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“Karma police, arrest this man. He talks in maths, he buzzes like a fridge, he’s like a
detuned radio”

Karma Police, Radiohead.

“Non l’ho mai fatto, ma ’ho sempre sognato.”

Paolo Villaggio, dal film “Fantozzi".

“La metafora. .. come dirti. .. & quando parli di una cosa paragonandola a un’altra. .. per
esempio quando dici “Il cielo piange” che cosa vuol dire?”

"Che. .. che sta piovendo?’

“Si, bravo. Questa é una metafora.”

"Allora e semplice. .. ebbé perché ci ha questo nome cosi complicato?’

“Gli vomini non hanno niente a che vedere con la semplicita o la complessita delle cose.”

Philippe Noiret e Massimo Troisi, dal film “Il Postino".
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Preface

This doctoral thesis is focused on some problems involving nonlocal operators.

Chapters 1 and 2 are devoted to a general introduction of the topics and to some prelim-
inary notions.

In chapter 3 we give some new results about solutions of fractional equations. Namely
we prove that solutions of equations involving a pretty general linear fractional operator,
are locally dense among smooth functions. Moreover, we provide some applications of this
result. This is a joint work with S. Dipierro and E. Valdinoci [CDV19|.

In chapter 4 we analyze some properties of the so called Riemann-Liouville fractional
sobolev spaces; in particular, we study what kind of inclusions hold between these spaces
and other well known ones such as the Gagliardo-Slobodeckij fractional Sobolev space W*?!,
and the space BV of functions with bounded variation. This is a joint work with G.E. Comi

[CC20).

In chapter 5 we study a minimization problem for nonlocal functionals in Carnot groups.
Namely, we prove that, analogously as in the euclidean case, halfspaces are local minimizers
for a class of functionals called nonlocal perimeters. Moreover, a partial I'-convergence result
is proved. This is a joint work with S. Don, D. Pallara and A. Pinamonti [CDPP20].

The final appendix A contains some other technical results which are widely used through-
out this work; the original results concerning Caputo fractional derivatives have been ob-
tained in a joint paper with S. Dipierro and E. Valdinoci [CDV18].



Chapter 1

Introduction

Nonlocal operators of fractional type present a variety of challenging problems in pure mathe-
matics, also in connections with long-range phase transitions and nonlocal minimal surfaces,
and are nowadays commonly exploited in a large number of models describing complex
phenomena related to anomalous diffusion and boundary reactions in physics, biology and
material sciences (see e.g. [BV16,dILV11| for several examples, for instance in atom dis-
locations in crystals, water waves models and quasi-geostrophic equations). Furthermore,
anomalous diffusion in the space variables can be seen as the natural counterpart of discontin-
uous Markov processes (see e.g. [Val09] for a simple explanation on how nonlocal operators
and discontinuous Markov processes are related), thus providing important connections with
problems in probability and statistics, and several applications to economy and finance (see
e.g. [MVNG8, Man12| for pioneer works relating anomalous diffusion and financial models).

On the other hand, the development of time-fractional derivatives began at the end of the
seventeenth century, also in view of contributions by mathematicians such as Leibniz, Euler,
Laplace, Liouville, Abel, Heaviside, and many others, see e.g. [Ros74, Ros77, KR85, Ros92,
Fer18] and the references therein for several interesting scientific and historical discussions.
From the point of view of the applications, time-fractional derivatives naturally provide a
model to comprise memory effects in the description of the phenomena under consideration.
The definition of fractional derivative (at least the most exploited) needs the definition of
fractional integral; Riemann-Liouville fractional integral is the most celebrated in literature
and most used in the applications and the use of Riemann-Liouville fractional integral allow
to define Riemann-Liouville fractional Sobolev space Wg7 . (1), for p > 1, s € (0,1) and
I a open bounded interval. This space is given by functions u € LP(I) such that its left
Riemann-Liouville (1 — s)-fractional integral

1 T u(t)
F(l—s)/a @b

belongs to W'P(I). We notice that the Riemann-Liouville is a particular case of Volterra
operator, with a singular kernel having an L!-type singularity, and this makes this space
intrinsecally different with respect to the Gagliardo-Slobodeckij fractional Sobolev space
whose functions have a finite integral seminorm defined through a singular kernel with a non
L'-singularity. Among the others, the book by [SKM93| offers many highlights and appli-
cations involving fractional derivatives also of different type beyond the Riemann-Liouville
one such as the Caputo and the Marchaud fractional derivative that will be used through-
out this work, and other ones such as the Grunwald-Letnikov, the Hadamard and the Weyl




fractional derivative. We notice that in the last years many types of fractional derivatives
have been introduced, but some of them can be reduced to a derivative of integer order via
some computations. We refer to [Tarl3, Tar16|, where the author points out that the failure
of the usual Leibniz rule and of the chain rule are necessary conditions to ensure that we are
actually dealing with a derivative of fractional order.

In the variational framework nonlocal functionals arise for example in peridynamics,
image processing, shape optimization and nonlocal minimal surfaces [BMC14,BN18, BRS16,
CRS10]. A pretty general nonlocal functional has the following expression

G(u, Q,Q) / H(u(x) —u(y))K(x — y)dzdy, (1.1)
Q/
for some €2, C R", open sets H : R — [0, +00) convex, and some positive kernel K.
In particular, if we choose in (1.1) H(2) := |z|, a functional of the type
1
F(u,Q) = ég(u, ,Q) + G(u, Q2,0 (1.2)

is called nonlocal perimeter if the kernel K satisfies additional assumptions such as
weighted local integrability, integrability at infinity and radial symmetry; one typical ex-
ample is given by the fractional kernel K(z) := |z|7"* for some s € (0, 1).

If we choose H(z) := 2% in (1.1) the functional

Flu,Q) = ig(u,Q,Q)—i—/QW(u(x))dx, (1.3)

where W is a double-well potential'! and K is an anisotropic kernel, has been studied
in [AB98] in the framework of phase transition problems; in particular, having in mind a
two-phase fluid model, in that paper the authors prove that the interface between the two
admissible phases tends to zero in a suitable way.

We mention also the paper by Savin and Valdinoci [SV12]| in which the authors prove
a T-convergence result for the rescaled limit of the functional given by (1.2) plus the same
potential energy as in (1.3) and with the fractional kernel K(z) = |z|™""°; in particular
the novelty is the fact that the I-limit is a nonlocal functional when s € (0, 3), but quite
surprisingly is the classical perimeter when s € [%, 1); for this reason the authors refer to this
behaviour as “strongly nonlocal regime" in the range (0, %), and “weakly nonlocal regime" in
the range s € [3,1).

The functional in (1.1) is strictly related even with the Theory of nonlocal Dirichlet forms;
in fact if we choose H(z) := |z|?, and K(z) := |z|7""% for some s € (0,1) the free critical
points of the energy functional given by the nonlocal quadratic form

Alu) := CZ’SQ(U,R" \ Q4 R™\ Q°) — / fudz  f € L),
Q
are weak solutions of the equation

(=AYu=f in Q
u=0 in R"\Q.

LA double-well potential with wells in a and b is any nonnegative function W € C?(R) such that W (a) =
W(b) =0, W >0in R\ {a,b}, W(a) = W'(b) = 0, min{W" (@), W (b)} > 0



In this work, we are interested on functionals as in (1.2). Exploiting suitable calibration
methods in [Cab19, Pag19| the local minimality of halfspaces for euclidean nonlocal perime-
ters is proved. Moreover, in [AB98, BP19] the authors prove that the I-limit of a suitable
rescaled sequence is the classical perimeter, up to a multiplicative constant; these proofs
provide the use of density estimates originally introduced in [FM93| for the T" — lim inf in-
equality, while the I' — lim sup inequality needs some intrinsically euclidean techniques such
as polyhedral approximation of the finite perimeter set, or approximation results for the total
variation of the gradient of a BV function by means of weighted integrals of the difference
quotient.
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Chapter 2

Preliminaries

We start with some tools that will be strongly used throughout this work; we notice that
Caputo fractional derivative will be indicated with two different notations: here and in Chap-
ter 4 we will use the notation “D?_ [u] in order to avoid disambiguities with the Riemann-
Liouville fractional derivative, while in Chapter 3 we will refer to it with the notation D; ,u;
the two pedices refer respectively to the variable on which the derivative acts and to the
initial point (since we will work only with left derivatives we omit the symbol +).

Definition 2.1 (Euler’'s Gamma function). Let z € C with R(z) > 0. The Euler’s Gamma
function is given by

['(2) := /+OO t*~le tdt. (2.1)
moreover, since the following identity holdsotrue for any k € N
(z+k—1(z+k—-2)...(24+1)zI'(2) =T'(2 + k),
definition (2.1) extends to any z € C\ Z_.

Definition 2.2 (Beta function). Let z,w € C, R(z),R(w) > 0. The Beta function is given

by
Y L P T L () N R A
B<Z,w)._/0t (1=1) dt_F(z+w)_/o (1+t)z+wdt

Remark 2.3. For z,y € R, y < x, using the change of variable s := i;_i,; the following
wdentity immediately follows

(z —y)*roh.

T 1
/ (l’ - t)afl(t - y)afldt — (.%’ _ y>a+al/ 8(171(1 _ 8)071618 —
y 0
The results developed in Chapter 4 are all given in dimension one, and here we shall
work on bounded open intervals I = (a,b) for some a,b € R, a < b. As it is customary,
we denote by M(I) and M(I) the spaces of finite Radon measures over I and I = [a, ],
respectively. We shall say that p € C°((—1, 1)) is a standard mollifier if p > 0, p(x) = p(—2x)
1
1
and / pdx = 1. In addition, for any € > 0, we set p.(z) :== —p <§>
-1 g g
For the convenience of the reader we recall here definition and some properties of some
well known functional spaces.

10



Definition 2.4. Let 1 < p < oo. We say that a measurable function u belongs to the
Marcinkiewicz space LP>°(1) if

sup tU (t)/? < oo,
>0

where for any t > 0, U(t) denotes the indicator function of u defined as
Ut):=L{x eI |ju(x)] >t}).

2.1 Some facts about BV functions on the real line

Definition 2.5. We say that u € BV (I) if u € L*(I) and its weak derivative Du is a finite
Radon measure; that is, if there exists a finite Radon measure | such that

/ () (x)da = / " () du(x).

for any ¢ € CH(I), in which case we have p = Du in M(I).

We recall that the space BV (I) is a Banach space when equipped with the norm [|ul| gy ==
lll s gy + 1Dl (D).

For the ease of the reader, we recall here a well-known result on the boundedness of BV
functions on segments of the real line.

Lemma 2.6. We have BV (1) C L*(I) with a continuous immersion. In particular,

1
[[u]| oo (1) < max e — [ullBv(r), (2.2)

for any uw € BV (I).

Proof. Thanks to [EG15, Claim 3, Proof of Lemma 5.21|, we know that, for any u € BV (1)
and Ll-a.e. z € 1,

1 b
()| < s [ luta)ldo -+ 1Dul).
Hence, (2.2) follows immediately. O

As a consequence, it is not difficult to show that, if w € BV (I) and we set

i(z) = u(z) %fxel,
0 if v e R\ I,

then @ € BV (R). In addiction, we may prove that, if u € BV (I), the approximate limits of
u in a from the right, u(a+), and in b from the left, u(b—), exist and they coincide with the
precise representative of @y, on those points. In other words, we have

1 a+r 1 b
u(a+) = lim — u(z)dr and u(b—) :=lim — u(x) de.

r—07r @ r—0 71 b—r

In addition, thanks to [AFP00, Corollary 3.80] it is possible to see that, for any standard
mollifier p, we have

(pe *u)(a) — u(a+) and (pg * u)(b) — u(b—). (2.3)



Finally, it is easy to notice that, consistently with [BLNT17, Remark 4.1,
Di = DulL I + u(a+)6, — u(b—)d, (2.4)

where ¢ is the Dirac delta measure; while clearly Di =0 in R\ 1.

Now, we recall some known facts in Measure Theory. If y € M(I), then, according to the
Radon-Nikodym Theorem, we can split it into an absolutely continuous part (with respect
to the Lebsegue measure) fi,., and a singular part p,, such that g = g + ps. Moreover,
following [AFP00, Corollary 3.33], we can decompose the singular part p, into an atomic
measure f; and a diffuse measure yi.; in this way, we have that

M= fac T fs = Hac T Hj T e

In particular, this decomposition induces an analogous decomposition on BV functions on
the real line, which does not have a counterpart in the high dimensions. Namely, following
[AFPO00, Corollary 3.33|, for any u € BV (I) one has that

u:uac“_uj"’uca
where u,. € WH(I), u; is a jump function and u, is a Cantor function; that is, they satisfy
(Du)ac = u;c£17 (Du)] = Du] and (Du)c = Duc-

In particular, the functions v € BV (I) such that Du. = 0 in I form a special vector
subspace of BV (I) known as SBV(I).

2.2 Some known results in fractional Sobolev spaces

In this section we recall the definition of Gagliardo-Slobodeckij fractional Sobolev spaces
W#P(Q); in particular, we mention here two results that we will need in the sequel, namely:
a fractional Hardy inequality introduced in [Dyd04] and plainly proved for any 1 < p < oo
in [Lom18|, and the density of the set of smooth compactly supported functions C°(2) in
WP (Q).

Definition 2.7. Let s € (0,1), p € [1,400), and Q2 be an open set in R™ for some n > 1.
We define the fractional Sobolev space W*P(§)) as

WeP(Q) := {u e LP(); M € LP(Q x Q)} .
r —yY|r

The quantity

- u(z) — uly)l? Hr
[U]W‘W(ﬂ) T (/Q 0 \x _ y‘sern dxdy ’

is usually called Gagliardo-Slobodeckij seminorm of u; the space W*P(Q2), endowed with the
norm

1/p
lellwesiay = (1) + [6lyney) -
is a Banach space, which is Hilbert when p = 2. See e.g. [DNPV12].



Remark 2.8. We notice that if s > 0, s = m+ o for some m € Ny and some o € (0,1), we
say that u belongs to the fractional Sobolev space WP (Q2) if u € W™P(Q) and D*u € WP(2)
for any multi-index o € N™ such that |a| = m.

Lemma 2.9 (|[Loml18|, Theorem D.1.4.). Let n > 1, s € (0,1), p € [1,400) such that
sp < 1 and let @ C R™ a bounded open set with Lipschitz boundary. Then, there exists
c=c(n,s,p,Q) > 1 such that

Ju(z)]” p
: Wdfﬂ < cllulliyn)

for any uw € W*P(Q). The quantity |do(z)| := dist(x,00), denotes the signed distance from
the boundary of Q. In particular, when € is a bounded open interval I := (a,b) C R,
|07(z)| = min{z — a,b — z}.

Theorem 2.10 (|[Lom18|, Theorem D.2.1.). Let n > 1, Q C R™ a bounded open set with
Lipschitz boundary, s € (0,1) and 1 < p < 0o such that sp < 1.

Then, we have that W3*(Q) = C'COO(Q)MWSMQ) = W*P(Q), i.e. CX(Q) is dense in
WP(Q).

Remark 2.11. As a byproduct of Theorem 2.10, we have that also C1(Q) is dense in
wW(Q).

2.3 Riemann-Liouville fractional operators

2.3.1 Fractional Integrals

Definition 2.12. Let u € L' (I) and s € (0,1). We define the left and the right Riemann-
Liouwville s-fractional integral as

12, u) () ::F@ / r( el g (2.5)

and

b
I [u] (z) ::Fzs)/ T S) dt, (2.6)

where T denotes the Euler’s Gamma function (2.1).

Remark 2.13. Notice that a simple change of variable relates the operators I, and I
through the following formula

Lo [ul(Q(2)) = [} [ug](x),
where Q(x) :=b+a —x and ug(-) == u(Q(-)).

Remark 2.14. It is not difficult to check that definitions (2.5) and (2.6) are well posed for
any u € LY(I) and s € (0,1). Indeed, we have

. 1 b ch B 1 b bM N
bl = 15 [ | Gogm o= | G




(b—a)
/ |u b—t F(S—Fl)HuHLl(D’

so that I, [u] € L'(I) and, in particular, I3, [u] (z) is well defined for L'-a.e. x € I. A
similar argument shows that also I} [u] € LY(I), with

s (b — a)s
15— [u] |2y < WHUHD(I)
so that I} [u] is well defined almost everywhere in I.

One of the most useful property of the fractional integral, is the following

Lemma 2.15 (Semigroup law). Let a, 3 € (0,1) such that o+ 8 < 1 and u € L*(I). Then,
we have
Ig (13 [u]] = 1337,

where 1, [u](z) := /1‘ u(t)dt.
Proof. 1t is an easy task to check that
S B 1 e dt bou(s)
BN = 55 ), s ), e

— ; /iu(s)ds /m(x _ t)o‘_l(t — S)B—ldt (2.7)
)

INCYNE)

_ 1 z u(s o= [
_F(a+ﬁ)/a (x—s)lfafﬂd 1oy [u](z),

where the second equality follows by Fubini Theorem, while the third exploits Remark 2.3.
m

We establish now a simple duality relation between I, and I; which will be useful in
the following.

Lemma 2.16. Let u € LP(I), v € L(1I) such that i + é =1 and s € (0,1). Then we have

b b
/Ij+[u](x)v(x)d$:/ u(z) I, _[v](z) dx. (2.8)

Proof. By Fubini’s Theorem, we have

I
| =
V2)
SN—
E\@.
:\R
—
8
||
—~
SIS
S— | —r
[
|
w
—~
SN—
QL
~
QL
)

[ Bl oo de =




We conclude this section by recalling a well known result on the convergence of I, to
the identity operator as s — 0.

Lemma 2.17. For any u € L'(I) we have |15, [u] — ul|11) = 0 as s — 0. In particular,
if ue CY(I), then I:, [u)(z) = u(z) for any x € I and it holds that

u(a) 1

(x —a)’ + ) /a u'(t)(z — t)°dt. (2.9)

Loilul(z) = ¢ Ts+1)

(s+1)
Analogous statements hold for I _.

Proof. We start by assuming that u € C*(I), then, with a simple integration by parts,
equality (2.9) immediately follows. Thus, letting s — 07 we immediately obtain pointwise
convergence, and by Lebesgue dominated convergence Theorem we have convergence in
L'(I). Otherwise, if u € L'(I), fixed € > 0 there exists v € C'(I) such that ||v —ul|p1(5) < &
then

115 [u] —ullpry < 5w —v]llpgy + |5 [v] = vl + v =l

b—a)
< max{l u} lo = wllza + 12, o] = ollg

"T(s+1)
(b B a)s s
< max {L m e+ oy o] — vl
Eventually, for the arbitrariness of €, sending s — 0% the claim is completely proved. O

2.3.2 Continuity of the fractional integral in L” and Holder spaces

For the ease of the reader, we summarize in the following Propositions 2.18 and 2.21 some
results contained in [SKM93, Chapter 1, Section 3|. From now on, unless otherwise stated,
with the notation Xo(/), we will refer to functions f € X(I) that vanish in the endpoint a,
where X denotes some subspace of a Hélder or a Sobolev space.

Proposition 2.18 (Continuity properties of the fractional integral in L? spaces). For any
s € (0,1), the fractional integral I7, is a conlinuous operator from

1. LP(I) into LP(I), for any p > 1,

2. L'(I) into Ll%s’oo(l), and so in L"(I) for any r € 1, =)
3. LP(I) into L"(I), for any p € (1,1/s) and r € [1, 2],

4. LP(I) into C’O’S*%(I) for every p > 1/s,

5. LY3(I) into L™(I) with r € [1,400),

6. L>(I) into C%5(I).

where Li’oo(l) denotes the Marcinkiewicz space defined in 2.4.

Remark 2.19. We notice that point (i) of Proposition 2.18 is a consequence of a generalized

Minkowski inequality as observed in the proof of [SKM93, Theorem 2.6.|. In particular the

constant of continuity does not depend on p and it is given by %



Corollary 2.20. For any s € (0,1), the fractional integral I;, is a continuous operator from
BV (I) into C**(I).

Proof. Combining Lemma 2.2 and the last point of Proposition 2.18, the claim is completely
proved. O

Proposition 2.21 (Continuity properties of the fractional integral in Holder spaces). Let
s €(0,1) and o € (0,1]. The fractional integral I7, is a continuous operator from

1. Cy*(I) onto CY***(I) if a+s<1,
2. Co*(I) onto Hy'(I) if a+s=1,
3. Cy*(I) onto Cy* " NI) if a+s>1,

where the space HYY(I) is given by the functions that admit w(h) = |h||log|h|| as a local
modulus of continuity; namely, for which there exists C > 0 such that

[f(z+h) = f(x)] < Clhl[log[n][, vV 0<][h]<1/2.

2.3.3 Fractional Derivatives

Definition 2.22. Let s € (0,1). For any u : I — R sufficiently smooth, so that 1, °[u] is
differentiable, we define the left and right Riemann-Liouville fractional derivatives of u as

D3 [u] () = 125" [u] (1), (2.10)
and p
Di- ) (2) =~ 1} u) (). (211)

Remark 2.23. As a consequence of Proposition 2.21, we have that for 0 < s <« <1 and
u e CY*(I), I):%[u] € Cy**(I). Therefore, a-Hilder continuity with o > s is a sufficient
condition to ensure the ezistence of (2.10) and (2.11).

If one applies Riemann Liouville fractional integrals to the first derivative u’, whenever
this operation makes sense, one has the following alternative definitions of left and right
fractional derivatives originally given by Michele Caputo in [Cap08]

Definition 2.24. Let s € (0,1). For any u € C'(I) we define the left and right Caputo
fractional derivatives of u as

D) = L) = iy [ gt 212)

b u
“Di [u)(x) = —I*[W](z) = _F(ll— 3 /x i _<22)8dt. (2.13)



The minimal functional spaces in which formulas (2.12) (2.13) are well posed are the
space C1° o and C’ . See Appendix A.1.

For u € AC(I ), a simple computation relates the Riemann-Liouville and the Caputo
fractional derivatives. Indeed, integrating by parts, we have that

[ 0= [ a0 ST e

1—s

hence, differentiating in x on both sides of (2.14) and dividing by I'(1 — s), we obtain the
following formula

. ‘ u(a) s
Da+[u](x) = CDCL+U(ZL‘) + m(l’ — CL) . (215)
Analogously, for right derivatives we have that

D;_[u)(z) = “Dj_u(x) + = ub) gy, (2.16)

(1—s)
Therefore, the Riemann-Liouville and the Caputo fractional derivative coincide for any u €
AC(I) that vanishes in the initial point a for left derivatives, or in the final point b for right
derivatives.

We also notice that if u € AC(I), we can exploit formula (2.15) to obtain another
representation of the left Riemann-Liouville fractional derivative

a) 1 7o (t)
(e —ay +m—s>/a TR

(
)
(a) L |
(1 s)(z —a) +m—s>/ w(t) (/ : df*(w—a)&)dt
) S A
) + /0 (t)dt (2.17)
(
)
(

u

DZ;[“]( >_ ( — s

(1 =s)(x—a) T(l-s) & e
u(z s () —u(z = &)
NS e e *

- Tl —s)(z—a) +F(1—s)/a (z —t)s+1 dt

This different representation formula of the Riemann-Liouville fractional derivative

M pys _ u(z) s “u(z) —u(t)
Daclil®@) = s —ar Y Ta =9 / (=

is known as the Marchaud fractional derivative; for a precise treatment of this fractional
differential operator we refer to [Fer18] and [SKM93|.

Now, we recall the notion of LP-representability. From Proposition 2.18, we have that for
any 1 <p <ooand any s € (0,1), I, (LP(I)) C LP(I), where the inclusion is strict, as it is
shown by the following example.

Example 2.25. Consider



for some s € (0,1). Then we have u € LP(I) for all 1 <p < l—is, and, for all x € I, we see
that

1 v 1 !
]1—5 - - t— s—1 -t = ————— s—1 1— =5
a+ [U] (ﬁ) F(l . S)F(S) /a ( CL) (‘T ) F(l . S)F(S) /0 g ( U) o
5(57 I— 5)
— Iva— 2.18
(1 —s)I'(s) ’ ( )
by the properties of the Euler’s beta function . Therefore, we conclude that

D; [ul(x) =0 forall x€l, (2.19)

while the left Caputo s-fractional derivative is not well defined. We prove now that the
equation

L lfl=u (2.20)
has no solution in LP(I). In fact, suppose by contradiction that there exists f € LP(I)
satisfying (2.20). If we apply the (1 — s)-fractional integral on both sides of (2.20), thanks
to Lemma 2.15 and (2.18), we get

| 10t =11 (11w = 1) =1,
for any x € I. Therefore, differentiating on both sides of the equation, we obtain f = 0,
which is clearly a contradiction.

The next lemma gives a characterization of LP-representability. We are going prove it
only in the case of left fractional integral, the other case being completely analogous.

Definition 2.26. Let 1 < ¢ < oo and uw € LI(I); we say that u is LP-representable if
we I3 (LP(1)) orue I;_(LP(I)) for some 1 <p<qands € (0,1).

The next lemma gives a characterization of LP-representability; we prove it only in the
case of left fractional integral, the right case is completely analogous.

Lemma 2.27 (LP-representability criterion). Let u € L%(I), for some 1 < q < 0o s €
(0,1) and 1 < p < q. We have that u € I3 (LP(I)) if and only if 1, °[u] € W'P(I) and
1 [u)(a) = 0.

Proof. If w e I7, (LP(1)), then uw = I} [f] for some f € LP(I); therefore, using Lemma 2.15
() = 103 ) @) = I, 0@ = [ riede e whaa),

and I, *[u](a) = I'.[f](a) = 0. On the other hand, if I}, *[u] € W'(I) c AC(I) and
I.7%[u](a) = 0, we have that

@) = | DS, Jul(t)dt = 15012, (D5, [ul] (2),

therefore, by applying the operator D}lf to both sides of the equation we have

u(z) = Ig, [Dgy [ull(z),
with D?, [u] € LP(I); therefore v € I3, (LP(I)), and this concludes the proof. O



2.4 Riemann-Liouville fractional Sobolev spaces

Now, we got all the necessary tools to introduce the Riemann-Liouville fractional Sobolev
spaces

Definition 2.28 (Riemann-Liouville fractional Sobolev spaces). Let 1 < p < oo, and s €
(0,1). We define the Riemann-Liouville fractional Sobolev spaces as

Wil oo (1) :={ue LP(I), 17" [u] € WHP(I)}, (2.21)

and

Wit (1) :={ueLP(I), I,~°[u] e W"P(I)}. (2.22)

It is not difficult to see that the spaces Wg7 . (I) and Wg7, (I), endowed with the
norms

—S

- 1
lelhwse oy =l + 175" g (2.23)
and
. 1-s
||U||W;f,b_(1) = HuHLP(I) + H]b— [U]meg)a (2.24)
are Banach spaces.

We notice that, in light of the continuity of the fractional integral in L” given by Propo-
sition 2.18, the norm in (2.23) (analogously for the one in (2.24)), is equivalent to the one
given by

Jull = llull oy + HD2+[“]”LP(1)
therefore, one could define the space W7 .. (I) and Wp7, (I) simply requiring that u €
LP(I) has fractional derivatives in LP(I); but this definition does not take into account the
differentiability properties of the fractional integral which are necessaries for integration-by-
parts formulae presented in this chapter and in Chapter 4.

We point out that there is a duality relation between the left Riemann-Liouville fractional
derivative and the Caputo right fractional derivative, as shown in the following lemma

Lemma 2.29. Let u € Wé’iﬁ(]), veCH(I) and s € (0,1). Then we have

/ D2 [u](x) v(x) do = / w(z) D [v](z) da. (2.25)

Proof. Integrating by parts, and using Fubini’s theorem, we have

/ab Di [u)(z)v(z)dr = — /b D2 [u)(2) o/ (2) de

a




In the light of Definition 2.28, we may rephrase Lemma 2.27 in the following way.

Lemma 2.30. Let s € (0,1) and p € [1,00]. Then, v € I (LP(I)) if and only if u €
Wit (1) and I5°[u)(@) = 0.

We consider now a version of the fundamental Theorem of Calculus for left Riemann-
Liouville fractional derivatives. A similar result was stated in [BIL5, Proposition 5|, however
we provide here a short proof, for completeness.

Lemma 2.31. Let s € (0,1) and v € L*(I). Then, for L'-a.e. x € I, we have
u(x) = D, (L2, [l @), (2.26)
Ifue WE’;M(I), then, for L'-a.e. x € I, we also have
o) = 13,0, ) + D gy (27
Finally, if u € Wgp . (I) N I3, (LY(1)), then
u(@) = D (I, [ull(z) = I3, [D [ul](x) for L'-a.e. x € 1. (2.28)
Proof. 1f w € L*(I), we have I? [u] € L'(I), by Remark 2.14, and, by Lemma 2.15,

Loy [ul)(w) = I [ul () = /xU(t)dt € WhHi(I).

Therefore, for Ll-a.e. © € I, we get

d d |

D2 [l (@) = I ) (2) = - (12, [ (2) = u(a).

In order to prove (2.27), we notice that I. *[u] € WU(I) with weak derivative D [u] €
LY(I), so that, for L'-a.e. z € I,

) - | " DLl (1)dt + 1l (a)

L, "[u)(a)
['(s)

by (2.18). We notice that, by Remark 2.14, I, [D:_ [u]] € L'(I), since D:, [u] € L*(I) by
assumption. Therefore, we apply D};S to both sides of the equation and use (2.26) to obtain
(2.27). Finally, if u € W§%7a+(1) NI, (LY(I)), then, by Lemma 2.27 with p = ¢ = 1, we have
that I, *[u](a) = 0, and this ends the proof. O

= 1, [ (D5 [ull] () + 17 (- —a) | (2),

Remark 2.32. Notice that these equalities are stable when s — 1= for u € CY(I). Indeed,
we have that

u(z) = lim D2 (T2, [u]] () = % ( / zu(t)dt) _ / ()t + ula)

s—1—

. S s I;;s[u](a) s—1
= Jim DL ) (w) + T — a)

Y

where the second equality exploits Lemma 2.17.



Remark 2.33. We notice that if u € W;%,H(I) \I; (L'(I)), thanks to Remark 2.13 we have

that ug € W;’;bf(f) but this not necessarily implies that u € Wéﬁ’bf([). Indeed, consider
s—1

u(z) = %; we have that 1) °[u](z) = 1 for any x € [0,1], hence I};*[u] € W((0,1)).

On the other hand, we have that

;/1#1@— )_Sdt—;/l/x “Hw—1)"%d
T(1—s)/, v “Ti-s ), ©OW s

and this function belongs to L*((0,1))\ W1((0,1)). The check of L*-summability is an easy
task; on the other side, if we compute the first derivative of I} *[u](z) we have that

L= [u)(x) =

D fulla) =~ 1) = gy s # HO

2.5 Carnot groups

A connected and simply connected Lie group (G, ) is said to be a Carnot group of step s if
its Lie algebra g admits a step s stratification, i.e., there exist linear subspaces g1, ...,gs of g
such that
g=01® .. Dgs, (01,0 =011, 8 #1{0}, [g501] = {0} (2.29)

where [g1, g;] is the subspace of g generated by the commutators [X,Y] with X € g; and
Y € g;. In the last few years, Carnot groups have been largely studied in several respects,
such as differential geometry [CDPTO7|, subelliptic differential equations [BLUO7, Fol73,
Fol75,SC84], complex analysis [SS03].

For a general introduction to Carnot groups from the point of view of this chapter and
for further examples, we refer, e.g., to [BLUO7, Fol75,LD17,SS03].

Fix a scalar product (-,-) on g; and denote by | - | its induced norm. We recall that a
curve v: [a,b] — G is absolutely continuous if it is absolutely continuous as a curve into R"
via composition with local charts.

Definition 2.34. An absolutely continuous curve v: [a,b] — G is said to be horizontal if

v'(t) € g,

for almost every t € [a,b]. The length of such a curve is given by

b
Lo = [ (o)t

Chow’s theorem [BLUO7, Theorem 19.1.3] asserts that any two points in a Carnot group
can be connected by a horizontal curve. Hence, the following definition is well-posed.

Definition 2.35. For every xz,y € G, their Carnot-Carathéodory (CC) distance is defined
by
d(xz,y) =inf {Lg(7y): 7 is a horizontal curve joining x and y} .

We also use the notation ||z|| = d(z,0) for x € G.



We denote by
B(x,r) ={y €G: |ly 'zl <r}
the open ball centered at x € G with radius » > 0 and by B(r) = B(0,r).

It is well-known (see e.g. [Mit85]) that the Hausdorff dimension of the metric space (G, d) is
given by the so-called homogeneous dimension Q) of G, which is given by

Q=) idim(g,).
=1

The Hausdorff measure H? and the spherical Hausdorff measure S? are all Haar measure
on G. We denote by 1 one of them, and, for any f € L'(2; 1), we write for shortness

[ 1@ de= [ $a) duto)
Q Q
for some measurable set ().

For any A > 0, we denote by ¢} : g — g the unique linear map such that
X = NX, VX €g.

The maps J} : g — g are Lie algebra automorphisms, i.e., d5([X,Y]) = [63X,61Y] for all
X,Y € g. For every A > 0, the map d3 naturally induces an automorphism on the group
dx : G — G by the identity d,(x) = (expods olog)(z). It is easy to verify that both the
families (03})as0 and (d))xso are a one-parameter group of automorphisms (of Lie algebra
and of groups, respectively), i.e., 03 o J; = 03, and 0y 0 0, = 0y, for all A, > 0. The maps
0%, 0y are both called dilation of factor .

Denoting by 7, : G — G the (left) translation by the element x € G defined as
TeZ =T+ 2= T2,

we remark that the CC distance is homogeneous with respect to dilations and left invariant.
More precisely, for every A > 0 and for every z,y, 2 € G one has

d(0rz,0\y) = Ad(z,y), d(12y, 7o2) = d(y, 2).

This immediately implies that 7,.(B(y,r)) = B(7.y,r) and 0,B(y,r) = B(,\y, Ar).

2.5.1 Perimeter and rectifiability in Carnot Groups

One of the main problems of sub-Riemannian geometry concerns the regularity of the (re-
duced) boundary of a set of finite perimeter. The solution of this problem in the Euclidean
spaces goes back to De Giorgi [DG55|. He proved that the reduced boundary of a set of finite
perimeter is (n — 1)-recifiable, i.e., it can be covered, up to a set of H" !-measure zero, by
a countable family of C''-hypersurfaces. The validity of such a result has wide consequences
in the development of Geometric Measure Theory and Calculus of Variations (see e.g. the
monographs [AFP00, EG15]).

The validity of a rectifiability-type theorem in the context of Carnot groups is still not
yet known in full generality. However, there are complete results in all Carnot groups of



step 2 (see [FSSCO1, FSSCO03]) and in the so-called Carnot groups of type * (see [Marl4]).
In these papers the authors show that the reduced boundary of a set of finite perimeter in a
Carnot group of the chosen class is rectifiable with respect to the intrinsic structure of the
group.

We now introduce the notions of perimeter, reduced boundary and rectifiability.

Definition 2.36. Let Q) be an open set in G and let f € L. (). We say that [ has locally

bounded variation in Q (f € BVgi1c(?)), if, for every Y € g1 and every open set A € ,
there exists a Radon measure Y f on € such that

/Awaduz—/Asod(Yf),

for every ¢ € CYHA). We say that f € L'(Q) has bounded variation in Q (f € BVg(Q))
if f has locally bounded variation in 0 and, for every basis (Xi,...,Xm) of g1, the total
variation |Df|(Q) of the measure Df = (X1 f,..., X f) is finite. If E is a measurable set
in Q, we say that E has locally finite (resp. finite) perimeter in Q if xg € BV 10c(2) (resp.

XE € BV(Q)). In such a case, the measure |Dxg| is called perimeter of E and it is denoted
by Pg(E;-).

Definition 2.37. Let E C G be a set with locally finite perimeter. We define the reduced
boundary FE of E to be the set of points p € G such that Pg(E; B(p,r)) > 0 for all r > 0
and there exists

lim Dxge(B(p,r)) i Dxe(B(p,r))
r—0 P([;(E;B(p, 7”)) r—0 |DXE|<B(p7 T))

= VE(p) € Rmu

with lve(p)| = 1.

Definition 2.38. Let Q2 C G be an open set in a Carnot group G. We say that a function
[ Q = R s of class Ck if [ is continuous and, for every X € g1, the derivative X f
in the sense of distributions is represented by a continuous function. Given a basis X =
(X1,...,Xm) of g1, we also denote by Vx f: Q — R™ the vector valued function defined by

Vxf=Xf .. Xnf).

Definition 2.39. A set X C G is said to be a hypersurface of class C§ if, for every p € &
there exists a neighborhood U of p, and a function f: U — R of class C§ such that

YNU={qeU: f(q) =0},
and infy |Vx f| > 0, for any basis X = (X1,...,Xn) of g1

Definition 2.40. Let E C G be a measurable set. We say that E is Cf-rectifiable (or simply
rectifiable ), if there exists a family {T'; : j € N} of C&-hypersurfaces such that

HO! (E\ U Fj> =0,

where Q is the homogeneous dimension of G and HP™' denotes the (Q — 1)—dimensional
Hausdorff measure defined through the Carnot-Carathéodory distance.



Definition 2.41. For any v € g1 \ {0}, we define the vertical halfspace with normal v by
setting
H, ={xe€G: (mlogz,v) >0},

where w1 g — g1 is the horizontal projection on the Lie algebra and log : G — g is the

inverse of the exponential map. Notice that if v € G is such that (mlogx,v) > 0, then
-1 c

x € Hf.

Following the notation of [DV19] we introduce the following:

Definition 2.42. We say that a Carnot group G satisfies property R if every set E C G of
locally finite perimeter in G has rectifiable reduced boundary.

As already mentioned before, property R is satisfied in Euclidean spaces, in all Carnot
groups of step 2 and in the so-called Carnot groups of type *.

Remark 2.43. If G is a Carnot group satisfying property R and E C G is a set of finite
perimeter in G, then, for HO-almost every p € FE, the family 61/,p ' E converges in Li.,
to the halfspace H, .. This comes from the fact that C*-hypersurfaces have flat blow-up
(see e.g. [DV19, Proposition 2.13|).

Whenever property R is not assumed, only partial result about blow-up of sets of finite
perimeter are available in the literature. It is proved in |[FSSCO3| that, for any set E C G with
locally finite perimeter and for HO '-almost every p € FE, the family 01,0 L E converges in
L. (G) to a set of constant horizontal normal F', namely a set for which there exists v € g,

loc

such that
vxp >0 and Xxp=0 forevery X € g1 with X Lv, (2.30)

wn the sense of distributions.

If in addition G has step 2, or it is of type x, then it is proved respectively in [FSSCO3|
and [Marl4| that, up to a left translation, every set of constant horizontal normal is really
a vertical halfspace. On the other hand, still in [FSSC03, Example 3.2|, it is proved that
for general Carnot groups condition (2.30) does not characterize vertical halfspaces. The
classification of sets with constant horizontal normal s a challenging problem and, as far
as we know, the most general result in this direction is [AKLD09, Theorem 1.2|: if E C G
has locally finite perimeter, then, for |Dxg|-a.e. p € G, there exist an infinitesimal sequence
of radii (r;) and a vertical halfspace H such that 61,,(p™'E) converges in L, (G) to H, as
Jj — 0.



Chapter 3

Local density of solutions to fractional
equations

3.1 Introduction and main results

In this chapter, following the recent monograph |[CDV19|, we prove the local density of
functions which annihilate a linear operator built by classical and fractional derivatives, both
in space and time, where time-fractional derivatives will be mostly described in terms of the
so-called Caputo fractional derivative (see [Cap08|), which induces a natural “direction” in
the time variable, distinguishing between “past” and “future”.

In particular, the time direction encoded in this setting allows the analysis of “non an-
ticipative systems”, namely phenomena in which the state at a given time depends on past
events, but not on future ones. The Caputo derivative is also related to other types of time-
fractional derivatives, such as the Marchaud fractional derivative, which has applications in
modeling anomalous time diffusion, see e.g. [ACV16,AV19, Ferl8|. See also [MR93, SKM93]
for more details on fractional operators and several applications.

Here, we will take advantadge of the nonlocal structure of a very general linear operator
containing fractional derivatives in some variables (say, either time, or space, or both),
in order to approximate, in the smooth sense and with arbitrary precision, any prescribed
function. Remarkably, no structural assumption needs to be taken on the prescribed function:
therefore this approximation property reveals a truly nonlocal behaviour, since it is in contrast
with the rigidity of the functions that lie in the kernel of classical linear operators (for
instance, harmonic functions cannot approximate a function with interior maxima or minima,
functions with null first derivatives are necessarily constant, and so on).

The approximation results with solutions of nonlocal operators have been first introduced
in [DSV17] for the case of the fractional Laplacian, and since then widely studied under differ-
ent perspectives, including harmonic analysis, see [RS18, GSU16, Riil17,RS17a, RS17b]. The
approximation result for the one-dimensional case of a fractional derivative of Caputo type
has been considered in [Bucl7, CDV18|, and operators involving classical time derivatives
and additional classical derivatives in space have been studied in [DSV19a].

The great flexibility of solutions of fractional problems established by this type of ap-
proximation results has also consequences that go beyond the purely mathematical curiosity.
For example, these results can be applied to study the evolution of biological populations,
showing how a nonlocal hunting or dispersive strategy can be more convenient than one
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based on classical diffusion, in order to avoid waste of resources and optimize the search for
food in sparse environment, see [MV17,CDV17|. Interestingly, the theoretical descriptions
provided in this setting can be compared with a series of concrete biological data and real
world experiments, confirming anomalous diffusion behaviours in many biological species,
see [VABT96]. It is worth noticing that the flexible behaviour exhibited by solutions of frac-
tional linear equations is set against the rigidity of nonlocal minimal graphs; see for instance
the recent paper [DSV19b|.

Another interesting application of time-fractional derivatives arises in neuroscience, for
instance in view of the anomalous diffusion which has been experimentally measured in
neurons, see e.g. [SWDSA06| and the references therein. In this case, the anomalous diffusion
could be seen as the effect of the highly ramified structure of the biological cells taken into
account, see [AB91,DV18].

In many applications, it is also natural to consider the case in which different types of
diffusion take place in different variables: for instance, classical diffusion in space variables
could be naturally combined to anomalous diffusion with respect to variables which take into
account genetical information, see [RVDT13,Sef17].

Now, to state the main original results of this work, we introduce some notation. In what
follows, we will denote the “local variables” with the symbol x, the “nonlocal variables” with
y, the “time-fractional variables” with ¢. Namely, we consider the variables

r=(x1,...,T,) € R x ... x R,
y=(y1,...,ym) ER™ x ... x R™™ (3.1)
and t = (t1,...,t;) € R,
for some p1,...,pn, M, my,...,my, | € N, and we let
(z,y,t) € RY, where N :=pi+...+p,+mi+...+my +1.

When necessary, we will use the notation BY to denote the k-dimensional ball of radius R,
centered at the origin in R¥; otherwise, when there are no ambiguities, we will use the usual
notation Bpg.

Fixed r = (r1,...,7m,) € NP* x ... x NP with |r;| > 1 for each ¢ € {1,...,n}, and a =
(1,...,a,) € R™ we consider the local operator acting on the variables x = (z1,...,2,)
given by

[ = Xn:a,ﬁ;; (3.2)
i=1

where the multi-index notation has been used.

Furthermore’ given & - (évl’ Tt éﬂ]\/[) € RM and s = (517 SR SM) € (O, "—Oo)jwa we
consider the operator
M
L= bi(-a), (33)
j=1

where each operator (—A),’ denotes the fractional Laplacian of order 2s; acting on the set
of space variables y; € R™. More precisely, for any j € {1,..., M}, given s; > 0 and h; € N
with hj; := ming, ey such that s; € (0, ¢;), in the spirit of [AJS18a|, we consider the operator

<5hju> (337 Y, ta Y})
‘Y}’ijrQsj

(-a)u oyt = [ e (3.4)

R



where

h;

2h;
((ShjU) (ZE, y7t7 Y;) = Z (_1)k <h _]k>u (x7y17 e Yi—1,Y5 + k}/ﬁ Yj+1,--- 7yM7t)'
k=—h; J
(3.5)
In particular, when h; := 1, this setting comprises the case of the fractional Lapla-

cian (—A)Z; of order 2s; € (0,2), given by

(2U<377y7t) - u(x7y17 s 7yj717yj + Yj’3/j+17 cee 7yM7t)

ay;
TATEES

(—A);; w(z,y,t) = Cm,s, /

R™3

_u(waylw"ayjfhyj _Y}aijrla"'ayMﬂf))

where s; € (0,1) and ¢y, s, denotes a multiplicative normalizing constant (see e.g. for-
mula (3.1.10) in [BV16]).

It is interesting to recall that if h; = 2 and s; = 1 the setting in (3.4) provides a nonlocal
representation for the classical Laplacian, see [AV19).

In our general framework, we take into account also nonlocal operators of time-fractional
type. To this end, for any a > 0, letting k := [a] + 1 and a € RU {—00}, one can introduce
the left! Caputo fractional derivative of order o and initial point a, defined, for ¢t > a, as

g, ut) = F(/{:l—oz) / ; ?tf)gﬂdr (3.6)

In this framework, fixed ¢ = (c1,...,¢;) € R, a = (aq,...,q0) € (0,400)! and a =
(ar,...,a;) € (RU{—00})!, we set

l
D.:=Y cn Dy, . (3.7)
h=1

Then, in the notation introduced in (3.2), (3.3) and (3.7), we consider here the superposition
of the local, the space-fractional, and the time-fractional operators, that is, we set

Ay =1+ L+ D,. (3.8)

With this, the statement of our main result goes as follows:

'In the literature, one often finds also the notion of right Caputo fractional derivative, defined for ¢ < a

by k k
(Do)
) /t (r I

T (k — _ t)&fk‘ﬂ*l .

Since the right time-fractional derivative boils down to the left one (by replacing ¢ with 2a — t), in this
chapter we focus only on the case of left derivatives.

Also, though there are several time-fractional derivatives that are studied in the literature under different
perspectives, we focus here on the Caputo derivative, since it possesses well-posedness properties with respect
to classical initial value problems, differently than other time-fractional derivatives, such as the Riemann-
Liouville derivative, in which the initial value setting involves data containing derivatives of fractional order.

2For notational simplicity, we will often denote dFu = u(%).



Theorem 3.1. Suppose that

either there exists i € {1,..., M} such that 0; # 0 and s; ¢ N,
or there exists i € {1,...,l} such that ¢; # 0 and o; ¢ N.

Let { €N, f:RYN = R, with f € C* (B_{V) Fized € > 0, there erist

u:ugeCw(B{V)ﬂC(RN),
a=(ay,...,a) = (are ..., a.) € (—o0,0), (3.10)
and R=R. >1

such that N
Au=0 in By,
{ u=0 in RY\ BY, (3.11)
and
lu = fllcepyy <€ (3.12)

We observe that the initial points of the Caputo type operators in Theorem 3.1 also
depend on ¢, as detailed in (3.10) (but the other parameters, such as the orders of the
operators involved, are fixed arbitrarily).

We also stress that condition (3.9) requires that the operator A, contains at least one
nonlocal operator among its building blocks in (3.2), (3.3) and (3.7). This condition cannot
be avoided, since approximation results in the same spirit of Theorem 3.1 cannot hold for
classical differential operators.

Theorem 3.1 comprises, as particular cases, the nonlocal approximation results estab-
lished in the recent literature of this topic. Indeed, when
h==Q=U==by=ci=-=0=0,
O =1,
and s € (0,1)
we see that Theorem 3.1 recovers the main result in [DSV17]|, giving the local density of
s-harmonic functions vanishing outside a compact set.

Similarly, when

a’lz.:a/n:éj:'.:#M:CIZ:Cl—1:O7
=1,
and D, = Dy,, forsomea>0,a<0

we have that Theorem 3.1 reduces to the main results in [Bucl7] for @ € (0,1) and [CDV18]
for « > 1, in which such approximation result was established for Caputo-stationary func-
tions, i.e, functions that annihilate the Caputo fractional derivative.

Also, when

pr=-=pn=1,
Gi=-=a =0,



and s; € (0,1), forevery je{l,...,M},

we have that Theorem 3.1 recovers the cases taken into account in [DSV19a|, in which
approximation results have been established for the superposition of a local operator with a
superposition of fractional Laplacians of order 2s; < 2.

In this sense, not only Theorem 3.1 comprises the existing literature, but it goes beyond it,
since it combines classical derivatives, fractional Laplacians and Caputo fractional derivatives
altogether. In addition, it comprises the cases in which the space-fractional Laplacians taken
into account are of order greater than 2.

As a matter of fact, this point is also a novelty introduced by Theorem 3.1 here with
respect to the previous literature.

Theorem 3.1 was announced in [CDV18|, but we also refer to [Kry18| which also considers
the case of different, not necessarily fractional, powers of the Laplacian, using a different and
innovative methodology.

The rest of the chapter is organized as follows. Section 3.2 focuses on time-fractional op-
erators. More precisely, in Subsections 3.2.1 and 3.3 we study the boundary behaviour of the
eigenfunctions of the Caputo derivative and of functions with vanishing Caputo derivative,
respectively, detecting their singular boundary behaviour in terms of explicit representa-
tion formulas. These type of results are also interesting in themselves and can find further
applications.

Section 3.4 is devoted to some properties of the higher order fractional Laplacian. More
precisely, Section 3.5 provides some representation formula of the solution of (—A)*u = f in
a ball, with u = 0 outside this ball, for all s > 0, and extends the Green formula methods
introduced in [DG17] and [AJS18b].

Then, in Section 3.6 we study the boundary behaviour of the first Dirichlet eigenfunction
of higher order fractional equations, and in Section 3.7 we give some precise asymptotics at
the boundary for the first Dirichlet eigenfunction of (—A)® for any s > 0.

Section 3.8 is devoted to the analysis of the asymptotic behaviour of s-harmonic functions,
with a “spherical bump function” as exterior Dirichlet datum.

Section 3.9 is devoted to the proof of our main result. To this end, Section 3.10 contains an
auxiliary statement, namely Theorem 3.23, which will imply Theorem 3.1. This is technically
convenient, since the operator A, depends in principle on the initial point a: this has the

disadvantage that if A,u, = 0 and Ayu, = 0 in some domain, the function u, + w, is
not in principle a solution of any operator, unless a = b. To overcome such a difficulty, in
Theorem 3.23 we will reduce to the case in which a = —oo, exploiting a polynomial extension

introduced and used in [CDV18|, and that will be recalled in the Appendix.

In Section 3.11 we make the main step towards the proof of Theorem 3.23. Here, we
prove that functions in the kernel of nonlocal operators such as the one in (3.8) span with
their derivatives a maximal Euclidean space. This fact is special for the nonlocal case and
its proof is based on the boundary analysis of the fractional operators in both time and
space. Due to the general form of the operator in (3.8), we have to distinguish here several
cases, taking advantage of either the time-fractional or the space-fractional components of
the operators.

Finally, in Section 3.12 we complete the proof of Theorem 3.23, using the previous ap-
proximation results and suitable rescaling arguments.



3.2 Boundary behaviour of solutions of time-fractional
equations

In this section, we give precise asymptotics for the boundary behaviour of solutions of time-
fractional equations. The cases of the eigenfunctions and of the Dirichlet problem with
vanishing forcing term will be studied in detail (the latter will be often referred to as the
time-fractional harmonic case, borrowing a terminology from elliptic equations, with a slight
abuse of notation in our case).

3.2.1 Sharp boundary behaviour for the time-fractional eigenfunc-
tions

In this subsection we show that the eigenfunctions of the Caputo fractional derivative in (3.6)
have an explicit representation via the Mittag-Leffler function. For this, fixed o, g € C with
R («) > 0, for any z with R (2) > 0, we recall that the Mittag-Leffler function is defined as

Eop(2) = ; F(#;ﬂ) (3.13)

The Mittag-Leffler function plays an important role in equations driven by the Caputo
derivatives, replacing the exponential function for classical differential equations, as given
by the following well-established result (see [GKKMR14]| and the references therein):

Lemma 3.2. Let a € (0,1], A € R, and a € RU{—oc}. Then, the unique solution of the
boundary value problem

{foau(t) = Au(t) for anyt € (a,+00),
u(a) =1

is given by Eoq1 (A (t —a)®).
Lemma 3.2 can be actually generalized® to any fractional order of differentiation a:

Lemma 3.3. Let a € (0,+00), with a € (k—1,k] and k € N, a € RU{—00}, and )\ € R.
Then, the unique continuous solution of the boundary value problem

D u(t) = Au(t) for any t € (a,+00),
u(a) =1, (3.14)
O"u(a) =0 foranym e {1,... k—1}

is given by u (t) = Eq1 (A (t — a)®).

Proof. For the sake of simplicity we take a = 0. Also, the case in which @ € N can be
checked with a direct computation, so we focus on the case a € (k — 1, k), with k£ € N.
We let u (t) := E, 1 (\®). It is straightforward to see that u(t) = 1+ O(t*) and therefore

u(0) =1 and  0/"u(0) =0 for any me {1,...,k—1}. (3.15)

31t is easily seen that for k := 1 Lemma 3.3 boils down to Lemma 3.2.



We also claim that
D u(t) = Au(t) for any t € (0,+00). (3.16)
To check this, we recall (3.6) and (3.13) (with 5 := 1), and we have that

Dy (t)
1 Eou® (1
- F(k‘—oz)/o (15—7)2“)’”1 i
B 1 R aglaj—1) . (aj—k+1) oy dr
B F(kr—a)/o <2A I'(aj+1) " )(t—r)a—k“

_ jejlag =1 (aj —k+1) (" ka1
= ZA T(k—a)T (o) + 1) /OT ey

Hence, using the change of variable 7 = to, we obtain that

—+o0 . . . 1
o (aj—1)..(aj—k+1) ., / —k h—a—1
D u(t) = N = W1 — dr. 1
t,au() Zl F(k:—a)F(ag—i—l) 0 o ( U) T (3 7)

On the other hand, from the basic properties of the Beta function, it is known that if $(z),

R(w) > 0, then
! I'(z)T
/ o 1 —0) dt = M (3.18)
0 I'(z 4+ w)
In particular, taking z := aj—k+1 € (a—k+1,4+00) C (0,+00) and w := k—a € (0, +00),
and substituting (3.18) into (3.17), we conclude that

j 05.7_1 (ag—k+1)r(ozj—k+1)F(k—a) aj—o
ZA )T (0 + 1) Flaj—at1)
(3.19)

_Z)\] j(aj —1). (aj—k—i—l)F(&]:—k—l—l)taj_a‘
(aj+1) I'(aj —a+1)
Now we use the fact that zI"'(z) =I' (2 4+ 1) for any z € C with R (2) > —1, so, we have
aj(aj—1)...(aj—k+ 1T (aj—k+1)=T(aj+1).
Plugging this information into (3.19), we thereby find that

R VES

+00 i
N :
t) = = tO‘JZ)\ t).
) ;F(@j—oﬂ— ZF (aj +1 u(t)

This proves (3.16).

Then, in view of (3.15) and (3.16) we obtain that u is a solution of (3.14). Hence, to
complete the proof of the desired result, we have to show that such a solution is unique. To
this end, supposing that we have two solutions of (3.14), we consider their difference w, and
we observe that w is a solution of

Dffqw(t) = Aw(t) for any ¢ € (0, +00),
{ omw(0) =0 for any m € {0,...,k—1}.

By Theorem 4.1 in [SZ16], it follows that w vanishes identically, and this proves the desired
uniqueness result. ]



The boundary behaviour of the Mittag-Leffler function for different values of the fractional
parameter « is depicted in Figure 3.1. In light of (3.13), we notice in particular that,

near z = 0,
1 z

B "T(a+p)

Eap(2) = 1 + 0(2%)

and therefore, near t = a,

A(t—a)”

Ea71 ()\ (t— (l)a> =1+ m

+ON (t —a)*™).

| - (x from =0.11t00.3) :/ (x from =0.1t0 0.3)
e 5|
20 r." !

|
0.1 ! 0.1 0.2 0.3 01 | 0.1 0.2 0.3

2.5 : |
| (x from -0.110 0.3) | [x from -0.11t0 0.3)
1.5} 1.2 //
1 i].

. .
0.1 o0 0.1 0.z 0.3 0.1 0.0 0.1 0.z 0.3
L1zl 1000000 |
o I {
1ol 1.000000 | /
108 | 1000000 | /
106 1000000 | /‘f
Lo 4 (x from =0.1t0 0.3) 1000000 | / from -0.11%
1.02 : ’(/-' 1000000 //
100 =" 1000000+ —
= =
0.1 0.0 0.1 0.2 0.3 0.1 0.0 0.1 0.2 0.3
. . ) . ) o .y _ 1 _ 1 _1
Figure 3.1‘. Behaviour of the Mittag-Leffler function E, 1 (t*) near the origin for a = 155, @ = 55, @ = 3,

-2 ,_3 — 11
a=fa=35anda= 5.

3.3 Sharp boundary behaviour for the time-fractional har-
monic functions

In this section, we detect the optimal boundary behaviour of time-fractional harmonic func-
tions and of their derivatives. The result that we need for our purposes is the following:

Lemma 3.4. Let a € (0,+00) \ N. There exists a function b : R — R such that ¢ €
C*((1,+00)) and

Dg(t) =0 forallt € (1,400), (3.20)



m e (1 + et) = Kg t*, for all ¢ € N, (3.21)

and li
e\0

for some koo € R\ {0}, where (3.21) is taken in the sense of distribution for t € (0, +00).

Proof. We use Lemma 2.5 in [CDV18|, according to which (see in particular formula (2.16)
in [CDV18]) the claim in (3.20) holds true. Furthermore (see formulas (2.19) and (2.20)
in [CDV18]), we can write that, for all ¢ > 1,

= — ! 0 (0) (1 — )= (t — 1)V dr do )
$O = TR TTa) sy 2 0O G =) =y i, (322

for a suitable 1, € Cl*+1([0, 1]).
In addition, by Lemma 2.6 in [CDV18|, we can write that

11{%6 (1 +e€) =k, (3.23)

for some k # 0. Now we set
(0,400) >t fo(t) = 0 Y(1 + et).

We observe that, for any ¢ € C§°((0, +00)),

—+00

fo(t)(t)dt = /0 m O Y(1 + et)p(t) dt

0

— e_a/o h %(w(l +et))p(t)dt = (—1) e i ) (1 + et) 0p(t) dt.

(3.24)

Also, in view of (3.22),

€ (1 + et)

6—0&

8[°‘H1w o) (r—a) (1 +et -1 Vdrdo
(@] + 1— ) //[1,1+d]x[0,3/4] olo) (7 = o) )

< Ce @ / (1+et—7)*tdr
[1,1+el]
= (9,

which is locally bounded in ¢, where C' > 0 here above may vary from line to line.
As a consequence, we can pass to the limit in (3.24) and obtain that

+o00 —+o0
iy [ 0= (1) [ lmetua e dear
This and (3.23) give that
+oo +oo +oo
lim [ J00)olt) i = (—1)%/ £ o (t) dt:m...(a—e+1)/ 1t (1) dt,
€ 0 0 0

which establishes (3.21). O



3.4 Boundary behaviour of solutions of space-fractional
equations

In this section, we give precise asymptotics for the boundary behaviour of solutions of space-
fractional equations. The cases of the eigenfunctions and of the Dirichlet problem with
vanishing forcing term will be studied in detail. To this end, we will also exploit useful
representation formulas of the solutions in terms of suitable Green functions.

3.5 Green representation formulas and solution of (—A)%u =
f in B; with homogeneous Dirichlet datum

Our goal is to provide some representation results on the solution of (—A)*u = f in a
ball, with v = 0 outside this ball, for all s > 0. Our approach is an extension of the
Green formula methods introduced in [DG17| and [AJS18b]: differently from the previous
literature, we are not assuming here that f is regular in the whole of the ball, but merely that
it is Holder continuous near the boundary and sufficiently integrable inside. Given the type
of singularity of the Green function, these assumptions are sufficient to obtain meaningful
representations, which in turn will be useful to deal with the eigenfunction problem in the
subsequent section 3.6.

3.5.1 Solving (—A)*u = f in B; for discontinuous f vanishing near
0B,

Now, we want to extend the representation results of [DG17] and [AJS18b] to the case
in which the right hand side is not Holder continuous, but merely in a Lebesgue space,
but it has the additional property of vanishing near the boundary of the domain. To this
end, fixed s > 0, we consider the polyharmonic Green function in B; C R"”, given, for
every © # y € R", by

k(n,s ro(z.y) ns~1
G, (¢,y) = —25) / (n+1)? o
0

[z =y n+1)*
1—]z[3). (1 -y
where 7 (z,y) = (= lal), ( 5 ly )+, (3.25)
|z =y
(2
with  k(n,s) = (3)

T2 4572 ()
Given x € By, we also set
d(z):=1—|z|. (3.26)

In this setting, we have:

Proposition 3.5. Let r € (0,1) and f € L*(By), with f =0 in R™\ B,. Let

a(w) = 4 L, G (z,y) fly)dy if x € By, (3.27)

0 if r € R"\ By.



Then:

u € Ll(Bl), and HU”Ll(Bl) S C Hf”Ll(Bl), (328)
for every Re (r,1), sup d °(z)u(z)| < Cr| fllLi(s), (3.29)
mGBl\BR
u satisfies (—A)*u = f in By in the sense of distributions, (3.30)
and
u € W22(By). (3.31)

Here above, C > 0 is a constant depending on n, s and r, Cr > 0 is a constant depending
onn, s, r and R and C, > 0 is a constant depending on n, s, r and p.

When f € C%%(B;) for some a € (0, 1), Proposition 3.5 boils down to the main results
of [DG17] and |[AJS18b].

Proof of Proposition 3.5. We recall the following useful estimate, see Lemma 3.3 in [AJS18b]:
for any € € (0, min{n, s}), and any R, 7 > 0,

1 7/ R? s—1 9 ps—(e/2)
Rn723 / L z dT] << : Pn—e
o (n+1)2 s K

and so, by (3.25) and (3.26), for every z, y € By,

C ds—(e/Q) (x) ds—(e/2) (y)

|z — y|n—e

Gs (z,y) <

for some C' > 0. Hence, recalling (3.27),
i < [ ( G. (x,1) \f(y)\dy) ds
B \JB
< C </ Mdy) dz
B B, \Jp, |z —y|"
_ c/ (/ /)] d$) a0
B \Js, |z —y["~

C | [f(y)ldy,
By

By

up to renaming C' > 0 line after line, and this proves (3.28).
Now, if x € By \ Bg and y € B,., with 0 < r < R < 1, we have that

v -yl > x| —[y| > R—r

and accordingly

which in turn implies that

k(n,s 2d(z)/(R—7)? s—1
gs (xay) < (—71)—25 / n—ﬂdnugcds(x)v
|z =y 0 (n+1)2



for some C' > 0. As a consequence, since f vanishes outside B,, we see that, for any x €
Bl \ BR;

@ < [ Glen) ldy < Caa) [ If ] d,

which proves (3.29).

Now, we fix 7 € (r,1) and consider a mollification of f, that we denote by f; € C§°(B;),
with f; = f in L*(B;) as j — +oo. We also write G = f as a short notation for the right
hand side of (3.27). Then, by [DG17] and [AJS18b|, we know that u; := G, * f; is a (locally
smooth, hence distributional) solution of (—A)*u; = f;. Furthermore, if we set @; := u; —u
and fj = f; — f we have that

iy =Gox (f; = f) = Gox [},
and therefore, by (3.28), i
@]y < Cllfillersyy,

which is infinitesimal as j — +oo. This says that u; — w in L'(B;) as j — +oo, and
consequently, for any ¢ € C§°(By),

/B uw(z) (—A)’p(z)dr = lim u;j(z) (—A)’p(x) dx

Jj—+o0o B,

—tim [ f@e@de= [ f@)el)ds,
J—+o0 B, B
thus completing the proof of (3.30).
Now, to prove (3.31), we can suppose that s € (0,+00) \ N, since the case of integer s is
classical, see e.g. [GTO1]. First of all, we claim that

(3.31) holds true for every s € (0,1). (3.32)

For this, we first claim that if ¢ € C*°(By) and v is a (locally smooth) solution of (—A)*v = ¢
in By, with v = 0 outside By, then v € W.**(By), and, for any p € (0,1),

loc

[vllweses,) < Cpllgllrz,)- (3.33)

This claim can be seen as a localization of Lemma 3.1 of [DK12|, or a quantification of the
last claim in Theorem 1.3 of [BWZ17]. To prove (3.33), we let R < R, € (p,1), and
consider € C§°(Bg, ) with n = 1 in Bg . We let v* := vn, and we recall formulas (3.2),
(3.3) and (A.5) in [BWZ17], according to which

(—A)v" —n(=A)’v=g" inR",
Wlth ||g*HL2(]R") S C H’UHWS,Q(Rn),

for some C' > 0.

Moreover, using a notation taken from [BWZ17] we denote by Wg*(B;) the space of
functions in WW*2(R") vanishing outside B; and we consider the dual space W **(B;). We
remark that if » € L*(B;) we can naturally identify h as an element of W, **(B;) by

considering the action of h on any ¢ € W*(By) as defined by

/B ) (o) d



With respect to this, we have that

][ /h(x)go(x)deHhHLz(Bl). (3.34)
pews? (B /B

el s2 -\ =1
W= (By)

We notice also that
[ollws2@ny < Cllgllw-s2ey),
in light of Proposition 2.1 of [BWZ17]. This and (3.34) give that

[o]lwsz@ny < Cllgllzzs)-

Then, by Lemma 3.1 of [DK12] (see in particular formula (3.2) there, applied here with \ :=
0), we obtain that

[0 lw2s2@ny < ClIn(=A)"0 + g L2 (n
< C(I(=2)vlr2sn,) + 19" r2@m)

=C (HgHLQ(BR+) + ”9*HL2(Rn)) (3.35)
<C (||9||L2(Bl) + ||U||Ws»2(Rn))
<C HQHL?(Bl)’

up to renaming C' > 0 step by step. On the other hand, since v* = v in B,,,

Hvazs,Z(Bp) = ”U*”WQS*Q(BP) S HU*HWQSA,z(Rn).

From this and (3.35), we obtain (3.33), as desired.

Now, we let f;, f;, u; and @; as above and make use of (3.33) to write

usllwes2(s,) < Collfill2sy) (3.36)
and  ||@;|lwesz2s,) < Cpll fill2es)-

As a consequence, taking the limit as j — 400 we obtain that

[ullwes2s,) < Collfllz2s),

that is (3.31) in this case, namely the claim in (3.32).

Now, to prove (3.31), we argue by induction on the integer part of s. When the integer
part of s is zero, the basis of the induction is warranted by (3.32). Then, to perform the
inductive step, given s € (0, +00) \ N, we suppose that (3.31) holds true for s — 1, namely

Ge1 % [ € W222(By). (3.37)

loc

Then, following |[AJS18b], it is convenient to introduce the notation

[z,y] == V]z2ly]2 — 22 -y + 1

and consider the auxiliary kernel given, for every x # y € By, by

(1= |z = y»)5 (A = |zPlyl)
[z, y]"

P, y(z,y) = : (3.38)



We point out that if x € B, with r € (0,1), then
[z, y? = e Ply? = 2lallyl + 1= (1= |zl [y])* = (1 —7)* > 0. (3-39)
Consequently, since f is supported in B,
P,y x f € C*(R"). (3.40)

Then, we recall that
- Axgs(wa y) = gsfl(aja y) - Cpsfl(x7 y)7 (341)

for some C' € R, see Lemma 3.1 in [AJS18b].
As a consequence, in view of (3.37), (3.40), (3.41), we conclude that

_Ax(gs * f) = (_Amgs) * f S I/Vl?)i7272(81)'

This and the classical elliptic regularity theory (see e.g. [GT01]) give that G,x f € W25*(By),

loc

which completes the inductive proof and establishes (3.31). O

3.5.2 Solving (—A)*u = f in B; for f Holder continuous near 05

Our goal is now to extend the representation results of [DG17] and [AJS18b] to the case in
which the right hand side is not Hélder continuous in the whole of the ball, but merely in
a neighborhood of the boundary. This result is obtained here by superposing the results in
|[DG17| and [AJS18b| with Proposition 3.5 here, taking advantage of the linear structure of
the problem.

Proposition 3.6. Let f € L*(B;). Let o, r € (0,1) and assume that
fe ™™ (B \ B,). (3.42)

In the notation of (3.25), let

/B Gs(z,y) fly)dy ifx € By,

u(x) == (3.43)
0 if r € R"\ By.

Then, in the notation of (3.26), we have that:

for every Re (1), sup d=*(a) |u(@)| < Cr (/s + [ Flmeonz).  (3:44)
a)EBl\BR
u satisfies (—A)*u = f in By in the sense of distributions, (3.45)
and

u € W (By). (3.46)

Here above, C' > 0 is a constant depending on n, s and r, Cr > 0 is a constant depending
onn, s, r and R and C, > 0 is a constant depending on n, s, r and p.



Proof. We take ry € (r,1) and n € C§°(B,,) with n =1 in B,. Let also

Ji=fn and Jfor=f—fi.

We observe that f; € L?(By), and that f; = 0 outside B,,. Therefore, we are in the position
of applying Proposition 3.5 and find a function u; (obtained by convolving G, against fi)
such that

for every R € (r1,1), sup d*(x)|ui(z)] < Cr|lfiller (), (3.47)
x€B1\Bgr
uy satisfies (—A)*u; = fi1 in By in the sense of distributions, (3.48)
and  wu; € W23 (By). (3.49)

On the other hand, we have that fo = f(1 — 7)) vanishes outside B; \ B, and it is Holder
continuous. Accordingly, we can apply Theorem 1.1 of [AJS18b| and find a function usy
(obtained by convolving G, against fs) such that

for every R € (11, 1), sup d~(¢) [us(@)| < Cr | follimgpy  (3:50)
xGBl\BR

ug satisfies (—A)°uy = fo in By in the sense of distributions, (3.51)

and  uy € CEM(B). (3.52)

Then, f = fi; + fo, and thus, in view of (3.43), we have that u = u; + us. Also, u sat-
isfies (3.44), thanks to (3.47) and (3.50), (3.45), thanks to (3.48) and (3.51), and (3.46),
thanks to (3.49) and (3.52). O

3.6 Existence and regularity for the first eigenfunction of
the higher order fractional Laplacian

The goal of these pages is to study the boundary behaviour of the first Dirichlet eigenfunction
of higher order fractional equations.
For this, writing s = m + o, with m € N and o € (0,1), we define the energy space

H;(By):={ue H(R"); u=0in R"\ B}, (3.53)

endowed with the Hilbert norm

N[

I HE(B1) "~ Z Haauﬂiz(&) + & (u,u) |, (3.54)
la|<m
where
Es(u,v) = [ € Fu(€) Fu(€)de, (3.55)
Rn

being F the Fourier transform and using the notation Z to denote the complex conjugated
of a complex number z.
In this setting, we consider u € H§(Bj) to be such that

{(—A)S U= \u in By,

— 3.56
u=>0 in R"\ By, (3.56)



for every s > 0, with A\ as small as possible.
The existence of solutions of (3.56) is ensured via variational techniques, as stated in the
following result:

Lemma 3.7. The functional & (u,u) attains its minimum Ay on the functions in Hi(B)
with unit norm in L*(By).

The minimizer satisfies (3.56).

In addition, Ay > 0.

Proof. The proof is based on the direct method in the calculus of variations. We provide
some details for completeness. Let s = m + o, with m € N and o € (0,1). Let us consider a
minimizing sequence u; € H§(B,) € H™(R") such that |ju;||;2(5,) = 1 and
leIJPw Es (uj,uj) = uegg(fBl) Es (u,u) .
H“”L2(31>:1

In particular, we have that w; is bounded in H{(B;) uniformly in j, so, up to a subsequence,
it converges to some u, weakly in H(B;) and strongly in L?(B;) as j — +o00.

The weak lower semicontinuity of the seminorm &; (-, -) then implies that u, is the desired
minimizer.

Then, given ¢ € C§°(B;), we have that

gs (u* + €¢a u* + €¢) Z gs (u*a U’*) 9

for every € € R, and this gives that (3.56) is satisfied in the sense of distributions, and also
in the classical sense by the elliptic regularity theory.

Finally, we have that & (uy, u.) > 0, since u, (and thus Fu,) does not vanish identically.
Consequently,
Es (U, uy)
||U*H%2(Bl)

as desired. O

)\1 = = 53 (U*, U*> > 0,

Our goal is now to apply Proposition 3.6 to solutions of (3.56), taking f := Au. To this
end, we have to check that condition (3.42) is satisfied, namely that solutions of (3.56) are
Holder continuous in By \ B,, for any 0 < r < 1.

To this aim, we prove that polyharmonic operators of any order s > 0 always admit a
first eigenfunction in the ball which does not change sign and which is radially symmetric.
For this, we start discussing the sign property:

Lemma 3.8. There erists a nontrivial solution of (3.56) that does not change sign.

Proof. We exploit a method explained in detail in Section 3.1 of [GGS10]. As a matter of
fact, when s € N, the desired result is exactly Theorem 3.7 in [GGS10].

Let u be as in Lemma 3.7. If either u > 0 or u < 0, then the desired result is proved.
Hence, we argue by contradiction, assuming that u attains strictly positive and strictly
negative values. We define

K:={w:R" = Rs.t. & (w,w) < +oo, and w > 0 in By}.

Also, we set
K*:={w € Hj(By) s.t. & (w,v) <0 for all v € £}.



We claim that
if w e K*, then w < 0. (3.57)

To prove this, we recall the notation in (3.25), take ¢ € C§°(B;) N K, and let

Gs(x,y) o(y)dy if v € By,
U¢(.CE) = B
0 if z € R"\ By.

Then v, € K and it satisfies (—A)* v, = ¢ in By, thanks to [DG17] or [AJS18b].
Consequently, we can write, for every x € By,

¢(x) = F (€[> Foy) ().
Hence, for every w € K*,

0 > &(w,vy)
= [ 16 Fuo (6 Fu€) s

= FHIE Fog) (@) w (@) da

Rn”

= | FHE” Fog)(@)w(z) do

By

= o(z)w (x) de.

By

Since ¢ is arbitrary and nonnegative, this gives that w < 0, and this establishes (3.57).
Furthermore, by Theorem 3.4 in [GGS10], we can write

UZU1+U2,

with u; € I\ {0}, uy € K\ {0}, and & (uy,uz) = 0.
We observe that

Es (U1 — ug, ug — ug) = & (ur, ur) + & (ug, ug) + 2& (ur, uz) = & (w1, ur) + & (uz, us) .
In the same way,
Es (u,u) = & (ur + ug, uy + ug) = & (ur,ur) + & (uz, u2),

and therefore
Es (U — ug,uy —ug) = & (u,u) . (3.58)

On the other hand,
[Jur — UQH%Q(Bl) - HU’H%Q(Bl) = flur — u2||%2(B1) — [Jur + u2||%2(B1)
= —4/ uy () ug(z) de.
By
As a consequence, since uy < 0 in view of (3.57), we conclude that

lur = w2l Z2(s,) = lullZ2es,) = 0-

This and (3.58) say that the function u; — us is also a minimizer for the variational problem
in Lemma 3.7. Since now u; — uy > 0, the desired result follows. O



Now, we define the spherical mean of a function v by

1 _
vy(x) = =T V(R ) dH" (w)

where R, is the rotation corresponding to the solid angle w € S*!, H" ! is the standard
Hausdorff measure, and |[S"7!| = H"}(S"1). Notice that vy(z) = v4(Rpz) for any w €
S"~1, that is vy is rotationally invariant.

Then, we have:

Lemma 3.9. Any positive power of the Laplacian commutes with the spherical mean, that

((-A)'0), (@) = (~A) v, (a).

Proof. By density, we prove the claim for a function v in the Schwartz space of smooth
and rapidly decreasing functions. In this setting, writing RZ to denote the transpose of the
rotation R,,, and changing variable 1 := R ¢, we have that

(—A)v0(Ryz) = | [&*Fo(¢) e R4 dg
Rn
= | g Fu(g) e RS dg (3.59)
Rn

= | [n*Fo(Run) ™" dn.
R’Il

On the other hand, using the substitution y := R z,
Fu(Rum) = / v(x) e 2R gy
= / v(z) e~ 2mRG TN o

= / v(Ryy) e ™ dy,
Rn

and therefore, recalling (3.59),

(—A)v(Ry, ) = // In1*v(Rey) e2mi@=y)m gy, dn.
R xR

As a consequence,

(A1) = oy [ AP URL ) )

1 o
= |Sn_1‘///g S n**v(Ry,y) 279 A1 (w) dy dn

= / / In|**vy(y) €™ dy dny
R™ xR"™

= | n[?* F(vg) (n) €™ dny
= (_A)Svﬁ(x)a
as desired. ]




It is also useful to observe that the spherical mean is compatible with the energy bounds.
In particular we have the following observation:

Lemma 3.10. We have that
Es (vg,vy) < & (v,0). (3.60)

Moreover,
if v e H§(Bh), then so does vy. (3.61)

Proof. We see that

Fue) = [ wle)emeia

1 .
= ] // V(R 1) e 2™ qH W) da
Sn—1xRn

and therefore, taking the complex conjugated,

Hence, by (3.55), and exploiting the changes of variables y := R, z and § := R 7,
Es (vg, vy)
= €% F(vg) (€) Flug) () dé

Rn

B IS" P /////S oo [P U(Re ) 0(Re 8) FTETIE A ) AT (B) der di d

_ 28 271'1 “Re 5 —2miy- R € n—1 n—1
B W /// e PR Fu(RaE) dH () dH (@) d

Consequently, using the Cauchy-Schwarz Inequality, and the substitutions n := R, £ and 1) :=
R&z 67

1 N
Es(vg, 1) < W///SSR 1% [ Fu(Ru )| |[Fu(Re )| dH™ Hw) dH" (@) dE

1

s (L e R P o))
. (///Snlxgnlan €2 | Fu(Ra €)|° dH™(w) dH™ ' (&) dg);

: |Sn11|2 (/ / /SSR [nf** [Foln) " d#" (w) dH" (@) dn)%

' (///SSR [ [Fo@)[* dH" (w) dH" (@) dﬁ);

IN




B (/R Ul }Fv(n)\zdn)% (/R e ‘f”(ﬁ)‘Qdﬁ>é

= & (v,v).

This proves (3.60).
Now, we prove (3.61). For this, we observe that

3%11

- 0t 4 4
s — (R, R Rk g1 ’
8.73]'1 . 8%[ Z §n—1 aQJkl ( x) @ @ (W)

1
(2) = 1oy
’S ’ k1, ke=1 .. '8:(:]4[

for every £ € N and ji,...,j, € {1,...,n}, where R/* denotes the (j, k) component of the
matrix R,,. In particular,

n

SCZ/

n—1
K1, kp=1 " S"

ot
8$k1 Ce 8%

85'%
d n—1
dx;, ... 01, H W),

() (Re )

for some C' > 0 only depending on n and ¢, and hence

8£vﬁ 2 n ot 2 .
——(x) < C // ——(Rux)| dH" (w)dzx
‘ 3le c.. 8xj£ L2(By) kl,%l Sn-1x B, 8Ik1 R (‘3ka
- o' 2
- Y [ || ey
kl,%:gl Sn—1x By kal ce 81’]%
. ot 2
B S I
kl’%zl 8xk1 e axke LQ(BI)
up to renaming C.
This, together with (3.54) and (3.60), gives (3.61), as desired. O

With this preliminary work, we can now find a nontrivial, nonnegative and radial solution
of (3.56).

Proposition 3.11. There exists a solution of (3.56) in HF(B;) which is radial, nonnegative
and with unit norm in L*(By).

Proof. Let u > 0 be a nontrivial solution of (3.56), whose existence is warranted by Lemma 3.8.
Then, we have that uy > 0. Moreover,

1
/ uy(v) dr = // u(Ry, ) dH" H(w) dz
B |S | Sn—1x B,
1
= 15T // u(y) dH" H(w) dy = / u(y) dy > 0,
| | Sn—1x B B1

and therefore uy does not vanish identically.
As a consequence, we can define
u
Uy = —
[ugll2(s,)



We know that u, € H§(Bj), due to (3.61). Moreover, in view of Lemma 3.9,

_A)S (—A)u A
(—A)’u, = ( ) I ( )ﬁ = e T A1 U,
HW”LQ(Bl) ||Uﬁ”L2(Bl) HUﬁHL?(Bl)

which gives the desired result. O
Now, we are in the position of proving the following result.

Lemma 3.12. Let s > 1 and r € (0,1). If u € H(By) and u is radial, then u €
CO(R"\ B,) for any o € [0, 3].
Proof. We write

u(z) =ug(|z]),  for some wg: [0,+00) = R (3.62)

and we observe that u € H$ (B;) C H' (R").
Accordingly, for any 0 < r < 1, we have

+o0 +oo
m>4whmwmz/‘hmmwﬂmzw4/ o) ? dp (3.63
and

+00 +oo
o> [ NuPde= [ l@P oz [ ol e @00
R\ B, r ,

Thanks to (3.63) and (3.64) we have that ug € H' ((r, +00)), with ug = 0 in [1, 4+00).
Then, from the Morrey Embedding Theorem, it follows that uy € C%® ((r, +00)) for any
o€ [0, %}, which leads to the desired result. O

Corollary 3.13. Let s € (0,+00). There exists a radial, nonnegative and nontrivial solution
of (3.56) which belongs to H{(By) N C**(R™\ By2), for some o € (0,1).

Proof. If s € (0,1), the desired claim follows from Corollary 8 in [DSV19a).
If instead s > 1, we obtain the desired result as a consequence of Proposition 3.11 and
Lemma 3.12. 0

3.7 Boundary asymptotics of the first eigenfunctions of (—A)?

In Lemma 4 of [DSV19al, some precise asymptotics at the boundary for the first Dirichlet
eigenfunction of (—A)® have been established in the range s € (0, 1).

Here, we obtain a related expansion in the range s > 0 for the eigenfunction provided in
Corollary 3.13. The result that we obtain is the following:

Proposition 3.14. There exists a nontrivial solution ¢. of (3.56) which belongs to Hi(B1)N
CO*(R™\ By2), for some a € (0,1), and such that, for every e € OBy and 8 = (B1,...,B,) €
N7,

n\r‘%elﬁ'*sa%* et+eX) =D hs(s—1). .. (s— B+ 1) e ... el (—e- X)),

in the sense of distribution, with |B| :== 1 + -+ + B, and k. > 0.



The proof of Proposition 3.14 relies on Proposition 3.6 and some auxiliary computations
on the Green function in (3.25). We start with the following result:

Lemma 3.15. Let 0 < r < 1, e € 9By, s > 0, f € C**(R"\ B,) N L*(R") for some
a € (0,1), and f =0 outside By. Then the integral

(1 -]z
d .
/31 O ds (3.65)
18 finite.

Proof. We denote by I the integral in (3.65). We let

1— 2\s 1 — 2\ s
L ::/ f(z)w dz and I ::/ f(z)& dz.
BI\B’V‘ T

slz —e|™
Then, we have that
[=1+1 (3.66)
Now, if z € By \ B,, we have that

f(2) <1f(2) = fe)] < Clz — ],

therefore . ous
I < / A=) o (3.67)
B

B, S|z —e["

If instead z € B,,
z—e|>1—r>0,

and consequently
1
L < — dz < oo. 3.68
S sy [, fE i< (3.68)
The desired result follows from (3.66), (3.67) and (3.68). O

Next result gives a precise boundary behaviour of the Green function for any s > 0 (the
case in which s € (0,1) and f € C%*(R") was considered in Lemma 6 of [DSV19a], and in
fact the proof presented here also simplifies the one in Lemma 6 of [DSV19a| for the setting
considered there).

Lemma 3.16. Let e, w € 0By, ¢g > 0 and r € (0,1). Assume that

e+ ew € By, (3.69)
for any € € (0,¢]. Let f € CO(R™\ B,) N L3(R") for some a € (0,1), with f = 0 outside
B;.

Then

(—2e-w)*(1 — [2*)°

slz — e

lime™* (2)Gs(e + ew, z) dz = k(n, s) ; f(z) dz, (3.70)

6\0 Bl

for a suitable normalizing constant k(n,s) > 0.



Proof. In light of (3.69), we have that
1> |e+ew)* =1+ +2ee-w,

and therefore

—e-w>§>0. (3.71)
Moreover, if ¢ is as given in (3.25), we have that, for all z € By,
—e—2e-w)(1—|2)? 3
ro(e + ew, z) = e(ze—2e- W) —|2[) < ‘ : (3.72)
|z — e — ewl? |z — e — ewl|?
Also, a Taylor series representation allows us to write, for any ¢ € (—1, 1),
ot — [—n/2
. ( n/ )tk+8—1. (3.73)
07\
We also notice that
—n/2\| _ —2(-2-1) .. (-2—-k+1) _ 2(241) .. (2+(k-1))
k k! k!
1) ... k—1 k—1))! (3.74)
<t etk =) O EZD gy s (k1)

- k!
<(n+k+1)"

k!

This and the Root Test give that the series in (3.73) is uniformly convergent on compact
sets in (—1,1).
As a consequence, if we set

r1(2, 2) = min {%,ro(x,z)} | (3.75)

we can switch integration and summation signs and obtain that

tsfl

r1(z,z) o
/ —dt = Z cr(ri(w, ), (3.76)
0

(t+1) =

1 [—n/2
CEEEs\U k)

Once again, the bound in (3.74), together with (3.75), give that the series in (3.76) is
convergent.

Now, we omit for simplicity the normalizing constant k(n, s) in the definition of the Green
function in (3.25), and we define

|3

where

o0

G(z,2) = |z —a|*™" Z cr(ri(, 2))kr (3.77)

and
7"0(112) ts_l

g(x,z) =z — x|25_”/ —dt.

r1(x,z) (t + 1)%



Using (3.25) and (3.76), and dropping dimensional constants for the sake of shortness, we
can write

Gs(w,2) = G(x,2) + g(z, 2). (3.78)
Now, we show that
Cx(r,2) |z — z|**™ if n>2s,
g(z,z) < ¢ Cx(r,z) logre(x, 2) if n=2s, (3.79)

Cx(r,2) |z — z|* ™(ro(x,2))*"2  if n<2s,

where x(r,z) = 1if ro(z, 2) > 1 and x(r, z) = 0 if ro(z, z) < 5. To check this, we notice that
if ro(z, z) < 5 we have that r(z, z) = ro(z, ), due to (3.75), and therefore g(z, z) = 0.

On the other hand, if ro(z,z) > %, we deduce from (3.75) that ri(x, z) = %, and conse-
quently

ro(z.2) Clz — x> if n>2s,
g(x,2) < |z — x|25_"/ =271t < { Clogro(x, 2) if n=2s,
2 Clz — x| (ro(x, 2))*" 2 if n <2s,

for some constant C' > 0. This completes the proof of (3.79).
Now, we exploit the bound in (3.79) when x = e 4 ew. For this, we notice that if ro(e +
ew,z) > 3, recalling (3.72), we find that

|z — e — ew|? < 6e < 9e, (3.80)

and therefore z € By /(e + ew).
Hence, using (3.79),

f(2)g(e + ew, z)dz

S/ |f(2)|lg(e+ ew, 2)|dz
B3\/g(e+ew)

B1
(
C/ If(2)]]z — e — ew|* "dz if n>2s,
<!C |f(2)|logro(e + ew, z)dz if n=2s,
By je(etew)
C 1F (D)2 — e — ew* "(role + ew, 2))* " 2 dz if n<2s.
L B je(etew)
Now, if z € Bs (e + ew), then
|z —e| < |z —e—ew| + |ew| < 3Ve+e < 4y/e (3.82)

Furthermore, for a given r € (0, 1), we have that B (e + ew) C R™\ B,, provided that e is
sufficiently small.
Hence, if z € B; (e + ew), we can exploit the regularity of f and deduce that

This and (3.82) lead to
|f(2)] < Cez, (3.83)



for every z € Bj (e + ew).
Thanks to (3.72), (3.81) and (3.83), we have that

(

o

Cez / |z — e — ew|* "dz if n>2s,
Bjy je(etew)

o 3€
2)g(e + ew, 2)dz| < { Ce? log —————dz if n=2s,
B f( )g( ) B By je(etew) ’Z — €= 6Cd|2
Cezt57% dz if n<2s
L Bj je(etew)
S C€%+S,
up to renaming C'.
This and (3.78) give that
f(2)Gs(e+ ew,2)dz = | f(2)G(e+ ew, 2)dz + o(€®). (3.84)
Bl Bl

Now, we consider the series in (3.77), and we split the contribution coming from the index
k = 0 from the ones coming from the indices k£ > 0, namely we write

G(z,2) = Go(z,2) + Gi(z, 2),

. - |Z _ :L,|2sfn s

with - Go(z, 2) = —————(n1(,2)) (3.85)
+oo

and  Gy(z,2) := |z —x[*7" ch (rafa, ).
k=1

Firstly, we consider the contribution given by the term G;. Thanks to (3.75) and (3.83), we
have that

/ f(2)Gi(e+ ew, 2)dz| < / |f(2)|G1(e + ew, 2)dz
B1NB3, /(etew) Bj e(etew)

+00
< CES/ |z—e—ew|28_"2|ck| (ri(e + ew, 2))dz
B3\/g(e+ew) k=1
. Foo 1\ *+e (3.86)
< C’e2/ ]z—e—ew[Qs*”Z\ck\ (—) dz
2
B3ﬁ(e+ew) k=1
< Ce? / |z — e — ew|* "dz
Bj je(etew)
< Cezts,
up to renaming the constant C step by step.
On the other hand, for every z € R",
|zl =letew+z—e—ecw| > letew| —|z—e—ew|>1—€e— |z —e—ew|.

Therefore, for every z € By \ (B, U By (e + ew)), we can take e, := 75 and obtain that

[F(2) = 1f(2) = fle)] < Clz —eu| = C(1 — |2])*

3.87
<Cle+|z—e—ew|)* <Clz—e—ewl|?, (3.87)



up to renaming C' > 0.
Also, using (3.72), we see that, for any k£ > 0,

. (1)1 Cesti
role +ew, z)) e [ = < = 3.88
e+t (5) < o (3.9
This, (3.75) and (3.87) give that if z € By \ (B, U By (e + ew)), then
+o00
|(2)G1(e + ew, 2)| < Clz—e—ew|™™ > “fer (ri(e + ew, 2))**
k=1
+oo
=Clz — e — ew|*T2 Z x| (r1(e + ew, 2))*T 5 (r (e + ew, 2))F %
k=1
+00 1 k—<
< Clz = al™ S [l (rofe + ew, 2)) (5)
k=1
[e] @ o ’Ck’
<Ceéi|lz—e—ew|z ™" Z ok
k=1
where the latter series is absolutely convergent thanks to (3.74).
This implies that, if we set E := B; \ (B, U By (e + ew)), it holds that
/ f(2)Gi(e+ ew, 2)dz| < CesT / |2 — e — ew|2"dz
E E (3.89)
<CeTT | z—e—ew|? Mz < CETT | |22 < CeTEL
B1 BB
Moreover, if z € B,, we have that
le+ew—2z|>1—€—r,
and therefore, recalling (3.88),
+oo
sup [Gi(e + ew, 2)| < |z —e —ew|* ™" Z |ck| (r1(e + ew, z))s+Z (r1(e + ew, z))k*Z
ZEBT k=1
—+00 o /1 k-4
<|z—e—ew|*™ Z |ck] (role + ew, z))SJrZ (§>
k=1
o o~ Jexl
<C’Z—€—€CU’ n752¥
k=1
<C(l—e— r)*”*% i,
up to renaming C.
As a consequence, we find that
FR)Gi(e + ew, 2)dz| < sup |Gi(e+ ew, 2)] I,
B'r zEDy
< lpagp,) (L —e—r) " 2e s (3.90)

o

S ||f||L1(BT) 2n+%(1 _ T)_n_%65+z

e C’ES—"_%’



as long as € is suitably small with respect to r, and C' is a positive constant which depends
on || fllL(s,), v, n and o
Then, by (3.86), (3.89) and (3.90) we conclude that

; f(2)G1(e + ew, z)dz = o(€*). (3.91)
Inserting this information into (3.84), and recalling (3.85), we obtain
; f(2)Gs(e + ew, 2)dz = ; f(2)Go(e + ew, z)dz + o(€*). (3.92)
Now, we define

Dy :={z€ By st. rolet+ew,z)>1/2}

and
Dy:={z€ By st. rolet+ew,z) <1/2}.

If z € Dy, then z € By \ B,, thanks to (3.80), and hence we can use (3.81) and (3.83) and
write
1£(2)Go(e + ew, 2)| < Cez|z — e — ew|* .

Then, recalling again (3.81),

f(2)Gi(e+ ew, z)dz
D1

< Ce / |z — e — ew|* "dz = Ce3 2, (3.93)
Bg\/g(e+ew)
up to renaming the constant C' > 0. This information and (3.92) give that
f(2)Gs(e + ew, z)dz = f(2)Go(e + ew, z)dz + o(€®).
Bl DZ
Now, by (3.72) and (3.75), if z € Dy,

|z — e — ew|?™ (role + ew))* = e (—e —2e-w)*(1 — |z|2)5.

s slz — e — ew|”

Gole + ew, z) =
Hence, we have

lime™ [ f(2)Gs(e+ ew, z)dz
B1

e\ 0
= lime*® f(2)Go(e + ew, z)dz (3.94)
e\ 0 Doy
—€—2¢- s(1 — 2\s
= lim f(z (ze=2e-w)(l = |2f1) dz.
N0 J {26(~e~2ew)(1-]2[2) < |z—e—ew]?) sz —e —ew|
Now we set
—€— 2e¢ - (1 — 2\s
poy o [IOESEEEE i se2e - ) < e e o,
0 otherwise,

(3.95)



and we prove that for any n > 0 there exists 6 > 0 independent of € such that, for any
E C R" with |E| < §, we have

/B . |F.(2)|dz <. (3.96)

To this aim, given 1 and E as above, we define

1
‘ 25+05268+a(—6—26’W)a7] 2a
p= mm{e(—e—%'w% ¢2€<—6—2€'w><1‘”’( 3 [[flcon s, 0B )

(3.97)
We stress that the above definition is well-posed, thanks to (3.71). In addition, using the
integrability of f, we take 6 > 0 such that if A C B; and |A| < § then

/ )] do < 20 (3.98)
] 2. 35
We set
E, = ENB,(e+ ew) and  Ey:=FE\ By(e + ew). (3.99)
From (3.95), we see that
f(2)| xx(2
)« — I

~ 25568z — e — w2
where
1 if 2e(—e—2e-w)(1—|2]?) < |z —e— ewl]?,
Xx(2) = .
0 otherwise,

and therefore

/ME |Fe(z)|dz§/ R (3.100)

BB, 2°S €|z —e —ew|nm2

Now, for every z € B; N Ey C B,(e + ew) for which x,(z) # 0, we have that
2¢(—e —2e-w)(1 — |2]*) < |z — e — ew|? < p?,

and hence

2 2
2] >4 [1 - & >1- P ,
2¢(—€ — 2¢e - w) 2¢(—e — 2¢e - w)

which in turn gives that |z| > r, recall (3.97).
From this and (3.100) we deduce that

. 1—|z])
/ |Fe(z)\dz§/ | Aleoeis,y (L= 12)° .
BiNEy —

=Py <lel<t 25s€8|z — e — ew|n2s
< Ifllooaisis, p’ a/ dz
- 255 € 2¢(—e — 2e - w) 1 g <l |z — e — ew|n—2s
_ Mlleoems.y p’ a/ dx (3.101)
- 25s5€® 2¢(—€ — 2¢ - w) B, ||

_ 3 lleoewnm) 0B o,
2statlg2 esta (—e — 2e - w)™
n

2’

VAN



where (3.97) has been exploited in the last inequality.
We also point out that, by (3.95), (3.98) and (3.99),

—e—2e-w)¥(1 —|z]*)*
[ Rl < | e FO B,
BiNE> (B1\B,(et+ew))NE 3|Z —€— (—:w]

38

< & / ()] d
SP” JBiNE

<

= 9

This, (3.99) and (3.101) give (3.96), as desired.
Notice also that the sequence F.(z) converges pointwise to the function

(—2e-w)*(1 = |2*)°
slz — e[ '

F(z):= [(2)
Hence (3.94), (3.96) and the Vitali Convergence Theorem allow us to conclude that

lim (2)Gs(e+ ew, z)dz =lim | F.(z)dz

N0 B e\,0 B,

=/ f(z)

(~2¢ - w)*(1 - |2P) (3:102)

slz —el®

dz,

which establishes the claim of Lemma 3.16 (notice that the finiteness of the latter quantity
in (3.102) follows from (3.15)). O

With this preliminary work, we can now establish the boundary behaviour of solutions
which is needed in our setting. As a matter of fact, from Lemma 3.16 we immediately deduce
that:

Corollary 3.17. Let e, w € OBy, g > 0 and r € (0,1).

Assume that e + ew € By, for any € € (0,¢]. Let f € CO*(R"\ B,) N L*(R") for some
a € (0,1), with f =0 outside B;.

Let u be as in (3.43). Then,

1— 2\s
(a-lzPy

lim e~ u(e + ew) = k(n, s)(—2e - w)° B 1) slz —efn 7

e\0
where k(n,s) denotes a positive normalizing constant.

Now we apply the previous results to detect the boundary growth of a suitable first
eigenfunction. For our purposes, the statement that we need is the following:

Corollary 3.18. There exists a nontrivial solution ¢, of (3.56) which belongs to Hi(B1) N
CO*(R™\ By)s), for some o € (0,1), and such that, for every e € By,

h\I"% € pu(e+ ew) = ki (—e-w)i, (3.103)
for a suitable constant k, > 0.

Furthermore, for every R € (r,1), there exists Cr > 0 such that

sup d *(x) |p.(x)] < Ck. (3.104)

x€B1\Bgr



Proof. Let a € (0,1) and ¢ € H§(By) N C**(R™ \ By ) be the nonnegative and nontrivial
solution of (3.56), as given in Corollary 3.13.
In the spirit of (3.43), we define

A\ Gs(x,y) o(y)dy if x € By,
¢*($) = By
0 if z € R"\ B,.

We stress that we can use Proposition 3.6 in this context, with f := A\;¢, since condi-
tion (3.42) is satisfied in this case.
Then, from (3.44) and (3.46), we know that ¢, € H§(B;) and, from (3.45),

(—A)8¢* = )\1 ¢ in Bl-

In particular, we have that (—A)*(¢ — ¢») = 0 in By, and ¢ — ¢. € HF(B;), which give
that ¢ — ¢, vanishes identically. Hence, we can write that ¢ = ¢,, and thus ¢, is a solution
of (3.56).

Now, we check (3.103). For this, we distinguish two cases. If e - w > 0, we have that

le+ew|* =1+ 2 wte > 1,

for all € > 0. Then, in this case e + ew € R" \ By, and therefore ¢.(e + ew) = 0. This gives

that, in this case,
li\r‘% € ‘(e + ew) =0. (3.105)

If instead e - w < 0, we see that
letew)* =1+2ec wt+e <1,

for all € > 0 sufficiently small. Hence, we can exploit Corollary 3.17 and find that

lim e *¢, (e + ew) = Ay k(n, s)(—2e - w)® =P, 3.106
lim e™*¢, = M k(n,s)(—2e - w) (2) 2 (3.106)

By sz — el
with k(n,s) > 0. Then, we define

(1 -z
s|lz —el®

ke :=2"k(n,s) ; o(2) dz.

We observe that k, is positive by construction, with k(n, s) > 0. Also, in light of Lemma 3.15,
we know that k. is finite. Hence, from (3.105) and (3.106) we obtain (3.103), as desired.
It only remains to check (3.104). For this, we use (3.45), and we see that, for every R €
(1)
sup  d°(2) |9« ()| < Cr M ([l (my) + 10l LB1\B,))

x€B1\Br

and this gives (3.104) up to renaming Ch. O

Now, we can complete the proof of Proposition 3.14, by arguing as follows.



Proof of Proposition 3.14. Let ¢ be a test function in C§°(R™). Let also R := ! € (r,1)
and
9e(X) := e *¢.(e + eX)0PP(X).
We claim that
sup |g.(X)| < C, (3.107)

XeRn

for some C' > 0 independent of . To prove this, we distinguish three cases. If e+eX € R"\ By,
we have that ¢.(e +€X) = 0 and thus g.(X) = 0. If instead e + €X € Bg, we observe that

R>le+eX|>1—¢€lX]|,

and therefore | X| > %%. In particular, in this case X falls outside the support of ¢, as long
as € > 0 is sufficiently small, and consequently 9°¢(X) = 0 and g.(X) = 0.

Hence, to complete the proof of (3.107), we are only left with the case in which e+ X €
By \ Bg. In this situation, we make use of (3.104) and we find that

|p(e +eX)| < Cd(e+eX)=C(1—|e+eX|)®
<O(1—le+eX) (1+le+eX]) =C(1—]e+eX]|?)*
=C¢e(—2e- X — €| X|?)* < C¢,

for some C' > 0 possibly varying from line to line, and this completes the proof of (3.107).
Now, from (3.107) and the Dominated Convergence Theorem, we obtain that

lim [ e ¢ (e +eX)0PY(X)dX = lim e, (e + e X)0 Y (X)dX. (3.108)
N0 R R N0

On the other hand, by Corollary 3.18, used here with w := é—‘, we know that

lim (e + €X) = im0, (e + €| X ) = X[ lam "6 (e + )
=k | X7 (—e-w)} = ki (—e- X)7.

Substituting this into (3.108), we thus find that

lim [ e ¢, (e +eX)0PY(X)dX =k, / (—e- X)30°Y(X)dX.
eNo Rn

n

As a consequence, integrating by parts twice,

lim e~ 5 06, (c + €X)(X)dX = lim 5 8ﬁ<e_s¢*(e+eX)>w(X)dX

= (=118 li\n% . e *pule + eX)0PY(X)dX

= (1P [ (e X)50%0(X)X

=k, /naff(—e-X)w(X)dX

= () sl = 1) s = 8]+ e [ (e 07X,

Since the test function 1 is arbitrary, the claim in Proposition 3.14 is proved. O



3.8 Boundary behaviour of s-harmonic functions

In this section we analyze the asymptotic behaviour of s-harmonic functions, with a “spherical
bump function” as exterior Dirichlet datum.
The result needed for our purpose is the following:

Lemma 3.19. Let s > 0. Let m € Ny and o € (0,1) such that s =m + o.
Then, there exists

Y € H5(R™) N C§(R™) such that (—A)*y =0 in By, (3.109)
and, for every x € 0B;_,,
W(x) = ke + o(e), (3.110)
as € \ 0, for some k > 0.
Proof. Let ¢ € C®(R, [0,1]) such that ¢ = 0 in R\ (2,3) and ¢ > 0 in (2,3). Let
Yo(x) := (—=1)"(|x|). We recall the Poisson kernel

m  Ino (1—|ZL”2)i

B ) G T

for z € R", y € R"\ By, and a suitable normalization constant 7, , > 0 (see formulas (1.10)
and (1.30) in [AJS18¢|). We define

6= [T vl dy (o).

Notice that ¢y = 0 in Bs/, and therefore we can exploit Theorem in [AJS18c| and obtain
that (3.109) is satisfied (notice also that ) = v, outside By, hence 9 is compactly supported).

Furthermore, to prove (3.110) we borrow some ideas from Lemma 2.2 in [DSV17] and we
see that, for any z € 0B _,

o) =ty [ ity

dy + Yo(x
o, (9P — Do — g T (@)

_ C(—l)m /%H\B (1/J0<y>(1 — ’$| )S d

ly[2 = 1)%|z — y|"

=c(1—|zP) /23 Vsnl (0 —pz;gf_)pw!"dw] v
=c (2 — 62)5/2 {/Sn_l (p? — 1)57(1 jbg)il — /)w|”dw} t

3 n—1,7

= 28065/ {/ 5 - vip) dw] dp + o(€®)
s os = 1er — gl

= ce® + o(€),

where ¢ > 0 is a constant possibly varying from line to line, and this establishes (3.110). O



Remark 3.20. As in Proposition 3.14, one can extend (3.110) to higher derivatives (in the
distributional sense), obtaining, for any e € 9By and § € N"

h{% Elﬁ\—saﬁ¢(e +eX) = kg 6/131 o egn(_e . X)i_lmv

for some kg # 0.

Using Lemma 3.19, in the spirit of [DSV17], we can construct a sequence of s-harmonic
functions approaching (z-e)?. for a fixed unit vector e, by using a blow-up argument. Namely,
we prove the following:

Corollary 3.21. Let e € 0B;. There exists a sequence v.; € H*(R") N C*(R™) such that
(—A)°v.,; =0 in Bi(e), ve; =0 in R™\ Byj(e), and

Vej — Kk(z-€)l in Ll(Bl(e)),

as j — +oo, for some k > 0.

Proof. Let ¢ be as in Lemma 3.19 and define

ves() 1= 5 (f - e) |

The s-harmonicity and the property of being compactly supported follow by the ones of .
We now prove the convergence. To this aim, given x € Bj(e), we write p; := f — e and
€, := 1 —|p;|. Recall that since x € By (e), then |z —e|? < 1, which implies that |z|*> < 2z -e
and z - e > 0 for any x € Bj(e).

As a consequence

P A R - O (3) o
Y2 = |—= = — — 4Z— €= — —=\Xr - € ol — xXr-e y
! I J i ’
and so a 1)
+o0
&= - (- e)s
J
Therefore, using (3.110),
Ve, (@) = j*(p;)
— J (e} + o(€)
1
(Eeonse(3)
=k(xz-e)} +o(1)
Integrating over Bj(e), we obtain the desired L!-convergence. 0

Now, we show that, as in the case s € (0, 1) proved in Theorem 3.1 of [DSV17|, we can
find an s-harmonic function with an arbitrarily large number of derivatives prescribed at
some point.



Proposition 3.22. For any € N, there existp € R", R > r > 0, andv € H*(R")NC*(R")

such that
(2" 0 e, o
D%(p) =0 for any a € N* with |o| < |8 —1,
D%(p) =0 forany o« € N* with |o|=|8] and a#p
and

DPu(p) = 1.

Proof. Let Z be the set of all pairs (v, z) € (H*(R™) N C*(R")) x B,(p) that satisfy (3.111)
for some R >r >0 and p € R".

To each pair (v,z) € Z we associate the vector (D*v(z)) <5 € RX for some K' = Ky,
and consider V to be the vector space spanned by this construction, namely we set

V= { (D*0(%))g<ip» With (v, ) € Z}.

We claim that
Y =RX (3.112)

To check this, we suppose by contradiction that V lies in a proper subspace of RX’. Then,
VY must lie in a hyperplane, hence there exists

¢ = (ca)a<is € R* \ {0} (3.113)

which is orthogonal to any vector (Dv(z)),, <5 With (v,z) € Z, that is
> caD0(x) =0. (3.114)

We notice that the pair (v, ;, ), with v; as in Corollary 3.21, e € 9B, and = € Bj(e), belongs
to Z. Consequently, fixed £ € R™ \ By, and set e := é—|, we have that (3.114) holds true

when v := v, ; and x € By(e), namely
Z ca D% (z) = 0.
o <8I

Let now ¢ € C§°(By(e)). Integrating by parts, by Corollary 3.21 and the Dominated Con-
vergence Theorem, we have that

0= lim Z ca D%, j(x)p(x) dr = lim Z (=D equ, () D¥p(2) dx:

Jj—+o0 Rn| J—+oo Rn‘

a|<|8] al<|8]
:m/ S (=1)leq (- €)3 D () dx:/f/ S D% ) pla) do.
R |al<i) R lal<is)

This gives that, for every x € By (e),

Z caD(z - €)% = 0.

o <8



Moreover, for every x € Bi(e),

Dz €)% =s(s—1)...(s — o] + 1)(z- €)1 Mer . en,

n

In particular, for x = f € By (e),

D*(x-e);

el — s(s—1)...(s—|a| +1)|g|7%Em ... &0,

And, using the usual multi-index notation, we write
D cas(s—1)...(s—|a| +1)¢* =0, (3.115)
lal<|8]

for any £ € R™\ Bys. The identity (3.115) describes a polynomial in § which vanishes for
any £ in an open subset of R”. As a result, the Identity Principle for polynomials leads to

caS(s—1)...(s—|a|+1) =0,

for all |a] < |5].

Consequently, since s € R\ N, the product s(s—1)...(s— |a|+ 1) never vanishes, and so
the coefficients ¢, are forced to be null for any |a| < |3|. This is in contradiction with (3.113),
and therefore the proof of (3.112) is complete.

From this, the desired claim in Proposition 3.22 plainly follows. O

3.9 Proof of the main result

This section is devoted to the proof of the main result in Theorem 3.1. This will be accom-
plished by an auxiliary result of purely nonlocal type which will allow us to prescribe an
arbitrarily large number of derivatives at a point for the solution of a fractional equation.

3.10 A result which implies Theorem 3.1

We will use the notation
Ao = N oo, —o0)s (3.116)

that is we exploit (3.8) with a; := .-+ := @; := —oo. This section presents the following
statement:

Theorem 3.23. Suppose that

either there exists i € {1,..., M} such that 0; # 0 and s; ¢ N,
or there exists i € {1,...,l} such that ¢; # 0 and o; ¢ N.

Let €N, f:RYN 5 R, with f € C* (B_{V) Fized € > 0, there exist

u=u.€C™ (B{V)HC(RN),
a=(ay,...,a;) = (A1e,-..,a1¢) € (—o0,0)},
and R=R.>1

such that:



o for every h € {1,...,1l} and (z,y,t1,... ., th_1,the1,..-,t1)
the map R 3 t), — u(x,y,t) belongs to C™", (3.117)

in the notation of formula (1.4) of [CDV18],

o it holds that

Aqu=0 in BN7'x (=1, +00)
. ’ ’ 3.118
{U($=y7t) =0 if |(z,y)] >R, (3.118)
Oru(w,y,t) =0 ifty € (—oo,ap),  forallhe{1,... 1}, (3.119)
and
lu = fllceyy <€ (3.120)

The proof of Theorem 3.23 will basically occupy the rest of this work, and this will lead
us to the completion of the proof of Theorem 3.1. Indeed, we have that:

Lemma 3.24. If the statement of Theorem 3.23 holds true, then the statement in Theo-
rem 3.1 holds true.

Proof. Assume that the claims in Theorem 3.23 are satisfied. Then, by (3.117) and (3.119),
we are in the position of exploting Lemma A.1 in [CDV18| and conclude that, in B! x
<_17 +Oo>l>

D w = D,

th,ap tp,—o0

for every h € {1,...,l}. This and (3.118) give that

Au=A_u=0 in BN x (=1, 4+00)". (3.121)
We also define
a:= min ap
hed{l,...,l}

and take 7 € C5°([—a — 2,3]) with 7 =1 in [—a — 1,1]. Let
Ulz,y,t) = u(x,y,t)7(t1) ... 7(t;). (3.122)

Our goal is to prove that U satisfies the theses of Theorem 3.1. To this end, we observe
that uw = U in BY, therefore (3.12) for U plainly follows from (3.120).

In addition, from (3.6), we see that D", at a point ¢, € (—1,1) only depends on the
values of the function between aj, and 1. Since the cutoffs in (3.122) do not alter these values,
we see that Di", U = Di*, win By, and accordingly A,U = Ayu in BYY. This and (3.121)
say that

AU =0 in BY. (3.123)

Also, since u in Theorem 3.23 is compactly supported in the variable (z,y), we see from (3.122)
that U is compactly supported in the variables (z,y,t). This and (3.123) give that (3.11) is
satisfied by U (up to renaming R). O



3.11 A pivotal span result towards the proof of Theorem
3.23

In what follows, we let A_, be as in (3.116), we recall the setting in (3.1), and we use the
following multi-indices notations:
v=(i,1,3) = (ir,...,in, L1, .., Ipg, Jn, ..., 3)) € NY
and 0'w = 9% ... 90 Ol .. oMo 9] w.

Tn ~Y1 ym

(3.124)

Inspired by Lemma 5 of [DSV19a], we consider the span of the derivatives of functions
in ker A_,, with derivatives up to a fixed order K € N. We want to prove that the derivatives
of such functions span a maximal vectorial space.
For this, we denote by %w(0) the vector with entries given, in some prescribed order,
by 0‘w(0) with || < K.
We notice that
0%w(0) € RX' for some K’ € N, (3.125)

with K’ depending on K.

Now, we adopt the notation in formula (1.4) of [CDV 18|, and we denote by A the set of all
functions w = w(x,y,t) such that forall h € {1,... I} and all (z,y,t1,... ,th1,ths1,. .., 1) €
RVN-1 the map R 3 t, — w(z,y,t) belongs to C®((as, +00)) N C*™:* and (3.119) holds
true for some a; € (—2,0).

We also set

H = {w c CRM N CHRYHNC®(N)N A, for some neighborhood A of the origin,

such that A_,w =0 in N}

and, for any w € H, let Vi be the vector space spanned by the vector 0% w(0).
By (3.125), we know that Vi C RX'. In fact, we show that equality holds in this inclusion,
as stated in the following? result:

Lemma 3.25. It holds that Vi = RX'.

The proof of Lemma 3.25 is by contradiction. Namely, if Vi does not exhaust the whole
of RX there exists
0 € OBK (3.126)

such that
Vie ©{CeRY st 0 ¢ =0}, (3.127)

In coordinates, recalling (3.124), we write 6 as 0, = 6, 15, with i € NP1+ [ ¢ Nmit$mu
and J € N'. We consider
a multi-index I € N™*+mu guch that it maximizes |I|
among all the multi-indexes (i, [, J) for which |i| + [I| + |J| < K (3.128)
and 0; ;5 # 0 for some (i, 7).

4Notice that results analogous to Lemma 3.25 cannot hold for solutions of local operators: for instance,
pure second derivatives of harmonic functions have to satisfy a linear equation, so they are forced to lie in a
proper subspace. In this sense, results such as Lemma 3.25 here reveal a truly nonlocal phenomenon.



Some comments on the setting in (3.128). We stress that, by (3.126), the set S of indexes I
for which there exist indexes (i,J) such that |i| 4+ |I| + |J| < K and 6, ;5 # 0 is not empty.
Therefore, since S is a finite set, we can take

S :=sup|I| = max|I| € NN [0, K].

Hence, we consider a multi-index I for which |I| = S to obtain the setting in (3.128). By
construction, we have that

o lil+T[+]3] < K,
o if ’[| > ‘7’, then 61’173 = 0,
e and there exist multi-indexes i and J such that 0,7 5 # 0.

As a variation of the setting in (3.128), we can also consider

a multi-index J € N! such that it maximizes |J|
among all the multi-indexes (i, 1,J) for which |i| + |I| + |J] < K (3.129)
and 0; ; 5 # 0 for some (7, ).

In the setting of (3.128) and (3.129), we claim that there exists an open set of RP1+FPn x
Rmt-tma s R such that for every (x,7/,1) in such open set we have that

either 0= Z Cirgbirs J_CiY/fj; with Cirg # 0,

il +1T|+]3]| <K
|11=T|

or 0= Z Cirg 0irn Y"1, with Ciga 7 0.

lil+1T1+13| <K
191=[3]

(3.130)

In our framework, the claim in (3.130) will be pivotal towards the completion of the proof
of Lemma 3.25. Indeed, let us suppose for the moment that (3.130) is established and let us
complete the proof of Lemma 3.25 by arguing as follows.

Formula (3.130) says that -0 w(0) is a polynomial which vanishes for any triple (Z, 7, ()

in an open subset of RP1T+Pn » Rmit-+mu x Rl Hence, using the identity principle of
polynomials, we have that each C; ;5 6,15 is equal to zero whenever |i| + |I| 4+ |J] < K and
either |I| = |I| (if the first identity in (3.130) holds true) or |J| = |J| (if the second identity
in (3.130) holds true). Then, since C; 5 # 0, we conclude that each 6; ;5 is zero as long as
either |I| = |I| (in the first case) or |J| = |J] (in the second case), but this contradicts either
the definition of 7 in (3.128) (in the first case) or the definition of J in (3.129) (in the second
case). This would therefore complete the proof of Lemma 3.25.

In view of the discussion above, it remains to prove (3.130). To this end, we distinguish
the following four cases:

1. there exist i € {1,...,n} and j € {1,..., M} such that a; # 0 and {; # 0,
2. there exist i € {1,...,n} and h € {1,...,1} such that a; # 0 and ¢, # 0,

3. we have that a; = --- = a, = 0, and there exists j € {1,..., M} such that 0 # 0,



4. we have that a; = --- =a, =0, and there exists h € {1,...,[} such that c; # 0.

Notice that cases 1 and 3 deal with the case in which space-fractional diffusion is present
(and in case 1 one also has classical derivatives, while in case 3 the classical derivatives are
absent).

Similarly, cases 2 and 4 deal with the case in which time-fractional diffusion is present
(and in case 2 one also has classical derivatives, while in case 4 the classical derivatives are
absent).

Of course, the case in which both space- and time-fractional diffusion occur is already
comprised by the previous cases (namely, it is comprised in both cases 1 and 2 if classical
derivatives are also present, and in both cases 3 and 4 if classical derivatives are absent).

Proof of (3.130), case 1. For any j € {1,..., M} we denote by ¢, the first eigenfunc-
tion for (—A);} vanishing outside B;" given in Corollary 3.13. We normalize it such that

Hé*,j"[/2(ij) =1, and we write A, ; € (0,4+00) to indicate the corresponding first eigenvalue
which now depends on s;), namely we write
J y

{(—A)Zi@,j = Aejbeg B, (3.131)

$ej =0 inR™ \ By

Up to reordering the variables and /or taking the operators to the other side of the equation,
given the assumptions of case 1, we can suppose that

ay #0 (3.132)

and
D > 0. (3.133)

In view of (3.132), we can define

1 M—1 1 1/|r|
J=1 h=1

Now, we fix two sets of free parameters

r1€(R+1,R+2)",...,2, € (R+1,R+2)P, (3.135)
and
L1 € 11 ot € 11 . (3.136)
Cx, 27 ) R 2’
We also set
)‘j = )\*7]‘ for j € {17 ey M — 1}7 (3137)

where )\, ; is defined as in (3.131), and

n M-1 l
1 N
Ay = TM <§ ’aj|l:jJ - § :&J)\J - E :Chz*,h> : (3138)
i j=1 h=1

j=1



Notice that this definition is well-posed, thanks to (3.133). In addition, from (3.135), we
can write X; = (Z;1,...,Xp,;), and we know that 2 > R+ 1 for any j € {1,...,n} and
any ¢ € {1,...,p;}. Therefore,
xP =21 >0 (3.139)

From this, (3.134) and (3.136), we deduce that

Z |Qj\£;j > |oa| 27 > || (R+ DI > foy | R

j=1

M—1

l M-1 l
D IIIGILYRD A SEE? I Pty
j=1 h=1 Jj=1 h=1

and consequently, by (3.138),

Ay > 0. (3.140)
We also set
1 if j=1,...,M —1,
wj = { AL 2o (3.141)
T e if =M
A /25M

M
Notice that this definition is well-posed, thanks to (3.140). In addition, by (3.131), we have
that, for any j € {1,..., M}, the functions

6; (Uj) = e (y—j) (3.142)

are eigenfunctions of (—A), in B’ with external homogenous Dirichlet boundary condition,
and eigenvalues A;: namely, we can rewrite (3.131) as

(—=A)gy b5 = Ajo; %n BL?, _ (3.143)
»; =0 inR™ \ B,/ .
Now, we define
Yun(th) == Eq, 1(t5"), (3.144)
where E,, 1 denotes the Mittag-Leffler function with parameters o := ) and g := 1 as
defined in (3.13).
Moreover, we consider a; € (—2,0), for every h = 1,...,1, to be chosen appropriately in

what follows (the precise choice will be performed in (3.163)), and, recalling (3.136), we let
Ly =10, (3.145)

and we define
Un(th) == up (fh(th — ah)) = Eq, 1 (i*,h(th — ah)ah)- (3.146)
We point out that, thanks to Lemma 3.3, the function in (3.146), solves

Dyt n(tn) = Lantbn(tn) in (a,+00),
Ynlan) =1, (3.147)
ot (an) =0 for every m € {1,..., o]}



Moreover, for any h € {1,... 1}, we define

Un(th) if t, € [an, +00)

3.148
1 if ¢, € (—o0,ap). ( )

Yp(tn) = {

Thanks to (3.147) and Lemma A.3 in [CDV 18] applied here with b := ay, a := —00, u := 1y,
u, := 1}, we have that ¢} € C**" and

D;éfmq/}Z(th) = Dz?Zfahl/}h(th) = i*,hwh@h) = Z_f*,hi/JZ(th) in every interval [ < (Clh, +OO>
(3.149)
We observe that the setting in (3.148) is compatible with the ones in (3.117) and (3.119) .
From (3.13) and (3.146), we see that

Consequently, for every J, € N, we have that

iy tj O(hj(Oéhj — 1) - (ahj —Jn+ 1>(th — ah)ahj_jh
Oy (ty) =y 2L . 3.150
thwh( h) JZ:; F(Oéh]+1) ( )
Now, we define, for any i € {1,...,n},
a; .
_ T~ if 0% 7é 07
a; .= < |l
1 ifa; =0.
We notice that
a; #0foralli € {1,...,n}, (3.151)
and
00; = |ay|. (3.152)
Now, for each ¢ € {1,...,n}, we consider the multi-index r; = (r;1,...,7p,) € NPi. This
multi-index acts on R”", whose variables are denoted by x; = (21, ..., 2i,) € RP. We let U,
be the solution of the Cauchy problem
aril_i — __'_i
w1 = kb (3.153)
0T (0) =1 for every B1 <1y — 1.

We notice that the solution of the Cauchy problem in (3.153) exists at least in a neighborhood
of the origin of the form [—p;1, pi1] for a suitable p;; > 0.

Moreover, if p; > 2, for any ¢ € {2,...,p;}, we consider the solution of the following
Cauchy problem:

an‘z—i — _Z-
Iiév ¢ Viv (3154)
affﬁiz (()) =1 forevery By <71y — 1.

As above, these solutions are well-defined at least in a neighborhood of the origin of the form
[—pie, pie), for a suitable p; > 0.



Then, we define

0; (= MiN{Pi1, ..., Pip, y = MIN  Pyy.
pi {pits- s pip.} seitin | pie
In this way, for every x; = (zi1,...,%y,) € B}, we set

By (3.153) and (3.154), we have that

R
ax;v,- = —,;V;

‘ (3.156)
975, (0) = 1 for every 8 = (B,...05,) € NP
it such that 5y <r; — 1 foreach £ € {1,...,p;}.
Now, we define
p =min{py,...p,} = i .
We take
TG (Bl
with 7=11n Bﬁ}a'('gfg)), and, for every z = (x1,...,x,) € R x .- x RP" we set
T (T, @) =T (L1 Q@1 oo, Ly @ Ty) (3.157)
We recall that the free parameters x1,...,x, have been introduced in (3.135), and we have
used here the notation
Li @i = (Lit, s Lip) @ (X1, - -, Tip,) 1= (LirTit, - - -, Lip, Tip,) € RPY,
for every i € {1,...,n}.
We also set, for any i € {1,...,n},

We point out that if z; € BY we have that

P/ (R+2)

Pi

pi
2 @ zi|* = Z(;Ciéxie)z < (R+2)? 2%2@ <7
=1 =1

thanks to (3.135), and therefore the setting in (3.158) is well-defined for every z; € B}' ) 1, ).
Recalling (3.156) and (3.158), we see that, for any ¢ € {1,...,n},

Mivy(w;) = Z7000; (L3 @ @) = =Ly 0; (T @ @) = =Ly v (@) (3.159)
We take eq, ..., ey, with
ej € 632;]', (3.160)
and we introduce an additional set of free parameters Y7,..., Yy, with

Y, e R"™ and e;j-Y; <O0. (3.161)



We let € > 0, to be taken small possibly depending on the free parameters e;, Y; and Ih, and
we define

w(z,y,t) == (x)vy (1) - v () G1 (1 + €1+ €Y1) oo O (Ynr + enr + €Yg)

" . (3.162)
X Yi(ta) - .- P (t),
where the setting in (3.142), (3.148), (3.157) and (3.158) has been exploited.
We also notice that w € C (RN) N Cy (]RN_l) N A. Moreover, if
€ € }
a=(ay,...,a;):=(—7,...,—— | € (—00,0) (3.163)
Ly Ly
and (z,y) is sufficiently close to the origin and t € (ay, +00) X - -+ X (a;, +00), we have that
A_ow(z,y,t)
n M
_ <Zaﬁ;§ + 3 by~ +Zcthh OO) (z,y,t)
i=1 j=1

Za/ﬂ]l (il?'1> LUt ((’ﬂi,l) (9;11)1 (fﬂz) Vit+1 (IEZ‘Jrl) ... Up ($n)
X1 (y1 +e1+eYh) ... o (Yamr +enr + €Yar) U7 (81) -7 ()
+3 Dgvr (@) - vn () ¢1 (1 + €1+ €Y2) gyt (yj1 + €jo1 + €Y)1)

X(=A)yd; (yj +ej +€Y)) @i (Y1 + €41 + €¥) .. O (Yynr + enr + €Yar)
X1 (tr) .07 (0)
!

+ Zchvl (1‘1) ..Uy ({L’n) qf)l (yl +e; + 6}/1) . ng (yM + ey + EYM) @Z); (tl) Ce ?/)2_1 (th—l)
XDl oo () Vi1 (th) - 07 ()

= _ Z@@J_C;ivl (1) oo (T0) &1 (1 +e1+€Y1) ... o (ynr + enr + €Yar) V(1) ... ) (t)

i=1

M
+ Z Didjor (1) .o vy (20) 1 (Y1 + €1 + €Y1) . dar (Y + ear + €Yar) U (1) - . F ()
+ ZChﬁ*Jﬂh (1) ..o vn () 01 (1 +e1 + Y1) .. om (ymr + enr + €¥ar) Yi(t1) - . U (1)

( Zaﬁaﬂx’“rz(ﬂ +Zchi*h> w(z,y,t),

thanks to (3.143), (3.149) and (3.159) .
Consequently, making use of (3.137), (3.138) and (3.152), if (x,y) lies near the origin
and t € (a;,+00) X -+ x (a;,+00), we have that

A w(x,y,t) = ( Z|a¢|x“+ Z&/\ +&MAM+ZCht*h) w(z,y,t)

=1 7j=1



( Z|@|xrl+Z&A*j—l—ﬁM)\M—i—ZChi*h) wlx y,t) 0.
This says that w € H. Thus, in light of (3.127) we have that

0=0-0"w(0)=> 00w0)= >  0i150.0,0]w(0). (3.164)

lL|<K i+ T+[I<K

Now, we recall (3.155) and we claim that, for any j € {1,...,n}, any ¢ € {1,...,p,;} and
any 7j, € N, we have that

07;0(0) # 0. (3.165)
We prove it by induction over ij. Indeed, if i;, € {0,...,r;, — 1}, then the initial condition

n (3.153) (if £ = 1) or (3.154) (if ¢ > 2) gives that 835,@@( ) =1, and so (3.165) is true in
this case.

To perform the inductive step, let us now suppose that the claim in (3.165) still holds for
all i;0 € {0,...,4o} for some iy such that ig > rj — 1. Then, using the equation in (3.153)
(if £=1) or in (3.154) (if ¢ > 2), we have that

7 +1_ 10+1—"ip AT e_ ~ ato+l—rip—
a 0 ) — a;p]e J 8"522 ] — ajaxje J Uj, (3166)

(a ife=1,
aj = .
-1 ifé>2.
Notice that a; # 0, in view of (3.151), and 8;3;1 "5, (0) # 0, by the inductive assumption.

These considerations and (3.166) give that 8’0“ ; (0 ) # 0, and this proves (3.165).
Now, using (3.155) and (3.165) we have that for any j € {1,...,n} and any i; € NPs,

9;7;(0) # 0.

This, (3.135) and the computation in (3.159) give that, for any j € {1,...,n} and any ¢; €
NPi |

with

0% v;(0) = 279 7;(0) # 0. (3.167)
We also notice that, in light of (3.148), (3.162) and (3.164),
0= Z 91'7[’3 636111)1 (0) Ce E);’;vn(()) Qﬁgbl (61 + 63/1) 6 Mng (GM + GYM)
i+ +[3] <K (3.168)

x 0p101(0) . .. 0714,(0).

Now, by (3.142) and Proposition 3.14 (applied to s := s, f = [, e := Z—J] € 0B, due
0 (3.160), and X := ) we see that, for any j=1,..., M

J

ej + €Y
Wi
s5—11| (3.169)

I _
. . J
_ €j e; Y
= o o).
W i Wi/ 4

‘[-|, I |—s: al. . Iil—s:al: 1
ij ll\rl%d 5 Sﬂﬁy;¢j (€j+€Y}) = ll\r(%d 5l Sjay§¢*,j (




with x; # 0, in the sense of distributions (in the coordinates Y;).
Moreover, using (3.150) and (3.163), it follows that

Zi,h Oéhj(Oéhj — 1) A (ahj — jh + 1)(0 _ ah)ahj_jh
['(apj + 1)

O pn(0) =

F(Oéhj + 1) Zjhahj_jh
Zi,h anpjlanj —1) .. (apj — Ty + 1) €¥ni=n
T (apj + 1) £ ‘

+o0
=0
_ f t pang(oang — 1) .. (anj — Tn + 1) exni=n
=0
—+o00
j=1

Accordingly, recalling (3.145), we find that

Foo Z-fi,h Oéhj(Oéhj — 1) Ce (Oéhj — jh + 1) €ah(j_1)

lim 19,4, (0) = lim

e\0 e\ 4 ; anj=In
j=1 r (th] + 1) Z_fh (3170)
ﬁ*,hah(ah — 1)...(Oéh—jh+1) . ﬁfbhah(ah — 1)...(Oéh—jh+ 1)
[ (o +1) Ly I'(an+1)
Also, recalling (3.128), we can write (3.168) as
0= Z 91'7[’3 6;111}1(0) e 8;’;1)”(0) a;i¢1 (61 + 63/1) e a;%QSM (€M + EYM)
R (3.171)

X 83111#1(0) Ce 82%;(0)

Moreover, we define
M !
E:‘[‘—E Sj—l-’j‘—é ayp,.
j=1 h=1

Then, we multiply (3.171) by €= € (0, +00), and we send € to zero. In this way, we obtain
from (3.169), (3.170) and (3.171) that

0 = lim EE E (91'7[73 8;11’01(0) c. 0;7;@”(0) a?ﬁ¢1 (61 + EY&) Ce Q,%qSM (€M -+ EYM)
N0 <K
[T]<[T]

x 0} 191(0) . .. 0 (0)

= lim > G 500 01(0) . 0k va(0)
1<K
<

xeM1=1001 gy (e1 4 Y1) ... MMM G (e + Vi)
XTI (0) .. €MD)y (0)
= Z é@[g 9@]5 8;111;1 (O) - 6;':11)”(0)

lil+171+]3| <K
|1]=T|

xell ... e (—e - ) (e - Yy )t el A

+ + ’



for a suitable é, 13 # 0 (strictly speaking, the above identity holds in the sense of distribution
with respect to the coordinates Y and £, but since the left hand side vanishes, we can consider
it also a pointwise identity).

Hence, recalling (3.167),

_ E 21 7
O - Ci,],j eil ,,,,, iy A1y, Ing, 31,y J; 21 s ;_Cnn
liHTI+121<K
[1]=]1]
I In s1—|1| sp—Ial 431 3
xe'...epf (—er- Y1)} o (—en - Y)Y AL

S1 SM (3172)
== (—61-Y1)+ (—GMYM)+
X Z Cirgbira e (—e - K);lm (e YM)J:‘IM| L7,

lil+11|+13| <K
\1]=T|

for a suitable C; ;5 # 0.
We observe that the equality in (3.172) is valid for any choice of the free parame-

ters (2, Y,1) in an open subset of RP1F+Pn x Rmit=+ma  RE a5 prescribed in (3.135), (3.136)
and (3.161).

Now, we take new free parameters, i/1,..., Iy with 1; € R™ \ {0}, and we define
ej = 141 and Y :=— %32. (3.173)
%51 Y51
We stress that the setting in (3.173) is compatible with that in (3.161), since
B W e
Y5l 1yl %51

thanks to (3.141). We also notice that, for all j € {1,..., M},

|11, 1 I
9 Y gl

+ |%j||lj| wyj‘

e (—e;Yj) =Y

and hence
e (—er- Y1) M (—ear Yap) P =y

Plugging this into formula (3.172), we obtain the first identity in (3.130), as desired. Hence,
the proof of (3.130) in case 1 is complete. O

Proof of (3.130), case 2. Thanks to the assumptions given in case 2, we can suppose that
formula (3.132) still holds, and also that

¢ > 0. (3.174)

In addition, for any j € {1,..., M}, we consider \; and ¢; as in (3.143).
Then, we define

= M 1/lra]
R := (w (Z lcn| + Z |&,|)\j>) . (3.175)
h=1 Jj=1



We notice that, in light of (3.132), the setting in (3.175) is well-defined.
Now, we fix two sets of free parameters Xi,...,Z, as in (3.135) and ﬁ*yl, e ,ﬁ*J as
in (3.136), here taken with R as in (3.175). Moreover, we define

n M -1
(Z gl 27 = by - Zchf*ﬁ) : (3.176)
j=1 j=1 h=1

We notice that (3.176) is well-defined, thanks to (3.136) and (3.174). Furthermore, recall-
ing (3.135), (3.139) and (3.175), we find that

1
A=
Clt*,l

n
D laalxl > ||z > [l (R+ 1) > oy |RIT
=1

l—

M -1 M
=S enl Y1650 =Y it + > Oy
h=1 J=1

h=1 j=1

Consequently, by (3.176),
x> 0. (3.177)

Hence, we can define

o= AVer, (3.178)

Moreover, we consider a, € (—2,0), for every h € {1,...,l}, to be chosen appropriately
in what follows (the exact choice will be performed in (3.185)), and, using the notation
in (3.144) and (3.145), we define

wh(th) = @D*,h (ih(th — ah)) = Eah,l (i*,h(th — ah)ah) if he {1, R ,l — 1} (3179)

and _
Ui(t) = (ALt — @) = Eay 1t (Mag(ti — a)™). (3.180)

We recall that, thanks to Lemma 3.3, the function in (3.179) solves (3.147) and satis-
fies (3.150) for any h € {1,...,1 — 1}, while the function in (3.180) solves

Dt bi(t) = Aagth(ty) in (a,+00),
Yi(w) =1, (3.181)
ot (ar) = 0 for every m € {1,..., [a]}.

As in (3.148), we extend the functions v, constantly in (—oo, ap), calling ¢} this extended
function. In this way, Lemma A.3 in [CDV18§]| translates (3.181) into
D w}t(th) = é*,hwh(th) = Z_E*ﬁw;;(th) in every interval I € (ah, —|—OO) (3182)

tp,—o0

Now, we let € > 0, to be taken small possibly depending on the free parameters, and we
exploit the functions defined in (3.157) and (3.158), provided that one replaces the positive
constant R defined in (3.134) with the one in (3.175), when necessary.

With this idea in mind, for any j € {1,..., M}, we let®

e; € O0B", (3.183)

®Comparing (3.183) with (3.160), we observe that (3.160) reduces to (3.183) with the choice w; := 1.



and we define
w(z,y,t) =m () vy (z1) ...V (@) G1 (Y1 + €1 +€Y1) oo - dar (yar + enr + €Yy)
X PP(te) - (),

where the setting in (3.143), (3.157), (3.158), (3.161), (3.179) and (3.180) has been exploited.
We also notice that w € C (RY) N Co(RN™") N A. Moreover, if

(3.184)

€

a=(ay...,a):= (—E—%) € (—00,0)! (3.185)

and (z,y) is sufficiently close to the origin and ¢ € (a1, +00) X -+ X (a;, +00), we have that

A ow (z,y,1)
n M l
= (Z aj);z + Z &(_A)?SJ; + Zctho;h,oo) w (I7 Y, t)
i=1 j=1 h=1

= Za,ml (w1) .. vim1 (Tim1) Opvi () Vi1 (Tig1) -+ - Vn (T)
i=1
X¢1 (Y1 +ex+ Y1) o (ynr + enr + Yar) Y7 (81) - iy (tien) U7 (B)
M
+ Z Oy (21) v () &1 (Y1 + €1+ €Y1) .. dj1 (yj—1 + €j-1 + €Yj_1)
j=1

X(=A)yd; (yj +ej +€Y)) @i (Y1 + €1 + €¥) .. O (s + enr + €Yar)
Y7 (t1) - iy () U7 (1)

!
+ 3 cnvr (1) o () 61 (1 + €1+ V1) dar (yar + enr + Yar) U7 (h) .y (tam)
h=1
XDyt oW (th) Yr (thaa) - 0y (l-1) 7 (1)
= - Zaﬁdﬂ_@?m (1) ..o (Tn) &1 (1 + €1+ €Y1) ... o (Y + ens + €Yr)
=1

XPi(ta) - ()97 (1)

M
+ Z Didjor (m1) . vy (20) 1 (1 + €1 +€Y1) .. b (yar + enr + €Yar)
j=1

XPT(tr) g () 97 (1)

-1
+ ZChﬁ*Jﬂh (1) .. vn (2) 01 (1 + €1 +€Y1) ... Onm (ymr + enr + €Yr)
h=1

Xy (ta) - iy () Yy (1)
—I—Cl)\ﬁ*Jm (1) .. v () D1 (y1 + 1+ €Y1) ... On (ynr + e + €Y)

XP7(te) U () Y] (1)
n M -1

= <— Zaﬁ/&: + Z Ui + Zchﬁ*,h + Cl)\f*,l> w(z,y,t),
i1 =1 h—1

thanks to (3.143), (3.147), (3.159) and (3.182).



Consequently, making use of (3.152) and (3.176), when (z,y) is near the origin and ¢ €
(ay,+00) X -+ x (a;, +00), we have that

A_ow (z,y,t ( Z|CLL|I”+20>\ +Zchf*h+/\clf*l> w(z,y,t) =0.

This says that w € H. Thus, in light of (3.127) we have that
0=0-0"w(0)=>_ 60w > 0i150.0,0]w(0).

[|<K [i|+T]4+|3| <K

Hence, in view of (3.167) and (3.184),

0= > 6ia0vi(0)...000,(0)
i+ ]+ ]3|<K
x Ol (er + €Y1) ... 00 dar(enr + €Yar) 0711 (0) . .. 9;14(0) (3186)
= Z Oirxy' . 27 901 (0) ... 955, (0)
[él+]+]3|<K
x Oy (er + €Y1) ... 00 par(enr + €Yar) 0711 (0) . .. 9;'44(0).
Moreover, using (3.13), (3.180) and (3.185), it follows that
oo Nidi e o~ id
0 (0) = JZO N Ly eqg(ang — 1) F -((():jjjj:l;z +1)(0 — @)=
XN gl — 1) (uf — Ty + 1) e
- jgo [ (ouj+1) fla” o
XN gl = 1) (agf — Ty + 1) exd =
- ; T (agj+1) 1,57 '
Accordingly, by (3.145), we find that
1% - “’83l¢l _ hmi’i Nt Long( al;— 1).. (aljal_j_j;,ll 4 1) exG=1)
(0 +1) L (3.187)
_ )\Z_f*,l a(ag—1)... (=T +1) _ )\Z_ffl a(ag—1)... (=T +1)
T (o4 1) L I'(oq+1) ‘
Hence, recalling (3.129), we can write (3.186) as
0= > Oiaxi... .z 0im(0)... 0k w,(0)
K (3.188)

x Ol g(er + €Y1) ... 0P G (ens + €¥ar) 05 i (0) . .. ' (0).

Moreover, we define

l M
=001 an+ 1= sy
h=1 Jj=1



Then, we multiply (3.188) by €= € (0, +00), and we send € to zero. In this way, we obtain
from (3.170), used here for h € {1,...,1 — 1}, (3.187) and (3.188) that

0 = limes Z 91‘7173 if;l .. lf:l" 8;11@1 (O) o 0;’;6,1(0)

N0 [il+ T +]3]| <K
[31<13]
XNy (er + €Y1) ... M b (enr + €Yar)

x 07 1p1(0) . ... 0 (0)

= lim S g st 92 51(0) L 9 T, (0)

il +IT|+(3] <K
131<[3]

X171 0y (e1 + €¥1) ... MmO Gur (er + €Yir)
X €T 9]11(0) ... €704 (0)
= Z A éi’Lj 01"[73 qu .. lf:ln 8;11@1 (O) c. 6362@”(0)

li+1T+19] <K
191=13]

Xe{l o 6%% (—61 . Yl)irlh\ o (—eM . YM)iM*HM| ﬁ1 - ‘Z?z’
for a suitable C~',-7m. We stress that C:‘i,m # 0, thanks also to (3.169), applied here with w; :=
1, ¢, j := ¢; and e; as in (3.183) for any j € {1,..., M}.

Hence, recalling (3.177),

_ i1 7
0= E : Oi,fﬂ eil7~-~7in7[17-~-»IJ\/17317-~-7jl Ly .- Ly
lil-+H |+ <K
|31=13]
I Ing s1—|1| sp—Iarl 431 3y
xe'...epf (—er- Y)Y o (—en - Y)Y AL

S1 SM (3189)
= (—61'Yi)+ (—GMYM)+

i I —|I1] —|Inm| 43
X g Cigabiry x'e (—er-Y1),"" ... (—en - Yur), t7,
i+ 1+ <K
191=13

for a suitable C; 15 # 0.

We observe that the equality in (3.189) is valid for any choice of the free parame-
ters (x,Y,1) in an open subset of RPrT+Pn x Rmit-+mu x R as prescribed in (3.135),
(3.136) and (3.161).

Now, we take new free parameters 1/; with 7; € R™ \ {0} for any j = 1,..., M, and

perform in (3.189) the same change of variables done in (3.173), obtaining that

0= Y Cirabisa x'y't?,

i+ +3] <K
31=13]

for some C; 15 # 0.
Hence, the second identity in (3.130) is obtained as desired, and the proof of Lemma 3.25
in case 2 is completed. 0

Proof of (3.130), case 3. We divide the proof of case 3 into two subcases, namely either

there exists h € {1,...,1} such that ¢, # 0, (3.190)



or
cp =0 for every h € {1,...,l}. (3.191)

We start by dealing with the case in (3.190). Up to relabeling and reordering the coefficients
Ch, We can assume that

e #0. (3.192)

Also, thanks to the assumptions given in case 3, we can suppose that
D <0, (3.193)

and, for any j € {1,..., M}, we consider \, ; and ém as in (3.131). Then, we take w; :=1
and ¢; as in (3.142), so that (3.143) is satisfied. In particular, here we have that

A=A and @ = oy (3.194)

J
We define

1 M—
= Z 1051 A (3.195)

We notice that, in light of (3.192), the settmg in (3.195) is well-defined.
Now, we fix a set of free parameters

i €(R+1L,R+2),... € (R+1,R+2). (3.196)
Moreover, we define

/\M = &N[ ( Zl (6“)\*] Z|Ch|i*h> (3197)

We notice that (3.197) is well-defined thanks to (3.193). From (3.195) we deduce that

! M-1 M-1
Z\Chﬁf*,h + Z Giheg > lcaltun — Z 1651 A0
h=1 Jj=1 J=1
M-1
> 1| R — Z 0515 =0
j=1

Consequently, by (3.193) and (3.197),

Ay > 0. (3.198)
Now, we define, for any h € {1,...,(},
Ch .
— if ¢ 0,
e A Tl s
1 if cp =0.
We notice that
Cn £ 0forall h e {1,...,1}, (3.199)

and
ChCh = ‘Ch|. (3200)



Moreover, we consider a, € (—2,0), for every h = 1,...,l, to be chosen appropriately in
what follows (see (3.208) for a precise choice).
Now, for every h € {1,...,l}, we define

Un(th) := By 1 Calan(tn — an)™), (3.201)

where E,, 1 denotes the Mittag-Leffler function with parameters o := «p and 3 := 1 as
defined in (3.13). By Lemma 3.3, we know that

Dyt bn(tn) = Crlantn(th)  in (an, +00),
Un(an) =1, (3.202)
Ofp(an) =0 foranym =1,..., [ay),

and we consider again the extension ¢} given in (3.148). By Lemma A.3 in [CDV18|, we
know that (3.202) translates into

Dy

th,—

o Ur(th) = Chln W5 (tn) in every interval I € (ap,+00). (3.203)

Now, we consider auxiliary parameters (5, e; and Y; as in (3.145), (3.160) and (3.161).
Moreover, we introduce an additional set of free parameters

L= (L1,...,Ln) ERP x ... x R, (3.204)

We let € > 0, to be taken small possibly depending on the free parameters. We take 7 €
C>°(RPr+FPn [0 + 00)) such that

exp (X - x) if € Bt
T(z) = , S S (3.205)
O lf €T 6 Rpl Pn \ ‘B2 ,
where .
LT = ZL‘ i
j=1
denotes the standard scalar product.
We notice that, for any ¢ € NP* x ... x NP,
Oir(0) = 9 ... T(0) = L ...z xi L e = o (3.206)
We define
w(x,y,t) :=7(x)p1 (y1 +e1+€Y1) - ... oy (ymr + enr + €Yar) Ui (t1) ... - (8), (3.207)

where the setting in (3.143) has also been exploited.
We also notice that w € C' (RY) N Cy (RV™!) N A. Moreover, if

€

a=(a,...a) = (—E—%) € (—00,0)! (3.208)

and (z,y) is sufficiently close to the origin and ¢ € (a1, +00) X - -+ X (a;,+00), we have that

A_w(x,y,t)



M
= (thf] A) +ZCthh Oo) (x,y,t)

= i Oyr(2)¢1 (Yo + ex + Y1) .. §jor (y-1 + ejo1 + €¥joa) (=A)y &5 (y; + ¢ + €Y))
Xhj1 (Yj+1 + €j1 + Vi) dn (yur + enr + €Yar) 97 (t) -7 (1)
+Zchr )o1 (y1 + €1+ €Y1) - dur (yar + enr +eYar) U1 (1) 5y (tha)
X Dp! oot (tn) iy a (Ehgr) -7 (B1)

M
= Y _OinT(@)dr (h + e+ Vi) b (yur + e + o) ¥F () -7 (1)

J=1

+ ZChEhf*,hT(ﬁ)cbl (yi +er+eYh) ... om (ym +enm + eYar) Vi (t) .. YU (t)
h—1

M l
= (Z 6})\3 + ZChEhé*,h> U}(LU, Y, t)a
j=1 h=1

thanks to (3.143) and (3.203).
Consequently, making use of (3.194), (3.197) and (3.200), if (z,y) is near the origin
and t € (ap,+00) X -+ - X (a;,+00), we have that

M !
A _w(x,y,t) = (Z Oihj + O + Z !Ch\f*,h> w(r,y,t) =0.
j=1 h=1

This says that w € H. Thus, in light of (3.127) we have that

0=0-0"w(0)= > 60w > 0i150.0,0]w(0).

lL|<K i+ I+[3]<K

From this and (3.207), we obtain that

0= Z 05,15 0L7(0)00 ¢y (er+eYh) ... O dar(enr+€Yar) 0711 (0) ... 9 (0). (3.209)

[i|+T|+|3| <K
Moreover, using (3.201) and (3.208), it follows that, for every J, € N

I C] t] Oéhj(Oéhj— 1)...(ozhj—Jl—i—l)(O—ah)‘”‘hj_jh
8fjh _ h =x,h
d]h( ) Z r (Oéhj + 1)

j=0
+00 C]f]

_ Z hlenomjlomj —1)..

anj — Ip + 1) exnd=n

ahj_jh
th

anj — Jp + 1) exnd=n

ahj_jh
th

j 0 [ (anj +1

(
) L
B Ci ij*h anjlanj —1)...(
N g I (apj+1) L



Accordingly, recalling (3.145), we find that

Cﬁih@h] (nj —1) ... (apj — T + 1) enlD

hi% In— ahaJh = hmz I Y o
ang +1) L (3.210)
. Ehi*,h Oéh(Oéh — 1) e (ah - Jh + 1) . Ehtih Oéh(Oéh - 1) Ce (Oéh - jh + 1)
T (o +1) ton—n I'(o +1) '

Also, recalling (3.128), we can write (3.209) as

0= E 91',1,3 a;7(0)a;i¢1(61+61/1) 8yﬁ¢M(€M+EYM)8gI¢1(O) .. 82’%(0) (3211)
[i|+T|+]3| <K
[11<IT)

Moreover, we define
M !
=1 = s+ 13- o
j=1 h=1

Then, we multiply (3.211) by €= € (0, +00), and we send € to zero. In this way, we obtain
from (3.169), (3.206), (3.210) and (3.211) that

0 = 11{{% €= Z 0i,1.5 057(0)00 1 (e1 + €Y1) ... O dar (ens + €Yar) A1 (0) ... 53;%(())
i+ <K
i<

= lim Z em’m@-?[’g 827'((»6'11‘7818; le (61 + 6}/1) . €|IMlisMa7§%¢M (eM —+ EYM)

0
i+ 11 +[3] <K
111<I7]

XM (0) L D (0)

= Z Cz"Lj 91"]73 ;Clll .. if;” 6{ . ef\% (—61 : K)il_ul‘ Ce (—€M . YM>iM_|IM| tflh .. Z_fljl

i+ +[3] <K
\1]=IT|

= (—ep- Y1)i1 o (—en YM)iM
X Z Cirg0i13 X’ e! (—eq - YI)III” o (—enr- YM);IIA{‘ t37

il +IT|+(3]| <K
1|=[T|

for a suitable C; ;5 # 0.
We observe that the latter equality is valid for any choice of the free parameters (x,Y, f)
in an open subset of RP1 - FPr x Rmit-Fmar x R a5 prescribed in (3.161), (3.196) and (3.204).
Now, we take new free parameters Yi Wlth Yi € € R™ \ {0} for any j = 1,..., M, and

perform in the latter identity the same change of variables done in (3.173), obtaining that
0= Z Cirg0i15 J_CiY/fjv

lil+171+]3| <K
\1]=T|

for some C; ;5 # 0. This completes the proof of (3.130) in case (3.190) is satisfied.

Hence, we now focus on the case in which (3.191) holds true. For any j € {1,..., M},
we consider the function ¢ € H* (R™) N Cy’ (R™) constructed in Lemma 3.19 and we call
such function ¢;, to make it explicit its dependence on j in this case. We recall that

(—A)y¢(y;) =0 in By, (3.212)



Also, for every j € {1,..., M}, we let e; and Y; be as in (3.160) and (3.161). Thanks to

Lemma 3.19 and Remark 3.20, for any /; € N, we know that

=8 A I si—|L|
1{%6‘ i Sjay;¢j(ej + EYV]) = "{Sjejj(_ej ) Y;)i 7,

for some x, # 0.
Moreover, for any h = 1,...,1, we define 7(t;) as

et if t, € [-1,400),

? t = kp—1 f’L .
n(tn) €7ih _,—h(th +1) if t, € (—o0,—1),

where [ = (1,...,1;) € (1,2)" are free parameters.
We notice that, for any h € {1,...,l} and 7, € N,
O, 7R(0) =17
Now, we define

w(z,y,t) = 7(x)p1(y1 +e1 + Y1) ... o (ynr + ensr + €Yar)Ta(t1) ... Tu(ty),

(3.213)

(3.214)

(3.215)

(3.216)

where the setting of (3.142), (3.205) and (3.214) has been exploited. We have that w €
A. Moreover, we point out that, since 7, ¢1,..., ¢y are compactly supported, we have
that w € C(RY) N Cy(RY7Y), and, using Proposition 3.22, for any j € {1,..., M}, it holds
that ¢; € C°°(N;) for some neighborhood N of the origin in R™. Hence w € C*®°(N).
Furthermore, using (3.212), when y is in a neighborhood of the origin we have that

A w(z,y,t) =71(x) (&1(—A)Zi¢1(y1 + e + eYl)) O (Ynr +enr + €Ya)Tr(t) - Tu(ty)
+ .o+ T(@) e (y) - - (ﬁM(_A)%QbM(yM + ey +€Yy)) Ti(t) ... Ti(t) =0,

which gives that w € H.
In addition, using (3.128), (3.206) and (3.215), we have that

0=0-0"w(0) =Y 0;120,0,0]w(0) = Y 0;130.0,0]w(0)

[|<K [t|<K
<1

— Z 917[,3 3_51851(251(61 + 6}/1) .. aﬁjqﬁM(eM + EYM) ij.

| <K
[11<IT|

Hence, we set

we multiply the latter identity by ¢= and we exploit (3.213). In this way, we find that

0 = lim Z Em_m@i’jg ;CZ €|11‘_Sla;i¢1<€1 + 6Y1) .. E‘IM‘_SMaIM(ﬁM(GM + €YM) éj

ym
0
N0 TR

[11<[1]



4 r L
= Z 013 Ks, xt el (—e - Yl)j_l Ll (—enr - YM)j_]W | Nl‘tj

[t| <K
[1=|1]
= (—61 . ifl)j_l e (—6M . YM)j_M Z 0@',[,3 lisj zz €I (—61 . Yi)jll| Ce (—SM . YM)_T_‘IM‘ Z_,Kj,
le]<
=i
and consequently
0= Z 91‘7]73 /{Sj lfl GI (—61 : Yi);lh‘ ce <—€M . YM)1|IM| ij. (3217)
[t|<K
[1]=|1]

Now we take free parameters 7y € R™**+™m \ {0} and we perform the same change of
variables in (3.173). In this way, we deduce from (3.217) that

i, 113
0= E Cirairs2"'y t?,
lil+1+191<K
1|=[T|

for some C; ;5 # 0, and the first claim in (3.130) is proved in this case as well. O

Proof of (3.130), case 4. Notice that if there exists j € {1,..., M} such that 0 # 0, we are
in the setting of case 3. Therefore, we assume that {}J =0 for every j € {1,...,M}.

We let ¢ be the function constructed in Lemma 3.4. For each h € {1,...,l}, we
let ¢, (ty) = ¥(ty), to make the dependence on h clear and explicit. Then, by formu-
las (3.20) and (3.21), we know that

Dty (t) =0 in (1, +00) (3.218)

and, for every ¢ € N, B
lim Ol V(1 + ety) = kpp t3" (3.219)

in the sense of distribution, for some xj, # 0.
Now, we introduce a set of auxiliary parameters ¢ = ({1,...,1;) € (1,2)!, and fix ¢
sufficiently small possibly depending on the parameters. Then, we define

a=(a,... a) = (—5 S T 1) € (~2,0), (3.220)
Ly Ly

and
Un(tn) == Py (th — an). (3.221)

With a simple computation we have that the function in (3.221) satisfies
(o7 ap . . €
Dthh;ahwh(th> = Dth}towh(th - ah) =0 in (1 + ap, +OO) = <_f_’ +OO) ; (3222)
Lh

thanks to (3.218). In addition, for every ¢ € N, we have that 9;, ¥, (ts) = 8fhﬂh(th —ay), and
therefore, in light of (3.219) and (3.220),

G n0) = T ) = 0 (14 £ ) Sl ()

Lth



in the sense of distributions, as € \ 0.

Moreover, since for any h =1,...,1, ¢ € Cfg’ah, we can consider the extension
¢h(th) if ¢, € [ah, +OO),
VE(ty) == =l @ g, . ' (3.224)
h Z djh (' h) (th — CLh) if ty € (—OO, ah),
— 7!
and, using Lemma A.3 in [CDV18] with u := ¢y, a := —o0, b := a;, and u, = 9}, we have
that
Wi e CFnenand Dyt by = Dt by =0 in every interval I € (_fi? +oo> .
Lp
(3.225)
Now, we fix a set of free parameters 1/ = (7/,1, e yM) € Rmt-+mar - and consider 7 €
Co°(R™*+mum) such that
ex . if € Bt
) =14 " @ y> e (3.226)
0 lf y c le+...+mkf \ ‘B;”Ll‘i‘-u‘H/rL]bI7
where
M
Yoy=2 YiU
j=1
denotes the standard scalar product.
We notice that, for any multi-index I € N™+-mar
0,7(0) = y', (3.227)
where the multi-index notation has been used.
Now, we define
w(w, y,t) = 7(x)T(Y)Y7(t) .. (), (3.228)

where the setting in (3.205), (3.224) and (3.226) has been exploited.
Using (3.225), we have that, for any (z,y) in a neighborhood of the origin and ¢ €

(=5:+09)’
Ao, .1) = 7(@)7(y) (1 DF - (1) - 0 (0)
F o+ T(@)T) () - (DYt (1)) = 0.

We have that w € A, and, since 7 and 7 are compactly supported, we also have that
w € C(RY) N Cy(RYY). Also, from Lemma 3.4, for any h € {1,...,l}, we know that v, €

C*((1,+00)), hence ¢, € C* <(—f,+oo>>. Thus, w € C*(N), and consequently w €
th

Recalling (3.129), (3.206), and (3.227), we have that
0=0-05w(0) =Y 0;130.0,0]w(0) = Y 0;130.0;0]w(0)

| <K <K
131</3]

= Z i1 Iiglatjf%(o) - -affwz(O)-

[t|<K
131<13]

(3.229)



Hence, we set
!
== |§’ - Z O,
h=1
we multiply the identity in (3.229) by ¢= and we exploit (3.223). In this way, we find that

0 = lim Eﬁlimei,[’j ;Cl 7%1 6317&18311 ¢1 (O) Ce Ejlialatjll wl(O)

N =k
31<13]
i, 1 431—a J—a
= g Oirs K13, - Ky, L' Y fll b -fll !
<K o
13]=[3]
—« —a i,,143 J
= (7. E 013 K1y .-k 0y LY
le| <K B
131=I3]
and consequently
iy 147
0= E Oi1y Kigy -k 20 YTL,
e <K
131=13]
and the second claim in (3.130) is proved in this case as well. [

3.12 Every function is locally A_,.-harmonic up to a small
error, and completion of the proof of Theorem 3.23

In this section we complete the proof of Theorem 3.23 (which in turn implies Theorem 3.1
via Lemma 3.24). By standard approximation arguments we can reduce to the case in which
f is a polynomial, and hence, by the linearity of the operator A_.,, to the case in which is
a monomial. The details of the proof are therefore the following:

3.12.1 Proof of Theorem 3.23 when f is a monomial

We prove Theorem 3.23 under the initial assumption that f is a monomial, that is

i1 ing A1 Ingg0h Jy i, 143 L
R i - ittt t t
f (:U, y7 t) xl xn yl yM 1 ! Ty (.T, Y, ) , (3230)

L ¢! ¢!

where ! =yl L Ty Ty and Tl = Iga !t Ig !y i) =iyl iy, ! for all
f=1,...M. and x = 1,...,n. To this end, we argue as follows. We consider n € (0,1), to
be taken sufficiently small with respect to the parameter ¢ > 0 which has been fixed in the
statement of Theorem 3.23, and we define

1 1

1 1 1 1 1
777(5157,%75) = (77” Liy...,Nm In7n251 Y1,y - - 77]25M Yn, N1 tlv cee,ne tl) .

We also define z

n . M
/4] |15 J;
= — — — 3.231
7 Z Tj * Z 28j + Z O./j7 ( )
J=1 J=1 J=1



and

1 1 1 1 1 1
d:=minq —,...,—, —, ..., —, —, ..., — . 3.232
mm{rl, "rn 281 280 oy ’al} ( )
We also take Ky € N such that .
Ko > —7; (3.233)
and we let
K =Ko+ i|+ |I|+ 3|+ ¢= Ko+ || + ¢, (3.234)

where / is the fixed integer given in the statement of Theorem 3.23.
By Lemma 3.25, there exist a neighborhood A of the origin and a function w € C' (RN) N
Co (RN"H) N C> (N') N A such that

Asw =0in N, (3.235)

and such that

all the derivatives of w in 0 up to order K vanish,

3.236
with the exception of 9"w (0) which equals 1, ( )
being ¢ as in (3.230). Recalling the definition of A on page 61, we also know that
Of"w = 0 in (—o00,ap), (3.237)
for suitable a;, € (=2,0), for all h € {1,...,1}.
In this way, setting
g:=w— f, (3.238)
we deduce from (3.236) that
9°g(0) =0 for any 0 € NV with |o| < K.
Accordingly, in N' we can write
g(z,y,t) = Z 2yt h, (2, y,1), (3.239)

|T|>K+1

for some h, smooth in N/, where the multi-index notation 7 = (71, 72, 73) has been used.
Now, we define

u(z,y,t) = %w (To(x,y,1)). (3.240)

In light of (3.237), we notice that 8fhhu =0 in (—oo,ah/ni), for all h € {1,...,1}, and
therefore u € C' (RY) N Co(RN™) N C*> (T,(N)) N A. We also claim that

To([=1, 1Y  (ay, +00) X ... x (a;,400)) C N. (3.241)

To check this, let (z,y,t) € [-1,1]¥ ! x (a1 +00) x ... x (a7, +00) and (X, Y, T) := T,(z,y,t).
1 1 1 1 1 1

Then, we have that | X| = n1 |z < npm, Y| =02y | <n2, Ty =nety > amer > —1,

provided n is small enough. Repeating this argument, we obtain that, for small 7,

(X,Y,T) is as close to the origin as we wish. (3.242)



From (3.242) and the fact that A/ is an open set, we infer that (X,Y,T) € N, and this
proves (3.241).
Thanks to (3.235) and (3.241), we have that, in By ! x (—1,4+00)!,

N Asou (@, y, t)

M
- Zaa’” (2,9:1) + 3 5= D) (T, y.t +Zf Dif ot (Ty(a..1)
j=1

= A_Oow (Ty(x,y,t))
= 0.

These observations establish that u solves the equation in B} ™' x (=1 + oo)! and u vanishes

when |(z,y)| > R, for some R > 1, and thus the claims in (3.118) and (3.119) are proved.
Now we prove that u approximates f, as claimed in (3.120). For this, using the monomial

structure of f in (3.230) and the definition of «y in (3.231), we have, in a multi-index notation,

%f (To(w 1) = — (i 2y () (n51)° = %az:iyftj = f(z.y,1). (3.243)

!

Consequently, by (3.238), (3.239), (3.240) and (3.243),

1 1 BN 1 1 1 1
u(z,y,t)— f(x,y,t) = Eg <77T1 T E e EXTR T L YR VIO s LE8 S L tl>

= Y Al FRERE ey, (nre kg,

|T|>K+1

where a multi-index notation has been used, e.g. we have written

1 T11 Tin
— ==, =) eR"
T T Tn

Therefore, for any multi-index 8 = (54, s, 53) with |B] < ¢,

8’3 (U (x,y,t) - f ({L‘,y,t))
=02000" (u(z,y,t) — f (z,y.1))

= X e e e R 0O (hayntt). g
|81 |+]87 =151
|85 |+|85 | =182
|85]+| 84 | =18s]
|7|>K+1
where
é/ :l))/
)_’ B 25 + al’

for suitable coeflicients ¢, 3. Thus, to complete the proof of (3.120), we need to show that
this quantity is small if so is . To this aim, we use (3.232), (3.233) and (3.234) to see that

T1 T2 T3
o= 2]+l 2
p= r+23+a



> (|| + |l +[m]) —
> Ko—v

> Ko —7

> 1.

Consequently, we deduce from (3.244) that ||u — f||cg(B{V) < Cn for some C > 0. By choos-

ing 7 sufficiently small with respect to €, this implies the claim in (3.120). This completes
the proof of Theorem 3.23 when f is a monomial.

3.12.2 Proof of Theorem 3.23 when f is a polynomial

Now, we consider the case in which f is a polynomial. In this case, we can write f as

(z,y,1) Zc]f] z,y,t),

where each f; is a monomial, J € Nand ¢c;j € Rforall j =1,...,J.
Let
c:= max ¢j.
je{l,....J}

Then, by the work done in Subsection 3.12.1, we know that the claim in Theorem 3.23 holds

true for each f;, and so we can find a; € (—00,0)!, u; € C* (BY)NC (RY)NAand R; > 1

such that A_u; = 0in By ' x (=1, +00), |lu; — fj”of(B{V) <eandu; =0if |(z,y)| > R;.
Hence, we set

u(z,y,t E cjuj (w,y,t),

and we see that

<

[ f”cﬁ BY) Z ¢l Jug; — fche(B{v) <cJe. (3.245)

Also, A_ou = 0 thanks to the linearity of A_., in B ' x (=1, 400)’. Finally, u is supported
in BY ! in the variables (,y), being

R:= max R;.

This proves Theorem 3.23 when f is a polynomial (up to replacing € with cJe).

3.12.3 Proof of Theorem 3.23 for a general f

Now we deal with the case of a general f. To this end, we exploit Lemma 2 in [DSV17] and
we see that there exists a polynomial f such that

1f = fllowsyy < e (3.246)

Then, applying the result already proven in Subsection 3.12.2 to the polynomial f, we can
find a € (—00,0)", u € C* (BY¥)NC (RY) N A and R > 1 such that

A_qu=0 in BN x (~1,+o00),



u=0 if |(z,y)] =2 R,
Oru=0  ift, € (—o0,ay), for all h € {1,...,1},

and |lu — f“ce(B{V) < e.
Then, recalling (3.246), we see that

lu— Fflleesyy < llw = flleesny + 1f = flleesry < 26

Hence, the proof of Theorem 3.23 is complete. n

3.13 Applications

In this section we give some applications of the approximation results obtained and discussed
in this chapter. These examples exploit particular cases of the operator A,, namely, when
s € (0,1) and A, is the fractional Laplacian (—A)?®, or the fractional heat operator 0,+(—A)".
Similar applications have been pointed out in [CDV17,AV19, RS17b|.

Example 3.26 (The classical Harnack inequality fails for s-harmonic functions). Harnack
inequality, in its classical formulation, says that if u is a nontrivial and nonnegative harmonic
function in B; then, for any 0 < r < 1, there exists 0 < ¢ = ¢(n, r) such that

supu < cinf u. (3.247)
B, Br

The same result is not true for s-harmonic functions. To construct a counterexample, con-
sider the smooth function f(x) = |z|?, and, for a small ¢ > 0, let v = v. be the function
provided by Theorem 3.1, where we choose ¢ = 0. Notice that, if x € By \ B, 2,

2 2

T T
U(l’) Z f(fL')— Hv_fHL"O(Bl) Z Z_€> g,

provided e is small enough, while

T2

o(0) < FO)+ o= fllpeipy S € < 5
Hence, we have that v(0) < v(x) for any « € By \ B, /2, and therefore the minimum of v in

B is attained in some point T € B, ;. Then, we define

u(z) :=v(r) — v(T).

Notice that u is s-harmonic in B since so does v. Also, v > 0 in B; by construction,
and u > 0 in By \ B,/2. On the other hand, since 7 € B,

infu = u(x) =0,
which implies that u cannot satisfies an inequality such as (3.247).

As a matter of fact, in the fractional case, the analogue of the Harnack inequality re-
quires u to be nonnegative in the whole of R", hence a “global” condition is needed to obtain a
“local” oscillation bound. See e.g. [Kas11] and the references therein for a complete discussion
of nonlocal Harnack inequalities.



Example 3.27 (A logistic equation with nonlocal interactions). We consider the logistic
equation taken into account in [CDV17|

— (=AYu+ (0 — pu)u+7(J *u) =0, (3.248)

where s € (0,1], 7 € [0,400) and o, i, J are nonnegative functions. The symbol * denotes
as usual the convolution product between J and u. Moreover, the convolution kernel J is
assumed to be of unit mass and even, namely

J(z)dx =1
Rn
and
J(—z) = J(z) for anyz € R".

In this framework, the solution u denotes the density of a population living in some envi-
ronment 2 C R" while the functions ¢ and p model respectively the growing and dying
effects on the population. The equation is driven by the fractional Laplacian that models
a nonlocal dispersal strategy which has been observed experimentally in nature, and may
be related to optimal hunting strategies and adaptation to the environment stimulated by
natural selection.

We state here a result which translates the fact that a population with a nonlocal strategy
can plan the distribution of resources in a strategic region better than populations with a
local one.

Namely, fixed 2 = By, one can find a solution of a slightly perturbed version of (3.248)
in Bj, compactly supported in a larger ball Br_, where € € (0,1) denotes the perturbation.

The strategic plan consists in properly adjusting the resources in By, \ B (that is, a
bounded region in which the equation is not satisfied) in order to consume almost all the
given resources in Bj.

The detailed statement goes as follows:

Theorem 3.28. Let s € (0,1) and £ € N, { > 2. Assume that o, € C*(By), with

inf o > 0, info > 0.
B2 Bs

Fized € € (0,1), there exist a nonnegative function u., R, > 2 and o, € C*(B;) such that
(—A)ue = (0 — pueue + 7(J *ue)  in By,
ue=0 1inR"\ By,
loe = ollcear <€
Ue > ,zfla6 n Bj.

Example 3.29. Higher order nonlocal equations also appear naturally in several contexts,
see e.g. [CV13] for a nonlocal version of the Cahn-Hilliard phase coexistence model. Higher
orders operators have also appeared in connection with logistic equations, see e.g. [Bhal6].
In this spirit, we point out a version of Theorem 3.28 which is new and relies on Theorem 3.1.
Its content is that nonlocal logistic equations (of any order and with nonlocality given in
either time or space, or both) admits solutions which can arbitrarily well adapt to any given
resource. The precise statement is the following:



Theorem 3.30. Let s € (0,400), o € (0,400) and ¢ € N, £ > 2. Assume that

either s € N or a ¢ N. (3.249)
Let o, € CY(By), with
inf j1 > 0. (3.250)
By

Fized e € (0,1), there exist a nonnegative function u., R, > 2, a. < 0, and o. € C*(B;) such
that

D}, uc(z,t) + (—A) u(x,t) = <0€(x,t) — ez, t)ue(z, t)) ue(z,t)

(3.251)
for all (x,t) € RP x R with |(z,t)| < 1,
uc(x,t) =0 if |(z,t)| > R, (3.252)
loe = ollcery <€ (3.253)
ue=p o> p o —e in By. (3.254)

Proof. We use Theorem 3.1 in the case in which A, := D, + (=A)*. Let f := o /u. Then,
by Theorem 3.1, which can be exploited here in view of (3.249), we obtain the existence of
suitable u., R > 2 and a, < 0 satisfying (3.252),

D}, ue(w,t) + (—=A)uc(z,t) =0

3.255
for all (z,t) € RP x R with |(z,t)] < 1, ( )
and
[ ue — f”clf(B*l) <e (3.256)
Then, we set o, := uu,, and then, by (3.256),
o, 0
loe —olleeay < Clelleeay |—— =
Hllcesr)
(3.257)

= Cllullcean lue = fllcen
< CHMHCL’(E) €

which gives (3.253), up to renaming e.
Moreover, if |(z,t)| < 1,

(0 — pudue = 0= DY, ue + (—A)’u,,

t’ae

thanks to (3.255), and this proves (3.251).
In addition, recalling (3.257) and (3.250),

1, ||M’|cf(3i)€

" = /LilO'e > /Lflo' _ HO‘ — UeHL‘x’(Bl) =y infglﬂ

)

infz-p

in By, which proves (3.254), up to renaming . ]



3.14 Open Problems

Is it Theorem 3.1 true with the same techniques even for nonlocal linear operators involving
more general kernels? Using the notation in formulae (3.4), (3.6) we have in mind something
like

Luw)i= [ (G Ky
and .
Dy oult) = / u® (P H(t — 7)dr

for some h, k € N, where K satisfies the following assumption

J(y)

e

K(y)

for some s € (h— 1, h) and some function J measurable, even, bounded between two positive
constants A < A and positively homogeneous of degree zero. The kernel H satisfies
C1 C2
ey < H(z) < ey

for some 0 < ¢; < ¢p and some «a € (k — 1,k). The main difficulty is the lack of explicit
representation formulae of Green functions and Poisson kernels which does not allow us
to prove results in the fashion of the ones given in Sections 3.7, 3.8; nevertheless, sharp
asymptotic results are proved in [BEV18, Grul5| for solutions of more general nonlocal linear
equations. We notice that in |[RS17b, Theorem 4| a quantitative approximation result is
given, and it involves as nonlocal linear operator the fractional power of an elliptic operator
in divergence form. Actually, using Runge-type approximation techniques, the authors prove
that the approximation property is guaranteed for solutions of nonlocal operators given by
a finite sum of general local operators and a nonlocal operator that satisfies a weak unique
continuation principle. Anyway, in that paper the authors approximate functions in the
Sobolev space H} and not in C*, and they do not take into account time-fractional derivatives
as we do.



Chapter 4

A note on Riemann-Liouville fractional
Sobolev spaces

4.1 Introduction and main results

The goal of this chapter is to analyze in detail the connection of some functional spaces
defined through Riemann-Liouville fractional operator with classical Sobolev and BV spaces
on an interval I = (a.b) of the real line.

Fractional integrals and derivatives arise in many contests such as viscoelasticity, neuro-
biology, finance and so on, see for instance [ACV16], [ABM16], [Cap08|, [DPPZ13], [DV18].
A new recent approach to the problem, suitable also for the n-dimensional case, has been
investigated in [CS18,CS19,SSVS17,55515, 55518, 5515, 5518, Sil19, Spels, Speld|.

There are many examples of such operators in literature. Among these ones, Riemann-
Liouville and Caputo fractional derivatives are the most exploited in the applications.

Here, we give answers to some questions posed in [BLNT17]; namely, the chapter is
structered in the following way: after an introduction of the topics treated in the chapter,
this section is devoted to preliminary notions and to introduce two of the main results of
the chapter; namely the fact that BV (I) and W*(I), continuously embed into WE’&M(I).
The continuity of these embeddings can be useful in many variational models involving this
kind of fractional operators. Moreover, we extend [BLNT17, Theorem 4.1] from SBV to BV
proving that D2, [u]£' — Dul' + u(a+)d, in M(I) as s — 17. We notice that by proving
4.2 we recover the continuity given by 4.1, but the proofs of these two results exploit different
techniques that, according to the authors, make both results interesting in their own way.
We conclude the section with the proof of Theorem 4.1.

In the second section we extend with a density result the Marchaud representation formula
for fractional derivatives to functions in the fractional Sobolev space W#!(I); this fact, joint
with a fractional Hardy-type inequality, allows us to prove Proposition 4.2. We conclude this
section with a counterexample that deny Proposition 4.2 in the case of unbounded intervals.

In the third section we introduce the space BVj; ., (I) given by the functions in L'(I)
with (1 — s) fractional integral in BV (I), and we analyze it in detail proving that it contains
WE’LIVGJF(I) and hence, thanks to Theorem 4.1 also BV (I); moreover, we show through some
examples that despite the regularization properties of the fractional integral, the measure
D; . it’s not in general absolutely continuous with respect to the Lebesgue measure LY as
one can expects for BV functions.

In the fourth section we study the continuity of the (1—s) fractional integral in the Sobolev

90



space W1P(I) for 1 < p < co. In the case p = co, we show through a simple example that if
the function does not vanish in the initial point, its Riemann-Liouville fractional derivative
cannot be essentially bounded, even if the function is locally analytic. We conclude obtaining
as a corollary the well known result on the inclusion relations between Riemann-Liouville
fractional Sobolev spaces.

In the fifth section we extend some results obtained in the previous sections taking
into account higher order fractional derivatives; namely, continuity of the fractional integral
between Sobolev spaces of greater integer order, and the inclusion of the space of functions
with bounded Hessian in a higher order Riemann-Liouville space are proved.

We conclude the chapter with some open problems.

We point out that from the study of Riemann-Liouville fractional integrals done in the
last century have been carried out many beautiful results about Riesz potential, which is a
fundamental tool in linear potential Theory. In particular we mention the paper by Hardy
and Littlewood, [HL28| in which the authors prove the continuity of the s-fractional integral
from LP(I) into L%(I) where ¢ is the critical exponent g = p* := 1%}), provided 1 < p < 1/s.
This result holds even if one replace the bounded interval I with an half-line or the whole of
R. Indeed, It is worth noticing that for f € L'(R), we may define the following “improper”

fractional integrals:
. N Y A )
[—oo[f](x) T F(S) /oo (.CE _ t)lfs

B = [

Up to a translation, it is immediate to check that

I / flett) (4.1)
+

‘t|1 s
< flx+1)

I [f]( ):m ; . b (4.2)

It is well known that the function

) = LA + 1) = s [ e = rAw, 6

[(s | — t|t=s

is a distributional solution of

(—A)Pu = f, (4.4)

where, up to multiplicative constants, the operator I® in (4.3) denotes the one-dimensional
Riesz potential with parameter s, while the left hand side in (4.4) denotes the one-dimensional
fractional Laplacian with parameter s/2, namely

5/2( 251F T 2u(x) —u(z +y) — ulz —y)
A= g\/ g »
_ 2 T(5) [ u(e) —ulz+y)
BRCICH AN Ve



where the last integral has to be intended in the Cauchy principal value sense. Indeed, by
applying the Fourier transform F to equation (4.4), one has that

[E1°F () (§) = F(F)(E)-

Multiplying by |¢]7* and applying the inverse Fourier transform F~!, one has that

u(@) = F (|- [T FH ) @) = FH - [7)(@) * (@),

where

+oo iz +o0
FU 75 () = € " ge = olz|s ! %d
(- 1)) /_m e =2 / "Wy

(4.5)
= 2I'(1 — s)sin (%) 2|5t

In addition, let us define the “improper” left and right Riemann-Liouville fractional deriva-
tives of u at oo as

D2 () = 1)
DS eful(w) 1= — 7 TE3ful(e).

Then, if we consider the case n = 1 in the notion of fractional gradient

5 o QSF(1+§) Jr"ou(y)—u(x)sn .
V) = g [ e ) dy
_ 2 sT(E) [T u(y)
- VT T () /oo ly—a*
it is easy to see that
D ful(o) = Dhfile) = gy [ S i = V(o)

where

_ VT T(E)
I (=) ST (5)

Moreover, using the equivalent Marchaud formulation one has that

D* u)(x) + D ul(x) = ﬁ/ﬁ % 2u(x) — U(x?;:ﬁ) —u(z — y>dr
s [T02u() —u(r +y) —u(r —y)
N 2I(1 — s) /Oo |y[s+1 dy
1 S s/2
= ety )

o0 1 — -1
where ¢, := </_oo %i(lw)dw) )



We conclude this introduction only noticing that the renormalized fractional gradient
psVeu(x) can be seen as the convolution between the weak first derivative v’ and the tem-
pered distribution 7" : ‘ |S , where P.V. denotes the Cauchy principal value. Therefore, if

we compute the Fourier transform of psVou(x) we have that for any £ € C

1 , 1
m]:(u «T)(€) = T(i—s

s EF (W) (E)F(T)(E).

psF (Vou)(§) = F()(EF(T)(E)

TT(1-s)

Through analogous calculations as in formula (4.5), we get
F(I)(€) =201 = s) Sm( Dler

Therefore

HF (V) (€) = 2isin( = )\flg EF(u)(©), (4.6)

which means that V*u is a Fourier multiplier W1th symbol a(§) := 2u; tisin(3)[£[*1E.

It is also worth noticing that |a(§)| ~ |£|®, which is exactly the symbol of the s/2-
fractional Laplacian (—A)®/2. This fact is strictly related with the celebrated Kato’s square
root problem. See e.g. [AHL'02|, where the problem is treated for a more general class of
elliptic operators.

Now we are ready to claim the main statements of this chapter

Theorem 4.1. Let uw € BV (I). Then we have that BV (I) — Wéiﬁ(l) for any s € (0,1),

with (b—a)* 2b—a)!
—qa) ¢ —q) 8
g p < max {14 §2 0 202 oy, (0.7)
In addition
Di L' — Du+u(a+)s, as s—17 in M(I). (4.8)

Proposition 4.2. For any s € (0,1) and any bounded open interval I, the embedding
WoL(I) — Wiy .. (1) is continuous.

We start with a technical result concerning the action of the fractional integral on
M(I).We notice that in the sequel with the notation [* we refer to the integral on the
open interval (a,z). However, thanks to the nonconcentration properties of Radon measures
p we have that p ({z}) = 0 for all but countably many = € (a,b). As a consequence there
would be no ambiguity when integrating I?, [p] with respect £,

Proposition 4.3. Let s € (0,1). The map I, can be continuously extended to a map from
M(I) into LY(I), by setting

Then, 17, satisfies the following bound:

‘—]uw), (4.9)

H[5+[:“] HLl(I)

for any p € M(I).



Proof. Since the function (z — ¢)*~! is continuous in ¢t € (a, ), for any fixed = € (a,b), we
are allowed to integrate this function against any nonnegative u € M(I). Hence,

s _ L [fdu)
S ol R

is well defined for ;4 > 0. Then, a simple computation similar to the one in Remark 2.14

shows that
/m dp(t) / /
o (=11 x—t 1 —s

172l ey = /| ‘dl’_rzs)/@b

ot [ [ = b<b—t>8du<t>

b—a)y [*  (b—a)
< / (t) = D)

In the general case of u € M(I), we consider the Jordan decomposition p = p* — = and

we set
1 du(t)
1-s

B = o) - Bl 1) = 5 | oo

by the linearity of the integral. Therefore one has that, for any u € M([I)

d b—a
Izl < 15 | [ o ae < S,

which ends the proof. O

| /\

It is not difficult to see that 2.16 can be extended to couples of measures and essentially
bounded functions.

Lemma 4.4. Let p€ M(I), ¢ € L*(I) and s € (0,1). Then we have

| @ o@yde = [ 5 o)) duta). (4.10)

Proof. Notice that, by Proposition 2.18, I} [¢] € C%*(I), so that it is continuous and
bounded, in particular. This implies that the integral in the right hand side of (4.10) is
well defined. In addition, notice that

[ [ 2 i ae < ot [ [ -0 araiale

bh—a)s
< Nl = (1) < oo

Therefore, we may apply Fubini’s theorem, and we obtain

dx—

)1_5 dx du(t)

[ @) ds =

/ (o).

(x—t



Now, we focus on formula (2.15). We notice that, as a byproduct of the proof of [BLNT17,
Theorem 3.3|, this relation has been already extended to Sobolev functions. In view of this
fact, our goal is to extend it to BV functions; by doing so, we also immediately prove the

inclusion of BV (I) in Wy ., ().

Proposition 4.5. Let u € BV (I). Then, for any s € (0,1), we have that
1 u(a+)

I'(l1—s)(x—a)

Proof. By Remark 2.14, we obtain immediately that I} 7%u € LMI), since u € LY(I). Let us
now assume that u € AC(I). For any x € (a,b), formula (2.15) yields

(o) = 1) (@) + r (11— s) <xu£a2¢>5'

Dy [ul(z) = 1, *[Du)(z) + (4.11)

dx a+
Now, let w € BV (I) and let p € C°((—1,1)) be a standard mollifier. It is well known that
pex € C=(I) N BV(I), so that p. x @ € WH(I) c AC(I), in particular. Then, for any
¢ € CH(I) we have

/ D )¢ da = / b (I;f[pe D+ (’E; i“igf)) bdz.

By (2.8), we get
b b
/ I 5[pe * Du] ¢ dx = / 1,75[¢] (p- * Du) dz.

Then, since I, *[¢] is continuous and bounded by Proposition 2.18, by [AFP00, Proposition
1.62] and (4.10), we get

b b b
/ I,7%[¢] (p- * Du) dx — / I} =*[¢p] dDu = / ¢ 1,.°[Du] dz.

On the other hand, we also obtain
b b
[ s de = [ (o) ) do
a a b b
— | uwIZ*[¢]dx = / I7%[u] ¢ dz,
by (2.8) and Lebesgue’s dominated convergence theorem, since I, *[¢'] € L'(I) and

= * ul < lullzeory < Capllullsv 1),
by (2.2). Now, since (p. * u)(a) = u(a+) by (2.3), and p. * Du — Du in M(I), we get

[ 1@ ¢) e = tim [ 125l u)(0) () d

= —tim [ 1100 (e Do) + s O o) o
—— [ D) - s [ ot o

=— / (I;ﬁ[Du](x)Jr F(11_ S (Z(i—;))> o2 dr.
which yields (4.11). .




4.1.1 Proof of Theorem 4.1

Proof of Theorem 4.1. Thanks to Proposition 4.5, if u € BV (I) then D:, u € L*(I), and so
u € W§%7a+([), since

(b—a)t—*

vty < g gy (DU + (et

1D

by (4.9). Then, it is clear that |u(a+)| < |Jul|ze(r) and so, thanks to (2.2), we get

s (b_ a>1_8 *
lllwes oy = o + ([ Dosul| gy < Mlulloy + T@=s (1Dul(T) + [u*(a)])

(b—a)l—s 1
< ullwy + oy | 1PU) + 7——llullza) + |Dul(1)

['2—s)
= (1 + %) || £y + %WUKI),

which easily implies (4.7) and the continuity of the embedding BV (I) — W;‘i%(]). To
prove the second part of the claim, we exploit (4.11) in order to obtain

/ D, [u](2)p(x)da = / b[;f[Du](x)gb(a:)dx—kFzﬁaj; / b ( o) gy

r—a)®

:/QfmmﬂM®+
(@+)

where I} ~*[¢] € C%*(I), by Proposition 2.18. Therefore, by Lemma 2.17 and Lebesgue’s
dominated convergence theorem, we get

b

lim DS[J<>¢cwdx::/“¢¢wd0um»+wwa+yMa»

s—=17 Jq

Then, the claim plainly follows by the density of C1(I) in C(1). O

Remark 4.6. We notice that, thanks to [BLNT17, Theorem 4.1|, one can alternatively prove
(4.8) by showing only that D [u.] = Du. as s = 17 in M(I), where u. is the Cantor-type
function such that uw = g + uj + u.. Indeed, if p € CH(I), we have that

b b b
/wmmmwmma/wmﬁwwmmz/@ﬂmmwwm:

L%mumh@%;(ﬂm—ékww—@bwﬂ,

now, when s — 17, the last integral approaches to

(4.12)

[%wﬂmmy

Eventually, we conclude using the density of C*(I) in C.(I).



4.2 Marchaud fractional derivative for functions in W*!(I)

Now, we prove that the Marchaud fractional derivative is well defined even if u is merely in
the fractional Sobolev space W*(I); this is a key tool in the proof of Proposition 4.2

Lemma 4.7. Let s € (0,1). Ifu € W (I), then the Marchaud fractional derivative ™ D [u]
is well defined and coincide a.e. with D} [u].

Proof. 1t w € W*Y(I) N CY(I), formula (2.17) holds true.

Otherwise, if u € W*!(I), we exploit the density of C}(I) in W#!(I) (see Remark 2.11),
which means that there exists a sequence u, in C!(I) such that ||u, — ullyysny — 0 as
n — +o0o. Now, we prove that, up to a subsequence,

5 B 1 Up () s T U () — up(t)
Paslunlle) = Fi =g —ay T T 9) / -

converges pointwise L'-a.e. in I to D:, [u](x).
For the second term in the right hand side, we proceed as follows: we set

fo(r) = /”‘" Un () — up(t) — u(x) + u(t)dt.

(x —t)s+!

The sequence f, converges to 0 in L*(I). Indeed

/ Fa@)ldo < [t — sy < ltm = ullygr iy > 0 a8 71— +o00.

Therefore, up to a subsequence, f,, converges pointwise £!-a.e. to 0 in I, so that

Hnl nll) g [T v

(@ —t)+

for L'-a.e. v € I. Conversely, for the first term in the right hand side, up to a subsequence,
we have convergence £'-a.e. in I thanks to the convergence of u,, to u in W#!(I) and hence
in L'(I), which implies pointwise convergence Ll-a.e., up to a subsequence.

For the L' convergence, We argue as follows: employing the fractional Hardy inequality
29W1thn—p—1andQ a,b), we get

n1—1>I—&I-loo a (J} — t)5+1

/'“"(x N g </ |“”|5 — O <y — lypery =0 as - +oo,
I

(ZE—CL

where |§;(x)] = min{x — a,b — z}. To conclude, we notice that, for any ¢ € C}(I) it holds
that
b
/ MDs ) d;z:—/ Dy [u,)(x)p(x)dx

:_/a 17 ) (2)8) () — — /11 *[u] (2)¢) () da,

since u,, — u in L*(I) and I,7° is continuous from L'(I) to L'(I). On the other hand, we
have just proved that *D?_ [u,] — M D:  [u] in L*(I), and so we conclude

[ i@ = - [ 1@ ),

a

and this implies u € W;i%([) with ¥ D3 [u](z) = Di_ [u](z) for a.e. x € I. O



Remark 4.8. We notice that Holder inequality does not work in the last computation, so that
we need to employ the fractional Hardy inequality; indeed, since u, —u € W*L(I), thanks
to fractional Sobolev embedding Theorem (see e.q[DNPV12, Theorem 6.7.]) we have that
u, —u € LU(I) for any q € [1,=].

Therefore, we get

Now, q < 17157 implies sq¢ > 1, and so

and thus this estimate is not useful.

4.2.1 Proof of Proposition 4.2

Proof of Proposition 4.2. Since u € LY(I), in particular, we have I, *[u] € LY(I) by (4.9)
applied to p = ul!.

Thanks to Lemma 4.7, we have that the Riemann Liouville fractional derivative of u
coincides with the Marchaud one, and so

s B 1 u(z) s Tu(z) —u(t)
Darll@) = 55 e —ar T T =9) / (w— 1

For the second right hand side term, it holds that

/abdgc /g” Mdt' < [ulwern. (4.13)

(SL’ _ t)s+1
While for the first term, using Lemma 2.9 with n = p = 1, and = (a, b) we have that

" Ju(2)] > Ju(z)|
/a (x—a)sdx =), léz(x)lsdx < Cllullwesn (4.14)

Eventually, using (4.9), (4.13) and (4.14), we obtain that there exists a positive constant

C = C(s,a,b) such that,

HUHW};’L{H([) <cC HUHWSJ(I) :

Actually, the inclusion of Proposition 4.2 is strict, as the following result shows

Proposition 4.9. The space WE’&M(I) strictly contains W*1(I).

Proof. Without loss of generality, let I := (0,1). We claim that the function u(z) := 2*7! €
W§’£70+(I) \ W#(I). Clearly, z°~' € L'(I). Now we prove that u € WE’AM(I) \ WeI(T).
Indeed, it is easy to check that

Ly *[u)(z) = T(s),



and so Ij;*[u] € WY(I), which shows that u € W} o, (I). Then, we need to prove that the
Gagliardo-Slobodeckij seminorm of w is infinite. We see that

1 1 s—1 s—1
. o=t =y — 1yt
[ulws) ,:/ g dy=le= 1|s+1 LoV drd
mln{l 7} ’Zs 1 _ 1|
/ L ey
1 |Z 25— 1 1|
1|S+1 dydz—|— 1|S+1 dy dz = 400,

since 1/y ¢ L'((0,4)), for any & > 0. O

Remark 4.10. We notice that Proposition 4.2 does not hold for unbounded intervals; indeed,
the functions u(x) := % belongs to W'((1,+00)), therefore u € W'21((1,+00)), but we
have that

11/2[u]<x> 1 log(z) + 2log (1 + @) . VI—1

b V3 213/2 x

¢ L'((1,+00))

This example says also that the continuity of the fractional integral in LP(I) for 1 <p <2
fails if I is an unbounded interval.

Recalling that W*'(I) coincides with the Besov space B | (I) (see Appendix A.2 for basic
notions on real Interpolation Theory), we can extend Proposition 4.2 as follows

Corollary 4.11. Let0<s<r<1,1<p<ooandl < q < oo. It holds that the embedding
By (I) = Wf%’é;ﬁ(]) is continuous.

Proof. Tt is sufficient to use Proposition 4.2 and Proposition A.6. n

Remark 4.12. Unfortunately, Corollary 4.11 does not cover the case r = s for any choice of
p and q. Therefore, in the particular case p = q we are unable to conclude that Proposition 4.2
extends to W*P(I) for any p > 1. Indeed in [MS15| the authors prove that for 1 < g < p < oo
and s > 0, s not an integer, W*P(I) £ W4(I).

It is interesting to notice that some inequalities of Poincareé type hold true in the fractional
context, for which we refer for instance to [Ana09, Chapter 17]. However, in general it is
not possible to retrieve the classical Poincaré inequality by estimating the LP norm of the
difference between u and its average with the LP norm of its Riemann-Liouville derivative.
To this purpose, given a function u € L'(I), we denote by u; the mean of u on the interval

I;ie.
1 b
u 1= g a/a u(z)dz.

Now consider for instance u(x) := (z—a)* ! for € (a,b) and for some s € (0, 1); we have
that v € LP(I) if and only if p < 18, and, by the calculations in the proof of Proposition
4.9, I7°[u](z) = T'(s) and D:, [u](z) = 0 for any x € (a,b), so that u € Wp¥ s (1) for any
p € [1,1/(1 — s)). Thus, being u not constant, we cannot hope for any sort of Poincaré
inequality.




4.3 The space BVy; .. (1)

In analogy with the previous definition of left Riemann-Liouville fractional Sobolev spaces,
we introduce now the natural extension to the BV framework.

Definition 4.13. Let s € (0,1). We define the space of functions with left Riemann-Liouville
fractional bounded variation as

BVip o (I):={ue L' (I), I,7°[u] € BV(I)}.

It is easy to see that u belongs to BVy; ., (I) if and only if there exists a measure

p € M(I) satisfying : i
/ 17 [u)(2) ¢/ (2) do = — / o(x) du(x)

for any ¢ € C(I), and we call DI, *[u] := u the weak left Riemann-Liouville s-fractional
derivative.
It is not difficult to see that the space BVy; ., (I), endowed with the norm

HUHBV&'L’ H“HLI 1 T ”I1 [ ]HBV(I) )

is a Banach space.
Arguing analogously as in Lemma 2.29, we derive a duality relation between the left
Riemann-Liouville weak s-fractional derivative and the right Caputo s-fractional derivative.

Corollary 4.14. A function uw € L'(I) belongs to BV} . (I) if and only if there exists

e M(I) such that
b
/ u(z) D5 _[¢](z) d —/ () du(x

for every ¢ € CH(I). In that case, we set DI, *[u]

Remark 4.15. Clearly, if v € Wgy . (I) for some p > 1, and s € (0,1), then u €
BVip e (1), and Dj [u] = (Dg [u])L".

4.3.1 Fine properties of functions in BV, .. (1)

Now, we focus on the decomposition of the measure D, [u] for functions in BVy, .., (I).
We start with the following

Proposition 4.16. If u € BV (), then u € BV, .. (I) and
Dg u] = (DZ+[U])aC£1~

Proof. Using Theorem 4.1 and remark 4.15, if v € BV/(I), then u € Wé’iw([) and so
I,7°[u] € WH(I) ¢ BV(I), and this means that the measure D:_ [u] is an absolutely
continuous measure with respect to the Lebesgue measure £', with D¢, [u] as density. [

In the spirit of Lemma 2.31, we can obtain a version of the Fundamental Theorem of
Calculus for functions in BVj; . (1).



Lemma 4.17. Let s € (0,1) and uw € BVj , (I). Then, for L'-a.e. x € I, we also have

ula) = DL 12 ) = L P2 o) + 5 M )
In addition, if u € BV, . (I)N 15 (LX(I)), thenu € Wi}, (1) N 15 (LN(I)), I, [u](a) = 0
and (2.28) holds.

Proof. The first equality in (4.15) follows immediately from (2.26). The second one can be
proved as (2.27). Indeed, if u € BV}, .. (I), then I,7°[u] € BV (I) with weak derivative
D5, [u]. Therefore, by [AFP00, Theorem 3.28|, for £'-a.e. x € I, we get

(@) = [ a0z o) + 1 o)

1—sy7s s 1-s [;J:S[u](a+) s—1
= ]a+ [Ia—&—[Da—l—[u]H(x) + ]a+ T( - CL) (l’)

by (2.18). We notice that D:, [u] € M(I), and so, by Proposition 4.3, I3, [D5, [u]] € L*([).
Thus, it is enough to apply D,.* to both sides of the equation and use (2.26) to obtain
(4.15). Finally, if u € BV, . (1) N1, (L'(1)), then, by Lemma 2.30 with p = 1, we have
that u € WE’LM(I), I;7°[u](a) = 0, and so it satisfies the hypotheses for (2.28). This ends
the proof. n

Now, we show with a counterexample that the inclusion of BV(I) into BVy; ,. (1) is
strict. This fact suggests that, in general, if u € BV, ., (I) \ BV(I), then the measure D;
is not absolutely continuous with respect L.

Example 4.18 (BVj, ,, (I) strictly contains BV (I)). Let s € (0,1), J = (c,d) with c,d € R
such that a < c < d < b. We define the following function

0 o a<z<c
- s—1
@9 ecr<d (4.16)

I'(s)
0 of d<zxz<bd

u(z) =

It is plain to see that u ¢ BV (I), since u ¢ L=(I). Now, we compute I, °[u](z). Clearly,
when x € (a,c), 11 °[u](x) = 0, otherwise, for x € J we have that

1) () = m /j(t )Nz — ) tdt = m/o o1 — 0)~*do — 1.

Therefore, for any x € I,
0 o ze€(a,c
o)) =4t Y e (c.d]
ey ] T e i e @),



which coincides almost everywhere in I with the function x;(z) + f(x)xw(z) € BV (),
where

fla) = m/ (t — ) Y(a — t)*dt € C([d, b)) N C*=((d, b)) N L ((d, b)).

Therefore, I, *[u] € BV (I), and hence u € BVip o (1) \ BV(I).

Remark 4.19. From the previous ezample, we deduce that if u € BV . (I)\ BV (I) then,
the measure D;  [u] can have a jump part; indeed, for the function u given by (4.16), we have
that

Dj [u] = 0 = 6a + [(d)da + f'()X(@n L = de + [ (2)x@an L

where the second equality follows from the fact that f(d) = B(s,1—s)=1.

1
L'(s)I'(1—s)
Now, we exhibit an example of u € BV}, ,, (1) such that 1, °[u] € BV (I)\ SBV(I).

Example 4.20. Consider the classical ternary Cantor function C(z), and let I = (0,1). It
is well known that C € C%*c(I)N BV (I), where ac := logs 2, and DC' is a singular measure
without atoms which means that DC' = (DC)., in particular up to a multiplicative constant
DC = H“c, see e.g. [AFPO0).

Now, since C(0) = 0 using Proposition 2.21, we have that C' is representable as the (1—s)-
fractional integral of a function in Cy***"NT), provided s € (1 — ag, 1), but this implies
that there exists u € Cy*“"* (1) such that Iy *[u](z) = C(x), and so u € BVjy (1), with
Dg,[u] = DC = (DC)..

4.4 Action of the fractional integral on Sobolev functions

In this section we analyze the behaviour of the fractional integral when it acts on functions
in the Sobolev space W1P(I) for some p > 1. We start with the following statement

Proposition 4.21. Let 1 < p < oo and s € (0,1) such that sp < 1. If u € W'P(I), then
I [u] € WYP(I). Moreover, if u(a+) = 0, I1.* is a continuous operator from WYP(I) into
Whp(7).

Proof. Thanks to Proposition 2.21, I'7*[u] € LP(I), and

(b—a)t—*

Hfl 5| HLP([) < m

||U||Lp(1) : (4.17)

Now, we prove that D;_ [u] € LP(1).
We notice that, u € WP(I) C BV(I) for any s € (0,1); hence, using Theorem 4.1, we

have that D (o) u(a+) 1 ) 1 /m u(t) P
at Frl—s)(x—a)y TA-s)/), (x—1t)5 "

where u' denotes the weak derivative of w.
Therefore, we get

p <
/]D z)[Pdr < Chlu(a+) P /a (x—a +C2/ / x—tsl’




Now, since sp < 1, the first term in the right hand side is finite. For the second term, we
have that

b T 14\ (P b b
/dz/ Mdt:/ |u’(t)|pdt/ _de
a a (x_t)sp (.CU— )sp
= Csp/ |U )IP(D 1 Pdt < Cspap Hu ||LP([ o0,

therefore
1/p

1024l oy < € (@)l + o)) (418)

Moreover, if u(a+) = 0, summing up (4.17) and (4.18), we have that there exists C' > 0 such
that

Hll il < CHUHWLP(I)

]
for any u € WHP(I), and this concludes the proof. H

Corollary 4.22. Let 1 <p<g< oo andr,s € (0,1) such that sp < 1 andr > s+ z%’ where
p' denotes the Holder conjugate of p. Then we have that

ngg,a-i-([) - Wls%f,a—}-(j)'
Proof. Since Wi . (I) C WP . (I), we are left to prove that I, °[u] € W'#(I). We notice

that
L [u)(z) = Lo [u))(2) = 13 v (=),

where v(z) := I,7"[u](x) and v := 1—r+s. Thanks to Proposition 4.21, since v € WP(I) we
have that I, "[v] € W'?(I) provided vp < 1, and this condition holds since r > s + :z%' O

Remark 4.23. Proposition 4.21 covers the case p = oo if and only if u(a) = 0; indeed, for
u € WHe(I) with u(a) = 0 we have that

Do) = i | G

and, for any x € I, we have that

(b—a)l®

| Dy [ul(z)]| < T@_s) [/l oo 1y

and so
(b—a)t—

Hps\wmmgfﬁtEWWwww

u(a) # 0 we have neither continuous embedding, nor inclusion; consider for instance
I:=1(0,1) and u(z) := cos(z) € W'>°(I). We have that

D1 = s (3 [ o).

Since the first term in the right hand side is not bounded when x s close to 0, clearly
Dgy[u] ¢ L=(1).

Remark 4.24. We notice that the continuous embedding given by Corollary 4.22 can be
obtained as a byproduct of [IW13, Theorem 31|, which attests that the embedding is compact.




4.4.1 Regulatization properties of the fractional integral and a Sobolev-
type embedding Theorem for functions in WRL o ().

In this subsection, we want to prove that the fractional integral actually improve the (weak)
differentiability of a Sobolev function. To this purpose, we start with a simple remark.

Remark 4.25. Depending on the summability of a Sobolev function u we notice that ];;S
enjoys different improvements in reqularity. In particular we distinguish the case p =1 and
the case p > 1.

1. Casep=1
If uw e WHI(I), using Sobolev Embeddmg Theorem u € Lq(]) for any 1 < q < o0, and
so, thanks to Proposition 2.18, Il *[ ﬂ c S"
q>1/s
2. Casep>1

If u € WY(I), again by Sobolev Embedding Theorem, we have that u € CO’I_%([).

1

0,1-1
Using Proposition 2.21, for any uw € C, " (I), we have that

el
e I eCy I ifs 1> 1,
o I' %lu] € Hy'(I) z'fs +1=1,

1,1-s—1

o« I € Gy T if s+ L < 1.

In the third case, follows that D} [u] € CO’PS*%(I).

Now, we are able to prove that when we apply the fractional integral [ ;;5 to a function in
VVO1 P(I) for some p > 1, we gain more differentiability; this means that the function I, *[u]
belongs to a higher order fractional Sobolev space as given by Remark 2.8.

The statement goes as follows

Proposition 4.26. Let p > 1 and s € (Om&in{%, ’%}). For any u € Wol’p(l), we have
that I,7°[u] € WstLP(I),
Proof. We notice that the conditions sp < 1 and s—l—i < 1 are satisfied, and so, by Proposition

N O
4.21 and Remark 4.25, I'7*[u] € WD) n ¢y (1),
Now, we prove that D, [u] € W*P(I). Namely, we have to prove that

Now, we use the Holder continuity of D7, [u] to say that

D3 [u)(z) — D3 [u](y) P < Cla — y[P~P,

for some C' > 0 and for any x,y € I.



Therefore, we have that

D 2 [l o
[ [t < [ [ o

where the integral in the right hand side converges since s < 1’2;;. [

Corollary 4.27. In the same hypoteses of Proposition 4.26, we have that

s,r p
u€ Wpp . (I) forany re [1, - sp]

Proof. Thanks to the fractional Sobolev Embedding, since sp < 1, we have that D?, [u] €
L™(I) for any r € [1
this completely proves the claim. O

, 75 |» hence I7°[u] belongs to W7 (I) in the same range for r, and

Now, we show an analogous of the Sobolev embedding Theorem for Riemann-Liouville
fractional Sobolev spaces. To the knowledge of the authors, this is an original result in this
setting. We refer the reader e.g. [AF03, Chapter 4| for the classical Sobolev embedding
Theorem for Sobolev spaces of integer order or [DNPV12, Theorem 6.7.] for Sobolev spaces
of fractional order.

Theorem 4.28 (Riemann-Liouville fractional Sobolev embedding). Let s € (0,1), 1 <p <
oo and u € Wi . (I) N I3, (L'(I)). Then, we have that

(i) Ifp=1,u¢€ Ll%s’oo(l), in particular w € L"(I) for any r € |1, 1%8),

(1)) If 1 <p<1/s,u€ L"(I) for anyr € [1

2,
(i1i) If sp=1, uw € L"(I) for any r € [1,+00),
(iv) If sp > 1, u € CO(I) for any B € [0,s — Zl)}
Proof. Since u € I (L'(I)), thanks to Lemma 2.31 we have that
1,105, ul)(2) = u(o),

for any x € I, and D; [u] € LP(I) since u € Wg7 .. (I). Now, using Proposition 2.18 we
have distinguish among four cases:

e ifp=1,ue L"(I) forany r € [1,1/(1 — s)),
o if 1 <p<1/s,ue L"(I) for any r € [1, 2],
o if sp=1we L"(I) for any r € [1,+00),
o if sp>1,ue C%(I) for any 5 € [0,s — 1—1]],
and this concludes the proof. O

Remark 4.29. It is worth noticing that cases (i) and (iii) in Theorem 4.28 are sharp, as
shown in Appendiz A.J.



Remark 4.30. We notice that if we skip the L'-representability hypotesis, it holds that for
any v € I
Ilfs
ule) = D2 o) + 2 = 0
Therefore, ifu € Wgr ., (1) for somep € [1,1/s), we have that uw € L"(I) for anyr € [1, 1= S)
This means that we gain summability if and only if s € [3,1). Indeed, if s € [1/2,1), w
have that uw € L"(I) even when r € (p, =) 2 (p,2). In the cases sp =1 and sp > 1 we

have neither more reqularity nor more summability for the presence of the second term in
the right-hand side.

4.5 Higher order fractional derivatives

In this last section, we point out that some of the results presented in the chapter can be
extended to higher order fractional derivatives

Definition 4.31. Let k € N, s € (k — 1,k) and u such that the fractional integral I¥7°[u] is
sufficiently smooth; we define the Riemann Liouville fractional derivatives of u as
dk

D3 [u)(@) = 1)),

Di_[il(w) = (~1)* 18 ().

From this definition, for w sufficiently smooth, we immediately obtain a definition for
higher order Caputo fractional derivatives

s — j—s __ 1 ’ (k)<t)
“Di ) = ]ZFJ—SH (z—a) _F(k:—s)/a @t
and
D} ful(x) = > WDy = e [
-t TG—s+1) 7 T T(k—s)), t—aypr

:O

.

These higher order fractional derivatives allow to define, for p > 1, k € Nand s € (k—1,k),
higher order Riemann-Liouville fractional Sobolev spaces, which are given by functions u €
Wk=1P(I) such that I} *[u] € WFP(I).

Proposition 4.32 (Continuity of the fractional integral in higher order Sobolev spaces).
Let k > 2,1 <p<ooands € (k—1k— 1+§). Then, if u € WFP(I) and u(ax) =
u'(ax) = ... = u* D (ax) = 0, then we have that It *[u] € W*P(I). Moreover, if in addition
uk=V(ax) = 0, the operator I¥.° : WkP(I) — WkP(I) is continuous.

Proof. Using the representation formula obtained via iterated integrations by parts

]f;s[u] (r) = —I‘(kl— 5 (csM€ /w u® () (z — ) tat + Z cs,k,iu(i)(a) (x — a)k_8+i> ,
= (4.19)



where

1 if h=0
Colh i= -1 :
o ( Pl — s+ z)) if h>1,

it is an easy task to check that this function has all the derivatives up to order k in LP(I)
if and only if u vanishes in a with all its derivatives up to order k — 2. Furthermore, if
u*(a) = 0, the second term in the right-hand side of (4.19) completely vanishes and
hence we have that

5l sy = 3o )y < 30 1y < il

]

Remark 4.33. The case k =1 s covered by Proposition 4.21, where a homogeneous initial
condition is not necessary to prove that I,.*(W'P(I)) is a vector subspace of WYP(I), but
only for the continuity of the (1 — s)-fractional integral.

Remark 4.34. As stated in Remark 4.23 when k = 1, the same counterexample says us
that in the case p = oo homogeneous conditions in the initial point for all the derivatives up
to order k — 1 are necessary also for the inclusion as vector subspace of It *(W*>(I)) into
Wkee (1),

The introduction of higher order Riemann-Liouville fractional Sobolev spaces allows us to
prove the following proposition involving the space BH(I) := {u € WL(I) |« € BV (I)},
which is usually known as the space of functions with bounded Hessian in /. Originally
introduced in [Dem84|, BH is the natural setting for second order variational problems with
linear growth (see e.g. [CLT04| for applications in image analysis).

Proposition 4.35. Let u € BHy(I), then u € W]S%’;H(I) for any s € (1,2).

Proof. By definition v € WH(I) and v/ € BV(I); thanks to Theorem 4.1, we have that
u € ng’%(]) for any o € (0,1), therefore I, °[v/] = “D7, [u] € WHH(I). Now, since
u(a) = 0, we have that “D7, [u](z) = DZ [u](z) for any x € I, but this implies that
I7%[u] € W2Y(I) for any o € (0,1). Now, if we set o := s — 1 for s € (1,2), the claim
plainly follows. O]

g
a-+
€

4.6 Open Problems

As remarked by Remark 4.12 we are not able to prove (or disprove) that for s € (0,1) and
p > 1 the inclusion

W*P(I) € Wi ot (1),
holds. We conjecture that, if this were true, the condition sp < 1 should be imposed; indeed,

if sp < 1 thanks to Remark 2.11 the set C!(I) is dense in W*?(I); therefore, firstly one should
be able to prove an analogous of Lemma 4.7 for functions in W*?(I), and once proved that

1 u(z) s T u(z) —u(t)
i "

F(l—S)(l'—a)s+F(l—3 (Qf—t)s+1

Dy, [u](z) =



one could be estimate the LP norm of the first term in the right-hand side thanks to the
fractional Hardy inequality 2.9, but we do not know how to handle the second term. Indeed,

one has that
[ [HA O < [y [,
- /b o /min{b,xl} %dt
a max{a,z+1}
nmflan [ e

b min{b,x—1} |U(I) . u(t)|p
Lglm/ o =gt S s,

max{a,z+1}

where

and

For J; we have that

but we are not able to prove (or disprove) an estimate of the form

Jo < C[ ]Ws P (1))

or the weaker one
Jo < Cllulliyemr »

for some C > 0.



Chapter 5

Local minimizers for nonlocal perimeters
in Carnot Groups

5.1 Introduction and main results

In this chapter we study a minimization problem in a sub-Riemannian setting; in particular
we will work in a Carnot Group.

We notice that variational problems in sub-Riemannian geometry are treated e.g. in
[BF03, BLU07, CMS04, FS06].

In the first section, after an introduction of the framework, we present the main result of
the paper; namely, the local minimality of halfspaces for nonlocal perimeters.

In the second section we introduce the notion of calibrations, which is analogous of the
one given in the euclidean setting by [Cab19|, [Pag19] and we proceed towards the proof of
Theorem 5.2.

In the third section, we study the rescaled limit of our functional. Namely, following the
results in [BP19] with appropriate modifications we prove that the horizontal perimeter with
a given density bounds from below the I' — liminf of the rescaled sequence L Jx_ (E., Q).

[-convergence of nonlocal perimeters in R™ has been treated e.g. in [ADPM11, BP19,
Pagl9]; in particular in the first work, the authors deal with the nonlocal perimeter of
a measurable set in the whole of R™ obtaining a I'-convergence result via a polyhedral
approximation; in our setting this approximation could be made by an identification of the
Group with the euclidean space via exponential coordinates, but in this way we would lose
informations on the intrinsic geometry of the Group. See Section A.5 in the Appendix.

In the fourth section we prove that our main results hold even for functionals depending
on the sub-Riemannian heat kernel.

We conclude with some open questions.

Now we are ready to introduce our framework.

Let G be a Carnot group with homogeneous dimension () as defined in Chapter 2 and

denote by | - || a symmetric and homogeneous norm on G. Let K: G — R be such that
K>0 inG, (5.1)
K =K(€) forany¢ €G, (5.2)
/Gmin{l7 |z|| } K (z) dx < +o0. (5.3)
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Define also for every measurable function u: G — [0,+o00] and every measurable set
) C G the functional

I ) =3 [ | K oluty) o)l dyde+ [ [ K )laty) = u(o)] dyda

) (5.4)
= QJ}((U,Q) + Ja(u; Q).

Moreover, for A, B measurable sets, we define the interaction between A and B driven
by the kernel K as

Lk(A,B) = / / K(y ‘z)dydz. (5.5)
BJA
Notice that if u = ypg for some measurable set E, we also set Px(E;Q) = Jx(xg; ),
and we have that
Pr(E;Q) =Lg(E°NQENQ)+ Lg(E°NQENQY) + Lg(ENQ, E°NQ°Y);

in particular, if Q =G
Px(E,G) = Lg(FE, E°).

Remark 5.1. For every measurable set E C G we notice that P (E;Q)) can also be written

as
1

Pr(B:Q) = & / e () — xe(@) K () de dy. (5.6)
2 Jexe)\(@ex00)

Indeed we can write

/ IXE(Y) — xe(2)|K(y 'z) dedy = / Ixe(y) — xe(z)|?K(y'z) dx dy
(GXG)\(QexQe) (GXG)\(QexQe)

- / (x5 () — X xs(@) K (" 2) de dy
(GXG)\(QexQe)
T / (v(®) — Xe(y)xe (@)K (y~") dr dy
(GXG)\(QexQ2e)

:2/ XE(x)XEc(y)K(y_lx) dx dy
(GxG)\ (Qexe)

=2Lg(E°NQ,ENQ)+ 2L (E°NQ, ENQY) 4+ 2L (ENQ; ECNQ°)

When G is the Euclidean space R™ for some n € N, a typical example of radial kernel
satisfying (5.3) is given by the fractional kernel K (x) = |z|™"~%, for some « € (0,1). We
refer e.g. to [Vall3] where applications to phase transition problems are also treated.

For any € > 0, we define the rescaled kernel K. as

1
KE<I') = g—QK((Sl/EZL’),

and we introduce the functionals J. and L. accordingly as J and L by replacing K with K..
Our main Theorem goes as follows
Theorem 5.2. Let H be a vertical halfspace and denote by B .= B(0,1). Then
Ji(xu; B) < Jx(v; B),

for every measurable v: G — [0,1] such that v = xy almost everywhere on B¢. Moreover,
if u: G — [0,1] is such that w = xg almost everywhere on B¢ and Jx(u; B) < Jx(xu; B),
then u = xg almost everywhere on G.



5.2 Calibrations

In order to prove Theorem 5.2 we adapt the notion of nonlocal calibration given in [Pagl9]
in the euclidean setting. We notice that in [Cabl9] a notion of calibration for nonlocal
functionals is also given; in particular, the author proves that in presence of a foliation'
made of sub and super solution of the nonlocal mean curvature flow

HK[E] =0,

where the nonlocal mean curvature is given by

Hp[E)(x) := lim (xee(y) — xe(y) K(z — y)dy, (5.7)

e—0 Rn\BE(I‘)

a calibration for the nonlocal perimeter is available and, as in the local case, we can prove
the minimality of each leaf of the foliation for its own boundary datum.

Definition 5.3. Let u: G — [0,1] and (: G x G — [—1, 1] be measurable functions. We say
that ¢ 1s a calibration for u if the following two facts hold.

(i) The map F=(p) = [g\ ppe KW P)(C(y,p) — C(p,y)) dy is such that

(i1) for almost every (p,q) € G x G such that u(p) # u(q) one has
¢(p @) (u(q) — u(p)) = [ulq) — u(p)|- (5.9)

Remark 5.4. If (: G x G — [—1,1] is a calibration for u: G — [0, 1], then also the anti-
symmetric function ((p,q) = %(C(p, q) — C(q,p)) is a calibration for u.

The proof of the following theorem follows closely the proof of [Pagl9, Theorem 2.3].
Theorem 5.5. Let Ey C G be a measurable set such that Jx(xg,; ) < +0o and define
F ={v:G —[0,1] measurable | v= xpg, on Q}.
Let u € F and let (: G x G — [—1,1] be a calibration for u. Then
I (u; Q) < Jk (v; Q),

for everyv € F. Moreover, if u € F is such that Ji(u; Q) < Jg(u; ), then ¢ is a calibration
for w.

'If © € R™ is a bounded open set and E is a measurable set, we say that € is foliated by sub and super
solutions adapted to ' whenever there exists a measurable function ¢g : R™ — R such that

(i) E={¢p(zx) >0} up to L"-negligible sets,

(ii) The limit in (5.7) exists for a.e. = € Q and the sequence indiced by € given by the integrals in the
right-hand side of (5.7) converge in L*(Q) to Hx[¢g], as € — 07,

(i) Hilpg](x) <0 for a.e. x € QN E and Hk[og|(x) > 0 for a.e. z € Q\ E.



Proof. We can assume without loss of generality that Jx (v; ) < +o0o for every v € F. Since
lv(y) —v(x)| > {(z,y)(v(y) — v(x)) we can write for any v € F

JK(U; Q) Z (l(U) — b1(U> + bo,

where a, b; and by are respectively defined by

= %A[)K(y‘lm)dx,y)(v(y)—v(fﬂ)) dydz,
— [ | K9 p)oo) dyds,
Q JQe

bo == / K(y 'z)¢(z,y) Xk, (y) dydz.
Q JQe

By (5.9), we notice that Jx(u;Q) = a(u) — by(u) + bo. It is then enough to prove that, for
every v € F, one has a(v) = b;(v). By Remark 5.4, we can assume that ¢ is antisymmetric.
Combining this with the fact that K(£71) = K(£), we easily get

B _/Q/QK (™" 2)¢(w, y)o(x) dyda. (5.10)

By (5.8), for almost every x € 2, we have

lim Ky '2)(z,y) dy =

"0 By

lim K(y 'z)(z,y) dy + [ Ky 'z)((,y) dydz = 0.

r—=0 B(z,r)eNQ Qe

Implementing this identity in (5.10) and using the dominated convergence theorem, we get

//Ky )¢ (2, y)o(z) dyde
- iy /Q /B - Ky 2)C (2, y)o(x) dyda
= [ [ K ot dude = o).

We are left to prove that if u € F is such that Jx(u; Q) < Jg(u; Q), then ¢ is a calibration
for u. Since u = u on Q° we get

(2, y)(uly) —ulz)) = fuly) —u(z)], (5.11)

for almost every (x y) € Q° x Q° satisfying u(x) # u(y). Since Ji(u; Q) = by, we also have
that Jx(u; Q) = a(u) — by (uw) 4 by. This implies that

//Ky 2) (fly) — ()| — () @ly) — @(2))) dyda
" / [ Kma) ((0) = 70| = Ca)@lo) — le) dyde = 0.

Since both integrands are positive, we get that (5.11) holds true for almost every (z,y) €
Q x G with u(x) # u(y). To get (5.11) for almost every (z,y) € Q° x it is enough to use
the antisymmetry of (. O



Proposition 5.6. For any v € g, \ {0}, the map (,: G x G — [0, 1] defined by
Cy(l', y) = sign (<7T1 log(x_ly), V)) )
s a calibration for xp, .

Proof. Denote for shortness H = H, and ( = (.. Let us first prove property (ii) of Definition
5.3, namely that for almost every (z,y) € G x G with xg(z) # xu(y) one has

C(z,y)(xu(y) — xa(2) = Ixa(y) — xu(z)l.
It is not restrictive to assume that x € H and y € H°. Then we just observe that
(milog(a"y), v) = —(m loga,v) + (m logy, v) < 0.

Concerning property (i) of Definition 5.3 we observe that for every r > 0 and every z € G
one has

/G\B( )K<yilm) (sign((m log(z™"y),v)) — sign({m log(y"z),v))) dy

= 2/ Ky 'z) dy — 2/ Ky 'z) dy
G\B(z,r)NzH G\B(z,r)NzHe®

:2/ K(z)dz—?/ K(z)dz=0.
G\B(0,r)NH G\B(0,r)NHe

The last identity comes from the fact that H?({z € G : (m logz,v) = 0}) = 0, K(z71) =
K(x) and the inversion & — £~! preserves the volume and maps H onto H¢ (up to sets of
measure zero). O

5.2.1 Proof of Theorem 5.2

Proof. By Proposition 5.6 and Theorem 5.5 we only have to show that minimizers are unique
(up to sets of measure zero). Let v € g; \ {0} be such that H = H, and let u: G — [0, 1] be
such that u = xy almost everywhere on B¢ and Jk(u; B) < Jx(xu; B). Consider the map
((z,y) = sign({m log(z~'y),v)) which is a calibration of yz. By Theorem 5.5, ( is also a
calibration for u. Let N C G x G be a set of H? @ HY-measure zero such that

sign((m log(™'y), 1)) (u(y) — u(z)) = Ju(y) — u(x)|, for every (z,y) € N°.  (5.12)

We now prove that (5.12) holds indeed for every (z,y) € G x G. Consider a radial function
p: G — [0, +00) with compact support in B(0,1) and such that fB(O 0 pdH® = 1. For every

e > 0, consider the family p.(z) = Z5p(81/.2) and define

Ua(2) = % pa(z) = / w6 )pa(€) de.

G

Then, for every (z,y) € G x G one has
w(y) — uele) = / / p2()p=(n) (uln ) — u(€ ")) dnde
_ /B e PR () € )



Assume without loss of generality that (m log(z~'y), ) > 0. Then, for ¢ > 0 small enough,
we also have that

(milog(z~én~ y),v) > 0

for almost every &,n € B(0,¢) . By (5.12), we therefore obtain that u(n~'y) — u({1x) > 0,
for almost every &,n € B(0,¢), and this implies u.(y) — u-(x) > 0. Letting ¢ — 0, we obtain
the implication

(milog(z™ly),v) > 0 = u(y) > u(x)

for every (z,y) € G x G. For every t € (0,1), define the set E; == {{ € G : u(§) > t}.
For every (x,y) € E; x Ef one has u(x) > u(y) and therefore (m logz,v) > (mlogy,v).
By Dedekind’s Theorem, for every t € (0, 1), there exists \; € R such that £, C {£ € G :
(milogé&,v) > N} and Ef C{£ € G: (mlog& v) < \}.

This implies that for all ¢t € (0,1) one has

HOE,A{E € G (mlogé,v) > N\}) = 0.

Combining this with the fact that u = yy almost everywhere on B¢, we get that A, = 0 for
every t € (0,1), and therefore
HO(E,AH) =0,

for every t € (0,1). Consider now a sequence (¢;) in (0, 1) that converges to 0 as j — +o0.
Since u has values in [0, 1], we get

{€€G u) <0} ={£€G:u) =0} =) Ef,

jeN
and similarly
{£€Gu@) =1} =) By,
jeN
The proof is completed by observing that the identities H?({¢ € G : u(¢) = 0}JAH®) =0
and HO({€ € G : u(¢) = 1}AH) = 0 hold. O

Proposition 5.7. Let 2 be an open set and let u € BVg(Q2). Let p € Q, let r > 0 be such

that B(p,2r) C Q and let g € B(0,r). Then
/ | luleg) — ule)] e < d(0,9) Dxul(@).
B(p,r

Proof. Fix a basis (X1, ..., X,,) and assume without loss of generality that u € C*°(Q). Let
e >0 and let v: [0,1] — G be a horizontal curve satisfying

m

Y(0)=0, v(1)=g and (t) =) m(t)X((1) fora.e te0,1],

i=1

where (hy,..., hy,) € L®([0,1]; R™) with ||(h1,. .., hn)|lee < d(g,0) + . Notice that, for
every © € G, the curve 7,: [0,1] — G defined by 7,(t) = « - v(t) is horizontal, joins = and
z- g, and ||Yzlo = ||(h1s ..., hm)|leo- Therefore, for any x € B(p,r), one has

u(z - g) — u(z)| =

[ Sutenar < .0+ [19suao))ar



Integrating both sides on B(p,r) we get

uw(z - q) —u(x)| dx d(g,0)+¢ Vxu(x- dt dx,
[ uteg)—u@lar < @ao o) [ vt s

and exchanging the order of integration we get

/B(W) lu(z - g) — u(z)|dz < (d(g,0) + 6)/0 /B(p’%) |V xu(€)|| d€ dt.

Notice that in the last inequality we have used that d(z - v(t),p) < 2r, for almost every
t € [0, 1]. Indeed, by the triangular inequality and the assumption on g, one has

d(z - ~(t),p) < d(z-~(t),z) + d(z,p) = d(y(t),0) + d(z,p) < r 471 = 2r.

Finally, since B(p,2r) C Q one gets

1
[ e 9)~ ulw)lde < (d(g.0) +2) [ |Dxul (Bly,2r)) e
B(p,r) 0
< (d(g,0) +€) [ Dxul().
By the arbitrariness of €, the proof is complete. O

Before proving the following proposition we introduce the notation

=ém&MM%

Proposition 5.8. Let B, FF C G be measurable sets. Then the following facts hold.
(i) If N C G is a set of finite perimeter in G such that E C N and F C N¢, then

lim sup 1L (EF) < %P(N;G).

e—0 2
(i1) If d(E,F) > 0 and C(K) < 400 then,

1
lim = L.(E, F) = 0.

e—0 &
(111) If uW(F) < 400 and d(E; F) > 0, then

lim L.(E, F) = 0.

e—0

Proof. (i) By a change of variable formula and Proposition 5.7 we have
1 1 1 .
-L.(E,F) g - —K((Sl/a(y z)) dydx
3 e
- / | K@l (z8.9) = ()| dgda

éPNG /K d(g,0)dg.

| /\



(ii) Denote by n = min{1,d(E, F)} > 0. Again by a change of variable formula, we can
write

1 1
e <X / / K.(y ") min{1, d(y, z)} dzdy
€ ne Je Jr

=+ [ [ Ka)min{1.dlo. 0)be vig) dgdy

By noticing that xr(yd.g) converges to 0 as € — 0, for almost every y € E, we conclude the
proof by means of the Dominated Convergence Theorem.
(iii). By definition of L. and by a change of variable formula, we have

1
LB F) = [ [ Koy oyayde =<2 [ [ () dgas
1/e 1/e

Denoting by n = d(E,F) > 0 and by F" == {x € G : d(x, F) > r}, for any positive r, we
notice that ¢;/.F C 51/5F’7/‘E and therefore

L(eF) <= | Kl a) dyde = (6 F) [ k(e de
(Sl/e:F”/8 61/5F B(

0,e~1n)°

= u(F K(§) d€.
uE) [ Kl

The thesis then follows by (5.3). O

The following Theorem provides a compactness criterion in L*(§2) for our functional with
a geometrical prescription on the domain €2; namely we require that () is a John domain, a
condition that generalize the cone condition treated e.g. in [AF03]. We put off the reader to
definition A.12. Before we state it, we remark the validity of the following fact, whose proof
is an immediate calculation.

Lemma 5.9. Let G € L'(G) be a positive function. Then, for any u € L®(G) it holds that
/GX«;,(G « G)(y)luz - y) — u(@)] dyde < 2|6l 1) Jo(u, ).
In particular, if we choose u = xg we have
/GxG(G * G)(y)Ixe(r-y) = xe(@)] dyde <4|G| g Po(E,G).

Theorem 5.10. Let Q C G be an open John domain with finite measure, let (g,) be an
infinitesimal sequence of positive numbers and let (E,) be a sequence of measurable sets in
Q. Assume that 2 is a John domain and that there exists C' > 0 such that

1
—J.(E,Q) <C, VneN. (5.13)

n

Then, there exist a subsequence (E,,) of (E,) and a set E of finite perimeter in 2 such that
(E,,) converges to E in L*(Q).



Proof. We write E. in place of F,, to avoid inconvenient notation. Let ¢ be a positive
function in C2°(G) \ {0} and define for every € > 0 the map

o 1
pe(z) = W@

and consequently set v. == @, * xp.. We can therefore estimate

(51/5:17)7

/G 0.(6) — i, (€)] dé < / / e (7€) i, (1) — X (€)] dnde

(5.14)
= [ [ out©) e (o) = ()] dne.
GJG
Reasoning in a similar way on the horizontal gradient of v. we get
_ —1
[1veu@rds = [ | [ Geotr e an de
< [ [ 19607 xe. ) = xe. (O] dne
6 JG (5.15)

+/6XEE(€) /GVGsoa(n‘lﬁ)dn'dS

- / / Ve (€)X (n€) — Xz (m)] dnde.

Define the map

if <1
T(s) = {S if s| < 1,

1 otherwise,

and consider the truncated kernel G := T o min{1,d(-,0)} K. We notice that G > 0 and,
since G € LY(G)NL>*(G), the map G*G is continuous. This is a consequence of the estimate

(G + G)(p) = (G * G) Q)] < |GllscllTp14CG = Gl1,

and the Dominated Convergence Theorem. We now choose a positive ¢ € C(G) \ {0} such
that
e <GxG and |Vgp| <GxG.

Setting G.(§) == e “G(6,/:€), and taking (5.14) and (5.15) into account we obtain

/ 02(€) — X ()] dE < / / (G % G)(O)xXm.(0E) — X () dndé,  (5.16)
G GJG

and

[ en@lds <2 [ [ (Gox Go@le. o) ~ vl dnds. 617

where the last inequality comes from the fact that

(Voo €) = =57 (Voe)(Br/c6),

and that .
(Ge * G:)(§) = (G * G)(0/€)-



By applying Lemma 5.9, we then have

/G / (G % G2)(E) e, (7€) — e, ()] dndé < 4I|G]|s e (E.)

1
< A1l P, () = 41611 57259 + 25,0
= 4||G||1JE(EE; Q)

Condition (5.13) then gives M > 0 such that

é/@/G(GS % G2) (€)X (n6) — xp.(n)] dndé < MGy

Since € has finite measure, the estimates (5.16) and (5.17) imply that (v.) is equibounded in
Wé’l(Q) and therefore, since (2 is a John domain, by Theorem A.13, up to subsequences, v,
converges in L' (Q) to some w. We moreover observe that (5.16) also tells us that w = y for
some F with finite measure in €. Inequality (5.17) together with the lower semicontinuity
of the total variation implies that E has finite perimeter in 2. ]

Remark 5.11. In case Q) has finite perimeter and the stronger integrability condition
/ K (2)d(z,0) dz < +00 (5.18)
G
is satisfied, Theorem 5.10 can be strengthened replacing condition (5.13) with the weaker

1
;Jjﬂ(En, Q) <C, VneN

Indeed, applying (i) of Proposition 5.8 with N = Q one some Cy > 0 such that

1 1 1
E—an(EE,,L, Q) = E—Lgn(Q NE., QNE;) < 5P<Q;G) / K(z)d(z,0)dx < Cy, Vn €N.
n G

n

Notice however that condition (5.18) is in contrast with (5.20) below, that will be used in
Theorem 5.14.

5.3 A I'-liminf inequality

Denote for shortness B := B(0,1). For every halfspace H C G we set
1
b(H) = inf {limig1f2—Jel(E£, B(0,1)): E. — H in L*(B(0, 1))} . (5.19)
E— E

Proposition 5.12. The following facts hold

(i) Assume that
inf K (r)r¢t > 0. (5.20)

r>1

Then
inf{b(H) : H is a vertical halfspace} > 0.



(11) If G is a free group and Hy, Hy C G are vertical halfspaces in G, then b(Hy) = b(Hs).

Proof. (i). Fix a halfspace H. We first prove that b(H) > 0. By definition of b(H) and a
diagonal argument, there exists a sequence F. that converges to xyg in L'(B) as € — 0 such
that

1
liminf —J!(E., B) = b(H).

e—=0 2¢e
Thanks to Severini-Egorov’s Theorem there exists an open set A C B such that

HO(H N B)

HO(B\ A) < 5

(5.21)

and ypg. converges to yy uniformly on A, as ¢ — 0. We therefore find ¢y such that

SUE|XE5($) —xnu(®)] <1, Ve <e,
Te
and hence, for every ¢ < gy we have E.NA = HN A = C*. By reasoning in the same

way on E¢, we may assume without loss of generality that, for every ¢ < ¢y, we also have
E¢NA=H°Nn A= C". Notice that, by (5.21), we have

min{H?(C"),H?(C7)} > 0. (5.22)
For every € < ¢y, we have
1, 1 o g@! 1
—J.(E.,,B) = — K. (y " z)dydx > K(y " z)dydx
2e 2¢ Jg. JEenB 2 Jsijecr Jorjec-

Q-1
> & K(diam(8,,.C" U 8,0 )Y HP (5, ,.CHYHO(6,,.C)
1 diam(C*TUC™)
o 2€Q+1

—2E D) wacnmeren),
which, by (5.20) and (5.22), is a positive lower bound independent of .

To conclude the proof of (i), it is enough to check that b is lower-semicontinuous. In fact,
if this were true, by the compactness of the sphere S™ ! we would have that b admits a
minimum, that, by the previous step would be strictly positive.
Let H, be a family of vertical halfspaces that converges to H in L*(B), asn — 0. Fix o > 0.
For every n > 0 we can find F? converging to H, in L'(B), as ¢ — 0 such that

1
lim ian—J;(Fg, B) < b(H,) + 0.
£

e—0

Considering E. := F*, we easily find that E. — H in L'(B), as ¢ — 0 and hence

1
< limi ! < limi
b(H) < hlgn_)lglf o J.(E., B) < hlgn_}glf b(H.) +o.
The thesis follows by the arbitrariness of o.
(ii). Let v1,15 € g1 \ {0} such that H, = H,, and Hy = H,,. It is enough to show that
b(H,) < b(Hy). Let E? be a family of measurable set in B such that E? — H,, in L'(B) as
e — 0. Now consider an orthogonal isomorphism 7" : g; — g; such that T'(v,) = v;. Since



G is free, the map T extends in a unique way to a Lie algebra isomorphism 7" : g — g that
induces an isometry I : G — G defined by

I = expoTl olog.
We claim that I(Hs) = H;. Indeed, for every £ € G, one has

(milog &, 1) =(mlog&, T(vz)) = (T'(m 1log§), va)
=(mT(log&),va) = (milog I(§), va).

Since K is radial and I is an isometry, it is easy to see that J'(A, B) = J'(I(A),I(B)). By
noticing that I(B) = B and that I(E?) — H; in L'(B) as ¢ — 0, we have that

1 1
b(H,) < liminf —J}(I(E?), B) = liminf —J}(EZ?, B),

e=0 e e—=0 2
whence b(H;) < b(H,). O

Remark 5.13. Let G be a Carnot group satisfying property R and let E be a set of locally
finite perimeter in some open set Q@ C G. Then, by |[FSSC03, Lemma 3.8|, if G satisfies
property R, for every p € FE, one has

ti PCEECT) b1, 00 B0,1) = 0(0e(0). (5.23)

Notice also that, since H, has smooth boundary, for any v € g, its perimeter can be explicitly
computed (up to identification of G with R™ by means of exponential coordinates) getting

ﬁ(V) = Hgil(aHu N B<07 1))7

where H. denotes the Hausdorff measure with respect to the Fuclidean metric (see e.q.
[Mon01, Theorem 5.1.3.] or [FSSC03, Proposition 2.22]|).

Theorem 5.14. Let G be a Carnot group satisfying property R, let Q be an open and bounded
John domain in G and assume K : G — [0, +00) satisfies (5.20). Then, there exists a positive

density p: g1 — (0,4+00) such that, for every family (E.) of measurable sets converging in
LY(Q) to E C Q, one has

1
/ p(vi) dPs(E: ) < liminf ~J.(E., Q). (5.24)
Q e—=0 €
More precisely, for every v € g1, one has
b(Hy)
,0<V) - 19(]/)
Proof. Define, for every € > 0, the function
1 1 1 1 .
a_ Ks(n 6) d?7+_ K(U 5) dna 1f§ € Ez—:
£o(6) = 215 Eeng € Jaenke
K.(n~'¢) dn, if { € E,

2e E.NQ



and set v, := fg’;‘-['%. Notice that

1
e = e Q :_EEE’Q‘
Il = 2l (©) = 5= J.(B=, )

Without loss of generality we can assume that there exists M > 0 such that
1
gJE(EE,Q) <M, Ve>0.

By this uniform bound and the assumptions on €2, we get that, by Theorem 5.10, F has finite
perimeter in ). Moreover, by a standard argument of Measure Theory (see e.g. [AFP00]),
we find a positive measure v such that v, —* v up to subsequences as ¢ — 0, and hence

< lim1 .
o)) < timinf [

To prove (5.24), it is enough to show that

e / plvg) dPo(E: ),

for some p that will be determined in the sequel. Letting Pgp = Pk (FE;-), we aim to prove

that p
v
——(p) > p(ve(p)), for Pg-a.e. p €,
dPg

where-2 - (p) denotes the Radon-Nikodym derivative of v with respect to Pg. Fixp € FENQ.
Since (G satisfies property R, by (5.23) we have

dv _ 1 lim v(B(p, r))

aPs ) = G b e

Since v, weakly* converges to v as € — 0, we have that v.(B(p,r)) converges to v(B(p,r))
for every r > 0 outside a countable subset Z C (0, +o00) of radii. We therefore have

dv o1 (hm l/e(B(p,T)))'

P = pp)) i, \ B e

By a diagonal argument, we may choose two infinitesimal sequences (¢;) and (r;) such that

lim - 0,
J 7"]'
and so that
dv 1 . Vaj(B<parj))

dPE(p):ﬁ(VE(p))hjm T

By making the computation explicit, we can write

dv 1 1 1
= lim —/ / L) dydx
dPE (p> 19<VE(p)) J EjT’Qil (2 Ee NQNB(p,rj) y ) Y

j
1
+—/ / K, (y~ '2) dydx
2 E‘c NQNB(p,r;) < N

+ / / K. (y~ 2) dydx)
EE NQNB(p,rj) J QNES

Ty




and hence, since J. > J! and since, for j sufficiently large, one has B(p,r;) C Q, we get

dv (p) > 1 !
— —— limsup ——~—
dPg b= Jvep) P 26]-7’?2_1

Jo(E.;, B(p, ;) NQ)

= ——lim sup W

Vve(p) 2ejr;

J2 (Ee,, B(p,75)).

By a change of variable, since J! is left unchanged by isometries, we have
Jalj (E€j7 B<p7 T])) = T_?Jalj/rj (51/ij_1EEj’ B) ’
This implies that

dv 1 r;
(p) > —1i L gt (8y,.p 'E..,B).
P57 Ggl) " 2z, s G B )
Since, by property R, the sequence 8., p~'E., is converging to H in L'(B) as j — oo we
get
dv 1
>

J(ve(p

5.4 Applications

In this section we want to observe that Theorems 5.2 and 5.14 hold even for a particular
kernel induced by the sub-Riemannian heat kernel; the connection between the fractional
perimeter and the asymptotic behaviour of the fractional heat semigroup in Carnot Groups
has been analyzed in [FMP*18§].

Let G be a Carnot group with homogeneous dimension @, o € (0,1) and let R,: G —
[0,4+00) be defined as

Ro(z) = —m/o S S ),

where h: [0,4+00) x G — R is the fundamental solution of the sub-Riemannian heat operator
H=0+L,

where .
L= ZXZ2
i=1

is a positive sub-Laplacian associated with a basis (Xi,..., X,,) of the horizontal layer g,
of G. Notice that R.(r7!) = R,(z) and R, (6x1) = A" PR, (x) for any z € G and \ > 0.

The quantity
1

Jalla = (Rala)) *9,

defines a homogeneous symmetric norm on G and therefore it is equivalent to the norm
induced by the Carnot-Carathéodory distance. In particular, K, satisfies conditions (5.1),
(5.2), (5.3) and (5.20). All the results obtained in this paper therefore apply to the special
case K = K,,.



5.5 Open problems

We are unable to prove that the horizontal perimeter is actually a ['-limit for the sequence
of rescaled nonlocal perimeters; in fact to do this, we should prove the I'-limsup inequality,
namely that for every set of finite perimeter F in €, there exists a sequence F. of measurable
sets converging in L' to E and such that

e—0

limsup (B, 9) < [ ploe)dPo(E:)
Q

but in the euclidean setting (see [BP19, Proposition 3.6.])the following result is exploited

Theorem 5.15. [Dav02, Theorem 1| Let Q C R™ be an open bounded set with Lipschitz
boundary, v € BV (), and consider a sequence (p;);en of positive radial mollifiers. Then

i [ [ =0 o gyasdy = €, Dul(@),
QJQ

j=roo |z — |

where
1

. . n—1
Civ = 7T /S v+ eldHm (v),

for some e € S*1,

Unfortunately, to the knowledge of the authors, an analogue of Davila’s result is not
known in the framework of Carnot Groups.

We propose to investigate some asymptotic results in a future work; namely, if the kernel
K is the fractional kernel K (p) := d(p,0)~9~“ for some « € (0, 1), it would be interesting to
study the following limits

lim aPg(E,) (5.25)
a—07t
and
lim (1 — a)Pk(E,Q). (5.26)

a—1—

In Carnot Groups some asymptotic results are obtained in [MP19, Section 5.2.] when
(2 = G. In the euclidean setting we refer to [DFPV13|, where the authors provide necessary
and sufficient conditions so that the limit in (5.25) exist and coincide with the Lebesgue
measure of F, up to multiplicative costants, while concerning the limit in (5.26) we refer e.g.
to [ADPM11,CV11] where the convergence to the classical perimeter is proved.
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Appendix A

Appendix

In this appendix, we give some details on technical tools used in this thesis.

A.1 Well-posedness and polynomial extension for Caputo
fractional derivatives

Following [CDV 18], we remark that Caputo-stationary functions with initial point —oo that
have vanishing kth derivative near —oo are also Caputo-stationary for a fixed point beyond
its constancy interval. To do this, we introduce the natural setting in which Caputo fractional
derivatives are defined.

If I C R is an interval, we define the space

ACK I = {feCF D) st. £ f,....f* Ve AC(I)},

where C*~1(I) denotes the space of (k — 1)-times continuously differentiable functions on I,
and AC(I) denotes the space of absolutely continuous functions on I.
Givent > a, k € N, 5> 0, and f : [a,+00) — R, we also define the function

(a,t) 37 = Oppri(T) = ) (T)(t — 7)F=F~1 (A.1)

and we set

o= {f :(a,+00) = R s.t. fe AC* " ((a,1))
(A.2)
and Oy € L'((a,t)), forall t> a}.

We observe that the Caputo derivative in (3.6) is well defined for all u belonging to O,
Analogously, for t < b, f: (—o0,b] — R, and
(t,0) 7 = Wy p4(7) = fE(r) (7 — t)FF1 (A.3)
one can define
ok = {f (Co0,b) > R st. f e ACH((t,0))

(A.4)
and Wy p, € LY((£,D)), forall t < b}.

From now on, we will argue only on left derivatives, but the following computations
repeat straighforwardly for right derivatives.
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A.1.1 Caputo-stationary functions with vanishing kth derivatives
near —oo

Lemma A.1l. Let a € R. Let I € (a,+00) be an interval. Let k € N and o € (k — 1,k),
and assume that u € C*% and that u® =0 in (—o0, a).
Then,

ue Cre (A.5)
and Dy [u) = D2 [u] in 1. (A.6)

Proof. By (A.2), we see that if ¢ € (—00, a] U{—00}, then C5* C O, and so (A.5) plainly
follows. Furthermore, u*) vanishes in (—oo,a), and consequently, for any ¢ € I,

t u® (1) Eou® (r)
0= /OO (t — 7)okl dr = /a (t— T)a—k+1dT’

which proves (A.6). O

A counterpart of Lemma A.1 allows us to extend a function with its Taylor polyno-
mial maintaining its Caputo derivative. For this, we first point out that this operation is
compatible with the functional setting in (A.2):

Lemma A.2. Let a € RU {—o0} and ¢ € (a,+0). Let k € N and a € (k — 1,k).
Let f € C¥F, g € C%* and assume that

Ff9c)=gVc)  forall j€{0,....k—1}. (A7)

Let _

f@t) ifte(ac),

(a,+00) Dt h(t) := {g(t) it e (e to0).

ko
Then h € Cy.

Proof. Since f € C*((a,+00)) and g € C*7!([¢,+00)), we obtain from (A.7) that h €
Ck’l((a, +oo)), and, for every t € (a,+o00) and j € {0,...,k — 1},

o JFO®) it
hY(t) = {g(j)(t) if £ € (¢, +00).

In particular, we see from (A.7) that
K9 (c) = fU(c) =gV (),  forall j€{0,...,k—1}. (A.8)

Using that fU) € AC((CI,, c)) for each j € {0,...,k— 1}, we can write that, for every t;,t, €

@), )
F9 (1) — FO (1) = / Fy(r) dr,

t1

for a suitable Lebesgue integrable function Fj.



Similarly, if 7' > ¢, since gV) € AC([c,T]), we have that for every t,ty € [c, T],

g9 (t2) — g9(ty) = / () dr,

t1

for a suitable Lebesgue integrable function Gj.
Then, given T' > ¢, we define

(A.9)

F;(t) ifte (a,c),
G;(t) ifte (T

We have that H; is Lebesgue integrable and, if ¢; € (a,¢) and ¢ € (¢, T, recalling (A.8) we
see that

R (ty)) — KD (t) = gD (ty) — f9(t)
= g9(t) = gV ) + 1) 1O(1)

_ /btg G,(r) dr + /tlej(T) ir

From this, we conclude that
WD e AC((a,T))  forall j€{0,...,k—1}. (A.10)
Hence, in view of (A.2), to complete the proof of the desired result it remains to check

that Ok o nr € Ll((a, T)), for every T' > a, namely that

/T(T’h(&m < foo. (A11)

_ T)a—k—i-l

We remark that here h*) is intended in the Lebesgue sense, being h*~1 ¢ AC((a, T)), due
to (A.10). Hence, in the setting of (A.9), we have that h®) = H;_, and therefore

T (5) (F T L (r
/a %dT:/a Hdr. (A.12)

Consequently, if 7" < ¢ we have that

T ()] T Fea(n)]
/ T = rya—irt 7= / 1= it 7 = 1Okasrllien,

which is finite since f € O,
If instead T > ¢, we have that

TM S ¢ |Fea(7)] - g |Gr—1(7)| -
/a (T—T)a*k“d N /a (T—T)a*kﬂd +/c (T_T)a—kﬂd

/ac( | Fie—1(7)| dT—l—/CT( G—1(7)] dr

b— )kt T — 7)o+

= |1Oasbllii@e) + [1Orag | Lrer)

IN

which are finite since f € C¥* and g € C¥®. This completes the proof of (A.11) and of the
desired result. ]



With this, we can obtain a counterpart of Lemma A.1 (which is not explicitly used here,
but that can be useful for further investigations), as follows:

Lemma A.3. Let a € RU {—o0} and ¢ € (a,+00). Let I € (c,+00) be an interval.
Let k € N and a € (k—1,k), and assume that u € C¥°.

Let also
u(t) if t € [c, +00),
)L
U,*(t) = Z %(t . C)j ift c <_007 c)_
=0 7

Then, u, € C* and D¢ [u,] = D&, [u] in 1.

Proof. We apply Lemma A.2 with

< ud(c) ,

f) = - o

I
o
<

g(t) :== u(t), and h(t) := u.(t). Notice that, in this setting, for each j € {0,...,k — 1}, we
have that f)(c) = u\(c) = g1 (c), and therefore condition (A.7) is fulfilled. Hence, the use

of Lemma A.2 gives that u, € Cff, as desired. In addition, we have that ™ = 0in (—o0,¢)

and therefore, if t € I,

t (k) t (k) t (k)
U AT (7) dr = _ B T (7) dr = v (7) dr,
L (t—T)ek+ . (t—T)aktl . (t— )oK+

which says that D¢ [u,|(t) = D, [u](t). O

A.2 Some tools from Interpolation Theory

In this section we collect some basic results from the real Interpolation Theory. We will refer
essentially on the monography [Lunl8].

Let X, Y be Banach spaces. We say that (X,Y") is an interpolation couple if both X and
Y are continuously embedded in a Hausdorff topological vector space V; it is well known
that this topological structure make both X NY and X + Y two Banach spaces.

An intermediate space is any Banach space E such that

XNYCECX+Y.

An interpolation space is any intermediate space such that for any operator T' € L(X)NL(Y),
the restriction of 7" to E belongs to L(E).

Definition A.4. Let X,Y be Banach spaces and 6 € (0,1), 1 < g < oo. We define the real
interpolation space (X,Y)g, as

dt
(X,Y)gq = {z EX+Y:(0,+00)>t— t*GK(t,z) € L((0, 400), 7)} ,

where K (t,z) denotes the Peetre interpolation functional defined by
K(tz) =Ktz X, Y):= _ mf (el +tlyly).

z=x+yeX



In particular, choosing X = LP(I) and Y = W'P(I) for some 1 < p < oo and some
interval I, we obtain the Besov space

(LP(1), W (D)), = By (1),

9,
and, if ¢ =p
(LP(1), W (D)), = By, (I) = WP (I).
while with the choices X = L'(I) and Y = L*(I) we obtain the Marcinkiewicz space
(LY(1), L=(1)), . == L™o*(I).

Remark A.5. From definition A.J immediately follows that if X1 and Y7 are two Banach
spaces continuously embedded in Xo and Yy respectively, we have that, for any 6 € (0,1) and
any 1 <p < oo

(X1, Y1)op = (Xo, Y0)op-

Now, we recall a fundamental result on the inclusion between real interpolation spaces

Proposition A.6 (Prop. 1.4 in [Lunl8]). Let X,Y be Banach spaces such that Y C X and
(X,Y) be an interpolation couple.
Forany 1 <p,qg< o0 and0<s<r <1, we have that

(X, Y)rp C (XY )sg:

Corollary A.7. Let 1 <g<p<o0,0<s<r<1and) be an open bounded domain with
the extension property. We have that

Wrr(Q) C B, () C WH(Q)

Proof. For the first inclusion it is sufficient to apply A.6 with X = LP(Q) and Y = WP(Q),
while for the second we apply Remark A.5 with X; = LP(Q), Y1 = WH(Q), Xy, = LI(Q)
and Yy = Wh4(Q). O

A.3 Addendum to Proposition 2.21

According to Proposition 2.21, if u € C*(T) then its (1—s)-fractional integral is not Lipschitz
continuous in I but merely log-Lipschitz continuous.

For the sake of completeness, and for the absence of an explicit example at least in the
works mentioned in the bibliography, we want to show an explicit function in Cy*(T) with

I,7°[u] & Co (D).
Example A.8. Let s € (0,1), I :=(0,1) and

x® af 0§x§%
25 2_ i

We firstly notice that u(0) = 0 and u is continuous in x = 1/2. Concerning to the Hélder

reqularity, if ,y are both in [0, L] or in [L, 1] the claim is straightforward, while for x € [0, )
and y € [3,1] we have that

’ 9 29 ’ 9

1
x__

u(z) — uly)] = :

1
s_ | <(C
P

S 1 S
:C(ﬁ—x> <C(y—x)® =Clz —y|°,



and the same computation holds if we interchange x and y. Therefore, u € 08’5(7).
Fventually, the computation of the (1 — s) fractional integral gives us

Ia%mw:{r“+” if 0<z<y

s s 2¢—1)1—s .
2 45(1 — 1) dt + rp 25— if

N —=

T(1—s) <z <1

1

which clearly is not Lipschitz continuous in I having unbounded first derivative in x = 5

Remark A.9. Since C%(I) = W5®(I) (see e.g. [DNPV12, Section 8]), we are immediately
able to conclude that I375(W™(I)) ¢ Wy >(I).

A.4 Addendum to Theorem 4.28

We notice here that the embedding in Theorem 4.28 is sharp. The Continuity of the fractional
integral 15, from LP(I) into L"([), with 1 < p < ¢ and 1 < r < 55 has been proved by
Hardy and Littlewood in [HL28, Theorem 4], but in the hmltlng cases p=1landp=1/s
the continuity fails, as shown by the following examples

Example A.10. Let s € (0,1), 1< <2—s, [ =(0,1) and

1

fz) = [log(x)|?
0 if 1/2<z<1.

if 0<z<1/2

Now, let u:= I3, [f]. Clearly u € I§, (L'(1)) = I (L*(I)) N Wi} o, (I) since f € L'(I), but

1 dt et dt 1 1 Lo ()17
") = 105 |, Tea@PE = > 1., Mestp = T el

therefore
1 ) 1/2 ) 1/2 i
/ lu(x)| T dx > / |u(z)| = dx > K/ = o0,
0 : o llog(a) =

-1 1
<1, and so u ¢ L7 (I).
- s

since
Example A.11. Let s € (0,1), I :=(0,1) and

0 if 0<z<1/2
fx) = 1
(1 —x)°[log(1 — )]

Now let u := I3, [f]; since f € LY*(I), by Lemma 2.27 we have that u € I3, (LY*(I)) C
WE’;{OSJF(I) NI (L'(I)). Now, we notice that

lim wu(z) ! /1 dt +00
im u(z) = - ’
2P Z TGy, T ologT— 1)

if 1/2<z<1

which implies that w ¢ L>(I).



A.5 Some basic notions from sub-Riemannian geometry

Following the notation used in Section 2.5, we want to notice here that each Carnot Group
G can be identified with the euclidean space. Namely, if we choose a basis ey, ..., e, of R"
adapted to the stratification of g, i.e., such that ej,_ ,1,...,¢e5, is a basis of V; for each
j=1,...,k we can define a family X := {Xj,..., X,,} of left invariant vector fields such
that X;(0) =¢;,i=1,...,n.

The sub-bundle of the tangent bundle T'G that is spanned by the vector fields X, ..., X,,
plays a particularly important role in sub-Riemannian geometry and it is called the horizontal
bundle HG. The fibers of HG are

H,G = span{X;(x),..., Xn(2)}, zeG.

We notice that each fiber of HG can be endowed with an inner product (-,-) that makes
the basis X;(z),..., X(x) an orthonormal basis. The sections of HG are called horizontal
sections and the elements of of H,G are called horizontal vectors. Each horizontal section is
identified by its canonical coordinates with respect to this moving frame X;(z), ..., X,,(x);
in this way, a horizontal section ¢ is identified with a function ¢ = (¢1,...,¢p) : R” — R™.
Since the exponential mapping exp : g — G is a diffeomorphism, for any adapted basis
(X1,...,X,) of gand any = € G, there exists a unique (z1,...,x,) € R such that

r=exp(r1 X1+ ...+ 2, X,).

We therefore identify = with (x1,...,z,) € R" and G with (R™,-), where the group operation
on R™ is determined by the Baker-Campbell-Hausdorff formula on g (see [BLUO7, Chapter
14, Section 2|). The coordinates xy,...,z, € R, defined as above, are often referred to as
exponential coordinates of the first kind. Although this identification allow to do explicit
computations with the Group operation, it has the drawback of losing informations about
the intrinsic structure of the Group.

A.6 Rellich-Kondrachov Theorem in Metric Measure Spaces

We introduce the class of John domains, which play a fundamental role in the proof of
Theorem 5.10.

Definition A.12. Let G be a Carnot group, and Q0 C G a bounded, open set. We say that )
1s a John domain if there exist p € Q and C > 0 such that, for every q € 2, there is T > 0
and a continuous and rectifiable curve v : [0, T] — Q parametrized by arclength such that

7(0) =p, ¥(T) =q and
d(y(1), %) = Ct,

for any t € [0,T].

It was proved in [HK00] that a Rellich-Kondrachov-type Theorem holds for John domains
in metric measure spaces with doubling property and Poincaré inequality. In the setting of
Carnot groups, this result reads as follows.

Theorem A.13. Let G be a Carnot group with homogeneous dimension @) and 2 C G a
John domain. Then the following facts hold.

(i) If 1 <p<@Q and 1 < q < p*, the embedding Wé’p(Q) — LI(Q2) is compact.
(ii) If p> Q and q > 1, the embedding WP (Q) < L4(Q) is compact.
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