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Abstract. This paper gives a contribution to the study of regularity of Lagrangian flows on
non-smooth spaces with lower Ricci curvature bounds. The main novelties with respect to
the existing literature are the better behaviour with respect to time and the local nature of
the regularity estimates. These are obtained sharpening previous results of the first and third
authors, in combination with some tools recently developed by the second author (adapting to
the synthetic framework ideas introduced in [CoN12]).
The estimates are suitable for applications to the fine study of RCD spaces and play a central
role in the construction of a parallel transport in this setting.

1. Introduction and main results

This note deals with regularity estimates for flows of Sobolev velocity fields over non-smooth
spaces with synthetic Ricci curvature bounds. With respect to the previous contributions of the
first and third author [BrSe18, BrSe19] the refinements will be in two directions:

• a sharper behaviour of the estimates with respect to time;
• the improvement from infinitesimal estimates to local estimates.

Flows of vector fields are classically a powerful tool in Partial Differential Equations, Geometric
Measure Theory, Differential and Riemannian Geometry. In more recent years, they have turned
out to be crucial also in Non Smooth Geometry and Analysis on metric spaces.
On the one hand, gradient flows of semiconcave functions are fundamental in Alexandrov geometry,
see for instance [P07]. On the other hand, flows of vector fields with integrability rather than
uniform bounds on their derivatives are at the core of some developments in the theory of lower
Ricci curvature bounds, starting from the seminal [CC96].

The framework of our investigation will be that of RCD(K,N) metric measure spaces, which
are a non smooth counterpart of Riemannian manifolds with lower bounds on the Ricci curvature.
The RCD(K,N) class includes N -dimensional Alexandrov spaces equipped with the Hausdorff
measure H N and Ricci limit spaces, i.e. measured Gromov-Hausdorff limits of smooth Riemannian
manifolds with lower Ricci curvature bounds. We avoid giving a detailed introduction to this class
of spaces and refer the interested reader to the survey paper [A18] and references therein.

Vector fields and flow maps on metric measure spaces. On a metric measure space (X, d,m)
we can understand vector fields as derivations over an algebra of test functions and the divergence
operator via integration by parts, see [AT14]. In this note we will rely throughout also on the
identification of vector fields with elements of the so-called tangent module L2(TX), referring to
[G18] for the relevant background.

As shown in [G18], there is a second order differential calculus available on RCD(K,N) spaces
(and, more in general, on RCD(K,∞) spaces). In particular, the presence of a large class of
regular test functions Test(X, d,m) (see [Sa14, G18]) allows to introduce a natural notion of (time
dependent) Sobolev vector field b ∈ L2([0, T ];H1,2

C,s(TX)), that we recall below, in the autonomous
case for the sake of simplicity.
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Definition 1.1. The Sobolev space H1,2
C,s(TX) ⊂ L2(TX) is the space of all b ∈ L2(TX) with

div b ∈ L2(X,m) for which there exists a tensor S ∈ L2(T⊗2X) such that, for any choice of
h, g1, g2 ∈ Test(X, d,m), it holds�

hS(∇g1,∇g2) dm = 1
2

�
{−b(g2) div(h∇g1)− b(g1) div(h∇g2) + div(hb)∇g1 · ∇g2} dm. (1.1)

In this case we shall call S the symmetric covariant derivative of b and we will denote it by ∇symb.

The definition above is the natural counterpart, tailored for vector fields, of the notion of Hessian
on RCD(K,∞) metric measure spaces (see [G18, Definition 3.3.1]), which is based in turn on the
weak definition of Hessian proposed by Bakry in [Ba97] in the framework of Γ-calculus (see also
[S14]).

It is easy to verify via the usual calculus rules that, on smooth Riemannian manifolds, smooth
vector fields with compact support belong to H1,2

C,s(TX) and that the tensor S in Definition 1.1 is
the symmetric part of the covariant derivative.

Following [AT14] we introduce the natural notion of flow in this framework.

Definition 1.2 (Regular Lagrangian flow). We say that X : [0, T ]×X → X is a Regular Lagrangian
flow of b ∈ L1([0, T ];L2(TX)) if the following conditions hold true:

(1) X(0, x) = x and X(·, x) ∈ C([0, T ];X) for every x ∈ X;
(2) there exists L ≥ 0, called compressibility constant, such that

(X(t, ·))∗m ≤ Lm, for every t ∈ [0, T ] ; (1.2)

(3) for every f ∈ Lip(X, d), for m-a.e. x ∈ X the map t 7→ f(X(t, x)) is absolutely continuous
and

d
dtf(X(t, x)) = bt · ∇f(X(t, x)) for a.e. t ∈ (0, T ) . (1.3)

It has been proven in [AT14] that any bounded vector field b ∈ H1,2
C,s(TX) with bounded divergence

admits a unique Regular Lagrangian flow. This means that, if X1 and X2 are Lagrangian flows
associated to b then X1(t, x) = X2(t, x) for any t ∈ [0, T ], for m-a.e. x ∈ X.

Given s ∈ [0, T ] we can define X(s, t, x), for t ∈ [s, T ], as the Lagrangian flow of b starting at
time t = s from the point x ∈ X. Note that X(0, t, x) = X(t, x). Exploiting the uniqueness of
Lagrangian flows of Sobolev vector fields one can easily check that, for any 0 ≤ s < T , for m-a.e.
x ∈ X it holds

X(s, t,X(s, x)) = X(t, x), for any t ∈ [s, T ] . (1.4)
It is worth remarking that the assumption div b ∈ L∞([0, T ]×X) allows us to sharpen (1.2) into

e−t‖div b‖L∞m ≤ (X(t, ·))∗m ≤ et‖div b‖L∞m, for any t ∈ [0, T ], (1.5)

as proven in [AT14, Theorem 4.6].

In order to ease the notation we are going to write Xt(x)/Xs,t(x) in place of X(t, x) and
X(s, t, x). We shall also abbreviate Regular Lagrangian flow to RLF sometimes.

Readers more interested in Geometric Analysis over smooth Riemannian manifolds are encouraged
to assume that (X, d,m) is a smooth Riemannian manifold equipped with the Riemannian distance
and the Riemannian volume measure, and that b is a smooth vector field. Under these assumptions
Regular Lagrangian flows are classical flows. In this case, the interest of the results that we are
going to present stands in their quantitative dependence on ‖∇symb‖L2 , ‖div b‖L∞ and t ∈ [0, T ].

Regularity of Lagrangian flows. As we already pointed out, starting from [CC96], flows of
vector fields with L2 integrability bounds on their derivatives have played a fundamental role in
the Geometric Analysis of spaces with lower Ricci curvature bounds. This is basically due the fact
that, despite the smoothness of the objects involved, Bochner’s inequality naturally guarantees
(only) quantitative L2 Hessian bounds on (harmonic) functions in this framework. Thus, when
seeking for stable estimates, one is forced to develop some tools tailored for integral bounds, see
[CoN12, KW11, KL18].
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From another perspective, flows of vector fields with Sobolev regularity on Rn were also considered,
starting from the seminal [DPL89]. This field quickly developed, with strong motivations coming
mainly from nonlinear problems in Fluid Mechanics and Kinetic Theory.

The regularity theory for flows of Sobolev velocity fields in the Euclidean setting has been
pioneered by Crippa and De Lellis in [CrDL08]. They proved that, given a Sobolev velocity field
b : Rn → Rn with bounded divergence, for any ε > 0 there exists a Borel set Eε such that
H n(BR(0) \ Eε) ≤ ε and

|X(t, x)−X(t, y)| ≤ C(T, ε, ‖∇b‖L1(L2)) |x− y| , for any x, y ∈ Eε and 0 ≤ t ≤ T . (1.6)

This Lusin-Lipschitz regularity estimate is weaker than the classical

Lip(Xt) ≤ etLip(b) , for any t ≥ 0 , (1.7)

holding for the flow of Lipschitz velocity fields.

In [BrSe18, BrSe19], the first and third authors have proven some versions of (1.6) in the
non-smooth non flat setting of RCD(K,N) spaces (see [BrSe19, Theorem 2.20]) and used them
to show deep structural results for these spaces. These estimates, however, despite their strength
and usefulness, did not have the expected behaviour with respect to the time variable, making
difficult the application of the result, to some extent. More precisely, the issue is that the constant
C appearing in the counterparts of (1.6) in [BrSe19, Theorem 2.20] lacked the expected behaviour
with respect to time. Nevertheless, in view of (1.7), it would be desirable to prove estimates like
(1.6) with constants C of the form

C = 1 + t C(ε, T, ‖∇b‖L1(L2)) . (1.8)

This is precisely the main goal of this paper. We recover the natural rate with respect to time
in the regularity estimates for RLFs of Sobolev vector fields on RCD spaces. This will be crucial
for some forthcoming developments of the theory [CGP21] and it is achieved by combining the
techniques of [BrSe19] and [D20].

We will restrict our investigation to noncollapsed RCD(K,N) spaces (see [DPhG17, K18] after
[CC97]), i.e. metric measure spaces (X, d,H N ) satisfying the RCD(K,N) condition when equipped
with the N -dimensional Hausdorff measure H N , for some N ∈ N.
The reason why we restrict to noncollapsed structures is that they enjoy stronger structural results
which allow us to compare the distance functions and Green functions at infinitesimal scales, see
section 2. Let us recall that Alexandrov spaces and non collapsed Ricci limits are noncollapsed
RCD spaces.

Before stating the main result we need to introduce a notion of lower/upper approximate slope.

Definition 1.3 (lower/upper approximate slope). Let F : X → X be a Borel map. We say that
x ∈ X is a regular point for F if there exists a measurable set E ⊂ X with density 1 at x such that
x ∈ E and F

∣∣
E

is Lipschitz continuous. For any regular point x ∈ X we set

ap− |DF | (x) := lim inf
y∈E, y→x

d(F (x), F (y))
d(x, y) and ap+ |DF | (x) := lim sup

y∈E, y→x

d(F (x), F (y))
d(x, y) .

We call, respectively, lower/upper approximate slope of F at x ∈ X the nonnegative number
ap− |DF | (x)/ap+ |DF | (x).

Remark 1.4. Relying on the locally doubling property of RCD(K,N) spaces, one can easily check
that Definition 1.3 does not depend on the particular choice of the set E 3 x with density 1 at x.

Remark 1.5. When (X, d) is a smooth Riemannian manifold with the distance induced by the
Riemannian metric and F : X → X is differentiable at x, then the upper and lower slopes of F at
x correspond, respectively, to the operator norm of dF (x) and to

inf
v∈TxX , v 6=0

‖dF (x)v‖F (x)

‖v‖x
.
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We briefly recall that a point x ∈ X is said to be regular if the density

θ(x) := lim
r→0

H N (Br(x))
ωNrN

, (1.9)

which exists at any point and in general belongs to (0, 1], satisfies θ(x) = 1. By volume convergence
and volume rigidity, see [DPhG17, Corollary 1.7] and [CC97], this amounts to say that the tangent
cone at x ∈ X is unique and Euclidean of dimension N .

Below we state the main result of this note.
Theorem 1.6. Let us fix N ∈ N, K ∈ R and T,R > 0. Let (X, d,H N ) be an RCD(K,N) m.m.s.
and p ∈ X be fixed. For any b ∈ L2([0, T ];H1,2

C,s(TX)) supported on BR(p) with b,div b ∈ L∞, there
exists a unique Regular Lagrangian flow Xs,t satisfying the following property. For any 0 ≤ s < T ,
for H N -a.e. x ∈ BR(p) we have that Xs,t(x) ∈ X is a regular point and

e−2
� t
s
gr(Xs,r(x)) dr ≤ ap− |DXs,t| (x) (1.10)

≤ ap+ |DXs,t| (x) ≤ e2
� t
s
gr(Xs,r(x)) dr ,

for any t ∈ [s, T ], where g is a nonnegative function satisfying� T

0
‖gr‖L2 dr ≤ C(BR(p),K,N)

{
‖∇symb‖L2 + T ‖div b‖L∞

}
.

Moreover, when b does not depend on time, there exists a nonnegative function h ∈ L2(X,H N )
such that

‖h‖L2 ≤ C(BR(p),K,N)
{
‖∇symb‖L2 + ‖div b‖L∞

}
and, for H N -a.e. x ∈ BR(p),

e−th(x) ≤ ap− |DXt| (x) ≤ ap+ |DXt| (x) ≤ eth(x) for any t ∈ [0, T ] . (1.11)
Notice that both the left and right hand side of (1.11) approach 1 linearly as t→ 0, therefore

providing a counterpart of (1.7) over noncollapsed RCD spaces and under Sobolev regularity
assumptions on the vector field.
Let us stress that the pointwise nature (instead of almost-everywhere) w.r.t. time of the estimates
is a subtle point, and will require indeed some nontrivial arguments.

Starting from Theorem 1.6 and employing again some of the techniques introduced in [CoN12,
KW11], it is possible to obtain a global regularity estimate, which improves upon those obtained in
[BrSe19], since it is Hölder continuous with respect to time.
Theorem 1.7. Fix N ∈ N, K ∈ R and H,D, T,R > 0. Let (X, d,H N ) be an RCD(K,N)
m.m.s. and let p ∈ X be fixed. Let b ∈ L2([0, T ];H1,2

C,s(TX)) be supported on BR(p) with
‖b‖L∞ + ‖div b‖L∞ < D and ‖∇symb‖L2 < H. Then, for any ε > 0, there exist S ⊆ BR(p)
and ω0(K,N,BR(p), H,D, T, ε), α(N), C0(K,N,BR(p), H,D, T, ε) > 0 so that

H N (BR(p) \ S) < ε , (1.12)
and for any x, y ∈ S and any 0 ≤ t1 < t2 ≤ T with t2 − t1 ≤ ω0, it holds

1− C0(t2 − t1)α ≤ d(Xt2(x),Xt2(y))
d(Xt1(x),Xt1(y)) ≤ 1 + C0(t2 − t1)α . (1.13)

Here X denotes the regular Lagrangian flow of b.

To conclude this introductory section, let us comment again on the main new points of the
present note. In the setting of smooth Riemannian manifolds with lower Ricci curvature bounds, the
previous contributions closest to this topic are the estimates in [KW11, KL18]. Therein, following
a common pattern within this field, quantitative regularity estimates were obtained via bootstrap
along scales starting from qualitative regularity estimates at small scales, that are guaranteed in
turn by smoothness.

Working in the framework of RCD spaces, there is the necessity to find alternative arguments
to start the bootstrap arguments, since neither smoothness is available, nor approximation with
smooth objects is possible. Here we overcome these difficulties combining in a new way the ideas
of [D20] to handle the time-like behaviour with those in [BrSe18, BrSe19] to handle the spatial
behaviour of Regular Lagrangian flows.
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Plan of the paper. The remainder of the paper is organised as follows. In section 2, which is
of independent interest, we deal with asymptotic estimates and converge of Green functions on
RCD spaces. Then section 3 collects some material about regularity of Lagrangian flows over RCD
spaces, formulated in terms of Green functions. The material is mainly taken from [BrSe19]. In
section 4 we prove that trajectories of Regular Lagrangian flows pass only through regular points
starting from almost every point. The last two sections are dedicated to the proofs of Theorem 1.6
and Theorem 1.7, respectively.
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at the Institute for Advanced Study.

The third author is supported by the European Research Council (ERC), under the Euro-
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2. Stability of Green functions

The Green function of the Laplacian is a very classical object that, since its introduction in 1830,
has been widely used in the study of linear PDEs and in geometric analysis. Let us just mention
[Co12, D02] for some recent instances close to the topics of the present note.
Our interest for this tool comes from the regularity theory for non-smooth flows developed in
[BrSe18, BrSe19], where the inverse of the Green function has been used as a replacement of the
distance function to measure regularity. Green functions have two remarkable properties that make
them more suitable than distance functions for this analysis: they solve equations and they are
regular.

Given an RCD(K,N) m.m.s. (X, d,m) and λ ≥ 0 we define the λ-Green function by

Gλx(y) = Gλ(x, y) :=
� ∞

0
e−λtpt(x, y) dt for any x, y ∈ X, λ ≥ 0 , (2.1)

where pt : X ×X → [0,+∞) is the so-called heat kernel over (X, d,m). At least formally, Gλ is a
fundamental solution of the operator −∆ + λI. Observe that, in general, the integral in (2.1) could
be infinite.
Due to its particular relevance and in accordance with the classical terminology, when there is no
risk of confusion we shall indicate by Green function the 0-Green function.

Let us recall that in [JLZ14] the classical lower and upper Gaussian heat kernel bounds for
manifolds with lower Ricci bounds, originally due to Li and Yau, have been generalised to RCD(K,N)
spaces. There exist constants C1 = C1(K,N) > 1 and c = c(K,N) ≥ 0 such that

1
C1m(B(x,

√
t))

exp
{
−d2(x, y)

3t − ct
}
≤ pt(x, y) ≤ C1

m(B(x,
√
t))

exp
{
−d2(x, y)

5t + ct

}
, (2.2)

for any x, y ∈ X and for any t > 0. Moreover it holds

|∇pt(x, ·)| (y) ≤ C1√
tm(B(x,

√
t))

exp
{
−d2(x, y)

5t + ct

}
for m-a.e. y ∈ X , (2.3)

for any t > 0 and for any x ∈ X. We remark that in (2.2) and (2.3) above one can take c = 0
whenever (X, d,m) is an RCD(0, N) m.m.s..

Remark 2.1. A simple scaling argument shows that C1 and c in (2.2) and (2.3) satisfy C1(K,N) =
C1(N) and c(K,N) = c(N)|K|. This improves (2.2) and (2.3) only when K is negative.
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Indeed, setting r = 1/
√
−K and denoting by pr,x0

t (x, y) the heat kernel in the RCD(−1, N) space(
X, r−1d, m

m(Br(x0))

)
, it holds

m(Br(x0))pr2t(x, y) = pr,x0
t (x, y) for any x, y ∈ X, t ≥ 0 . (2.4)

It is then enough to apply (2.2) and (2.3) to pr,x0
t/r2(x, y) and use the Bishop-Gromov inequality:

m(BR(x))
vK,N (R) ≤

m(Br(x))
vK,N (r) for any 0 < r < R and x ∈ X . (2.5)

Here vK,N (r) denotes the measure of the ball of radius r on the model space with parameters K
and N (see [V09]).

For technical reasons, throughout this section we work under the following

Assumption 2.2. (X, d,m) is a product between an RCD(K,N − 3) m.m.s. and a Euclidean
factor (R3, deucl,L 3), for some 4 < N <∞.

Building upon (2.2) and (2.3) one can check that, for λ ≥ λ(K), for any x ∈ X, Gλx, |∇Gλx| ∈
L1

loc(X,m) and ∆Gλx = −δx + λGλx, see [BrSe19, subsection 2.3] for further explanations.
We refer to [AH17, GMS15] for the relevant background about convergence of functions and

Sobolev spaces along converging sequences of RCD(K,N) spaces.
Below we state the main convergence result for Green functions along converging sequences of

RCD(K,N) spaces and then we specialize it to the case of tangent cones.

Proposition 2.3. Let (X, d,m) be an RCD(K,N) m.m.s. satisfying Assumption 2.2 and let ri ↓ 0
be a sequence of radii such that

lim
i→∞

(
X, r−1

i d, m

m(Bri(x0)) , x0

)
= (Y, ρ, µ, y) in the pmGH topology .

Denoting by Gλ the λ-Green function in (X, d,m) and by G the 0-Green function in (Y, ρ, µ, y) (see
(2.1)) one has

lim
i→∞

r−2
i m(Bri(x0))Gλ(xi, yi)→ G(x∞, y∞) , (2.6)

for Xi ×Xi 3 (xi, yi) → (x∞, y∞) ∈ Y × Y and λ ≥ c|K|, where the constant c is the one from
(2.2) and (2.3).

Corollary 2.4. Let (X, d,H N ) be a noncollapsed RCD(K,N) space satisfying (2.2). For λ ≥ c|K|
and x ∈ X one has

lim
y→x

d(x, y)N−2Gλ(x, y) = 1
θ(x)ωNN(N − 2) , (2.7)

where θ ∈ (0, 1] is the density of H N at x, as defined in (1.9).

Remark 2.5. Even though this will be not relevant for our purposes, let us point out that analogous
conclusions hold when considering the limiting behaviour of the Green function G on blow-downs
(i.e. tangent cones at infinity instead of local tangent cones) of RCD(0, N) metric measure spaces
(X, d,H N ) with Euclidean volume growth for N ≥ 3.

2.1. Proof of Proposition 2.3. We recall a convergence result for heat kernels, referring the
reader to [AHT18, Theorem 3.3] for its proof.

Lemma 2.6. Let ((Xi, di,mi, xi))i be a sequence of RCD(K,N) m.m.spaces converging in the
pmGH topology to (X∞, d∞,m∞, x∞). Then the heat kernels pi of Xi satisfy

lim
i→∞

piti(xi, yi) = p∞t (x, y) , (2.8)

for any Xi ×Xi × (0,∞) 3 (xi, yi, ti)→ (x, y, t) ∈ X∞ ×X∞ × (0,∞), where p∞ denotes the heat
kernel in X∞.

When N ≥ 3 and (X, d,m) is an N -metric measure cone with tip p over an RCD(N − 2, N − 1)
m.m.s. (see [DPhG16]), the Green function of the Laplacian, centered at p, coincides, up to a
multiplicative constant, with the distance function raised to the power (2−N). This is a consequence
of separation of variables, see [GH18]. We omit the proof, since it can be obtained as in the case of
Ricci limit spaces considered in [D02] (see also the previous [CoM97], which is the first appearance



IMPROVED REGULARITY ESTIMATES FOR LAGRANGIAN FLOWS ON RCD(K,N) SPACES 7

of this principle to the best of our knowledge, and [ChJN18, Subsection 4.10] for analogous results
and computations).
Lemma 2.7. Let N ≥ 3 and c > 0 be given. Let (Y, ρ, cH N ) be an RCD(0, N) m.m.s.. If (Y, ρ)
is a metric cone with tip p ∈ Y , then there exists a positive Green function of the Laplacian G on
Y given by (2.1) and

G(p, x) = ρ(p, x)2−N

(N − 2)NcH N (B1(p)) , for any x 6= p . (2.9)

The last lemma shows that, on noncollapsed ambient spaces, Gλ(x, y) is locally uniformly
equivalent to d(x, y)2−N on bounded sets, for suitable choices of λ. It reflects the classical local
equivalence between Green’s functions and negative powers of the distance on smooth Riemannian
manifolds, see for instance [Au98].
Lemma 2.8. Let (X, d,H N ) an RCD(K,N) m.m.s. satisfying Assumption 2.2. Then, for any
λ ≥ c|K|, p ∈ X and R > 0, there exists a constant C1 = C1(BR(p),K,N, λ) > 0 such that

C−1
1

d(x, y)N−2 ≤ G
λ(x, y) ≤ C1

d(x, y)N−2 , for any x, y ∈ BR(p) . (2.10)

Proof. Arguing as in the proof of [BrSe19, Proposition 2.21], where the case λ = c |K| is considered,
relying on [Gr06] it is possible to prove that, for any λ ≥ c|K|, p ∈ X and R > 0 there exists a
constant C = C(λ,BR(p)) > 0 such that

C−1
� ∞

d(x,y)

r

H N (Br(x)) dr ≤ Gλ(x, y) ≤ C
� ∞

d(x,y)

r

H N (Br(x)) dr , for any x, y ∈ BR(p) .

(2.11)
By the Bishop-Gromov inequality (2.5) and the noncollapsing assumption it holds

C−1(K,N)rN ≤H N (Br(x)) ≤ C(K,N)rN , for any x ∈ BR(p) and 0 < r < 5R . (2.12)
On the other hand, Assumption 2.2 yields

H N (Br(x)) ≥ 2r3 for any x ∈ X and r > 0 . (2.13)
The conclusion follows combining (2.11), (2.12) and (2.13). �

Proof Proposition 2.3. Using (2.4) we can write� ∞
0

e−λr
2tpr,x0

t (x, y) dt = m(Br(x0))
� ∞

0
e−λr

2tpr2t(x, y) dt = r−2m(Br(x0))Gλ(x, y), (2.14)

for any x, y ∈ X. Hence, (2.6) will follow from (2.14) applying the dominated convergence theorem,
thanks to Lemma 2.6 and the bound

e−λr
2
i tpri,x0

t (xi, yi) ≤

C(N,K)C2t
−3/2e−

ρ(x∞,y∞)2
10t for t ≥ 1 ;

C(N,K)C2t
−N/2e−

ρ(x∞,y∞)2
10t for t < 1 ,

(2.15)

which is valid for any i ∈ N big enough.
Let us check (2.15). Using the heat kernel estimate (2.2) and Remark 2.1 one has

e−λr
2
i tpri,x0

t (xi, yi) ≤ e−r
2
i t(λ−c|K|)C1

m(Bri(x0))
m(Bri√t(x0))e

−
( d(xi,yi)

ri

)2 1
5t .

This estimate, along with the assumption λ ≥ c|K| and limi→∞ r−1
i d(xi, yi) = ρ(x∞, y∞), gives

e−λr
2
i tpri,x0

t (x, y) ≤ C1
m(Bri(x0))
m(Bri√t(x0))e

− ρ(x∞,y∞)2
10t , for any i ∈ N big enough .

The inequality (2.15) follows bounding m(Bri (x0))
m(Bri

√
t(x0)) with

sup
x∈X, r∈(0,1)

m(Br(x))
m(BrM (x)) ≤

C(R,K)
M3 , for any M ≥ 1, r ≤ R , (2.16)

for t ≥ 1, and with the Bishop-Gromov inequality (2.5) for t < 1. The estimate (2.16) can be
checked exploiting Assumption 2.2 and again the Bishop-Gromov inequality (2.5). �
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2.2. Proof of Corollary 2.4. It is enough to prove that for any yi → x there exists a subsequence
(ik) such that

lim
k→∞

d(x, yik)N−2Gλ(x, yik) = 1
θ(x)ωNN(N − 2) . (2.17)

To this end, we set ri := d(x, yi) and, up to extracting a subsequence that we do not relabel, we
assume that(

X, r−1
i d,H N/H N (Bri(x0)), x0

)
→ (Y, ρ,H N/H N (B1(y)), y) , in the pmGH topology

and that Xi 3 yi → y∞ ∈ Y .
Using Proposition 2.3 we have

lim
i→∞

d(x, yi)N−2Gλ(x, yi) = lim
i→∞

rNi
H N (Bri(x))r

−2
i H N (Bri(x))Gλ(x, yi) = GY (y, y∞)

ωNθ(x) .

To conclude, we can apply Lemma 2.7 with c = 1/H N (B1(y)) and observing that ρ(y, y∞) = 1,
due to the choice of the rescaling.

3. Regularity for Lagrangian Flows via Green functions

In this section we collect some known regularity results for flows of Sobolev velocity fields taken
from [BrSe19, BrSe18].

We fix a noncollapsed RCD(K,N) metric measure space (X, d,H N ) satisfying Assumption 2.2,
a point p ∈ X and R > 0. Then we consider a vector field b ∈ L1([0, T ];H1,2

C,s(TX)) with
supp b ⊂ BR(p) uniformly in time, and we set

‖b‖L∞ + ‖div b‖L∞ =: D <∞ . (3.1)

Let us also set
dGλ(x, y) := 1

Gλ(x, y) .

Proposition 3.1 (Estimate for the trajectories). Let (X, d,H N ) and b be as above, let X be
a Regular Lagrangian flow of b and λ > c|K|. Then, for any 0 ≤ s < T and H N ×H N -a.e.
(x, y) ∈ BR(p)×BR(p), it holds

e−
� t
s

(gr(Xs,r(x))+gr(Xs,r(y))) dr ≤ dGλ(Xs,t(x),Xs,t(y))
dGλ(x, y) ≤ e

� t
s

(gr(Xs,r(x))+gr(Xs,r(y))) dr , (3.2)

for any t ∈ [s, T ]. Here g is a nonnegative function such that
� T

0
‖gr‖L2 dr ≤ C(BR(p), λ,K,N)

{
‖∇symb‖L1(L2) + T ‖div b‖L∞

}
. (3.3)

The main ingredient for the proof of Proposition 3.1 is the following maximal estimate for time
independent velocity fields. We refer the reader to [BrSe19, Proposition 2.27] for its proof.

Proposition 3.2 (Maximal estimate, vector-valued version). Let (X, d,H N ) be a noncollapsed
RCD(K,N) m.m.s., b ∈ H1,2

C,s(TX) with div b ∈ L2(X) and λ > c|K| as above. Then, there exists
a positive function g ∈ L2(BR(p),H N ) such that∣∣b · ∇Gλx(y) + b · ∇Gλy (x)

∣∣ ≤ Gλ(x, y)(g(x) + g(y)) , (3.4)

for H N ×H N -a.e. (x, y) ∈ BR(p)×BR(p), and

‖g‖L2(BR(p)) ≤ CV ‖∇symb‖L2 + ‖div b‖L2 , (3.5)

where CV = CV (BR(p), λ,K,N) > 0.

Proof of Proposition 3.1. It is enough to show that, for any s ∈ [0, T ) and for H N ×H N -a.e.
(x, y) ∈ BR(p)×BR(p), it holds

e−
� t
s

(gr(Xr(x))+gr(Xr(y))) dr ≤ dGλ(Xt(x),Xt(y))
dGλ(Xs(x),Xs(y)) ≤ e

� t
s

(gr(Xr(x))+gr(Xr(y))) dr , (3.6)
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for any t ∈ [s, T ].
Indeed, exploiting (1.4) we can rewrite (3.6) as follows: for any 0 ≤ s < T and for H N ×H N -a.e.
(x, y) ∈ BR(p)×BR(p) it holds

exp
{
−
� t

s

(gr(Xs,r(Xs(x))) + gr(Xs,r(Xs(y)))) dr
}

≤ dGλ(Xs,t(Xs(x)),Xs,t(Xs(y)))
dGλ(Xs(x),Xs(y))

≤ exp
{� t

s

(gr(Xs,r(Xs(x))) + gr(Xs,s(Xs(y)))) dr
}
,

for any t ∈ [s, T ]. Then we can use (1.5) to change variable and get (3.2).
Let us prove (3.6). By [BrSe19, Corollary A.3] and Proposition 3.2 we get that∣∣∣∣ d

drG
λ(Xr(x),Xr(y))

∣∣∣∣ ≤ Gλ(Xr(x),Xr(y)) {gr(Xr(x)) + gr(Xr(y))} , (3.7)

for L 1-a.e. r ∈ (0, T ) and for H N ×H N -a.e. (x, y) ∈ BR(p)×BR(p).
Integrating (3.7) with respect to the time variable and recalling that dGλ := 1/Gλ, we get (3.6). �

3.1. Lusin-Lipschitz estimate for Lagrangian flows. Exploiting the local equivalence proved
in Lemma 2.8 we can now turn the Lusin-Lipschitz estimate in terms of Gλ into a classical Lusin-
Lipschitz estimate with respect to the distance d. We refer the reader to [BrSe18] for an analogous
statement in the case of compact Ahlfors regular RCD(K,N) spaces.

Proposition 3.3. Let (X, d,H N ) be an RCD(K,N) m.m.s. satisfying Assumption 2.2. Let us
fix a point p ∈ X and R > 0. Then, let us consider a vector field b ∈ L1([0, T ];H1,2

C,s(TX)) with
supp b ⊂ BR(p) uniformly in time, and set ‖b‖L∞ + ‖div b‖L∞ =: D <∞.
Then, for any s ∈ [0, T ], there exist a nonnegative function g′s : BR(p) → [0,∞] and a positive
constant C3 = C3(K,N,BR(p)) such that, for any x, y ∈ BR(p), it holds

d(Xs,t(x),Xs,t(y))
d(x, y) ≤ C3e

(g′s(x)+g′s(y)) , for any 0 ≤ s ≤ t ≤ T (3.8)

and
‖g′s‖L2 ≤ C(BR(p), D,K,N)

{
‖∇symb‖L1(L2) + T ‖div b‖L∞

}
.

Proof. As a consequence of Proposition 3.1 and (2.8), for any 0 ≤ s < T , for H N ×H N -a.e.
(x, y) ∈ BR(p)×BR(p) it holds

d(Xs,t(x),Xs,t(y))
d(x, y) ≤ C2

1 exp
{� t

s

gr(Xs,r(x)) dr +
� t

s

gr(Xs,r(y)) dr
}
,

for any t ∈ [s, T ]. The sought conclusion follows applying a local version of Lemma 3.4 below
choosing h(x) = hs(x) :=

� T
s
gr(Xs,r(x)) dr. �

Lemma 3.4. Let (X, d,m) be a locally doubling m.m.s., let F : X → X be a measurable function
and h ∈ L2(X,m). If

d(F (x), F (y)) ≤ Ce(h(x)+h(y))d(x, y) for m×m-a.e. (x, y) ∈ X ×X,

then there exists a function h′ : X → [0,+∞] such that

d(F (x), F (y)) ≤ C ′eh
′(x)+h′(y)d(x, y) for any x, y ∈ X and ‖h′‖L2 ≤ C ′ ‖h‖L2 ,

where C ′ depends only on C and the doubling constant of m.

Proof. We do not give here a complete proof of this statement. Let us just point out that it can
be obtained arguing as in the proof of [BrSe19, Theorem 2.20] (see also [CrDL08] for the original
argument in Euclidean spaces). �

The lemma above applies in particular to any RCD(K,N) metric measure space (X, d,m), since
the local doubling property follows from the Bishop-Gromov inequality.
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4. Trajectories almost surely pass through regular points

In this section we will show that the trajectory of the regular Lagrangian flow Xt of a time
dependent vector field b ∈ L2([0, T ];H1,2

C,s(TX)) with bounded divergence (and so in particular
autonomous vector fields satisfying proper covariant derivative and divergence bounds) passes only
through regular points starting from H N -a.e. x.

The techniques we will use are similar to those in [KW11, CoN12, KL18] (see also [D20] in the
RCD setting). In essence, we will bootstrap the existence of the nonoptimal Lipschitz bounds
between trajectories arising from Proposition 3.1 and Lemma 2.8 to obtain uniform Hölder estimates
on the volume of arbitrarily small balls (depending on the trajectory but independent of the radius
of the balls) along almost all trajectories. This will show that the density θ(Xt(x)) changes
continuously w.r.t. t, for H N -a.e. x. In view of the fact that for H N -a.e. x, for almost every
t ∈ [0, T ], Xt(x) is regular (equivalently, θ(Xt(x)) = 1 for a.e. t ∈ [0, T ]) and using again volume
rigidity [DPhG17, Corollary 1.7], this is enough to show that almost all trajectories pass through
only regular points (equivalently, θ(Xt(x)) = 1 for every t ∈ [0, T ]).

After dealing with the general case, we are going to present a technically simpler argument
tailored for the framework of spaces without boundary and based on [Aiz78].

4.1. The general case. For the rest of the section, we consider an RCD(K,N) m.m.s. (X, d,H N )
satisfying Assumption 2.2. We fix some p ∈ X and R, T,D,H > 0. For simplicity, we will consider
the Green function Gλ where λ = c|K|. We also fix a time dependent bounded vector field b ∈
L2([0, T ];H1,2

C,s(TX)) with supp(bt) ⊂ BR(p), ‖b‖L∞+‖div b‖L∞ ≤ D, and
� T

0 ‖|∇symbt|‖2L2 dt ≤ H.
We will continue to use the notations Xt and Xs,t as before. We fix a representative of Xt starting
from here and assume that, for all x ∈ X, Xt(x) is a Lipschitz curve with Lipschitz constant D.

To begin, we fix a collection of constant speed geodesics γx,y from each x ∈ X to each y ∈ X so
that the map X ×X × [0, 1] 3 (x, y, t) 7→ γx,y(t) is Borel. This is possible thanks to the Kuratowski
and Ryll-Nardzewski measurable selection theorem, see [D20, Remark 2.26] and references therein.

We will also need the notion of the distance distortion function to keep track of the distance
between points. The terminology and definition come from [KW11].
Given two RLFs Ft, Gt : X × [0, T ] → X and t ∈ [0, T ], we define dtF,Gr (t) : X ×X → [0, r], the
distance distortion function on the scale r, by

dtF,Gr (t)(x, y) := min{r, max
0≤τ≤t

|d(x, y)− d(Fτ (x), Gτ (y))|} . (4.1)

We use dtFr (t) to denote dtF,Fr (t).
The following proposition is a slight generalization of [D20, Proposition 3.27], which is proved

using a localization [D20, Proposition 3.23] of the second order differentiation formula shown in
[GT18, Theorem 5.13].

Proposition 4.1. Let W ∈ L1([0, T ];H1,2
C,s(TX)) and Ft, Gt be RLFs corresponding to bounded

U, V ∈ L1([0, T ];L2(TX)) respectively. Let S1, S2 be Borel subsets of X with finite positive measure.
The map t 7→

�
S1×S2

dtF,Gr (t)(x, y) d(H N ×H N )(x, y) is Lipschitz on [0, T ] and satisfies
d
dt

�
S1×S2

dtF,Gr (t)(x, y) d(H N ×H N )(x, y)

≤
�

Γr(t)

(
|Ut −Wt|(Ft(x)) + |Vt −Wt|(Gt(y))

)
d(H N ×H N )(x, y)

+
� 1

0

�
Γr(t)

d(Ft(x), Gt(y))|∇symWt|(γFt(x),Gt(y)(s)) d(H N ×H N )(x, y) ds ,

for L 1-a.e. t ∈ [0, T ], where Γr(t) := {(x, y) ∈ S1 × S2 : dtF,Gr (t)(x, y) < r}.

We note that the generalization is in two directions, the possibility that Wt is time dependent
and in H1,2

C,s(TX) instead of H1,2
C (TX).

The proof of [D20, Proposition 3.27] generalizes easily in the former direction. For the latter, we
note that by the discussion of [BrSe18, Remark 2.6], [GT18, Theorem 5.13] holds as stated for
vector fields in H1,2

C,s(TX) with ∇ replaced by ∇sym, which is all that is needed.
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The following corollary follows by replacing U , V and W with b in Proposition 4.1.

Corollary 4.2. Let S1, S2 be Borel subsets of X with finite positive measure. Then the map
t 7→

�
S1×S2

dtXr (t)(x, y) d(H N ×H N )(x, y) is Lipschitz on [0, T ] and satisfies

d
dt

�
S1×S2

dtXr (t)(x, y) d(H N ×H N )(x, y)

≤
� 1

0

�
Γr(t)

d(Xt(x),Xt(y))|∇symbt|(γXt(x),Xt(y)(s)) d(H N ×H N )(x, y) ds

for L 1-a.e. t ∈ [0, T ], where Γr(t) := {(x, y) ∈ S1 × S2 : dtXr (t)(x, y) < r}.

Below we state and prove the main result of this section.

Theorem 4.3. Let (X, d,H N ) be a noncollapsed RCD(K,N) m.m.s., p ∈ X and let b, D and
H be as above. Then for H N -a.e. x ∈ BR(p), there exist rx > 0 and a modulus of continuity
gx : [0,∞)→ [0,∞) such that g(0) = 0, g is continuous at 0 and the following holds:∣∣∣∣H N (Br(Xt1(x)))

H N (Br(Xt2(x))) − 1
∣∣∣∣ ≤ g(|t2 − t1|) , for any 0 < r < rx and any 0 ≤ t1, t2 ≤ T . (4.2)

As a corollary, for H N -a.e. x ∈ BR(p), Xt(x) is a regular point for any t ∈ [0, T ].

Proof. Fix any ε > 0. It suffices to show the claim holds for the elements of some S ⊆ BR(p) with
H N (BR(p) \ S) ≤ ε.

Fix C1(K,N,BR(p)) as in Lemma 2.8 (notice the dependence on λ is dropped since we assume
λ = c|K|). Fix some g ∈ L1([0, T ];L2(BR(p),H N )) as in Proposition 3.1 for b. Note� T

0

�
BR(p)

gs(Xs(x)) dH N (x) ds

≤ eDT
� T

0

�
BR(p)

gs(x) dH N (x) ds

≤ eDT
√

H N (BR(p))
� T

0
‖gs‖L2 ds

≤ eDT
√

H N (BR(p))c(BR(p),K,N)
(� T

0
‖∇symbs‖L2 ds+ T ‖div b‖L∞

)
≤ eDT

√
H N (BR(p))c(BR(p),K,N)(

√
TH + TD) =: C2(BR(p),K,N,H,D, T ) ,

(4.3)

where we used (1.5), Cauchy-Schwarz inequality, the bound (3.3) on
� T

0 ‖gr‖L2 dr and the definitions
of D,H from the beginning of the section.

Let E1 be the set of x ∈ BR(p) for which (3.2) holds for s = 0 and H N -a.e. y. By Fubini’s
theorem, H N (BR(p) \ E1) = 0.
Let E2 be the set of x ∈ BR(p) for which

� T
0 gr(Xr(x)) dr ≤M1, where, by (4.3) and Chebyshev’s

inequality, M1(BR(p),K,N,H,D, T, ε) is chosen sufficiently large so that H N (BR(p) \E2) ≤ ε/2.
For each t ∈ [0, T ], define the maximal function Mxt of |∇symbt| for x ∈ X by

Mxt(x) := sup
0<r≤16R

 
Br(x)

|∇symbt|(z) dH N (z) .

By the standard maximal inequality and using that bt is supported in BR(p), we have ‖Mxt‖L2 ≤
c(K,N,R) ‖|∇symbt|‖L2 . Therefore, using again (1.5),

� T

0

�
BR(p)

Mx2
s(Xs(x)) dH N (x) ds ≤ eDT

� T

0

�
BR(p)

Mx2
s(x) dH N (x) ds

≤ eDT
� T

0
c2 ‖|∇symbt|‖2L2 ds

≤ eDT c2H =: C3(BR(p),K,N,H,D, T ) .

(4.4)
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Let E3 to be the set of x ∈ BR(p) for which
� T

0 Mx2
s(Xs(x)) ds ≤ M2, where, by (4.4) and

Chebyshev’s inequality,M2(BR(p),K,N,H,D, T, ε) is chosen sufficiently large so that H N (BR(p)\
E3) ≤ ε/2.

Define S′ to be the set of density points of E := E1∩E2∩E3 and setM3 := max{(C2
1e

2M1)
1

N−2 , 1}.
For each x ∈ S′, let r′x > 0 be sufficiently small so that

H N (E ∩Br(x))
H N (Br(x)) ≥ 1

2 , for any r ≤ r′x . (4.5)

Then we choose rx := min{r′x, R
M3
}. Notice that, for any r ≤ rx, any t ∈ [0, T ] and H N -a.e.

y ∈ E ∩Br(x),

d(Xt(x),Xt(y)) ≤M3d(x, y) ≤ 1 , (4.6)

by Proposition 3.1 and Lemma 2.8.

Fix x ∈ S′, r ∈ (0, rx] and 0 ≤ t1 < t2 ≤ T . Without loss of generality, we will assume T ≤ 1.
Define

ω := t2 − t1 and µ := 1
M3

ω
1

2(1+2N) ≤ 1
M3
≤ 1 . (4.7)

By the very definition of rx and since µr ≤ rx, there exists some set Ex,µr, which can be taken up
to a set of measure 0 equal to S′ ∩Bµr(x), such that

H N (Ex,µr)
H N (Bµr(x)) ≥

1
2 and Xt(Ex,µr) ⊆ BM3µr(Xt(x)) for any t ∈ [0, T ] . (4.8)

We will now use the trajectory of Xt1(Ex,µr) under Xt1,t1+s to keep track of the trajectory of a
large subset of Br(Xt1(x)) under Xt1,t1+s.

In view of (1.4), we may assume, up to altering Ex,µr by a set of measure 0, that

Xt1,t1+s(Xt1(z)) = Xt1+s(z) , for any z ∈ Ex,µr and any s ∈ [0, T − t1] . (4.9)

Using Corollary 4.2 with S1 = Br(Xt1(x)), S2 = Xt1(Ex,µr) and RLF Xt1,t1+·, we have that
for L 1-a.e. s ∈ [0, ω], setting t = t1 + s in order to simplify the notation,

d
ds

�
S1×S2

dt
Xt1,t1+·
r (s)(y, z) d(H N ×H N )(y, z)

≤
� 1

0

�
Γr(s)

d(Xt1,t(y),Xt1,t(z))|∇sym(bt)|(γXt1,t(y),Xt1,t(z)(u)) d(H N ×H N )(y, z) du ,
(4.10)

where, by definition, Γr(s) = {(y, z) ∈ S1 × S2 : dtXt1,t1+·
r (s)(y, z) < r}.

Observe that (recalling that we have set t = t1 + s):

i) for any s ∈ [0, ω], Xt1,t(S2) = Xt(Ex,µr) ⊆ BM3µr(Xt(x)), by (4.8);
ii) for any y, z ∈ S1 × S2, d(y, z) ≤ (M3µ+ 1)r since S2 ⊆ BM3µr(Xt1(x)), by (4.8) again.

Therefore, for any s ∈ [0, ω] and (y, z) ∈ Γr(s),

d(Xt1,t(y),Xt(x)) ≤ d(Xt1,t(y),Xt1,t(z)) + d(Xt1,t(z),Xt(x))
≤ d(y, z) + |d(Xt1,t(y),Xt1,t(z))− d(y, z)|+ d(Xt1,t(z),Xt(x))
≤ (M3µ+ 1)r + r +M3µr ≤ 4r ≤ 4R .

Hence

(Xt1,t,Xt1,t)(Γr(s)) ⊆ B4r(Xt(x))×B4r(Xt(x)) ⊆ B4R(Xt(x))×B4R(Xt(x)) .
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Now we can estimate, starting from (4.10),
� 1

0

�
Γr(s)

d(Xt1,t(y),Xt1,t(z))|∇sym(bt)|(γXt1,t(y),Xt1,t(z)(u)) d(H N ×H N )(y, z) du

≤ eDT
� 1

0

�
(Xt1,t,Xt1,t)(Γr(s))

d(y, z)|∇sym(bt)|(γy,z(u)) d(H N ×H N )(y, z) du

≤ eDT
� 1

0

�
B4r(Xt(x))×B4r(Xt(x))

d(y, z)|∇sym(bt)|(γy,z(u)) d(H N ×H N )(y, z) du

≤ eDT c(K,N)rH N (B4r(Xt(x)))
�
B4r(Xt(x))

|∇symbt| dH N

≤ eDT c(K,N)r
(
H N (B4r(Xt(x)))

)2  
B4r(Xt(x))

|∇symbt| dH N

= c(K,N,D, T )r
(
H N (B4r(Xt(x)))

)2  
B4r(Xt(x))

|∇symbt| dH N ,

(4.11)

where we used (1.5) for the second line and the Cheeger-Colding segment inequality (see [CC96] for
the original formulation and [VR08], [D20, Theorem 3.22] for this framework) for the fourth line.
Therefore,

�
S1×S2

dt
Xt1,t1+·
r (ω)(y, z) d(H N ×H N )(y, z)

=
� ω

0

[
d
ds

�
S1×S2

dt
Xt1,t1+·
r (s)(y, z) d(H N ×H N )(y, z)

]
ds

≤
� ω

0

[
cr
(
H N (B4r(Xt1+s(x))

)2  
B4r(Xt1+s(x))

|∇symbt1+s| dH N

]
ds

≤ c(BR(p),K,N,H,D, T, ε)r
(
H N (Br(x))

)2 � ω

0

 
B4r(Xt1+s(x))

|∇symbt1+s| dH N ds

≤ cr
(
H N (Br(x))

)2√
M2
√
ω = c(BR(p),K,N,H,D, T, ε)r

(
H N (Br(x))

)2√
ω .

(4.12)

Above, we used the Bishop-Gromov inequality and N -Ahlfors regularity of noncollapsed RCD(K,N)
spaces for the fourth line and Cauchy-Schwarz, the fact that x ∈ S′ ⊆ E3, the definition of M2 and
that 4r ≤ 4 for the fifth line.

Using (4.8), (1.5) and the Bishop-Gromov inequality, we have that

H N (S2)
H N (Br(x)) ≥

e−DTH N (Ex,µr)
H N (Br(x)) ≥ e−DTH N (Bµr(x))

2H N (Br(x)) ≥ c(K,N,D, T )µN . (4.13)

Combining (4.13) with (4.12), we can find z ∈ S2 = Xt1(Ex,µr) so that
�
S1

dt
Xt1,t1+·
r (ω)(y, z) dH N (y) ≤ c(BR(p),K,N,H,D, T, ε)rH N (Br(x))µ−N

√
ω

= crH N (Br(x))( 1
M3

ω
1

2(1+2N) )−N
√
ω

= c(BR(p),K,N,H,D, T, ε)rH N (Br(x))ω
1+N

2(1+2N) , (4.14)

where in the last line we used the dependence of M3.
Using again the N -Ahlfors regularity of X, which says that the measure of Br(Xt1(x)) is comparable
to that of Br(x)„ (4.14) and Chebyshev’s inequality, we can find some subset S′1 ⊆ S1 = Br(Xt1(x))
with

H N (S′1)
H N (Br(Xt1(x))) ≥ 1− µN (4.15)



14 ELIA BRUÉ, QIN DENG, AND DANIELE SEMOLA

and

dt
Xt1,t1+·
r (ω)(y, z) ≤ crω

1+N
2(1+2N)

µN

= c(BR(p),K,N,H,D, T, ε)rω
1

2(1+2N) = cµr < r ,

(4.16)

for any y ∈ S′1 and any sufficiently small ω depending on BR(p),K,N,H,D, T and ε.
Since for any y ∈ S′1 we also have d(y, z) ≤ (M3µ+ 1)r, we can estimate

d(Xt1,t2(y),Xt2(x)) ≤ d(Xt1,t2(y),Xt1,t2(z)) + d(Xt1,t2(z),Xt2(x))
≤ d(y, z) + |d(Xt1,t2(y),Xt1,t2(z))− d(y, z)|+ d(Xt1,t2(z),Xt2(x))

≤ d(y, z) + dt
Xt1,t1+·
r (ω)(y, z) + d(Xt1,t2(z),Xt2(x))

≤ (M3µ+ 1)r + cµr +M3µr

= (1 + c(BR(p),K,N,H,D, T, ε)µ)r .

(4.17)

Above we used that dtXt1,t1+·
r (ω)(y, z) < r for y ∈ S′1 in the third line and the definition of µ and

the dependence of M3 in the last line. In other words, Br(Xt1,t2(S′1)) ⊆ B(1+cµ)r(Xt2(x)).
This inclusion immediately gives the following volume estimate:

H N (Br(Xt1(x))
H N (Br(Xt2(x))) ≤

1
1− 2ω

H N (S′1)
H N (Br(Xt2(x)))

≤ 1
1− ωe

Dω H N (Xt1,ω′(S′1))
H N (Br(Xt2(x)))

≤ 1
1− ωe

DωH N (B(1+cµ)r(Xt2(x)))
H N (Br(Xt2(x)))

≤ 1
1− ωe

Dω(1 + c(K,N,R)cµ)N

= 1
1− ωe

Dω(1 + cω
1

2(1+2N) )N ,

where we used (4.15) for the first line, (1.5) for the second line, and the Bishop-Gromov inequality
for the fourth line.
This yields a bound of the form

H N (Br(Xt1(x)))
H N (Br(Xt2(x))) ≤ 1 + g(ω) , for any 0 < r < rx and any 0 ≤ t1 ≤ t2 ≤ T , (4.18)

where ω = t2 − t1 and g is a modulus of continuity independent of r.

To establish the bound in the other direction, we will consider the RLF (Ys) associated with the
vector field (−bt2−s)s∈[0,t2], basically reversing time in the argument.

By [D20, Proposition 3.12], we may alter Ex,µr up to a set of measure 0 so that for any z ∈ Ex,µr,
for any s ∈ [0, t2], we have Ys(Xt2(z)) = Xt2−s(z). As such, Ys(Xt2(Ex,µr)) = Xt2−s(Ex,µr). In
particular, Ys(Xt2(Ex,µr)) ⊆ BM3µr(Xt2−s(x)) for any s ∈ [0, t2].

Then we can use the trajectory of Xt2(Ex,µr) under Ys to control the trajectory of a large
portion of Br(Xt2(x)) under Ys as we did previously. This will obtain a lower bound of the form

H N (Br(Xt1(x)))
H N (Br(Xt2(x))) ≥ 1 + g(ω) , for any 0 < r < rx and any 0 ≤ t1 ≤ t2 ≤ T , (4.19)

for another modulus of continuity g independent of r, which completes he proof of (4.2).

Passing to the limit in (4.2) as r ↓ 0, we conclude that [0, T ] 3 t 7→ θ(Xt(x)) is continuous for
H N -a.e. x ∈ BR(p), where θ(x) denotes the density at x, see (1.9).
Moreover, combining the bounded compressibility (1.2) with Fubini’s theorem, we know that for
H N -a.e. x ∈ BR(p), Xt(x) is a regular point for L 1-a.e. t ∈ [0, T ]. Equivalently, θ(Xt(x)) = 1 for
L 1-a.e. t ∈ [0, T ].
Hence θ(Xt(x)) = 1 for any t ∈ [0, T ] and therefore Xt(x) is a regular point for any t ∈ [0, T ]. �
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4.2. A simple approach for spaces without boundary. In this section we present a simpler
proof of Theorem 4.3 in the case of spaces without boundary. It is based on the principle that the
bounded compressibility assumption, coupled with an integrability bound on the vector field, is
enough to guarantee avoidance of sets with codimension two, in a strong enough sense. As such, it
does not require a careful analysis of the regularity of Lagrangian flows, but a better understanding
of the fine structure of noncollapsed RCD(K,N) spaces. Unfortunately, it is not suited for dealing
with codimension one singularities, such as boundary points.

Let us recall that any noncollapsed RCD(K,N) m.m.s. (X, d,H N ) can be decomposed as
X = R∪ S where R = {x ∈ X : θ(x) = 1} is the regular set, while S stratifies as

S0 ⊂ . . . ⊂ SN−2 ⊂ SN−1 = S , (4.20)

where x ∈ Sk if and only if no tangent cone of (X, d,H N ) at x splits a factor Rk+1.
Moreover, we say that (X, d,H N ) has empty boundary (in formula ∂X = ∅) if SN−1 \SN−2 = ∅,

see [BrNSe20] after [DPhG17, KM19].

We are going to need the notion of quantitative singular stratum, as introduced in [CN13] (see
also [ABS19] for the present framework).

Definition 4.4. For any η > 0, let us define the kth-effective stratum Skη by

Skη := { y | dGH(Bs(y), Bs ((0, z∗))) ≥ ηs for all Rk+1 × C(Z) and all 0 < s ≤ 1 } , (4.21)

where Bs ((0, z∗)) denotes the ball in Rk+1 × C(Z) centered at (0, z∗) with radius s and C(Z)
denotes any metric measure cone over an RCD(N − k − 3, N − k − 2) m.m.s. (Z, dZ ,H N−k−1).

For the sake of clarity, let us also recall that

Sk =
⋃
η>0
Skη . (4.22)

The following argument is based on [Aiz78].

Proposition 4.5. Let (X, d,H N ) be an RCD(K,N) m.m.s. and let p > 2. Any regular Lagrangian
flow X of a velocity field b ∈ L1([0, T ];Lp(TX)) satisfies the following property: for H N -a.e. x ∈ X
it holds Xt(x) ∈ X \ SN−2 for any t ∈ [0, T ].

In particular, if ∂X = ∅, then for H N -a.e. x ∈ X it holds that Xt(x) is a regular point for any
t ∈ [0, T ].

Proof. Let η > 0, ε > 0, r0 > 0, R ≥ 1 and M > 1 be fixed.
Let SN−2

η be the quantitative singular strata of codimension two (see (4.21)) and let dSN−2
η

denote
the distance function from SN−2

η . In order to ease the notation we shall abbreviate dη := dSN−2
η

.
Let us assume ε ≤ r0/2 and set

τε(x) :=
{

sup { t ∈ [0, T ] : dη(Xs(x)) > ε ∀ s ∈ [0, t] } if dη(x) > ε

ε if dη(x) ≤ ε,

and

F := {x ∈ BR(p) : Xt(x) ∈ BRM (p) ∀ t ∈ [0, T ] and dη(x) ≥ r0, τε(x) < T } , (4.23)

for a given p ∈ X.

For any nonnegative function f ∈ C∞(R) such that f ≡ 0 on [r0,∞), using that |∇dη| = 1-a.e.
and the bounded compressibility (1.2), we can compute

f(ε)H N (F ) =
�
F

∣∣f ◦ dη(Xτε(x)(x))− f ◦ dη(x)
∣∣dH N (x)

≤
�
F

� τε(x)

0
|bs|(Xs(x))|f ′ ◦ dη|(Xs(x)) dsdH N (x)

≤ L
� T

0

�
BRM (p)

|bs||f ′ ◦ dη|dH N ds . (4.24)
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A simple approximation argument allows us to consider in (4.24) the test function

f(y) :=
{

log(r0/y) if y < r0

0 if y ≥ r0 .
(4.25)

Then we obtain

log(r0/ε)H N (F ) ≤ L
� T

0

�
{ dη≤r0 }∩BRM (p)

|bs|(x) 1
dη(x) dH N (x) ds

≤ L

(� T

0
‖bs‖Lp ds

)(�
{ dη≤r0 }∩BRM (p)

d−p
′

η dH N

)1/p′

≤ L ‖b‖L1(Lp)

(� ∞
r−p
′

0

H N ({ dη < λ−1/p′ } ∩BRM (p)) dλ
)1/p′

, (4.26)

where 1/p+ 1/p′ = 1 and we applied Hölder’s inequality at the second line and Cavalieri’s formula
at the third one.

Observe that, by [ABS19, Theorem 2.4] (see also eq. (2.6) therein), we can bound

H N
(
{ dη < λ−1/p′ } ∩BRM (p)

)
≤ c(K,N,MR, η, r0, p)λ−

2−η
p′ , for any λ > r−p

′

0 . (4.27)

Since by assumption p > 2, it holds that p′ < 2. Hence, if η < η0, we have (2− η)/p′ > 1. Therefore

C(η) :=
� ∞
r−p
′

0

H N
(
{ dη < λ−1/p′ } ∩BRM (p)

)
dλ <∞ . (4.28)

In particular, by (4.26), we obtain that for η < η0,

log(r0/ε)H N (F ) ≤ L ‖b‖L1(Lp) C(η) , (4.29)

independently of ε.
Letting ε ↓ 0, we deduce that, for any η < η0,

H N ({x ∈ BR(p) : Xt(x) ∈ BRM (p) ∀t ∈ [0, T ] and Xt(x) ∈ SN−2
η for some t ∈ [0, T ] }) = 0 ,

which easily gives the sought conclusion, taking into account (4.22) and letting M →∞. �

5. Proof of Theorem 1.6

The general strategy will be to start from Proposition 3.1 and turn it into an infinitesimal
estimate for the lower/upper approximate slopes of the RLF relying on Corollary 2.4. A priori,
such an estimate would involve the ratio between the densities at the two points connected by the
RLF, and we will use Theorem 4.3 to get rid of this dependence.

In the end we will show how the technical Assumption 2.2 can be removed, via a tensorization
argument that has already been used in [BrSe19, BrSe18].

We start with two preliminary lemmas.

Lemma 5.1. Let (X, d,m) be a locally compact metric space endowed with a σ-finite reference
measure, and let f ∈ L1([0, 1] × X). Then, for any ε > 0, there exists a Borel set E ⊂ X with
m(X \ E) < ε such that, for any t ∈ [0, 1], the function x 7→

� t
0 fr(x) dr is continuous in E.

Proof. We assume without loss of generality that (X, d) is compact. The general case can be
handled writing X as a countable union of compact sets Kn with finite measure, applying the
construction described below to find good sets En \Kn such that m(Kn ⊂ En) ≤ ε/2n and setting
E := ∪nEn.

Let (fnr )n ⊂ C(X, d) such that limn→∞
� 1

0 ‖f
n
r − fr‖L1 dr = 0. Up to extract a subsequence, for

m-a.e. x ∈ X we have

lim
n→∞

∣∣∣∣� t

0
fnr (x) dr −

� t

0
fr(x) dr

∣∣∣∣ ≤ lim
n→∞

� 1

0
|fnr (x)− fr(x)|dr = 0 , for any t ∈ [0, T ] .
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By Egorov theorem we can find a closed set E such that m(X \ E) < ε and

lim
n→∞

sup
x∈E

� 1

0
|fnr (x)− fr(x)|dr → 0 .

The conclusion follows recalling that uniform limits of continuous functions are continuous. �

Thanks to Lemma 5.2 we will get the expected factor t at the exponent in the bounds for the slope
of regular Lagrangian flows of time independent Sobolev vector fields, see (1.11). Independence of
time is a crucial assumption for its proof to work.

Lemma 5.2. Let (X, d,m) be an RCD(K,N) m.m.s.. Let g ∈ L2(X,m) be nonnegative, b ∈
H1,2
C,s(TX) ∩ L∞(TX) with ‖div b‖L∞ ≤ D and let Xt be the unique Regular Lagrangian flow of b.

Let us set

h(x) := sup
0<s≤T

1
s

� s

0
g(Xr(x)) dr . (5.1)

Then ‖h‖L2 ≤ C(D,T ) ‖g‖L2 .

Proof. Let us set

ht(x) := sup
0<s≤T

1
s

� t+s

t

g(Xr(x)) dr , for any t ∈ [0, T ] and any x ∈ X .

Notice that the weak semi-group property (1.4) gives, for any t ∈ [0, T ],

ht(x) = sup
0<s≤T

1
s

� s

0
g(Xr+t(x)) dr = h(Xt(x)) , for m-a.e. x ∈ X . (5.2)

Let us now apply the L2-maximal estimate to the function t 7→ ht(x), getting
� T

0
ht(x)2 dt ≤ C

� 2T

0
g(Xt(x))2 dt , for any x ∈ X , (5.3)

where C > 0 is a numerical constant.
Integrating both sides of (5.3) with respect to m and using (1.5), (5.2), we get

Te−DT
�
X

h2 dm ≤
� T

0

�
X

(h(Xt(x)))2 dm(x) dt

=
� T

0

�
X

(ht(x))2 dm(x) dt

≤2CTeDt
�
X

g(x)2 dm(x) .

�

Proof of Theorem 1.6. Let us first prove the theorem under the additional Assumption 2.2, we will
explain at the end how to get rid of this assumption.

Fix any 0 ≤ s < T and ε > 0. By Lemma 5.1 we can find a Borel set E1 ⊂ BR(p) with
m(BR(p) \ E1) ≤ ε and such that � t

s

gr(Xs,r(·)) dr
∣∣
E1

(5.4)

is continuous, for any t ∈ [s, T ].
Set E2 := { g′s ≤ 1/ε }, where g′s is as in (3.8). Then let us take x ∈ E1 ∩E2 such that E1 ∩E2 is of
density one at x and there exists E3 ⊂ BR(p) with H N (BR(p) \ E3) = 0 for which (x, y) satisfies
(3.2) for any y ∈ E3.
Notice that, taking the union for ε ∈ (0, 1), the sets of points x ∈ BR(p) selected in this way has
full measure in BR(p). Therefore it is enough to check (1.10) for these points.

To do so, let us set E := E1∩E2∩E3. Notice that E has density one at x and Xs,t

∣∣
E
is Lipschitz

for any t ∈ [s, T ], by (3.8). Applying Proposition 3.1 and taking into account the continuity of
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x 7→
� t
s
gr(Xs,r(x)) dr on E, for any t ∈ [s, T ], we deduce

e−2
� t
s
gr(Xs,r(x)) dr ≤ lim inf

y∈E, y→x

dGλ(Xs,t(x),Xs,t(y))
dGλ(x, y)

≤ lim sup
y∈E, y→x

dGλ(Xs,t(x),Xs,t(y))
dGλ(x, y) ≤ e−2

� t
s
gr(Xs,r(x)) dr .

Using Corollary 2.4 we get

lim sup
y∈E, y→x

dGλ(Xs,t(x),Xs,t(y))
dGλ(x, y) (5.5)

= lim sup
y∈E, y→x

(
d(Xs,t(x),Xs,t(y))

d(x, y)

)N−2 d(x, y)N−2Gλ(x, y)
d(Xs,t(x),Xs,t(y))N−2Gλ(Xs,t(x),Xs,t(y)) (5.6)

= lim sup
y∈E, y→x

(
d(Xs,t(x),Xs,t(y))

d(x, y)

)N−2
θ(Xs,t(x))

θ(x) . (5.7)

An analogous conclusion holds for the liminf. This gives (1.10), up to replacing gr with (N − 2)gr
and up to the ratio between densities along the trajectory. We can now get rid of the term
θ(Xs,t(x))/θ(x) in (5.5) thanks to Theorem 4.3. In this way we obtain (1.10).

In the case of vector fields independent of time, the second conclusion of Theorem 1.6, namely
(1.11), directly follows from (1.10) and Lemma 5.2.

To conclude, let us explain how to get rid of Assumption 2.2. We rely on a tensorization argument
similar to the one presented in [BrSe19, BrSe18].
Let us define Y = X × R3, with product metric measure structure (Y, dY ,mY ). It is easy to verify
that (Y, dY ,mY ) verifies Assumption 2.2. Then let us consider v ∈ L2([0, T ];H1

C,s,loc(TY )) acting
as v · ∇(fg) = gv · ∇f for any f ∈ Lip(X), g ∈ Lip(R3). We shall avoid stressing the dependence
fo the various differential operators appearing on the reference metric measure space since there is
no risk of confusion. We refer to [GR20] for a recent throughout study of second order calculus on
product spaces.
One can easily check that Zt(x, h) = (Xt(x), h) for (x, h) ∈ Y , is a RLF associated to v. We aim
at applying the regularity estimate to Zt over (Y, dY ,mY ) in order to get the sought estimate for
Xt on (X, d,H N ).
To this aim we need to slightly modify v to make its support compact. Fix a constant M > 1
to be made precise later and a smooth cut off function ϕ ∈ C∞(R3) satisfying ϕ ≡ 1 in BRM (0)
and ϕ ≡ 0 in R3 \ B2RM (0). Then we set v′ = ϕv. Notice that v′ ∈ L2([0, T ];H1

C,s(TY )) and
v′,div v′ ∈ L∞. Moreover, denoting by Z ′ the RLF of v′ it holds Z ′(t, x, h) = Z(t, x, h) for
H N ×L 3-a.e. (x, h) ∈ BR(0)× (−1, 1) and any t ∈ [0, T ], provided M is big enough.

To conclude, we can apply a variant of the argument presented in the first part of the proof to v′
and Z ′. More precisely, in (5.5) we keep h = 0 fixed and take the limsup and the liminf considering
only points y ∈ E ∩ (X × {0}).

�

6. Proof of Theorem 1.7

The main idea for the proof is to argue in a similar manner to [CoN12, KL18].
We begin with a lemma to establish some rough estimates. Notice that the difference between this
statement and what can be obtained combining Proposition 3.1 and Lemma 2.8 is that r can be
as large as R. As for the proof of Theorem 1.6, in this section we will argue under the additional
Assumption 2.2. A tensorization argument similar to the one employed for Theorem 1.6 allows to
get rid of this assumption.

Lemma 6.1. For any ε > 0, there exist S ⊆ BR(p), with H N (BR(p) \ S) < ε, and a constant
ω1(K,N,BR(p), H,D, T, ε) > 0 so that for any x ∈ S, r ∈ (0, 4R] and any t1 ∈ [0, T ), we can find
Ar ⊆ Br(Xt1(x)) with the following properties:

i) H N (Ar)
H N (Br(Xt1 (x))) ≥

1
2 ;

ii) for any t2 ∈ (t1, t1 + ω1], Xt1,t2(Ar) ⊆ B4r(Xt2(x)).
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Proof. Let us fix any ε > 0 and choose S as in proof of Theorem 4.3. Fix x ∈ S, r ∈ (0, 4R], and
t1 ∈ [0, T ). We divide the proof of the theorem in two cases, when r ∈ (0, rx] and when r ∈ (rx, 4R],
where rx is defined as in the proof of Theorem 4.3.
Case 1: r ∈ (0, rx]

The proof in this case is very similar to the argument for Theorem 4.3 and so we will skip some
details.

LetM2,M3 be as in the proof of the theorem. By definition of rx, we may choose Ex, rM3
⊆ B r

M3
(x)

so that
H N (Ex, rM3

)
H N (B r

M3
(x)) ≥

1
2 and Xt(Ex, rM3

) ⊆ Br(Xt(x)) for any t ∈ [0, T ] . (6.1)

The idea is now to use the trajectory of Xt1(Ex, rM3
) under Xt1,t1+s to control the trajectory of a

large portion of Br(Xt1(x)), as we did before.
Let S1 := Br(Xt1(x)) and S2 := Xt1(Ex, rM3

) (possibly after a modification on a set of measure 0).
After similar calculations as before (cf. with (4.12)) we obtain that, for any ω ∈ [0, T − t1],�
S1×S2

dt
Xt1,t1+·
r (ω)(y, z) d(H N ×H N )(y, z) ≤ c(BR(p),K,N,H,D, T, ε)r

(
H N (Br(x))

)2√
ω .

By Bishop-Gromov inequality, (6.1) and (1.5), arguing as in (4.13), we can find z ∈ S2 so that�
S1

dt
Xt1,·
r (ω)(y, z) dH N (y) ≤ c(BR(p),K,N,H,D, T, ε)rH N (Br(x))

√
ω . (6.2)

Therefore, for ω′1(K,N,BR(p), H,D, T, ε) sufficiently small and using the N -Ahlfors regularity of
X, we can find a subset Ar ⊆ Br(Xt1(x)) such that

i) H N (Ar)
H N (Br(Xt1 (x))) ≥

1
2 ;

ii) for any y ∈ Ar, dt
Xt1,t1+·
r (ω′1)(y, z) ≤ 1

2r.

A simple estimate with the triangle inequality and using the definition of dtXt1,·
r and (6.1) shows

that Xt1,t2(Ar) ⊆ B4r(Xt2(x)) for any t2 ∈ (t1, t1 + ω′1], as required.
Case 2: r ∈ (rx, 4R]

This case will be handled by induction/bootstrap.
Fix any r ∈ (rx, R]. We claim that there exists ω′′1 (K,N,BR(p), H,D, T, ε) so that the following
holds: if for some x ∈ S, 0 ≤ t1 < t2 ≤ T such that t2 − t1 ≤ ω′′1 , and r ∈ [0, R4 ), there exists
Ar ⊆ Br(Xt1(x)) with

(1) H N (Ar)
H N (Br(Xt1 (x))) ≥

1
2 ;

(2) Xt1,t1+s(A′r) ⊆ B4r(Xt1+s(x)) for any s ∈ [0, t2 − t1],
then the same holds for the scale of 4r. In other words, there exists A′4r ⊆ B4r(Xt1(x)) so that

(1) H N (A′4r)
H N (B4r(Xt1 (x))) ≥

1
2 ;

(2) Xt1,t1+s(A′4r) ⊆ B16r(Xt1+s(x)) for any s ∈ [0, t2 − t1].
Combining this inductive estimate with Case 1, which plays the role of the base step, is enough to
prove Case 2, one can simply take ω1 := min{ω′1, ω′′1}.
The argument to prove the claim above uses the trajectory of Ar under Xt1,t1+s to control the
trajectory of most of B4r(Xt1(x)) under Xt1,t1+s and is very similar to previous estimates of this
type. As such, we will not repeat it. �

Having established Lemma 6.1, we will now state a finer version which is time dependent. As
will be seen, this will almost immediately give Theorem 1.7.

Lemma 6.2. For any ε > 0, there exist S ⊆ BR(p), with H N ((BR(p) \ S) < ε, and constants
ω2(K,N,BR(p), H,D, T, ε), α(N), β(N) and C(K,N,BR(p), H,D, T, ε) such that the following
holds: for any x ∈ S, r ∈ (0, 4R] and 0 ≤ t1 < t2 ≤ T with t2−t1 ≤ ω2, there exists Ar ⊆ Br(Xt1(x))
so that

i) H N (Ar)
H N (Br(Xt1 (x))) ≥ 1− (t2 − t1)β;

ii) for any y ∈ Ar, d(Xt1,t2(y),Xt2(x)) ≤ d(y,Xt1(x)) + C(t2 − t1)αr.
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Proof. Fix any ε > 0. We will fix ω2 later but assume for the moment that it is less than ω1 from
Lemma 6.1. We again choose S as in the proof of Theorem 4.3.
Fix now any x ∈ S, 0 ≤ t1 < t2 ≤ T with t2 − t1 ≤ ω2, and r ∈ (0, 4R]. Define ω := t2 − t1 and
µ := ω

1
2(1+2N) .

We can apply Lemma 6.1 to find a subset S2 ⊆ Bµr(Xt1) such that

(1) H N (S2)
H N (Bµr(Xt1 (x))) ≥

1
2 ;

(2) for any s ∈ [0, ω], Xt1,t1+s(S2) ⊆ B4µr(Xt1+s(x)).
Then we can use the trajectory of S2 under Xt1,t1+s to control the trajectory of most of Br(Xt1(x))
under Xt1,t1+s. The computation is nearly identical to the proof of Theorem 4.3 so we will not
repeat it.
This enables us (see (4.15), (4.16)) to find some Ar ⊆ Br(Xt1(x)) with

H N (Ar)
H N (Br(Xt1(x))) ≥ 1− µN , (6.3)

and some z ∈ S2 such that for any y ∈ Ar and any s ∈ [0, ω],

dt
Xt1,t1+·
r (ω)(y, z) ≤ c(K,N,BR(p), H,D, T, ε)µr . (6.4)

Moreover, choosing ω2(K,N,BR(p), H,D, T, ε) sufficiently small, we may assume that cµr < r.
Using the triangle inequality and the fact that z ∈ S2, we find that, for any y ∈ Ar and any
s ∈ [0, ω],

d(Xt1,t1+s(y),Xt1+s(x)) ≤ d(Xt1,t1+s(y),Xt1,t1+s(z)) + d(Xt1,t1+s(z),Xt1+s(x))
≤ d(y, z) + |d(Xt1,t1+s(y),Xt1,t1+s(z))− d(y, z)|

+ d(Xt1,t1+s(z),Xt1+s(x))

≤ d(y,Xt1(x)) + d(Xt1(x), z) + dt
Xt1,·
r (ω)(y, z)

+ d(Xt1,t1+s(z),Xt1+s(x))
≤ d(y,Xt1(x)) + µr + cµr + 4µr
≤ d(y,Xt1(x)) + C(K,N,BR(p), H,D, T, ε)µr .

This immediately gives the claim with β = N
2(1+2N) and α = 1

2(1+2N) , since µ = (t2− t1)
1

2(1+2N) . �

Proof of Theorem 1.7. Fix any ε > 0 and the same S as before. Fix any x, y ∈ S. Fix some
0 ≤ t1 < t2 ≤ T with t2 − t1 ≤ ω2 given by Lemma 6.2.
It is straightforward to check that Xt(x) ∈ BR(p) (likewise for y) for any t ∈ [0, T ], since a set of
positive measure in BR(p) stays arbitrarily close to Xt(x) under the flow Xt (by definition of S)
and b is supported in BR(p).

Define r := d(Xt1(x),Xt1(y)) ≤ 2R. Applying Lemma 6.2 to B2r(Xt1(x)) we can find Ax2r ⊆
B2r(Xt1(x)) such that

1x) H N (Ax2r)
H N (B2r(Xt1 (x))) ≥ 1− (t2 − t1)β ;

2x) for any z ∈ Ax2r, d(Xt1,t2(z),Xt2(x)) ≤ d(z,Xt1(x)) + C(t2 − t1)αr.
Analogously, applying Lemma 6.2 to B2r(Xt1(y)) we can find Ay2r ⊆ B2r(Xt1(y)) such that

1y) H N (Ay2r)
H N (B2r(Xt1 (y))) ≥ 1− (t2 − t1)β ;

2y) for any z ∈ Ay2r, d(Xt1,t2(z),Xt2(y)) ≤ d(z,Xt1(y)) + C(t2 − t1)αr.

Let us consider the set E := Ax2r ∩ A
y
2r ∩ Br(Xt1(y)). By Bishop-Gromov inequality, 1x) and

1y), we have that
H N (E)

H N (Br(Xt1(y))) ≥ 1− c(K,N,R)(t2 − t1)β . (6.5)

By Bishop-Gromov inequality again, E is c(K,N,R)(t2− t1)
β
N r-dense in Br(Xt1(y)). In particular,

there exists z ∈ E so that

d(Xt1(y), z) ≤ c(t2 − t1)
β
N r = c(t2 − t1)αr , (6.6)
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where we used the relationship between α and β from Lemma 6.2 (see the last line of the proof, in
particular).
Then, by (6.6), 2x) and 2y), we can estimate

d(Xt2(x),Xt2(y)) ≤ d(Xt2(x),Xt1,t2(z)) + d(Xt1,t2(z),Xt2(y))
≤ d(z,Xt1(x)) + C(t2 − t1)αr + d(z,Xt1(y)) + C(t2 − t1)αr
≤ d(Xt1(x),Xt1(y)) + 2d(Xt1(y), z) + C(t2 − t1)αr
≤ r + C0(K,N,BR(p), H,D, T, ε)(t2 − t1)αr ,

which completes the proof. �
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