ds

∣∣∣∣2 dx ≤ t ∫
Ω

∫ t

0
|uεt (s, x)|2dsdx

≤ T
∫ t

0

∫
Ω
|uεt (s, x)|2dxds ≤ 2T 2C(ε1, ε2, ε3,Ω)

(25)

where we have made use of Jensen’s inequality and Fubini’s theorem. Hence,

||uε(t)||L2(Ω) ≤ ||uε(0)||L2(Ω) + T
√

2C(ε1, ε2, ε3,Ω) ≤ ε1 + T
√

2C(ε1, ε2, ε3,Ω) (26)

for all t ∈ [0, T ]. So, from the estimates (24) and (26) we obtain that

||uε(t)||H̃s(Ω) ≤ C(ε1, ε2, ε3, T,Ω). (27)

Since 2s > d, by means of the Sobolev embedding from H̃s(Ω) into the space C0(Rd;Rm) (see
Lemma 1), we obtain

||uε(t)||C0(Ω;Rm) ≤ C||uε(t)||H̃s(Ω) ≤ C(ε1, ε2, ε3, T,Ω), (28)

for all t ∈ [0, T ], where C(ε1, ε2, ε3, T,Ω) is decreasing as soon as ε1, ε2, ε3 are decreasing. Thus,
for any small η > 0, by choosing ε1, ε2, ε3 small enough one has

|uε(x, t)| ≤ 1− η (29)

for any (t, x) ∈ [0, T ]×Ω. Since approximate solutions never enter the discontinuity region of the
gradient ∇W , one can then repeat the same steps as in the proof of Theorem 3 to pass to the
limit along the sequence (uε)ε and obtain a weak solution satisfying (19) and (20).

As the above discussion made clear, in order to be able to handle problems with a discontinuity
of the adhesive glue layer, i.e. discontinuities in ∇W , a more robust notion of solution is needed.
An immediate follow-up would be to consider for instance solutions in the sense of differential
inclusions, e.g.

utt + (−∆)su ∈ −∂W (u)

(see for example [5], and references therein) or in the sense of Young measures, but we postpone
such discussion to future works.
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