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�Karma police, arrest this man. He talks in maths, he buzzes like a fridge, he's like a
detuned radio"

Karma Police, Radiohead.

�Non l'ho mai fatto, ma l'ho sempre sognato."

Paolo Villaggio, dal �lm �Fantozzi".

�La metafora. . . come dirti. . . è quando parli di una cosa paragonandola a un'altra. . . per
esempio quando dici �Il cielo piange� che cosa vuol dire?"

'Che. . . che sta piovendo?'
�Sì, bravo. Questa è una metafora."

'Allora è semplice. . . ebbè perché ci ha questo nome così complicato?'
�Gli uomini non hanno niente a che vedere con la semplicità o la complessità delle cose."

Philippe Noiret e Massimo Troisi, dal �lm �Il Postino".
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Preface

This doctoral thesis is focused on some problems involving nonlocal operators.
Chapters 1 and 2 are devoted to a general introduction of the topics and to some prelim-

inary notions.
In chapter 3 we give some new results about solutions of fractional equations. Namely

we prove that solutions of equations involving a pretty general linear fractional operator,
are locally dense among smooth functions. Moreover, we provide some applications of this
result. This is a joint work with S. Dipierro and E. Valdinoci [CDV19].

In chapter 4 we analyze some properties of the so called Riemann-Liouville fractional
sobolev spaces; in particular, we study what kind of inclusions hold between these spaces
and other well known ones such as the Gagliardo-Slobodeckij fractional Sobolev space W s,1,
and the space BV of functions with bounded variation. This is a joint work with G.E. Comi
[CC20].

In chapter 5 we study a minimization problem for nonlocal functionals in Carnot groups.
Namely, we prove that, analogously as in the euclidean case, halfspaces are local minimizers
for a class of functionals called nonlocal perimeters. Moreover, a partial Γ-convergence result
is proved. This is a joint work with S. Don, D. Pallara and A. Pinamonti [CDPP20].

The �nal appendix A contains some other technical results which are widely used through-
out this work; the original results concerning Caputo fractional derivatives have been ob-
tained in a joint paper with S. Dipierro and E. Valdinoci [CDV18].
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Chapter 1

Introduction

Nonlocal operators of fractional type present a variety of challenging problems in pure mathe-
matics, also in connections with long-range phase transitions and nonlocal minimal surfaces,
and are nowadays commonly exploited in a large number of models describing complex
phenomena related to anomalous di�usion and boundary reactions in physics, biology and
material sciences (see e.g. [BV16, dlLV11] for several examples, for instance in atom dis-
locations in crystals, water waves models and quasi-geostrophic equations). Furthermore,
anomalous di�usion in the space variables can be seen as the natural counterpart of discontin-
uous Markov processes (see e.g. [Val09] for a simple explanation on how nonlocal operators
and discontinuous Markov processes are related), thus providing important connections with
problems in probability and statistics, and several applications to economy and �nance (see
e.g. [MVN68,Man12] for pioneer works relating anomalous di�usion and �nancial models).

On the other hand, the development of time-fractional derivatives began at the end of the
seventeenth century, also in view of contributions by mathematicians such as Leibniz, Euler,
Laplace, Liouville, Abel, Heaviside, and many others, see e.g. [Ros74,Ros77,KR85,Ros92,
Fer18] and the references therein for several interesting scienti�c and historical discussions.
From the point of view of the applications, time-fractional derivatives naturally provide a
model to comprise memory e�ects in the description of the phenomena under consideration.
The de�nition of fractional derivative (at least the most exploited) needs the de�nition of
fractional integral; Riemann-Liouville fractional integral is the most celebrated in literature
and most used in the applications and the use of Riemann-Liouville fractional integral allow
to de�ne Riemann-Liouville fractional Sobolev space W s,p

RL,a+(I), for p ≥ 1, s ∈ (0, 1) and
I a open bounded interval. This space is given by functions u ∈ Lp(I) such that its left
Riemann-Liouville (1− s)-fractional integral

1

Γ(1− s)

∫ x

a

u(t)

(x− t)s
dt,

belongs to W 1,p(I). We notice that the Riemann-Liouville is a particular case of Volterra
operator, with a singular kernel having an L1-type singularity, and this makes this space
intrinsecally di�erent with respect to the Gagliardo-Slobodeckij fractional Sobolev space
whose functions have a �nite integral seminorm de�ned through a singular kernel with a non
L1-singularity. Among the others, the book by [SKM93] o�ers many highlights and appli-
cations involving fractional derivatives also of di�erent type beyond the Riemann-Liouville
one such as the Caputo and the Marchaud fractional derivative that will be used through-
out this work, and other ones such as the Grunwald-Letnikov, the Hadamard and the Weyl
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fractional derivative. We notice that in the last years many types of fractional derivatives
have been introduced, but some of them can be reduced to a derivative of integer order via
some computations. We refer to [Tar13,Tar16], where the author points out that the failure
of the usual Leibniz rule and of the chain rule are necessary conditions to ensure that we are
actually dealing with a derivative of fractional order.

In the variational framework nonlocal functionals arise for example in peridynamics,
image processing, shape optimization and nonlocal minimal surfaces [BMC14,BN18,BRS16,
CRS10]. A pretty general nonlocal functional has the following expression

G(u,Ω,Ω′) :=

∫
Ω

∫
Ω′
H(u(x)− u(y))K(x− y)dxdy, (1.1)

for some Ω,Ω′ ⊆ Rn, open sets H : R→ [0,+∞) convex, and some positive kernel K.
In particular, if we choose in (1.1) H(z) := |z|, a functional of the type

F(u,Ω) :=
1

2
G(u,Ω,Ω) + G(u,Ω,Ωc) (1.2)

is called nonlocal perimeter if the kernel K satis�es additional assumptions such as
weighted local integrability, integrability at in�nity and radial symmetry; one typical ex-
ample is given by the fractional kernel K(z) := |z|−n−s for some s ∈ (0, 1).

If we choose H(z) := z2 in (1.1) the functional

F(u,Ω) :=
1

4
G(u,Ω,Ω) +

∫
Ω

W (u(x))dx, (1.3)

where W is a double-well potential1 and K is an anisotropic kernel, has been studied
in [AB98] in the framework of phase transition problems; in particular, having in mind a
two-phase �uid model, in that paper the authors prove that the interface between the two
admissible phases tends to zero in a suitable way.

We mention also the paper by Savin and Valdinoci [SV12] in which the authors prove
a Γ-convergence result for the rescaled limit of the functional given by (1.2) plus the same
potential energy as in (1.3) and with the fractional kernel K(x) = |x|−n−s; in particular
the novelty is the fact that the Γ-limit is a nonlocal functional when s ∈ (0, 1

2
), but quite

surprisingly is the classical perimeter when s ∈ [1
2
, 1); for this reason the authors refer to this

behaviour as �strongly nonlocal regime" in the range (0, 1
2
), and �weakly nonlocal regime" in

the range s ∈ [1
2
, 1).

The functional in (1.1) is strictly related even with the Theory of nonlocal Dirichlet forms;
in fact if we choose H(z) := |z|2, and K(z) := |z|−n−2s for some s ∈ (0, 1) the free critical
points of the energy functional given by the nonlocal quadratic form

A[u] :=
cn,s
4
G(u,Rn \ Ωc,Rn \ Ωc)−

∫
Ω

fudx f ∈ L2(Ω),

are weak solutions of the equation{
(−∆)su = f in Ω

u = 0 in Rn \ Ω.

1A double-well potential with wells in a and b is any nonnegative function W ∈ C2(R) such that W (a) =
W (b) = 0, W > 0 in R \ {a, b}, W ′(a) = W ′(b) = 0, min{W ′′(a),W ′′(b)} > 0



In this work, we are interested on functionals as in (1.2). Exploiting suitable calibration
methods in [Cab19,Pag19] the local minimality of halfspaces for euclidean nonlocal perime-
ters is proved. Moreover, in [AB98,BP19] the authors prove that the Γ-limit of a suitable
rescaled sequence is the classical perimeter, up to a multiplicative constant; these proofs
provide the use of density estimates originally introduced in [FM93] for the Γ − lim inf in-
equality, while the Γ− lim sup inequality needs some intrinsically euclidean techniques such
as polyhedral approximation of the �nite perimeter set, or approximation results for the total
variation of the gradient of a BV function by means of weighted integrals of the di�erence
quotient.
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Chapter 2

Preliminaries

We start with some tools that will be strongly used throughout this work; we notice that
Caputo fractional derivative will be indicated with two di�erent notations: here and in Chap-
ter 4 we will use the notation CDs

a+[u] in order to avoid disambiguities with the Riemann-
Liouville fractional derivative, while in Chapter 3 we will refer to it with the notation Ds

t,au;
the two pedices refer respectively to the variable on which the derivative acts and to the
initial point (since we will work only with left derivatives we omit the symbol +).

De�nition 2.1 (Euler's Gamma function). Let z ∈ C with <(z) > 0. The Euler's Gamma
function is given by

Γ(z) :=

∫ +∞

0

tz−1e−tdt. (2.1)

moreover, since the following identity holds true for any k ∈ N

(z + k − 1)(z + k − 2) . . . (z + 1)zΓ(z) = Γ(z + k),

de�nition (2.1) extends to any z ∈ C \ Z−.

De�nition 2.2 (Beta function). Let z, w ∈ C, <(z),<(w) > 0. The Beta function is given
by

β(z, w) :=

∫ 1

0

tz−1(1− t)w−1dt =
Γ(z)Γ(w)

Γ(z + w)
=

∫ +∞

0

tz−1

(1 + t)z+w
dt

Remark 2.3. For x, y ∈ R, y < x, using the change of variable s := t−y
x−y , the following

identity immediately follows∫ x

y

(x− t)α−1(t− y)σ−1dt = (x− y)α+σ−1

∫ 1

0

sα−1(1− s)σ−1ds =
Γ(α)Γ(σ)

Γ(α + σ)
(x− y)α+σ−1.

The results developed in Chapter 4 are all given in dimension one, and here we shall
work on bounded open intervals I = (a, b) for some a, b ∈ R, a < b. As it is customary,
we denote by M(I) and M(I) the spaces of �nite Radon measures over I and I = [a, b],
respectively. We shall say that ρ ∈ C∞c ((−1, 1)) is a standard molli�er if ρ ≥ 0, ρ(x) = ρ(−x)

and
∫ 1

−1

ρ dx = 1. In addition, for any ε > 0, we set ρε(x) :=
1

ε
ρ
(x
ε

)
.

For the convenience of the reader we recall here de�nition and some properties of some
well known functional spaces.
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De�nition 2.4. Let 1 ≤ p < ∞. We say that a measurable function u belongs to the
Marcinkiewicz space Lp,∞(I) if

sup
t>0

tU(t)1/p <∞,

where for any t > 0, U(t) denotes the indicator function of u de�ned as

U(t) := L1({x ∈ I | |u(x)| > t}).

2.1 Some facts about BV functions on the real line

De�nition 2.5. We say that u ∈ BV (I) if u ∈ L1(I) and its weak derivative Du is a �nite
Radon measure; that is, if there exists a �nite Radon measure µ such that∫ b

a

u(x)φ′(x)dx = −
∫ b

a

φ(x)dµ(x),

for any φ ∈ C1
c (I), in which case we have µ = Du inM(I).

We recall that the spaceBV (I) is a Banach space when equipped with the norm ‖u‖BV (I) :=
‖u‖L1(I) + |Du|(I).

For the ease of the reader, we recall here a well-known result on the boundedness of BV
functions on segments of the real line.

Lemma 2.6. We have BV (I) ⊂ L∞(I) with a continuous immersion. In particular,

‖u‖L∞(I) ≤ max

{
1,

1

b− a

}
‖u‖BV (I), (2.2)

for any u ∈ BV (I).

Proof. Thanks to [EG15, Claim 3, Proof of Lemma 5.21], we know that, for any u ∈ BV (I)
and L1-a.e. z ∈ I,

|u(z)| ≤ 1

b− a

∫ b

a

|u(x)| dx+ |Du|(I).

Hence, (2.2) follows immediately.

As a consequence, it is not di�cult to show that, if u ∈ BV (I) and we set

ũ(x) =

{
u(x) if x ∈ I,
0 if x ∈ R \ I,

then ũ ∈ BV (R). In addiction, we may prove that, if u ∈ BV (I), the approximate limits of
u in a from the right, u(a+), and in b from the left, u(b−), exist and they coincide with the
precise representative of ũχI on those points. In other words, we have

u(a+) := lim
r→0

1

r

∫ a+r

a

u(x) dx and u(b−) := lim
r→0

1

r

∫ b

b−r
u(x) dx.

In addition, thanks to [AFP00, Corollary 3.80] it is possible to see that, for any standard
molli�er ρ, we have

(ρε ∗ u)(a)→ u(a+) and (ρε ∗ u)(b)→ u(b−). (2.3)



Finally, it is easy to notice that, consistently with [BLNT17, Remark 4.1],

Dũ = Du I + u(a+)δa − u(b−)δb, (2.4)

where δ is the Dirac delta measure; while clearly Dũ = 0 in R \ I.
Now, we recall some known facts in Measure Theory. If µ ∈M(I), then, according to the

Radon-Nikodym Theorem, we can split it into an absolutely continuous part (with respect
to the Lebsegue measure) µac, and a singular part µs, such that µ = µac + µs. Moreover,
following [AFP00, Corollary 3.33], we can decompose the singular part µs into an atomic
measure µj and a di�use measure µc; in this way, we have that

µ = µac + µs = µac + µj + µc.

In particular, this decomposition induces an analogous decomposition on BV functions on
the real line, which does not have a counterpart in the high dimensions. Namely, following
[AFP00, Corollary 3.33], for any u ∈ BV (I) one has that

u = uac + uj + uc,

where uac ∈ W 1,1(I), uj is a jump function and uc is a Cantor function; that is, they satisfy

(Du)ac = u′acL1, (Du)j = Duj and (Du)c = Duc.

In particular, the functions u ∈ BV (I) such that Duc = 0 in I form a special vector
subspace of BV (I) known as SBV (I).

2.2 Some known results in fractional Sobolev spaces

In this section we recall the de�nition of Gagliardo-Slobodeckij fractional Sobolev spaces
W s,p(Ω); in particular, we mention here two results that we will need in the sequel, namely:
a fractional Hardy inequality introduced in [Dyd04] and plainly proved for any 1 ≤ p < ∞
in [Lom18], and the density of the set of smooth compactly supported functions C∞c (Ω) in
W s,p(Ω).

De�nition 2.7. Let s ∈ (0, 1), p ∈ [1,+∞), and Ω be an open set in Rn for some n ≥ 1.
We de�ne the fractional Sobolev space W s,p(Ω) as

W s,p(Ω) :=

{
u ∈ Lp(Ω);

u(x)− u(y)

|x− y|
n
p

+s
∈ Lp(Ω× Ω)

}
.

The quantity

[u]W s,p(Ω) :=

(∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|sp+n
dxdy

)1/p

,

is usually called Gagliardo-Slobodeckij seminorm of u; the space W s,p(Ω), endowed with the
norm

‖u‖W s,p(Ω) :=
(
‖u‖pLp(Ω) + [u]pW s,p(Ω)

)1/p

,

is a Banach space, which is Hilbert when p = 2. See e.g. [DNPV12].



Remark 2.8. We notice that if s > 0, s = m+ σ for some m ∈ N0 and some σ ∈ (0, 1), we
say that u belongs to the fractional Sobolev spaceW s,p(Ω) if u ∈ Wm,p(Ω) and Dαu ∈ W σ,p(Ω)
for any multi-index α ∈ Nn such that |α| = m.

Lemma 2.9 ([Lom18], Theorem D.1.4.). Let n ≥ 1, s ∈ (0, 1), p ∈ [1,+∞) such that
sp < 1 and let Ω ⊆ Rn a bounded open set with Lipschitz boundary. Then, there exists
c = c(n, s, p,Ω) ≥ 1 such that ∫

Ω

|u(x)|p

|δΩ(x)|sp
dx ≤ c ‖u‖pW s,p(Ω) ,

for any u ∈ W s,p(Ω). The quantity |δΩ(x)| := dist(x, ∂Ω), denotes the signed distance from
the boundary of Ω. In particular, when Ω is a bounded open interval I := (a, b) ⊆ R,
|δI(x)| = min{x− a, b− x}.

Theorem 2.10 ([Lom18], Theorem D.2.1.). Let n ≥ 1, Ω ⊆ Rn a bounded open set with
Lipschitz boundary, s ∈ (0, 1) and 1 ≤ p <∞ such that sp < 1.

Then, we have that W s,p
0 (Ω) := C∞c (Ω)

‖·‖Ws,p(Ω) = W s,p(Ω), i.e. C∞c (Ω) is dense in
W s,p(Ω).

Remark 2.11. As a byproduct of Theorem 2.10, we have that also C1
c (Ω) is dense in

W s,1(Ω).

2.3 Riemann-Liouville fractional operators

2.3.1 Fractional Integrals

De�nition 2.12. Let u ∈ L1 (I) and s ∈ (0, 1). We de�ne the left and the right Riemann-
Liouville s-fractional integral as

Isa+ [u] (x) :=
1

Γ (s)

∫ x

a

u (t)

(x− t)1−sdt, (2.5)

and

Isb− [u] (x) :=
1

Γ (s)

∫ b

x

u (t)

(t− x)1−sdt, (2.6)

where Γ denotes the Euler's Gamma function (2.1).

Remark 2.13. Notice that a simple change of variable relates the operators Isa+ and Isb−
through the following formula

Isa+[u](Q(x)) = Isb−[uQ](x),

where Q(x) := b+ a− x and uQ(·) := u(Q(·)).

Remark 2.14. It is not di�cult to check that de�nitions (2.5) and (2.6) are well posed for
any u ∈ L1(I) and s ∈ (0, 1). Indeed, we have

‖Isa+ [u] ‖L1(I) ≤
1

Γ (s)

∫ b

a

∫ x

a

|u(t)|
(x− t)1−s dt dx =

1

Γ (s)

∫ b

a

∫ b

t

|u(t)|
(x− t)1−s dx dt



=
1

sΓ (s)

∫ b

a

|u(t)|(b− t)s dt ≤ (b− a)s

Γ (s+ 1)
‖u‖L1(I),

so that Isa+ [u] ∈ L1(I) and, in particular, Isa+ [u] (x) is well de�ned for L1-a.e. x ∈ I. A
similar argument shows that also Isb− [u] ∈ L1(I), with

‖Isb− [u] ‖L1(I) ≤
(b− a)s

Γ (s+ 1)
‖u‖L1(I),

so that Isb− [u] is well de�ned almost everywhere in I.

One of the most useful property of the fractional integral, is the following

Lemma 2.15 (Semigroup law). Let α, β ∈ (0, 1) such that α+ β ≤ 1 and u ∈ L1(I). Then,
we have

Iαa+[Iβa+[u]] = Iα+β
a+ [u],

where I1
a+[u](x) :=

∫ x

a

u(t)dt.

Proof. It is an easy task to check that

Iαa+[Iβa+[u]](x) =
1

Γ(α)Γ(β)

∫ x

a

dt

(x− t)1−α

∫ t

a

u(s)

(t− s)1−β ds

=
1

Γ(α)Γ(β)

∫ x

a

u(s)ds

∫ x

s

(x− t)α−1(t− s)β−1dt

=
1

Γ(α + β)

∫ x

a

u(s)

(x− s)1−α−β ds = Iα+β
a+ [u](x),

(2.7)

where the second equality follows by Fubini Theorem, while the third exploits Remark 2.3.

We establish now a simple duality relation between Isa+ and Isb− which will be useful in
the following.

Lemma 2.16. Let u ∈ Lp(I), v ∈ Lq(I) such that 1
p

+ 1
q

= 1 and s ∈ (0, 1). Then we have∫ b

a

Isa+[u](x) v(x) dx =

∫ b

a

u(x) Isb−[v](x) dx. (2.8)

Proof. By Fubini's Theorem, we have∫ b

a

Isa+[u](x) v(x) dx =
1

Γ (s)

∫ b

a

∫ x

a

u(t)

(x− t)1−s v(x) dt dx

=
1

Γ (s)

∫ b

a

∫ b

t

v(x)

(x− t)1−s u(t) dx dt

=

∫ b

a

u(t) Isb−[v](t) dt.



We conclude this section by recalling a well known result on the convergence of Isa+ to
the identity operator as s→ 0+.

Lemma 2.17. For any u ∈ L1(I) we have ‖Isa+[u]− u‖L1(I) → 0 as s → 0+. In particular,

if u ∈ C1(I), then Isa+[u](x)→ u(x) for any x ∈ I and it holds that

Isa+[u](x) =
u(a)

Γ(s+ 1)
(x− a)s +

1

Γ(s+ 1)

∫ x

a

u′(t)(x− t)sdt. (2.9)

Analogous statements hold for Isb−.

Proof. We start by assuming that u ∈ C1(I), then, with a simple integration by parts,
equality (2.9) immediately follows. Thus, letting s → 0+ we immediately obtain pointwise
convergence, and by Lebesgue dominated convergence Theorem we have convergence in
L1(I). Otherwise, if u ∈ L1(I), �xed ε > 0 there exists v ∈ C1(I) such that ‖v−u‖L1(I) ≤ ε;
then

‖Isa+[u]− u‖L1(I) ≤ ‖Isa+[u− v]‖L1(I) + ‖Isa+[v]− v‖L1(I) + ‖v − u‖L1(I)

≤ max

{
1,

(b− a)s

Γ(s+ 1)

}
‖v − u‖L1(I) + ‖Isa+[v]− v‖L1(I)

≤ max

{
1,

(b− a)s

Γ(s+ 1)

}
ε+ ‖Isa+[v]− v‖L1(I).

Eventually, for the arbitrariness of ε, sending s→ 0+ the claim is completely proved.

2.3.2 Continuity of the fractional integral in Lp and Hölder spaces

For the ease of the reader, we summarize in the following Propositions 2.18 and 2.21 some
results contained in [SKM93, Chapter 1, Section 3]. From now on, unless otherwise stated,
with the notation X0(I), we will refer to functions f ∈ X(I) that vanish in the endpoint a,
where X denotes some subspace of a Hölder or a Sobolev space.

Proposition 2.18 (Continuity properties of the fractional integral in Lp spaces). For any
s ∈ (0, 1), the fractional integral Isa+ is a continuous operator from

1. Lp(I) into Lp(I), for any p ≥ 1,

2. L1(I) into L
1

1−s ,∞(I), and so in Lr(I) for any r ∈ [1, 1
1−s)

3. Lp(I) into Lr(I), for any p ∈ (1, 1/s) and r ∈ [1, p
1−sp ],

4. Lp(I) into C0,s− 1
p (I) for every p > 1/s,

5. L1/s(I) into Lr(I) with r ∈ [1,+∞),

6. L∞(I) into C0,s(I).

where L
1

1−s ,∞(I) denotes the Marcinkiewicz space de�ned in 2.4.

Remark 2.19. We notice that point (i) of Proposition 2.18 is a consequence of a generalized
Minkowski inequality as observed in the proof of [SKM93, Theorem 2.6.]. In particular the

constant of continuity does not depend on p and it is given by (b−a)s

Γ(s+1)
.



Corollary 2.20. For any s ∈ (0, 1), the fractional integral Isa+ is a continuous operator from
BV (I) into C0,s(I).

Proof. Combining Lemma 2.2 and the last point of Proposition 2.18, the claim is completely
proved.

Proposition 2.21 (Continuity properties of the fractional integral in Hölder spaces). Let
s ∈ (0, 1) and α ∈ (0, 1]. The fractional integral Isa+ is a continuous operator from

1. C0,α
0 (I) onto C0,α+s

0 (I) if α + s < 1,

2. C0,α
0 (I) onto H1,1

0 (I) if α + s = 1,

3. C0,α
0 (I) onto C1,α+s−1

0 (I) if α + s > 1,

where the space H1,1(I) is given by the functions that admit ω(h) = |h|| log |h|| as a local
modulus of continuity; namely, for which there exists C > 0 such that

|f(x+ h)− f(x)| ≤ C|h|| log |h||, ∀ 0 < |h| < 1/2.

2.3.3 Fractional Derivatives

De�nition 2.22. Let s ∈ (0, 1). For any u : I → R su�ciently smooth, so that I1−s
a+ [u] is

di�erentiable, we de�ne the left and right Riemann-Liouville fractional derivatives of u as

Ds
a+ [u] (x) :=

d

dx
I1−s
a+ [u] (x) , (2.10)

and

Ds
b− [u] (x) := − d

dx
I1−s
b− [u] (x) . (2.11)

Remark 2.23. As a consequence of Proposition 2.21, we have that for 0 < s < α < 1 and
u ∈ C0,α

0 (I), I1−s
a+ [u] ∈ C1,α−s

0 (I). Therefore, α-Hölder continuity with α > s is a su�cient
condition to ensure the existence of (2.10) and (2.11).

If one applies Riemann Liouville fractional integrals to the �rst derivative u′, whenever
this operation makes sense, one has the following alternative de�nitions of left and right
fractional derivatives originally given by Michele Caputo in [Cap08]

De�nition 2.24. Let s ∈ (0, 1). For any u ∈ C1(I) we de�ne the left and right Caputo
fractional derivatives of u as

CDs
a+[u](x) := I1−s

a+ [u′](x) =
1

Γ(1− s)

∫ x

a

u′(t)

(x− t)s
dt. (2.12)

CDs
b−[u](x) := −I1−s

b− [u′](x) = − 1

Γ(1− s)

∫ b

x

u′(t)

(t− x)s
dt. (2.13)



The minimal functional spaces in which formulas (2.12) (2.13) are well posed are the
space C1,s

a+ and C1,s
b− . See Appendix A.1.

For u ∈ AC(I), a simple computation relates the Riemann-Liouville and the Caputo
fractional derivatives. Indeed, integrating by parts, we have that∫ x

a

u(t)

(x− t)s
dt =

1

1− s

∫ x

a

u′(t)(x− t)1−s dt+ u(a)
(x− a)1−s

1− s
, (2.14)

hence, di�erentiating in x on both sides of (2.14) and dividing by Γ(1 − s), we obtain the
following formula

Ds
a+[u](x) = CDs

a+u(x) +
u(a)

Γ(1− s)
(x− a)−s. (2.15)

Analogously, for right derivatives we have that

Ds
b−[u](x) = CDs

b−u(x) +
u(b)

Γ(1− s)
(b− x)−s. (2.16)

Therefore, the Riemann-Liouville and the Caputo fractional derivative coincide for any u ∈
AC(I) that vanishes in the initial point a for left derivatives, or in the �nal point b for right
derivatives.

We also notice that if u ∈ AC(I), we can exploit formula (2.15) to obtain another
representation of the left Riemann-Liouville fractional derivative

Ds
a+[u](x) =

u(a)

Γ(1− s)(x− a)s
+

1

Γ(1− s)

∫ x

a

u′(t)

(x− t)s
dt

=
u(a)

Γ(1− s)(x− a)s
+

1

Γ(1− s)

∫ x

a

u′(t)

(
s

∫ x−a

x−t
ξ−s−1dξ +

1

(x− a)s

)
dt

=
u(x)

Γ(1− s)(x− a)s
+

s

Γ(1− s)

∫ x−a

0

dξ

ξs+1

∫ x

x−ξ
u′(t) dt

=
u(x)

Γ(1− s)(x− a)s
+

s

Γ(1− s)

∫ x−a

0

u(x)− u(x− ξ)
ξs+1

dξ

=
u(x)

Γ(1− s)(x− a)s
+

s

Γ(1− s)

∫ x

a

u(x)− u(t)

(x− t)s+1
dt.

(2.17)

This di�erent representation formula of the Riemann-Liouville fractional derivative

MDs
a+[u](x) :=

u(x)

Γ(1− s)(x− a)s
+

s

Γ(1− s)

∫ x

a

u(x)− u(t)

(x− t)s+1
dt,

is known as the Marchaud fractional derivative; for a precise treatment of this fractional
di�erential operator we refer to [Fer18] and [SKM93].

Now, we recall the notion of Lp-representability. From Proposition 2.18, we have that for
any 1 ≤ p ≤ ∞ and any s ∈ (0, 1), Isa+(Lp(I)) ⊂ Lp(I), where the inclusion is strict, as it is
shown by the following example.

Example 2.25. Consider

u(x) :=
(x− a)s−1

Γ(s)



for some s ∈ (0, 1). Then we have u ∈ Lp(I) for all 1 ≤ p < 1
1−s , and, for all x ∈ I, we see

that

I1−s
a+ [u](x) =

1

Γ(1− s)Γ(s)

∫ x

a

(t− a)s−1(x− t)−s dt =
1

Γ(1− s)Γ(s)

∫ 1

0

σs−1(1− σ)−sdσ

=
β(s, 1− s)

Γ(1− s)Γ(s)
= 1, (2.18)

by the properties of the Euler's beta function β. Therefore, we conclude that

Ds
a+[u](x) = 0 for all x ∈ I, (2.19)

while the left Caputo s-fractional derivative is not well de�ned. We prove now that the
equation

Isa+[f ] = u (2.20)

has no solution in Lp(I). In fact, suppose by contradiction that there exists f ∈ Lp(I)
satisfying (2.20). If we apply the (1 − s)-fractional integral on both sides of (2.20), thanks
to Lemma 2.15 and (2.18), we get∫ x

a

f(t) dt = I1
a+[f ](x) = I1−s

a+ [u](x) = 1,

for any x ∈ I. Therefore, di�erentiating on both sides of the equation, we obtain f = 0,
which is clearly a contradiction.

The next lemma gives a characterization of Lp-representability. We are going prove it
only in the case of left fractional integral, the other case being completely analogous.

De�nition 2.26. Let 1 ≤ q ≤ ∞ and u ∈ Lq(I); we say that u is Lp-representable if
u ∈ Isa+(Lp(I)) or u ∈ Isb−(Lp(I)) for some 1 ≤ p ≤ q and s ∈ (0, 1).

The next lemma gives a characterization of Lp-representability; we prove it only in the
case of left fractional integral, the right case is completely analogous.

Lemma 2.27 (Lp-representability criterion). Let u ∈ Lq(I), for some 1 ≤ q ≤ ∞ s ∈
(0, 1) and 1 ≤ p ≤ q. We have that u ∈ Isa+(Lp(I)) if and only if I1−s

a+ [u] ∈ W 1,p(I) and
I1−s
a+ [u](a) = 0.

Proof. If u ∈ Isa+(Lp(I)), then u = Isa+[f ] for some f ∈ Lp(I); therefore, using Lemma 2.15

I1−s
a+ [u](x) = I1−s

a+ [Isa+[f ]](x) = I1
a+[f ](x) =

∫ x

a

f(t)dt ∈ W 1,p(I),

and I1−s
a+ [u](a) = I1

a+[f ](a) = 0. On the other hand, if I1−s
a+ [u] ∈ W 1,p(I) ⊂ AC(I) and

I1−s
a+ [u](a) = 0, we have that

I1−s
a+ [u](x) =

∫ x

a

Ds
a+[u](t)dt = I1−s

a+ [Isa+[Ds
a+[u]]](x),

therefore, by applying the operator D1−s
a+ to both sides of the equation we have

u(x) = Isa+[Ds
a+[u]](x),

with Ds
a+[u] ∈ Lp(I); therefore u ∈ Isa+(Lp(I)), and this concludes the proof.



2.4 Riemann-Liouville fractional Sobolev spaces

Now, we got all the necessary tools to introduce the Riemann-Liouville fractional Sobolev
spaces

De�nition 2.28 (Riemann-Liouville fractional Sobolev spaces). Let 1 ≤ p ≤ ∞, and s ∈
(0, 1). We de�ne the Riemann-Liouville fractional Sobolev spaces as

W s,p
RL,a+ (I) :=

{
u ∈ Lp (I) , I1−s

a+ [u] ∈ W 1,p(I)
}
, (2.21)

and
W s,p
RL,b− (I) :=

{
u ∈ Lp (I) , I1−s

b− [u] ∈ W 1,p(I)
}
. (2.22)

It is not di�cult to see that the spaces W s,p
RL,a+ (I) and W s,p

RL,b− (I), endowed with the
norms

‖u‖W s,p
RL,a+(I) := ‖u‖Lp(I) +

∥∥I1−s
a+ [u]

∥∥
W 1,p(I)

, (2.23)

and
‖u‖W s,p

RL,b−(I) := ‖u‖Lp(I) +
∥∥I1−s

b− [u]
∥∥
W 1,p(I)

, (2.24)

are Banach spaces.
We notice that, in light of the continuity of the fractional integral in Lp given by Propo-

sition 2.18, the norm in (2.23) (analogously for the one in (2.24)), is equivalent to the one
given by

‖u‖ := ‖u‖Lp(I) +
∥∥Ds

a+[u]
∥∥
Lp(I)

therefore, one could de�ne the space W s,p
RL,a+(I) and W s,p

RL,b−(I) simply requiring that u ∈
Lp(I) has fractional derivatives in Lp(I); but this de�nition does not take into account the
di�erentiability properties of the fractional integral which are necessaries for integration-by-
parts formulae presented in this chapter and in Chapter 4.

We point out that there is a duality relation between the left Riemann-Liouville fractional
derivative and the Caputo right fractional derivative, as shown in the following lemma

Lemma 2.29. Let u ∈ W s,1
RL,a+(I), v ∈ C0,1

c (I) and s ∈ (0, 1). Then we have∫ b

a

Ds
a+[u](x) v(x) dx =

∫ b

a

u(x) CDs
b−[v](x) dx. (2.25)

Proof. Integrating by parts, and using Fubini's theorem, we have∫ b

a

Ds
a+[u](x)v(x)dx = −

∫ b

a

I1−s
a+ [u](x) v′(x) dx

= − 1

Γ (1− s)

∫ b

a

∫ x

a

u(t)

(x− t)s
v′(x) dt dx

= − 1

Γ (1− s)

∫ b

a

∫ b

t

v′(x)

(x− t)s
u(t) dx dt

=

∫ b

a

u(t) CDs
b−[v](t) dt.



In the light of De�nition 2.28, we may rephrase Lemma 2.27 in the following way.

Lemma 2.30. Let s ∈ (0, 1) and p ∈ [1,∞]. Then, u ∈ Isa+(Lp(I)) if and only if u ∈
W s,p
RL,a+(I) and I1−s

a+ [u](a) = 0.

We consider now a version of the fundamental Theorem of Calculus for left Riemann-
Liouville fractional derivatives. A similar result was stated in [BI15, Proposition 5], however
we provide here a short proof, for completeness.

Lemma 2.31. Let s ∈ (0, 1) and u ∈ L1(I). Then, for L1-a.e. x ∈ I, we have

u(x) = Ds
a+[Isa+[u]](x). (2.26)

If u ∈ W s,1
RL,a+(I), then, for L1-a.e. x ∈ I, we also have

u(x) = Isa+[Ds
a+[u]](x) +

I1−s
a+ [u](a)

Γ(s)
(x− a)s−1. (2.27)

Finally, if u ∈ W s,1
RL,a+(I) ∩ Isa+(L1(I)), then

u(x) = Ds
a+[Isa+[u]](x) = Isa+[Ds

a+[u]](x) for L1-a.e. x ∈ I. (2.28)

Proof. If u ∈ L1(I), we have Isa+[u] ∈ L1(I), by Remark 2.14, and, by Lemma 2.15,

I1−s
a+ [Isa+[u]](x) = I1

a+[u](x) =

∫ x

a

u(t)dt ∈ W 1,1(I).

Therefore, for L1-a.e. x ∈ I, we get

Ds
a+[Isa+[u]](x) =

d

dx
I1−s
a+ [Isa+[u]](x) =

d

dx
(I1
a+[u](x)) = u(x).

In order to prove (2.27), we notice that I1−s
a+ [u] ∈ W 1,1(I) with weak derivative Ds

a+[u] ∈
L1(I), so that, for L1-a.e. x ∈ I,

I1−s
a+ [u](x) =

∫ x

a

Ds
a+[u](t)dt+ I1−s

a+ [u](a)

= I1−s
a+ [Isa+[Ds

a+[u]]](x) + I1−s
a+

[
I1−s
a+ [u](a)

Γ(s)
(· − a)s−1

]
(x),

by (2.18). We notice that, by Remark 2.14, Isa+[Ds
a+[u]] ∈ L1(I), since Ds

a+[u] ∈ L1(I) by
assumption. Therefore, we apply D1−s

a+ to both sides of the equation and use (2.26) to obtain
(2.27). Finally, if u ∈ W s,1

RL,a+(I)∩ Isa+(L1(I)), then, by Lemma 2.27 with p = q = 1, we have
that I1−s

a+ [u](a) = 0, and this ends the proof.

Remark 2.32. Notice that these equalities are stable when s → 1− for u ∈ C1(I). Indeed,
we have that

u(x) = lim
s→1−

Ds
a+[Isa+[u]](x) =

d

dx

(∫ x

a

u(t)dt

)
=

∫ x

a

u′(t)dt+ u(a)

= lim
s→1−

Isa+[Ds
a+[u]](x) +

I1−s
a+ [u](a)

Γ(s)
(x− a)s−1,

where the second equality exploits Lemma 2.17.



Remark 2.33. We notice that if u ∈ W s,1
RL,a+(I)\Isb−(L1(I)), thanks to Remark 2.13 we have

that uQ ∈ W s,1
RL,b−(I) but this not necessarily implies that u ∈ W s,1

RL,b−(I). Indeed, consider

u(x) :=
xs−1

Γ(s)
; we have that I1−s

0+ [u](x) = 1 for any x ∈ [0, 1], hence I1−s
0+ [u] ∈ W 1,1((0, 1)).

On the other hand, we have that

I1−s
1− [u](x) =

1

Γ(1− s)

∫ 1

x

ts−1(t− x)−sdt =
1

Γ(1− s)

∫ 1/x

1

ωs−1(ω − 1)−sdω,

and this function belongs to L1((0, 1)) \W 1,1((0, 1)). The check of L1-summability is an easy
task; on the other side, if we compute the �rst derivative of I1−s

1− [u](x) we have that

Ds
1−[u](x) = − d

dx
I1−s

1− [u](x) =
1

Γ(1− s)
1

x(1− x)s
/∈ L1(I).

2.5 Carnot groups

A connected and simply connected Lie group (G, ·) is said to be a Carnot group of step s if
its Lie algebra g admits a step s strati�cation, i.e., there exist linear subspaces g1, ..., gs of g
such that

g = g1 ⊕ ...⊕ gs, [g1, gi] = gi+1, gs 6= {0}, [gs, g1] = {0} (2.29)

where [g1, gi] is the subspace of g generated by the commutators [X, Y ] with X ∈ g1 and
Y ∈ gi. In the last few years, Carnot groups have been largely studied in several respects,
such as di�erential geometry [CDPT07], subelliptic di�erential equations [BLU07, Fol73,
Fol75,SC84], complex analysis [SS03].

For a general introduction to Carnot groups from the point of view of this chapter and
for further examples, we refer, e.g., to [BLU07,Fol75,LD17,SS03].

Fix a scalar product 〈·, ·〉 on g1 and denote by | · | its induced norm. We recall that a
curve γ : [a, b]→ G is absolutely continuous if it is absolutely continuous as a curve into Rn

via composition with local charts.

De�nition 2.34. An absolutely continuous curve γ : [a, b]→ G is said to be horizontal if

γ′(t) ∈ g1,

for almost every t ∈ [a, b]. The length of such a curve is given by

LG(γ) =

∫ b

a

|γ′(t)|dt.

Chow's theorem [BLU07, Theorem 19.1.3] asserts that any two points in a Carnot group
can be connected by a horizontal curve. Hence, the following de�nition is well-posed.

De�nition 2.35. For every x, y ∈ G, their Carnot-Carathéodory (CC) distance is de�ned
by

d(x, y) = inf {LG(γ) : γ is a horizontal curve joining x and y} .

We also use the notation ‖x‖ = d(x, 0) for x ∈ G.



We denote by
B(x, r) = {y ∈ G : ‖y−1x‖ < r}

the open ball centered at x ∈ G with radius r > 0 and by B(r) = B(0, r).
It is well-known (see e.g. [Mit85]) that the Hausdor� dimension of the metric space (G, d) is
given by the so-called homogeneous dimension Q of G, which is given by

Q :=
s∑
i=1

i dim(gi).

The Hausdor� measure HQ and the spherical Hausdor� measure SQ are all Haar measure
on G. We denote by µ one of them, and, for any f ∈ L1(Ω;µ), we write for shortness∫

Ω

f(x) dx :=

∫
Ω

f(x) dµ(x),

for some measurable set Ω.
For any λ > 0, we denote by δ∗λ : g→ g the unique linear map such that

δ∗λX = λiX, ∀X ∈ gi.

The maps δ∗λ : g → g are Lie algebra automorphisms, i.e., δ∗λ([X, Y ]) = [δ∗λX, δ
∗
λY ] for all

X, Y ∈ g. For every λ > 0, the map δ∗λ naturally induces an automorphism on the group
δλ : G → G by the identity δλ(x) = (exp ◦δ∗λ ◦ log)(x). It is easy to verify that both the
families (δ∗λ)λ>0 and (δλ)λ>0 are a one-parameter group of automorphisms (of Lie algebra
and of groups, respectively), i.e., δ∗λ ◦ δ∗η = δ∗λη and δλ ◦ δη = δλη for all λ, η > 0. The maps
δ∗λ, δλ are both called dilation of factor λ.

Denoting by τx : G→ G the (left) translation by the element x ∈ G de�ned as

τxz := x · z = xz,

we remark that the CC distance is homogeneous with respect to dilations and left invariant.
More precisely, for every λ > 0 and for every x, y, z ∈ G one has

d(δλx, δλy) = λd(x, y), d(τxy, τxz) = d(y, z).

This immediately implies that τx(B(y, r)) = B(τxy, r) and δλB(y, r) = B(δλy, λr).

2.5.1 Perimeter and recti�ability in Carnot Groups

One of the main problems of sub-Riemannian geometry concerns the regularity of the (re-
duced) boundary of a set of �nite perimeter. The solution of this problem in the Euclidean
spaces goes back to De Giorgi [DG55]. He proved that the reduced boundary of a set of �nite
perimeter is (n − 1)-reci�able, i.e., it can be covered, up to a set of Hn−1-measure zero, by
a countable family of C1-hypersurfaces. The validity of such a result has wide consequences
in the development of Geometric Measure Theory and Calculus of Variations (see e.g. the
monographs [AFP00,EG15]).

The validity of a recti�ability-type theorem in the context of Carnot groups is still not
yet known in full generality. However, there are complete results in all Carnot groups of



step 2 (see [FSSC01,FSSC03]) and in the so-called Carnot groups of type ? (see [Mar14]).
In these papers the authors show that the reduced boundary of a set of �nite perimeter in a
Carnot group of the chosen class is recti�able with respect to the intrinsic structure of the
group.

We now introduce the notions of perimeter, reduced boundary and recti�ability.

De�nition 2.36. Let Ω be an open set in G and let f ∈ L1
loc(Ω). We say that f has locally

bounded variation in Ω (f ∈ BVG,loc(Ω)), if, for every Y ∈ g1 and every open set A b Ω,
there exists a Radon measure Y f on Ω such that∫

A

fY ϕ dµ = −
∫
A

ϕd(Y f),

for every ϕ ∈ C1
c (A). We say that f ∈ L1(Ω) has bounded variation in Ω (f ∈ BVG(Ω))

if f has locally bounded variation in Ω and, for every basis (X1, . . . , Xm) of g1, the total
variation |Df |(Ω) of the measure Df := (X1f, . . . , Xmf) is �nite. If E is a measurable set
in Ω, we say that E has locally �nite (resp. �nite) perimeter in Ω if χE ∈ BVG,loc(Ω) (resp.
χE ∈ BVG(Ω)). In such a case, the measure |DχE| is called perimeter of E and it is denoted
by PG(E; ·).

De�nition 2.37. Let E ⊆ G be a set with locally �nite perimeter. We de�ne the reduced
boundary FE of E to be the set of points p ∈ G such that PG(E;B(p, r)) > 0 for all r > 0
and there exists

lim
r→0

DχE(B(p, r))

PG(E;B(p, r))
= lim

r→0

DχE(B(p, r))

|DχE|(B(p, r))
=: νE(p) ∈ Rm,

with |νE(p)| = 1.

De�nition 2.38. Let Ω ⊆ G be an open set in a Carnot group G. We say that a function
f : Ω → R is of class C1

G if f is continuous and, for every X ∈ g1, the derivative Xf
in the sense of distributions is represented by a continuous function. Given a basis X =
(X1, . . . , Xm) of g1, we also denote by ∇Xf : Ω→ Rm the vector valued function de�ned by

∇Xf := (X1f, . . . , Xmf).

De�nition 2.39. A set Σ ⊆ G is said to be a hypersurface of class C1
G if, for every p ∈ Σ

there exists a neighborhood U of p, and a function f : U → R of class C1
G such that

Σ ∩ U = {q ∈ U : f(q) = 0},

and infU |∇Xf | > 0, for any basis X = (X1, . . . , Xm) of g1.

De�nition 2.40. Let E ⊆ G be a measurable set. We say that E is C1
G-recti�able (or simply

recti�able), if there exists a family {Γj : j ∈ N} of C1
G-hypersurfaces such that

HQ−1

(
E \

⋃
j∈N

Γj

)
= 0,

where Q is the homogeneous dimension of G and HQ−1 denotes the (Q − 1)−dimensional
Hausdor� measure de�ned through the Carnot-Carathéodory distance.



De�nition 2.41. For any ν ∈ g1 \ {0}, we de�ne the vertical halfspace with normal ν by
setting

Hν := {x ∈ G : 〈π1 log x, ν〉 ≥ 0},

where π1 : g → g1 is the horizontal projection on the Lie algebra and log : G → g is the
inverse of the exponential map. Notice that if x ∈ G is such that 〈π1 log x, ν〉 > 0, then
x−1 ∈ Hc

ν.

Following the notation of [DV19] we introduce the following:

De�nition 2.42. We say that a Carnot group G satis�es property R if every set E ⊆ G of
locally �nite perimeter in G has recti�able reduced boundary.

As already mentioned before, property R is satis�ed in Euclidean spaces, in all Carnot
groups of step 2 and in the so-called Carnot groups of type ?.

Remark 2.43. If G is a Carnot group satisfying property R and E ⊆ G is a set of �nite
perimeter in G, then, for HQ−1-almost every p ∈ FE, the family δ1/rp

−1E converges in L1
loc

to the halfspace HνE(p). This comes from the fact that C1-hypersurfaces have �at blow-up
(see e.g. [DV19, Proposition 2.13]).

Whenever property R is not assumed, only partial result about blow-up of sets of �nite
perimeter are available in the literature. It is proved in [FSSC03] that, for any set E ⊆ G with
locally �nite perimeter and for HQ−1-almost every p ∈ FE, the family δ1/rp

−1E converges in
L1

loc(G) to a set of constant horizontal normal F , namely a set for which there exists ν ∈ g1

such that

νχF ≥ 0 and XχF = 0 for every X ∈ g1 with X⊥ν, (2.30)

in the sense of distributions.
If in addition G has step 2, or it is of type ?, then it is proved respectively in [FSSC03]

and [Mar14] that, up to a left translation, every set of constant horizontal normal is really
a vertical halfspace. On the other hand, still in [FSSC03, Example 3.2], it is proved that
for general Carnot groups condition (2.30) does not characterize vertical halfspaces. The
classi�cation of sets with constant horizontal normal is a challenging problem and, as far
as we know, the most general result in this direction is [AKLD09, Theorem 1.2]: if E ⊂ G
has locally �nite perimeter, then, for |DχE|-a.e. p ∈ G, there exist an in�nitesimal sequence
of radii (rj) and a vertical halfspace H such that δ1/rj(p

−1E) converges in L1
loc(G) to H, as

j →∞.



Chapter 3

Local density of solutions to fractional

equations

3.1 Introduction and main results

In this chapter, following the recent monograph [CDV19], we prove the local density of
functions which annihilate a linear operator built by classical and fractional derivatives, both
in space and time, where time-fractional derivatives will be mostly described in terms of the
so-called Caputo fractional derivative (see [Cap08]), which induces a natural �direction� in
the time variable, distinguishing between �past� and �future�.

In particular, the time direction encoded in this setting allows the analysis of �non an-
ticipative systems�, namely phenomena in which the state at a given time depends on past
events, but not on future ones. The Caputo derivative is also related to other types of time-
fractional derivatives, such as the Marchaud fractional derivative, which has applications in
modeling anomalous time di�usion, see e.g. [ACV16,AV19,Fer18]. See also [MR93,SKM93]
for more details on fractional operators and several applications.

Here, we will take advantadge of the nonlocal structure of a very general linear operator
containing fractional derivatives in some variables (say, either time, or space, or both),
in order to approximate, in the smooth sense and with arbitrary precision, any prescribed
function. Remarkably, no structural assumption needs to be taken on the prescribed function:
therefore this approximation property reveals a truly nonlocal behaviour, since it is in contrast
with the rigidity of the functions that lie in the kernel of classical linear operators (for
instance, harmonic functions cannot approximate a function with interior maxima or minima,
functions with null �rst derivatives are necessarily constant, and so on).

The approximation results with solutions of nonlocal operators have been �rst introduced
in [DSV17] for the case of the fractional Laplacian, and since then widely studied under di�er-
ent perspectives, including harmonic analysis, see [RS18,GSU16,Rül17,RS17a,RS17b]. The
approximation result for the one-dimensional case of a fractional derivative of Caputo type
has been considered in [Buc17, CDV18], and operators involving classical time derivatives
and additional classical derivatives in space have been studied in [DSV19a].

The great �exibility of solutions of fractional problems established by this type of ap-
proximation results has also consequences that go beyond the purely mathematical curiosity.
For example, these results can be applied to study the evolution of biological populations,
showing how a nonlocal hunting or dispersive strategy can be more convenient than one
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based on classical di�usion, in order to avoid waste of resources and optimize the search for
food in sparse environment, see [MV17,CDV17]. Interestingly, the theoretical descriptions
provided in this setting can be compared with a series of concrete biological data and real
world experiments, con�rming anomalous di�usion behaviours in many biological species,
see [VAB+96]. It is worth noticing that the �exible behaviour exhibited by solutions of frac-
tional linear equations is set against the rigidity of nonlocal minimal graphs; see for instance
the recent paper [DSV19b].

Another interesting application of time-fractional derivatives arises in neuroscience, for
instance in view of the anomalous di�usion which has been experimentally measured in
neurons, see e.g. [SWDSA06] and the references therein. In this case, the anomalous di�usion
could be seen as the e�ect of the highly rami�ed structure of the biological cells taken into
account, see [AB91,DV18].

In many applications, it is also natural to consider the case in which di�erent types of
di�usion take place in di�erent variables: for instance, classical di�usion in space variables
could be naturally combined to anomalous di�usion with respect to variables which take into
account genetical information, see [RVD+13,Sef17].

Now, to state the main original results of this work, we introduce some notation. In what
follows, we will denote the �local variables� with the symbol x, the �nonlocal variables� with
y, the �time-fractional variables� with t. Namely, we consider the variables

x = (x1, . . . , xn) ∈ Rp1 × . . .× Rpn ,

y = (y1, . . . , yM) ∈ Rm1 × . . .× RmM

and t = (t1, . . . , tl) ∈ Rl,

(3.1)

for some p1, . . . , pn, M , m1, . . . ,mM , l ∈ N, and we let

(x, y, t) ∈ RN , where N := p1 + . . .+ pn +m1 + . . .+mM + l.

When necessary, we will use the notation Bk
R to denote the k-dimensional ball of radius R,

centered at the origin in Rk; otherwise, when there are no ambiguities, we will use the usual
notation BR.

Fixed r = (r1, . . . , rn) ∈ Np1 × . . . × Npn , with |ri| ≥ 1 for each i ∈ {1, . . . , n}, and ¡� =
(¡�1, . . . , ¡�n) ∈ Rn, we consider the local operator acting on the variables x = (x1, . . . , xn)
given by

l :=
n∑
i=1

¡�i∂rixi . (3.2)

where the multi-index notation has been used.
Furthermore, given �b =

(
�b1, . . . , �bM

)
∈ RM and s = (s1, . . . , sM) ∈ (0,+∞)M , we

consider the operator

L :=
M∑
j=1

�bj(−∆)sjyj , (3.3)

where each operator (−∆)
sj
yj denotes the fractional Laplacian of order 2sj acting on the set

of space variables yj ∈ Rmj . More precisely, for any j ∈ {1, . . . ,M}, given sj > 0 and hj ∈ N
with hj := minqj∈N such that sj ∈ (0, qj), in the spirit of [AJS18a], we consider the operator

(−∆)sjyju (x, y, t) :=

∫
Rmj

(
δhju

)
(x, y, t, Yj)

|Yj|mj+2sj
dYj, (3.4)



where

(
δhju

)
(x, y, t, Yj) :=

hj∑
k=−hj

(−1)k
(

2hj
hj − k

)
u (x, y1, . . . , yj−1, yj + kYj, yj+1, . . . , yM , t).

(3.5)
In particular, when hj := 1, this setting comprises the case of the fractional Lapla-

cian (−∆)sjyj of order 2sj ∈ (0, 2), given by

(−∆)sjyj u (x, y, t) := cmj ,sj

∫
Rmj

(
2u(x, y, t)− u(x, y1, . . . , yj−1, yj + Yj, yj+1, . . . , yM , t)

− u(x, y1, . . . , yj−1, yj − Yj, yj+1, . . . , yM , t)
) dYj
|Yj|mj+2sj

,

where sj ∈ (0, 1) and cmj ,sj denotes a multiplicative normalizing constant (see e.g. for-
mula (3.1.10) in [BV16]).

It is interesting to recall that if hj = 2 and sj = 1 the setting in (3.4) provides a nonlocal
representation for the classical Laplacian, see [AV19].

In our general framework, we take into account also nonlocal operators of time-fractional
type. To this end, for any α > 0, letting k := [α] + 1 and a ∈ R ∪ {−∞}, one can introduce
the left1 Caputo fractional derivative of order α and initial point a, de�ned, for t > a, as

Dα
t,au(t) :=

1

Γ(k − α)

∫ t

a

∂kt u (τ)

(t− τ)α−k+1
dτ. (3.6)

2

In this framework, �xed £� = (£� 1, . . . , £� l) ∈ Rl, α = (α1, . . . , αl) ∈ (0,+∞)l and a =
(a1, . . . , al) ∈ (R ∪ {−∞})l, we set

Da :=
l∑

h=1

£� hD
αh
th,ah

. (3.7)

Then, in the notation introduced in (3.2), (3.3) and (3.7), we consider here the superposition
of the local, the space-fractional, and the time-fractional operators, that is, we set

Λa := l + L+Da. (3.8)

With this, the statement of our main result goes as follows:
1In the literature, one often �nds also the notion of right Caputo fractional derivative, de�ned for t < a

by
(−1)k

Γ (k − α)

∫ a

t

∂kt u(τ)

(τ − t)α−k+1
dτ.

Since the right time-fractional derivative boils down to the left one (by replacing t with 2a − t), in this
chapter we focus only on the case of left derivatives.
Also, though there are several time-fractional derivatives that are studied in the literature under di�erent

perspectives, we focus here on the Caputo derivative, since it possesses well-posedness properties with respect
to classical initial value problems, di�erently than other time-fractional derivatives, such as the Riemann-
Liouville derivative, in which the initial value setting involves data containing derivatives of fractional order.

2For notational simplicity, we will often denote ∂kt u = u(k).



Theorem 3.1. Suppose that

either there exists i ∈ {1, . . . ,M} such that �bi 6= 0 and si 6∈ N,
or there exists i ∈ {1, . . . , l} such that £� i 6= 0 and αi 6∈ N.

(3.9)

Let ` ∈ N, f : RN → R, with f ∈ C`
(
BN

1

)
. Fixed ε > 0, there exist

u = uε ∈ C∞
(
BN

1

)
∩ C

(
RN
)
,

a = (a1, . . . , al) = (a1,ε, . . . , al,ε) ∈ (−∞, 0)l,

and R = Rε > 1

(3.10)

such that {
Λau = 0 in BN

1 ,
u = 0 in RN \BN

R ,
(3.11)

and
‖u− f‖C`(BN1 ) < ε. (3.12)

We observe that the initial points of the Caputo type operators in Theorem 3.1 also
depend on ε, as detailed in (3.10) (but the other parameters, such as the orders of the
operators involved, are �xed arbitrarily).

We also stress that condition (3.9) requires that the operator Λa contains at least one
nonlocal operator among its building blocks in (3.2), (3.3) and (3.7). This condition cannot
be avoided, since approximation results in the same spirit of Theorem 3.1 cannot hold for
classical di�erential operators.

Theorem 3.1 comprises, as particular cases, the nonlocal approximation results estab-
lished in the recent literature of this topic. Indeed, when

¡�1 = · · · = ¡�n = �b1 = · · · = �bM−1 = £� 1 = · · · = £� l = 0,

�bM = 1,

and s ∈ (0, 1)

we see that Theorem 3.1 recovers the main result in [DSV17], giving the local density of
s-harmonic functions vanishing outside a compact set.

Similarly, when

¡�1 = · · · = ¡�n = �b1 = · · · = �bM = £� 1 = · · · = £� l−1 = 0,

£� l = 1,

and Da = Dα
t,a, for some α > 0, a < 0

we have that Theorem 3.1 reduces to the main results in [Buc17] for α ∈ (0, 1) and [CDV18]
for α > 1, in which such approximation result was established for Caputo-stationary func-
tions, i.e, functions that annihilate the Caputo fractional derivative.

Also, when

p1 = · · · = pn = 1,

£� 1 = · · · = £� l = 0,



and sj ∈ (0, 1), for every j ∈ {1, . . . ,M},

we have that Theorem 3.1 recovers the cases taken into account in [DSV19a], in which
approximation results have been established for the superposition of a local operator with a
superposition of fractional Laplacians of order 2sj < 2.

In this sense, not only Theorem 3.1 comprises the existing literature, but it goes beyond it,
since it combines classical derivatives, fractional Laplacians and Caputo fractional derivatives
altogether. In addition, it comprises the cases in which the space-fractional Laplacians taken
into account are of order greater than 2.

As a matter of fact, this point is also a novelty introduced by Theorem 3.1 here with
respect to the previous literature.

Theorem 3.1 was announced in [CDV18], but we also refer to [Kry18] which also considers
the case of di�erent, not necessarily fractional, powers of the Laplacian, using a di�erent and
innovative methodology.

The rest of the chapter is organized as follows. Section 3.2 focuses on time-fractional op-
erators. More precisely, in Subsections 3.2.1 and 3.3 we study the boundary behaviour of the
eigenfunctions of the Caputo derivative and of functions with vanishing Caputo derivative,
respectively, detecting their singular boundary behaviour in terms of explicit representa-
tion formulas. These type of results are also interesting in themselves and can �nd further
applications.

Section 3.4 is devoted to some properties of the higher order fractional Laplacian. More
precisely, Section 3.5 provides some representation formula of the solution of (−∆)su = f in
a ball, with u = 0 outside this ball, for all s > 0, and extends the Green formula methods
introduced in [DG17] and [AJS18b].

Then, in Section 3.6 we study the boundary behaviour of the �rst Dirichlet eigenfunction
of higher order fractional equations, and in Section 3.7 we give some precise asymptotics at
the boundary for the �rst Dirichlet eigenfunction of (−∆)s for any s > 0.

Section 3.8 is devoted to the analysis of the asymptotic behaviour of s-harmonic functions,
with a �spherical bump function� as exterior Dirichlet datum.

Section 3.9 is devoted to the proof of our main result. To this end, Section 3.10 contains an
auxiliary statement, namely Theorem 3.23, which will imply Theorem 3.1. This is technically
convenient, since the operator Λa depends in principle on the initial point a: this has the
disadvantage that if Λaua = 0 and Λbub = 0 in some domain, the function ua + ub is
not in principle a solution of any operator, unless a = b. To overcome such a di�culty, in
Theorem 3.23 we will reduce to the case in which a = −∞, exploiting a polynomial extension
introduced and used in [CDV18], and that will be recalled in the Appendix.

In Section 3.11 we make the main step towards the proof of Theorem 3.23. Here, we
prove that functions in the kernel of nonlocal operators such as the one in (3.8) span with
their derivatives a maximal Euclidean space. This fact is special for the nonlocal case and
its proof is based on the boundary analysis of the fractional operators in both time and
space. Due to the general form of the operator in (3.8), we have to distinguish here several
cases, taking advantage of either the time-fractional or the space-fractional components of
the operators.

Finally, in Section 3.12 we complete the proof of Theorem 3.23, using the previous ap-
proximation results and suitable rescaling arguments.



3.2 Boundary behaviour of solutions of time-fractional

equations

In this section, we give precise asymptotics for the boundary behaviour of solutions of time-
fractional equations. The cases of the eigenfunctions and of the Dirichlet problem with
vanishing forcing term will be studied in detail (the latter will be often referred to as the
time-fractional harmonic case, borrowing a terminology from elliptic equations, with a slight
abuse of notation in our case).

3.2.1 Sharp boundary behaviour for the time-fractional eigenfunc-

tions

In this subsection we show that the eigenfunctions of the Caputo fractional derivative in (3.6)
have an explicit representation via the Mittag-Le�er function. For this, �xed α, β ∈ C with
< (α) > 0, for any z with < (z) > 0, we recall that the Mittag-Le�er function is de�ned as

Eα,β (z) :=
+∞∑
j=0

zj

Γ (αj + β)
. (3.13)

The Mittag-Le�er function plays an important role in equations driven by the Caputo
derivatives, replacing the exponential function for classical di�erential equations, as given
by the following well-established result (see [GKMR14] and the references therein):

Lemma 3.2. Let α ∈ (0, 1], λ ∈ R, and a ∈ R ∪ {−∞}. Then, the unique solution of the
boundary value problem {

Dα
t,au(t) = λu(t) for any t ∈ (a,+∞),
u(a) = 1

is given by Eα,1 (λ (t− a)α).

Lemma 3.2 can be actually generalized3 to any fractional order of di�erentiation α:

Lemma 3.3. Let α ∈ (0,+∞), with α ∈ (k − 1, k] and k ∈ N, a ∈ R ∪ {−∞}, and λ ∈ R.
Then, the unique continuous solution of the boundary value problem

Dα
t,au(t) = λu(t) for any t ∈ (a,+∞),
u(a) = 1,
∂mt u(a) = 0 for any m ∈ {1, . . . , k − 1}

(3.14)

is given by u (t) = Eα,1 (λ (t− a)α).

Proof. For the sake of simplicity we take a = 0. Also, the case in which α ∈ N can be
checked with a direct computation, so we focus on the case α ∈ (k − 1, k), with k ∈ N.

We let u (t) := Eα,1 (λtα). It is straightforward to see that u(t) = 1 +O(tk) and therefore

u(0) = 1 and ∂mt u(0) = 0 for any m ∈ {1, . . . , k − 1}. (3.15)

3It is easily seen that for k := 1 Lemma 3.3 boils down to Lemma 3.2.



We also claim that
Dα
t,au(t) = λu(t) for any t ∈ (0,+∞). (3.16)

To check this, we recall (3.6) and (3.13) (with β := 1), and we have that

Dα
t,au (t)

=
1

Γ (k − α)

∫ t

0

u(k) (τ)

(t− τ)α−k+1
dτ

=
1

Γ (k − α)

∫ t

0

(
+∞∑
j=1

λj
αj (αj − 1) . . . (αj − k + 1)

Γ (αj + 1)
ταj−k

)
dτ

(t− τ)α−k+1

=
+∞∑
j=1

λj
αj (αj − 1) . . . (αj − k + 1)

Γ (k − α) Γ (αj + 1)

∫ t

0

ταj−k (t− τ)k−α−1 dτ .

Hence, using the change of variable τ = tσ, we obtain that

Dα
t,au (t) =

+∞∑
j=1

λj
αj (αj − 1) . . . (αj − k + 1)

Γ (k − α) Γ (αj + 1)
tαj−α

∫ 1

0

σαj−k (1− σ)k−α−1 dτ . (3.17)

On the other hand, from the basic properties of the Beta function, it is known that if <(z),
<(w) > 0, then ∫ 1

0

σz−1 (1− σ)w−1 dt =
Γ (z) Γ (w)

Γ (z + w)
. (3.18)

In particular, taking z := αj−k+1 ∈ (α−k+1,+∞) ⊆ (0,+∞) and w := k−α ∈ (0,+∞),
and substituting (3.18) into (3.17), we conclude that

Dα
t,au (t) =

+∞∑
j=1

λj
αj (αj − 1) . . . (αj − k + 1)

Γ (k − α) Γ (αj + 1)

Γ (αj − k + 1) Γ (k − α)

Γ (αj − α + 1)
tαj−α

=
+∞∑
j=1

λj
αj (αj − 1) . . . (αj − k + 1)

Γ (αj + 1)

Γ (αj − k + 1)

Γ (αj − α + 1)
tαj−α.

(3.19)

Now we use the fact that zΓ (z) = Γ (z + 1) for any z ∈ C with < (z) > −1, so, we have

αj (αj − 1) . . . (αj − k + 1) Γ (αj − k + 1) = Γ (αj + 1) .

Plugging this information into (3.19), we thereby �nd that

Dα
t,au (t) =

+∞∑
j=1

λj

Γ (αj − α + 1)
tαj−α =

+∞∑
j=0

λj+1

Γ (αj + 1)
tαj = λu(t).

This proves (3.16).
Then, in view of (3.15) and (3.16) we obtain that u is a solution of (3.14). Hence, to

complete the proof of the desired result, we have to show that such a solution is unique. To
this end, supposing that we have two solutions of (3.14), we consider their di�erence w, and
we observe that w is a solution of{

Dα
t,0w(t) = λw(t) for any t ∈ (0,+∞),
∂mt w(0) = 0 for any m ∈ {0, . . . , k − 1}.

By Theorem 4.1 in [SZ16], it follows that w vanishes identically, and this proves the desired
uniqueness result.



The boundary behaviour of the Mittag-Le�er function for di�erent values of the fractional
parameter α is depicted in Figure 3.1. In light of (3.13), we notice in particular that,
near z = 0,

Eα,β (z) =
1

Γ (β)
+

z

Γ (α + β)
+O(z2)

and therefore, near t = a,

Eα,1 (λ (t− a)α) = 1 +
λ (t− a)α

Γ (α + 1)
+O

(
λ2 (t− a)2α ).

Figure 3.1: Behaviour of the Mittag-Le�er function Eα,1 (tα) near the origin for α = 1
100 , α = 1

20 , α = 1
3 ,

α = 2
3 α = 3

2 and α = 11
2 .

3.3 Sharp boundary behaviour for the time-fractional har-

monic functions

In this section, we detect the optimal boundary behaviour of time-fractional harmonic func-
tions and of their derivatives. The result that we need for our purposes is the following:

Lemma 3.4. Let α ∈ (0,+∞) \ N. There exists a function ψ : R → R such that ψ ∈
C∞((1,+∞)) and

Dα
0ψ(t) = 0 for all t ∈ (1,+∞), (3.20)



and lim
ε↘0

ε`−α∂`ψ(1 + εt) = κα,` t
α−`, for all ` ∈ N, (3.21)

for some κα,` ∈ R \ {0}, where (3.21) is taken in the sense of distribution for t ∈ (0,+∞).

Proof. We use Lemma 2.5 in [CDV18], according to which (see in particular formula (2.16)
in [CDV18]) the claim in (3.20) holds true. Furthermore (see formulas (2.19) and (2.20)
in [CDV18]), we can write that, for all t > 1,

ψ(t) = − 1

Γ(α)Γ([α] + 1− α)

∫∫
[1,t]×[0,3/4]

∂[α]+1ψ0(σ) (τ − σ)[α]−α (t− τ)α−1 dτ dσ, (3.22)

for a suitable ψ0 ∈ C [α]+1([0, 1]).
In addition, by Lemma 2.6 in [CDV18], we can write that

lim
ε↘0

ε−αψ(1 + ε) = κ, (3.23)

for some κ 6= 0. Now we set

(0,+∞) 3 t 7→ fε(t) := ε`−α∂`ψ(1 + εt).

We observe that, for any ϕ ∈ C∞0 ((0,+∞)),∫ +∞

0

fε(t)ϕ(t) dt = ε`−α
∫ +∞

0

∂`ψ(1 + εt)ϕ(t) dt

= ε−α
∫ +∞

0

d`

dt`
(
ψ(1 + εt)

)
ϕ(t) dt = (−1)` ε−α

∫ +∞

0

ψ(1 + εt) ∂`ϕ(t) dt.

(3.24)

Also, in view of (3.22),

ε−α|ψ(1 + εt)|

=

∣∣∣∣ ε−α

Γ(α)Γ([α] + 1− α)

∫∫
[1,1+εt]×[0,3/4]

∂[α]+1ψ0(σ) (τ − σ)[α]−α (1 + εt− τ)α−1 dτ dσ

∣∣∣∣
≤ C ε−α

∫
[1,1+εt]

(1 + εt− τ)α−1 dτ

= Ctα,

which is locally bounded in t, where C > 0 here above may vary from line to line.
As a consequence, we can pass to the limit in (3.24) and obtain that

lim
ε↘0

∫ +∞

0

fε(t)ϕ(t) dt = (−1)`
∫ +∞

0

lim
ε↘0

ε−αψ(1 + εt) ∂`ϕ(t) dt.

This and (3.23) give that

lim
ε↘0

∫ +∞

0

fε(t)ϕ(t) dt = (−1)` κ

∫ +∞

0

tα ∂`ϕ(t) dt = κα . . . (α− `+ 1)

∫ +∞

0

tα−` ϕ(t) dt,

which establishes (3.21).



3.4 Boundary behaviour of solutions of space-fractional

equations

In this section, we give precise asymptotics for the boundary behaviour of solutions of space-
fractional equations. The cases of the eigenfunctions and of the Dirichlet problem with
vanishing forcing term will be studied in detail. To this end, we will also exploit useful
representation formulas of the solutions in terms of suitable Green functions.

3.5 Green representation formulas and solution of (−∆)su =

f in B1 with homogeneous Dirichlet datum

Our goal is to provide some representation results on the solution of (−∆)su = f in a
ball, with u = 0 outside this ball, for all s > 0. Our approach is an extension of the
Green formula methods introduced in [DG17] and [AJS18b]: di�erently from the previous
literature, we are not assuming here that f is regular in the whole of the ball, but merely that
it is Hölder continuous near the boundary and su�ciently integrable inside. Given the type
of singularity of the Green function, these assumptions are su�cient to obtain meaningful
representations, which in turn will be useful to deal with the eigenfunction problem in the
subsequent section 3.6.

3.5.1 Solving (−∆)su = f in B1 for discontinuous f vanishing near

∂B1

Now, we want to extend the representation results of [DG17] and [AJS18b] to the case
in which the right hand side is not Hölder continuous, but merely in a Lebesgue space,
but it has the additional property of vanishing near the boundary of the domain. To this
end, �xed s > 0, we consider the polyharmonic Green function in B1 ⊂ Rn, given, for
every x 6= y ∈ Rn, by

Gs (x, y) :=
k(n, s)

|x− y|n−2s

∫ r0(x,y)

0

ηs−1

(η + 1)
n
2

dη,

where r0 (x, y) :=

(
1− |x|2

)
+

(
1− |y|2

)
+

|x− y|2
,

with k(n, s) :=
Γ
(
n
2

)
π
n
2 4sΓ2 (s)

.

(3.25)

Given x ∈ B1, we also set
d(x) := 1− |x|. (3.26)

In this setting, we have:

Proposition 3.5. Let r ∈ (0, 1) and f ∈ L2(B1), with f = 0 in Rn \Br. Let

u(x) :=


∫
B1

Gs (x, y) f(y) dy if x ∈ B1,

0 if x ∈ Rn \B1.
(3.27)



Then:
u ∈ L1(B1), and ‖u‖L1(B1) ≤ C ‖f‖L1(B1), (3.28)

for every R ∈ (r, 1), sup
x∈B1\BR

d−s(x) |u(x)| ≤ CR ‖f‖L1(B1), (3.29)

u satis�es (−∆)su = f in B1 in the sense of distributions, (3.30)

and
u ∈ W 2s,2

loc (B1). (3.31)

Here above, C > 0 is a constant depending on n, s and r, CR > 0 is a constant depending
on n, s, r and R and Cρ > 0 is a constant depending on n, s, r and ρ.

When f ∈ C0,α(B1) for some α ∈ (0, 1), Proposition 3.5 boils down to the main results
of [DG17] and [AJS18b].

Proof of Proposition 3.5. We recall the following useful estimate, see Lemma 3.3 in [AJS18b]:
for any ε ∈ (0, min{n, s}), and any R̄, r̄ > 0,

1

R̄n−2s

∫ r̄/R̄2

0

ηs−1

(η + 1)
n
2

dη ≤ 2

s

r̄s−(ε/2)

R̄n−ε ,

and so, by (3.25) and (3.26), for every x, y ∈ B1,

Gs (x, y) ≤ C ds−(ε/2)(x) ds−(ε/2)(y)

|x− y|n−ε

for some C > 0. Hence, recalling (3.27),∫
B1

|u(x)| dx ≤
∫
B1

(∫
B1

Gs (x, y) |f(y)| dy
)
dx

≤ C

∫
B1

(∫
B1

|f(y)|
|x− y|n−ε

dy

)
dx

= C

∫
B1

(∫
B1

|f(y)|
|x− y|n−ε

dx

)
dy

= C

∫
B1

|f(y)| dy,

up to renaming C > 0 line after line, and this proves (3.28).
Now, if x ∈ B1 \BR and y ∈ Br, with 0 < r < R < 1, we have that

|x− y| ≥ |x| − |y| ≥ R− r

and accordingly

r0 (x, y) ≤ 2d(x)

(R− r)2
,

which in turn implies that

Gs (x, y) ≤ k(n, s)

|x− y|n−2s

∫ 2d(x)/(R−r)2

0

ηs−1

(η + 1)
n
2

dη,≤ C ds(x),



for some C > 0. As a consequence, since f vanishes outside Br, we see that, for any x ∈
B1 \BR,

|u(x)| ≤
∫
Br

Gs (x, y) |f(y)| dy ≤ C ds(x)

∫
Br

|f(y)| dy,

which proves (3.29).
Now, we �x r̂ ∈ (r, 1) and consider a molli�cation of f , that we denote by fj ∈ C∞0 (Br̂),

with fj → f in L2(B1) as j → +∞. We also write Gs ∗ f as a short notation for the right
hand side of (3.27). Then, by [DG17] and [AJS18b], we know that uj := Gs ∗ fj is a (locally
smooth, hence distributional) solution of (−∆)suj = fj. Furthermore, if we set ũj := uj − u
and f̃j := fj − f we have that

ũj = Gs ∗ (fj − f) = Gs ∗ f̃j,

and therefore, by (3.28),
‖ũj‖L1(B1) ≤ C ‖f̃j‖L1(B1),

which is in�nitesimal as j → +∞. This says that uj → u in L1(B1) as j → +∞, and
consequently, for any ϕ ∈ C∞0 (B1),∫

B1

u(x) (−∆)sϕ(x) dx = lim
j→+∞

∫
B1

uj(x) (−∆)sϕ(x) dx

= lim
j→+∞

∫
B1

fj(x)ϕ(x) dx =

∫
B1

f(x)ϕ(x) dx,

thus completing the proof of (3.30).
Now, to prove (3.31), we can suppose that s ∈ (0,+∞) \N, since the case of integer s is

classical, see e.g. [GT01]. First of all, we claim that

(3.31) holds true for every s ∈ (0, 1). (3.32)

For this, we �rst claim that if g ∈ C∞(B1) and v is a (locally smooth) solution of (−∆)sv = g
in B1, with v = 0 outside B1, then v ∈ W 2s,2

loc (B1), and, for any ρ ∈ (0, 1),

‖v‖W 2s,2(Bρ) ≤ Cρ ‖g‖L2(B1). (3.33)

This claim can be seen as a localization of Lemma 3.1 of [DK12], or a quanti�cation of the
last claim in Theorem 1.3 of [BWZ17]. To prove (3.33), we let R− < R+ ∈ (ρ, 1), and
consider η ∈ C∞0 (BR+) with η = 1 in BR− . We let v∗ := vη, and we recall formulas (3.2),
(3.3) and (A.5) in [BWZ17], according to which

(−∆)sv∗ − η(−∆)sv = g∗ in Rn,

with ‖g∗‖L2(Rn) ≤ C ‖v‖W s,2(Rn),

for some C > 0.
Moreover, using a notation taken from [BWZ17] we denote by W s,2

0 (B1) the space of
functions in W s,2(Rn) vanishing outside B1 and we consider the dual space W−s,2

0 (B1). We
remark that if h ∈ L2(B1) we can naturally identify h as an element of W−s,2

0 (B1) by
considering the action of h on any ϕ ∈ W s,2

0 (B1) as de�ned by∫
B1

h(x)ϕ(x) dx.



With respect to this, we have that

‖h‖W−s,20 (B1) = sup
ϕ∈Ws,2

0 (B1)

‖ϕ‖
W
s,2
0 (B1)

=1

∫
B1

h(x)ϕ(x) dx ≤ ‖h‖L2(B1). (3.34)

We notice also that
‖v‖W s,2(Rn) ≤ C ‖g‖W−s,2(B1),

in light of Proposition 2.1 of [BWZ17]. This and (3.34) give that

‖v‖W s,2(Rn) ≤ C ‖g‖L2(B1).

Then, by Lemma 3.1 of [DK12] (see in particular formula (3.2) there, applied here with λ :=
0), we obtain that

‖v∗‖W 2s,2(Rn) ≤ C ‖η(−∆)sv + g∗‖L2(Rn)

≤ C
(
‖(−∆)sv‖L2(BR+

) + ‖g∗‖L2(Rn)

)
= C

(
‖g‖L2(BR+

) + ‖g∗‖L2(Rn)

)
≤ C

(
‖g‖L2(B1) + ‖v‖W s,2(Rn)

)
≤ C ‖g‖L2(B1),

(3.35)

up to renaming C > 0 step by step. On the other hand, since v∗ = v in Bρ,

‖v‖W 2s,2(Bρ) = ‖v∗‖W 2s,2(Bρ) ≤ ‖v∗‖W 2s,2(Rn).

From this and (3.35), we obtain (3.33), as desired.
Now, we let fj, f̃j, uj and ũj as above and make use of (3.33) to write

‖uj‖W 2s,2(Bρ) ≤ Cρ ‖fj‖L2(B1)

and ‖ũj‖W 2s,2(Bρ) ≤ Cρ ‖f̃j‖L2(B1).
(3.36)

As a consequence, taking the limit as j → +∞ we obtain that

‖u‖W 2s,2(Bρ) ≤ Cρ ‖f‖L2(B1),

that is (3.31) in this case, namely the claim in (3.32).
Now, to prove (3.31), we argue by induction on the integer part of s. When the integer

part of s is zero, the basis of the induction is warranted by (3.32). Then, to perform the
inductive step, given s ∈ (0,+∞) \ N, we suppose that (3.31) holds true for s− 1, namely

Gs−1 ∗ f ∈ W 2s−2,2
loc (B1). (3.37)

Then, following [AJS18b], it is convenient to introduce the notation

[x, y] :=
√
|x|2|y|2 − 2x · y + 1

and consider the auxiliary kernel given, for every x 6= y ∈ B1, by

Ps−1(x, y) :=
(1− |x|2)s−2

+ (1− |y|2)s−1
+ (1− |x|2|y|2)

[x, y]n
. (3.38)



We point out that if x ∈ Br with r ∈ (0, 1), then

[x, y]2 ≥ |x|2|y|2 − 2|x| |y|+ 1 = (1− |x| |y|)2 ≥ (1− r)2 > 0. (3.39)

Consequently, since f is supported in Br,

Ps−1 ∗ f ∈ C∞(Rn). (3.40)

Then, we recall that
−∆xGs(x, y) = Gs−1(x, y)− CPs−1(x, y), (3.41)

for some C ∈ R, see Lemma 3.1 in [AJS18b].
As a consequence, in view of (3.37), (3.40), (3.41), we conclude that

−∆x(Gs ∗ f) = (−∆xGs) ∗ f ∈ W 2s−2,2
loc (B1).

This and the classical elliptic regularity theory (see e.g. [GT01]) give that Gs∗f ∈ W 2s,2
loc (B1),

which completes the inductive proof and establishes (3.31).

3.5.2 Solving (−∆)su = f in B1 for f Hölder continuous near ∂B1

Our goal is now to extend the representation results of [DG17] and [AJS18b] to the case in
which the right hand side is not Hölder continuous in the whole of the ball, but merely in
a neighborhood of the boundary. This result is obtained here by superposing the results in
[DG17] and [AJS18b] with Proposition 3.5 here, taking advantage of the linear structure of
the problem.

Proposition 3.6. Let f ∈ L2(B1). Let α, r ∈ (0, 1) and assume that

f ∈ C0,α(B1 \Br). (3.42)

In the notation of (3.25), let

u(x) :=


∫
B1

Gs (x, y) f(y) dy if x ∈ B1,

0 if x ∈ Rn \B1.
(3.43)

Then, in the notation of (3.26), we have that:

for every R ∈ (r, 1), sup
x∈B1\BR

d−s(x) |u(x)| ≤ CR
(
‖f‖L1(B1) + ‖f‖L∞(B1\Br)

)
, (3.44)

u satis�es (−∆)su = f in B1 in the sense of distributions, (3.45)

and
u ∈ W 2s,2

loc (B1). (3.46)

Here above, C > 0 is a constant depending on n, s and r, CR > 0 is a constant depending
on n, s, r and R and Cρ > 0 is a constant depending on n, s, r and ρ.



Proof. We take r1 ∈ (r, 1) and η ∈ C∞0 (Br1) with η = 1 in Br. Let also

f1 := fη and f2 := f − f1.

We observe that f1 ∈ L2(B1), and that f1 = 0 outside Br1 . Therefore, we are in the position
of applying Proposition 3.5 and �nd a function u1 (obtained by convolving Gs against f1)
such that

for every R ∈ (r1, 1), sup
x∈B1\BR

d−s(x) |u1(x)| ≤ CR ‖f1‖L1(B1), (3.47)

u1 satis�es (−∆)su1 = f1 in B1 in the sense of distributions, (3.48)
and u1 ∈ W 2s,2

loc (B1). (3.49)

On the other hand, we have that f2 = f(1 − η) vanishes outside B1 \ Br and it is Hölder
continuous. Accordingly, we can apply Theorem 1.1 of [AJS18b] and �nd a function u2

(obtained by convolving Gs against f2) such that

for every R ∈ (r1, 1), sup
x∈B1\BR

d−s(x) |u2(x)| ≤ CR ‖f2‖L∞(B1), (3.50)

u2 satis�es (−∆)su2 = f2 in B1 in the sense of distributions, (3.51)
and u2 ∈ C2s+α

loc (B1). (3.52)

Then, f = f1 + f2, and thus, in view of (3.43), we have that u = u1 + u2. Also, u sat-
is�es (3.44), thanks to (3.47) and (3.50), (3.45), thanks to (3.48) and (3.51), and (3.46),
thanks to (3.49) and (3.52).

3.6 Existence and regularity for the �rst eigenfunction of

the higher order fractional Laplacian

The goal of these pages is to study the boundary behaviour of the �rst Dirichlet eigenfunction
of higher order fractional equations.

For this, writing s = m+ σ, with m ∈ N and σ ∈ (0, 1), we de�ne the energy space

Hs
0 (B1) := {u ∈ Hs (Rn) ; u = 0 in Rn \B1} , (3.53)

endowed with the Hilbert norm

‖u‖Hs
0(B1) :=

∑
|α|≤m

‖∂αu‖2
L2(B1) + Es (u, u)

 1
2

, (3.54)

where
Es (u, v) =

∫
Rn
|ξ|2sFu (ξ)Fv (ξ) dξ, (3.55)

being F the Fourier transform and using the notation z to denote the complex conjugated
of a complex number z.

In this setting, we consider u ∈ Hs
0(B1) to be such that{

(−∆)s u = λ1u in B1,

u = 0 in Rn \B1,
(3.56)



for every s > 0, with λ1 as small as possible.
The existence of solutions of (3.56) is ensured via variational techniques, as stated in the

following result:

Lemma 3.7. The functional Es (u, u) attains its minimum λ1 on the functions in Hs
0(B1)

with unit norm in L2(B1).
The minimizer satis�es (3.56).
In addition, λ1 > 0.

Proof. The proof is based on the direct method in the calculus of variations. We provide
some details for completeness. Let s = m+ σ, with m ∈ N and σ ∈ (0, 1). Let us consider a
minimizing sequence uj ∈ Hs

0(B1) ⊆ Hm(Rn) such that ‖uj‖L2(B1) = 1 and

lim
j→+∞

Es (uj, uj) = inf
u∈Hs0(B1)

‖u‖
L2(B1)

=1

Es (u, u) .

In particular, we have that uj is bounded in Hs
0(B1) uniformly in j, so, up to a subsequence,

it converges to some u? weakly in Hs
0(B1) and strongly in L2(B1) as j → +∞.

The weak lower semicontinuity of the seminorm Es (·, ·) then implies that u? is the desired
minimizer.

Then, given φ ∈ C∞0 (B1), we have that

Es (u? + εφ, u? + εφ) ≥ Es (u?, u?) ,

for every ε ∈ R, and this gives that (3.56) is satis�ed in the sense of distributions, and also
in the classical sense by the elliptic regularity theory.

Finally, we have that Es (u?, u?) > 0, since u? (and thus Fu?) does not vanish identically.
Consequently,

λ1 =
Es (u?, u?)

‖u?‖2
L2(B1)

= Es (u?, u?) > 0,

as desired.

Our goal is now to apply Proposition 3.6 to solutions of (3.56), taking f := λu. To this
end, we have to check that condition (3.42) is satis�ed, namely that solutions of (3.56) are
Hölder continuous in B1 \Br, for any 0 < r < 1.

To this aim, we prove that polyharmonic operators of any order s > 0 always admit a
�rst eigenfunction in the ball which does not change sign and which is radially symmetric.
For this, we start discussing the sign property:

Lemma 3.8. There exists a nontrivial solution of (3.56) that does not change sign.

Proof. We exploit a method explained in detail in Section 3.1 of [GGS10]. As a matter of
fact, when s ∈ N, the desired result is exactly Theorem 3.7 in [GGS10].

Let u be as in Lemma 3.7. If either u ≥ 0 or u ≤ 0, then the desired result is proved.
Hence, we argue by contradiction, assuming that u attains strictly positive and strictly
negative values. We de�ne

K := {w : Rn → R s.t. Es (w,w) < +∞, and w ≥ 0 in B1}.

Also, we set
K? := {w ∈ Hs

0(B1) s.t. Es (w, v) ≤ 0 for all v ∈ K}.



We claim that
if w ∈ K?, then w ≤ 0. (3.57)

To prove this, we recall the notation in (3.25), take φ ∈ C∞0 (B1) ∩ K, and let

vφ(x) :=


∫
B1

Gs (x, y) φ(y) dy if x ∈ B1,

0 if x ∈ Rn \B1.

Then vφ ∈ K and it satis�es (−∆)s vφ = φ in B1, thanks to [DG17] or [AJS18b].
Consequently, we can write, for every x ∈ B1,

φ(x) = F−1(|ξ|2sFvφ)(x).

Hence, for every w ∈ K?,

0 ≥ Es (w, vφ)

=

∫
Rn
|ξ|2sFvφ (ξ)Fw (ξ) dξ

=

∫
Rn
F−1(|ξ|2sFvφ)(x)w (x) dx

=

∫
B1

F−1(|ξ|2sFvφ)(x)w (x) dx

=

∫
B1

φ(x)w (x) dx.

Since φ is arbitrary and nonnegative, this gives that w ≤ 0, and this establishes (3.57).
Furthermore, by Theorem 3.4 in [GGS10], we can write

u = u1 + u2,

with u1 ∈ K \ {0}, u2 ∈ K? \ {0}, and Es (u1, u2) = 0.
We observe that

Es (u1 − u2, u1 − u2) = Es (u1, u1) + Es (u2, u2) + 2Es (u1, u2) = Es (u1, u1) + Es (u2, u2) .

In the same way,

Es (u, u) = Es (u1 + u2, u1 + u2) = Es (u1, u1) + Es (u2, u2) ,

and therefore
Es (u1 − u2, u1 − u2) = Es (u, u) . (3.58)

On the other hand,

‖u1 − u2‖2
L2(B1) − ‖u‖2

L2(B1) = ‖u1 − u2‖2
L2(B1) − ‖u1 + u2‖2

L2(B1)

= −4

∫
B1

u1(x)u2(x) dx.

As a consequence, since u2 ≤ 0 in view of (3.57), we conclude that

‖u1 − u2‖2
L2(B1) − ‖u‖2

L2(B1) ≥ 0.

This and (3.58) say that the function u1− u2 is also a minimizer for the variational problem
in Lemma 3.7. Since now u1 − u2 ≥ 0, the desired result follows.



Now, we de�ne the spherical mean of a function v by

v](x) :=
1

|Sn−1|

∫
Sn−1

v(Rω x) dHn−1(ω)

where Rω is the rotation corresponding to the solid angle ω ∈ Sn−1, Hn−1 is the standard
Hausdor� measure, and |Sn−1| = Hn−1(Sn−1). Notice that v](x) = v](R$x) for any $ ∈
Sn−1, that is v] is rotationally invariant.

Then, we have:

Lemma 3.9. Any positive power of the Laplacian commutes with the spherical mean, that
is (

(−∆)sv
)
]
(x) = (−∆)sv](x).

Proof. By density, we prove the claim for a function v in the Schwartz space of smooth
and rapidly decreasing functions. In this setting, writing RT

ω to denote the transpose of the
rotation Rω, and changing variable η := RT

ω ξ, we have that

(−∆)sv(Rω x) =

∫
Rn
|ξ|2sFv(ξ) e2πiRω x·ξ dξ

=

∫
Rn
|ξ|2sFv(ξ) e2πix·RTω ξ dξ

=

∫
Rn
|η|2sFv(Rω η) e2πix·η dη.

(3.59)

On the other hand, using the substitution y := RT
ω x,

Fv(Rω η) =

∫
Rn
v(x) e−2πix·Rω η dx

=

∫
Rn
v(x) e−2πiRTω x·η dx

=

∫
Rn
v(Rω y) e−2πiy·η dy,

and therefore, recalling (3.59),

(−∆)sv(Rω x) =

∫∫
Rn×Rn

|η|2sv(Rω y) e2πi(x−y)·η dy dη.

As a consequence,(
(−∆)sv

)
]
(x) =

1

|Sn−1|

∫
Sn−1

(−∆)sv(Rω x) dHn−1(ω)

=
1

|Sn−1|

∫∫∫
Sn−1×Rn×Rn

|η|2sv(Rω y) e2πi(x−y)·η dHn−1(ω) dy dη

=

∫∫
Rn×Rn

|η|2sv](y) e2πi(x−y)·η dy dη

=

∫
Rn
|η|2sF(v])(η) e2πix·η dη

= (−∆)sv](x),

as desired.



It is also useful to observe that the spherical mean is compatible with the energy bounds.
In particular we have the following observation:

Lemma 3.10. We have that
Es (v], v]) ≤ Es (v, v) . (3.60)

Moreover,
if v ∈ Hs

0(B1), then so does v]. (3.61)

Proof. We see that

F(v])(ξ) =

∫
Rn
v](x) e−2πix·ξ dx

=
1

|Sn−1|

∫∫
Sn−1×Rn

v(Rω x) e−2πix·ξ dHn−1(ω) dx

and therefore, taking the complex conjugated,

F(v])(ξ) =
1

|Sn−1|

∫∫
Sn−1×Rn

v(Rω x) e2πix·ξ dHn−1(ω) dx.

Hence, by (3.55), and exploiting the changes of variables y := Rω x and ỹ := Rω̃ x̃,

Es (v], v])

=

∫
Rn
|ξ|2sF(v]) (ξ)F(v]) (ξ) dξ

=
1

|Sn−1|2
∫∫∫∫∫

Sn−1×Sn−1×Rn×Rn×Rn
|ξ|2sv(Rω x) v(Rω̃ x̃) e2πi(x̃−x)·ξ dHn−1(ω) dHn−1(ω̃) dx dx̃ dξ

=
1

|Sn−1|2
∫∫∫∫∫

Sn−1×Sn−1×Rn×Rn×Rn
|ξ|2sv(y) v(ỹ) e2πiỹ·Rω̃ ξe−2πiy·Rω ξ dHn−1(ω) dHn−1(ω̃) dy dỹ dξ

=
1

|Sn−1|2
∫∫∫

Sn−1×Sn−1×Rn
|ξ|2sFv(Rω ξ)Fv(Rω̃ ξ) dHn−1(ω) dHn−1(ω̃) dξ.

Consequently, using the Cauchy-Schwarz Inequality, and the substitutions η := Rω ξ and η̃ :=
Rω̃ ξ,

Es (v], v]) ≤
1

|Sn−1|2
∫∫∫

Sn−1×Sn−1×Rn
|ξ|2s

∣∣Fv(Rω ξ)
∣∣ ∣∣Fv(Rω̃ ξ)

∣∣ dHn−1(ω) dHn−1(ω̃) dξ

≤ 1

|Sn−1|2

(∫∫∫
Sn−1×Sn−1×Rn

|ξ|2s
∣∣Fv(Rω ξ)

∣∣2 dHn−1(ω) dHn−1(ω̃) dξ

) 1
2

·
(∫∫∫

Sn−1×Sn−1×Rn
|ξ|2s

∣∣Fv(Rω̃ ξ)
∣∣2 dHn−1(ω) dHn−1(ω̃) dξ

) 1
2

=
1

|Sn−1|2

(∫∫∫
Sn−1×Sn−1×Rn

|η|2s
∣∣Fv(η)

∣∣2 dHn−1(ω) dHn−1(ω̃) dη

) 1
2

·
(∫∫∫

Sn−1×Sn−1×Rn
|η̃|2s

∣∣Fv(η̃)
∣∣2 dHn−1(ω) dHn−1(ω̃) dη̃

) 1
2



=

(∫
Rn
|η|2s

∣∣Fv(η)
∣∣2 dη) 1

2
(∫

Rn
|η̃|2s

∣∣Fv(η̃)
∣∣2 dη̃) 1

2

= Es (v, v) .

This proves (3.60).
Now, we prove (3.61). For this, we observe that

∂`v]
∂xj1 . . . ∂xj`

(x) =
1

|Sn−1|

n∑
k1,...,k`=1

∫
Sn−1

∂`v

∂xk1 . . . ∂xk`
(Rω x) Rk1j1

ω . . .Rk`j`
ω dHn−1(ω),

for every ` ∈ N and j1, . . . , j` ∈ {1, . . . , n}, where Rjk
ω denotes the (j, k) component of the

matrix Rω. In particular,∣∣∣∣ ∂`v]
∂xj1 . . . ∂xj`

(x)

∣∣∣∣ ≤ C
n∑

k1,...,k`=1

∫
Sn−1

∣∣∣∣ ∂`v

∂xk1 . . . ∂xk`
(Rω x)

∣∣∣∣ dHn−1(ω),

for some C > 0 only depending on n and `, and hence∥∥∥∥ ∂`v]
∂xj1 . . . ∂xj`

(x)

∥∥∥∥2

L2(B1)

≤ C
n∑

k1,...,k`=1

∫∫
Sn−1×B1

∣∣∣∣ ∂`v

∂xk1 . . . ∂xk`
(Rω x)

∣∣∣∣2 dHn−1(ω) dx

= C
n∑

k1,...,k`=1

∫∫
Sn−1×B1

∣∣∣∣ ∂`v

∂xk1 . . . ∂xk`
(y)

∣∣∣∣2 dHn−1(ω) dy

= C
n∑

k1,...,k`=1

∥∥∥∥ ∂`v

∂xk1 . . . ∂xk`

∥∥∥∥2

L2(B1)

,

up to renaming C.
This, together with (3.54) and (3.60), gives (3.61), as desired.

With this preliminary work, we can now �nd a nontrivial, nonnegative and radial solution
of (3.56).

Proposition 3.11. There exists a solution of (3.56) in Hs
0(B1) which is radial, nonnegative

and with unit norm in L2(B1).

Proof. Let u ≥ 0 be a nontrivial solution of (3.56), whose existence is warranted by Lemma 3.8.
Then, we have that u] ≥ 0. Moreover,∫

B1

u](x) dx =
1

|Sn−1|

∫∫
Sn−1×B1

u(Rω x) dHn−1(ω) dx

=
1

|Sn−1|

∫∫
Sn−1×B1

u(y) dHn−1(ω) dy =

∫
B1

u(y) dy > 0,

and therefore u] does not vanish identically.
As a consequence, we can de�ne

u? :=
u]

‖u]‖L2(B1)

.



We know that u? ∈ Hs
0(B1), due to (3.61). Moreover, in view of Lemma 3.9,

(−∆)su? =
(−∆)su]
‖u]‖L2(B1)

=

(
(−∆)su

)
]

‖u]‖L2(B1)

=
λ1 u]

‖u]‖L2(B1)

= λ1 u?,

which gives the desired result.

Now, we are in the position of proving the following result.

Lemma 3.12. Let s ≥ 1 and r ∈ (0, 1). If u ∈ Hs
0 (B1) and u is radial, then u ∈

C0,α (Rn \Br) for any α ∈
[
0, 1

2

]
.

Proof. We write
u (x) = u0 (|x|) , for some u0 : [0,+∞)→ R (3.62)

and we observe that u ∈ Hs
0 (B1) ⊂ H1 (Rn).

Accordingly, for any 0 < r < 1, we have

∞ >

∫
Rn\Br

|u(x)|2 dx =

∫ +∞

r

|u0(ρ)|2ρn−1 dρ ≥ rn−1

∫ +∞

r

|u0(ρ)|2 dρ (3.63)

and

∞ >

∫
Rn\Br

|∇u(x)|2 dx =

∫ +∞

r

|u′0(ρ)|2 ρn−1 dρ ≥ rn−1

∫ +∞

r

|u′0(ρ)|2 dρ. (3.64)

Thanks to (3.63) and (3.64) we have that u0 ∈ H1 ((r,+∞)), with u0 = 0 in [1,+∞).
Then, from the Morrey Embedding Theorem, it follows that u0 ∈ C0,α ((r,+∞)) for any

α ∈
[
0, 1

2

]
, which leads to the desired result.

Corollary 3.13. Let s ∈ (0,+∞). There exists a radial, nonnegative and nontrivial solution
of (3.56) which belongs to Hs

0(B1) ∩ C0,α(Rn \B1/2), for some α ∈ (0, 1).

Proof. If s ∈ (0, 1), the desired claim follows from Corollary 8 in [DSV19a].
If instead s ≥ 1, we obtain the desired result as a consequence of Proposition 3.11 and

Lemma 3.12.

3.7 Boundary asymptotics of the �rst eigenfunctions of (−∆)s

In Lemma 4 of [DSV19a], some precise asymptotics at the boundary for the �rst Dirichlet
eigenfunction of (−∆)s have been established in the range s ∈ (0, 1).

Here, we obtain a related expansion in the range s > 0 for the eigenfunction provided in
Corollary 3.13. The result that we obtain is the following:

Proposition 3.14. There exists a nontrivial solution φ∗ of (3.56) which belongs to Hs
0(B1)∩

C0,α(Rn\B1/2), for some α ∈ (0, 1), and such that, for every e ∈ ∂B1 and β = (β1, . . . , βn) ∈
Nn,

lim
ε↘0

ε|β|−s∂βφ∗ (e+ εX) = (−1)|β| k∗ s (s− 1) . . . (s− |β|+ 1) eβ1

1 . . . eβnn (−e ·X)s−|β|+ ,

in the sense of distribution, with |β| := β1 + · · ·+ βn and k∗ > 0.



The proof of Proposition 3.14 relies on Proposition 3.6 and some auxiliary computations
on the Green function in (3.25). We start with the following result:

Lemma 3.15. Let 0 < r < 1, e ∈ ∂B1, s > 0, f ∈ C0,α(Rn \ Br) ∩ L2(Rn) for some
α ∈ (0, 1), and f = 0 outside B1. Then the integral∫

B1

f(z)
(1− |z|2)s

s|z − e|n
dz (3.65)

is �nite.

Proof. We denote by I the integral in (3.65). We let

I1 :=

∫
B1\Br

f(z)
(1− |z|2)s

s|z − e|n
dz and I2 :=

∫
Br

f(z)
(1− |z|2)s

s|z − e|n
dz.

Then, we have that
I = I1 + I2. (3.66)

Now, if z ∈ B1 \Br, we have that

f(z) ≤ |f(z)− f(e)| ≤ C|z − e|α,

therefore

I1 ≤
∫
B1\Br

(1− |z|2)s

s|z − e|n−α
dz <∞. (3.67)

If instead z ∈ Br,
|z − e| ≥ 1− r > 0,

and consequently

I2 ≤
1

s (1− r)n

∫
Br

f(z) dz <∞. (3.68)

The desired result follows from (3.66), (3.67) and (3.68).

Next result gives a precise boundary behaviour of the Green function for any s > 0 (the
case in which s ∈ (0, 1) and f ∈ C0,α(Rn) was considered in Lemma 6 of [DSV19a], and in
fact the proof presented here also simpli�es the one in Lemma 6 of [DSV19a] for the setting
considered there).

Lemma 3.16. Let e, ω ∈ ∂B1, ε0 > 0 and r ∈ (0, 1). Assume that

e+ εω ∈ B1, (3.69)

for any ε ∈ (0, ε0]. Let f ∈ C0,α(Rn \ Br) ∩ L2(Rn) for some α ∈ (0, 1), with f = 0 outside
B1.
Then

lim
ε↘0

ε−s
∫
B1

f(z)Gs(e+ εω, z) dz = k(n, s)

∫
B1

f(z)
(−2e · ω)s(1− |z|2)s

s|z − e|n
dz, (3.70)

for a suitable normalizing constant k(n, s) > 0.



Proof. In light of (3.69), we have that

1 > |e+ εω|2 = 1 + ε2 + 2εe · ω,

and therefore
− e · ω > ε

2
> 0. (3.71)

Moreover, if r0 is as given in (3.25), we have that, for all z ∈ B1,

r0(e+ εω, z) =
ε(−ε− 2e · ω)(1− |z|2)

|z − e− εω|2
≤ 3ε

|z − e− εω|2
. (3.72)

Also, a Taylor series representation allows us to write, for any t ∈ (−1, 1),

ts−1

(t+ 1)
n
2

=
∞∑
k=0

(
−n/2
k

)
tk+s−1. (3.73)

We also notice that∣∣∣∣(−n/2k

)∣∣∣∣ =

∣∣∣∣∣−n
2

(
−n

2
− 1
)
...
(
−n

2
− k + 1

)
k!

∣∣∣∣∣ =
n
2

(
n
2

+ 1
)
...
(
n
2

+ (k − 1)
)

k!

≤ n (n+ 1) ... (n+ (k − 1))

k!
≤ (n+ (k − 1))!

k!
= (k + 1) ... (n+ (k − 1))

≤ (n+ k + 1)n+1.

(3.74)

This and the Root Test give that the series in (3.73) is uniformly convergent on compact
sets in (−1, 1).

As a consequence, if we set

r1(x, z) := min

{
1

2
, r0(x, z)

}
, (3.75)

we can switch integration and summation signs and obtain that∫ r1(x,z)

0

ts−1

(t+ 1)
n
2

dt =
∞∑
k=0

ck(r1(x, z))k+s, (3.76)

where

ck :=
1

k + s

(
−n/2
k

)
.

Once again, the bound in (3.74), together with (3.75), give that the series in (3.76) is
convergent.

Now, we omit for simplicity the normalizing constant k(n, s) in the de�nition of the Green
function in (3.25), and we de�ne

G(x, z) := |z − x|2s−n
∞∑
k=0

ck(r1(x, z))k+s (3.77)

and

g(x, z) := |z − x|2s−n
∫ r0(x,z)

r1(x,z)

ts−1

(t+ 1)
n
2

dt.



Using (3.25) and (3.76), and dropping dimensional constants for the sake of shortness, we
can write

Gs(x, z) = G(x, z) + g(x, z). (3.78)

Now, we show that

g(x, z) ≤


Cχ(r, z) |z − x|2s−n if n > 2s,

Cχ(r, z) log r0(x, z) if n = 2s,

Cχ(r, z) |z − x|2s−n(r0(x, z))s−
n
2 if n < 2s,

(3.79)

where χ(r, z) = 1 if r0(x, z) > 1
2
and χ(r, z) = 0 if r0(x, z) ≤ 1

2
. To check this, we notice that

if r0(x, z) ≤ 1
2
we have that r1(x, z) = r0(x, z), due to (3.75), and therefore g(x, z) = 0.

On the other hand, if r0(x, z) > 1
2
, we deduce from (3.75) that r1(x, z) = 1

2
, and conse-

quently

g(x, z) ≤ |z − x|2s−n
∫ r0(x,z)

1/2

ts−
n
2
−1dt ≤


C|z − x|2s−n if n > 2s,

C log r0(x, z) if n = 2s,

C|z − x|2s−n(r0(x, z))s−
n
2 if n < 2s,

for some constant C > 0. This completes the proof of (3.79).
Now, we exploit the bound in (3.79) when x = e+ εω. For this, we notice that if r0(e+

εω, z) > 1
2
, recalling (3.72), we �nd that

|z − e− εω|2 ≤ 6ε < 9ε, (3.80)

and therefore z ∈ B3
√
ε(e+ εω).

Hence, using (3.79),∣∣∣∣∫
B1

f(z)g(e+ εω, z)dz

∣∣∣∣ ≤ ∫
B3
√
ε(e+εω)

|f(z)||g(e+ εω, z)|dz

≤



C

∫
B3
√
ε(e+εω)

|f(z)||z − e− εω|2s−ndz if n > 2s,

C

∫
B3
√
ε(e+εω)

|f(z)| log r0(e+ εω, z)dz if n = 2s,

C

∫
B3
√
ε(e+εω)

|f(z)||z − e− εω|2s−n(r0(e+ εω, z))s−
n
2 dz if n < 2s.

(3.81)

Now, if z ∈ B3
√
ε(e+ εω), then

|z − e| ≤ |z − e− εω|+ |εω| ≤ 3
√
ε+ ε < 4

√
ε. (3.82)

Furthermore, for a given r ∈ (0, 1), we have that B3
√
ε(e+ εω) ⊆ Rn \Br, provided that ε is

su�ciently small.
Hence, if z ∈ B3

√
ε(e+ εω), we can exploit the regularity of f and deduce that

|f(z)| = |f(z)− f(e)| ≤ C|z − e|α.

This and (3.82) lead to
|f(z)| ≤ Cε

α
2 , (3.83)



for every z ∈ B3
√
ε(e+ εω).

Thanks to (3.72), (3.81) and (3.83), we have that

∣∣∣∣∫
B1

f(z)g(e+ εω, z)dz

∣∣∣∣ ≤


Cε
α
2

∫
B3
√
ε(e+εω)

|z − e− εω|2s−ndz if n > 2s,

Cε
α
2

∫
B3
√
ε(e+εω)

log
3ε

|z − e− εω|2
dz if n = 2s,

Cε
α
2

+s−n
2

∫
B3
√
ε(e+εω)

dz if n < 2s

≤ Cε
α
2

+s,

up to renaming C.
This and (3.78) give that∫

B1

f(z)Gs(e+ εω, z)dz =

∫
B1

f(z)G(e+ εω, z)dz + o(εs). (3.84)

Now, we consider the series in (3.77), and we split the contribution coming from the index
k = 0 from the ones coming from the indices k > 0, namely we write

G(x, z) = G0(x, z) + G1(x, z),

with G0(x, z) :=
|z − x|2s−n

s
(r1(x, z))s

and G1(x, z) := |z − x|2s−n
+∞∑
k=1

ck (r1(x, z))k+s.

(3.85)

Firstly, we consider the contribution given by the term G1. Thanks to (3.75) and (3.83), we
have that∣∣∣∣∣

∫
B1∩B3

√
ε(e+εω)

f(z)G1(e+ εω, z)dz

∣∣∣∣∣ ≤
∫
B3
√
ε(e+εω)

|f(z)|G1(e+ εω, z)dz

≤ Cε
α
2

∫
B3
√
ε(e+εω)

|z − e− εω|2s−n
+∞∑
k=1

|ck| (r1(e+ εω, z))k+sdz

≤ Cε
α
2

∫
B3
√
ε(e+εω)

|z − e− εω|2s−n
+∞∑
k=1

|ck|
(

1

2

)k+s

dz

≤ Cε
α
2

∫
B3
√
ε(e+εω)

|z − e− εω|2s−ndz

≤ Cε
α
2

+s,

(3.86)

up to renaming the constant C step by step.
On the other hand, for every z ∈ Rn,

|z| = |e+ εω + z − e− εω| ≥ |e+ εω| − |z − e− εω| ≥ 1− ε− |z − e− εω|.

Therefore, for every z ∈ B1 \
(
Br ∪B3

√
ε(e+ εω)

)
, we can take e∗ := z

|z| and obtain that

|f(z)| = |f(z)− f(e∗)| ≤ C|z − e∗|α = C(1− |z|)α

≤ C(ε+ |z − e− εω|)α ≤ C|z − e− εω|α,
(3.87)



up to renaming C > 0.
Also, using (3.72), we see that, for any k > 0,

(r0(e+ εω, z))s+
α
4

(
1

2

)k−α
4

≤ Cεs+
α
4

2k|z − e− εω|2s+α
2

. (3.88)

This, (3.75) and (3.87) give that if z ∈ B1 \
(
Br ∪B3

√
ε(e+ εω)

)
, then

|f(z)G1(e+ εω, z)| ≤ C|z − e− εω|α+2s−n
+∞∑
k=1

|ck| (r1(e+ εω, z))k+s

= C|z − e− εω|α+2s−n
+∞∑
k=1

|ck| (r1(e+ εω, z))s+
α
4 (r1(e+ εω, z))k−

α
4

≤ C|z − e− εω|α+2s−n
+∞∑
k=1

|ck| (r0(e+ εω, z))s+
α
4

(
1

2

)k−α
4

≤ Cεs+
α
4 |z − e− εω|

α
2
−n

+∞∑
k=1

|ck|
2k
,

where the latter series is absolutely convergent thanks to (3.74).
This implies that, if we set E := B1 \

(
Br ∪B3

√
ε(e+ εω)

)
, it holds that∣∣∣∣∫

E

f(z)G1(e+ εω, z)dz

∣∣∣∣ ≤ Cεs+
α
4

∫
E

|z − e− εω|
α
2
−ndz

≤ Cεs+
α
4

∫
B1

|z − e− εω|
α
2
−ndz ≤ Cεs+

α
4

∫
B3

|z|
α
2
−ndz ≤ Cεs+

α
4 .

(3.89)

Moreover, if z ∈ Br, we have that

|e+ εω − z| ≥ 1− ε− r,

and therefore, recalling (3.88),

sup
z∈Br
|G1(e+ εω, z)| ≤ |z − e− εω|2s−n

+∞∑
k=1

|ck|
(
r1(e+ εω, z)

)s+α
4
(
r1(e+ εω, z)

)k−α
4

≤ |z − e− εω|2s−n
+∞∑
k=1

|ck|
(
r0(e+ εω, z)

)s+α
4

(
1

2

)k−α
4

≤ C |z − e− εω|−n−
α
2

+∞∑
k=1

|ck|
2k

≤ C(1− ε− r)−n−
α
2 εs+

α
4 ,

up to renaming C.
As a consequence, we �nd that∣∣∣∣∫

Br

f(z)G1(e+ εω, z)dz

∣∣∣∣ ≤ sup
z∈Br
|G1(e+ εω, z)| ‖f‖L1(Br)

≤ ‖f‖L1(Br)
(1− ε− r)−n−

α
2 εs+

α
4

≤ ‖f‖L1(Br)
2n+α

2 (1− r)−n−
α
2 εs+

α
4

= Cεs+
α
4 ,

(3.90)



as long as ε is suitably small with respect to r, and C is a positive constant which depends
on ‖f‖L1(Br), r, n and α.

Then, by (3.86), (3.89) and (3.90) we conclude that∫
B1

f(z)G1(e+ εω, z)dz = o(εs). (3.91)

Inserting this information into (3.84), and recalling (3.85), we obtain∫
B1

f(z)Gs(e+ εω, z)dz =

∫
B1

f(z)G0(e+ εω, z)dz + o(εs). (3.92)

Now, we de�ne
D1 := {z ∈ B1 s.t. r0(e+ εω, z) > 1/2}

and
D2 := {z ∈ B1 s.t. r0(e+ εω, z) ≤ 1/2} .

If z ∈ D1, then z ∈ B1 \ Br, thanks to (3.80), and hence we can use (3.81) and (3.83) and
write

|f(z)G0(e+ εω, z)| ≤ Cε
α
2 |z − e− εω|2s−n.

Then, recalling again (3.81),∣∣∣∣∫
D1

f(z)G1(e+ εω, z)dz

∣∣∣∣ ≤ Cε
α
2

∫
B3
√
ε(e+εω)

|z − e− εω|2s−ndz = Cε
α
2

+s, (3.93)

up to renaming the constant C > 0. This information and (3.92) give that∫
B1

f(z)Gs(e+ εω, z)dz =

∫
D2

f(z)G0(e+ εω, z)dz + o(εs).

Now, by (3.72) and (3.75), if z ∈ D2,

G0(e+ εω, z) =
|z − e− εω|2s−n

s
(r0(e+ εω))s =

εs(−ε− 2e · ω)s(1− |z|2)s

s|z − e− εω|n
.

Hence, we have

lim
ε↘0

ε−s
∫
B1

f(z)Gs(e+ εω, z)dz

= lim
ε↘0

ε−s
∫
D2

f(z)G0(e+ εω, z)dz

= lim
ε↘0

∫
{2ε(−ε−2e·ω)(1−|z|2)≤|z−e−εω|2}

f(z)
(−ε− 2e · ω)s(1− |z|2)s

s|z − e− εω|n
dz.

(3.94)

Now we set

Fε(z) :=

f(z)
(−ε− 2e · ω)s(1− |z|2)s

s|z − e− εω|n
if 2ε(−ε− 2e · ω)(1− |z|2) ≤ |z − e− εω|2,

0 otherwise,
(3.95)



and we prove that for any η > 0 there exists δ > 0 independent of ε such that, for any
E ⊂ Rn with |E| ≤ δ, we have ∫

B1∩E
|Fε(z)|dz ≤ η. (3.96)

To this aim, given η and E as above, we de�ne

ρ := min

{
ε(−ε− 2e · ω),

√
2ε(−ε− 2e · ω)(1− r),

(
2s+αs2 εs+α (−ε− 2e · ω)αη

32s ‖f‖C0,α(B1\Br) |∂B1|

) 1
2α

}
.

(3.97)
We stress that the above de�nition is well-posed, thanks to (3.71). In addition, using the
integrability of f , we take δ > 0 such that if A ⊆ B1 and |A| ≤ δ then∫

A

|f(x)| dx ≤ sρnη

2 · 3s
. (3.98)

We set
E1 := E ∩Bρ(e+ εω) and E2 := E \Bρ(e+ εω). (3.99)

From (3.95), we see that

|Fε(z)| ≤ |f(z)|χ?(z)

2ss εs|z − e− εω|n−2s
,

where

χ?(z) :=

{
1 if 2ε(−ε− 2e · ω)(1− |z|2) ≤ |z − e− εω|2,
0 otherwise,

and therefore ∫
B1∩E1

|Fε(z)| dz ≤
∫
B1∩E1

|f(z)|χ?(z)

2ss εs|z − e− εω|n−2s
dz. (3.100)

Now, for every z ∈ B1 ∩ E1 ⊆ Bρ(e+ εω) for which χ?(z) 6= 0, we have that

2ε(−ε− 2e · ω)(1− |z|2) ≤ |z − e− εω|2 ≤ ρ2,

and hence

|z| ≥

√
1− ρ2

2ε(−ε− 2e · ω)
≥ 1− ρ2

2ε(−ε− 2e · ω)
,

which in turn gives that |z| ≥ r, recall (3.97).
From this and (3.100) we deduce that∫

B1∩E1

|Fε(z)| dz ≤
∫

1− ρ2

2ε(−ε−2e·ω)
≤|z|<1

‖f‖C0,α(B1\Br) (1− |z|)α

2ss εs|z − e− εω|n−2s
dz

≤
‖f‖C0,α(B1\Br)

2ss εs

(
ρ2

2ε(−ε− 2e · ω)

)α ∫
1− ρ2

2ε(−ε−2e·ω)
≤|z|<1

dz

|z − e− εω|n−2s

≤
‖f‖C0,α(B1\Br)

2ss εs

(
ρ2

2ε(−ε− 2e · ω)

)α ∫
B3

dx

|x|n−2s

=
32s ‖f‖C0,α(B1\Br) |∂B1|

2s+α+1s2 εs+α (−ε− 2e · ω)α
ρ2α

≤ η

2
,

(3.101)



where (3.97) has been exploited in the last inequality.
We also point out that, by (3.95), (3.98) and (3.99),∫

B1∩E2

|Fε(z)| dz ≤
∫

(B1\Bρ(e+εω))∩E
|f(z)| (−ε− 2e · ω)s(1− |z|2)s

s|z − e− εω|n
dz

≤ 3s

sρn

∫
B1∩E

|f(z)| dz

≤ η

2
.

This, (3.99) and (3.101) give (3.96), as desired.
Notice also that the sequence Fε(z) converges pointwise to the function

F (z) := f(z)
(−2e · ω)s(1− |z|2)s

s|z − e|n
.

Hence (3.94), (3.96) and the Vitali Convergence Theorem allow us to conclude that

lim
ε↘0

∫
B1

f(z)Gs(e+ εω, z)dz = lim
ε↘0

∫
B1

Fε(z)dz

=

∫
B1

f(z)
(−2e · ω)s(1− |z|2)s

s|z − e|n
dz,

(3.102)

which establishes the claim of Lemma 3.16 (notice that the �niteness of the latter quantity
in (3.102) follows from (3.15)).

With this preliminary work, we can now establish the boundary behaviour of solutions
which is needed in our setting. As a matter of fact, from Lemma 3.16 we immediately deduce
that:

Corollary 3.17. Let e, ω ∈ ∂B1, ε0 > 0 and r ∈ (0, 1).
Assume that e + εω ∈ B1, for any ε ∈ (0, ε0]. Let f ∈ C0,α(Rn \ Br) ∩ L2(Rn) for some

α ∈ (0, 1), with f = 0 outside B1.
Let u be as in (3.43). Then,

lim
ε↘0

ε−su(e+ εω) = k(n, s)(−2e · ω)s
∫
B1

f(z)
(1− |z|2)s

s|z − e|n
dz,

where k(n, s) denotes a positive normalizing constant.

Now we apply the previous results to detect the boundary growth of a suitable �rst
eigenfunction. For our purposes, the statement that we need is the following:

Corollary 3.18. There exists a nontrivial solution φ∗ of (3.56) which belongs to Hs
0(B1) ∩

C0,α(Rn \B1/2), for some α ∈ (0, 1), and such that, for every e ∈ ∂B1,

lim
ε↘0

ε−sφ∗(e+ εω) = k∗ (−e · ω)s+, (3.103)

for a suitable constant k∗ > 0.
Furthermore, for every R ∈ (r, 1), there exists CR > 0 such that

sup
x∈B1\BR

d−s(x) |φ∗(x)| ≤ CR. (3.104)



Proof. Let α ∈ (0, 1) and φ ∈ Hs
0(B1) ∩ C0,α(Rn \ B1/2) be the nonnegative and nontrivial

solution of (3.56), as given in Corollary 3.13.
In the spirit of (3.43), we de�ne

φ∗(x) :=

λ1

∫
B1

Gs (x, y) φ(y) dy if x ∈ B1,

0 if x ∈ Rn \B1.

We stress that we can use Proposition 3.6 in this context, with f := λ1φ, since condi-
tion (3.42) is satis�ed in this case.

Then, from (3.44) and (3.46), we know that φ∗ ∈ Hs
0(B1) and, from (3.45),

(−∆)sφ∗ = λ1 φ in B1.

In particular, we have that (−∆)s(φ − φ∗) = 0 in B1, and φ − φ∗ ∈ Hs
0(B1), which give

that φ− φ∗ vanishes identically. Hence, we can write that φ = φ∗, and thus φ∗ is a solution
of (3.56).

Now, we check (3.103). For this, we distinguish two cases. If e · ω ≥ 0, we have that

|e+ εω|2 = 1 + 2εe · ω + ε2 > 1,

for all ε > 0. Then, in this case e + εω ∈ Rn \ B1, and therefore φ∗(e + εω) = 0. This gives
that, in this case,

lim
ε↘0

ε−sφ∗(e+ εω) = 0. (3.105)

If instead e · ω < 0, we see that

|e+ εω|2 = 1 + 2εe · ω + ε2 < 1,

for all ε > 0 su�ciently small. Hence, we can exploit Corollary 3.17 and �nd that

lim
ε↘0

ε−sφ∗(e+ εω) = λ1 k(n, s)(−2e · ω)s
∫
B1

φ(z)
(1− |z|2)s

s|z − e|n
dz, (3.106)

with k(n, s) > 0. Then, we de�ne

k∗ := 2s k(n, s)

∫
B1

φ(z)
(1− |z|2)s

s|z − e|n
dz.

We observe that k∗ is positive by construction, with k(n, s) > 0. Also, in light of Lemma 3.15,
we know that k∗ is �nite. Hence, from (3.105) and (3.106) we obtain (3.103), as desired.

It only remains to check (3.104). For this, we use (3.45), and we see that, for every R ∈
(r, 1),

sup
x∈B1\BR

d−s(x) |φ∗(x)| ≤ CR λ1

(
‖φ‖L1(B1) + ‖φ‖L∞(B1\Br)

)
,

and this gives (3.104) up to renaming CR.

Now, we can complete the proof of Proposition 3.14, by arguing as follows.



Proof of Proposition 3.14. Let ψ be a test function in C∞0 (Rn). Let also R := r+1
2
∈ (r, 1)

and
gε(X) := ε−sφ∗(e+ εX)∂βψ(X).

We claim that
sup
X∈Rn

|gε(X)| ≤ C, (3.107)

for some C > 0 independent of ε. To prove this, we distinguish three cases. If e+εX ∈ Rn\B1,
we have that φ∗(e+ εX) = 0 and thus gε(X) = 0. If instead e+ εX ∈ BR, we observe that

R > |e+ εX| ≥ 1− ε|X|,

and therefore |X| ≥ 1−R
ε
. In particular, in this case X falls outside the support of ψ, as long

as ε > 0 is su�ciently small, and consequently ∂βψ(X) = 0 and gε(X) = 0.
Hence, to complete the proof of (3.107), we are only left with the case in which e+ εX ∈

B1 \BR. In this situation, we make use of (3.104) and we �nd that

|φ∗(e+ εX)| ≤ C ds(e+ εX) = C (1− |e+ εX|)s

≤ C (1− |e+ εX|)s(1 + |e+ εX|)s = C (1− |e+ εX|2)s

= C εs(−2e ·X − ε|X|2)s ≤ Cεs,

for some C > 0 possibly varying from line to line, and this completes the proof of (3.107).
Now, from (3.107) and the Dominated Convergence Theorem, we obtain that

lim
ε↘0

∫
Rn
ε−sφ∗(e+ εX)∂βψ(X)dX =

∫
Rn

lim
ε↘0

ε−sφ∗(e+ εX)∂βψ(X)dX. (3.108)

On the other hand, by Corollary 3.18, used here with ω := X
|X| , we know that

lim
ε↘0

ε−sφ∗(e+ εX) = lim
ε↘0

ε−sφ∗(e+ ε|X|ω) = |X|s lim
ε↘0

ε−sφ∗(e+ εω)

= k∗ |X|s (−e · ω)s+ = k∗ (−e ·X)s+.

Substituting this into (3.108), we thus �nd that

lim
ε↘0

∫
Rn
ε−sφ∗(e+ εX)∂βψ(X)dX = k∗

∫
Rn

(−e ·X)s+∂
βψ(X)dX.

As a consequence, integrating by parts twice,

lim
ε↘0

ε|β|−s
∫
Rn
∂βφ∗(e+ εX)ψ(X)dX = lim

ε↘0

∫
Rn
∂β
(
ε−sφ∗(e+ εX)

)
ψ(X)dX

= (−1)|β| lim
ε↘0

∫
Rn
ε−sφ∗(e+ εX)∂βψ(X)dX

= (−1)|β| k∗

∫
Rn

(−e ·X)s+∂
βψ(X)dX

= k∗

∫
Rn
∂β(−e ·X)s+ψ(X)dX

= (−1)|β| k∗ s(s− 1) . . . (s− |β|+ 1)eβ1

1 . . . eβnn

∫
Rn

(−e ·X)
s−|β|
+ ψ(X)dX.

Since the test function ψ is arbitrary, the claim in Proposition 3.14 is proved.



3.8 Boundary behaviour of s-harmonic functions

In this section we analyze the asymptotic behaviour of s-harmonic functions, with a �spherical
bump function� as exterior Dirichlet datum.

The result needed for our purpose is the following:

Lemma 3.19. Let s > 0. Let m ∈ N0 and σ ∈ (0, 1) such that s = m+ σ.
Then, there exists

ψ ∈ Hs(Rn) ∩ Cs
0(Rn) such that (−∆)sψ = 0 in B1, (3.109)

and, for every x ∈ ∂B1−ε,
ψ(x) = k εs + o(εs), (3.110)

as ε↘ 0, for some k > 0.

Proof. Let ψ ∈ C∞(R, [0, 1]) such that ψ = 0 in R \ (2, 3) and ψ > 0 in (2, 3). Let
ψ0(x) := (−1)mψ(|x|). We recall the Poisson kernel

Γs(x, y) := (−1)m
γn,σ
|x− y|n

(1− |x|2)s+
(|y|2 − 1)s

,

for x ∈ Rn, y ∈ Rn \B1, and a suitable normalization constant γn,σ > 0 (see formulas (1.10)
and (1.30) in [AJS18c]). We de�ne

ψ(x) :=

∫
Rn\B1

Γs(x, y)ψ0(y) dy + ψ0(x).

Notice that ψ0 = 0 in B3/2 and therefore we can exploit Theorem in [AJS18c] and obtain
that (3.109) is satis�ed (notice also that ψ = ψ0 outside B1, hence ψ is compactly supported).

Furthermore, to prove (3.110) we borrow some ideas from Lemma 2.2 in [DSV17] and we
see that, for any x ∈ ∂B1−ε,

ψ(x) = c(−1)m
∫
Rn\B1

ψ0(y)(1− |x|2)s

(|y|2 − 1)s|x− y|n
dy + ψ0(x)

= c(−1)m
∫
Rn\B1

ψ0(y)(1− |x|2)s

(|y|2 − 1)s|x− y|n
dy

= c (1− |x|2)s
∫ 3

2

[∫
Sn−1

ρn−1ψ(ρ)

(ρ2 − 1)s|x− ρω|n
dω

]
dρ

= c (2ε− ε2)s
∫ 3

2

[∫
Sn−1

ρn−1ψ(ρ)

(ρ2 − 1)s|(1− ε)e1 − ρω|n
dω

]
dρ

= 2sc εs
∫ 3

2

[∫
Sn−1

ρn−1ψ(ρ)

(ρ2 − 1)s|e1 − ρω|n
dω

]
dρ+ o(εs)

= cεs + o(εs),

where c > 0 is a constant possibly varying from line to line, and this establishes (3.110).



Remark 3.20. As in Proposition 3.14, one can extend (3.110) to higher derivatives (in the
distributional sense), obtaining, for any e ∈ ∂B1 and β ∈ Nn

lim
ε↘0

ε|β|−s∂βψ(e+ εX) = kβ e
β1

1 . . . eβnn (−e ·X)
s−|β|
+ ,

for some κβ 6= 0.

Using Lemma 3.19, in the spirit of [DSV17], we can construct a sequence of s-harmonic
functions approaching (x·e)s+ for a �xed unit vector e, by using a blow-up argument. Namely,
we prove the following:

Corollary 3.21. Let e ∈ ∂B1. There exists a sequence ve,j ∈ Hs(Rn) ∩ Cs(Rn) such that
(−∆)sve,j = 0 in B1(e), ve,j = 0 in Rn \B4j(e), and

ve,j → κ(x · e)s+ in L1(B1(e)),

as j → +∞, for some κ > 0.

Proof. Let ψ be as in Lemma 3.19 and de�ne

ve,j(x) := jsψ

(
x

j
− e
)
.

The s-harmonicity and the property of being compactly supported follow by the ones of ψ.
We now prove the convergence. To this aim, given x ∈ B1(e), we write pj := x

j
− e and

εj := 1− |pj|. Recall that since x ∈ B1(e), then |x− e|2 < 1, which implies that |x|2 < 2x · e
and x · e > 0 for any x ∈ B1(e).
As a consequence

|pj|2 =

∣∣∣∣xj − e
∣∣∣∣2 =

|x|2

j2
+ 1− 2

x

j
· e = 1− 2

j
(x · e)+ + o

(
1

j

)
(x · e)2

+,

and so

εj =
(1 + o(1))

j
(x · e)+.

Therefore, using (3.110),

ve,j(x) = jsψ(pj)

= jsκ(εsj + o(εsj))

= js
(
κ

js
(x · e)s+ + o

(
1

js

))
= κ(x · e)s+ + o(1).

Integrating over B1(e), we obtain the desired L1-convergence.

Now, we show that, as in the case s ∈ (0, 1) proved in Theorem 3.1 of [DSV17], we can
�nd an s-harmonic function with an arbitrarily large number of derivatives prescribed at
some point.



Proposition 3.22. For any β ∈ Nn, there exist p ∈ Rn, R > r > 0, and v ∈ Hs(Rn)∩Cs(Rn)
such that {

(−∆)sv = 0 in Br(p),

v = 0 in Rn \BR(p),
(3.111)

Dαv(p) = 0 for any α ∈ Nn with |α| ≤ |β| − 1,

Dαv(p) = 0 for any α ∈ Nn with |α| = |β| and α 6= β

and
Dβv(p) = 1.

Proof. Let Z be the set of all pairs (v, x) ∈ (Hs(Rn) ∩ Cs(Rn))×Br(p) that satisfy (3.111)
for some R > r > 0 and p ∈ Rn.

To each pair (v, x) ∈ Z we associate the vector (Dαv(x))|α|≤|β| ∈ RK′ , for some K ′ = K ′|β|
and consider V to be the vector space spanned by this construction, namely we set

V :=
{

(Dαv(x))|α|≤|β| , with (v, x) ∈ Z
}
.

We claim that
V = RK′ . (3.112)

To check this, we suppose by contradiction that V lies in a proper subspace of RK′ . Then,
V must lie in a hyperplane, hence there exists

c = (cα)|α|≤|β| ∈ RK′ \ {0} (3.113)

which is orthogonal to any vector (Dαv(x))|α|≤|β| with (v, x) ∈ Z, that is∑
|α|≤|β|

cαD
αv(x) = 0. (3.114)

We notice that the pair (ve,j, x), with vj as in Corollary 3.21, e ∈ ∂B1 and x ∈ B1(e), belongs
to Z. Consequently, �xed ξ ∈ Rn \ B1/2 and set e := ξ

|ξ| , we have that (3.114) holds true
when v := ve,j and x ∈ B1(e), namely∑

|α|≤|β|

cαD
αv(x) = 0.

Let now ϕ ∈ C∞0 (B1(e)). Integrating by parts, by Corollary 3.21 and the Dominated Con-
vergence Theorem, we have that

0 = lim
j→+∞

∫
Rn

∑
|α|≤|β|

cαD
αve,j(x)ϕ(x) dx = lim

j→+∞

∫
Rn

∑
|α|≤|β|

(−1)|α|cαve,j(x)Dαϕ(x) dx

= κ

∫
Rn

∑
|α|≤|β|

(−1)|α|cα(x · e)s+Dαϕ(x) dx = κ

∫
Rn

∑
|α|≤|β|

cαD
α(x · e)s+ϕ(x) dx.

This gives that, for every x ∈ B1(e),∑
|α|≤|β|

cαD
α(x · e)s+ = 0.



Moreover, for every x ∈ B1(e),

Dα(x · e)s+ = s(s− 1) . . . (s− |α|+ 1)(x · e)s−|α|+ eα1
1 . . . eαnn .

In particular, for x = e
|ξ| ∈ B1(e),

Dα(x · e)s+
∣∣
|x=e/|ξ|

= s(s− 1) . . . (s− |α|+ 1)|ξ|−sξα1
1 . . . ξαnn .

And, using the usual multi-index notation, we write∑
|α|≤|β|

cαs(s− 1) . . . (s− |α|+ 1)ξα = 0, (3.115)

for any ξ ∈ Rn \ B1/2. The identity (3.115) describes a polynomial in ξ which vanishes for
any ξ in an open subset of Rn. As a result, the Identity Principle for polynomials leads to

cαs(s− 1) . . . (s− |α|+ 1) = 0,

for all |α| ≤ |β|.
Consequently, since s ∈ R\N, the product s(s−1) . . . (s−|α|+1) never vanishes, and so

the coe�cients cα are forced to be null for any |α| ≤ |β|. This is in contradiction with (3.113),
and therefore the proof of (3.112) is complete.

From this, the desired claim in Proposition 3.22 plainly follows.

3.9 Proof of the main result

This section is devoted to the proof of the main result in Theorem 3.1. This will be accom-
plished by an auxiliary result of purely nonlocal type which will allow us to prescribe an
arbitrarily large number of derivatives at a point for the solution of a fractional equation.

3.10 A result which implies Theorem 3.1

We will use the notation
Λ−∞ := Λ(−∞,...,−∞), (3.116)

that is we exploit (3.8) with a1 := · · · := al := −∞. This section presents the following
statement:

Theorem 3.23. Suppose that

either there exists i ∈ {1, . . . ,M} such that �bi 6= 0 and si 6∈ N,
or there exists i ∈ {1, . . . , l} such that £� i 6= 0 and αi 6∈ N.

Let ` ∈ N, f : RN → R, with f ∈ C`
(
BN

1

)
. Fixed ε > 0, there exist

u = uε ∈ C∞
(
BN

1

)
∩ C

(
RN
)
,

a = (a1, . . . , al) = (a1,ε, . . . , al,ε) ∈ (−∞, 0)l,

and R = Rε > 1

such that:



• for every h ∈ {1, . . . , l} and (x, y, t1, . . . , th−1, th+1, . . . , tl)

the map R 3 th 7→ u(x, y, t) belongs to Ckh,αh
−∞ , (3.117)

in the notation of formula (1.4) of [CDV18],

• it holds that {
Λ−∞u = 0 in BN−l

1 × (−1,+∞)l,
u(x, y, t) = 0 if |(x, y)| ≥ R,

(3.118)

∂khth u(x, y, t) = 0 if th ∈ (−∞, ah), for all h ∈ {1, . . . , l}, (3.119)

and
‖u− f‖C`(BN1 ) < ε. (3.120)

The proof of Theorem 3.23 will basically occupy the rest of this work, and this will lead
us to the completion of the proof of Theorem 3.1. Indeed, we have that:

Lemma 3.24. If the statement of Theorem 3.23 holds true, then the statement in Theo-
rem 3.1 holds true.

Proof. Assume that the claims in Theorem 3.23 are satis�ed. Then, by (3.117) and (3.119),
we are in the position of exploting Lemma A.1 in [CDV18] and conclude that, in BN−l

1 ×
(−1,+∞)l,

Dαh
th,ah

u = Dαh
th,−∞u,

for every h ∈ {1, . . . , l}. This and (3.118) give that

Λau = Λ−∞u = 0 in BN−l
1 × (−1,+∞)l. (3.121)

We also de�ne
a := min

h∈{1,...,l}
ah

and take τ ∈ C∞0 ([−a− 2, 3]) with τ = 1 in [−a− 1, 1]. Let

U(x, y, t) := u(x, y, t) τ(t1) . . . τ(tl). (3.122)

Our goal is to prove that U satis�es the theses of Theorem 3.1. To this end, we observe
that u = U in BN

1 , therefore (3.12) for U plainly follows from (3.120).
In addition, from (3.6), we see that Dαh

th,ah
at a point th ∈ (−1, 1) only depends on the

values of the function between ah and 1. Since the cuto�s in (3.122) do not alter these values,
we see that Dαh

th,ah
U = Dαh

th,ah
u in BN

1 , and accordingly ΛaU = Λau in BN
1 . This and (3.121)

say that
ΛaU = 0 in BN

1 . (3.123)

Also, since u in Theorem 3.23 is compactly supported in the variable (x, y), we see from (3.122)
that U is compactly supported in the variables (x, y, t). This and (3.123) give that (3.11) is
satis�ed by U (up to renaming R).



3.11 A pivotal span result towards the proof of Theorem

3.23

In what follows, we let Λ−∞ be as in (3.116), we recall the setting in (3.1), and we use the
following multi-indices notations:

ι = (i, I, I) = (i1, . . . , in, I1, . . . , IM , I1, . . . ,Il) ∈ NN

and ∂ιw = ∂i1x1
. . . ∂inxn∂

I1
y1
. . . ∂IMyM∂

I1
t1 . . . ∂

Il
tl
w.

(3.124)

Inspired by Lemma 5 of [DSV19a], we consider the span of the derivatives of functions
in ker Λ−∞, with derivatives up to a �xed orderK ∈ N. We want to prove that the derivatives
of such functions span a maximal vectorial space.

For this, we denote by ∂Kw(0) the vector with entries given, in some prescribed order,
by ∂ιw(0) with |ι| ≤ K.

We notice that
∂Kw(0) ∈ RK′ for some K ′ ∈ N, (3.125)

with K ′ depending on K.
Now, we adopt the notation in formula (1.4) of [CDV18], and we denote by A the set of all

functions w = w(x, y, t) such that for all h ∈ {1, . . . , l} and all (x, y, t1, . . . , th−1, th+1, . . . , tl) ∈
RN−1, the map R 3 th 7→ w(x, y, t) belongs to C∞((ah,+∞)) ∩ Ckh,αh

−∞ , and (3.119) holds
true for some ah ∈ (−2, 0).

We also set

H :=
{
w ∈ C(RN) ∩ C0(RN−l) ∩ C∞(N ) ∩ A, for some neighborhood N of the origin,

such that Λ−∞w = 0 in N
}

and, for any w ∈ H, let VK be the vector space spanned by the vector ∂Kw(0).
By (3.125), we know that VK ⊆ RK′ . In fact, we show that equality holds in this inclusion,

as stated in the following4 result:

Lemma 3.25. It holds that VK = RK′.

The proof of Lemma 3.25 is by contradiction. Namely, if VK does not exhaust the whole
of RK′ there exists

θ ∈ ∂BK′

1 (3.126)

such that
VK ⊆

{
ζ ∈ RK′ s.t. θ · ζ = 0

}
. (3.127)

In coordinates, recalling (3.124), we write θ as θι = θi,I,I, with i ∈ Np1+···+pn , I ∈ Nm1+···+mM

and I ∈ Nl. We consider

a multi-index I ∈ Nm1+···+mM such that it maximizes |I|
among all the multi-indexes (i, I, I) for which |i|+ |I|+ |I| ≤ K

and θi,I,I 6= 0 for some (i, I).
(3.128)

4Notice that results analogous to Lemma 3.25 cannot hold for solutions of local operators: for instance,
pure second derivatives of harmonic functions have to satisfy a linear equation, so they are forced to lie in a
proper subspace. In this sense, results such as Lemma 3.25 here reveal a truly nonlocal phenomenon.



Some comments on the setting in (3.128). We stress that, by (3.126), the set S of indexes I
for which there exist indexes (i, I) such that |i| + |I| + |I| ≤ K and θi,I,I 6= 0 is not empty.
Therefore, since S is a �nite set, we can take

S := sup
I∈S
|I| = max

I∈S
|I| ∈ N ∩ [0, K].

Hence, we consider a multi-index I for which |I| = S to obtain the setting in (3.128). By
construction, we have that

• |i|+ |I|+ |I| ≤ K,

• if |I| > |I|, then θi,I,I = 0,

• and there exist multi-indexes i and I such that θi,I,I 6= 0.

As a variation of the setting in (3.128), we can also consider

a multi-index I ∈ Nl such that it maximizes |I|
among all the multi-indexes (i, I, I) for which |i|+ |I|+ |I| ≤ K

and θi,I,I 6= 0 for some (i, I).
(3.129)

In the setting of (3.128) and (3.129), we claim that there exists an open set of Rp1+...+pn ×
Rm1+...+mM × Rl such that for every (¸� , ¹� , ´� ) in such open set we have that

either 0 =
∑

|i|+|I|+|I|≤K
|I|=|I|

Ci,I,I θi,I,I ¸� i¹� I ´� I, with Ci,I,I 6= 0,

or 0 =
∑

|i|+|I|+|I|≤K
|I|=|I|

Ci,I,I θi,I,I ¸� i¹� I ´� I, with Ci,I,I 6= 0.
(3.130)

In our framework, the claim in (3.130) will be pivotal towards the completion of the proof
of Lemma 3.25. Indeed, let us suppose for the moment that (3.130) is established and let us
complete the proof of Lemma 3.25 by arguing as follows.

Formula (3.130) says that θ·∂Kw(0) is a polynomial which vanishes for any triple (¸� , ¹� , ´� )
in an open subset of Rp1+...+pn × Rm1+...+mM × Rl. Hence, using the identity principle of
polynomials, we have that each Ci,I,I θi,I,I is equal to zero whenever |i|+ |I|+ |I| ≤ K and
either |I| = |I| (if the �rst identity in (3.130) holds true) or |I| = |I| (if the second identity
in (3.130) holds true). Then, since Ci,I,I 6= 0, we conclude that each θi,I,I is zero as long as
either |I| = |I| (in the �rst case) or |I| = |I| (in the second case), but this contradicts either
the de�nition of I in (3.128) (in the �rst case) or the de�nition of I in (3.129) (in the second
case). This would therefore complete the proof of Lemma 3.25.

In view of the discussion above, it remains to prove (3.130). To this end, we distinguish
the following four cases:

1. there exist i ∈ {1, . . . , n} and j ∈ {1, . . . ,M} such that ¡�i 6= 0 and �bj 6= 0,

2. there exist i ∈ {1, . . . , n} and h ∈ {1, . . . , l} such that ¡�i 6= 0 and £� h 6= 0,

3. we have that ¡�1 = · · · = ¡�n = 0, and there exists j ∈ {1, . . . ,M} such that �bj 6= 0,



4. we have that ¡�1 = · · · = ¡�n = 0, and there exists h ∈ {1, . . . , l} such that £� h 6= 0.

Notice that cases 1 and 3 deal with the case in which space-fractional di�usion is present
(and in case 1 one also has classical derivatives, while in case 3 the classical derivatives are
absent).

Similarly, cases 2 and 4 deal with the case in which time-fractional di�usion is present
(and in case 2 one also has classical derivatives, while in case 4 the classical derivatives are
absent).

Of course, the case in which both space- and time-fractional di�usion occur is already
comprised by the previous cases (namely, it is comprised in both cases 1 and 2 if classical
derivatives are also present, and in both cases 3 and 4 if classical derivatives are absent).

Proof of (3.130), case 1. For any j ∈ {1, . . . ,M} we denote by φ̃?,j the �rst eigenfunc-
tion for (−∆)

sj
yj vanishing outside Bmj

1 given in Corollary 3.13. We normalize it such that
‖φ̃?,j‖L2(Rmj ) = 1, and we write λ?,j ∈ (0,+∞) to indicate the corresponding �rst eigenvalue
(which now depends on sj), namely we write{

(−∆)
sj
yj φ̃?,j = λ?,jφ̃?,j inBmj

1 ,

φ̃?,j = 0 inRmj \Bmj
1 .

(3.131)

Up to reordering the variables and/or taking the operators to the other side of the equation,
given the assumptions of case 1, we can suppose that

¡�1 6= 0 (3.132)

and
�bM > 0. (3.133)

In view of (3.132), we can de�ne

R :=

(
1

|¡�1|

(
M−1∑
j=1

|�bj|λ?,j +
l∑

h=1

|£� h|

))1/|r1|

. (3.134)

Now, we �x two sets of free parameters

¸� 1 ∈ (R + 1, R + 2)p1 , . . . , ¸� n ∈ (R + 1, R + 2)pn , (3.135)

and

´� ?,1 ∈
(

1

2
, 1

)
, . . . , ´� ?,l ∈

(
1

2
, 1

)
. (3.136)

We also set
λj := λ?,j for j ∈ {1, . . . ,M − 1}, (3.137)

where λ?,j is de�ned as in (3.131), and

λM :=
1

�bM

(
n∑
j=1

|¡�j| ¸� rjj −
M−1∑
j=1

�bjλj −
l∑

h=1

£� h ´� ?,h

)
. (3.138)



Notice that this de�nition is well-posed, thanks to (3.133). In addition, from (3.135), we
can write ¸� j = (¸� j1, . . . , ¸� jpj), and we know that ¸� j` > R + 1 for any j ∈ {1, . . . , n} and
any ` ∈ {1, . . . , pj}. Therefore,

¸� rjj = ¸� rj1j1 . . . ¸�
rjpj
jpj
≥ 0. (3.139)

From this, (3.134) and (3.136), we deduce that

n∑
j=1

|¡�j| ¸� rjj ≥ |¡�1| ¸� r11 ≥ |¡�1| (R + 1)|r1| > |¡�1|R|r1|

=
M−1∑
j=1

|�bj|λj +
l∑

h=1

|£� h| ≥
M−1∑
j=1

�bjλj +
l∑

h=1

£� h ´� ?,h,

and consequently, by (3.138),
λM > 0. (3.140)

We also set

ωj :=


1 if j = 1, . . . ,M − 1,

λ
1/2sM
?,M

λ
1/2sM
M

if j = M.
(3.141)

Notice that this de�nition is well-posed, thanks to (3.140). In addition, by (3.131), we have
that, for any j ∈ {1, . . . ,M}, the functions

φj (yj) := φ̃?,j

(
yj
ωj

)
(3.142)

are eigenfunctions of (−∆)
sj
yj in B

mj
ωj with external homogenous Dirichlet boundary condition,

and eigenvalues λj: namely, we can rewrite (3.131) as{
(−∆)

sj
yjφj = λjφj inBmj

ωj ,

φj = 0 inRmj \Bmj
ωj .

(3.143)

Now, we de�ne
ψ?,h(th) := Eαh,1(tαhh ), (3.144)

where Eαh,1 denotes the Mittag-Le�er function with parameters α := αh and β := 1 as
de�ned in (3.13).

Moreover, we consider ah ∈ (−2, 0), for every h = 1, . . . , l, to be chosen appropriately in
what follows (the precise choice will be performed in (3.163)), and, recalling (3.136), we let

´� h := ´� 1/αh?,h , (3.145)

and we de�ne
ψh(th) := ψ?,h

(
´� h(th − ah)

)
= Eαh,1

(
´� ?,h(th − ah)αh

)
. (3.146)

We point out that, thanks to Lemma 3.3, the function in (3.146), solves
Dαh
th,ah

ψh(th) = ´� ?,hψh(th) in (ah,+∞),

ψh(ah) = 1,

∂mthψh(ah) = 0 for every m ∈ {1, . . . , [αh]}.
(3.147)



Moreover, for any h ∈ {1, . . . , l}, we de�ne

ψ?h(th) :=

{
ψh(th) if th ∈ [ah,+∞)

1 if th ∈ (−∞, ah).
(3.148)

Thanks to (3.147) and Lemma A.3 in [CDV18] applied here with b := ah, a := −∞, u := ψh,
u? := ψ?h, we have that ψ

?
h ∈ C

kh,αh
−∞ , and

Dαh
th,−∞ψ

?
h(th) = Dαh

th,ah
ψh(th) = ´� ?,hψh(th) = ´� ?,hψ?h(th) in every interval I b (ah,+∞).

(3.149)
We observe that the setting in (3.148) is compatible with the ones in (3.117) and (3.119) .

From (3.13) and (3.146), we see that

ψh(th) =
+∞∑
j=0

´� j?,h (th − ah)αhj

Γ (αhj + 1)
.

Consequently, for every Ih ∈ N, we have that

∂Ihth ψh(th) =
+∞∑
j=0

´� j?,h αhj(αhj − 1) . . . (αhj − Ih + 1)(th − ah)αhj−Ih

Γ (αhj + 1)
. (3.150)

Now, we de�ne, for any i ∈ {1, . . . , n},

¡�i :=


¡�i
|¡�i|

if ¡�i 6= 0,

1 if ¡�i = 0.

We notice that
¡�i 6= 0 for all i ∈ {1, . . . , n}, (3.151)

and
¡�i¡�i = |¡�i|. (3.152)

Now, for each i ∈ {1, . . . , n}, we consider the multi-index ri = (ri1, . . . , ripi) ∈ Npi . This
multi-index acts on Rpi , whose variables are denoted by xi = (xi1, . . . , xipi) ∈ Rpi . We let vi1
be the solution of the Cauchy problem{

∂ri1xi1vi1 = −¡�ivi1
∂β1
xi1
vi1 (0) = 1 for every β1 ≤ ri1 − 1.

(3.153)

We notice that the solution of the Cauchy problem in (3.153) exists at least in a neighborhood
of the origin of the form [−ρi1, ρi1] for a suitable ρi1 > 0.

Moreover, if pi ≥ 2, for any ` ∈ {2, . . . , pi}, we consider the solution of the following
Cauchy problem: {

∂ri`xi`vi` = vi`

∂β`xi`vi` (0) = 1 for every β` ≤ ri` − 1.
(3.154)

As above, these solutions are well-de�ned at least in a neighborhood of the origin of the form
[−ρi`, ρi`], for a suitable ρi` > 0.



Then, we de�ne
ρi := min{ρi1, . . . , ρipi} = min

`∈{1,...,pi}
ρi`.

In this way, for every xi = (xi1, . . . , xipi) ∈ B
pi
ρi
, we set

vi(xi) := vi1(xi1) . . . vipi(xipi). (3.155)

By (3.153) and (3.154), we have that
∂rixivi = −¡�ivi

∂βxivi (0) = 1
for every β = (β1, . . . βpi) ∈ Npi

such that β` ≤ ri` − 1 for each ` ∈ {1, . . . , pi}.

(3.156)

Now, we de�ne
ρ := min{ρ1, . . . ρn} = min

i∈{1,...,n}
ρi.

We take
τ ∈ C∞0

(
Bp1+...+pn
ρ/(R+2)

)
,

with τ = 1 in Bp1+...+pn
ρ/(2(R+2)), and, for every x = (x1, . . . , xn) ∈ Rp1 × · · · × Rpn , we set

τ1 (x1, . . . , xn) := τ (¸� 1 ⊗ x1, . . . , ¸� n ⊗ xn) . (3.157)

We recall that the free parameters ¸� 1, . . . , ¸� n have been introduced in (3.135), and we have
used here the notation

¸� i ⊗ xi = (¸� i1, . . . , ¸� ipi)⊗ (xi1, . . . , xipi) := (¸� i1xi1, . . . , ¸� ipixipi) ∈ Rpi ,

for every i ∈ {1, . . . , n}.
We also set, for any i ∈ {1, . . . , n},

vi (xi) := vi (¸� i ⊗ xi) . (3.158)

We point out that if xi ∈ Bpi
ρi/(R+2) we have that

|¸� i ⊗ xi|2 =

pi∑
`=1

(¸� i`xi`)2 ≤ (R + 2)2

pi∑
`=1

x2
i` < ρ2

i ,

thanks to (3.135), and therefore the setting in (3.158) is well-de�ned for every xi ∈ Bpi
ρi/(R+2).

Recalling (3.156) and (3.158), we see that, for any i ∈ {1, . . . , n},

∂rixivi(xi) = ¸� rii ∂
ri
xi
vi (¸� i ⊗ xi) = −¡�i¸� rii vi (¸� i ⊗ xi) = −¡�i¸� rii vi(xi). (3.159)

We take e1, . . . , eM , with
ej ∈ ∂Bmj

ωj
, (3.160)

and we introduce an additional set of free parameters Y1, . . . , YM with

Yj ∈ Rmj and ej · Yj < 0. (3.161)



We let ε > 0, to be taken small possibly depending on the free parameters ej, Yj and ´� h, and
we de�ne

w (x, y, t) :=τ1 (x) v1 (x1) · . . . · vn (xn)φ1 (y1 + e1 + εY1) · . . . · φM (yM + eM + εYM)

× ψ?1(t1) · . . . · ψ?l (tl),
(3.162)

where the setting in (3.142), (3.148), (3.157) and (3.158) has been exploited.
We also notice that w ∈ C

(
RN
)
∩ C0

(
RN−l) ∩ A. Moreover, if

a = (a1, . . . , al) :=

(
− ε

´� 1
, . . . ,− ε

´� l

)
∈ (−∞, 0)l (3.163)

and (x, y) is su�ciently close to the origin and t ∈ (a1,+∞)× · · · × (al,+∞), we have that

Λ−∞w (x, y, t)

=

(
n∑
i=1

¡�i∂rixi +
M∑
j=1

�bj(−∆)sjyj +
l∑

h=1

£� hD
αh
th,−∞

)
w (x, y, t)

=
n∑
i=1

¡�iv1 (x1) . . . vi−1 (xi−1) ∂rixivi (xi) vi+1 (xi+1) . . . vn (xn)

×φ1 (y1 + e1 + εY1) . . . φM (yM + eM + εYM)ψ?1 (t1) . . . ψ?l (tl)

+
M∑
j=1

�bjv1 (x1) . . . vn (xn)φ1 (y1 + e1 + εY1) . . . φj−1 (yj−1 + ej−1 + εYj−1)

×(−∆)sjyjφj (yj + ej + εYj)φj+1 (yj+1 + ej+1 + εYj+1) . . . φM (yM + eM + εYM)

×ψ?1 (t1) . . . ψ?l (tl)

+
l∑

h=1

£� hv1 (x1) . . . vn (xn)φ1 (y1 + e1 + εY1) . . . φM (yM + eM + εYM)ψ?1 (t1) . . . ψ?h−1 (th−1)

×Dαh
th,−∞ψ

?
h (th)ψ

?
h+1(th+1) . . . ψ?l (tl)

= −
n∑
i=1

¡�i¡�i¸� rii v1 (x1) . . . vn (xn)φ1 (y1 + e1 + εY1) . . . φM (yM + eM + εYM)ψ?1(t1) . . . ψ?l (tl)

+
M∑
j=1

�bjλjv1 (x1) . . . vn (xn)φ1 (y1 + e1 + εY1) . . . φM (yM + eM + εYM)ψ?1(t1) . . . ψ?l (tl)

+
l∑

h=1

£� h ´� ?,hv1 (x1) . . . vn (xn)φ1 (y1 + e1 + εY1) . . . φM (yM + eM + εYM)ψ?1(t1) . . . ψ?l (tl)

=

(
−

n∑
i=1

¡�i¡�i¸� rii +
M∑
j=1

�bjλj +
l∑

h=1

£� h ´� ?,h

)
w(x, y, t),

thanks to (3.143), (3.149) and (3.159) .
Consequently, making use of (3.137), (3.138) and (3.152), if (x, y) lies near the origin

and t ∈ (a1,+∞)× · · · × (al,+∞), we have that

Λ−∞w (x, y, t) =

(
−

n∑
i=1

|¡�i|¸� rii +
M−1∑
j=1

�bjλj + �bMλM +
l∑

h=1

£� h ´� ?,h

)
w(x, y, t)



=

(
−

n∑
i=1

|¡�i|¸� rii +
M−1∑
j=1

�bjλ?,j + �bMλM +
l∑

h=1

£� h ´� ?,h

)
w(x, y, t) = 0.

This says that w ∈ H. Thus, in light of (3.127) we have that

0 = θ · ∂Kw (0) =
∑
|ι|≤K

θι∂
ιw (0) =

∑
|i|+|I|+|I|≤K

θi,I,I ∂
i
x∂

I
y∂

I
tw (0) . (3.164)

Now, we recall (3.155) and we claim that, for any j ∈ {1, . . . , n}, any ` ∈ {1, . . . , pj} and
any ij` ∈ N, we have that

∂
ij`
xj`vj`(0) 6= 0. (3.165)

We prove it by induction over ij`. Indeed, if ij` ∈ {0, . . . , rj` − 1}, then the initial condition
in (3.153) (if ` = 1) or (3.154) (if ` ≥ 2) gives that ∂ij`xi`vi` (0) = 1, and so (3.165) is true in
this case.

To perform the inductive step, let us now suppose that the claim in (3.165) still holds for
all ij` ∈ {0, . . . , i0} for some i0 such that i0 ≥ rj` − 1. Then, using the equation in (3.153)
(if ` = 1) or in (3.154) (if ` ≥ 2), we have that

∂i0+1
xj`

vj = ∂
i0+1−rj`
xj` ∂

rj`
xj`vj = −ãj∂

i0+1−rj`
xj` vj, (3.166)

with

ãj :=

{
aj if ` = 1,

−1 if ` ≥ 2.

Notice that ãj 6= 0, in view of (3.151), and ∂i0+1−rj`
xj` vj (0) 6= 0, by the inductive assumption.

These considerations and (3.166) give that ∂i0+1
xj`

vj (0) 6= 0, and this proves (3.165).
Now, using (3.155) and (3.165) we have that, for any j ∈ {1, . . . , n} and any ij ∈ Npj ,

∂ijxjvj(0) 6= 0.

This, (3.135) and the computation in (3.159) give that, for any j ∈ {1, . . . , n} and any ij ∈
Npj ,

∂ijxjvj(0) = ¸� ijj ∂
ij
xj
vj(0) 6= 0. (3.167)

We also notice that, in light of (3.148), (3.162) and (3.164),

0 =
∑

|i|+|I|+|I|≤K

θi,I,I ∂
i1
x1
v1(0) . . . ∂inxnvn(0) ∂I1y1

φ1 (e1 + εY1) . . . ∂IMyMφM (eM + εYM)

× ∂I1
t1 ψ1(0) . . . ∂Ilψl(0).

(3.168)

Now, by (3.142) and Proposition 3.14 (applied to s := sj, β := Ij, e :=
ej
ωj
∈ ∂B

mj
1 , due

to (3.160), and X :=
Yj
ωj
), we see that, for any j = 1, . . . ,M ,

ω
|Ij |
j lim

ε↘0
ε|Ij |−sj∂Ijyjφj (ej + εYj) = lim

ε↘0
ε|Ij |−sj∂Ijyj φ̃?,j

(
ej + εYj
ωj

)
= κj

e
Ij
j

ω
|Ij |
j

(
− ej
ωj
· Yj
ωj

)sj−|Ij |
+

,

(3.169)



with κj 6= 0, in the sense of distributions (in the coordinates Yj).
Moreover, using (3.150) and (3.163), it follows that

∂Ihth ψh(0) =
+∞∑
j=0

´� j?,h αhj(αhj − 1) . . . (αhj − Ih + 1)(0− ah)αhj−Ih

Γ (αhj + 1)

=
+∞∑
j=0

´� j?,h αhj(αhj − 1) . . . (αhj − Ih + 1) εαhj−Ih

Γ (αhj + 1) ´� h
αhj−Ih

=
+∞∑
j=1

´� j?,h αhj(αhj − 1) . . . (αhj − Ih + 1) εαhj−Ih

Γ (αhj + 1) ´� h
αhj−Ih

.

Accordingly, recalling (3.145), we �nd that

lim
ε↘0

εIh−αh∂Ihth ψh(0) = lim
ε↘0

+∞∑
j=1

´� j?,h αhj(αhj − 1) . . . (αhj − Ih + 1) εαh(j−1)

Γ (αhj + 1) ´� h
αhj−Ih

=
´� ?,h αh(αh − 1) . . . (αh − Ih + 1)

Γ (αh + 1) ´� αh−Ihh

=
´� Ihh αh(αh − 1) . . . (αh − Ih + 1)

Γ (αh + 1)
.

(3.170)

Also, recalling (3.128), we can write (3.168) as

0 =
∑

|i|+|I|+|I|≤K
|I|≤|I|

θi,I,I ∂
i1
x1
v1(0) . . . ∂inxnvn(0) ∂I1y1

φ1 (e1 + εY1) . . . ∂IMyMφM (eM + εYM)

× ∂I1
t1 ψ1(0) . . . ∂Iltl ψl(0).

(3.171)

Moreover, we de�ne

Ξ :=
∣∣I∣∣− M∑

j=1

sj + |I| −
l∑

h=1

αh.

Then, we multiply (3.171) by εΞ ∈ (0,+∞), and we send ε to zero. In this way, we obtain
from (3.169), (3.170) and (3.171) that

0 = lim
ε↘0

εΞ
∑

|i|+|I|+|I|≤K
|I|≤|I|

θi,I,I ∂
i1
x1
v1(0) . . . ∂inxnvn(0) ∂I1y1

φ1 (e1 + εY1) . . . ∂IMyMφM (eM + εYM)

×∂I1
t1 ψ1(0) . . . ∂Iltl ψl(0)

= lim
ε↘0

∑
|i|+|I|+|I|≤K
|I|≤|I|

ε|I|−|I|θi,I,I ∂
i1
x1
v1(0) . . . ∂inxnvn(0)

×ε|I1|−s1∂I1y1
φ1 (e1 + εY1) . . . ε|IM |−sM∂IMyMφM (eM + εYM)

×εI1−α1∂I1
t1 ψ1(0) . . . εIl−αl∂Iltl ψl(0)

=
∑

|i|+|I|+|I|≤K
|I|=|I|

C̃i,I,I θi,I,I ∂
i1
x1
v1(0) . . . ∂inxnvn(0)

×eI11 . . . eIMM (−e1 · Y1)s1−|I1|+ . . . (−eM · YM)sM−|IM |+ ´� I1
1 . . . ´� Ill ,



for a suitable C̃i,I,I 6= 0 (strictly speaking, the above identity holds in the sense of distribution
with respect to the coordinates Y and ´� , but since the left hand side vanishes, we can consider
it also a pointwise identity).

Hence, recalling (3.167),

0 =
∑

|i|+|I|+|I|≤K
|I|=|I|

Ci,I,I θi1,...,in,I1,...,IM ,I1,...,Il ¸� i11 . . . ¸� inn

× eI11 . . . eIMM (−e1 · Y1)s1−|I1|+ . . . (−eM · YM)sM−|IM |+ ´� I1
1 . . . ´� Ill

= (−e1 · Y1)s1+ . . . (−eM · YM)sM+

×
∑

|i|+|I|+|I|≤K
|I|=|I|

Ci,I,I θi,I,I ¸� i eI (−e1 · Y1)−|I1|+ . . . (−eM · YM)−|IM |+ ´� I,

(3.172)

for a suitable Ci,I,I 6= 0.
We observe that the equality in (3.172) is valid for any choice of the free parame-

ters (¸� , Y, ´� ) in an open subset of Rp1+···+pn×Rm1+···+mM×Rl, as prescribed in (3.135), (3.136)
and (3.161).

Now, we take new free parameters, ¹� 1, . . . , ¹�M with ¹� j ∈ Rmj \ {0}, and we de�ne

ej :=
ωj¹� j
|¹� j|

and Yj := −
¹� j
|¹� j|2

. (3.173)

We stress that the setting in (3.173) is compatible with that in (3.161), since

ej · Yj = −
ωj¹� j
|¹� j|

·
¹� j
|¹� j|2

= − ωj
|¹� j|

< 0,

thanks to (3.141). We also notice that, for all j ∈ {1, . . . ,M},

e
Ij
j (−ej · Yj)−|Ij |+ =

ω
|Ij |
j ¹� Ijj
|¹� j||Ij |

|¹� j||Ij |

ω
|Ij |
j

= ¹� Ijj ,

and hence
eI (−e1 · Y1)−|I1|+ . . . (−eM · YM)−|IM |+ = ¹� I .

Plugging this into formula (3.172), we obtain the �rst identity in (3.130), as desired. Hence,
the proof of (3.130) in case 1 is complete.

Proof of (3.130), case 2. Thanks to the assumptions given in case 2, we can suppose that
formula (3.132) still holds, and also that

£� l > 0. (3.174)

In addition, for any j ∈ {1, . . . ,M}, we consider λj and φj as in (3.143).
Then, we de�ne

R :=

(
1

|¡�1|

(
l−1∑
h=1

|£� h|+
M∑
j=1

|�bj|λj

))1/|r1|

. (3.175)



We notice that, in light of (3.132), the setting in (3.175) is well-de�ned.
Now, we �x two sets of free parameters ¸� 1, . . . , ¸� n as in (3.135) and ´� ?,1, . . . , ´� ?,l as

in (3.136), here taken with R as in (3.175). Moreover, we de�ne

λ :=
1

£� l ´� ?,l

(
n∑
j=1

|¡�j| ¸� rjj −
M∑
j=1

�bjλj −
l−1∑
h=1

£� h ´� ?,h

)
. (3.176)

We notice that (3.176) is well-de�ned, thanks to (3.136) and (3.174). Furthermore, recall-
ing (3.135), (3.139) and (3.175), we �nd that

n∑
i=1

|¡�i|¸� rii ≥ |¡�1|¸� r11 > |¡�1|(R + 1)|r1| > |¡�1|R|r1|

=
l−1∑
h=1

|£� h|+
M∑
j=1

|�bj|λj ≥
l−1∑
h=1

£� h ´� ?,h +
M∑
j=1

�bjλj.

Consequently, by (3.176),
λ > 0. (3.177)

Hence, we can de�ne
λ := λ1/αl . (3.178)

Moreover, we consider ah ∈ (−2, 0), for every h ∈ {1, . . . , l}, to be chosen appropriately
in what follows (the exact choice will be performed in (3.185)), and, using the notation
in (3.144) and (3.145), we de�ne

ψh(th) := ψ?,h
(
´� h(th − ah)

)
= Eαh,1

(
´� ?,h(th − ah)αh

)
if h ∈ {1, . . . , l − 1} (3.179)

and
ψl(tl) := ψ?,l

(
λ ´� l(tl − al)

)
= Eαl,1

(
λ ´� ?,l(tl − al)αl

)
. (3.180)

We recall that, thanks to Lemma 3.3, the function in (3.179) solves (3.147) and satis-
�es (3.150) for any h ∈ {1, . . . , l − 1}, while the function in (3.180) solves

Dαl
tl,al

ψl(tl) = λ ´� ?,lψl(tl) in (al,+∞),

ψl(al) = 1,

∂mtl ψl(al) = 0 for every m ∈ {1, . . . , [αl]}.
(3.181)

As in (3.148), we extend the functions ψh constantly in (−∞, ah), calling ψ?h this extended
function. In this way, Lemma A.3 in [CDV18] translates (3.181) into

Dαh
th,−∞ψ

?
h(th) = ´� ?,hψh(th) = ´� ?,hψ?h(th) in every interval I b (ah,+∞). (3.182)

Now, we let ε > 0, to be taken small possibly depending on the free parameters, and we
exploit the functions de�ned in (3.157) and (3.158), provided that one replaces the positive
constant R de�ned in (3.134) with the one in (3.175), when necessary.

With this idea in mind, for any j ∈ {1, . . . ,M}, we let5

ej ∈ ∂B
mj
1 , (3.183)

5Comparing (3.183) with (3.160), we observe that (3.160) reduces to (3.183) with the choice ωj := 1.



and we de�ne

w (x, y, t) :=τ1 (x) v1 (x1) · . . . · vn (xn)φ1 (y1 + e1 + εY1) · . . . · φM (yM + eM + εYM)

× ψ?1(t1) · . . . · ψ?l (tl),
(3.184)

where the setting in (3.143), (3.157), (3.158), (3.161), (3.179) and (3.180) has been exploited.
We also notice that w ∈ C

(
RN
)
∩ C0(RN−l) ∩ A. Moreover, if

a = (a1, . . . , al) :=

(
− ε

´� 1
, . . . ,− ε

´� l

)
∈ (−∞, 0)l (3.185)

and (x, y) is su�ciently close to the origin and t ∈ (a1,+∞)× · · · × (al,+∞), we have that

Λ−∞w (x, y, t)

=

(
n∑
i=1

¡�i∂rixi +
M∑
j=1

�bj(−∆)sjyj +
l∑

h=1

£� hD
αh
th,−∞

)
w (x, y, t)

=
n∑
i=1

¡�iv1 (x1) . . . vi−1 (xi−1) ∂rixivi (xi) vi+1 (xi+1) . . . vn (xn)

×φ1 (y1 + e1 + εY1) . . . φM (yM + eM + εYM)ψ?1 (t1) . . . ψ?l−1 (tl−1)ψ?l (tl)

+
M∑
j=1

�bjv1 (x1) . . . vn (xn)φ1 (y1 + e1 + εY1) . . . φj−1 (yj−1 + ej−1 + εYj−1)

×(−∆)sjyjφj (yj + ej + εYj)φj+1 (yj+1 + ej+1 + εYj+1) . . . φM (yM + eM + εYM)

×ψ?1 (t1) . . . ψ?l−1 (tl−1)ψ?l (tl)

+
l∑

h=1

£� hv1 (x1) . . . vn (xn)φ1 (y1 + e1 + εY1) . . . φM (yM + eM + εYM)ψ?1 (t1) . . . ψ?h−1 (th−1)

×Dαh
th,−∞ψ

?
h (th)ψ

?
h+1(th+1) . . . ψ?l−1 (tl−1)ψ?l (tl)

= −
n∑
i=1

¡�i¡�i¸� rii v1 (x1) . . . vn (xn)φ1 (y1 + e1 + εY1) . . . φM (yM + eM + εYM)

×ψ?1(t1) . . . ψ?l−1(tl−1)ψ?l (tl)

+
M∑
j=1

�bjλjv1 (x1) . . . vn (xn)φ1 (y1 + e1 + εY1) . . . φM (yM + eM + εYM)

×ψ?1(t1) . . . ψ?l−1 (tl−1)ψ?l (tl)

+
l−1∑
h=1

£� h ´� ?,hv1 (x1) . . . vn (xn)φ1 (y1 + e1 + εY1) . . . φM (yM + eM + εYM)

×ψ?1(t1) . . . ψ?l−1(tl−1)ψ?l (tl)

+£� lλ´� ?,lv1 (x1) . . . vn (xn)φ1 (y1 + e1 + εY1) . . . φM (yM + eM + εYM)

×ψ?1(t1) . . . ψ?l−1(tl−1)ψ?l (tl)

=

(
−

n∑
i=1

¡�i¡�i¸� rii +
M∑
j=1

�bjλj +
l−1∑
h=1

£� h ´� ?,h + £� lλ´� ?,l

)
w(x, y, t),

thanks to (3.143), (3.147), (3.159) and (3.182).



Consequently, making use of (3.152) and (3.176), when (x, y) is near the origin and t ∈
(a1,+∞)× · · · × (al,+∞), we have that

Λ−∞w (x, y, t) =

(
−

n∑
i=1

|¡�i|¸� rii +
M∑
j=1

�bjλj +
l−1∑
h=1

£� h ´� ?,h + λ£� l ´� ?,l

)
w(x, y, t) = 0.

This says that w ∈ H. Thus, in light of (3.127) we have that

0 = θ · ∂Kw (0) =
∑
|ι|≤K

θι∂
ιw (0) =

∑
|i|+|I|+|I|≤K

θi,I,I ∂
i
x∂

I
y∂

I
tw (0) .

Hence, in view of (3.167) and (3.184),

0 =
∑

|i|+|I|+|I|≤K

θi,I,I ∂
i1
x1
v1(0) . . . ∂inxnvn(0)

× ∂I1y1
φ1(e1 + εY1) . . . ∂IMyMφM(eM + εYM) ∂I1

t1 ψ1(0) . . . ∂Iltl ψl(0)

=
∑

|i|+|I|+|I|≤K

θi,I,I ¸� r11 . . . ¸� rnn ∂i1x1
v1(0) . . . ∂inxnvn(0)

× ∂I1y1
φ1(e1 + εY1) . . . ∂IMyMφM(eM + εYM) ∂I1

t1 ψ1(0) . . . ∂Iltl ψl(0).

(3.186)

Moreover, using (3.13), (3.180) and (3.185), it follows that

∂Iltl ψl(0) =
+∞∑
j=0

λj ´� j?,l αlj(αlj − 1) . . . (αlj − Il + 1)(0− al)αlj−Il

Γ (αlj + 1)

=
+∞∑
j=0

λj ´� j?,l αlj(αlj − 1) . . . (αlj − Il + 1) εαlj−Il

Γ (αlj + 1) ´� l
αlj−Il

=
+∞∑
j=1

λj ´� j?,l αlj(αlj − 1) . . . (αlj − Il + 1) εαlj−Il

Γ (αlj + 1) ´� l
αlj−Il

.

Accordingly, by (3.145), we �nd that

lim
ε↘0

εIl−αl∂Iltl ψl(0) = lim
ε↘0

+∞∑
j=1

λj ´� j?,l αlj(αlj − 1) . . . (αlj − Il + 1) εαl(j−1)

Γ (αlj + 1) ´� l
αlj−Il

=
λ ´� ?,l αl(αl − 1) . . . (αl − Il + 1)

Γ (αl + 1) ´� αl−Ill

=
λ ´� Ill αl(αl − 1) . . . (αl − Il + 1)

Γ (αl + 1)
.

(3.187)

Hence, recalling (3.129), we can write (3.186) as

0 =
∑

|i|+|I|+|I|≤K
|I|≤|I|

θi,I,I ¸� r11 . . . ¸� rnn ∂i1x1
v1(0) . . . ∂inxnvn(0)

× ∂I1y1
φ1(e1 + εY1) . . . ∂IMyMφM(eM + εYM)∂I1

t1 ψ1(0) . . . ∂Iltl ψl(0).

(3.188)

Moreover, we de�ne

Ξ := |I| −
l∑

h=1

αh + |I| −
M∑
j=1

sj.



Then, we multiply (3.188) by εΞ ∈ (0,+∞), and we send ε to zero. In this way, we obtain
from (3.170), used here for h ∈ {1, . . . , l − 1}, (3.187) and (3.188) that

0 = lim
ε↘0

εΞ
∑

|i|+|I|+|I|≤K
|I|≤|I|

θi,I,I ¸� r11 . . . ¸� rnn ∂i1x1
v1(0) . . . ∂inxnvn(0)

×∂I1y1
φ1 (e1 + εY1) . . . ∂IMyMφM (eM + εYM)

×∂I1
t1 ψ1(0) . . . ∂Iltl ψl(0)

= lim
ε↘0

∑
|i|+|I|+|I|≤K
|I|≤|I|

ε|I|−|I|θi,I,I ¸� r11 . . . ¸� rnn ∂i1x1
v1(0) . . . ∂inxnvn(0)

×ε|I1|−s1∂I1y1
φ1 (e1 + εY1) . . . ε|IM |−sM∂IMyMφM (eM + εYM)

×εI1−α1∂I1
t1 ψ1(0) . . . εIl−αl∂Iltl ψl(0)

=
∑

|i|+|I|+|I|≤K
|I|=|I|

λ C̃i,I,I θi,I,I ¸� r11 . . . ¸� rnn ∂i1x1
v1(0) . . . ∂inxnvn(0)

×eI11 . . . eIMM (−e1 · Y1)s1−|I1|+ . . . (−eM · YM)sM−|IM |+ ´� I1
1 . . . ´� Ill ,

for a suitable C̃i,I,I. We stress that C̃i,I,I 6= 0, thanks also to (3.169), applied here with ωj :=
1, φ̃?,j := φj and ej as in (3.183) for any j ∈ {1, . . . ,M}.

Hence, recalling (3.177),

0 =
∑

|i|+|I|+|I|≤K
|I|=|I|

Ci,I,I θi1,...,in,I1,...,IM ,I1,...,Il ¸� i11 . . . ¸� inn

× eI11 . . . eIMM (−e1 · Y1)s1−|I1|+ . . . (−eM · YM)sM−|IM |+ ´� I1
1 . . . ´� Ill

= (−e1 · Y1)s1+ . . . (−eM · YM)sM+

×
∑

|i|+|I|+|I|≤K
|I|=|I|

Ci,I,I θi,I,I ¸� i eI (−e1 · Y1)−|I1|+ . . . (−eM · YM)−|IM |+ ´� I,

(3.189)

for a suitable Ci,I,I 6= 0.
We observe that the equality in (3.189) is valid for any choice of the free parame-

ters (¸� , Y, ´� ) in an open subset of Rp1+···+pn × Rm1+...+mM × Rl, as prescribed in (3.135),
(3.136) and (3.161).

Now, we take new free parameters ¹� j with ¹� j ∈ Rmj \ {0} for any j = 1, . . . ,M , and
perform in (3.189) the same change of variables done in (3.173), obtaining that

0 =
∑

|i|+|I|+|I|≤K
|I|=|I|

Ci,I,I θi,I,I ¸� i¹� I ´� I,

for some Ci,I,I 6= 0.
Hence, the second identity in (3.130) is obtained as desired, and the proof of Lemma 3.25

in case 2 is completed.

Proof of (3.130), case 3. We divide the proof of case 3 into two subcases, namely either

there exists h ∈ {1, . . . , l} such that £� h 6= 0, (3.190)



or
£� h = 0 for every h ∈ {1, . . . , l}. (3.191)

We start by dealing with the case in (3.190). Up to relabeling and reordering the coe�cients
£� h, we can assume that

£� 1 6= 0. (3.192)

Also, thanks to the assumptions given in case 3, we can suppose that

�bM < 0, (3.193)

and, for any j ∈ {1, . . . ,M}, we consider λ?,j and φ̃?,j as in (3.131). Then, we take ωj := 1
and φj as in (3.142), so that (3.143) is satis�ed. In particular, here we have that

λj = λ?,j and φj = φ̃?,j. (3.194)

We de�ne

R :=
1

|£� 1|

M−1∑
j=1

|�bj|λ?,j. (3.195)

We notice that, in light of (3.192), the setting in (3.195) is well-de�ned.
Now, we �x a set of free parameters

´� ?,1 ∈ (R + 1, R + 2), . . . ´� ?,l ∈ (R + 1, R + 2). (3.196)

Moreover, we de�ne

λM :=
1

�bM

(
−

M−1∑
j=1

�bjλ?,j −
l∑

h=1

|£� h|´� ?,h

)
. (3.197)

We notice that (3.197) is well-de�ned thanks to (3.193). From (3.195) we deduce that

l∑
h=1

|£� h|´� ?,h +
M−1∑
j=1

�bjλ?,j ≥ |£� 1|´� ?,1 −
M−1∑
j=1

|�bj|λ?,j

> |£� 1|R−
M−1∑
j=1

|�bj|λ?,j = 0.

Consequently, by (3.193) and (3.197),

λM > 0. (3.198)

Now, we de�ne, for any h ∈ {1, . . . , l},

£� h :=


£� h
|£� h|

if £� h 6= 0,

1 if £� h = 0.

We notice that
£� h 6= 0 for all h ∈ {1, . . . , l}, (3.199)

and
£� h £� h = |£� h|. (3.200)



Moreover, we consider ah ∈ (−2, 0), for every h = 1, . . . , l, to be chosen appropriately in
what follows (see (3.208) for a precise choice).

Now, for every h ∈ {1, . . . , l}, we de�ne

ψh(th) := Eαh,1(£� h ´� ?,h(th − ah)αh), (3.201)

where Eαh,1 denotes the Mittag-Le�er function with parameters α := αh and β := 1 as
de�ned in (3.13). By Lemma 3.3, we know that

Dαh
th,ah

ψh(th) = £� h ´� ?,hψh(th) in (ah,+∞),

ψh(ah) = 1,

∂mthψh(ah) = 0 for anym = 1, . . . , [αh],

(3.202)

and we consider again the extension ψ?h given in (3.148). By Lemma A.3 in [CDV18], we
know that (3.202) translates into

Dαh
th,−∞ψ

?
h(th) = £� h ´� ?,hψ?h(th) in every interval I b (ah,+∞). (3.203)

Now, we consider auxiliary parameters ´� h, ej and Yj as in (3.145), (3.160) and (3.161).
Moreover, we introduce an additional set of free parameters

¸� = (¸� 1, . . . , ¸� n) ∈ Rp1 × . . .× Rpn . (3.204)

We let ε > 0, to be taken small possibly depending on the free parameters. We take τ ∈
C∞(Rp1+...+pn , [0 +∞)) such that

τ(x) :=

{
exp ( ¸� · x) if x ∈ Bp1+...+pn

1 ,

0 if x ∈ Rp1+...+pn \Bp1+...+pn
2 ,

(3.205)

where

¸� · x :=
n∑
j=1

¸� i · xi

denotes the standard scalar product.
We notice that, for any i ∈ Np1 × . . .× Npn ,

∂ixτ(0) = ∂i1x1
. . . ∂inxnτ(0) = ¸� i11

11 . . . ¸� i1p11p1
. . . ¸� in1

n1 . . . ¸� inpnnpn = ¸� i. (3.206)

We de�ne

w (x, y, t) := τ(x)φ1 (y1 + e1 + εY1) · . . . · φM (yM + eM + εYM)ψ?1(t1) · . . . · ψ?l (tl), (3.207)

where the setting in (3.143) has also been exploited.
We also notice that w ∈ C

(
RN
)
∩ C0

(
RN−l) ∩ A. Moreover, if

a = (a1, . . . , al) :=

(
− ε

´� 1
, . . . ,− ε

´� l

)
∈ (−∞, 0)l (3.208)

and (x, y) is su�ciently close to the origin and t ∈ (a1,+∞)× · · · × (al,+∞), we have that

Λ−∞w (x, y, t)



=

(
M∑
j=1

�bj(−∆)sjyj +
l∑

h=1

£� hD
αh
th,−∞

)
w (x, y, t)

=
M∑
j=1

�bjτ(x)φ1 (y1 + e1 + εY1) . . . φj−1 (yj−1 + ej−1 + εYj−1) (−∆)sjyjφj (yj + ej + εYj)

×φj+1 (yj+1 + ej+1 + εYj+1) . . . φM (yM + eM + εYM)ψ?1 (t1) . . . ψ?l (tl)

+
l∑

h=1

£� hτ(x)φ1 (y1 + e1 + εY1) . . . φM (yM + eM + εYM)ψ?1 (t1) . . . ψ?h−1 (th−1)

×Dαh
th,−∞ψ

?
h (th)ψ

?
h+1(th+1) . . . ψ?l (tl)

=
M∑
j=1

�bjλjτ(x)φ1 (y1 + e1 + εY1) . . . φM (yM + eM + εYM)ψ?1(t1) . . . ψ?l (tl)

+
l∑

h=1

£� h £� h ´� ?,hτ(x)φ1 (y1 + e1 + εY1) . . . φM (yM + eM + εYM)ψ?1(t1) . . . ψ?l (tl)

=

(
M∑
j=1

�bjλj +
l∑

h=1

£� h £� h ´� ?,h

)
w(x, y, t),

thanks to (3.143) and (3.203).
Consequently, making use of (3.194), (3.197) and (3.200), if (x, y) is near the origin

and t ∈ (a1,+∞)× · · · × (al,+∞), we have that

Λ−∞w (x, y, t) =

(
M∑
j=1

�bjλ?,j + �bMλM +
l∑

h=1

|£� h|´� ?,h

)
w(x, y, t) = 0.

This says that w ∈ H. Thus, in light of (3.127) we have that

0 = θ · ∂Kw (0) =
∑
|ι|≤K

θι∂
ιw (0) =

∑
|i|+|I|+|I|≤K

θi,I,I ∂
i
x∂

I
y∂

I
tw (0) .

From this and (3.207), we obtain that

0 =
∑

|i|+|I|+|I|≤K

θi,I,I ∂
i
xτ(0)∂I1y1

φ1(e1+εY1) . . . ∂IMyMφM(eM+εYM) ∂I1
t1 ψ1(0) . . . ∂Iltl ψl(0). (3.209)

Moreover, using (3.201) and (3.208), it follows that, for every Ih ∈ N

∂Ihth ψh(0) =
+∞∑
j=0

£� jh ´� j?,h αhj(αhj − 1) . . . (αhj − Il + 1)(0− ah)αhj−Ih

Γ (αhj + 1)

=
+∞∑
j=0

£� jh ´� j?,h αhj(αhj − 1) . . . (αhj − Ih + 1) εαhj−Ih

Γ (αhj + 1) ´� h
αhj−Ih

=
+∞∑
j=1

£� jh ´� j?,h αhj(αhj − 1) . . . (αhj − Ih + 1) εαhj−Ih

Γ (αhj + 1) ´� h
αhj−Ih

.



Accordingly, recalling (3.145), we �nd that

lim
ε↘0

εIh−αh∂Ihth ψh(0) = lim
ε↘0

+∞∑
j=1

£� jh ´� j?,h αhj(αhj − 1) . . . (αhj − Ih + 1) εαh(j−1)

Γ (αhj + 1) ´� h
αhj−Ih

=
£� h ´� ?,h αh(αh − 1) . . . (αh − Ih + 1)

Γ (αh + 1) ´� αh−Ihh

=
£� h ´� Ihh αh(αh − 1) . . . (αh − Ih + 1)

Γ (αh + 1)
.

(3.210)

Also, recalling (3.128), we can write (3.209) as

0 =
∑

|i|+|I|+|I|≤K
|I|≤|I|

θi,I,I ∂
i
xτ(0)∂I1y1

φ1(e1 + εY1) . . . ∂IMyMφM(eM + εYM)∂I1
t1 ψ1(0) . . . ∂Iltl ψl(0). (3.211)

Moreover, we de�ne

Ξ :=
∣∣I∣∣− M∑

j=1

sj + |I| −
l∑

h=1

αh.

Then, we multiply (3.211) by εΞ ∈ (0,+∞), and we send ε to zero. In this way, we obtain
from (3.169), (3.206), (3.210) and (3.211) that

0 = lim
ε↘0

εΞ
∑

|i|+|I|+|I|≤K
|I|≤|I|

θi,I,I ∂
i
xτ(0)∂I1y1

φ1 (e1 + εY1) . . . ∂IMyMφM (eM + εYM) ∂I1
t1 ψ1(0) . . . ∂Iltl ψl(0)

= lim
ε↘0

∑
|i|+|I|+|I|≤K
|I|≤|I|

ε|I|−|I|θi,I,I ∂
i
xτ(0)ε|I1|−s1∂I1y1

φ1 (e1 + εY1) . . . ε|IM |−sM∂IMyMφM (eM + εYM)

×εI1−α1∂I1
t1 ψ1(0) . . . εIl−αl∂Iltl ψl(0)

=
∑

|i|+|I|+|I|≤K
|I|=|I|

Ci,I,I θi,I,I ¸� i11 . . . ¸� inn e
I1
1 . . . eIMM (−e1 · Y1)s1−|I1|+ . . . (−eM · YM)sM−|IM |+ ´� I1

1 . . . ´� Ill

= (−e1 · Y1)s1+ . . . (−eM · YM)sM+

×
∑

|i|+|I|+|I|≤K
|I|=|I|

Ci,I,I θi,I,I ¸� i eI (−e1 · Y1)−|I1|+ . . . (−eM · YM)−|IM |+ ´� I,

for a suitable Ci,I,I 6= 0.
We observe that the latter equality is valid for any choice of the free parameters (¸� , Y, ´� )

in an open subset of Rp1+...+pn×Rm1+...+mM×Rl, as prescribed in (3.161), (3.196) and (3.204).
Now, we take new free parameters ¹� j with ¹� j ∈ Rmj \ {0} for any j = 1, . . . ,M , and

perform in the latter identity the same change of variables done in (3.173), obtaining that

0 =
∑

|i|+|I|+|I|≤K
|I|=|I|

Ci,I,I θi,I,I ¸� i¹� I ´� I,

for some Ci,I,I 6= 0. This completes the proof of (3.130) in case (3.190) is satis�ed.

Hence, we now focus on the case in which (3.191) holds true. For any j ∈ {1, . . . ,M},
we consider the function ψ ∈ Hsj(Rmj) ∩ Csj

0 (Rmj) constructed in Lemma 3.19 and we call
such function φj, to make it explicit its dependence on j in this case. We recall that

(−∆)sjyjφj(yj) = 0 in B
mj
1 . (3.212)



Also, for every j ∈ {1, . . . ,M}, we let ej and Yj be as in (3.160) and (3.161). Thanks to
Lemma 3.19 and Remark 3.20, for any Ij ∈ Nmj , we know that

lim
ε↘0

ε|Ij |−sj∂Ijyjφj(ej + εYj) = κsje
Ij
j (−ej · Yj)

sj−|Ij |
+ , (3.213)

for some κsj 6= 0.
Moreover, for any h = 1, . . . , l, we de�ne τh(th) as

τh(th) :=


e´� hth if th ∈ [−1,+∞),

e−´� h
kh−1∑
i=0

´� ih
i!

(th + 1)i if th ∈ (−∞,−1),
(3.214)

where ´� = (´� 1, . . . , ´� l) ∈ (1, 2)l are free parameters.
We notice that, for any h ∈ {1, . . . , l} and Ih ∈ N,

∂Ihth τh(0) = ´� Ihh . (3.215)

Now, we de�ne

w(x, y, t) := τ(x)φ1(y1 + e1 + εY1) . . . φM(yM + eM + εYM)τ 1(t1) . . . τ l(tl), (3.216)

where the setting of (3.142), (3.205) and (3.214) has been exploited. We have that w ∈
A. Moreover, we point out that, since τ , φ1, . . . , φM are compactly supported, we have
that w ∈ C(RN) ∩ C0(RN−l), and, using Proposition 3.22, for any j ∈ {1, . . . ,M}, it holds
that φj ∈ C∞(Nj) for some neighborhood Nj of the origin in Rmj . Hence w ∈ C∞(N ).

Furthermore, using (3.212), when y is in a neighborhood of the origin we have that

Λ−∞w(x, y, t) = τ(x)
(
�b1(−∆)s1y1

φ1(y1 + e1 + εY1)
)
. . . φM(yM + eM + εYM)τ 1(t1) . . . τ l(tl)

+ . . .+ τ(x)φ1(y1) . . .
(
�bM(−∆)sMYMφM(yM + eM + εYM)

)
τ 1(t1) . . . τ l(tl) = 0,

which gives that w ∈ H.
In addition, using (3.128), (3.206) and (3.215), we have that

0 = θ · ∂Kw(0) =
∑
|ι|≤K

θi,I,I∂
i
x∂

I
y∂

I
tw(0) =

∑
|ι|≤K
|I|≤|I|

θi,I,I∂
i
x∂

I
y∂

I
tw(0)

=
∑
|ι|≤K
|I|≤|I|

θi,I,I ¸� i∂I1y1
φ1(e1 + εY1) . . . ∂IMyMφM(eM + εYM) ´� I.

Hence, we set

Ξ := |I| −
M∑
j=1

sj,

we multiply the latter identity by εΞ and we exploit (3.213). In this way, we �nd that

0 = lim
ε↘0

∑
|ι|≤K
|I|≤|I|

ε|I|−|I|θi,I,I ¸� i ε|I1|−s1∂I1y1
φ1(e1 + εY1) . . . ε|IM |−sM∂IMyMφM(eM + εYM) ´� I



=
∑
|ι|≤K
|I|=|I|

θi,I,I κsj ¸� i eI (−e1 · Y1)
s1−|I1|
+ . . . (−eM · YM)

sM−|IM |
+ ´� I

= (−e1 · Y1)s1+ . . . (−eM · YM)sM+
∑
|ι|≤K
|I|=|I|

θi,I,I κsj ¸� i eI (−e1 · Y1)
−|I1|
+ . . . (−eM · YM)

−|IM |
+ ´� I,

and consequently

0 =
∑
|ι|≤K
|I|=|I|

θi,I,I κsj ¸� i eI (−e1 · Y1)
−|I1|
+ . . . (−eM · YM)

−|IM |
+ ´� I. (3.217)

Now we take free parameters ¹� ∈ Rm1+...+mM \ {0} and we perform the same change of
variables in (3.173). In this way, we deduce from (3.217) that

0 =
∑

|i|+|I|+|I|≤K
|I|=|I|

Ci,I,Iθi,I,I¸� i¹� I ´� I,

for some Ci,I,I 6= 0, and the �rst claim in (3.130) is proved in this case as well.

Proof of (3.130), case 4. Notice that if there exists j ∈ {1, . . . ,M} such that �bj 6= 0, we are
in the setting of case 3. Therefore, we assume that �bj = 0 for every j ∈ {1, . . . ,M}.

We let ψ be the function constructed in Lemma 3.4. For each h ∈ {1, . . . , l}, we
let ψh(th) := ψ(th), to make the dependence on h clear and explicit. Then, by formu-
las (3.20) and (3.21), we know that

Dαh
th,0
ψh(th) = 0 in (1,+∞) (3.218)

and, for every ` ∈ N,
lim
ε↘0

ε`−αh∂`thψh(1 + εth) = κh,` t
αh−`
h , (3.219)

in the sense of distribution, for some κh,` 6= 0.
Now, we introduce a set of auxiliary parameters ´� = (´� 1, . . . , ´� l) ∈ (1, 2)l, and �x ε

su�ciently small possibly depending on the parameters. Then, we de�ne

a = (a1, . . . , al) :=

(
− ε

´� 1
− 1, . . . ,− ε

´� l
− 1

)
∈ (−2, 0)l, (3.220)

and
ψh(th) := ψh(th − ah). (3.221)

With a simple computation we have that the function in (3.221) satis�es

Dαh
th,ah

ψh(th) = Dαh
th,0
ψh(th − ah) = 0 in (1 + ah,+∞) =

(
− ε

´� h
,+∞

)
, (3.222)

thanks to (3.218). In addition, for every ` ∈ N, we have that ∂`thψh(th) = ∂`thψh(th−ah), and
therefore, in light of (3.219) and (3.220),

ε`−αh∂`thψh(0) = ε`−αh∂`thψh(−ah) = ε`−αh∂`thψh

(
1 +

ε

´� h

)
→ κh,` ´� `−αhh , (3.223)



in the sense of distributions, as ε↘ 0.
Moreover, since for any h = 1, . . . , l, ψh ∈ Ckh,αh

ah
, we can consider the extension

ψ?h(th) :=


ψh(th) if th ∈ [ah,+∞),
kh−1∑
i=0

ψ
(i)
h (ah)

i!
(th − ah)i if th ∈ (−∞, ah),

(3.224)

and, using Lemma A.3 in [CDV18] with u := ψh, a := −∞, b := ah and u? := ψ?h, we have
that

ψ?h ∈ C
kh,αh
−∞ and Dαh

th,−∞ψ
?
h = Dαh

th,ah
ψh = 0 in every interval I b

(
− ε

´� h
,+∞

)
.

(3.225)
Now, we �x a set of free parameters ¹� =

(
¹� 1, . . . , ¹�M

)
∈ Rm1+...+mM , and consider τ ∈

C∞(Rm1+...+mM ), such that

τ(y) :=

{
exp

(
¹� · y

)
if y ∈ Bm1+...+mM

1 ,

0 if y ∈ Rm1+...+mM \Bm1+...+mM
2 ,

(3.226)

where

¹� · y =
M∑
j=1

¹� j · yj,

denotes the standard scalar product.
We notice that, for any multi-index I ∈ Nm1+...mM ,

∂Iyτ(0) = ¹� I , (3.227)

where the multi-index notation has been used.
Now, we de�ne

w(x, y, t) := τ(x)τ(y)ψ?1(t1) . . . ψ?l (tl), (3.228)

where the setting in (3.205), (3.224) and (3.226) has been exploited.
Using (3.225), we have that, for any (x, y) in a neighborhood of the origin and t ∈(

− ε
2
,+∞

)l,
Λ−∞w(x, y, t) = τ(x)τ(y)

(
£� 1Dα1

t1,−∞ψ
?
1(t1)

)
. . . ψ?l (tl)

+ . . .+ τ(x)τ(y)ψ?1(t1) . . .
(
£� lD

αl
tl,−∞ψ

?
l (tl)

)
= 0.

We have that w ∈ A, and, since τ and τ are compactly supported, we also have that
w ∈ C(RN) ∩ C0(RN−l). Also, from Lemma 3.4, for any h ∈ {1, . . . , l}, we know that ψh ∈

C∞((1,+∞)), hence ψh ∈ C∞
((
− ε

´� h
,+∞

))
. Thus, w ∈ C∞(N ), and consequently w ∈

H.
Recalling (3.129), (3.206), and (3.227), we have that

0 = θ · ∂Kw(0) =
∑
|ι|≤K

θi,I,I∂
i
x∂

I
y∂

I
tw(0) =

∑
|ι|≤K
|I|≤|I|

θi,I,I∂
i
x∂

I
y∂

I
tw(0)

=
∑
|ι|≤K
|I|≤|I|

θi,I,I ¸� i¹� I∂I1
t1 ψ1(0) . . . ∂Iltl ψl(0).

(3.229)



Hence, we set

Ξ := |I| −
l∑

h=1

αh,

we multiply the identity in (3.229) by εΞ and we exploit (3.223). In this way, we �nd that

0 = lim
ε↘0

∑
|ι|≤K
|I|≤|I|

ε|I|−|I|θi,I,I ¸� i ¹� I εI1−α1∂I1
t1 ψ1(0) . . . εIl−αl∂Iltl ψl(0)

=
∑
|ι|≤K
|I|=|I|

θi,I,I κ1,I1 . . . κl,Il ¸� i ¹� I ´� I1−α1
1 . . . ´� Il−αll

= ´� −α1
1 . . . ´� −αll

∑
|ι|≤K
|I|=|I|

θi,I,I κ1,I1 . . . κl,Il ¸� i ¹� I ´� I1
1 . . . ´� Ill ,

and consequently
0 =

∑
|ι|≤K
|I|=|I|

θi,I,I κ1,I1 . . . κl,Il ¸� i ¹� I ´� I,

and the second claim in (3.130) is proved in this case as well.

3.12 Every function is locally Λ−∞-harmonic up to a small

error, and completion of the proof of Theorem 3.23

In this section we complete the proof of Theorem 3.23 (which in turn implies Theorem 3.1
via Lemma 3.24). By standard approximation arguments we can reduce to the case in which
f is a polynomial, and hence, by the linearity of the operator Λ−∞, to the case in which is
a monomial. The details of the proof are therefore the following:

3.12.1 Proof of Theorem 3.23 when f is a monomial

We prove Theorem 3.23 under the initial assumption that f is a monomial, that is

f (x, y, t) =
xi11 . . . x

in
n y

I1
1 . . . yIMM tI1

1 . . . tIll
ι!

=
xiyItI

ι!
=

(x, y, t)ι

ι!
, (3.230)

where ι! := i1! . . . in!I1! . . . IM !I1! . . . Il! and Iβ! := Iβ,1! . . . Iβ,mβ !, iχ! := iχ,1! . . . iχ,pχ ! for all
β = 1, . . .M . and χ = 1, . . . , n. To this end, we argue as follows. We consider η ∈ (0, 1), to
be taken su�ciently small with respect to the parameter ε > 0 which has been �xed in the
statement of Theorem 3.23, and we de�ne

Tη(x, y, t) :=
(
η

1
r1 x1, . . . , η

1
rn xn, η

1
2s1 y1, . . . , η

1
2sM yM , η

1
α1 t1, . . . , η

1
αl tl

)
.

We also de�ne

γ :=
n∑
j=1

|ij|
rj

+
M∑
j=1

|Ij|
2sj

+
l∑

j=1

Ij
αj
, (3.231)



and

δ := min

{
1

r1

, . . . ,
1

rn
,

1

2s1

, . . . ,
1

2sM
,

1

α1

, . . . ,
1

αl

}
. (3.232)

We also take K0 ∈ N such that

K0 ≥
γ + 1

δ
(3.233)

and we let
K := K0 + |i|+ |I|+ |I|+ ` = K0 + |ι|+ `, (3.234)

where ` is the �xed integer given in the statement of Theorem 3.23.
By Lemma 3.25, there exist a neighborhood N of the origin and a function w ∈ C

(
RN
)
∩

C0

(
RN−l) ∩ C∞ (N ) ∩ A such that

Λ−∞w = 0 in N , (3.235)

and such that

all the derivatives of w in 0 up to order K vanish,
with the exception of ∂ιw (0) which equals 1,

(3.236)

being ι as in (3.230). Recalling the de�nition of A on page 61, we also know that

∂khth w = 0 in (−∞, ah), (3.237)

for suitable ah ∈ (−2, 0), for all h ∈ {1, . . . , l}.
In this way, setting

g := w − f, (3.238)

we deduce from (3.236) that

∂σg (0) = 0 for any σ ∈ NN with |σ| ≤ K.

Accordingly, in N we can write

g (x, y, t) =
∑

|τ |≥K+1

xτ1yτ2tτ3hτ (x, y, t), (3.239)

for some hτ smooth in N , where the multi-index notation τ = (τ1, τ2, τ3) has been used.
Now, we de�ne

u (x, y, t) :=
1

ηγ
w (Tη(x, y, t)) . (3.240)

In light of (3.237), we notice that ∂khth u = 0 in (−∞, ah/η
1
αh ), for all h ∈ {1, . . . , l}, and

therefore u ∈ C
(
RN
)
∩ C0(RN−l) ∩ C∞ (Tη(N )) ∩ A. We also claim that

Tη([−1, 1]N−l × (a1,+∞)× . . .× (al,+∞)) ⊆ N . (3.241)

To check this, let (x, y, t) ∈ [−1, 1]N−l×(a1 +∞)× . . .×(al,+∞) and (X, Y, T ) := Tη(x, y, t).
Then, we have that |X1| = η

1
r1 |x1| ≤ η

1
r1 , |Y1| = η

1
2s1 |y1| ≤ η

1
2s1 , T1 = η

1
α1 t1 > a1η

1
α1 > −1,

provided η is small enough. Repeating this argument, we obtain that, for small η,

(X, Y, T ) is as close to the origin as we wish. (3.242)



From (3.242) and the fact that N is an open set, we infer that (X, Y, T ) ∈ N , and this
proves (3.241).

Thanks to (3.235) and (3.241), we have that, in BN−l
1 × (−1,+∞)l,

ηγ−1 Λ−∞u (x, y, t)

=
n∑
j=1

¡�j∂rjxjw (Tη(x, y, t)) +
M∑
j=1

�bj(−∆)sjyjw (Tη(x, y, t)) +
l∑

j=1

£� jD
αh
th,−∞w (Tη(x, y, t))

= Λ−∞w (Tη(x, y, t))
= 0.

These observations establish that u solves the equation in BN−l
1 × (−1 +∞)l and u vanishes

when |(x, y)| ≥ R, for some R > 1, and thus the claims in (3.118) and (3.119) are proved.
Now we prove that u approximates f , as claimed in (3.120). For this, using the monomial

structure of f in (3.230) and the de�nition of γ in (3.231), we have, in a multi-index notation,

1

ηγ
f (Tη(x, y, t)) =

1

ηγ ι!
(η

1
rx)i(η

1
2sy)I

(
η

1
α t
)I

=
1

ι!
xiyItI = f(x, y, t). (3.243)

Consequently, by (3.238), (3.239), (3.240) and (3.243),

u (x, y, t)− f (x, y, t) =
1

ηγ
g
(
η

1
r1 x1, . . . , η

1
rn xn, η

1
2s1 y1, . . . , η

1
2sM yM , η

1
α1 t1, . . . , η

1
αl tl

)
=

∑
|τ |≥K+1

η|
τ1
r |+| τ22s |+| τ3α |−γxτ1yτ2tτ3hτ

(
η

1
rx, η

1
2sy, η

1
α t
)
,

where a multi-index notation has been used, e.g. we have written

τ1

r
:=

(
τ1,1

r1

, . . . ,
τ1,n

rn

)
∈ Rn.

Therefore, for any multi-index β = (β1, β2, β3) with |β| ≤ `,

∂β (u (x, y, t)− f (x, y, t))

= ∂β1
x ∂

β2
y ∂

β3
t (u (x, y, t)− f (x, y, t))

=
∑

|β′1|+|β′′1 |=|β1|

|β′2|+|β′′2 |=|β2|

|β′3|+|β′′3 |=|β3|
|τ |≥K+1

cτ,β η
κτ,β xτ1−β

′
1yτ2−β

′
2tτ3−β

′
3∂β

′′
1
x ∂β

′′
2
y ∂

β′′3
t hτ

(
η

1
rx, η

1
2sy, η

1
α t
)
, (3.244)

where

κτ,β :=
∣∣∣τ1

r

∣∣∣+
∣∣∣ τ2

2s

∣∣∣+
∣∣∣τ3

α

∣∣∣− γ +

∣∣∣∣β′′1r
∣∣∣∣+

∣∣∣∣β′′22s

∣∣∣∣+

∣∣∣∣β′′3α
∣∣∣∣ ,

for suitable coe�cients cτ,β. Thus, to complete the proof of (3.120), we need to show that
this quantity is small if so is η. To this aim, we use (3.232), (3.233) and (3.234) to see that

κτ,β ≥
∣∣∣τ1

r

∣∣∣+
∣∣∣ τ2

2s

∣∣∣+
∣∣∣τ3

α

∣∣∣− γ



≥ δ (|τ1|+ |τ2|+ |τ3|)− γ
≥ Kδ − γ
≥ K0δ − γ
≥ 1.

Consequently, we deduce from (3.244) that ‖u− f‖C`(BN1 ) ≤ Cη for some C > 0. By choos-
ing η su�ciently small with respect to ε, this implies the claim in (3.120). This completes
the proof of Theorem 3.23 when f is a monomial.

3.12.2 Proof of Theorem 3.23 when f is a polynomial

Now, we consider the case in which f is a polynomial. In this case, we can write f as

f (x, y, t) =
J∑
j=1

cjfj (x, y, t) ,

where each fj is a monomial, J ∈ N and cj ∈ R for all j = 1, . . . , J .
Let

c := max
j∈{1,...,J}

cj.

Then, by the work done in Subsection 3.12.1, we know that the claim in Theorem 3.23 holds
true for each fj, and so we can �nd aj ∈ (−∞, 0)l, uj ∈ C∞

(
BN

1

)
∩C

(
RN
)
∩A and Rj > 1

such that Λ−∞uj = 0 in BN−l
1 × (−1,+∞)l, ‖uj − fj‖C`(BN1 ) ≤ ε and uj = 0 if |(x, y)| ≥ Rj.

Hence, we set

u (x, y, t) :=
J∑
j=1

cjuj (x, y, t) ,

and we see that

‖u− f‖C`(BN1 ) ≤
J∑
j=1

|cj| ‖uj − fj‖C`(BN1 ) ≤ cJε. (3.245)

Also, Λ−∞u = 0 thanks to the linearity of Λ−∞ in BN−l
1 × (−1,+∞)l. Finally, u is supported

in BN−l
R in the variables (x, y), being

R := max
j∈{1,...,J}

Rj.

This proves Theorem 3.23 when f is a polynomial (up to replacing ε with cJε).

3.12.3 Proof of Theorem 3.23 for a general f

Now we deal with the case of a general f . To this end, we exploit Lemma 2 in [DSV17] and
we see that there exists a polynomial f̃ such that

‖f − f̃‖C`(BN1 ) ≤ ε. (3.246)

Then, applying the result already proven in Subsection 3.12.2 to the polynomial f̃ , we can
�nd a ∈ (−∞, 0)l, u ∈ C∞

(
BN

1

)
∩ C

(
RN
)
∩ A and R > 1 such that

Λ−∞u = 0 in BN−l
1 × (−1,+∞)l,



u = 0 if |(x, y)| ≥ R,

∂khth u = 0 if th ∈ (−∞, ah), for all h ∈ {1, . . . , l},
and ‖u− f̃‖C`(BN1 ) ≤ ε.

Then, recalling (3.246), we see that

‖u− f‖C`(BN1 ) ≤ ‖u− f̃‖C`(BN1 ) + ‖f − f̃‖C`(BN1 ) ≤ 2ε.

Hence, the proof of Theorem 3.23 is complete.

3.13 Applications

In this section we give some applications of the approximation results obtained and discussed
in this chapter. These examples exploit particular cases of the operator Λa, namely, when
s ∈ (0, 1) and Λa is the fractional Laplacian (−∆)s, or the fractional heat operator ∂t+(−∆)s.
Similar applications have been pointed out in [CDV17,AV19,RS17b].

Example 3.26 (The classical Harnack inequality fails for s-harmonic functions). Harnack
inequality, in its classical formulation, says that if u is a nontrivial and nonnegative harmonic
function in B1 then, for any 0 < r < 1, there exists 0 < c = c(n, r) such that

sup
Br

u ≤ c inf
Br
u. (3.247)

The same result is not true for s-harmonic functions. To construct a counterexample, con-
sider the smooth function f(x) = |x|2, and, for a small ε > 0, let v = vε be the function
provided by Theorem 3.1, where we choose ` = 0. Notice that, if x ∈ B1 \Br/2,

v(x) ≥ f(x)− ‖v − f‖L∞(B1) ≥
r2

4
− ε > r2

8
,

provided ε is small enough, while

v(0) ≤ f(0) + ‖v − f‖L∞(B1) ≤ ε <
r2

8
.

Hence, we have that v(0) < v(x) for any x ∈ B1 \ Br/2, and therefore the minimum of v in
B1 is attained in some point x ∈ Br/2. Then, we de�ne

u(x) := v(x)− v(x).

Notice that u is s-harmonic in B1 since so does v. Also, u ≥ 0 in B1 by construction,
and u > 0 in B1 \Br/2. On the other hand, since x ∈ Br

inf
Br
u = u(x) = 0,

which implies that u cannot satis�es an inequality such as (3.247).
As a matter of fact, in the fractional case, the analogue of the Harnack inequality re-

quires u to be nonnegative in the whole of Rn, hence a �global� condition is needed to obtain a
�local� oscillation bound. See e.g. [Kas11] and the references therein for a complete discussion
of nonlocal Harnack inequalities.



Example 3.27 (A logistic equation with nonlocal interactions). We consider the logistic
equation taken into account in [CDV17]

− (−∆)su+ (σ − µu)u+ τ(J ∗ u) = 0, (3.248)

where s ∈ (0, 1], τ ∈ [0,+∞) and σ, µ, J are nonnegative functions. The symbol ∗ denotes
as usual the convolution product between J and u. Moreover, the convolution kernel J is
assumed to be of unit mass and even, namely∫

Rn
J(x)dx = 1

and
J(−x) = J(x) for anyx ∈ Rn.

In this framework, the solution u denotes the density of a population living in some envi-
ronment Ω ⊆ Rn, while the functions σ and µ model respectively the growing and dying
e�ects on the population. The equation is driven by the fractional Laplacian that models
a nonlocal dispersal strategy which has been observed experimentally in nature, and may
be related to optimal hunting strategies and adaptation to the environment stimulated by
natural selection.

We state here a result which translates the fact that a population with a nonlocal strategy
can plan the distribution of resources in a strategic region better than populations with a
local one.

Namely, �xed Ω = B1, one can �nd a solution of a slightly perturbed version of (3.248)
in B1, compactly supported in a larger ball BRε , where ε ∈ (0, 1) denotes the perturbation.

The strategic plan consists in properly adjusting the resources in BRε \ B1 (that is, a
bounded region in which the equation is not satis�ed) in order to consume almost all the
given resources in B1.

The detailed statement goes as follows:

Theorem 3.28. Let s ∈ (0, 1) and ` ∈ N, ` ≥ 2. Assume that σ, µ ∈ C`(B2), with

inf
B2

µ > 0, inf
B2

σ > 0.

Fixed ε ∈ (0, 1), there exist a nonnegative function uε, Rε > 2 and σε ∈ C`(B1) such that

(−∆)suε = (σε − µuε)uε + τ(J ∗ uε) in B1,

uε = 0 in Rn \BRε ,

‖σε − σ‖C`(B1) ≤ ε,

uε ≥ µ−1σε in B1.

Example 3.29. Higher order nonlocal equations also appear naturally in several contexts,
see e.g. [CV13] for a nonlocal version of the Cahn-Hilliard phase coexistence model. Higher
orders operators have also appeared in connection with logistic equations, see e.g. [Bha16].
In this spirit, we point out a version of Theorem 3.28 which is new and relies on Theorem 3.1.
Its content is that nonlocal logistic equations (of any order and with nonlocality given in
either time or space, or both) admits solutions which can arbitrarily well adapt to any given
resource. The precise statement is the following:



Theorem 3.30. Let s ∈ (0,+∞), α ∈ (0,+∞) and ` ∈ N, ` ≥ 2. Assume that

either s 6∈ N or α 6∈ N. (3.249)

Let σ, µ ∈ C`(B2), with
inf
B1

µ > 0. (3.250)

Fixed ε ∈ (0, 1), there exist a nonnegative function uε, Rε > 2, aε < 0, and σε ∈ C`(B1) such
that

Dα
t,aεuε(x, t) + (−∆)suε(x, t) =

(
σε(x, t)− µ(x, t)uε(x, t)

)
uε(x, t)

for all (x, t) ∈ Rp × R with |(x, t)| < 1,
(3.251)

uε(x, t) = 0 if |(x, t)| ≥ Rε, (3.252)

‖σε − σ‖C`(B1) ≤ ε, (3.253)

uε = µ−1σε ≥ µ−1σ − ε in B1. (3.254)

Proof. We use Theorem 3.1 in the case in which Λa := Dα
t,a + (−∆)s. Let f := σ/µ. Then,

by Theorem 3.1, which can be exploited here in view of (3.249), we obtain the existence of
suitable uε, Rε > 2 and aε < 0 satisfying (3.252),

Dα
t,aεuε(x, t) + (−∆)suε(x, t) = 0

for all (x, t) ∈ Rp × R with |(x, t)| < 1,
(3.255)

and
‖uε − f‖C`(B1) ≤ ε. (3.256)

Then, we set σε := µuε, and then, by (3.256),

‖σε − σ‖C`(B1) ≤ C ‖µ‖C`(B1)

∥∥∥∥σεµ − σ

µ

∥∥∥∥
C`(B1)

= C ‖µ‖C`(B1) ‖uε − f‖C`(B1)

≤ C ‖µ‖C`(B1) ε,

(3.257)

which gives (3.253), up to renaming ε.
Moreover, if |(x, t)| < 1,

(σε − µuε)uε = 0 = Dα
t,aεuε + (−∆)suε,

thanks to (3.255), and this proves (3.251).
In addition, recalling (3.257) and (3.250),

uε = µ−1σε ≥ µ−1σ − 1

infB1
µ
‖σ − σε‖L∞(B1) ≥ µ−1σ −

‖µ‖C`(B1) ε

infB1
µ

,

in B1, which proves (3.254), up to renaming ε.



3.14 Open Problems

Is it Theorem 3.1 true with the same techniques even for nonlocal linear operators involving
more general kernels? Using the notation in formulae (3.4), (3.6) we have in mind something
like

Lu(x) :=

∫
Rn

(δhu)(x, y)K(y)dy,

and

Da+u(t) :=

∫ t

a

u(k)(τ)H(t− τ)dτ

for some h, k ∈ N, where K satis�es the following assumption

K(y) =
J(y)

|y|n+2s
,

for some s ∈ (h−1, h) and some function J measurable, even, bounded between two positive
constants λ < Λ and positively homogeneous of degree zero. The kernel H satis�es

c1

zα−k+1
≤ H(z) ≤ c2

zα−k+1
,

for some 0 < c1 < c2 and some α ∈ (k − 1, k). The main di�culty is the lack of explicit
representation formulae of Green functions and Poisson kernels which does not allow us
to prove results in the fashion of the ones given in Sections 3.7, 3.8; nevertheless, sharp
asymptotic results are proved in [BFV18,Gru15] for solutions of more general nonlocal linear
equations. We notice that in [RS17b, Theorem 4] a quantitative approximation result is
given, and it involves as nonlocal linear operator the fractional power of an elliptic operator
in divergence form. Actually, using Runge-type approximation techniques, the authors prove
that the approximation property is guaranteed for solutions of nonlocal operators given by
a �nite sum of general local operators and a nonlocal operator that satis�es a weak unique
continuation principle. Anyway, in that paper the authors approximate functions in the
Sobolev spaceH1

0 and not in C
k, and they do not take into account time-fractional derivatives

as we do.



Chapter 4

A note on Riemann-Liouville fractional

Sobolev spaces

4.1 Introduction and main results

The goal of this chapter is to analyze in detail the connection of some functional spaces
de�ned through Riemann-Liouville fractional operator with classical Sobolev and BV spaces
on an interval I = (a.b) of the real line.

Fractional integrals and derivatives arise in many contests such as viscoelasticity, neuro-
biology, �nance and so on, see for instance [ACV16], [ABM16], [Cap08], [DPPZ13], [DV18].
A new recent approach to the problem, suitable also for the n-dimensional case, has been
investigated in [CS18,CS19,SSVS17,SSS15,SSS18,SS15,SS18,�il19,Spe18,Spe19].

There are many examples of such operators in literature. Among these ones, Riemann-
Liouville and Caputo fractional derivatives are the most exploited in the applications.

Here, we give answers to some questions posed in [BLNT17]; namely, the chapter is
structered in the following way: after an introduction of the topics treated in the chapter,
this section is devoted to preliminary notions and to introduce two of the main results of
the chapter; namely the fact that BV (I) and W s,1(I), continuously embed into W s,1

RL,a+(I).
The continuity of these embeddings can be useful in many variational models involving this
kind of fractional operators. Moreover, we extend [BLNT17, Theorem 4.1] from SBV to BV
proving that Ds

a+[u]L1 ⇀ DuL1 + u(a+)δa inM(I) as s → 1−. We notice that by proving
4.2 we recover the continuity given by 4.1, but the proofs of these two results exploit di�erent
techniques that, according to the authors, make both results interesting in their own way.
We conclude the section with the proof of Theorem 4.1.

In the second section we extend with a density result the Marchaud representation formula
for fractional derivatives to functions in the fractional Sobolev space W s,1(I); this fact, joint
with a fractional Hardy-type inequality, allows us to prove Proposition 4.2. We conclude this
section with a counterexample that deny Proposition 4.2 in the case of unbounded intervals.

In the third section we introduce the space BV s
RL,a+(I) given by the functions in L1(I)

with (1− s) fractional integral in BV (I), and we analyze it in detail proving that it contains
W s,1
RL,a+(I) and hence, thanks to Theorem 4.1 also BV (I); moreover, we show through some

examples that despite the regularization properties of the fractional integral, the measure
Ds
a+ it's not in general absolutely continuous with respect to the Lebesgue measure L1, as

one can expects for BV functions.
In the fourth section we study the continuity of the (1−s) fractional integral in the Sobolev
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space W 1,p(I) for 1 ≤ p <∞. In the case p =∞, we show through a simple example that if
the function does not vanish in the initial point, its Riemann-Liouville fractional derivative
cannot be essentially bounded, even if the function is locally analytic. We conclude obtaining
as a corollary the well known result on the inclusion relations between Riemann-Liouville
fractional Sobolev spaces.

In the �fth section we extend some results obtained in the previous sections taking
into account higher order fractional derivatives; namely, continuity of the fractional integral
between Sobolev spaces of greater integer order, and the inclusion of the space of functions
with bounded Hessian in a higher order Riemann-Liouville space are proved.

We conclude the chapter with some open problems.
We point out that from the study of Riemann-Liouville fractional integrals done in the

last century have been carried out many beautiful results about Riesz potential, which is a
fundamental tool in linear potential Theory. In particular we mention the paper by Hardy
and Littlewood, [HL28] in which the authors prove the continuity of the s-fractional integral
from Lp(I) into Lq(I) where q is the critical exponent q = p∗s := p

1−sp , provided 1 < p < 1/s.
This result holds even if one replace the bounded interval I with an half-line or the whole of
R. Indeed, It is worth noticing that for f ∈ L1(R), we may de�ne the following �improper�
fractional integrals:

Is−∞[f ](x) :=
1

Γ(s)

∫ x

−∞

f(t)

(x− t)1−s dt,

Is+∞[f ](x) :=
1

Γ(s)

∫ +∞

x

f(t)

(t− x)1−s dt.

Up to a translation, it is immediate to check that

Is−∞[f ](x) =
1

Γ(s)

∫ 0

−∞

f(x+ t)

|t|1−s
dt, (4.1)

Is+∞[f ](x) =
1

Γ(s)

∫ +∞

0

f(x+ t)

t1−s
dt. (4.2)

It is well known that the function

u(x) := Is−∞[f ](x) + Is+∞[f ](x) =
1

Γ(s)

∫ +∞

−∞

f(t)

|x− t|1−s
dt =: Is[f ](x), (4.3)

is a distributional solution of
(−∆)s/2u = f, (4.4)

where, up to multiplicative constants, the operator Is in (4.3) denotes the one-dimensional
Riesz potential with parameter s, while the left hand side in (4.4) denotes the one-dimensional
fractional Laplacian with parameter s/2, namely

(−∆)s/2u(x) :=
2s−1

√
π

Γ
(

1+s
2

)∣∣Γ (− s
2

)∣∣ ∫ +∞

−∞

2u(x)− u(x+ y)− u(x− y)

|y|s+1
dy

=
2s√
π

Γ
(

1+s
2

)∣∣Γ (− s
2

)∣∣ ∫ +∞

−∞

u(x)− u(x+ y)

|y|s+1
dy,



where the last integral has to be intended in the Cauchy principal value sense. Indeed, by
applying the Fourier transform F to equation (4.4), one has that

|ξ|sF(u)(ξ) = F(f)(ξ).

Multiplying by |ξ|−s and applying the inverse Fourier transform F−1, one has that

u(x) = F−1(| · |−sF(f)(·))(x) = F−1(| · |−s)(x) ∗ f(x),

where

F−1(| · |−s)(x) =

∫ +∞

−∞

eixξ

|ξ|s
dξ = 2|x|s−1

∫ +∞

0

cos(y)

ys
dy

= 2Γ(1− s) sin
(sπ

2

)
|x|s−1.

(4.5)

In addition, let us de�ne the �improper� left and right Riemann-Liouville fractional deriva-
tives of u at ∞ as

Ds
−∞[u](x) :=

d

dx
I1−s
−∞ [u](x),

Ds
+∞[u](x) := − d

dx
I1−s

+∞ [u](x).

Then, if we consider the case n = 1 in the notion of fractional gradient

∇su(x) :=
2s√
π

Γ
(
1 + s

2

)
Γ
(

1−s
2

) ∫ +∞

−∞

u(y)− u(x)

|y − x|1+s
sgn(y − x) dy

=
2s−1

√
π

sΓ
(
s
2

)
Γ
(

1−s
2

) ∫ +∞

−∞

u′(y)

|y − x|s
dy,

it is easy to see that

Ds
−∞[u](x)−Ds

+∞[u](x) =
1

Γ(1− s)

∫ +∞

−∞

u′(x+ y)

|y|s
dy = µs∇su(x),

where

µs :=

√
π

2s−1Γ(1− s)
Γ
(

1−s
2

)
sΓ
(
s
2

) .
Moreover, using the equivalent Marchaud formulation one has that

Ds
−∞[u](x) +Ds

+∞[u](x) =
s

Γ(1− s)

∫ +∞

0

2u(x)− u(x+ y)− u(x− y)

ys+1
dτ

=
s

2Γ(1− s)

∫ +∞

−∞

2u(x)− u(x+ y)− u(x− y)

|y|s+1
dy

=
1

2cs

s

Γ(1− s)
(−∆)s/2 u(x),

where cs :=

(∫ +∞

−∞

1− cos(ω)

|ω|2s+1
dω

)−1

.



We conclude this introduction only noticing that the renormalized fractional gradient
µs∇su(x) can be seen as the convolution between the weak �rst derivative u′ and the tem-
pered distribution T := P.V.

|·|s , where P.V. denotes the Cauchy principal value. Therefore, if
we compute the Fourier transform of µs∇su(x) we have that for any ξ ∈ C

µsF(∇su)(ξ) =
1

Γ(1− s)
F(u′ ∗ T )(ξ) =

1

Γ(1− s)
F(u′)(ξ)F(T )(ξ)

=
1

Γ(1− s)
iξF(u)(ξ)F(T )(ξ).

Through analogous calculations as in formula (4.5), we get

F(T )(ξ) = 2Γ(1− s) sin(
sπ

2
)|ξ|s−1.

Therefore
µsF(∇su)(ξ) = 2i sin(

sπ

2
)|ξ|s−1ξF(u)(ξ), (4.6)

which means that ∇su is a Fourier multiplier with symbol a(ξ) := 2µ−1
s i sin( sπ

2
)|ξ|s−1ξ.

It is also worth noticing that |a(ξ)| ≈ |ξ|s, which is exactly the symbol of the s/2-
fractional Laplacian (−∆)s/2. This fact is strictly related with the celebrated Kato's square
root problem. See e.g. [AHL+02], where the problem is treated for a more general class of
elliptic operators.

Now we are ready to claim the main statements of this chapter

Theorem 4.1. Let u ∈ BV (I). Then we have that BV (I) ↪→ W s,1
RL,a+(I) for any s ∈ (0, 1),

with

‖u‖W s,1
RL,a+(I) ≤ max

{
1 +

(b− a)−s

Γ(2− s)
,
2(b− a)1−s

Γ(2− s)

}
‖u‖BV (I). (4.7)

In addition
Ds
a+[u]L1 ⇀ Du+ u(a+)δa as s→ 1− in M(I). (4.8)

Proposition 4.2. For any s ∈ (0, 1) and any bounded open interval I, the embedding
W s,1(I) ↪→ W s,1

RL,a+(I) is continuous.

We start with a technical result concerning the action of the fractional integral on
M(I).We notice that in the sequel with the notation

∫ x
a

we refer to the integral on the
open interval (a, x). However, thanks to the nonconcentration properties of Radon measures
µ we have that µ ({x}) = 0 for all but countably many x ∈ (a, b). As a consequence there
would be no ambiguity when integrating Isa+[µ] with respect L1.

Proposition 4.3. Let s ∈ (0, 1). The map Isa+ can be continuously extended to a map from
M(I) into L1(I), by setting

Isa+[µ](x) :=
1

Γ (s)

∫ x

a

dµ(t)

(x− t)1−s .

Then, Isa+ satis�es the following bound:∥∥Isa+[µ]
∥∥
L1(I)

≤ (b− a)s

Γ (1 + s)
|µ|(I), (4.9)

for any µ ∈M(I).



Proof. Since the function (x − t)s−1 is continuous in t ∈ (a, x), for any �xed x ∈ (a, b), we
are allowed to integrate this function against any nonnegative µ ∈M(I). Hence,

Isa+[µ](x) :=
1

Γ (s)

∫ x

a

dµ(t)

(x− t)1−s

is well de�ned for µ ≥ 0. Then, a simple computation similar to the one in Remark 2.14
shows that∥∥Isa+[µ]

∥∥
L1(I)

=

∫ b

a

∣∣Isa+[µ](x)
∣∣ dx =

1

Γ (s)

∫ b

a

∣∣∣∣∫ x

a

dµ(t)

(x− t)1−s

∣∣∣∣ dx =
1

Γ(s)

∫ b

a

∫ x

a

dµ(t)

(x− t)1−s dx

=
1

Γ (s)

∫ b

a

dµ(t)

∫ b

t

dx

(x− t)1−s =
1

sΓ (s)

∫ b

a

(b− t)sdµ(t)

≤ (b− a)s

Γ (1 + s)

∫ b

a

dµ(t) =
(b− a)s

Γ (1 + s)
µ(I).

In the general case of µ ∈ M(I), we consider the Jordan decomposition µ = µ+ − µ− and
we set

Isa+[µ](x) := Isa+[µ+](x)− Isa+[µ−](x) =
1

Γ (s)

∫ x

a

dµ(t)

(x− t)1−s ,

by the linearity of the integral. Therefore one has that, for any µ ∈M(I)∥∥Isa+[µ]
∥∥
L1(I)

≤ 1

Γ(s)

∫ b

a

∫ x

a

d|µ|(t)
(x− t)1−s dx ≤

(b− a)s

Γ (1 + s)
|µ|(I),

which ends the proof.

It is not di�cult to see that 2.16 can be extended to couples of measures and essentially
bounded functions.

Lemma 4.4. Let µ ∈M(I), φ ∈ L∞(I) and s ∈ (0, 1). Then we have∫ b

a

Isa+[µ](x)φ(x) dx =

∫ b

a

Isb−[φ](x) dµ(x). (4.10)

Proof. Notice that, by Proposition 2.18, Isb−[φ] ∈ C0,s(I), so that it is continuous and
bounded, in particular. This implies that the integral in the right hand side of (4.10) is
well de�ned. In addition, notice that∫ b

a

∫ x

a

|φ(x)|
(x− t)1−s d|µ|(t) dx ≤ ‖φ‖L∞(I)

∫ b

a

∫ b

t

(x− t)s−1 dx d|µ|(t)

≤ ‖φ‖L∞(I)
(b− a)s

s
|µ|(I) <∞.

Therefore, we may apply Fubini's theorem, and we obtain∫ b

a

Isa+[µ](x)φ(x) dx =
1

Γ (s)

∫ b

a

∫ x

a

φ(x)
dµ(t)

(x− t)1−s dx =
1

Γ (s)

∫ b

a

∫ b

t

φ(x)

(x− t)1−s dx dµ(t)

=

∫ b

a

Isb−[φ](t) dµ(t).



Now, we focus on formula (2.15). We notice that, as a byproduct of the proof of [BLNT17,
Theorem 3.3], this relation has been already extended to Sobolev functions. In view of this
fact, our goal is to extend it to BV functions; by doing so, we also immediately prove the
inclusion of BV (I) in W s,1

RL,a+(I).

Proposition 4.5. Let u ∈ BV (I). Then, for any s ∈ (0, 1), we have that

Ds
a+[u](x) = I1−s

a+ [Du](x) +
1

Γ (1− s)
u(a+)

(x− a)s
. (4.11)

Proof. By Remark 2.14, we obtain immediately that I1−s
a+ u ∈ L1(I), since u ∈ L1(I). Let us

now assume that u ∈ AC(I). For any x ∈ (a, b), formula (2.15) yields

d

dx
I1−s
a+ [u](x) = I1−s

a+ [u′](x) +
1

Γ (1− s)
u(a)

(x− a)s
.

Now, let u ∈ BV (I) and let ρ ∈ C∞c ((−1, 1)) be a standard molli�er. It is well known that
ρε ∗ ũ ∈ C∞(I) ∩ BV (I), so that ρε ∗ ũ ∈ W 1,1(I) ⊂ AC(I), in particular. Then, for any
φ ∈ C1

c (I) we have∫ b

a

I1−s
a+ [ρε ∗ u]φ′ dx = −

∫ b

a

(
I1−s
a+ [ρε ∗Du] +

1

Γ (1− s)
(ρε ∗ u)(a)

(x− a)s

)
φ dx.

By (2.8), we get ∫ b

a

I1−s
a+ [ρε ∗Du]φ dx =

∫ b

a

I1−s
b− [φ] (ρε ∗Du) dx.

Then, since I1−s
b− [φ] is continuous and bounded by Proposition 2.18, by [AFP00, Proposition

1.62] and (4.10), we get∫ b

a

I1−s
b− [φ] (ρε ∗Du) dx→

∫ b

a

I1−s
b− [φ] dDu =

∫ b

a

φ I1−s
a+ [Du] dx.

On the other hand, we also obtain∫ b

a

I1−s
a+ [ρε ∗ u]φ′ dx =

∫ b

a

(ρε ∗ u) I1−s
b− [φ′] dx

→
∫ b

a

u I1−s
b− [φ′] dx =

∫ b

a

I1−s
a+ [u]φ′ dx,

by (2.8) and Lebesgue's dominated convergence theorem, since I1−s
b− [φ′] ∈ L1(I) and

|ρε ∗ u| ≤ ‖u‖L∞(I) ≤ Ca,b‖u‖BV (I),

by (2.2). Now, since (ρε ∗ u)(a)→ u(a+) by (2.3), and ρε ∗Du ⇀ Du inM(I), we get∫ b

a

I1−s
a+ [u](x)φ′(x) dx = lim

ε→0

∫ b

a

I1−s
a+ [ρε ∗ u](x)φ′(x) dx

= − lim
ε→0

∫ b

a

I1−s
b− [φ](x) (ρε ∗Du)(x) +

1

Γ (1− s)
(ρε ∗ u)(a)

(x− a)s
φ(x) dx

= −
∫ b

a

I1−s
b− [φ](x) dDu(x)− 1

Γ (1− s)

∫ b

a

u(a+)

(x− a)s
φ(x) dx

= −
∫ b

a

(
I1−s
a+ [Du](x) +

1

Γ (1− s)
u(a+)

(x− a)s

)
φ(x) dx,

which yields (4.11).



4.1.1 Proof of Theorem 4.1

Proof of Theorem 4.1. Thanks to Proposition 4.5, if u ∈ BV (I) then Ds
a+u ∈ L1(I), and so

u ∈ W s,1
RL,a+(I), since

∥∥Ds
a+u
∥∥
L1(I)

≤ (b− a)1−s

Γ(2− s)
(|Du|(I) + |u(a+)|)

by (4.9). Then, it is clear that |u(a+)| ≤ ‖u‖L∞(I) and so, thanks to (2.2), we get

‖u‖W s,1
RL,a+(I) = ‖u‖L1(I) +

∥∥Ds
a+u
∥∥
L1(I)

≤ ‖u‖L1(I) +
(b− a)1−s

Γ(2− s)
(|Du|(I) + |u∗(a)|)

≤ ‖u‖L1(I) +
(b− a)1−s

Γ(2− s)

(
|Du|(I) +

1

b− a
‖u‖L1(I) + |Du|(I)

)
=

(
1 +

(b− a)−s

Γ(2− s)

)
‖u‖L1(I) +

2(b− a)1−s

Γ(2− s)
|Du|(I),

which easily implies (4.7) and the continuity of the embedding BV (I) ↪→ W s,1
RL,a+(I). To

prove the second part of the claim, we exploit (4.11) in order to obtain∫ b

a

Ds
a+[u](x)φ(x)dx =

∫ b

a

I1−s
a+ [Du](x)φ(x)dx+

u(a+)

Γ(1− s)

∫ b

a

φ(x)

(x− a)s
dx

=

∫ b

a

I1−s
b− [φ](x)dDu(x)+

+
u(a+)

Γ(2− s)

(
φ(b)(b− a)1−s −

∫ b

a

φ′(x)(x− a)1−sdx

)
,

where I1−s
b− [φ] ∈ C0,s(I), by Proposition 2.18. Therefore, by Lemma 2.17 and Lebesgue's

dominated convergence theorem, we get

lim
s→1−

∫ b

a

Ds
a+[u](x)φ(x)dx =

∫ b

a

φ(x)dDu(x) + u(a+)φ(a).

Then, the claim plainly follows by the density of C1(I) in C(I).

Remark 4.6. We notice that, thanks to [BLNT17, Theorem 4.1], one can alternatively prove
(4.8) by showing only that Ds

a+[uc] ⇀ Duc as s→ 1− inM(I), where uc is the Cantor-type
function such that u = uac + uj + uc. Indeed, if ϕ ∈ C1

c (I), we have that∫ b

a

ϕ(x)Ds
a+[uc](x)dx =

∫ b

a

ϕ(x)I1−s
a+ [Duc](x)dx =

∫ b

a

I1−s
b− [ϕ](x)dDuc(x) =∫ b

a

dDuc(x)

[
1

Γ(2− s)

(
ϕ(b)−

∫ b

x

ϕ′(t)(t− x)1−sdt

)]
,

(4.12)

now, when s→ 1−, the last integral approaches to∫ b

a

ϕ(x)dDuc(x).

Eventually, we conclude using the density of C1
c (I) in Cc(I).



4.2 Marchaud fractional derivative for functions inW s,1(I)

Now, we prove that the Marchaud fractional derivative is well de�ned even if u is merely in
the fractional Sobolev space W s,1(I); this is a key tool in the proof of Proposition 4.2

Lemma 4.7. Let s ∈ (0, 1). If u ∈ W s,1(I), then the Marchaud fractional derivative MDs
a+[u]

is well de�ned and coincide a.e. with Ds
a+[u].

Proof. If u ∈ W s,1(I) ∩ C1(I), formula (2.17) holds true.
Otherwise, if u ∈ W s,1(I), we exploit the density of C1

c (I) in W s,1(I) (see Remark 2.11),
which means that there exists a sequence un in C1

c (I) such that ‖un − u‖W s,1(I) → 0 as
n→ +∞. Now, we prove that, up to a subsequence,

Ds
a+[un](x) =

1

Γ(1− s)
un(x)

(x− a)s
+

s

Γ(1− s)

∫ x

a

un(x)− un(t)

(x− t)s+1
dt

converges pointwise L1-a.e. in I to Ds
a+[u](x).

For the second term in the right hand side, we proceed as follows: we set

fn(x) :=

∫ x

a

un(x)− un(t)− u(x) + u(t)

(x− t)s+1
dt.

The sequence fn converges to 0 in L1(I). Indeed∫ b

a

|fn(x)|dx ≤ [un − u]W s,1(I) ≤ ‖un − u‖W s,1(I) → 0 as n→ +∞.

Therefore, up to a subsequence, fn converges pointwise L1-a.e. to 0 in I, so that

lim
n→+∞

∫ x

a

un(x)− un(t)

(x− t)s+1
dt =

∫ x

a

u(x)− u(t)

(x− t)s+1
dt

for L1-a.e. x ∈ I. Conversely, for the �rst term in the right hand side, up to a subsequence,
we have convergence L1-a.e. in I thanks to the convergence of un to u in W s,1(I) and hence
in L1(I), which implies pointwise convergence L1-a.e., up to a subsequence.

For the L1 convergence, we argue as follows: employing the fractional Hardy inequality
2.9 with n = p = 1 and Ω = (a, b), we get∫ b

a

|un(x)− u(x)|
(x− a)s

dx ≤
∫ b

a

|un(x)− u(x)|
|δI(x)|s

dx ≤ C ‖un − u‖W s,1(I) → 0 as n→ +∞,

where |δI(x)| = min{x − a, b − x}. To conclude, we notice that, for any φ ∈ C1
c (I) it holds

that ∫ b

a

MDs
a+[un](x)φ(x)dx =

∫ b

a

Ds
a+[un](x)φ(x)dx

= −
∫ b

a

I1−s
a+ [un](x)φ′(x)dx→ −

∫ b

a

I1−s
a+ [u](x)φ′(x)dx,

since un → u in L1(I) and I1−s
a+ is continuous from L1(I) to L1(I). On the other hand, we

have just proved that MDs
a+[un]→ MDs

a+[u] in L1(I), and so we conclude∫ b

a

MDs
a+[u](x)φ(x)dx = −

∫ b

a

I1−s
a+ [u](x)φ′(x)dx,

and this implies u ∈ W s,1
RL,a+(I) with MDs

a+[u](x) = Ds
a+[u](x) for a.e. x ∈ I.



Remark 4.8. We notice that Hölder inequality does not work in the last computation, so that
we need to employ the fractional Hardy inequality; indeed, since un − u ∈ W s,1(I), thanks
to fractional Sobolev embedding Theorem (see e.g.[DNPV12, Theorem 6.7.]) we have that
un − u ∈ Lq(I) for any q ∈

[
1, 1

1−s

]
.

Therefore, we get∫ b

a

|un(x)− u(x)|
(x− a)s

dx ≤
(∫ b

a

|un(x)− u(x)|qdx
)1/q (∫ b

a

dx

(x− a)sq′

)1/q′

.

Now, q ≤ 1
1−s , implies sq′ ≥ 1, and so∫ b

a

dx

(x− a)sq′
= +∞,

and thus this estimate is not useful.

4.2.1 Proof of Proposition 4.2

Proof of Proposition 4.2. Since u ∈ L1(I), in particular, we have I1−s
a+ [u] ∈ L1(I) by (4.9)

applied to µ = uL1.
Thanks to Lemma 4.7, we have that the Riemann Liouville fractional derivative of u

coincides with the Marchaud one, and so

Ds
a+[u](x) =

1

Γ(1− s)
u(x)

(x− a)s
+

s

Γ(1− s)

∫ x

a

u(x)− u(t)

(x− t)s+1
dt

For the second right hand side term, it holds that∫ b

a

dx

∣∣∣∣∫ x

a

u(x)− u(t)

(x− t)s+1
dt

∣∣∣∣ ≤ [u]W s,1(I). (4.13)

While for the �rst term, using Lemma 2.9 with n = p = 1, and Ω = (a, b) we have that∫ b

a

|u(x)|
(x− a)s

dx ≤
∫ b

a

|u(x)|
|δI(x)|s

dx ≤ C ‖u‖W s,1(I) . (4.14)

Eventually, using (4.9), (4.13) and (4.14), we obtain that there exists a positive constant
C = C(s, a, b) such that,

‖u‖W s,1
RL,a+(I) ≤ C ‖u‖W s,1(I) .

Actually, the inclusion of Proposition 4.2 is strict, as the following result shows

Proposition 4.9. The space W s,1
RL,a+(I) strictly contains W s,1(I).

Proof. Without loss of generality, let I := (0, 1). We claim that the function u(x) := xs−1 ∈
W s,1
RL,0+(I) \W s,1(I). Clearly, xs−1 ∈ L1(I). Now we prove that u ∈ W s,1

RL,0+(I) \W s,1(I).
Indeed, it is easy to check that

I1−s
0+ [u](x) = Γ(s),



and so I1−s
0+ [u] ∈ W 1,1(I), which shows that u ∈ W s,1

RL,0+(I). Then, we need to prove that the
Gagliardo-Slobodeckij seminorm of u is in�nite. We see that

[u]W s,1(I) :=

∫ 1

0

∫ 1

0

|xs−1 − ys−1|
|x− y|s+1

dx dy = [x = yz] =

∫ 1

0

∫ 1
y

0

|zs−1 − 1|ys−1

|z − 1|s+1ys+1
y dz dy

=

∫ ∞
0

∫ min{1, 1
z}

0

|zs−1 − 1|
|z − 1|s+1y

dy dz

=

∫ 1

0

∫ 1

0

|zs−1 − 1|
|z − 1|s+1y

dy dz +

∫ ∞
1

∫ 1
z

0

|zs−1 − 1|
|z − 1|s+1y

dy dz = +∞,

since 1/y /∈ L1((0, δ)), for any δ > 0.

Remark 4.10. We notice that Proposition 4.2 does not hold for unbounded intervals; indeed,
the functions u(x) := 1

x2 belongs to W 1,1((1,+∞)), therefore u ∈ W 1/2,1((1,+∞)), but we
have that

I
1/2
1+ [u](x) =

1√
π

 log(x) + 2 log
(

1 +
√

x−1
x

)
2x3/2

+

√
x− 1

x

 /∈ L1((1,+∞))

This example says also that the continuity of the fractional integral in Lp(I) for 1 ≤ p ≤ 2
fails if I is an unbounded interval.

Recalling thatW s,1(I) coincides with the Besov space Bs
1,1(I) (see Appendix A.2 for basic

notions on real Interpolation Theory), we can extend Proposition 4.2 as follows

Corollary 4.11. Let 0 < s < r < 1, 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. It holds that the embedding
Br
p,q(I) ↪→ W s,1

RL;a+(I) is continuous.

Proof. It is su�cient to use Proposition 4.2 and Proposition A.6.

Remark 4.12. Unfortunately, Corollary 4.11 does not cover the case r = s for any choice of
p and q. Therefore, in the particular case p = q we are unable to conclude that Proposition 4.2
extends to W s,p(I) for any p > 1. Indeed in [MS15] the authors prove that for 1 ≤ q < p ≤ ∞
and s > 0, s not an integer, W s,p(I) 6⊆ W s,q(I).

It is interesting to notice that some inequalities of Poincarè type hold true in the fractional
context, for which we refer for instance to [Ana09, Chapter 17]. However, in general it is
not possible to retrieve the classical Poincarè inequality by estimating the Lp norm of the
di�erence between u and its average with the Lp norm of its Riemann-Liouville derivative.
To this purpose, given a function u ∈ L1(I), we denote by uI the mean of u on the interval
I; i.e.

uI :=
1

b− a

∫ b

a

u(x)dx.

Now consider for instance u(x) := (x−a)s−1 for x ∈ (a, b) and for some s ∈ (0, 1); we have
that u ∈ Lp(I) if and only if p < 1

1−s , and, by the calculations in the proof of Proposition
4.9, I1−s

a+ [u](x) = Γ(s) and Ds
a+[u](x) = 0 for any x ∈ (a, b), so that u ∈ W s,p

RL,a+(I) for any
p ∈ [1, 1/(1 − s)). Thus, being u not constant, we cannot hope for any sort of Poincaré
inequality.



4.3 The space BV s
RL,a+(I)

In analogy with the previous de�nition of left Riemann-Liouville fractional Sobolev spaces,
we introduce now the natural extension to the BV framework.

De�nition 4.13. Let s ∈ (0, 1). We de�ne the space of functions with left Riemann-Liouville
fractional bounded variation as

BV s
RL,a+ (I) :=

{
u ∈ L1 (I) , I1−s

a+ [u] ∈ BV (I)
}
.

It is easy to see that u belongs to BV s
RL,a+ (I) if and only if there exists a measure

µ ∈M(I) satisfying ∫ b

a

I1−s
a+ [u](x)φ′(x) dx = −

∫ b

a

φ(x) dµ(x)

for any φ ∈ C1
c (I), and we call DI1−s

a+ [u] := µ the weak left Riemann-Liouville s-fractional
derivative.

It is not di�cult to see that the space BV s
RL,a+(I), endowed with the norm

‖u‖BV sRL,a+(I) := ‖u‖L1(I) +
∥∥I1−s

a+ [u]
∥∥
BV (I)

,

is a Banach space.
Arguing analogously as in Lemma 2.29, we derive a duality relation between the left

Riemann-Liouville weak s-fractional derivative and the right Caputo s-fractional derivative.

Corollary 4.14. A function u ∈ L1(I) belongs to BV s
RL,a+(I) if and only if there exists

µ ∈M(I) such that ∫ b

a

u(x) CDs
b−[φ](x) dx =

∫ b

a

φ(x) dµ(x)

for every φ ∈ C1
c (I). In that case, we set DI1−s

a+ [u] := µ.

Remark 4.15. Clearly, if u ∈ W s,p
RL,a+(I) for some p ≥ 1, and s ∈ (0, 1), then u ∈

BV s
RL,a+(I), and Ds

a+[u] = (Ds
a+[u])L1.

4.3.1 Fine properties of functions in BV s
RL,a+(I)

Now, we focus on the decomposition of the measure Ds
a+[u] for functions in BV s

RL,a+(I).
We start with the following

Proposition 4.16. If u ∈ BV (I), then u ∈ BV s
RL,a+(I) and

Ds
a+[u] = (Ds

a+[u])acL1.

Proof. Using Theorem 4.1 and remark 4.15, if u ∈ BV (I), then u ∈ W s,1
RL,a+(I) and so

I1−s
a+ [u] ∈ W 1,1(I) ⊂ BV (I), and this means that the measure Ds

a+[u] is an absolutely
continuous measure with respect to the Lebesgue measure L1, with Ds

a+[u] as density.

In the spirit of Lemma 2.31, we can obtain a version of the Fundamental Theorem of
Calculus for functions in BV s

RL,a+(I).



Lemma 4.17. Let s ∈ (0, 1) and u ∈ BV s
RL,a+(I). Then, for L1-a.e. x ∈ I, we also have

u(x) = Ds
a+[Isa+[u]](x) = Isa+[Dsa+[u]](x) +

I1−s
a+ [u](a)

Γ(s)
(x− a)s−1. (4.15)

In addition, if u ∈ BV s
RL,a+(I)∩ Isa+(L1(I)), then u ∈ W s,1

RL,a+(I)∩ Isa+(L1(I)), I1−s
a+ [u](a) = 0

and (2.28) holds.

Proof. The �rst equality in (4.15) follows immediately from (2.26). The second one can be
proved as (2.27). Indeed, if u ∈ BV s

RL,a+(I), then I1−s
a+ [u] ∈ BV (I) with weak derivative

Dsa+[u]. Therefore, by [AFP00, Theorem 3.28], for L1-a.e. x ∈ I, we get

I1−s
a+ [u](x) =

∫ x

a

dDsa+[u](t) + I1−s
a+ [u](a+)

= I1−s
a+ [Isa+[Dsa+[u]]](x) + I1−s

a+

[
I1−s
a+ [u](a+)

Γ(s)
(· − a)s−1

]
(x)

by (2.18). We notice that Dsa+[u] ∈ M(I), and so, by Proposition 4.3, Isa+[Dsa+[u]] ∈ L1(I).
Thus, it is enough to apply D1−s

a+ to both sides of the equation and use (2.26) to obtain
(4.15). Finally, if u ∈ BV s

RL,a+(I) ∩ Isa+(L1(I)), then, by Lemma 2.30 with p = 1, we have
that u ∈ W s,1

RL,a+(I), I1−s
a+ [u](a) = 0, and so it satis�es the hypotheses for (2.28). This ends

the proof.

Now, we show with a counterexample that the inclusion of BV (I) into BV s
RL,a+(I) is

strict. This fact suggests that, in general, if u ∈ BV s
RL,a+(I) \BV (I), then the measure Ds

a+

is not absolutely continuous with respect L1.

Example 4.18 (BV s
RL,a+(I) strictly contains BV (I)). Let s ∈ (0, 1), J = (c, d) with c, d ∈ R

such that a < c < d < b. We de�ne the following function

u(x) :=


0 if a < x ≤ c
(x− c)s−1

Γ(s)
if c < x ≤ d

0 if d < x < b

(4.16)

It is plain to see that u /∈ BV (I), since u /∈ L∞(I). Now, we compute I1−s
a+ [u](x). Clearly,

when x ∈ (a, c), I1−s
a+ [u](x) = 0, otherwise, for x ∈ J we have that

I1−s
a+ [u](x) =

1

Γ(s)Γ(1− s)

∫ x

c

(t− c)s−1(x− t)−sdt =
1

Γ(s)Γ(1− s)

∫ 1

0

σs−1(1− σ)−sdσ = 1.

Therefore, for any x ∈ I,

I1−s
a+ [u](x) =


0 if x ∈ (a, c]

1 if x ∈ (c, d]

1

Γ(s)Γ(1− s)

∫ d

c

(t− c)s−1(x− t)−sdt if x ∈ (d, b),



which coincides almost everywhere in I with the function χJ(x) + f(x)χ(d,b)(x) ∈ BV (I),
where

f(x) :=
1

Γ(s)Γ(1− s)

∫ d

c

(t− c)s−1(x− t)−sdt ∈ C([d, b)) ∩ C∞((d, b)) ∩ L1((d, b)).

Therefore, I1−s
a+ [u] ∈ BV (I), and hence u ∈ BV s

RL,a+(I) \BV (I).

Remark 4.19. From the previous example, we deduce that if u ∈ BV s
RL,a+(I) \BV (I) then,

the measure Ds
a+[u] can have a jump part; indeed, for the function u given by (4.16), we have

that
Ds
a+[u] = δc − δd + f(d)δd + f ′(x)χ(d,b)L1 = δc + f ′(x)χ(d,b)L1,

where the second equality follows from the fact that f(d) =
1

Γ(s)Γ(1− s)
β(s, 1− s) = 1.

Now, we exhibit an example of u ∈ BV s
RL,a+(I) such that I1−s

a+ [u] ∈ BV (I) \ SBV (I).

Example 4.20. Consider the classical ternary Cantor function C(x), and let I = (0, 1). It
is well known that C ∈ C0,αC (I)∩BV (I), where αC := log3 2, and DC is a singular measure
without atoms which means that DC = (DC)c, in particular up to a multiplicative constant
DC = HαC , see e.g. [AFP00].

Now, since C(0) = 0 using Proposition 2.21, we have that C is representable as the (1−s)-
fractional integral of a function in C0,αC+s−1

0 (I), provided s ∈ (1 − αC , 1), but this implies
that there exists u ∈ C0,αC+s−1

0 (I) such that I1−s
0+ [u](x) = C(x), and so u ∈ BV s

RL,0+(I), with
Ds

0+[u] = DC = (DC)c.

4.4 Action of the fractional integral on Sobolev functions

In this section we analyze the behaviour of the fractional integral when it acts on functions
in the Sobolev space W 1,p(I) for some p ≥ 1. We start with the following statement

Proposition 4.21. Let 1 ≤ p < ∞ and s ∈ (0, 1) such that sp < 1. If u ∈ W 1,p(I), then
I1−s
a+ [u] ∈ W 1,p(I). Moreover, if u(a+) = 0, I1−s

a+ is a continuous operator from W 1,p(I) into
W 1,p(I).

Proof. Thanks to Proposition 2.21, I1−s
a+ [u] ∈ Lp(I), and

∥∥I1−s
a+ [u]

∥∥
Lp(I)

≤ (b− a)1−s

Γ(2− s)
‖u‖Lp(I) . (4.17)

Now, we prove that Ds
a+[u] ∈ Lp(I).

We notice that, u ∈ W 1,p(I) ⊂ BV (I) for any s ∈ (0, 1); hence, using Theorem 4.1, we
have that

Ds
a+[u](x) =

u(a+)

Γ(1− s)
1

(x− a)s
+

1

Γ(1− s)

∫ x

a

u′(t)

(x− t)s
dt,

where u′ denotes the weak derivative of u.
Therefore, we get∫ b

a

|Ds
a+[u](x)|pdx ≤ C1|u(a+)|p

∫ b

a

dx

(x− a)sp
+ C2

∫ b

a

dx

∫ x

a

|u′(t)|p

(x− t)sp
dt.



Now, since sp < 1, the �rst term in the right hand side is �nite. For the second term, we
have that∫ b

a

dx

∫ x

a

|u′(t)|p

(x− t)sp
dt =

∫ b

a

|u′(t)|pdt
∫ b

t

dx

(x− t)sp

= Cs,p

∫ b

a

|u′(t)|p(b− t)1−spdt ≤ Cs,p,a,b ‖u′‖pLp(I) <∞,

therefore ∥∥Ds
a+[u]

∥∥
Lp(I)

≤ C
(
|u(a+)|p + ‖u′‖pLp(I)

)1/p

. (4.18)

Moreover, if u(a+) = 0, summing up (4.17) and (4.18), we have that there exists C > 0 such
that ∥∥I1−s

a+ [u]
∥∥
W 1,p(I)

≤ C ‖u‖W 1,p(I)

for any u ∈ W 1,p(I), and this concludes the proof.

Corollary 4.22. Let 1 ≤ p ≤ q <∞ and r, s ∈ (0, 1) such that sp < 1 and r > s+ 1
p′
, where

p′ denotes the Hölder conjugate of p. Then we have that

W r,q
RL,a+(I) ⊂ W s,p

RL,a+(I).

Proof. Since W r,q
RL,a+(I) ⊆ W r,p

RL,a+(I), we are left to prove that I1−s
a+ [u] ∈ W 1,p(I). We notice

that
I1−s
a+ [u](x) = Ir−sa+ [I1−r

a+ [u]](x) = I1−γ
a+ [v](x),

where v(x) := I1−r
a+ [u](x) and γ := 1−r+s. Thanks to Proposition 4.21, since v ∈ W 1,p(I) we

have that I1−γ
a+ [v] ∈ W 1,p(I) provided γp < 1, and this condition holds since r > s+ 1

p′
.

Remark 4.23. Proposition 4.21 covers the case p =∞ if and only if u(a) = 0; indeed, for
u ∈ W 1,∞(I) with u(a) = 0 we have that

Ds
a+[u](x) =

1

Γ(1− s)

∫ x

a

u′(t)

(x− t)s
dt

and, for any x ∈ I, we have that

|Ds
a+[u](x)| ≤ (b− a)1−s

Γ(2− s)
‖u′‖L∞(I) ,

and so ∥∥I1−s
a+ [u]

∥∥
W 1,∞(I)

≤ (b− a)1−s

Γ(2− s)
‖u‖W 1,∞(I) .

If u(a) 6= 0 we have neither continuous embedding, nor inclusion; consider for instance
I := (0, 1) and u(x) := cos(x) ∈ W 1,∞(I). We have that

Ds
0+[u](x) =

1

Γ(1− s)

(
1

xs
−
∫ x

0

sin(t)

(x− t)s
dt

)
.

Since the �rst term in the right hand side is not bounded when x is close to 0, clearly
Ds

0+[u] /∈ L∞(I).

Remark 4.24. We notice that the continuous embedding given by Corollary 4.22 can be
obtained as a byproduct of [IW13, Theorem 31], which attests that the embedding is compact.



4.4.1 Regulatization properties of the fractional integral and a Sobolev-

type embedding Theorem for functions in W s,p
RL,a+(I).

In this subsection, we want to prove that the fractional integral actually improve the (weak)
di�erentiability of a Sobolev function. To this purpose, we start with a simple remark.

Remark 4.25. Depending on the summability of a Sobolev function u we notice that I1−s
a+

enjoys di�erent improvements in regularity. In particular we distinguish the case p = 1 and
the case p > 1.

1. Case p = 1

If u ∈ W 1,1(I), using Sobolev Embedding Theorem u ∈ Lq(I) for any 1 ≤ q ≤ ∞, and

so, thanks to Proposition 2.18, I1−s
a+ [u] ∈

⋂
q>1/s

C0,s− 1
q (I),

2. Case p > 1

If u ∈ W 1,p(I), again by Sobolev Embedding Theorem, we have that u ∈ C0,1− 1
p (I).

Using Proposition 2.21, for any u ∈ C
0,1− 1

p

0 (I), we have that

• I1−s
a+ [u] ∈ C

0,2−s− 1
p

0 (I) if s+ 1
p
> 1,

• I1−s
a+ [u] ∈ H1,1

0 (I) if s+ 1
p

= 1,

• I1−s
a+ [u] ∈ C

1,1−s− 1
p

0 (I) if s+ 1
p
< 1.

In the third case, follows that Ds
a+[u] ∈ C0,1−s− 1

p (I).

Now, we are able to prove that when we apply the fractional integral I1−s
a+ to a function in

W 1,p
0 (I) for some p > 1, we gain more di�erentiability; this means that the function I1−s

a+ [u]
belongs to a higher order fractional Sobolev space as given by Remark 2.8.

The statement goes as follows

Proposition 4.26. Let p > 1 and s ∈
(

0,min
{

1
p
, p−1

2p

})
. For any u ∈ W 1,p

0 (I), we have

that I1−s
a+ [u] ∈ W s+1,p(I).

Proof. We notice that the conditions sp < 1 and s+ 1
p
< 1 are satis�ed, and so, by Proposition

4.21 and Remark 4.25, I1−s
a+ [u] ∈ W 1,p

0 (I) ∩ C
1,1−s− 1

p

0 (I).
Now, we prove that Ds

a+[u] ∈ W s,p(I). Namely, we have to prove that∫ b

a

∫ b

a

|Ds
a+[u](x)−Ds

a+[u](y)|p

|x− y|sp+1
dxdy <∞.

Now, we use the Hölder continuity of Ds
a+[u] to say that

|Ds
a+[u](x)−Ds

a+[u](y)|p ≤ C|x− y|p−sp−1,

for some C > 0 and for any x, y ∈ I.



Therefore, we have that∫ b

a

∫ b

a

|Ds
a+[u](x)−Ds

a+[u](y)|p

|x− y|sp+1
dxdy ≤ C

∫ b

a

∫ b

a

1

|x− y|2sp−p+2
dxdy,

where the integral in the right hand side converges since s < p−1
2p

.

Corollary 4.27. In the same hypoteses of Proposition 4.26, we have that

u ∈ W s,r
RL,a+(I) for any r ∈

[
1,

p

1− sp

]
Proof. Thanks to the fractional Sobolev Embedding, since sp < 1, we have that Ds

a+[u] ∈
Lr(I) for any r ∈

[
1, p

1−sp

]
, hence I1−s

a+ [u] belongs to W 1,r(I) in the same range for r, and
this completely proves the claim.

Now, we show an analogous of the Sobolev embedding Theorem for Riemann-Liouville
fractional Sobolev spaces. To the knowledge of the authors, this is an original result in this
setting. We refer the reader e.g. [AF03, Chapter 4] for the classical Sobolev embedding
Theorem for Sobolev spaces of integer order or [DNPV12, Theorem 6.7.] for Sobolev spaces
of fractional order.

Theorem 4.28 (Riemann-Liouville fractional Sobolev embedding). Let s ∈ (0, 1), 1 ≤ p ≤
∞ and u ∈ W s,p

RL,a+(I) ∩ Isa+(L1(I)). Then, we have that

(i) If p = 1, u ∈ L
1

1−s ,∞(I), in particular u ∈ Lr(I) for any r ∈ [1, 1
1−s),

(ii) If 1 < p < 1/s, u ∈ Lr(I) for any r ∈ [1, p
1−sp ],

(iii) If sp = 1, u ∈ Lr(I) for any r ∈ [1,+∞),

(iv) If sp > 1, u ∈ C0,β(I) for any β ∈ [0, s− 1
p
].

Proof. Since u ∈ Isa+(L1(I)), thanks to Lemma 2.31 we have that

Isa+[Ds
a+[u]](x) = u(x),

for any x ∈ I, and Ds
a+[u] ∈ Lp(I) since u ∈ W s,p

RL,a+(I). Now, using Proposition 2.18 we
have distinguish among four cases:

• if p = 1, u ∈ Lr(I) for any r ∈ [1, 1/(1− s)),

• if 1 < p < 1/s, u ∈ Lr(I) for any r ∈ [1, p
1−sp ],

• if sp = 1 u ∈ Lr(I) for any r ∈ [1,+∞),

• if sp > 1, u ∈ C0,β(I) for any β ∈ [0, s− 1
p
],

and this concludes the proof.

Remark 4.29. It is worth noticing that cases (i) and (iii) in Theorem 4.28 are sharp, as
shown in Appendix A.4.



Remark 4.30. We notice that if we skip the L1-representability hypotesis, it holds that for
any x ∈ I

u(x) = Isa+[Ds
a+[u]](x) +

I1−s
a+ [u](a)

Γ(s)
(x− a)s−1.

Therefore, if u ∈ W s,p
RL,a+(I) for some p ∈ [1, 1/s), we have that u ∈ Lr(I) for any r ∈ [1, 1

1−s).

This means that we gain summability if and only if s ∈ [1
2
, 1). Indeed, if s ∈ [1/2, 1), we

have that u ∈ Lr(I) even when r ∈
(
p, 1

1−s

)
⊇ (p, 1

s
). In the cases sp = 1 and sp > 1 we

have neither more regularity nor more summability for the presence of the second term in
the right-hand side.

4.5 Higher order fractional derivatives

In this last section, we point out that some of the results presented in the chapter can be
extended to higher order fractional derivatives

De�nition 4.31. Let k ∈ N, s ∈ (k− 1, k) and u such that the fractional integral Ik−sa+ [u] is
su�ciently smooth; we de�ne the Riemann Liouville fractional derivatives of u as

Ds
a+[u](x) :=

dk

dxk
Ik−sa+ [u](x).

Ds
b−[u](x) := (−1)k

dk

dxk
Ik−sb− [u](x).

From this de�nition, for u su�ciently smooth, we immediately obtain a de�nition for
higher order Caputo fractional derivatives

CDs
a+[u](x) = Ds

a+[u](x)−
k−1∑
j=0

u(j)(a)

Γ(j − s+ 1)
(x− a)j−s =

1

Γ(k − s)

∫ x

a

u(k)(t)

(x− t)s−k+1
dt

and

CDs
b−[u](x) = Ds

b−[u](x)−
k−1∑
j=0

(−1)j
u(j)(b)

Γ(j − s+ 1)
(b− x)j−s =

(−1)k

Γ(k − s)

∫ b

x

u(k)(t)

(t− x)s−k+1
dt.

These higher order fractional derivatives allow to de�ne, for p ≥ 1, k ∈ N and s ∈ (k− 1, k),
higher order Riemann-Liouville fractional Sobolev spaces, which are given by functions u ∈
W k−1,p(I) such that Ik−sa+ [u] ∈ W k,p(I).

Proposition 4.32 (Continuity of the fractional integral in higher order Sobolev spaces).
Let k ≥ 2, 1 ≤ p < ∞ and s ∈ (k − 1, k − 1 + 1

p
). Then, if u ∈ W k,p(I) and u(a∗) =

u′(a∗) = . . . = u(k−2)(a∗) = 0, then we have that Ik−sa+ [u] ∈ W k,p(I). Moreover, if in addition
u(k−1)(a∗) = 0, the operator Ik−sa+ : W k,p(I)→ W k,p(I) is continuous.

Proof. Using the representation formula obtained via iterated integrations by parts

Ik−sa+ [u](x) =
1

Γ(k − s)

(
cs,k,k

∫ x

a

u(k)(t)(x− t)2k−s−1dt+
k−1∑
i=0

cs,k,iu
(i)(a)(x− a)k−s+i

)
,

(4.19)



where

cs,k,h :=

1 if h = 0(∏h−1
l=0 (k − s+ l)

)−1

if h ≥ 1,
,

it is an easy task to check that this function has all the derivatives up to order k in Lp(I)
if and only if u vanishes in a with all its derivatives up to order k − 2. Furthermore, if
u(k−1)(a) = 0, the second term in the right-hand side of (4.19) completely vanishes and
hence we have that

∥∥Ik−sa+ [u]
∥∥
Wk,p(I)

=
k∑
i=0

∥∥(Ik−sa+ [u])(i)
∥∥
Lp(I)

≤
k∑
i=0

C
∥∥u(k)

∥∥
Lp(I)

≤ C ′ ‖u‖Wk,p(I)

Remark 4.33. The case k = 1 is covered by Proposition 4.21, where a homogeneous initial
condition is not necessary to prove that I1−s

a+ (W 1,p(I)) is a vector subspace of W 1,p(I), but
only for the continuity of the (1− s)-fractional integral.

Remark 4.34. As stated in Remark 4.23 when k = 1, the same counterexample says us
that in the case p =∞ homogeneous conditions in the initial point for all the derivatives up
to order k − 1 are necessary also for the inclusion as vector subspace of Ik−sa+ (W k,∞(I)) into
W k,∞(I).

The introduction of higher order Riemann-Liouville fractional Sobolev spaces allows us to
prove the following proposition involving the space BH(I) := {u ∈ W 1,1(I) |u′ ∈ BV (I)},
which is usually known as the space of functions with bounded Hessian in I. Originally
introduced in [Dem84], BH is the natural setting for second order variational problems with
linear growth (see e.g. [CLT04] for applications in image analysis).

Proposition 4.35. Let u ∈ BH0(I), then u ∈ W s,1
RL,a+(I) for any s ∈ (1, 2).

Proof. By de�nition u ∈ W 1,1(I) and u′ ∈ BV (I); thanks to Theorem 4.1, we have that
u′ ∈ W σ,1

RL,a+(I) for any σ ∈ (0, 1), therefore I1−σ
a+ [u′] = CDσ

a+[u] ∈ W 1,1(I). Now, since
u(a) = 0, we have that CDσ

a+[u](x) = Dσ
a+[u](x) for any x ∈ I, but this implies that

I1−σ
a+ [u] ∈ W 2,1(I) for any σ ∈ (0, 1). Now, if we set σ := s − 1 for s ∈ (1, 2), the claim
plainly follows.

4.6 Open Problems

As remarked by Remark 4.12 we are not able to prove (or disprove) that for s ∈ (0, 1) and
p > 1 the inclusion

W s,p(I) ⊆ W s,p
RL,a+(I),

holds. We conjecture that, if this were true, the condition sp < 1 should be imposed; indeed,
if sp < 1 thanks to Remark 2.11 the set C1

c (I) is dense inW s,p(I); therefore, �rstly one should
be able to prove an analogous of Lemma 4.7 for functions in W s,p(I), and once proved that

Ds
a+[u](x) =

1

Γ(1− s)
u(x)

(x− a)s
+

s

Γ(1− s)

∫ x

a

u(x)− u(t)

(x− t)s+1
dt,



one could be estimate the Lp norm of the �rst term in the right-hand side thanks to the
fractional Hardy inequality 2.9, but we do not know how to handle the second term. Indeed,
one has that∫ b

a

dx

∣∣∣∣∫ x

a

u(x)− u(t)

(x− t)s+1
dt

∣∣∣∣p ≤ ∫ b

a

dx

∫ x

a

|u(x)− u(t)|p

|x− t|sp+p
dt = J1 + J2,

where

J1 :=

∫ b

a

dx

∫ min{b,x−1}

max{a,x+1}

|u(x)− u(t)|p

|x− t|sp+p
dt

and

J2 :=

∫ b

a

dx

∫ min{b,x+1}

max{a,x−1}

|u(x)− u(t)|p

|x− t|sp+p
dt.

For J1 we have that

J1 ≤
∫ b

a

dx

∫ min{b,x−1}

max{a,x+1}

|u(x)− u(t)|p

|x− t|sp+1
dt ≤ [u]pW s,p(I),

but we are not able to prove (or disprove) an estimate of the form

J2 ≤ C[u]pW s,p(I),

or the weaker one
J2 ≤ C ‖u‖pW s,p(I) ,

for some C > 0.



Chapter 5

Local minimizers for nonlocal perimeters

in Carnot Groups

5.1 Introduction and main results

In this chapter we study a minimization problem in a sub-Riemannian setting; in particular
we will work in a Carnot Group.

We notice that variational problems in sub-Riemannian geometry are treated e.g. in
[BF03,BLU07,CMS04,FS06].

In the �rst section, after an introduction of the framework, we present the main result of
the paper; namely, the local minimality of halfspaces for nonlocal perimeters.

In the second section we introduce the notion of calibrations, which is analogous of the
one given in the euclidean setting by [Cab19], [Pag19] and we proceed towards the proof of
Theorem 5.2.

In the third section, we study the rescaled limit of our functional. Namely, following the
results in [BP19] with appropriate modi�cations we prove that the horizontal perimeter with
a given density bounds from below the Γ− lim inf of the rescaled sequence 1

ε
JKε(Eε,Ω).

Γ-convergence of nonlocal perimeters in Rn has been treated e.g. in [ADPM11, BP19,
Pag19]; in particular in the �rst work, the authors deal with the nonlocal perimeter of
a measurable set in the whole of Rn obtaining a Γ-convergence result via a polyhedral
approximation; in our setting this approximation could be made by an identi�cation of the
Group with the euclidean space via exponential coordinates, but in this way we would lose
informations on the intrinsic geometry of the Group. See Section A.5 in the Appendix.

In the fourth section we prove that our main results hold even for functionals depending
on the sub-Riemannian heat kernel.

We conclude with some open questions.
Now we are ready to introduce our framework.
Let G be a Carnot group with homogeneous dimension Q as de�ned in Chapter 2 and

denote by ‖ · ‖ a symmetric and homogeneous norm on G. Let K : G→ R be such that

K ≥ 0 inG, (5.1)

K(ξ−1) = K(ξ) for any ξ ∈ G, (5.2)∫
G

min{1, ‖x‖}K(x) dx < +∞. (5.3)
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De�ne also for every measurable function u : G → [0,+∞] and every measurable set
Ω ⊆ G the functional

JK(u; Ω) :=
1

2

∫
Ω

∫
Ω

K(y−1x)|u(y)− u(x)| dydx+

∫
Ω

∫
Ωc
K(y−1x)|u(y)− u(x)| dydx

=
1

2
J1
K(u; Ω) + J2

K(u; Ω).

(5.4)

Moreover, for A, B measurable sets, we de�ne the interaction between A and B driven
by the kernel K as

LK(A,B) :=

∫
B

∫
A

K(y−1x)dydx. (5.5)

Notice that if u = χE for some measurable set E, we also set PK(E; Ω) := JK(χE; Ω),
and we have that

PK(E; Ω) = LK(Ec ∩ Ω, E ∩ Ω) + LK(Ec ∩ Ω, E ∩ Ωc) + LK(E ∩ Ω, Ec ∩ Ωc);

in particular, if Ω = G
PK(E,G) = LK(E,Ec).

Remark 5.1. For every measurable set E ⊆ G we notice that PK(E; Ω) can also be written
as

PK(E; Ω) =
1

2

∫
(G×G)\(Ωc×Ωc)

|χE(y)− χE(x)|K(y−1x) dx dy. (5.6)

Indeed we can write∫
(G×G)\(Ωc×Ωc)

|χE(y)− χE(x)|K(y−1x) dx dy =

∫
(G×G)\(Ωc×Ωc)

|χE(y)− χE(x)|2K(y−1x) dx dy

=

∫
(G×G)\(Ωc×Ωc)

(χE(y)− χE(y)χE(x))K(y−1x) dx dy

+

∫
(G×G)\(Ωc×Ωc)

(χE(x)− χE(y)χE(x))K(y−1x) dx dy

=2

∫
(G×G)\(Ωc×Ωc)

χE(x)χEc(y)K(y−1x) dx dy

=2LK(Ec ∩ Ω, E ∩ Ω) + 2LK(Ec ∩ Ω, E ∩ Ωc) + 2LK(E ∩ Ω;Ec ∩ Ωc)

=2PK(E; Ω).

When G is the Euclidean space Rn for some n ∈ N, a typical example of radial kernel
satisfying (5.3) is given by the fractional kernel K(x) = |x|−n−α, for some α ∈ (0, 1). We
refer e.g. to [Val13] where applications to phase transition problems are also treated.

For any ε > 0, we de�ne the rescaled kernel Kε as

Kε(x) :=
1

εQ
K(δ1/εx),

and we introduce the functionals Jε and Lε accordingly as J and L by replacing K with Kε.
Our main Theorem goes as follows

Theorem 5.2. Let H be a vertical halfspace and denote by B := B(0, 1). Then

JK(χH ;B) ≤ JK(v;B),

for every measurable v : G → [0, 1] such that v = χH almost everywhere on Bc. Moreover,
if u : G → [0, 1] is such that u = χH almost everywhere on Bc and JK(u;B) ≤ JK(χH ;B),
then u = χH almost everywhere on G.



5.2 Calibrations

In order to prove Theorem 5.2 we adapt the notion of nonlocal calibration given in [Pag19]
in the euclidean setting. We notice that in [Cab19] a notion of calibration for nonlocal
functionals is also given; in particular, the author proves that in presence of a foliation1

made of sub and super solution of the nonlocal mean curvature �ow

HK [E] = 0,

where the nonlocal mean curvature is given by

HK [E](x) := lim
ε→0

∫
Rn\Bε(x)

(χEc(y)− χE(y))K(x− y)dy, (5.7)

a calibration for the nonlocal perimeter is available and, as in the local case, we can prove
the minimality of each leaf of the foliation for its own boundary datum.

De�nition 5.3. Let u : G→ [0, 1] and ζ : G×G→ [−1, 1] be measurable functions. We say
that ζ is a calibration for u if the following two facts hold.

(i) The map Fε(p) =
∫
G\B(p,ε)

K(y−1p)(ζ(y, p)− ζ(p, y)) dy is such that

lim
ε→0
‖Fε‖L1(Ω) = 0. (5.8)

(ii) for almost every (p, q) ∈ G×G such that u(p) 6= u(q) one has

ζ(p, q)(u(q)− u(p)) = |u(q)− u(p)|. (5.9)

Remark 5.4. If ζ : G × G → [−1, 1] is a calibration for u : G → [0, 1], then also the anti-

symmetric function ζ̂(p, q) := 1
2
(ζ(p, q)− ζ(q, p)) is a calibration for u.

The proof of the following theorem follows closely the proof of [Pag19, Theorem 2.3].

Theorem 5.5. Let E0 ⊆ G be a measurable set such that JK(χE0 ; Ω) < +∞ and de�ne

F := {v : G→ [0, 1] measurable | v = χE0 on Ωc}.

Let u ∈ F and let ζ : G×G→ [−1, 1] be a calibration for u. Then

JK(u; Ω) ≤ JK(v; Ω),

for every v ∈ F . Moreover, if ũ ∈ F is such that JK(ũ; Ω) ≤ JK(u; Ω), then ζ is a calibration
for ũ.

1If Ω ⊂ Rn is a bounded open set and E is a measurable set, we say that Ω is foliated by sub and super
solutions adapted to E whenever there exists a measurable function φE : Rn → R such that

(i) E = {φE(x) > 0} up to Ln-negligible sets,

(ii) The limit in (5.7) exists for a.e. x ∈ Ω and the sequence indiced by ε given by the integrals in the
right-hand side of (5.7) converge in L1(Ω) to HK [φE ], as ε→ 0+,

(iii) HK [φE ](x) ≤ 0 for a.e. x ∈ Ω ∩ E and HK [φE ](x) ≥ 0 for a.e. x ∈ Ω \ E.



Proof. We can assume without loss of generality that JK(v; Ω) < +∞ for every v ∈ F . Since
|v(y)− v(x)| ≥ ζ(x, y)(v(y)− v(x)) we can write for any v ∈ F

JK(v; Ω) ≥ a(v)− b1(v) + b0,

where a, b1 and b0 are respectively de�ned by

a(v) :=
1

2

∫
Ω

∫
Ω

K(y−1x)ζ(x, y)(v(y)− v(x)) dydx,

b1(v) :=

∫
Ω

∫
Ωc
K(y−1x)ζ(x, y)v(x) dydx,

b0 :=

∫
Ω

∫
Ωc
K(y−1x)ζ(x, y)χE0(y) dydx.

By (5.9), we notice that JK(u; Ω) = a(u) − b1(u) + b0. It is then enough to prove that, for
every v ∈ F , one has a(v) = b1(v). By Remark 5.4, we can assume that ζ is antisymmetric.
Combining this with the fact that K(ξ−1) = K(ξ), we easily get

a(v) = −
∫

Ω

∫
Ω

K(y−1x)ζ(x, y)v(x) dydx. (5.10)

By (5.8), for almost every x ∈ Ω, we have

lim
r→0

∫
B(x,r)c

K(y−1x)ζ(x, y) dy =

lim
r→0

∫
B(x,r)c∩Ω

K(y−1x)ζ(x, y) dy +

∫
Ωc
K(y−1x)ζ(x, y) dydx = 0.

Implementing this identity in (5.10) and using the dominated convergence theorem, we get

a(v) = −
∫

Ω

∫
Ω

K(y−1x)ζ(x, y)v(x) dydx

= − lim
r→0

∫
Ω

∫
B(x,r)c∩Ω

K(y−1x)ζ(x, y)v(x) dydx

=

∫
Ω

∫
Ωc
K(y−1x)ζ(x, y)v(x) dydx = b1(v).

We are left to prove that if ũ ∈ F is such that JK(ũ; Ω) ≤ JK(u; Ω), then ζ is a calibration
for ũ. Since u = ũ on Ωc we get

ζ(x, y)(ũ(y)− ũ(x)) = |ũ(y)− ũ(x)|, (5.11)

for almost every (x, y) ∈ Ωc × Ωc satisfying u(x) 6= u(y). Since JK(ũ; Ω) = b0, we also have
that JK(ũ; Ω) = a(ũ)− b1(ũ) + b0. This implies that

1

2

∫
Ω

∫
Ω

K(y−1x) (|ũ(y)− ũ(x)| − ζ(x, y)(ũ(y)− ũ(x))) dydx

+

∫
Ω

∫
Ωc
K(y−1x) (|ũ(y)− ũ(x)| − ζ(x, y)(ũ(y)− ũ(x))) dydx = 0.

Since both integrands are positive, we get that (5.11) holds true for almost every (x, y) ∈
Ω×G with ũ(x) 6= ũ(y). To get (5.11) for almost every (x, y) ∈ Ωc × Ω it is enough to use
the antisymmetry of ζ.



Proposition 5.6. For any ν ∈ g1 \ {0}, the map ζν : G×G→ [0, 1] de�ned by

ζν(x, y) := sign
(
〈π1 log(x−1y), ν〉

)
,

is a calibration for χHν .

Proof. Denote for shortness H = Hν and ζ = ζν . Let us �rst prove property (ii) of De�nition
5.3, namely that for almost every (x, y) ∈ G×G with χH(x) 6= χH(y) one has

ζ(x, y)(χH(y)− χH(x)) = |χH(y)− χH(x)|.

It is not restrictive to assume that x ∈ H and y ∈ Hc. Then we just observe that

〈π1 log(x−1y), ν〉 = −〈π1 log x, ν〉+ 〈π1 log y, ν〉 < 0.

Concerning property (i) of De�nition 5.3 we observe that for every r > 0 and every x ∈ G
one has ∫

G\B(x,r)

K(y−1x)
(
sign(〈π1 log(x−1y), ν〉)− sign(〈π1 log(y−1x), ν〉)

)
dy

= 2

∫
G\B(x,r)∩xH

K(y−1x) dy − 2

∫
G\B(x,r)∩xHc

K(y−1x) dy

= 2

∫
G\B(0,r)∩H

K(z) dz − 2

∫
G\B(0,r)∩Hc

K(z) dz = 0.

The last identity comes from the fact that HQ({x ∈ G : 〈π1 log x, ν〉 = 0}) = 0, K(x−1) =
K(x) and the inversion ξ 7→ ξ−1 preserves the volume and maps H onto Hc (up to sets of
measure zero).

5.2.1 Proof of Theorem 5.2

Proof. By Proposition 5.6 and Theorem 5.5 we only have to show that minimizers are unique
(up to sets of measure zero). Let ν ∈ g1 \ {0} be such that H = Hν and let u : G→ [0, 1] be
such that u = χH almost everywhere on Bc and JK(u;B) ≤ JK(χH ;B). Consider the map
ζ(x, y) = sign(〈π1 log(x−1y), ν〉) which is a calibration of χH . By Theorem 5.5, ζ is also a
calibration for u. Let N ⊆ G×G be a set of HQ ⊗HQ-measure zero such that

sign(〈π1 log(x−1y), ν〉)(u(y)− u(x)) = |u(y)− u(x)|, for every (x, y) ∈ N c. (5.12)

We now prove that (5.12) holds indeed for every (x, y) ∈ G×G. Consider a radial function
ρ : G→ [0,+∞) with compact support in B(0, 1) and such that

∫
B(0,1)

ρ dHQ = 1. For every
ε > 0, consider the family ρε(x) = 1

εQ
ρ(δ1/εx) and de�ne

uε(x) = u ∗ ρε(x) =

∫
G
u(ξ−1x)ρε(ξ) dξ.

Then, for every (x, y) ∈ G×G one has

uε(y)− uε(x) =

∫
G

∫
G
ρε(ξ)ρε(η)

(
u(η−1y)− u(ξ−1x)

)
dηdξ

=

∫
B(0,ε)×B(0,ε)

ρε(ξ)ρε(η)
(
u(η−1y)− u(ξ−1x)

)
dηdξ.



Assume without loss of generality that 〈π1 log(x−1y), ν〉 > 0. Then, for ε > 0 small enough,
we also have that

〈π1 log(x−1ξη−1y), ν〉 > 0

for almost every ξ, η ∈ B(0, ε) . By (5.12), we therefore obtain that u(η−1y)− u(ξ−1x) > 0,
for almost every ξ, η ∈ B(0, ε), and this implies uε(y)− uε(x) > 0. Letting ε→ 0, we obtain
the implication

〈π1 log(x−1y), ν〉 > 0⇒ u(y) ≥ u(x)

for every (x, y) ∈ G × G. For every t ∈ (0, 1), de�ne the set Et := {ξ ∈ G : u(ξ) > t}.
For every (x, y) ∈ Et × Ec

t one has u(x) > u(y) and therefore 〈π1 log x, ν〉 ≥ 〈π1 log y, ν〉.
By Dedekind's Theorem, for every t ∈ (0, 1), there exists λt ∈ R such that Et ⊆ {ξ ∈ G :
〈π1 log ξ, ν〉 ≥ λt} and Ec

t ⊆ {ξ ∈ G : 〈π1 log ξ, ν〉 ≤ λt}.
This implies that for all t ∈ (0, 1) one has

HQ(Et∆{ξ ∈ G : 〈π1 log ξ, ν〉 ≥ λt}) = 0.

Combining this with the fact that u = χH almost everywhere on Bc, we get that λt = 0 for
every t ∈ (0, 1), and therefore

HQ(Et∆H) = 0,

for every t ∈ (0, 1). Consider now a sequence (tj) in (0, 1) that converges to 0 as j → +∞.
Since u has values in [0, 1], we get

{ξ ∈ G : u(ξ) ≤ 0} = {ξ ∈ G : u(ξ) = 0} =
⋂
j∈N

Ec
tj
,

and similarly
{ξ ∈ G : u(ξ) = 1} =

⋂
j∈N

E1−tj .

The proof is completed by observing that the identities HQ({ξ ∈ G : u(ξ) = 0}∆Hc) = 0
and HQ({ξ ∈ G : u(ξ) = 1}∆H) = 0 hold.

Proposition 5.7. Let Ω be an open set and let u ∈ BVG(Ω). Let p ∈ Ω, let r > 0 be such
that B(p, 2r) ⊆ Ω and let g ∈ B(0, r). Then∫

B(p,r)

|u(x · g)− u(x)| dx ≤ d(0, g)|DXu|(Ω).

Proof. Fix a basis (X1, . . . , Xm) and assume without loss of generality that u ∈ C∞(Ω). Let
ε > 0 and let γ : [0, 1]→ G be a horizontal curve satisfying

γ(0) = 0, γ(1) = g and γ̇(t) =
m∑
i=1

hi(t)Xi(γ(t)) for a. e. t ∈ [0, 1],

where (h1, . . . , hm) ∈ L∞([0, 1];Rm) with ‖(h1, . . . , hm)‖∞ ≤ d(g, 0) + ε. Notice that, for
every x ∈ G, the curve γx : [0, 1] → G de�ned by γx(t) = x · γ(t) is horizontal, joins x and
x · g, and ‖γ̇x‖∞ = ‖(h1, . . . , hm)‖∞. Therefore, for any x ∈ B(p, r), one has

|u(x · g)− u(x)| =
∣∣∣∣∫ 1

0

d

dt
u(γx(t)) dt

∣∣∣∣ ≤ (d(g, 0) + ε)

∫ 1

0

‖∇Xu(γx(t))‖ dt.



Integrating both sides on B(p, r) we get∫
B(p,r)

|u(x · g)− u(x)| dx ≤ (d(g, 0) + ε)

∫
B(p,r)

∫ 1

0

‖∇Xu (x · γ(t)) ‖ dt dx,

and exchanging the order of integration we get∫
B(p,r)

|u(x · g)− u(x)| dx ≤ (d(g, 0) + ε)

∫ 1

0

∫
B(p,2r)

‖∇Xu(ξ)‖ dξ dt.

Notice that in the last inequality we have used that d(x · γ(t), p) ≤ 2r, for almost every
t ∈ [0, 1]. Indeed, by the triangular inequality and the assumption on g, one has

d(x · γ(t), p) ≤ d(x · γ(t), x) + d(x, p) = d(γ(t), 0) + d(x, p) ≤ r + r = 2r.

Finally, since B(p, 2r) ⊆ Ω one gets∫
B(p,r)

|u(x · g)− u(x)| dx ≤ (d(g, 0) + ε)

∫ 1

0

|DXu|(B(p, 2r)) dt

≤ (d(g, 0) + ε) |DXu|(Ω).

By the arbitrariness of ε, the proof is complete.

Before proving the following proposition we introduce the notation

C(K) :=

∫
G
K(ξ)d(ξ, 0) dξ.

Proposition 5.8. Let E,F ⊆ G be measurable sets. Then the following facts hold.

(i) If N ⊆ G is a set of �nite perimeter in G such that E ⊆ N and F ⊆ N c, then

lim sup
ε→0

1

ε
Lε(E,F ) ≤ C(K)

2
P (N ;G).

(ii) If d(E,F ) > 0 and C(K) < +∞ then,

lim
ε→0

1

ε
Lε(E,F ) = 0.

(iii) If µ(F ) < +∞ and d(E;F ) > 0, then

lim
ε→0

Lε(E,F ) = 0.

Proof. (i) By a change of variable formula and Proposition 5.7 we have

1

ε
Lε(E,F ) ≤ 1

ε

∫
N

∫
Nc

1

εQ
K(δ1/ε(y

−1x)) dydx

=
1

2ε

∫
G

∫
G
K(g)|χN(xδεg)− χN(x)| dgdx

≤ 1

2
P (N ;G)

∫
G
K(g)d(g, 0) dg.



(ii) Denote by η := min{1, d(E,F )} > 0. Again by a change of variable formula, we can
write

1

ε
Lε(E,F ) ≤ 1

ηε

∫
E

∫
F

Kε(y
−1x) min{1, d(y, x)} dxdy

=
1

η

∫
E

∫
G
K(g) min{1, d(g, 0)}χF (yδεg) dgdy.

By noticing that χF (yδεg) converges to 0 as ε→ 0, for almost every y ∈ E, we conclude the
proof by means of the Dominated Convergence Theorem.
(iii). By de�nition of Lε and by a change of variable formula, we have

Lε(E,F ) =
1

εQ

∫
E

∫
F

K(δ1/ε(y
−1x)) dydx = εQ

∫
δ1/εE

∫
δ1/εF

K(y−1x) dydx

Denoting by η := d(E,F ) > 0 and by F r := {x ∈ G : d(x, F ) ≥ r}, for any positive r, we
notice that δ1/εE ⊆ δ1/εF

η/ε and therefore

Lε(E,F ) ≤ εQ
∫
δ1/εF

η/ε

∫
δ1/εF

K(y−1x) dydx = εQµ(δ1/εF )

∫
B(0,ε−1η)c

K(ξ) dξ

= µ(F )

∫
B(0,ε−1η)c

K(ξ) dξ.

The thesis then follows by (5.3).

The following Theorem provides a compactness criterion in L1(Ω) for our functional with
a geometrical prescription on the domain Ω; namely we require that Ω is a John domain, a
condition that generalize the cone condition treated e.g. in [AF03]. We put o� the reader to
de�nition A.12. Before we state it, we remark the validity of the following fact, whose proof
is an immediate calculation.

Lemma 5.9. Let G ∈ L1(G) be a positive function. Then, for any u ∈ L∞(G) it holds that∫
G×G

(G ∗G)(y)|u(x · y)− u(x)| dydx ≤ 2 ‖G‖L1(G) JG(u,G).

In particular, if we choose u = χE we have∫
G×G

(G ∗G)(y)|χE(x · y)− χE(x)| dydx ≤ 4 ‖G‖L1(G) PG(E,G).

Theorem 5.10. Let Ω ⊆ G be an open John domain with �nite measure, let (εn) be an
in�nitesimal sequence of positive numbers and let (En) be a sequence of measurable sets in
Ω. Assume that Ω is a John domain and that there exists C > 0 such that

1

εn
Jεn(En,Ω) ≤ C, ∀n ∈ N. (5.13)

Then, there exist a subsequence (Enk) of (En) and a set E of �nite perimeter in Ω such that
(Enk) converges to E in L1(Ω).



Proof. We write Eε in place of En, to avoid inconvenient notation. Let ϕ be a positive
function in C∞c (G) \ {0} and de�ne for every ε > 0 the map

ϕε(x) :=
1

εQ
∫
G ϕ(ξ) dξ

ϕ(δ1/εx),

and consequently set vε := ϕε ∗ χEε . We can therefore estimate∫
G
|vε(ξ)− χEε(ξ)| dξ ≤

∫
G

∫
G
ϕε(η

−1ξ)|χEε(η)− χEε(ξ)| dηdξ

=

∫
G

∫
G
ϕε(ξ)|χEε(ηξ)− χEε(η)| dηdξ.

(5.14)

Reasoning in a similar way on the horizontal gradient of vε we get∫
G
|∇Gvε(ξ)| dξ =

∫
G

∣∣∣∣∫
G
∇Gϕε(η

−1ξ)χEε(η) dη

∣∣∣∣ dξ
≤
∫
G

∫
G
|∇Gϕε(η

−1ξ)||χEε(η)− χEε(ξ)| dηdξ

+

∫
G
χEε(ξ)

∣∣∣∣∫
G

∇Gϕε(η
−1ξ) dη

∣∣∣∣ dξ
=

∫
G

∫
G
|∇Gϕε(ξ)||χEε(ηξ)− χEε(η)| dηdξ.

(5.15)

De�ne the map

T (s) :=

{
s if |s| ≤ 1,
1 otherwise,

and consider the truncated kernel G := T ◦ min{1, d(·, 0)}K. We notice that G ≥ 0 and,
since G ∈ L1(G)∩L∞(G), the map G∗G is continuous. This is a consequence of the estimate

|(G ∗G)(p)− (G ∗G)(q)| ≤ ‖G‖∞‖τp−1qG−G‖1,

and the Dominated Convergence Theorem. We now choose a positive ϕ ∈ C∞c (G)\{0} such
that

ϕ ≤ G ∗G and |∇Gϕ| ≤ G ∗G.
Setting Gε(ξ) := ε−QG(δ1/εξ), and taking (5.14) and (5.15) into account we obtain∫

G
|vε(ξ)− χEε(ξ)| dξ ≤

∫
G

∫
G

(Gε ∗Gε)(ξ)|χEε(ηξ)− χEε(η)| dηdξ, (5.16)

and ∫
G
|∇Gvε(ξ)| dξ ≤

1

ε

∫
G

∫
G

(Gε ∗Gε)(ξ)|χEε(ηξ)− χEε(η)| dηdξ, (5.17)

where the last inequality comes from the fact that

(∇Gϕε)(ξ) =
1

εQ+1
(∇Gϕ)(δ1/εξ),

and that
(Gε ∗Gε)(ξ) =

1

εQ
(G ∗G)(δ1/εξ).



By applying Lemma 5.9, we then have∫
G

∫
G

(Gε ∗Gε)(ξ)|χEε(ηξ)− χEε(η)| dηdξ ≤ 4‖G‖1PGε(Eε)

≤ 4‖G‖1PKε(Eε) = 4‖G‖1

(
1

2
J1
ε (Eε,Ω) + J2

ε (Eε,Ω)

)
= 4‖G‖1Jε(Eε; Ω).

Condition (5.13) then gives M > 0 such that

1

ε

∫
G

∫
G

(Gε ∗Gε)(ξ)|χEε(ηξ)− χEε(η)| dηdξ ≤M‖G‖1.

Since Ω has �nite measure, the estimates (5.16) and (5.17) imply that (vε) is equibounded in
W 1,1

G (Ω) and therefore, since Ω is a John domain, by Theorem A.13, up to subsequences, vε
converges in L1(Ω) to some w. We moreover observe that (5.16) also tells us that w = χE for
some E with �nite measure in Ω. Inequality (5.17) together with the lower semicontinuity
of the total variation implies that E has �nite perimeter in Ω.

Remark 5.11. In case Ω has �nite perimeter and the stronger integrability condition∫
G
K(x)d(x, 0) dx < +∞ (5.18)

is satis�ed, Theorem 5.10 can be strengthened replacing condition (5.13) with the weaker

1

εn
J1
εn(En,Ω) ≤ C, ∀n ∈ N.

Indeed, applying (i) of Proposition 5.8 with N = Ω one some C2 > 0 such that

1

εn
J2
εn(Eεn ,Ω) =

1

εn
Lεn(Ω ∩ Eεn ,Ωc ∩ Ec

εn) ≤ 1

2
P (Ω;G)

∫
G
K(x)d(x, 0) dx ≤ C2, ∀n ∈ N.

Notice however that condition (5.18) is in contrast with (5.20) below, that will be used in
Theorem 5.14.

5.3 A Γ-liminf inequality

Denote for shortness B := B(0, 1). For every halfspace H ⊆ G we set

b(H) := inf

{
lim inf
ε→0

1

2ε
J1
ε (Eε, B(0, 1)) : Eε → H in L1(B(0, 1))

}
. (5.19)

Proposition 5.12. The following facts hold

(i) Assume that
inf
r>1

K(r)rQ+1 > 0. (5.20)

Then
inf{b(H) : H is a vertical halfspace} > 0.



(ii) If G is a free group and H1, H2 ⊆ G are vertical halfspaces in G, then b(H1) = b(H2).

Proof. (i). Fix a halfspace H. We �rst prove that b(H) > 0. By de�nition of b(H) and a
diagonal argument, there exists a sequence Eε that converges to χH in L1(B) as ε→ 0 such
that

lim inf
ε→0

1

2ε
J1
ε (Eε, B) = b(H).

Thanks to Severini-Egorov's Theorem there exists an open set A ⊆ B such that

HQ(B \ A) <
HQ(H ∩B)

2
(5.21)

and χEε converges to χH uniformly on A, as ε→ 0. We therefore �nd ε0 such that

sup
x∈A
|χEε(x)− χH(x)| < 1, ∀ε ≤ ε0,

and hence, for every ε ≤ ε0 we have Eε ∩ A = H ∩ A =: C+. By reasoning in the same
way on Ec

ε, we may assume without loss of generality that, for every ε ≤ ε0, we also have
Ec
ε ∩ A = Hc ∩ A =: C−. Notice that, by (5.21), we have

min{HQ(C+),HQ(C−)} > 0. (5.22)

For every ε ≤ ε0, we have

1

2ε
J1
ε (Eε, B) =

1

2ε

∫
Eε

∫
Ecε∩B

Kε(y
−1x) dydx ≥ εQ−1

2

∫
δ1/εC+

∫
δ1/εC−

K(y−1x) dydx

≥ εQ−1

2
K(diam(δ1/εC

+ ∪ δ1/εC
−))HQ(δ1/εC

+)HQ(δ1/εC
−)

=
1

2εQ+1
K

(
diam(C+ ∪ C−)

ε

)
HQ(C+)HQ(C−),

which, by (5.20) and (5.22), is a positive lower bound independent of ε.
To conclude the proof of (i), it is enough to check that b is lower-semicontinuous. In fact,

if this were true, by the compactness of the sphere Sm−1, we would have that b admits a
minimum, that, by the previous step would be strictly positive.
Let Hη be a family of vertical halfspaces that converges to H in L1(B), as η → 0. Fix σ > 0.
For every η > 0 we can �nd F η

ε converging to Hη in L1(B), as ε→ 0 such that

lim inf
ε→0

1

2ε
J1
ε (F η

ε , B) ≤ b(Hη) + σ.

Considering Eε := F ε
ε , we easily �nd that Eε → H in L1(B), as ε→ 0 and hence

b(H) ≤ lim inf
ε→0

1

2ε
J1
ε (Eε, B) ≤ lim inf

ε→0
b(Hε) + σ.

The thesis follows by the arbitrariness of σ.
(ii). Let ν1, ν2 ∈ g1 \ {0} such that H1 = Hν1 and H2 = Hν2 . It is enough to show that

b(H1) ≤ b(H2). Let E2
ε be a family of measurable set in B such that E2

ε → Hν2 in L1(B) as
ε → 0. Now consider an orthogonal isomorphism T : g1 → g1 such that T (ν2) = ν1. Since



G is free, the map T extends in a unique way to a Lie algebra isomorphism T : g→ g that
induces an isometry I : G→ G de�ned by

I := exp ◦T ◦ log .

We claim that I(H2) = H1. Indeed, for every ξ ∈ G, one has

〈π1 log ξ, ν1〉 =〈π1 log ξ, T (ν2)〉 = 〈T (π1 log ξ), ν2〉
=〈π1T (log ξ), ν2〉 = 〈π1 log I(ξ), ν2〉.

Since K is radial and I is an isometry, it is easy to see that J1(A,B) = J1(I(A), I(B)). By
noticing that I(B) = B and that I(E2

ε )→ H1 in L1(B) as ε→ 0, we have that

b(H1) ≤ lim inf
ε→0

1

2ε
J1
ε (I(E2

ε ), B) = lim inf
ε→0

1

2ε
J1
ε (E2

ε , B),

whence b(H1) ≤ b(H2).

Remark 5.13. Let G be a Carnot group satisfying property R and let E be a set of locally
�nite perimeter in some open set Ω ⊆ G. Then, by [FSSC03, Lemma 3.8], if G satis�es
property R, for every p ∈ FE, one has

lim
r→0

PG(E;B(p, r))

rQ−1
= PG(HνE(p);B(0, 1)) =: ϑ(νE(p)). (5.23)

Notice also that, since Hν has smooth boundary, for any ν ∈ g, its perimeter can be explicitly
computed (up to identi�cation of G with Rn by means of exponential coordinates) getting

ϑ(ν) = Hn−1
e (∂Hν ∩B(0, 1)),

where He denotes the Hausdor� measure with respect to the Euclidean metric (see e.g.
[Mon01, Theorem 5.1.3.] or [FSSC03, Proposition 2.22]).

Theorem 5.14. Let G be a Carnot group satisfying property R, let Ω be an open and bounded
John domain in G and assume K : G→ [0,+∞) satis�es (5.20). Then, there exists a positive
density ρ : g1 → (0,+∞) such that, for every family (Eε) of measurable sets converging in
L1(Ω) to E ⊆ Ω, one has ∫

Ω

ρ(νE) dPG(E; ·) ≤ lim inf
ε→0

1

ε
Jε(Eε,Ω). (5.24)

More precisely, for every ν ∈ g1, one has

ρ(ν) =
b(Hν)

ϑ(ν)
.

Proof. De�ne, for every ε > 0, the function

fε(ξ) :=


1

2ε

∫
Ecε∩Ω

Kε(η
−1ξ) dη +

1

ε

∫
Ωc∩Ecε

K(η−1ξ) dη, if ξ ∈ Eε
1

2ε

∫
Eε∩Ω

Kε(η
−1ξ) dη, if ξ ∈ Ec

ε,



and set νε := fεHQ
|Ω. Notice that

‖νε‖ = |νε|(Ω) =
1

2ε
Jε(Eε,Ω).

Without loss of generality we can assume that there exists M > 0 such that

1

ε
Jε(Eε,Ω) ≤M, ∀ε > 0.

By this uniform bound and the assumptions on Ω, we get that, by Theorem 5.10, E has �nite
perimeter in Ω. Moreover, by a standard argument of Measure Theory (see e.g. [AFP00]),
we �nd a positive measure ν such that νε ⇀∗ ν up to subsequences as ε→ 0, and hence

‖ν‖ ≤ lim inf
ε→0

‖νε‖.

To prove (5.24), it is enough to show that

‖ν‖ ≥
∫

Ω

ρ(νE) dPG(E; ·),

for some ρ that will be determined in the sequel. Letting PE := PK(E; ·), we aim to prove
that

dν

dPE
(p) ≥ ρ(νE(p)), for PE-a.e. p ∈ Ω,

where dν
dPE

(p) denotes the Radon-Nikodym derivative of ν with respect to PE. Fix p ∈ FE∩Ω.
Since G satis�es property R, by (5.23) we have

dν

dPE
(p) =

1

ϑ(νE(p))
lim
r→0

ν(B(p, r))

rQ−1
.

Since νε weakly∗ converges to ν as ε → 0, we have that νε(B(p, r)) converges to ν(B(p, r))
for every r > 0 outside a countable subset Z ⊆ (0,+∞) of radii. We therefore have

dν

dPE
(p) =

1

ϑ(νE(p))
lim

r→0,r /∈Z

(
lim
ε→0

νε(B(p, r))

rQ−1

)
.

By a diagonal argument, we may choose two in�nitesimal sequences (εj) and (rj) such that

lim
j

εj
rj

= 0,

and so that
dν

dPE
(p) =

1

ϑ(νE(p))
lim
j

νεj(B(p, rj))

rQ−1
j

.

By making the computation explicit, we can write

dν

dPE
(p) =

1

ϑ(νE(p))
lim
j

1

εjr
Q−1
j

(
1

2

∫
Eεj∩Ω∩B(p,rj)

∫
Ecεj∩Ω

Kεj(y
−1x) dydx

+
1

2

∫
Ecεj∩Ω∩B(p,rj)

∫
Eεj∩Ω

Kεj(y
−1x) dydx

+

∫
Eεj∩Ω∩B(p,rj)

∫
Ωc∩Ecε

Kεj(y
−1x) dydx

)
,



and hence, since Jε ≥ J1
ε and since, for j su�ciently large, one has B(p, rj) ⊆ Ω, we get

dν

dPE
(p) ≥ 1

ϑ(νE(p))
lim sup

j

1

2εjr
Q−1
j

J1
εj

(Eεj , B(p, rj) ∩ Ω)

=
1

ϑ(νE(p))
lim sup

j

1

2εjr
Q−1
j

J1
εj

(Eεj , B(p, rj)).

By a change of variable, since J1 is left unchanged by isometries, we have

J1
εj

(Eεj , B(p, rj)) = rQj J
1
εj/rj

(
δ1/rjp

−1Eεj , B
)
.

This implies that

dν

dPE
(p) ≥ 1

ϑ(νE(p))
lim sup

j

rj
2εj

J1
εjrj

(
δ1/rjp

−1Eεj , B
)
.

Since, by property R, the sequence δ1/εjp
−1Eεj is converging to H in L1(B) as j → ∞ we

get
dν

dPE
(p) ≥ 1

ϑ(νE(p))
b(HνE(p)).

5.4 Applications

In this section we want to observe that Theorems 5.2 and 5.14 hold even for a particular
kernel induced by the sub-Riemannian heat kernel; the connection between the fractional
perimeter and the asymptotic behaviour of the fractional heat semigroup in Carnot Groups
has been analyzed in [FMP+18].

Let G be a Carnot group with homogeneous dimension Q, α ∈ (0, 1) and let R̃α : G →
[0,+∞) be de�ned as

R̃α(x) := − α

2Γ(−α/2)

∫ +∞

0

t−
α
2
−1h(t, x)dt,

where h : [0,+∞)×G→ R is the fundamental solution of the sub-Riemannian heat operator

H := ∂t + L,

where

L :=
m∑
i=1

X2
i

is a positive sub-Laplacian associated with a basis (X1, . . . , Xm) of the horizontal layer g1

of G. Notice that R̃α(x−1) = R̃α(x) and R̃α(δλx) = λ−α−QR̃α(x) for any x ∈ G and λ ≥ 0.
The quantity

‖x‖α :=
(
R̃α(x)

)− 1
α+Q

,

de�nes a homogeneous symmetric norm on G and therefore it is equivalent to the norm
induced by the Carnot-Carathéodory distance. In particular, Kα satis�es conditions (5.1),
(5.2), (5.3) and (5.20). All the results obtained in this paper therefore apply to the special
case K = Kα.



5.5 Open problems

We are unable to prove that the horizontal perimeter is actually a Γ-limit for the sequence
of rescaled nonlocal perimeters; in fact to do this, we should prove the Γ-limsup inequality,
namely that for every set of �nite perimeter E in Ω, there exists a sequence Eε of measurable
sets converging in L1 to E and such that

lim sup
ε→0

1

ε
Jε(Eε,Ω) ≤

∫
Ω

ρ(νE)dPG(E; ·),

but in the euclidean setting (see [BP19, Proposition 3.6.])the following result is exploited

Theorem 5.15. [Dáv02, Theorem 1] Let Ω ⊂ Rn be an open bounded set with Lipschitz
boundary, u ∈ BV (Ω), and consider a sequence (ρj)j∈N of positive radial molli�ers. Then

lim
j→+∞

∫
Ω

∫
Ω

|u(x)− u(y)|
|x− y|

ρj(x− y)dxdy = C1,n|Du|(Ω),

where

C1,n :=
1

Hn−1(Sn−1)

∫
Sn−1

|v · e|dHn−1(v),

for some e ∈ Sn−1.

Unfortunately, to the knowledge of the authors, an analogue of Davila's result is not
known in the framework of Carnot Groups.

We propose to investigate some asymptotic results in a future work; namely, if the kernel
K is the fractional kernel K(p) := d(p, 0)−Q−α for some α ∈ (0, 1), it would be interesting to
study the following limits

lim
α→0+

αPK(E,Ω) (5.25)

and

lim
α→1−

(1− α)PK(E,Ω). (5.26)

In Carnot Groups some asymptotic results are obtained in [MP19, Section 5.2.] when
Ω = G. In the euclidean setting we refer to [DFPV13], where the authors provide necessary
and su�cient conditions so that the limit in (5.25) exist and coincide with the Lebesgue
measure of E, up to multiplicative costants, while concerning the limit in (5.26) we refer e.g.
to [ADPM11,CV11] where the convergence to the classical perimeter is proved.
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Appendix A

Appendix

In this appendix, we give some details on technical tools used in this thesis.

A.1 Well-posedness and polynomial extension for Caputo

fractional derivatives

Following [CDV18], we remark that Caputo-stationary functions with initial point −∞ that
have vanishing kth derivative near −∞ are also Caputo-stationary for a �xed point beyond
its constancy interval. To do this, we introduce the natural setting in which Caputo fractional
derivatives are de�ned.

If I ⊆ R is an interval, we de�ne the space

ACk−1(I) :=
{
f ∈ Ck−1(I) s.t. f, f ′, . . . , f (k−1) ∈ AC(I)

}
,

where Ck−1(I) denotes the space of (k− 1)-times continuously di�erentiable functions on I,
and AC(I) denotes the space of absolutely continuous functions on I.

Given t > a, k ∈ N, β > 0, and f : [a,+∞)→ R, we also de�ne the function

(a, t) 3 τ 7→ Θk,β,f,t(τ) := f (k)(τ)(t− τ)k−β−1 (A.1)

and we set

Ck,β
a+ :=

{
f : (a,+∞)→ R s.t. f ∈ ACk−1

(
(a, t)

)
and Θk,β,f,t ∈ L1

(
(a, t)

)
, for all t > a

}
.

(A.2)

We observe that the Caputo derivative in (3.6) is well de�ned for all u belonging to Ck,α
a+ .

Analogously, for t < b, f : (−∞, b]→ R, and

(t, b) 3 τ 7→ Ψk,β,f,t(τ) := f (k)(τ)(τ − t)k−β−1 (A.3)

one can de�ne

Ck,β
b− :=

{
f : (−∞, b)→ R s.t. f ∈ ACk−1

(
(t, b)

)
and Ψk,β,f,t ∈ L1

(
(t, b)

)
, for all t < b

}
.

(A.4)

From now on, we will argue only on left derivatives, but the following computations
repeat straighforwardly for right derivatives.

125



A.1.1 Caputo-stationary functions with vanishing kth derivatives

near −∞
Lemma A.1. Let a ∈ R. Let I b (a,+∞) be an interval. Let k ∈ N and α ∈ (k − 1, k),
and assume that u ∈ Ck,α

−∞, and that u(k) = 0 in (−∞, a).
Then,

u ∈ Ck,α
a+ (A.5)

and Dα
a+[u] = Dα

−∞[u] in I. (A.6)

Proof. By (A.2), we see that if c ∈ (−∞, a]∪ {−∞}, then Ck,α
c+ ⊆ Ck,α

a+ , and so (A.5) plainly
follows. Furthermore, u(k) vanishes in (−∞, a), and consequently, for any t ∈ I,

0 =

∫ t

−∞

u(k) (τ)

(t− τ)α−k+1
dτ =

∫ t

a

u(k) (τ)

(t− τ)α−k+1
dτ,

which proves (A.6).

A counterpart of Lemma A.1 allows us to extend a function with its Taylor polyno-
mial maintaining its Caputo derivative. For this, we �rst point out that this operation is
compatible with the functional setting in (A.2):

Lemma A.2. Let a ∈ R ∪ {−∞} and c ∈ (a,+∞). Let k ∈ N and α ∈ (k − 1, k).
Let f ∈ Ck,α

a+ , g ∈ Ck,α
c+ and assume that

f (j)(c) = g(j)(c) for all j ∈ {0, . . . , k − 1}. (A.7)

Let

(a,+∞) 3 t 7→ h(t) :=

{
f(t) if t ∈ (a, c),

g(t) if t ∈ (c,+∞).

Then h ∈ Ck,α
a+ .

Proof. Since f ∈ Ck−1
(
(a,+∞)

)
and g ∈ Ck−1([c,+∞)), we obtain from (A.7) that h ∈

Ck−1
(
(a,+∞)

)
, and, for every t ∈ (a,+∞) and j ∈ {0, . . . , k − 1},

h(j)(t) =

{
f (j)(t) if t ∈ (a, c),

g(j)(t) if t ∈ (c,+∞).

In particular, we see from (A.7) that

h(j)(c) = f (j)(c) = g(j)(c), for all j ∈ {0, . . . , k − 1}. (A.8)

Using that f (j) ∈ AC
(
(a, c)

)
for each j ∈ {0, . . . , k− 1}, we can write that, for every t1, t2 ∈

(a, b),

f (j)(t2)− f (j)(t1) =

∫ t2

t1

Fj(τ) dτ,

for a suitable Lebesgue integrable function Fj.



Similarly, if T > c, since g(j) ∈ AC([c, T ]), we have that for every t1, t2 ∈ [c, T ],

g(j)(t2)− g(j)(t1) =

∫ t2

t1

Gj(τ) dτ,

for a suitable Lebesgue integrable function Gj.
Then, given T > c, we de�ne

Hj(t) =

{
Fj(t) if t ∈ (a, c),

Gj(t) if t ∈ (c, T ].
(A.9)

We have that Hj is Lebesgue integrable and, if t1 ∈ (a, c) and t2 ∈ (c, T ], recalling (A.8) we
see that

h(j)(t2)− h(j)(t1) = g(j)(t2)− f (j)(t1)

= g(j)(t2)− g(j)(b) + f (j)(b)− f (j)(t1)

=

∫ t2

b

Gj(τ) dτ +

∫ b

t1

Fj(τ) dτ

=

∫ t2

t1

Hj(τ) dτ.

From this, we conclude that

h(j) ∈ AC
(
(a, T )

)
for all j ∈ {0, . . . , k − 1}. (A.10)

Hence, in view of (A.2), to complete the proof of the desired result it remains to check
that Θk,α,h,T ∈ L1

(
(a, T )

)
, for every T > a, namely that∫ T

a

|h(k)(τ)|
(T − τ)α−k+1

dτ < +∞. (A.11)

We remark that here h(k) is intended in the Lebesgue sense, being h(k−1) ∈ AC
(
(a, T )

)
, due

to (A.10). Hence, in the setting of (A.9), we have that h(k) = Hk−1 and therefore∫ T

a

|h(k)(τ)|
(T − τ)α−k+1

dτ =

∫ T

a

|Hk−1(τ)|
(T − τ)α−k+1

dτ. (A.12)

Consequently, if T ≤ c we have that∫ T

a

|h(k)(τ)|
(T − τ)α−k+1

dτ =

∫ T

a

|Fk−1(τ)|
(T − τ)α−k+1

dτ = ‖Θk,α,f,T‖L1(a,T ),

which is �nite since f ∈ Ck,α
a+ .

If instead T > c, we have that∫ T

a

|h(k)(τ)|
(T − τ)α−k+1

dτ =

∫ c

a

|Fk−1(τ)|
(T − τ)α−k+1

dτ +

∫ T

c

|Gk−1(τ)|
(T − τ)α−k+1

dτ

≤
∫ c

a

|Fk−1(τ)|
(b− τ)α−k+1

dτ +

∫ T

c

|Gk−1(τ)|
(T − τ)α−k+1

dτ

= ‖Θk,α,f,b‖L1(a,c) + ‖Θk,α,g,T‖L1(c,T ),

which are �nite since f ∈ Ck,α
a+ and g ∈ Ck,α

c+ . This completes the proof of (A.11) and of the
desired result.



With this, we can obtain a counterpart of Lemma A.1 (which is not explicitly used here,
but that can be useful for further investigations), as follows:

Lemma A.3. Let a ∈ R ∪ {−∞} and c ∈ (a,+∞). Let I b (c,+∞) be an interval.
Let k ∈ N and α ∈ (k − 1, k), and assume that u ∈ Ck,α

c+ .
Let also

u?(t) :=


u(t) if t ∈ [c,+∞),
k−1∑
j=0

u(j)(c)

j!
(t− c)j if t ∈ (−∞, c).

Then, u? ∈ Ck,α
a+ and Dα

a+[u?] = Dα
c+[u] in I.

Proof. We apply Lemma A.2 with

f(t) :=
k−1∑
j=0

u(j)(c)

j!
(t− c)j,

g(t) := u(t), and h(t) := u?(t). Notice that, in this setting, for each j ∈ {0, . . . , k − 1}, we
have that f (j)(c) = u(j)(c) = g(j)(c), and therefore condition (A.7) is ful�lled. Hence, the use
of Lemma A.2 gives that u? ∈ Ck,α

a+ , as desired. In addition, we have that u(k)
? = 0 in (−∞, c)

and therefore, if t ∈ I,∫ t

a

u
(k)
? (τ)

(t− τ)α−k+1
dτ =

∫ t

c

u
(k)
? (τ)

(t− τ)α−k+1
dτ =

∫ t

c

u(k) (τ)

(t− τ)α−k+1
dτ,

which says that Dα
a+[u?](t) = Dα

c+[u](t).

A.2 Some tools from Interpolation Theory

In this section we collect some basic results from the real Interpolation Theory. We will refer
essentially on the monography [Lun18].

Let X, Y be Banach spaces. We say that (X, Y ) is an interpolation couple if both X and
Y are continuously embedded in a Hausdor� topological vector space V ; it is well known
that this topological structure make both X ∩ Y and X + Y two Banach spaces.

An intermediate space is any Banach space E such that

X ∩ Y ⊂ E ⊂ X + Y.

An interpolation space is any intermediate space such that for any operator T ∈ L(X)∩L(Y ),
the restriction of T to E belongs to L(E).

De�nition A.4. Let X, Y be Banach spaces and θ ∈ (0, 1), 1 ≤ q ≤ ∞. We de�ne the real
interpolation space (X, Y )θ,q as

(X, Y )θ,q :=

{
z ∈ X + Y : (0,+∞) 3 t→ t−θK(t, z) ∈ Lq((0,+∞),

dt

t
)

}
,

where K(t, z) denotes the Peetre interpolation functional de�ned by

K(t, z) = K(t, z,X, Y ) := inf
z=x+y∈X+Y

(‖x‖X + t ‖y‖Y ).



In particular, choosing X = Lp(I) and Y = W 1,p(I) for some 1 ≤ p < ∞ and some
interval I, we obtain the Besov space(

Lp(I),W 1,p(I)
)
θ,q

:= Bθ
p,q(I),

and, if q = p (
Lp(I),W 1,p(I)

)
θ,p

:= Bθ
p,p(I) = W θ,p(I).

while with the choices X = L1(I) and Y = L∞(I) we obtain the Marcinkiewicz space(
L1(I), L∞(I)

)
θ,∞ := L

1
1−θ ,∞(I).

Remark A.5. From de�nition A.4 immediately follows that if X1 and Y1 are two Banach
spaces continuously embedded in X0 and Y0 respectively, we have that, for any θ ∈ (0, 1) and
any 1 ≤ p ≤ ∞

(X1, Y1)θ,p ↪→ (X0, Y0)θ,p.

Now, we recall a fundamental result on the inclusion between real interpolation spaces

Proposition A.6 (Prop. 1.4 in [Lun18]). Let X, Y be Banach spaces such that Y ⊂ X and
(X, Y ) be an interpolation couple.

For any 1 ≤ p, q ≤ ∞ and 0 < s < r < 1, we have that

(X, Y )r,p ⊂ (X, Y )s,q.

Corollary A.7. Let 1 ≤ q < p <∞, 0 < s < r < 1 and Ω be an open bounded domain with
the extension property. We have that

W r,p(Ω) ⊂ Bs
p,q(Ω) ⊂ W s,q(Ω)

Proof. For the �rst inclusion it is su�cient to apply A.6 with X = Lp(Ω) and Y = W 1,p(Ω),
while for the second we apply Remark A.5 with X1 = Lp(Ω), Y1 = W 1,p(Ω), X0 = Lq(Ω)
and Y0 = W 1,q(Ω).

A.3 Addendum to Proposition 2.21

According to Proposition 2.21, if u ∈ C0,s
0 (I) then its (1−s)-fractional integral is not Lipschitz

continuous in I but merely log-Lipschitz continuous.
For the sake of completeness, and for the absence of an explicit example at least in the

works mentioned in the bibliography, we want to show an explicit function in C0,s
0 (I) with

I1−s
a+ [u] /∈ C0,1

0 (I).

Example A.8. Let s ∈ (0, 1), I := (0, 1) and

u(x) =

{
xs if 0 ≤ x ≤ 1

2
1
2s

if 1
2
≤ x ≤ 1.

We �rstly notice that u(0) = 0 and u is continuous in x = 1/2. Concerning to the Hölder
regularity, if x, y are both in [0, 1

2
] or in [1

2
, 1] the claim is straightforward, while for x ∈ [0, 1

2
)

and y ∈ [1
2
, 1] we have that

|u(x)− u(y)| =
∣∣∣∣xs − 1

2s

∣∣∣∣ ≤ C

∣∣∣∣x− 1

2

∣∣∣∣s = C

(
1

2
− x
)s
≤ C(y − x)s = C|x− y|s,



and the same computation holds if we interchange x and y. Therefore, u ∈ C0,s
0 (I).

Eventually, the computation of the (1− s) fractional integral gives us

I1−s
0+ [u](x) =

{
Γ(s+ 1)x if 0 ≤ x ≤ 1

2
x

Γ(1−s)

∫ 1
2x

0
ts(1− t)−sdt+ 1

Γ(2−s)
(2x−1)1−s

2
if 1

2
≤ x ≤ 1,

which clearly is not Lipschitz continuous in I having unbounded �rst derivative in x = 1
2
.

Remark A.9. Since C0,s(I) = W s,∞(I) (see e.g. [DNPV12, Section 8]), we are immediately
able to conclude that I1−s

a+ (W s,∞
0 (I)) 6⊂ W 1,∞

0 (I).

A.4 Addendum to Theorem 4.28

We notice here that the embedding in Theorem 4.28 is sharp. The continuity of the fractional
integral Isa+ from Lp(I) into Lr(I), with 1 < p < 1

s
and 1 ≤ r ≤ p

1−sp has been proved by
Hardy and Littlewood in [HL28, Theorem 4], but in the limiting cases p = 1 and p = 1/s
the continuity fails, as shown by the following examples

Example A.10. Let s ∈ (0, 1), 1 < β ≤ 2− s, I = (0, 1) and

f(x) =


1

x| log(x)|β
if 0 < x ≤ 1/2

0 if 1/2 < x < 1.

Now, let u := Is0+[f ]. Clearly u ∈ Is0+(L1(I)) = Is0+(L1(I)) ∩W s,1
RL,0+(I) since f ∈ L1(I), but

u(x) =
1

Γ(s)

∫ x

0

dt

t| log(t)|β(x− t)1−s >
xs−1

Γ(s)

∫ x

0

dt

t| log(t)|β
=

1

Γ(s)(β − 1)
xs−1| log(x)|1−β,

therefore ∫ 1

0

|u(x)|
1

1−sdx ≥
∫ 1/2

0

|u(x)|
1

1−sdx > K

∫ 1/2

0

dx

x| log(x)|
β−1
1−s

= +∞,

since
β − 1

1− s
≤ 1, and so u /∈ L

1
1−s (I).

Example A.11. Let s ∈ (0, 1), I := (0, 1) and

f(x) =

0 if 0 < x < 1/2
1

(1− x)s| log(1− x)|
if 1/2 ≤ x < 1

.

Now let u := Is0+[f ]; since f ∈ L1/s(I), by Lemma 2.27 we have that u ∈ Is0+(L1/s(I)) ⊂
W

s,1/s
RL,0+(I) ∩ Is0+(L1(I)). Now, we notice that

lim
x→1−

u(x) =
1

Γ(s)

∫ 1

1/2

dt

(1− t)| log(1− t)|
= +∞,

which implies that u /∈ L∞(I).



A.5 Some basic notions from sub-Riemannian geometry

Following the notation used in Section 2.5, we want to notice here that each Carnot Group
G can be identi�ed with the euclidean space. Namely, if we choose a basis e1, . . . , en of Rn

adapted to the strati�cation of g, i.e., such that ehj−1+1, . . . , ehj is a basis of Vj for each
j = 1, . . . , k we can de�ne a family X := {X1, . . . , Xn} of left invariant vector �elds such
that Xi(0) = ei, i = 1, . . . , n.

The sub-bundle of the tangent bundle TG that is spanned by the vector �elds X1, . . . , Xm

plays a particularly important role in sub-Riemannian geometry and it is called the horizontal
bundle HG. The �bers of HG are

HxG = span{X1(x), . . . , Xm(x)}, x ∈ G.

We notice that each �ber of HG can be endowed with an inner product 〈·, ·〉 that makes
the basis X1(x), . . . , Xm(x) an orthonormal basis. The sections of HG are called horizontal
sections and the elements of of HxG are called horizontal vectors. Each horizontal section is
identi�ed by its canonical coordinates with respect to this moving frame X1(x), . . . , Xm(x);
in this way, a horizontal section φ is identi�ed with a function φ = (φ1, . . . , φm) : Rn → Rm.
Since the exponential mapping exp : g → G is a di�eomorphism, for any adapted basis
(X1, . . . , Xn) of g and any x ∈ G, there exists a unique (x1, . . . , xn) ∈ Rn such that

x = exp(x1X1 + . . .+ xnXn).

We therefore identify x with (x1, . . . , xn) ∈ Rn and G with (Rn, ·), where the group operation
on Rn is determined by the Baker-Campbell-Hausdor� formula on g (see [BLU07, Chapter
14, Section 2]). The coordinates x1, . . . , xn ∈ R, de�ned as above, are often referred to as
exponential coordinates of the �rst kind. Although this identi�cation allow to do explicit
computations with the Group operation, it has the drawback of losing informations about
the intrinsic structure of the Group.

A.6 Rellich-Kondrachov Theorem in Metric Measure Spaces

We introduce the class of John domains, which play a fundamental role in the proof of
Theorem 5.10.

De�nition A.12. Let G be a Carnot group, and Ω ⊂ G a bounded, open set. We say that Ω
is a John domain if there exist p ∈ Ω and C > 0 such that, for every q ∈ Ω, there is T > 0
and a continuous and recti�able curve γ : [0, T ] → Ω parametrized by arclength such that
γ(0) = p, γ(T ) = q and

d(γ(t),Ωc) ≥ Ct,

for any t ∈ [0, T ].

It was proved in [HK00] that a Rellich-Kondrachov-type Theorem holds for John domains
in metric measure spaces with doubling property and Poincaré inequality. In the setting of
Carnot groups, this result reads as follows.

Theorem A.13. Let G be a Carnot group with homogeneous dimension Q and Ω ⊆ G a
John domain. Then the following facts hold.

(i) If 1 ≤ p < Q and 1 ≤ q < p∗, the embedding W 1,p
G (Ω) ↪→ Lq(Ω) is compact.

(ii) If p ≥ Q and q ≥ 1, the embedding W 1,p
G (Ω) ↪→ Lq(Ω) is compact.
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