
Geometry of Grassmannians

and optimal transport of quantum states

Paolo Antonini∗ and Fabio Cavalletti†

Abstract

Let H be a separable Hilbert space. We prove that the Grassmannian Pc(H) of the finite dimensional
subspaces of H is an Alexandrov space of nonnegative curvature and we employ its metric geometry
to develop the theory of optimal transport for the normal states of the von Neumann algebra of
linear and bounded operators B(H). Seeing density matrices as discrete probability measures on
Pc(H) (via the spectral theorem) we define an optimal transport cost and the Wasserstein distance
for normal states. In particular we obtain a cost which induces the w∗-topology.

Our construction is compatible with the quantum mechanics approach of composite systems as
tensor products H⊗H. We provide indeed an interpretation of the pure normal states of B(H⊗H)
as families of transport maps. This also defines a Wasserstein cost for the pure normal states of
B(H⊗ H), reconciling with our proposal.
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1 Introduction

In Connes’ noncommutative geometry program [23] many naturally singular spaces of great inter-
est in geometry or quantum physics can be fruitfully addressed using noncommutative operator
algebras. There is nowadays a huge literature about these noncommutative spaces for which we
refer to the aforementioned book [23]. We limit ourselves here to list some of the most known
and interesting examples. Among these we find: leaf spaces of foliations, the space of unitary
representations of a discrete group and the phase space of quantum mechanics. This last one is
related with the current paper where we address the problem of optimal transport for quantum
states.

Due to the pervasiveness of noncommutative spaces, extensions of the classical tools as measure
theory, topology, differential calculus and Riemannian geometry, have been pursued in the non-
commutative setting and during the last few years, as it is naturally expected, also the search of an
appropriate analogue of a Wasserstein distance received a great deal of attention. Some important
progresses have been obtained.

In the noncommutative setting states take over the role of probability measures; for example,
in the case of the algebra of matrices (as well in B(H) if we consider only normal states) using
the matrix trace, states can be identified with positive definite matrices with unit trace which are
indeed called density matrices.

In the context of spectral triples considered as noncommutative manifolds, where the noncom-
mutative algebra A interacts with a Dirac operator, Connes [22] defined a 1-Wasserstein distance
on the space of states of A. This is thought as the dual distance in the spirit of Monge–Kantorovich,
defined in terms of Lipschitz functions (or their noncommutative analog). Connes’ distance and
the Kantorovitch duality have been the subject of many works by Rieffel, D’Andrea, Martinetti
and collaborators. We refer in a non exhaustive way to the papers [45, 25] and the references
therein.

In the realm of free probability, Biane and Voiculescu defined an analog of the Wasserstein
distance on the space of the trace-states of a C∗-algebra [11]. Their metric extends the classical
Wasserstein metric.

A proposal for the finite dimensional case, which follows the principle to adapt the dynamical
formulation of optimal transport à la Benamou and Brenier [10] has been given by Carlen and
Maas [15, 16, 17]. Here one assigns a length to each path of probability measures connecting the
marginals.

A key property of the resulting quantum distance in loc. cit. is the fact that it is induced by a
Riemannian metric on the manifold of quantum states and the quantum generalisation of the heat
semigroup is the gradient flow of the von Neumann entropy Ent(ρ) = Trace(ρ log ρ). This replaces
the classical relative entropy of the commutative case. Also the relation of this approach to the
rate of convergence of the quantum Ornstein-Uhlenbeck semigroup [17] have been established.

Subsequent developments worth mentioning include: the one of Wirth [53], based on the non-
commutative Dirichlet forms of Cipriani and Sauvageot [19] and the work of Hornshow [35] where
also the approximately finite dimensional case is considered estabilishing lower bounds on Ricci
curvature. We refer to these papers for more details. Finally another proposal by Golse, Mouhot
and Paul [31] arose in the context of the study of the semiclassical limit of quantum mechanics
and it relies on the concept of couplings with applications to the study of the mean-field limit of
quantum mechanics.

Our contribution goes in a new direction to study a static formulation of the optimal transport
problem between quantum states. We base our constructions on the geometric structure of the
Grassmann manifold of all the finite rank projections of the underlying separable Hilbert space H.

Let us describe more precisely the setting.
Let Sn(B(H)) denotes the convex set of normal states of B(H), the von Neumann algebra of

linear bounded operators on H. For more details we refer to Section 2.2. Any such state ϕ is
identified with its density matrix ρϕ satisfying

ρ∗ϕ = ρϕ, ρϕ ≥ 0 and tr(ρϕ) = 1.

We introduce a distance between density matrices relying on the optimal transport problem be-
tween probability measures over the Grassmanian of H. latter is denoted by P and is defined as
the collection of all orthogonal projections of H. Its connected components are labelled by the
dimension of the ranges of the projections.

The map between density matrices and non-negative measures over P is induced by the Spectral
Theorem: by compactness and self-adjointness the following correspondence is rather natural:

ρϕ =
∑

i

λiPVi =⇒ µϕ :=
∑

i

λiδPVi .
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Here PVi stands for the orthogonal projection with range the finite dimensional eigenspace Vi
with eigenvalue λi > 0. The spectral decomposition is understood without repetitions. Notice
the projection onto the kernel does not belong to the support of the associate measure µϕ. Since
tr(ρϕ) = 1, it follows that tr(·)µϕ is a probability measure over the Polish space Pc, the submanifold
of P of finite rank orthogonal projections.

The Polish structure of Pc, making it amenable to standard measure theory techniques, is the
one inherited as a Finsler submanifold of B(H). However Pc admits a more convenient geometric
structure induced infinitesimally by viewing Pc as a submanifold of the space of the Hilbert-
Schmidt operators. It follows that each connected component (where the trace is constant) of Pc
is an Alexandrov space of non-negative curvature. A fact giving a very natural setting to explore
geometric links between normal states and optimal transport. This will be thoroughly studied in
Section 2.1.

Denoting by d the geodesic distance of Pc, the Wasserstein distance between the normal states
ϕ, ψ can be then defined as the Wasserstein distance of the spectral measures µϕ and µψ after
being normalized to be probability measures:

Wp(ϕ,ψ) := W Pc
p

(
tr(·)µϕ, tr(·)µψ

)
. (1.1)

In this formulaW Pc
p denotes the classical Wasserstein distance defined over the Polish space (Pc, d).

Because of the presence of different connected components, Wp(·, ·) might easily become infinite
making Wp an extended distance.

We overcome this issue by considering a larger family of discrete measures representing density
matrices. In particular for each normal state ϕ we consider the set Λ⊥

ϕ of discrete measures
µ =

∑
λiδPi with λi ≥ 0 such that ρϕ =

∑
i λiPi and Pi ⊥ Pj whenever i 6= j. In contrast with

the representations considered before the eigenvalues now admit repetitions. Then the natural
extension of Wp(ϕ,ψ) is obtained by defining the cost between ϕ and ψ as

Cp(ϕ, ψ) := inf
µ0 ∈ Λ⊥

ϕ

µ1 ∈ Λ⊥
ψ

W Pc
p

(
tr(·)µ0, tr(·)µ1

)
, (1.2)

as the Wasserstein distance between the two (compact) sets of associated measures representing
the states. The main properties we obtain for Cp are the following ones:

Existence of optimal configurations: for any couple of normal states ϕ and ψ, the infimum in
(1.2) can be replaced by the minimum (Proposition 3.5). Moreover optimal couplings always
exist (Proposition 4.9).

Projections of dimension 1: The optimal configurations µ0, µ1 can always be taken with sup-
port contained inside the connected component P1, i.e. the space of projections with one
dimensional rank (Proposition 2.6). This is P(H) the projective space of H, the space of the
pure states of the C∗-algebra of the compact operators K .

Topology: Cp is a semi-distance inducing the weak topology over Sn(B(H)) (Theorem 4.11).

We also obtain the duality formula for Wp with the Kantorovich potentials represented by
densely defined operators (Theorem 5.4 and Corollary 5.6). Relying on the geodesic structure of
(Pc, d), we also study Wp-geodesics of Sn(B(H)) in Section 5.2.

In the last section we study tensor product Hilbert spaces H ⊗ H corresponding in quantum me-
chanics to composite systems. A natural way to match two normal states ϕ,ψ of B(H) would be via
a normal state Ξ ∈ Sn(B(H⊗H)) satisfying the partial trace conditions J1

♭ Ξ = ϕ and J2
♭ Ξ = ψ (for

the notation see Section 2.2.2). In Section 6 we reconcile this point of view with the one presented
in Section 4.

In particular we prove the following (Theorem 6.3).

Pure normal states of the tensor product as natural families of transport plans: given
any element ωζ of PSn(B(H⊗H)), i.e. any pure normal state of B(H⊗H) with partial traces ϕ
and ψ, we associate a family of admissible transport plans between admissible representations
of ϕ and ψ. In particular this permits to assign a well-defined optimal transport cost to any
pure normal state of B(H⊗ H) (Remark 6.5).

We conclude by mentioning that we tried to keep the paper as self-contained as possible. In
particular in Section 2 we have collected, and in some cases re-proved, many of the known geometric
properties of the Grassmanian Pc that are used in this paper and that were distributed through
different references.
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1.1 Notations

In this paper we will switch freely from the standard notation for vectors in a Hilbert space to the
Dirac notation with Bra and Kets. In particular we consider the inner product 〈·, ·〉 or 〈·|·〉 with
the Physicists convention: antilinear in the first entry. For a linear operator T on a vector space
we denote N(T ) for its Kernel and R(T ) for its image.

Projection means orthogonal projection ie. P = P ∗ and P 2 = P when P 2 = P we say
idempotent. Also for two projections we write Q ≤ P if and only if QH ⊂ PH. This is equivalent
to PQ = Q or QP = Q.

2 Preliminaries

2.1 Geometry of the space of projections

Let us fix H an Hilbert space; B(H) will be the space of bounded linear operators in H and Bh(H) the
subspace of the self-adjoint ones (Hermitian); also denote by Bsa(H) = {X ∈ B(H) : X = −X∗}
the skew adjoints.

The Grassmannian of H, denoted with P is the space of all the projections:

P =
{
P ∈ B(H) : P = P ∗ and P 2 = P

}
.

We describe its geometry mainly following [4, 5, 6, 24, 49]. Fundamental is the natural action of
the unitary group U(H) by conjugation g · P = gPg∗ for g ∈ U(H).

We recall here few but important facts about the group U(H). This is a Banach–Lie group,
closed inside B(H) with Lie algebra identified with the skew adjoint operators u := T1U(H) = Bsa(H)
having the operators commutator as Lie bracket. The exponential map exp : u −→ U(H) is the
operators exponentiation. It is surjective because in B(H) we may form Borel functions of normal
operators; this gives a logarithm for every skew-adjoint operator.

All the curves in the form
[−1, 1] ∋ t 7−→ ueitX ∈ U(H)

with X ∈ Bh(H) i.e. the translations of one parameter groups are called the group geodesics of
U(H). The name is legitimated by the fact that we can find a natural class of linear connections
on U(H) creating such geodesics. Moreover one can show that are minimal curves inside U(H) with
respect to the natural Finsler structure inherited by the embedding U(H) ⊂ B(H) (see [2]). We are
now ready to discuss the geometry of P.

1. Manifold structure. P is a submanifold of Bh(H) with complemented tangent. Its tangent
space at P , as a submanifold is naturally identified in the following way:

TPP =
{
Y ∈ Bh(H) : PY + Y P = Y

}
; (2.1)

or equivalently with all the selfadjoint operators Y satisfying PY P = (1− P )Y (1− P ) = 0.
Indeed P induces a block decomposition for the whole Bh(H)

A 7−→
(

PAP PA(1− P )
(1− P )AP (1− P )A(1− P )

)
, (2.2)

so that can give the following.

Definition 2.1. The selfadjoint operators which are off-diagonal in the decomposition (2.2)
are called co-diagonal with respect to P . The space of all the co-diagonal operators with
respect to P is denoted by CP .

In symbols
CP =

{
Y ∈ Bh(H) : PY + Y P = Y

}
. (2.3)

Let us prove the (2.1). The first inclusion comes differentiating the relation γ2(t) = γ(t) for
a smooth curve in P with γ(0) = P . For the reversed inclusion we make use of (2.3) and we
observe first that any X ∈ CP satisfies X = [[X,P ], P ]. This also means (every commutator
with P is codiagonal) that CP = {i[X, P ] : X ∈ Bs(H)}. Now if X is codiagonal, et[X,P ] is a
one parameter group of unitaries ([X, P ] is skew-adjoint) and the path γ(t) = et[X,P ]Pe−t[X,P ]

satisfies γ̇(0) = [[X, P ], P ] = X.
We will see later that curves in the form of γ are exactly the geodesics through P with respect
to a family of natural connections. Summing up:

TPP = CP =
{
Y ∈ Bh(H) : PY + Y P = Y

}
=
{
i[X, P ] : X ∈ Bh(H)

}
.
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If we denote by DP the selfadjoint operators which are diagonal in the decomposition (2.2)
we have a linear splitting

Bh(H) = CP ⊕ DP . (2.4)

2. Homogeneous space structure of the connected components.

The U(H) action on P is locally transitive for if ‖P − Q‖ < 1 then Q = g · P for some
unitary g. Using this fact one shows that P and Q are in the same connected component if
and only if there exists a path of unitaries gt with g0 = 1 and P = g1Qg

∗
1 (a proof in [54,

Corollary 5.2.9]). In other words the U(H)-orbits, i.e. the conjugacy classes are the connected
components in P :

O(P ) :=
{
gPg∗ : g ∈ U(H)

}
= connected component of P.

These connected components are easily found; let R(Q) denote the range of the operator Q
and N(Q) its kernel. Then P and Q are connected iff dimN(P ) = dimN(Q) and dimR(P ) =
dimR(Q).

Let’s now fix a reference point P ∈ P (for the rest of this section). The stabiliser IP = {g :
g · p = p} coincides with the subgroup {g ∈ U(H) : [g, P ] = 0} and the quotient U(H)/IP is
diffeomorphic to OP . More precisely, using the canonical projection

U(H) −→ U(H)/IP ∼= OP , (2.5)

we get a principal bundle with equivariant projection. In other words OP is an homogeneous
space [4, Proposition 2.2].

The decomposition diagonal/codiagonal (2.4) defines on the principal bundle (2.5) a canoni-
cal connection (indeed the homogeneous space structure is reductive). The canonical connec-
tion induces in the customary way a notion of parallel translation, covariant derivative and
geodesics for P. We don’t construct them explicitly here because we will consider in a while,
a second, more direct connection on TP sharing the same geodesics.

3. Connection on TP. To any X ∈ Bh(H) we can associate its co-diagonal part with respect
to P using the projection onto the codiagonals

EP : Bh(H) −→ TPP, EP (X) := PX(1− P ) + (1− P )XP. (2.6)

This induces a connection (in the usual sense) on TP. If X is a tangent field (i.e. X : P −→
Bh(H) with X(P ) ∈ TPP for every P ) and γ : I −→ P a curve, then X ◦ γ is a vector field
along γ with covariant derivative

DX

dt
= Eγ(t)

(
d

dt
X(γ(t))

)
. (2.7)

4. Geodesics. A curve γ : I → P is a geodesic if, by definition

Dγ̇

dt
= 0, ∀ t ∈ I.

All the geodesics starting at P ∈ P are in the form γ(t) = eitZPe−itZ with Z ∈ TP (P)
[5, 24]. As anticipated we can prove that these are also all the geodesics with respect to the
connection induced by the natural connection in P as an homogeneous reductive space.

To check that the geodesic equation is satisfied for γ(t) = eitZPe−itZ we take the opportunity
to discuss the manifold of symmetries S :=

{
S ∈ Bh(H) : S2 = 1

}
, diffeomorphic to P via

the map
F : P −→ S, P 7−→ 2P − 1. (2.8)

The tangent space at S ∈ S consists in all the self-adjoint X ∈ Bh(H) anticommuting with S
i.e.

TSS =
{
X ∈ Bh(H) : SX +XS = 0

}
.

We have a corresponding projection on the tangent space which has the form

PrS : Bh(H) −→ Bh(H), PrS(Z) = (1− P )ZP + PZ(1− P ); 2P − 1 = S,

also inducing a connection on S. This is given by the same formula as (2.6). On the other
hand the map F : P −→ S is compatible with the two connections on the domain and target
thus sending a geodesic to a geodesic. In fact F is the restriction of a map defined on the
whole of Bh(H) and its differential dPF(X) = 2X intertwines the two projections onto P and
S.
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Now thanks to the inclusion S ⊂ U(H) some formulas simplify when passing to S. Start with
the curve γ(t) = eitZPe−itZ in P with Z ∈ TPP. Since Z is P -codiagonal, it anticommutes
with S = F(P ) so that eitZF(P ) = F(P )e−itZ . We can now transform γ under F :

F(eitZPe−itZ) = eitZF(P )e−itZ = F(P )e−2itZ = F(P )e−itdF(Z).

It is immediate to check that this is a geodesic in S and by the properties of F we see that γ
is a geodesic too. Moreover F(γ) is also a geodesic in U(H) (a traslation of a one parameter
group). In other words S is totally geodesic inside U(H)).

Put Y := −iSZ/2 ∈ TSS then the geodesic in S can also be written as t 7→ etXS/2Se−tXS/2.
Indeed the exponential map is the restriction of the family of analytic mappings

B(H) −→ B(H), Z 7−→ eZS/2Se−ZS/2.

The exponential map for P follows using F . We note also the formula d
dt
etXS/2Se−tXS/2 =

etXS/2Xe−tXS/2.

2.1.1 Metric aspects

The Grassmannian P has a natural non-smooth reversible Finsler structure induced by the operator
norm via the embedding P ⊂ Bh(H). However the submanifold

Pc := P ∩K,

of the compact and then finite rank projections is contained in the Hilbert space HS(H) of the
(selfadjoint) Hilbert–Schmidt operators with metric (A,B) 7→ ℜ tr(A∗B) and inherits a riemannian
structure. Any point P ∈ Pc is finite rank so that the co-diagonal operators at P are finite rank
too and we have the induced metric(a)

g(X,Y ) := tr(XY ), X, Y ∈ TPPc,

generalising the familiar riemannian (Kähler) structure on the finite dimensional Grassmann man-
ifold. We summarise some of the basic properties (see [7, 40]) :

• the topology on Pc induced by the embedding Pc ⊂ Bh(H) where Bh(H) is given with the
norm topology coincides the topology induced by the embedding Pc ⊂ HS(H). This is clear
for if T and S are finite rank operators with range of dimension at most n then:

‖T − S‖ ≤ ‖T − S‖2 ≤
√
2n ‖T − S‖

with ‖ · ‖2 the Hilbert–Schmidt norm.

• The connection (2.7) is exactly the Levi–Civita connection. We can compute an explicit for-
mula following [27]. We have orthogonal projections on the tangent space and on the normal
space to Pc and the theory of submanifolds presents no differences with the finite dimensional
case. In fact the orthogonal projection is exactly the projection on the codiagonals that we
have already used.
Now let P ∈ Pc and X,Y vector fields tangent to Pc; if we denote with DXY the covariant
derivative in the flat space HS(H), we have at P :

DXY =
(
PDXY (1− P ) + (1− P )DXY P

)
+ (XY + Y X)(1− 2P ).

The first addendum is tangential to Pc while the second one is normal. Therefore

∇XY = PDXY (1− P ) + (1− P )DXY P, the connection of Pc at P,

σ(X,Y ) = (XY + Y X)(1− 2P ) the second fundamental form at P.

• The geodesics that we have already discussed are geodesics for the metric in Pc too. In
particular t 7−→ et[X,P ]Pe−t[X,P ] is the unique geodesic starting from P with initial velocity
X.

• The curvature tensor is

R(X,Y )Z =
[
[X,Y ], Z

]
, X, Y, Z ∈ TPPc

as follows immediately from the Gauss formula (the ambient space is flat)

〈R(X,Y )Z,W 〉 = 〈σ(X,W ), σ(Y,Z)〉 − 〈σ(X,Z), σ(Y,Z)〉.

From the Cauchy–Schwartz inequality it follows the sectional curvature is non negative.

(a)since the operators are codiagonal the trace of XY is real valued
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• The length of a smooth or Lipschitz, curve γ : I −→ Pc is defined by L(γ) =
´

I
‖γ̇‖dt.

The geodesic distance d follows by minimisation over all the paths. If P and Q satisfy
d(P,Q) < π/2 are joined by a unique geodesic with length L(γ) = d(P,Q). The metric space
(Pc, d) is complete. It follows that (H separable) is Polish.

To describe in more details the geometry of Pc is useful to follow the techniques in [33] pre-
sented in the real case. The extension to our, complex case is straightforward as we will show in
the following.

To start with, we present Pc as the base of a second principal bundle with fiber Ur. This
is in contrast with the previous discussion. Firstly we introduce a notation for the connected
components of Pc

Pr :=
{
P ∈ Pc : dimR(P ) = r

}
. (2.9)

Keeping the rank r fixed, let St(r,H) be the (complex) Stiefel manifold. It is the manifold of all
the Hilbert space embeddings ϕ : Cr → H. Thus ϕ∗ϕ = Idr. Any ϕ ∈ St(r,H) is specified by a
collection of r-orthonormal vectors in H, the columns of the finite dimensional matrix of ϕ. We
have in this way a natural embedding

St(r,H) ⊂ H× · · · × H︸ ︷︷ ︸
r times

(2.10)

with tangent space
TϕSt(r,H) =

{
X ∈ B(Cr,H) : X∗ϕ+ ϕ∗X = 0

}
.

This is the space of the linear maps X : Cr −→ H such that X∗ϕ is skew-adjoint. Indeed the in-

clusion ⊂ is straightforward. To see the second one first solve the o.d.e.
d

dt
(γ∗γ) = γ̇∗γ + γ∗γ̇ = 0

in the space of the finite rank maps B(Cr,H) with initial data satisfying: γ(0) = ϕ ∈ St(r,H),
γ̇(0) = X with X∗ϕ+ ϕ∗X = 0. It follows γ(t) ∈ St(r,H).

The embedding (2.10) induces a riemannian metric on the Stiefel manifold: (X,Y ) 7→ ℜ tr(X∗Y )
for X,Y ∈ TϕSt(r,H) and we shall consider its rescaled version

g(X,Y ) := 2ℜ tr(X∗Y ) X,Y ∈ TϕSt(r,H).

We compute the orthogonal projection on the tangent space of St(r,H). In fact the orthogonal
decomposition

H
r ∼= B(Cr,H) = TϕSt(r,H) ⊕NϕSt(r,H)

at ϕ is obtained combining the decomposition

H = R(ϕ)⊕R(ϕ)⊥ (2.11)

induced by the projection ϕϕ∗ together with the orthogonal decomposition in B(Cr) by Hermitian
and Skew-Hermitian matrices (with projections denoted by He and Sk). For any vector X ∈
B(Cr,H) we write

X = ϕϕ∗X + (1− ϕϕ∗)X =
[
ϕ(Skϕ∗X) + (1− ϕϕ∗)X

]
+ ϕ(Heϕ∗X).

It is easy to check that these are respectively the tangent and normal component with: X 7→
ϕ(Skϕ∗X)+(1−ϕϕ∗)X the tangent projection and X 7→ ϕ(Heϕ∗X) the normal one. In particular
we see that NϕSt(r,H) =

{
ϕS : S ∈ B(Cr), S = S∗

}
.

There are two commuting left and right action

U(H) � St(r,H) 	 Ur = U(Cr)

corresponding to post and pre composition

u · ϕ := u ◦ ϕ and ϕ · g := ϕ ◦ g, u ∈ U(H), g ∈ Ur.

The U(H) action is transitive while the Ur one is free. Two points ϕ and ψ are in the same Ur -orbit
if and only if they have the same range. It follows the quotient is Pr with bundle projection

πSt : St(r,H) −→ St(r,H)/Ur ∼= Pr, ϕ 7−→ ϕUr 7−→ ϕϕ∗. (2.12)

The vertical space at ϕ is VϕSt(r,H) =
{
ϕX : X ∈ B(Cr), X∗ + X = 0

}
and we choose for

horizontal space its orthogonal complement

HϕSt(r,H) = VϕSt(r,H)
⊥ =

{
X ∈ TϕSt(r,H) : g(X,Y ) = 0,∀ Y ∈ Vϕ

}
.

7



Therefore X is horizontal if and only if ℜ tr(X∗ϕY ) = 0 for every Y ∈ Bsa(C
r). Since X∗ϕ is

skew-adjoint too this happens if and only if X∗ϕ = 0.
Let us check that the projection (2.12) is a riemannian submersion i.e. its differential induces

an isometry from the horizontal space to the tangent space of Pr. For horizontal vectors X,Y ∈
TϕSt(r,H) we have

g
(
dϕπ

St(X), dϕπ
St(Y )

)
= tr

(
(Xϕ∗ + ϕX∗)(Y ϕ∗ + ϕY ∗)

)

= 2ℜ tr(X∗Y ) + ℜ tr(Xϕ∗Y ϕ∗ + ϕX∗ϕY ∗)

= 2ℜ tr(X∗Y ) = g(X,Y ).

We have used the properties of the trace and the fact that X and Y are horizontal.
Following [29] we derive the geodesic equation

γ̈ + γ(γ̇∗γ̇) = 0. (2.13)

Starting with the the condition γ∗γ = Idr and differentiating two times we get γ̈∗γ+2γ̇∗γ̇+γ∗γ̈ = 0.
If γ is a geodesic, the normal component of the second derivative is zero i.e. γ̈ = −γS for some
curve S(t) = S(t)∗ ∈ B(r,H). Inserting this condition in the previous equation we get (2.13). On
the other hand if a curve t 7→ St(r,H) satisfies (2.13) is a geodesic because the normal component
of its second derivative is zero.

We take from [41, Section 3.4.1] a closed formula for the geodesics starting from ϕ0 ∈ St(r,H).
We continue to use the splitting (2.11) induced by ϕ0 so that operators in H are 2×2 block-matrices.
For any skew-adjoint operator

M =

(
A B

−B∗ 0

)
with skew-adjoint A : R(ϕ0) → R(ϕ0),

put Q :=

(
A/2 0
0 0

)
. Then Q∗ = −Q and we have a curve

t 7−→ γ(t) := etMe−tQϕ0 ∈ St(r,H).

Proposition 2.2. The curve γ is the geodesic in St(r,H) satisfying the initial conditions: γ(0) =

ϕ0 and γ̇(0) =

(
A/2 B
−B∗ 0

)
ϕ0. Since every tangent vector X ∈ Tϕ0

St(r,H) can be put in the

form X =

(
A/2 B
−B∗ 0

)
ϕ0 (with skew-adjoint A) this exhausts all the geodesics. Concretely take

A = 2(ϕ0ϕ
∗
0)Xϕ

∗
0

∣∣
R(ϕ0)

and B = ϕ0X
∗(ϕ0ϕ

∗
0 − Id)

∣∣
R(ϕ0)⊥

.

Proof. The proof that γ is a geodesic is the computation in [41, Section 3.4.1] that we write for
definiteness. Since we already know that γ(t) ∈ St(r,H) at every time let’s check that (2.13) is
satisfied i.e. γ̇ = Y and Ẏ = −γ(Y ∗Y ). Put γ(t) = g(t)ϕ0 with g(t) = etMe−tQ. We also define

P =

(
A/2 B
−B∗ 0

)
= γ̇(0), and U(t) := etQPe−tQ.

It follows P +Q = M and ġ(t) = g(t)U(t). We compute Y = g(t)U(t)ϕ0 and

Ẏ = ġ(t)U(t)ϕ0 + g(t)U̇(t)ϕ0 = g(t)U2ϕ0 + g(t)U̇(t)ϕ0

= g(t)etQ(P2 + [P ,Q]e−tQ)ϕ0

= g(t)

(
A2/4− etA/2BB∗e−tA/2 0

0 0

)
ϕ0.

Before comparing this result with −γ(Y ∗Y ) we notice that U(t)∗ = −U(t) and g(t)∗g(t) = Id .
Finally

−γ(Y ∗Y ) = g(t)ϕ0ϕ
∗
0U(t)∗g(t)∗g(t)U(t)ϕ0 = −g(t)ϕ0ϕ

∗
0U

2ϕ0

= −g(t)
(

1 0
0 0

)
U2ϕ0

= −g(t)
(
A2/4− etA/2BB∗e−tA/2 0

0 0

)
ϕ0.

It follows that γ is a geodesic. The remaining statement is straightforward using the decomposition

X =

(
(ϕ0ϕ

∗
0)Xϕ

∗
0 ϕ0X

∗(ϕ0ϕ
∗
0 − 1)

(1− ϕ0ϕ
∗
0)Xϕ

∗
0 0

)
ϕ0,

where all the entries are intended restricted to R(ϕ0) or R(ϕ0)
⊥.
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Corollary 2.3. For a geodesic γ : [0, 1] −→ St(r,H), the image of the map γ(t) : Cr −→ H (for
every t) is contained in the subspace of H spanned by (γ(0), γ̇(0)). Of course its dimension is
bounded by 2r and it follows that if γ(0) and γ(1) are independent then γ(t) and γ̇(t) belong to
span(γ(0), γ(1)) for every t ∈ [0, 1]. The geodesic moves inside a finite dimensional subspace of H.

Proof. From the formula of the geodesics we just have to examine the image of the operator etM

taking into account that X = γ̇(0). Then:

M =

(
2(ϕ0ϕ

∗
0)γ̇(0)ϕ

∗
0 ϕ0γ̇(0)

∗(ϕ0ϕ
∗
0 − Id)

(Id−ϕ0ϕ
∗
0)γ̇(0)ϕ

∗
0 0

)
.

But R(M) ⊂ Span(ϕ0, γ̇(0)) and Span(ϕ0, γ̇(0)) is stable under M.

An embedding ι : K →֒ H of Hilbert spaces induces embeddings ι∗ : St(r,K) →֒ St(r,H) and
ι∗ : Pr(K) →֒ Pr(H) where we make a slight abuse of notation for using the same symbol for
the two maps. Also the notation used for the Grassmannians of different Hilbert spaces is self-
explanatory. Indeed we define ι∗ϕ = ι ◦ϕ. This is Ur-equivariant and induces the map at the level
of the Grassmannians. These embeddings are very useful according to the following.

Theorem 2.4. [33]. Let K be a Hilbert space; for every embedding ι : K −→ H the corresponding
ι∗ : St(r,K) →֒ St(r,H) is an isometric embedding with totally geodesic image. Moreover:

1. When dimK ≥ 2r, if we denote with dH and dK the respective distances then dH(ι∗(x), ι∗(y)) =
dK(x, y) for every x, y ∈ St(r,K).

2. Let again dimK ≥ 2r and let γ be a minimal geodesic inside St(r,K). Then ι∗◦γ is a minimal
geodesic.

3. The diameter of St(r,H) equals the diameter of St(r,C2r).

4. Any two points in St(r,H) can be joined by a minimal geodesic. Every minimal geodesic γ
lies inside some submanifold St(r, V ) where V ⊂ H is a 2r-dimensional subspace depending
on γ.

5. Fix two points x, y ∈ St(r,H); then y is in the cut locus of x if and only if there is a 2r-
dimensional subspace V ⊂ H such that x = ι∗(x̃), y = ι∗(ỹ) and ỹ is in the cut locus of
x̃.

All these properties hold for the Grassmannian manifold Pr(H) too. In particular any two points
x, y ∈ Pr(H) are joined by a minimal geodesic.

Proof. As already mentioned, the proof in [33] is performed for the real Stiefel and Grassmannian
manifolds. The key being the fundamental property of the geodesics in Corollary 2.3. One checks
immediately that every argument is transferred without changes to the complex case. We write
here the proof in loc. cit. in a somewhat sketchy way for the first statement of the Theorem and
of properties 1., 2. and 4. both for the Stiefel and the Grassmannians manifolds. We will use these
in the proof of Theorem 2.5 below.

First one checks the following fact:

a). Fixed y ∈ St(r,H) the set of all the x such that the columns of x, y are independent is dense
in the Stiefel manifold.
Then the proof follows the steps:

Step 1. The first statement of the Theorem (for the Stiefel manifold) and points 1., 2. and 4.
hold when H is finite dimensional.

Step 2. The statements in Step 1 hold in the infinite dimensional case.

Step 3. Every statement also holds for the Grassmannian.

Proof of Step 1. For ι : K →֒ H let U(ι(K)⊥) be the unitary group of the complement. it is
included (diagonally) in U(H) and acts by isometries on St(r,H) with fixed points being exactly
ι∗(St(r,K)). Therefore ι∗(St(r,K)) is totally geodesic because is the fixed point set of a set of
isometries. For the statement 1. we prove it only for those couple of points x, y of the Stiefel
manifold with independent images. Then by Lipschitz continuity of the distances and by the fact
a). it will hold for every couple of points. Now dK(x, y) ≥ dH(ι∗(x), ι∗(y)) because ι∗(St(r,K))
is totally geodesic. For the reversed inclusion, let γ ⊂ St(r,H) be a minimal geodesic (Hopf–
Rinow in finite dimensions) joining ι∗(x) with ι∗(y). Then since the images of ι∗(x) and ι∗(y)
are independent, by Corollary 2.3 we have that the image of γ(t) is contained in the span of
the images of ι∗(x) and ι∗(y) which is contained in K. In other words γ = ι∗ ◦ γ̃ for a geodesic
γ̃ ⊂ St(r,K). Using γ̃ the inequality dH(ι∗(x), ι∗(y)) ≥ dK(x, y) immediately follows. Point 2. is
direct consequence of point 1. Point 4 is already known from the Corollary 2.3.
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Proof of Step 2. The unique point which has a different proof in the infinite dimensional case
is point 1. Here of course dK(x, y) ≥ dH(ι∗(x), ι∗(y)). To prove the converse, one takes any smooth
path ζ connecting ι∗(x) and ι∗(y). We can divide ζ in subpaths ζ

∣∣
[ti,ti+1]

(i = 1, ..., n) such that

each one is contained in a normal neighborhood and using the exponential map each couple ζ(ti)
and ζ(ti+1) can be joined by a minimising geodesic. We get a piecewise smooth path η(t) joining
ι∗(x) and ι∗(y) with ℓ(η) ≤ ℓ(ζ). Moreover from all the extreme points (ζti)i=1,...,n−1 and the

velocities (η̇ti)i=1,...,n−1 we manifacture a finite dimensional vector space K̃ which contains every

image of the map η(t) for every t. Of course we can enlarge it to ensure K ⊂ K̃. Now we apply the

finite dimensional case (in K̃) to estimate

dK(x, y) = d
K̃
(ι∗(x), ι∗(y)) ≤ ℓ(η) ≤ ℓ(ξ)

and we are done.
Proof of step 3. We check just point 1. and 2. in the finite dimensional case because the

infinite dimensional etension is similar to the one performed for the Stiefel case. First point:
we have dPr(K)(x, y) ≥ dPr(H)(ι∗(x), ι∗(y)) as before. Also assume that the subspaces x and y
in the Grassmannian are independent and they generate a 2r-dimensional space. Of course the
corresponding fact a). also holds for the Grassmannian. Now let γ be a minimal geodesic in
Pr(H) joining ι∗(x) and ι∗(y). Lift this to a curve ζ(t) in the Stiefel manifold St(r,H). The
images of the maps ζ(0) and ζ(1) are exactly x and y. This means that ζ belongs to the image of
St(r,K) and in turn that γ belongs to the image of the embedding ι∗ : Pr(K) →֒ Pr(H). It follows
dPr(K)(x, y) ≤ dPr(H)(ι∗(x), ι∗(y)). As before this fact implies the point 2.

Theorem 2.5. Every connected component Pr of finite rank Grassmannian is an Alexandrov space
with non negative curvature.

Proof. According to [46] a complete metric space X with intrinsic metric i.e. the metric derived
from the length of curves is Alexandrov with non negative scalar curvature if and only if any four
points p, x, y, z ∈ X satisfy the inequality

d(p, x)2 + d(p, y)2 + d(p, z)2 ≥ 1/3(d(x, y)2 + d(y, z)2 + d(z, x)2).

For a finite dimensional manifold this condition is equivalent to the non negativity of the sectional
curvature. But in our case such a configuration of four points is always included in a finite
dimensional totally geodesic submanifold of non negative sectional curvature.

Now we prove a simple fact that will be useful later.

Proposition 2.6. Let P,Q ∈ P then Q ≤ P =⇒ TPP ⊂ TQP. Let moreover Q ≤ P be projections
in Pc and let γ : [0, 1] → Pc be the geodesic γ(t) = eitZPe−itZ starting from P . Then

Q1 := eiZQe−iZ ≤ γ(1) =: P1 and d(Q,Q1) ≤ ℓ(γ).

In particular taking γ minimal d(Q,Q1) ≤ d(P,P1).

Proof. Let Z ∈ TPP; we have to show that QZQ = (1 − Q)Z(1 − Q) = 0. This is immediate to
check under the block decomposition induced by P where:

Q =

(
QP 0
0 0

)
, Z =

(
0 X
X∗ 0

)
. (2.14)

Now Q(t) := eitZQe−itZ is a geodesic from Q to Q1 with Q̇(0) = i[Q,Z] and ‖Q̇(0)‖2TPc
=

tr(Q̇(0)2). Using (2.14) we easily compute

Q̇(0)2 =

(
QX∗XQ 0

0 XPQPX∗

)
.

From the properties of the trace we get ‖Q̇(0)‖2TQPc
= 2 tr(QX∗XQ). In the same way ‖γ̇(0)‖2TPc

=
2 tr(X∗X). The result is clear from the positivity of X∗X.
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2.2 Normal States

Let A be a C∗-algebra. A linear functional ϕ : A −→ C is positive if ϕ(a∗a) ≥ 0 for every a ∈ A.
Then ϕ is automatically bounded; if ‖ϕ‖ = 1 it is called a state. When the algebra is unital
this normalisation is equivalent to the condition ϕ(1) = 1. Denoted with S(A), the space of the
states of A included in the dual A∗ and considered with the topology induced by the w∗-one. For
convenience of the reader we include a sketch of the proof of the following well-know fact.

Proposition 2.7. The space of states is always convex. When A is unital it is compact.

Proof. When A is unital the convexity is immediate. In general every C∗-algebra has an approx-
imate unit: an increasing net (uj)j∈J of positive elements with ‖uj‖ ≤ 1 for every j ∈ J such
that

lim
j∈J

‖a− uja‖ = 0, lim
j∈J

‖a − auj‖ = 0, ∀a ∈ A.

If the algebra is separable we can take a sequence for (uj). Now for a linear bounded functional
ϕ : A −→ C positivity implies limj∈J ϕ(uj) = ‖ϕ‖ (the converse statement also holds but we don’t
need it). It follows that convex combinations of states are states. The rest of the proof is just the
theorem of Banach–Alaoglu.

We will denote by PS(A) the set of pure states that is the extreme boundary of S(A) i.e. the
subset of extremal points of the boundary of the convex set S(A).

Our object of study will be the space of states of K = K(H), the C∗-algebra of compact
operators. We have an identification

K
′ ∼= L1 (Banach dual) (2.15)

with the Banach space of the trace class operators L1(H) = {A ∈ B(H) : tr |A| < ∞} with norm
‖A‖1 := tr |A|. Here A ∈ L1 defines the functional T 7→ tr(AT ) for T ∈ K. One can also prove
that L1 is the predual of B(H) in the sense that (L1)′ = B(H). Restricting to the positive and norm

one functionals we immediately see that for any state ϕ ∈ S(K(H)) there exists a unique density
matrix, an operator ρ ∈ L1 positive with

tr(ρ) = 1, ϕ(B) = tr(ρB), for every B ∈ K.

Viceversa all the density matrices give states on K. We define such space of density matrices by
C(H) or just C, if the context is clear:

C(H) := {ρ ∈ L1 : ρ ≥ 0, tr(ρ) = 1}, (2.16)

with the identification denoted by

C(H) ∋ ρ 7−→ ϕρ ∈ S(K). (2.17)

Viceversa we may, sometimes, use the notation ρϕ or ρ(ϕ) for the density matrix of ϕ.

Example 1. Every unit vector ξ ∈ H defines a state ωξ : B(H) −→ R by ωξ(B) = 〈ξ,Bξ〉. The
density matrix of ωξ is the rank one operator ρ : H → H with ρ(η) = 〈ξ, η〉ξ. This follows from:
tr(ρB) = tr(Bρ) = 〈ξ,Bξ〉. In Dirac notation our vector is | ξ〉 so that

ρ = | ξ〉〈ξ |.

Density matrices define states of K that extend to states of B(H); on the other hand there are many
states on B(H) which are not in this form. Precisely a state ϕ ∈ S(B(H)) comes from a density
matrix if and only if it satisfies one of the following equivalent properties (see [42, Theorem 4.12],
[37, Theorem 7.1.8] and [28, Theorem 1, Part I, Chapter 4]):

1. it is normal: ϕ(T ) = supF ϕ(F ) for every directed family F ⊂ B(H)+ of positive operators
with T = supF F .

2. The state is completely additive: for every orthogonal family (pj)j of projections (p∗j = pj
and pjpi = δijpj) then

ϕ(
∑

j

pj) =
∑

j

ϕ(pj).

The sum
∑
jpj is defined as the projection on the closure of the smallest subspace in H

containing all the pjH. This is is exactly the operation of forming supj pj in the partially
ordered set of all the projections in B(H) with the order given by the inclusion e ≤ f iff
eH ⊂ fH (see [42]). Also

∑
j pj is the limit of all the finite sums in the strong operator

topology.
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3. There is a sequence of vectors (ξn)n with
∑∞
n=1 ‖ξn‖2 = 1 such that

ϕ =
∞∑

n=1

ωξn

in the sense of norm convergence. The vectors ξn can be taken pairwise orthogonal [37,
Theorem 7.1.9].

By the spectral theorem we see that that a pure state ϕ of K is necessarily a vector state i.e.
in the form ϕ = ωξ for a unit vector ξ. Of course ωξ = ωη if and only if ξ = λη for a phase, a
scalar λ ∈ C with |λ| = 1. Thus PS(K) ∼= P(H). On the right we have the projective space of H,
the quotient of the unit sphere by the U(1)-action by scalar multiplication.

We conclude with a basic useful fact.

Lemma 2.8. For a normal state in the form ϕ =
∑∞
n=1 ωξn with

∑∞
n=1 ‖ξn‖2 = 1, let Pn be the

projection onto [ξn] (the line generated by the vector). Then the density matrix of ϕ is:

ρ(ϕ) =
∞∑

n=1

‖ξn‖2Pn norm convergence of operators.

Proof. This fact is more general. A proof can be found in [37, Theorem 7.1.9] (see also the
following remark therein). In our case the proof is simpler. The series

∑∞
n=1 ‖ξn‖2Pn converges in

the operator norm to a non negative operator T . Of course T is compact and can be diagonalised
T =

∑∞
n=1 λ

2
n |ηn〉〈ηn| with the complete orthonormal system {ηn}n. Now for every A ∈ B(H) we

compute

ϕ(A) =
∞∑

n=1

〈Aξn, ξn〉 =
∞∑

n=1

〈A
∞∑

m=1

〈ξn, ηm〉ηm, ξn〉 =
∞∑

n=1

∞∑

m=1

〈Aηm, ξn〉〈ξn, ηm〉.

We can interchange the sums because the series converges absolutely and using the identity Pn =
|ξn〉〈ξn|
‖ξn‖2

we get

ϕ(A) =
∞∑

m=1

〈Aηm,
∞∑

n=1

〈ξn, ηm〉ξn〉 =
∞∑

m=1

〈Aηm, (
∞∑

n=1

‖ξn‖2Pn)ηm〉 =
∞∑

m=1

〈Aηm, T ηm〉.

This is ϕ(A) = tr(TA).

We will denote with Sn(B(H)) the collection of all normal states. To summarise we have recalled
that

S(K) = Sn(B(H)), Sn(B(H)) ≃ C(H),
where the symbol ≃ denotes an isomorphism between the two convex sets. This isomorphism maps
extremals to extremals: any pure state ω on K has a unique extension to a normal state ω′ on
B(H) given by the same density operator which is extremal for Sn(B(H)). We refer to [42] for more
details. Based on this we make the following

Definition 2.9. We denote with PSn(B(H)) the set of the pure normal states of B(H). These are
precisely the extremals of Sn(B(H)) identifiable with P(H) the projective space of H.

2.2.1 Topology on the space of states

We discuss now the various topologies that can be considered on S(K) according to the inclusion
S(K) ⊂ K

′.

• The uniform topology is the metric topology induced by the Banach dual structure on K
′. In

terms of two density matrices:

‖ϕρ − ϕµ‖ = sup
B∈K, ‖B‖=1

| tr(ρ− µ)B| = tr |ρ− µ| = ‖ρ− µ‖1,

because by the Kaplansky density Theorem the supremum can be computed over the unit
ball of B(H) leading immediately to the trace norm.

• The weak∗ topology σ(S(K),K) is induced by the weak∗ topology on K
′. In particular

ϕρn
w∗

/ϕρ if ϕρn(B) = tr(ρnB) −→ ϕρ(B) = tr(ρB) for every B ∈ K.

• Instead of evaluating against every B ∈ K in the above convergence we can take all the tests
B ∈ B(H). This defines σ(S(K),B(H)) called the weak topology in virtue of the identification
B(H) = (L1)′.
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Importantly Robinson proved that all the above topologies coincide [50, Theorem 1]:

Theorem 2.10. The three topologies above described all coincide. In particular for a sequence
ρn ∈ L1 we have

ρn
L1

//ρ iff ϕρn
w∗

/ϕρ .

2.2.2 Partial traces and marginals

Let now H and K be two Hilbert spaces. The use of K does not create confusion with the notation
designated for the compact operators which is K. The tensor product Hilbert space H⊗ K corre-
sponds, in quantum mechanics, to a composite system. The isomorphism B(H⊗K) ∼= B(H)⊗B(K)
induces two maps with the meaning of taking marginals:

JH

♭ : S(B(H⊗ K)) −→ S(B(H)),

and the corresponding map JK

♭ . For definiteness we give the formula of the first one by dualising
the inclusion JH : B(H) −→ B(H)⊗ B(K), T 7−→ T ⊗ IdK:

JH

♭ ϕ(T ) = ϕ(T ⊗ IdK).

Let us describe now partial traces. We follow closely the lecture notes [3] where all the proofs can
be found.
Assume that H and K are separable. Every vector ξ ∈ K defines linear bounded operators

Rξ : H −→ H⊗ K, R∗
ξ : H⊗ K −→ H,

uniquely specified on simple tensors by

Rξη = η ⊗ ξ R∗
ξζ ⊗ η = 〈ξ, η〉ζ.

It is immediate to verify that ‖Rξ‖ = ‖R∗
ξ‖ = ‖ξ‖. If T ∈ B(H⊗K) then we get a bounded operator

on H via(b)

ξTξ := R∗
ξTRξ.

By definition: 〈ζ, ξTξ η〉 = 〈ζ ⊗ ξ, T η ⊗ ξ〉, for every ζ, η ∈ H and one proves

T ∈ L1(H⊗ K) =⇒ ξTξ ∈ L1(H).

Theorem 2.11. Let T ∈ L1(H⊗K) be a trace class operator; there is a unique trace class operator
TrK(T ) ∈ L1(H) such that

tr(TrK(T )B) = tr(T (B ⊗ IdK)) (2.18)

for every B ∈ B(H). Concretely TrK(T ), that we call the partial trace with respect to K, can be
constructed taking any ortonormal basis (ξn)n of K:

TrK(T ) =
∑

n

ξnT ξn (series convergent in L1(H)).

We have the following properties

• TrK(T ) = tr(B)A if T = A⊗B with A ∈ L1(H) and B ∈ L1(K),

• tr(TrK(T )) = trT

• TrK((A⊗ IdK)T (B ⊗ IdK)) = ATrK(T )B for every A,B ∈ B(H).

Exchanging the role of H and K we define in the same way the partial trace TrH. If K = H,
the unique case we shall treat we denote with Tr1 and Tr2 the two partial traces. For instance for
ξ ⊗ η ∈ H⊗ H:

Tr1
(
|ξ ⊗ η〉〈ξ ⊗ η|

)
= ||ξ‖2 |η〉〈η|, Tr2

(
|ξ ⊗ η〉〈ξ ⊗ η|

)
= ‖η‖2 |ξ〉〈ξ|.

Let now ϕ ∈ S(B(H⊗ K)) be a state with density matrix ρϕ. The defining property of the partial
trace (2.18) immediately means that, for the density matrix of the first marginal we have:

ρ(JH

♭ ϕ) = TrK(ρϕ).

The density matrices of the partial traces are usually called reduced density matrices.

Given normal states ϕ ∈ Sn(B(H)) and ψ ∈ Sn(B(K)) the tensor product ϕ ⊗ ψ is a normal
state on B(H ⊗ K). We say that ϕ ⊗ ψ is separable. More generally we agree with [30] on the
following.

(b)in [3] is denoted by K〈ξ|T |ξ〉K

13



Definition 2.12 (Separable and entangled states). A normal state ϕ on B(H⊗ K) is separable if
it is limit in the trace norm of a sequence ϕk of normal states each of them is an infinite convex
combination of states:

ϕk =
∑

i

p
(k)
i η

(k,i)
H

⊗ η
(k,i)
K

,

with the coefficients {p(k)i }∞i=1 forming a probability measure. The trace norm is referred in the
above sum to the corresponding density matrices. A normal state on B(H⊗ K) is entangled if it is
not separable.

Notice in particular that a pure state ωζ with ζ ∈ H⊗K is separable if and only if ζ is a simple
tensor product, i.e. ζ = ξ ⊗ η.

Notations 2.13. Summing up the notation we are using: ρ is a generic density matrix, ρϕ or ρ(ϕ)
is the density matrix of the normal state ϕ. If instead we start with ρ, then ϕρ is the associated
state. Finally vector states defined by ξ are called ωξ with density matrix ρ = ρ(ωξ) = | ξ〉〈ξ |.

3 Spectral-projections measures

To any density matrix ρ ∈ C(H) we can associate its unique spectral decomposition for self-adjoint
and compact operators

ρ =
∑

i

λiPVi , Vi ⊂ H, tr(ρ) =
∑

i

λi dim(Vi) = 1, (3.1)

where λi > 0 are the eigenvalues of ρ and PVi ∈ Pc is the projection onto the corresponding finite
dimensional eigenspace Vi. In (3.1) the eigenvalues are meant to be listed without repetitions so
that:

i 6= j =⇒ λi 6= λj and Vi ⊥ Vj .

Then it is natural to identify the spectral decomposition (3.1) with a discrete, finite and non-
negative measure over Pc. Before going into details we fix the notation: P(Pc) it will denote the
space of Borel probability measures (i.e. non-negative and total mass 1) defined over the Polish
space (Pc, d) while M+(Pc) is the space of non-negative Radon measures. We now introduce the
following set

D(Pc) :=
{
µ =

∑

i

λiδPi : Pi ∈ Pc, λi ≥ 0
}
, (3.2)

with D(Pc) mnemonic for “discrete” measures. Then we consider the following subsets

D1(Pc) :=
{
µ ∈ D(Pc) : tr(·)µ ∈ P(Pc)

}
, (3.3)

playing the role of probability measures and

D⊥
1 (Pc) :=

{
µ ∈ D1(Pc) : tr(PQ) = 0, for all P 6= Q ∈ supp(µ)

}
, (3.4)

for the space of all the measures supported on orthogonal collections of projections. Of course the
defining condition for D1(Pc) means

∑
i λi tr(Pi) = 1.

We are then ready to define the following injection:

Φ : C(H) −→ D1(Pc) ⊂ D(Pc), Φ(ρ) = Φ

(
∑

i

λiPVi

)
:=
∑

i

λiδPVi . (3.5)

For consistency, we will also denote Φ(ρ) by µρ. Notice that tr(·)µρ(Pc) = 1 follows from tr(ρ) = 1.
The spectral Theorem implies that Φ(ρϕ) ⊂ D⊥

1 (Pc) for every ρϕ (pairwise orthogonal projections).
Moreover as no repetition of eigenvalues is present in Φ(ϕ):

Φ(ϕ)(P ) 6= Φ(ϕ)(Q), for all P 6= Q ∈ supp
(
Φ(ϕ)

)
.

This property actually characterizes the image Φ(C(H)).
Definition 3.1. Using the isomorphism between Sn(B(H)) and C(H), the map Φ given by

Φ : Sn(B(H)) −→ D1(Pc), Φ(ϕ) :=
∑

i

λiδPVi , (3.6)

is well defined (with a slight abuse of notation). The notation µϕ in place of Φ(ϕ) will sometimes
be preferred.
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Remark 3.2. The support of µϕ is {PVi : i ∈ N} ⊂ Pc, a totally disconnected set; notice indeed
that by orthogonality of the eigenspaces, ‖PVi −PVj ‖B(H) = 1 whenever i 6= j. Hence {PVi : i ∈ N}
is discrete and then closed. Notice also that the projection onto the possibly infinite dimensional
subspace N(ρϕ) does not belong to supp(µϕ).

We define now the converse correspondence.

Definition 3.3. To each element of D1(Pc) we associate a density matrix in the following form:

Ψ : D1(Pc) −→ C(H), Ψ(µ) = Ψ

(∑

i

λiδPi

)
:=
∑

i

λiPi. (3.7)

Notice indeed ρ =
∑
i λiPi converges in the trace norm to a well defined symmetric operator having

tr(ρ) =
´

tr(P )µ(dP ) = 1; hence Ψ(D1(Pc)) ⊂ C(H).
By the spectral Theorem again one notices that

Ψ(Φ(ρ)) = ρ.

Hence Ψ is the left-inverse of Φ while, in general, it fails to satisfy Φ(Ψ(µ)) = µ. Particularly
relevant for us will be the sets

Λ⊥
ϕ := Ψ−1(ϕ) ∩ D⊥

1 (Pc) =
{
µ ∈ D⊥

1 (Pc) : Ψ(µ) = ρϕ
}
, (3.8)

the set of the measures concentrated on pairwise orthogonal projections whose corresponding sym-
metric operator is the density matrix of ϕ. In particular any element of Λ⊥

ϕ represents a spectral
decomposition of ρϕ admitting repeated eigenvalues.

Coming to the topological properties of these sets, we recall that a sequence of probability
measures µn ∈ P(Pc) is said to weakly converge to µ ∈ P(Pc) if by definition

ˆ

Pc

f(P )µn(dP ) −→
ˆ

Pc

f(P )µ(dP ), ∀ f ∈ Cb(Pc).

It is well-known that, for Polish spaces, the Lévy-Prokhorov metric gives a metrization of weak
convergence; in particular it makes P(Pc) complete and separable. It will be therefore enough to
describe topologically the subsets of P(Pc) only using weakly converging sequences.

Moreover we recall the following classical fact about compact subsets of probability measures:
if (X , d) is a metric space (considered with its Borel σ–algebra), a set S ⊂ P(X ) of probability
measures is tight whether for every ε > 0 there is a compact Kε ⊂ X such that µ(Kε) ≥ 1− ε for
every µ ∈ S . The Prohorov Theorem states that every tight family is relatively compact. If X is
Polish the converse is true: every relatively compact family is tight.

Lemma 3.4. The map Ψ : D1(Pc) −→ Sn(B(H)) is continuous in the following sense: if tr(·)µn ⇀
tr(·)µ, then Ψ(µn) ⇀ Ψ(µ).

Proof. For each B ∈ L1 we consider the function

fB : Pc −→ R, fB(P ) = tr(BP )/tr(P )

and zero on 0 ∈ Pc. The function is easily seen to be continuous on the same connected component
of Pc and it is bounded by |fB(P )| = ‖B‖. Then the following identities

ˆ

Pc

fB(P )tr(P )µn(dP ) =

ˆ

Pc

tr(BP )µn(dP ) = Ψ(µn)(B),

imply that Ψ(µn)(B) → Ψ(µ)(B), for all B ∈ L1. By density in the norm sense, this is enough
to conclude that Ψ(µn)(B) → Ψ(µ)(B), for all B ∈ K and the conclusion comes from Theorem
2.10.

Then we analyse topological properties of subsets of discrete measures. In particular, the next
result will be crucial in the study of the optimal transport problem between normal states.

Proposition 3.5. The set

tr(·)D⊥
1 (Pc) :=

{
tr(·)µ : µ ∈ D⊥

1 (Pc)
}

is closed. Moreover for any ϕ ∈ Sn(B(H)), tr(·)Λ⊥
ϕ is compact.
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Proof. Step 1. Consider a sequence µn ∈ D⊥
1 (Pc) and η ∈ P(Pc) such that tr(·)µn ⇀ η. Then for

any P ∈ supp(η) there exists a sub-sequence nk and Pk ∈ supp(µnk ) such that Pk → P . Any two
distinct projections P,Q ∈ supp(µn) verify ‖P −Q‖ = 1, then necessarily η is a discrete measure,
i.e. η =

∑
i λiδPi . For the same reason, tr(PiPj) = 0 whenever i 6= j. Since by assumption

η(Pc) = 1, to have the claim is enough to define µ := η/tr(·) to have that η ∈ tr(·)D⊥
1 (Pc).

Step 2. We fix the following notation: Φ(ϕ) =
∑
i λiPVi , where PVi denotes the projection

onto Vi. Given any ε > 0 there exists mε ∈ N such that
∑

i≥mε

λitr(PVi) ≤ ε, with λi > λi+1.

Let N := maxi≤mε dimVi. For every i ≤ mε we say that a decomposition of PVi is a N-tuple
(Q1, ..., QN ) ∈ P

N
c such that the Qj that are different from zero are mutually orthogonal and

satisfy
∑r
j=1 PQj = PVi . If we call Qi the set of all such decompositions we have N projections

q
(i)
j : Qi −→ Pc. Define

FVi :=

N⋃

j=1

q
(i)
j

(
Qi

)

the set of all the projections appearing in at least one decomposition of Vi. Let G(Vi, d) be the
Grassmann manifold of all the subspaces of dimension d inside Vi; we can embed Qi into the union
of all products G

(
Vi, tr(Q1)

)
× · · · × G

(
Vi, tr(QN)

)
with the union running over the finite set of

all the possible ways of writing N = s1 + · · · + sN with sj ∈ N (including zero). We adopt the
convention that G

(
Vi, 0

)
= •, the space with a point. Now since the Grassmannians are compact

we see that FVi and also
⋃mε
i=1 FVi are relatively compact inside Pc.

Now pick any µ ∈ Λ⊥
ϕ . We write it in the form µ =

∑
i λiδPZi where the eigenvalues are the

same as the eigenvalues of Φ(ϕ) but here now they may be repeated. It holds true,

tr(·)µ
( mε⋃

i=1

FVi

)
=
∑

i≤mε

λitr(PZi) =
∑

i≤mε

λitr(PVi) ≥ 1− ε,

where the second identity is valid collecting different projections with the same eigenvalue. This
proves that tr(·)Λ⊥

ϕ is tight. To prove compactness is enough to recall that tightness is equivalent
to precompactness in P(Pc). Moreover by Lemma 3.4 and the previous part of the proof tr(·)Λ⊥

ϕ

is closed; hence the claim follows.

3.1 Weak* topology and convergence of projections

We now relate weak∗ convergence of normal states and spectral decomposition of the associated
density matrices.

Lemma 3.6. Let (Pn)n be a sequence of projections inside L1; assume moreover Pn ⇀ P in the
w-topology to some P ∈ L1, i.e. in duality with B(H). Then P is a projection: P 2 = P and
P ∗ = P .

Proof. To check P = P ∗ it is sufficient to notice that 〈Px, x〉 ∈ R, being the limit of 〈Pnx, x〉 ∈ R.
To prove P 2 = P , first we can assume that P 6= 0 otherwise the claim is trivial. From Pn ⇀ P

in the weak topology we deduce that

‖Pn‖L1 = tr(Pn) −→ tr(P ) = ‖P‖L1 ,

implying (see Theorem 2.10) that Pn → P in L1. Then for any K ∈ K

tr(PnKPn) = tr(P 2
nK) = tr(PnK) −→ tr(PK);

on the other hand, since KPn → KP in L1, it follows that tr(PnKPn) → tr(PKP ). Therefore
P 2 = P .

Lemma 3.7. Let ϕn, ϕ ∈ Sn(B(H)) such that ϕn ⇀ ϕ. Consider the corresponding density
matrices ρn = ρϕn , ρ = ρϕ for which we consider any spectral decompositions (in the sense of
(3.8))

ρn =
∑

i

λni P
n
i , ρ =

∑

i

λiPi,

in particular repetitions of eigenvalues are allowed. Let
(
λnki

)
k∈N

be a subsequence converging to

λ̃i 6= 0 and P̃i be any w∗-limit of the corresponding subsequence of projections
(
P
nk
i

)
k∈N

.

Then P
nk
i → P̃i in L1 and therefore P̃i is a projection. Moreover there exists j ∈ N such that

P̃i ≤ Pj , λ̃i = λj . (3.9)
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Proof. We start noticing the following: for any B ∈ B(H) it holds true tr
(
ρnkP

nk
i B

)
−→ tr

(
ρP̃iB

)
.

Indeed

tr
(
ρnkP

nk
i B

)
− tr

(
ρP̃iB

)
= tr

(
ρnkP

nk
i B

)
− tr

(
ρP

nk
i B

)
+ tr

(
ρP

nk
i B

)
− tr

(
ρP̃iB

)
;

then the first term goes to zero from ρnk −→ ρ in L1 while the second one converges to zero from

the w∗-convergence of Pnki to P̃i and by the compactness of ρ. Moreover by the orthogonality of
projections it follows that

ρnkP
nk
i = λnki Pnki ;

hence by λnki → λ̃i 6= 0, Pnki is w-converging to ρP̃i/λ̃i.

Then, since w and w∗ limits coincide, we deduce that P̃i = ρP̃i/λ̃i and that P
nk
i → P̃i weakly.

Therefore following the proof of Lemma 3.6, Pnki → P̃i in L1 and P̃i is a projection, proving the
first part of the claim.

To obtain the second part we observe that the previous identity ρP̃i = λ̃iP̃i implies the claim
together with the uniqueness of the spectral decomposition of the compact and self-adjoint operator
ρ.

Proposition 3.8. Let ϕn, ϕ ∈ Sn(B(H)) such that ϕn ⇀ ϕ. Then for any sequence µn ∈ Λ⊥
ϕn there

exist a subsequence µnk and µ ∈ Λ⊥
ϕ such that tr(·)µnk ⇀ tr(·)µ, i.e. in duality with continuous

and bounded functions Cb(Pc).

Proof. Step 1. Consider the sequences (λni )i∈N and (λi)i∈N of eigenvalues of ρn and ρ, respec-
tively, arranged in decreasing order and repeated according to the multiplicity; in particular both
sequences have norm 1 in ℓ1. Then [50, Theorem 2] proves that

∑

i

|λni − λi| ≤ tr|ρn − ρ|,

giving that (λni )i∈N −→ (λi)i∈N in the ℓ1-norm as n → ∞. As a straightforward consequence for
each ε there exist nε,M ∈ N such that

∑

i≥M

λni ≤ ε, ∀ n ≥ nε,
∑

i≥M

λi ≤ ε. (3.10)

It is not restrictive to assume λi > 0 for each i < M for if this is not the case we can simply lower
M without changing the validity of (3.10); then the ℓ1-convergence will imply (3.10) for (λni )i as
well.

Step 2. Consider now any sequence µn ∈ Λ⊥
ϕn . To fix the notations we write

µn =
∑

j

λnij δPnj , ρn =
∑

j

λnijP
n
j .

Then we proceed as follows: denote with m ∈ N the first number such that λm = 0, with (λi)i∈N

seen as an element of ℓ1(N); in particular m ≥M . If λi > 0 for all i ∈ N, we pose m = ∞.
From ℓ1-convergence we have λni −→ λi as n → ∞. Hence for each j ∈ N such that ij < m,

the sequence of projections
(
Pnj
)
n∈N

has trace uniformly bounded; hence w∗-precompactness and
Lemma 3.7 imply the existence of a subsequence nk and of a projection Pj such that

P
nk
j −→ Pj , ρPj = λjPj .

Via the usual diagonal argument, we deduce the existence of a subsequence, still denoted by nk,
such that for each j ∈ N such that ij < m

Pnkj −→ Pj , ρPj = λjPj ,

as k → ∞. We define then µ :=
∑
j λjδPj . By the norm convergence, if j1 6= j2 then

tr(Pj1Pj2) = 0,

and by ρPj = λjPj it follows that ρ ≥∑j λjPj . Moreover, since

∑

j : ij≥M

λnkij tr(Pnkj ) =
∑

i≥M

λni ≤ ε,

it follows that ∑

j

λjtr(Pj) ≥ lim sup
n

∑

j : ij≤M

λnij tr(P
nk
j ) ≥ 1− ε.
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Since ε was arbitrarily chosen and did not play any role in the construction of µ, it follows
that

∑
j λjtr(Pj) = 1, giving, µ ∈ Λ⊥

ϕ . As byproduct we have also shown that the sequence(
λinkj

tr(P
nk
j )
)
converges to

(
λjtr(Pj)

)
in ℓ1(N).

Step 3. The claim is now equivalent to proving that for any f ∈ Cb(Pc)

lim
k→∞

∑

j

λnkij tr(Pnkj )f(Pnkj ) =
∑

j

λjtr(Pj)f(Pj).

This now follows from the ℓ1(N)-convergence of
(
λinkj

tr(Pnkj )
)
to
(
λjtr(Pj)

)
and the norm conver-

gence of each Pnkj to Pj (implying convergence in d) coupled with continuity and boundedness of
f .

We summarise the results in the next statement whose proof will be an easy consequence of
previous convergence results.

Theorem 3.9. Let ϕn, ϕ ∈ Sn(B(H)) be normal states and consider µn ∈ Λ⊥
ϕn , µ ∈ Λ⊥

ϕ . Then

1. If tr(·)µn ⇀ tr(·)µ in duality with Cb(Pc), then ϕn ⇀ ϕ in the w∗-sense.

2. If ϕn ⇀ ϕ in the w∗-sense then there exist a subsequence (nk)k∈N and µ̄ ∈ Λ⊥
ϕ such that

tr(·)µnk → tr(·)µ̄ in duality with Cb(Pc).

Proof. The first point is Lemma 3.4 while the second part of the claim is precisely Proposition
3.8.

4 Wasserstein distance between normal states

We will use the metric structure of (Pc, d) reviewed in Section 2.1, together with the map Ψ
(Definition 3.3) to define a static Wasserstein distance between normal states of B(H). The classical
definition of p-Wasserstein distance over (Pc, d) (being d an extended metric does not hurt the
definition), the plan is to push it to normal states via Ψ.
With this motivation in mind, we begin describing in details W Pc

p .

4.1 Wasserstein distance over P(Pc)

In the classical setting optimal transportation is encoded in transport plans, i.e. probability mea-
sures over the product space with assigned marginals. As the metric d is finite solely when restricted
on each connected component of Pc, we will consider a more stringent notion of transport plan (re-
call that P,Q ∈ Pc belong to the same connected component if and only if dimR(P ) = dimR(Q)).

Definition 4.1. Given two probability measures µ0, µ1 ∈ P(Pc), the set of d-transport plans
between µ0 and µ1 will be given by

Πd(µ0, µ1) :=
{
ν ∈ Π(µ0, µ1) : dim(R(P )) = dim(R(Q)), ν − a.e.

}
, (4.1)

where Π(µ0, µ1) = {ν ∈ P(Pc × Pc) : (π1)♯ν = µ0, (π2)♯ν = µ1} is the classical notation for
transport plans and πi : Pc × Pc → Pc is the projection on the i-th component, for i = 1, 2.

The set of d-transport plans Πd(µ0, µ1) is a, possibly empty, convex subset of P(Pc×Pc). Then
we will define the following optimal transport distance.

Definition 4.2. Given µ0, µ1 ∈ P(Pc), for any p ≥ 1 we define their W Pc
p distance as follows:

W Pc
p (µ0, µ1) := inf

ν∈Πd(µ0,µ1)

(
ˆ

Pc×Pc

d(P,Q)p ν(dPdQ),

) 1
p

(4.2)

where d is the extended geodesic distance of Pc. Whenever the set Πd((µ0, µ1)) is empty we pose
W Pc
p (µ0, µ1) := +∞.

It is fairly easy (and almost identical to the classical case) to prove existence of optimal transport
plans.

Theorem 4.3 (Existence of optimal plans). Given µ0, µ1 ∈ P(Pc), there exists an optimal plan
ν ∈ Πd(µ0, µ1) such that

W Pc
p (µ0, µ1)

p =

ˆ

Pc×Pc

d(P,Q)p ν(dPdQ),

provided the set of admissible plan Πd(µ0, µ1) is not empty.
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Proof. Since Πd(µ0, µ1) 6= ∅ and d ≤ π
2
, there exists a minimizing sequence νn ∈ Πd(µ0, µ1) such

that

lim
n

ˆ

Pc×Pc

d(P,Q)p νn(dPdQ) =W Pc
p (µ0, µ1)

p.

Thanks to the following Lemma 4.4, there exist νnk , ν ∈ Πd(µ0, µ1) such that νnk ⇀ ν, in duality
with Cb(Pc × Pc). Being the distance continuous and bounded it follows that

W Pc
p (µ0, µ1)

p = lim
k

ˆ

Pc×Pc

d(P,Q)p νnk (dPdQ) =

ˆ

Pc×Pc

d(P,Q)p ν(dPdQ)

proving the claim.

Lemma 4.4. Given µ0, µ1 ∈ P(Pc), for any sequence νn ∈ Πd(µ0, µ1) there exist a subsequence
νnk and ν ∈ Πd(µ0, µ1) such that νnk ⇀ ν in duality with any f ∈ Cb(Pc × Pc).

Even tough the argument is similar to the classical case, for readers’ convenience we include
the proof.

Proof. By inner regularity of probability measures over Polish spaces, for any ε > 0 there exit
compact sets K1 ⊂ supp(µ0) and K2 ⊂ supp(µ1) such that µ0(K1), µ1(K2) ≥ 1− ε implying that
νn(K1 ×K2) ≥ 1 − 2ε, showing that νn is tight. Then Prohorov’s Theorem ensures the existence
of subsequence νnk and of ν ∈ P(Pc×Pc) such that νnk ⇀ ν in duality with any f ∈ Cb(Pc ×Pc).
In particular this implies that (π1)♯ν = µ0 and (π2)♯ν = µ1, proving that ν ∈ Π(µ0, µ1).

To conclude, consider the function f : Pc × Pc → R defined by f(P,Q) := dim(R(P )) −
dim(R(Q)). The function f is locally constant and therefore continuous. Hence the set

C := {(P,Q) ∈ Pc × Pc : f(P,Q) > 0}

is open giving that 0 = lim inf νnk (C) ≥ ν(C) ≥ 0, proving the claim.

We conclude this short overview on optimal transport in P(Pc) by recalling the simple relation
between Wasserstein topology and weak topology. Here we refer to [51, Theorem 6.9]: if µn, µ ∈
P(Pk) for some k independent of n, then

µn ⇀ µ ⇐⇒ W Pc
p (µn, µ) → 0,

for any p ≥ 1. Recall indeed that (Pk, d) is a complete and separable metric spaces with d ≤ π/2.

4.2 The Optimal Transport Cost in Sn(B(H))

We now consider the natural optimal transport problem between normal states.
The use of multiple representations for the density matrices, i.e. Λ⊥

ϕ and Λ⊥
ψ , together with the

many connected components (Pc, d), motivate the following defintion.

Definition 4.5. For any ϕ,ψ ∈ Sn(B(H)) and p ≥ 1 define their optimal transport cost by

Cp(ϕ,ψ) := inf
µ0 ∈ Λ⊥

ϕ

µ1 ∈ Λ⊥
ψ

W Pc
p

(
tr(·)µ0, tr(·)µ1

)
, (4.3)

where Λ⊥
ϕ ,Λ

⊥
ψ ⊂ D⊥

1 (Pc) have been defined in (3.8).

Remark 4.6. Clearly an alternative way of writing Cp is to interpret it as the distance between
two disjoint compact sets: For any ϕ,ψ ∈ Sn(B(H)) and p ≥ 1

Cp(ϕ,ψ) =W Pc
p (tr(·)Λ⊥

ϕ , tr(·)Λ⊥
ψ ), (4.4)

where as usual the distance between two compact sets is computed taking the infimum of all
possible distances.

It is immediate to check that Cp is bounded.

Lemma 4.7. Given any ϕ,ψ ∈ Sn(B(H)) we have Cp(ϕ,ψ) ≤ π/2.

Proof. It is sufficient to observe that given any ϕ ∈ Sn(B(H)) there exists µ0 ∈ Λ⊥
ϕ such that

supp(µ0) ⊂ P1 (recall (2.9)). Hence by definition

Cp(ϕ,ψ) ≤W Pc
p (µ0, µ1) ≤ π/2,

where µ1 ∈ Λ⊥
ψ and supp(µ0), supp(µ1) ⊂ P1. The second inequality follows from d(P,Q) ≤ π/2

whenever P,Q ∈ P belong to the same connected component.
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Relying on Proposition 2.6, we deduce that looking among those spectral representations of
states using projections with one-dimensional range does not change the cost functional.

Proposition 4.8. For any ϕ,ψ ∈ Sn(B(H)),

Cp(ϕ,ψ) = inf
µ0 ∈ Λ⊥

ϕ ∩ P(P1)
µ1 ∈ Λ⊥

ψ ∩ P(P1)

W Pc
p

(
µ0, µ1

)
,

Proof. Consider any µ0 ∈ Λ⊥
ϕ , µ1 ∈ Λ⊥

ψ and ν ∈ Πd(tr(·)µ0, tr(·)µ1) (it is not restrictive to assume
the existence of at least one transport plan).

We prove the claim showing the existence of γ ∈ P(P1 × P1) such that
ˆ

d(P,Q)pγ(dPdQ) ≤
ˆ

d(P,Q)pν(dPdQ),

with (π1)♯γ ∈ Λ⊥
ϕ and (π1)♯γ ∈ Λ⊥

ψ .
We proceed by writing ν as follows: if tr(·)µ0 =

∑
i α0,iδP0,i (and analogous one for tr(·)µ1),

then
ν =

∑

i,j

βi,jδP0,i ⊗ δP1,j ,

for some βi,j ≥ 0 summing to 1. Whenever βi,j > 0 and tr(P0,i) = r > 1, we consider any
orthonormal frame of R(P0,i), say e1, . . . , er such that

∑
k≤r Pek = P0,i.

We also consider Z ∈ TP0,iP such that P1,j = eiZP0,ie
−iZ and consequently define P1,ek :=

eiZPeke
−iZ . Clearly ∑

k≤r

P1,ek = P1,j ,

and by Proposition 2.6 d(Pek , P1,ek ) ≤ d(P0,i, P1,j). We therefore define a new transport plan ν̄
replacing δP0,i ⊗ δP0,j by

1

r

∑

k

δPek ⊗ δP1,ek
.

Then
ˆ

d(P,Q)pν(dPdQ)−
ˆ

d(P,Q)pν̄(dPdQ) = βi,j

(
d(P0,i, P1,j)

p − 1

r
d(Pek , P1,ek )

p

)
≥ 0

It is clear from the construction that the marginal measures of ν are still admissible measures for
the states ϕ and ψ. Repeating the argument at most countably many times proves the claim.

After Proposition 2.6, we therefore introduce the following additional notation:

Λ⊥,1
ϕ := Λ⊥

ϕ ∩ P(P1). (4.5)

Notice that Λ⊥,1
ϕ is closed, and therefore compact, like Λ⊥

ϕ .
Next we prove that the infimum of (4.3) can be replaced by a minimum.

Proposition 4.9. Given any ϕ,ψ ∈ Sn(B(H)), there exist µ0, µ1 and ν, elements of Λ⊥,1
ϕ ,Λ⊥,1

ψ

and of Πd

(
µ0, µ1

)
respectively, such that

Cp(ϕ,ψ) =W Pc
p

(
µ0, µ1

)
=

(
ˆ

Pc×Pc

d(P,Q)p ν(dPdQ)

)1/p

.

Proof. The second identity is proved in Theorem 4.3. It is enough therefore to show the first one.
By Proposition 2.6, there exists two sequences (µ0,n)n∈N ⊂ Λ⊥,1

ϕ , (µ1,n)n∈N ⊂ Λ⊥,1
ψ such that

lim
n→∞

W Pc
p

(
µ0,n, µ1,n

)
= Cp(ϕ, ψ).

By compactness of tr(·)Λ⊥
ϕ and tr(·)Λ⊥

ψ (Proposition 3.5), we assume, up to subsequences that we

omit, µ0,n ⇀ µ0, µ1,n ⇀ µ1, for some µ0 ∈ Λ⊥,1
ϕ and µ1 ∈ Λ⊥,1

ψ .
Now take νn ∈ Πd(µ0,n, µ1,n) any optimal transport plan (Theorem 4.3). Since its marginal

are converging, by tightness, νn is weakly converging, up to subsequences, as well to a certain
ν ∈ Π(µ0, µ1). Since d is continuous and bounded on P1:

Cp(ϕ,ψ) = lim
n→∞

W Pc
p (µ0,n, µ1,n)

p =

ˆ

Pc×Pc

d(P,Q)p ν(dPdQ) ≥W Pc
p (µ0, µ1)

p.

Continuing the previous chain of inequalities with ≥ Cp(ϕ, ψ) proves the claim.
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Hence we have shown that the optimal transport problem defining the transport cost has always
a solution. Moreover, by the symmetry of d, it is trivial to check that Cp(ϕ,ψ) = Cp(ψ,ϕ).

Finally Cp(ϕ, ψ) = 0 implies ϕ = ψ. Indeed by the previous Proposition 4.9, there exist
µ0 ∈ Λ⊥,1

ϕ and µ1 ∈ Λ⊥,1
ψ such that W Pc

p

(
µ0, µ1

)
= 0. Hence µ0 = µ1 and by definition of Λ⊥

ϕ and

Λ⊥
ψ

ϕ = Ψ(µ0) = Ψ(µ1) = ψ.

We have therefore that Cp : Sn(B(H))×Sn(B(H)) −→ [0,∞) is a semi-distance. First references for
semi-distances date back to the first half of 20th century, see for instance [52]. We refer however
to the recent [21] for a general overview on the topic.

Remark 4.10. Concerning triangular inequality for the cost Cp, using Remark 4.6, one can deduce
the following property: given ϕ,ψ, φ ∈ Sn(B(H))

Cp(ϕ,ψ) ≤ inf
µ0, µ1,µ2

{
W Pc
p

(
µ0, µ1

)
+W Pc

p

(
µ1, µ2

)}
,

infimum with respect to µ0 ∈ Λ⊥,1
ϕ , µ1 ∈ Λ⊥,1

φ and µ2 ∈ Λ⊥,1
ψ .

We do not present a proof of the previous inequality because it follows a classical argument
(gluing) in optimal transport that will be also used in the proof of the following Lemma 4.14.
Moreover, whenever the intermediate normal state, say φ, has density matrix with only simple
eigenvalues (so that there is only one element in Λ⊥,1

φ ), then again by gluing one obtains the
triangular inequality:

Cp(ϕ, ψ) ≤ Cp(ϕ, φ) + Cp(φ,ψ).
The proof of Lemma 4.14 will clarify this point.

We now investigate the topology induced by Cp, starting by its converging sequences. Notice
indeed that semi-distances induce a topology whose open sets are in the form U ⊂ Sn(B(H)) for
which for every ϕ ∈ U there exists r > 0 so that Br(ϕ) :=

{
ψ ∈ Sn(B(H)) : Cp(ϕ,ψ) < r

}
⊂ U .

Theorem 4.11. Let ϕn, ϕ be normal states of B(H). Then

Cp(ϕn, ϕ) −→ 0 ⇐⇒ ϕn
w∗

/ ϕ.

Proof. Suppose first that Cp(ϕn, ϕ) → 0 as n → ∞. By Proposition 4.9 there exist µ0,n ∈ Λ⊥,1
ϕn ,

µ1,n ∈ Λ⊥,1
ϕ and νn ∈ Πd(µ0,n, µ1) such that

Cp(ϕn, ϕ) =W Pc
p (µ0,n, µ1,n) =

(
ˆ

Pc×Pc

d(P,Q)p νn(dPdQ)

)1/p

→ 0

By compactness of Λ⊥,1
ϕ in weak topology, µ1,n has a converging subsequence to some µ1 ∈ Λ⊥,1

ϕ .
By Lemma 3.4, Ψ(µ0,n) → Ψ(µ1) in w∗-convergence. By definition Ψ(µ0,n) = ϕn and Ψ(µ1) = ϕ
giving the first claim.

Assume ϕn ⇀ ϕ now. By Proposition 4.9 there exist µ0,n ∈ Λ⊥,1
ϕn , µ1,n ∈ Λ⊥,1

ϕ and νn ∈
Πd(µ0,n, µ1,n) such that

Cp
(
ϕn, ϕ) =W Pc

p (µ0,n, µ1,n

)
.

We now invoke Proposition 3.8: from ϕn ⇀ ϕ we deduce the existence of a subsequence µ0,nk and
µ1 ∈ Λ⊥,1

ϕ such that µ0,nk ⇀ µ1. Then µ0,nk → µ1 also in Wasserstein distance over P1. Hence

Cp(ϕn, ϕ) =W Pc
p (µ0,n, µ1,n) ≤W Pc

p (µ0,nk , µ1) → 0,

giving the claim.

Theorem 4.11 together with [21, Theorem 4.2] imply following

Corollary 4.12. The topology τCp over the set of normal states coincide with the w∗-topology.

Proof. [21, Theorem 4.2] states that τCp coincide with the topology induced by sequences in the
usual sense: U is closed if contains limit points (w.r.t. to Cp) of all converging sequences all
contained inside U . Then Theorem 4.11 and metrizability of w∗-topology over bounded set proves
the claim.
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4.3 Wasserstein distance in Sn(B(H))

Even though the cost functional Cp is fully satisfactory (see Theorem 4.11), for completeness we
address the issue of the lack of triangular inequality for Cp. Using the spectral decomposition
without repetitions of eigenvalues permits to obtain the triangular inequality. As a drawback this
produces an extended distance (not finite).

Definition 4.13. For any ϕ, ψ ∈ Sn(B(H)) and p ≥ 1 define their p-Wasserstein distance by

Wp(ϕ,ψ) :=W Pc
p (tr(·)Φ(ϕ), tr(·)Φ(ψ)), (4.6)

with the map Φ defined in (3.6). Recall that by Definition 4.2, if no admissible transport plans
exist, we assign to Wp(ϕ,ψ) the value +∞.

We will now prove indeed that the map

Wp : Sn(B(H))× Sn(B(H)) −→ [0,∞]

defines an extended distance over Sn(B(H)). As before, the symmetry of d implies the symmetry
of Wp and if Wp(ϕ,ψ) = 0, it is straightforward to check that ϕ = ψ. The triangular inequality is
the content of the following

Lemma 4.14. (Triangular inequality for Wp). Let ϕ,ψ and φ be three elements of Sn(B(H)).
Then

Wp(φ, ϕ) ≤ Wp(φ, ψ) +Wp(ψ,ϕ).

Proof. Consider ν1 ∈ Πd

(
tr(·)µφ, tr(·)µψ

)
and ν2 ∈ Πd

(
tr(·)µψ, tr(·)µϕ

)
optimal plan whose

existence is assured by Theorem 4.3.
If tr(·)µφ =

∑
i αiδPVi , tr(·)µψ =

∑
i βiδPWi and tr(·)µϕ =

∑
i γiδPZi then the transport plans

ν1 and ν2 can be written as

ν1 =
∑

i,j

α1
i,jδPVi ⊗ δPWj , ν2 =

∑

i,j

α2
i,jδPWi ⊗ δPZj ,

with α1
i,j , α

2
i,j ≥ 0 and

∑
i,j α

1
i,j =

∑
i,j α

2
i,j = 1; moreover marginal constraint are given in the

following form

αi =
∑

j

α1
i,j ,

∑

i

α1
i,j = βj =

∑

i

α2
j,i, γj =

∑

i

α2
i,j .

Following the classical gluing procedure of transport plans, we define

Θ :=
∑

i,j,k

α1
i,jα

2
j,k

βj
δPVi ⊗ δPWj ⊗ δPZk ,

and one can check that ν1 = (π12)♯Θ, ν2 = (π23)♯Θ and (π13)♯Θ ∈ Π(tr(·)µφ, tr(·)µϕ).
We also need to check that (π13)♯Θ is admmissible: for (π13)♯Θ-a.e. P,Q it holds i(P,Q) = 0

(or dim(R(P )) = dim(R(Q))). Moreover from [9] if (P,Q) and (Q,V ) are Fredholm pairs, and
either Q− V or P −Q is compact, then (P, V ) is a Fredholm pair and

i(P,Q) = i(P, V ) + i(V,Q).

For Θ-a.e. (P, V,Q) ∈ Pc × Pc × Pc, we have that

i(P,Q) = i(P, V ) + i(V,Q) = 0, Θ− a.e.

showing that (π13)♯Θ ∈ Πd(tr(·)µφ, tr(·)µϕ). For the same reason, Θ-a.e. the projections P,Q
and V belong to the same connected component of Pc where triangular inequalities can be used.
Hence for any p ≥ 1:

Wp(φ, ϕ) ≤
(
ˆ

d(P,Q)p (π13)♯Θ(dPdQ)

)1/p

=

(
ˆ

d(P,Q)pΘ(dPdV dQ)

)1/p

≤
(
ˆ

(d(P, V ) + d(V,Q))p Θ(dPdV dQ)

)1/p

≤
(
ˆ

d(P, V )pΘ(dPdV dQ)

)1/p

+

(
ˆ

d(V,Q)pΘ(dPdV dQ)

)1/p

=Wp(φ,ψ) +Wp(ψ,ϕ),

concluding the proof.
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Corollary 4.15. The couple (Sn(B(H)),Wp) is an extended metric space in the sense that

Wp : Sn(B(H))× Sn(B(H)) → [0,∞]

verifies for any ϕ and ψ the following properties: Wp(ϕ,ϕ) = 0, and if Wp(ϕ,ψ) = 0 then ϕ = ψ;
Wp(ϕ,ψ) =Wp(ψ,ϕ) and the triangular inequality holds true.

By definition is straightforward to check that

Cp(ϕ,ψ) ≤ Wp(ϕ,ψ).

In particularWp-convergence implies Cp-convergence and, by Theorem 4.11, w∗-convergence. How-
ever, as expected w∗-convergence does not imply Wp-convergence. We have a simple counterex-
ample.

Example 2. Consider the case of H = C
2 and

ϕn :=

(
1

2
− 1

n

)
|e1〉〈e1|+

(
1

2
+

1

n

)
|e2〉〈e2|⇀ ϕ :=

1

2
(|e1〉〈e1|+ |e2〉〈e2|) ;

the corresponding measures over the space of projections of C2 will be

µϕn =

(
1

2
− 1

n

)
δP1

+

(
1

2
+

1

n

)
δP2

, µϕ = δId,

where P1 and P2 are the projections over the span of e1 and e2, respectively. Since P1, P2 and Id
belong to two different connected components of Pc, Wp

(
tr(·)µϕn , tr(·)µϕ

)
= ∞.

5 Kantorovich duality for Wp and consequences

In this part we will go through the Kantorovich duality for the optimal transport problem over
(Pc, d). In particular we will analyse cyclically montone sets and solutions of the dual problem.
The duality will always be referred to the Wasserstein distance Wp.

5.1 Kantorovich duality

As before, when dealing with optimal transport arguments, we will repeatedly restrict d to each
connected component Pn of Pc and invoke the classical results. We start recalling the following
classical definition from the theory of optimal transport: A subset Γ of Pc × Pc is d

p-cyclically
monotone if and only if for any n ∈ N and (P1, Q1), . . . (Pn, Qn) ∈ Γ the following inequality is
valid ∑

i≤n

d(Pi, Qi)
p ≤

∑

i≤n

d(Pi, Qi+1)
p,

with the convention Qn+1 = Q1. It is also tacitly assumed that for each (P,Q) ∈ Γ, dimR(P ) =
dimR(Q). Accordingly, given ϕ,ψ ∈ Sn(B(H)), ν ∈ Πd(tr(·)µϕ, tr(·)µψ) will be called d

p-cyclically
monotone if there exists a d

p-cyclically monotone set Γ such that π(Γ) = 1.
By lower semicontinuity of d, it is well-known that d

p-cyclical monotonicity is a necessary
condition for being optimal (see for instance [12, Proposition B.16]).

Proposition 5.1. Let ϕ,ψ ∈ Sn(B(H)) be given and p ≥ 1. Then any optimal transport plan
ν ∈ Πd(tr(·)µφ, tr(·)µψ) for the Wp distance is d

p-cyclically monotone.

Looking at the transport on each single connected component of Pc, it is clear that cyclical
monotonicity is indeed a sufficient condition for global optimality.

Proposition 5.2. Let ϕ,ψ ∈ Sn(B(H)) be given and let ν ∈ Πd(tr(·)µϕ, tr(·)µψ) be any d
p-

cyclically monotone transport plan. Then ν is Wp-optimal, i.e.
ˆ

d(P,Q)p ν(dPdQ) =Wp(ϕ, ψ)
p.

Proof. Decompose both µϕ and µψ into as sum of their restriction to each connected component
of Pc, Pn = {P ∈ Pc : tr(P ) = n}. Then

µϕ =
∑

n

µϕ,n, µψ =
∑

n

µψ,n,

with µϕ,n and µψ,n having supports in Pn. Then any plan ν ∈ Πd(tr(·)µϕ, tr(·)µψ) has to send
µϕ,n to µψ,n and its optimality is equivalent to optimality between each µϕ,n and µψ,n.
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Let us now consider ν ∈ Πd(tr(·)µϕ, tr(·)µψ) and Γ a d
p-cyclically monotone set with ν(Γ) = 1.

We decompose as above ν =
∑
νn with νn ⊥ νm if n 6= m and νn having marginals µϕ,n and µψ,n.

Here νn ⊥ νm is in the sense of measure theory i.e. with disjoint supports. Then d restricted to Pn

is finite and therefore, by classical theory of optimal transport (see for instance [51]), dp-cyclical
monotonicity is equivalent to optimality giving that each νn is optimal and therefore optimality of
ν follows.

From the classical theory [51, Theorem 5.10], the following dual formulation of the problem is
valid: for any ϕ, ψ ∈ Sn(B(H))

min
ν∈Πd(tr(·)µϕ,tr(·)µψ)

ˆ

Pc×Pc

d(P,Q)p π(dPdQ)

= sup
f,g∈Cb(Pc)

g(Q)−f(P )≤d
p(P,Q)

(
ˆ

g(Q)tr(Q)µψ(dQ)−
ˆ

f(P )tr(P )µϕ(dP )

)

The right hand side can actually be substituted with some special couples of functions.

Definition 5.3 (dp-convex function). A function f : supp(µϕ) → R ∪ {+∞} is d
p-convex if it is

not identically +∞ and there exists h : supp(µψ) → R ∪ {±∞} such that for each P ∈ supp(µϕ)

f(P ) = sup
Q∈supp(µψ)

h(Q)− d(P,Q)p.

Then its dp-transform is a function fd
p

: supp(µψ) → R defined for each Q ∈ supp(µψ) by:

fd
p

(Q) := inf
P∈supp(µϕ)

f(P ) + d(P,Q)p.

Theorem 5.10 of [51] gives that the previous duality can be rewritten as follows

min
ν∈Πd(tr(·)µϕ,tr(·)µψ)

ˆ

Pc×Pc

d(P,Q)p π(dPdQ) = sup
f∈L1(tr(·)µϕ)

(
ˆ

fd
p

tr(·)µψ −
ˆ

ftr(·)µϕ
)
,

and in the above supremum one might as well impose that f be dp-convex. The previous supremum
is actually achieved and the maximum will be called a Kantorovich potential.

Theorem 5.4. Given any ϕ,ψ ∈ Sn(B(H)) with Wp(ϕ,ψ) < ∞, there exists f ∈ L1(tr(·)µϕ) and
d
p-convex such that

Wp(ϕ,ψ)
p =

ˆ

fd
p

tr(·)µψ −
ˆ

ftr(·)µϕ.

In particular, ν ∈ Πd(tr(·)µϕ, tr(·)µψ) is Wp-optimal if and only if

ν
({

(P,Q) ∈ Pc × Pc : f
d
p

(Q)− f(P ) = d(P,Q)p
})

= 1.

Proof. Reasoning like in the proof of Proposition 5.2, on each connected component Pn of Pc,
the metric d is continuous yielding (see [51, Theorem 5.10]) for each n ∈ N the existence of dp-
convex functions fn : supp(µϕ,n) → R, meaning that it is not identically +∞ and there exists
h : supp(µψ,n) → R ∪ {±∞} such that for each P ∈ supp(µϕ,n)

fn(P ) = sup
Q∈supp(µψ,n)

hn(Q)− d(P,Q)p,

such that a transport plan between µϕ,n and µψ,n is optimal if and only if is concentrated inside
the following d

p-cyclically monotone set:

{
(P,Q) ∈ supp(µϕ,n)× supp(µψ,n) : f

d
p

n (Q)− fn(P ) = d(P,Q)p
}
,

where fd
p

n is defined considering the infimum only among those P ∈ supp(µϕ,n). In particular,

ˆ

supp(µϕ,n)×supp(µψ,n)

d(P,Q)p ν(dPdQ) =

ˆ

fd
p

n tr(·)µψn −
ˆ

fntr(·)µϕn .

Define then f(P ) := fn(P ) and h(Q) := hn(Q) for each P ∈ supp(µϕ,n) and Q ∈ supp(µψ,n) and
notice that

f(P ) = sup
Q∈supp(µψ)

h(Q)− d(P,Q)p,
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giving that f is dp-convex. Simply noticing that d takes value +∞ if P and Q does not belong to
the same connected component of Pc, it follows that for Q ∈ supp(µψ,n) satisfies f

d
p

(Q) = fd
p

n (Q),
where fd

p

is its dp-transform, given by

fd
p

(Q) := inf
P∈supp(µϕ)

f(P ) + d(P,Q)p.

Hence Wp(ϕ,ψ)
p =
´

fd
p

tr(·)µψ −
´

ftr(·)µϕ, and the second claim follows straightforwardly.

We now focus on representing Kantorovich potentials.

Lemma 5.5. For any f ∈ L1(tr(·)µϕ), there exists an unbounded linear and densely defined
operator C such that Cρϕ ∈ L1(H) (the composition extends from the domain to a bounded operator)
and

tr(P )f(P ) = tr(CP ), P ∈ supp(µϕ).

Proof. Let
∑
i λiPVi be the spectral decomposition of ρϕ with strictly decreasing eigenvalues. Then

f defines a Borel function on the spectrum of ρϕ with f(λi) := f(Pi) and possibly f(0) = 0. We
simply define C := f(ρϕ) by the functional calculus. In particular

Dom(C) =
{
x ∈ H :

∑

i

|f(PVi)|2‖PVix‖2 <∞
}

is of course dense. The rest is straightforward noticing that the condition f ∈ L1(tr(·)µϕ) implies
that the sequence (λif(Pi))i is bounded.

Corollary 5.6. Given any ϕ,ψ ∈ Sn(B(H)) with Wp(ϕ,ψ) <∞, there exist C and Cd
p

unbounded
linear and densely defined operators on H such that the following points are verified.

1. The Wp-cost verifies Wp(ϕ,ψ) = tr(Cd
p

ρψ)− tr(Cρϕ).

2. Any ν ∈ Πd(µϕ, µψ) is Wp-optimal if and only if

ν

({
(P,Q) ∈ supp(µϕ)× supp(µψ) : tr(C

d
p

Q)− tr(CP ) =
d(P,Q)p

tr(P )

})
= 1;

with C,Cd
p

are such that

tr(Cd
p

Q)− tr(CP ) ≤ d(P,Q)p

tr(P )
, ∀ (P,Q) ∈ supp(µϕ)× supp(µψ), tr(P ) = tr(Q).

Proof. To prove the first point we use Theorem 5.4 to deduce the existence of a solution f ∈
L1(tr(·)µϕ) of the dual problem with

Wp(µϕ, µψ) =

ˆ

fcp tr(·)µψ −
ˆ

ftr(·)µϕ.

Then apply Lemma 5.5 to such f to obtain C such that f(P )tr(P ) = tr(CP ) for all P ∈ supp(µϕ),
implying

ˆ

ftr(·)µϕ = tr(Cρϕ).

Denoting with Cd
p

any linear map representing fd
p

, the first point follows. The second point is
then a reformulation of the second point of Theorem 5.4.

5.2 Wasserstein geodesics

In this section and in the following one we will study how to match two other possible approaches
in defining a Wasserstein type distance over normal states with the one we introduced in Section
4.

The geodesic structure of Pc will permit to investigate the geodesic structure of Sn(B(H)). We
begin by recalling the classical definition of geodesic adapted to the setting of Sn(B(H)).
Definition 5.7. Given ϕ,ψ ∈ Sn(B(H)), a curve

[0, 1] ∋ t 7→ φt ∈ Sn(B(H)), φ0 = ϕ, φ1 = ψ,

is a Cp-geodesic (resp. a Wp-geodesic) if Cp(φt, φs) = |t − s|Cp(ϕ,ψ) (resp. Wp(φt, φs) = |t −
s|Wp(ϕ,ψ)), for any s, t ∈ [0, 1].

We start looking for geodesic convexity of suitable subsets of P(Pc).
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Proposition 5.8. The set D1(Pc) of discrete, non-negative measures having integral of the trace
equal to 1 as defined in (3.3) is weakly convex with respect to W Pc

p in the following sense: for any
µ0, µ1 ∈ D1(Pc) such that W Pc

p

(
tr(·)µ0, tr(·)µ1

)
<∞, there exists a curve (µt)t∈[0,1] ⊂ D1(Pc) with

initial point µ0 and final point µ1 such that t 7−→ tr(·)µt is a W Pc
p -geodesic.

Proof. Given µ0, µ1 ∈ D1(Pc) such that W Pc
p

(
tr(·)µ0, tr(·)µ1

)
< ∞, Theorem 4.3 ensures the

existence of an optimal transport plan ν ∈ Πd(µ0, µ1). If µ0 =
∑
i αiδPVi and µ1 =

∑
i βiδPZi ,

there exist non-negative coefficients θi,j such that

ν =
∑

i,j

θi,jδPVi ⊗ δPZj ,
∑

j

θi,j = αitr(PVi),
∑

i

θi,j = βjtr(PZj ).

Since ν is admissible, whenever θi,j > 0 it follows that tr(PVi) = tr(PZj ) hence we can consider
γi,j any geodesic of (Pc, d) connecting Vi to Zj . Its existence is assured by the fact that Vi and Zj
belong same connected component of (Pc, d). In particular tr(γi,j(t)) is constant for each t ∈ [0, 1]
and depends only on i.
Now define the following non-negative measure over Geo(Pc)

γ :=
∑

i,j

θi,j
tr(PVi)

δγi,j

and, denoting by et : Geo(Pc) → Pc the evaluation map at time t we have a curve of measures
[0, 1] ∋ t 7→ µt := (et)♯(γ). First notice that µt ∈ D1(Pc): indeed γ is a discrete measure therefore
the same is valid for µt and

ˆ

Pc

tr(P )µt(dP ) =

ˆ

Pc

tr(P ) (et)♯(γ)(dP ) =
∑

i,j

θi,j = 1.

Hence µt ∈ D1(Pc) and finally

W Pc
p (tr(·)µs, tr(·)µt)p ≤

ˆ

d(P,Q)p ((e(s), e(t))♯(
∑

i,j

θi,jδγi,j ))(dPdQ)

= |s− t|p
ˆ

d(P,Q)p ((e(0), e(1))♯(
∑

i,j

θi,jδγi,j ))(dPdQ)

= |s− t|p
ˆ

d(P,Q)p ν(dPdQ)

= |s− t|pW Pc
p (tr(·)µ0, tr(·)µ1)

p.

This proves the claim.

To obtain a Wasserstein geodesic between normal states, Proposition 5.8 must be reinforced
with the additional assumption that µt ∈ D⊥

1 (Pc). The condition µt ∈ D⊥
1 (Pc) is actually quite

demanding and has the strong and rigid consequences on the two measures µϕ, µψ it is linking.
Recall the definition (3.4) of D⊥

1 (Pc) consisting of discrete measures supported on orthogonal
families of projections and integrating the trace to one.

Proposition 5.9. Given µ0, µ1 ∈ D⊥
1 (Pc) such that with W Pc

p (µ0, µ1) < ∞. Let µt be any W Pc
p -

geodesic provided from Proposition 5.8 and assume µt ∈ D⊥
1 (Pc) for all t ∈ [0, 1].

Then there exists a bijective map T : supp(µ0) → supp(µ1) such that (Id, T )♯µ0 ∈ Πd(µ0, µ1) is
an optimal plan. In particular, if µ0 =

∑
i αiP0,i, µ1 =

∑
i βiP1,i with αi > αi+1 and βi > βi+1,

then
tr(P0,i) = tr(P1,i), αi = βi,

and T (P0,i) = P1,i.

Proof. From the classical theory of optimal transport applied to each connected component of
Pc, tr(·)µt = (et)♯(γ) with γ ∈ P(Geo(Pc)). Hence (e0, e1)♯γ ∈ Πd(tr(·)µϕ, tr(·)µψ). Posing
ν = (e0, e1)♯γ, necessarily

ν =
∑

i,j

θi,jδPVi ⊗ δPZj ,
∑

i,j

θi,j = 1, θi,j ≥ 0.

Assume now by contradiction there exist i1 6= i2 and j ∈ N such that both θi1,j , θi2,j > 0. Then
there exists γi1,j , γi2,j ∈ Geo(Pc) such that

γi1,j(t), γi2,j(t) ∈ supp(µt), γi1,j(0) = PVi1 , γi2,j(0) = PVi2 , γi1,j(1) = PZj , γi2,j(1) = PZj ,
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with PVi1 ⊥ PVi2 . Then µt ∈ D⊥
1 (Pc) implies that either γi1,j(t) = γi2,j(t) or tr(γi1,j(t)γi2,j(t)) = 0

with the former verified at t = 0 and the latter at t = 1; continuity of t 7→ γi1,j(t), γi2,j(t) gives a
contradiction.

The argument can be reverted and implies that for each i ∈ N there is only one j ∈ N such
that θi,j > 0 and for each j ∈ N there is only one i ∈ N such that θi,j > 0: this is equivalent to the
existence of a bijective map T : supp(µϕ) → supp(µψ) such that

ν = (Id×T )♯µ0,

proving the first part of the claim. The remaining claims are straightforward consequences.

Corollary 5.10. Fix p ≥ 1. Given ϕ,ψ ∈ Sn(B(H)) with Wp(ϕ,ψ) <∞, consider µϕ, µψ and any
µt from Proposition 5.8. If µt ∈ D⊥

1 (Pc), then posing

ρt := Ψ(µt) ∈ C(H),

the curve of normal state [0, 1] ∋ t 7→ ϕρt is a Wp-geodesic.

Proof. To fix notation, µt from Proposition 5.8 can be then written as µt =
∑
i αiδPi(t). Then

using the notations of Section 3, Ψ(µt) =
∑
i αiPi(t) is a well-defined element of C(H). From

Proposition 5.9 it follows that
Φ(ϕρt) = Φ(Ψ(µt)) = µt.

Notice indeed that µt is an element of D⊥
1 (Pc) giving different weights on each element of its

support. Hence, by definition of Wp (recall (4.6))

Wp(ϕρs , ϕρt) =W Pc
p (tr(·)Φ(ϕρs ), tr(·)Φ(ϕρt ))

=W Pc
p (tr(·)µs, tr(·)µt)

= |t− s|W Pc
p (tr(·)µ0, tr(·)µ1)

= |t− s|Wp(ϕρ0 , ϕρ1),

proving the claim.

Remark 5.11. If the condition µt ∈ D⊥
1 (Pc) is not known, then one can anyway define a curve

of normal states because Ψ(µt) =
∑
i αiPi(t) =: ρt is a well-defined element of C(H) implying that

ϕρt ∈ Sn(B(H)) (see Lemma 2.8). However, the spectral decomposition of ρt will not be given by∑
i αiPi(t) and

Φ(ϕρt) = Φ(Ψ(µt)) 6= µt,

and nothing can be deduced on Wp(ϕρt , ϕρs).

Remark 5.12. In the proof of Proposition 5.9 it was not directly used the fact that tr(·)µt is a
W Pc
p -geodesic, rather that there exists γ ∈ P(Geo(Pc)) such that

tr(·)µt = (et)♯γ, µt ∈ D⊥
1 (Pc).

This implies indeed that γ has to be a discrete measure as well and t 7→ tr(·)µt is aW Pc
p -continuous,

this two facts being enough to close the argument.

Proposition 5.9 admits a partial converse.

Proposition 5.13. Let ϕ,ψ ∈ Sn(B(H)) be given states with Wp(ϕ,ψ) < ∞. If there exists a
bijective map T : supp(µϕ) → supp(µψ) such that (Id×T )♯µϕ ∈ Πd(µϕ, µψ) then ϕ and ψ are in
the same unitary orbit. There is a unitary u with ρψ = uρϕu

∗.

Proof. Let ρϕ =
∑
i λiPVi be the spectral decomposition with distinguished positive eigenvalues

λi. The condition (Id×T )♯µϕ ∈ Πd(µϕ, µψ) implies that the spectral decomposition of ρψ is:
ρψ =

∑
i λiT (PVi) with PVi = R(PVi)

∼= R(T (PVi)) = T (PVi) (because we have a d-transport plan).
Identifying projections with subspaces we think T defined on the collection of the eigenspaces of
ρϕ. Every eigenspace is finite dimensional and this implies V ⊥

i
∼= T (Vi)

⊥. Since these are mutually
orthogonal we have R(ρϕ) ∼= R(ρψ) and Ker(ρϕ) ∼= Ker(ρψ). By [18, Proposition 7] we find an
invertible u ∈ B(H) such that ρψ = uρϕu

∗. In our case this u is unitary. Concretely let {ei, e′j} an
orthonormal system adapted to H = R(ρϕ)⊕N(ρϕ) and {fi, f ′

j} a corresponding one for ρψ; then

u =
∑

i

|fi〉〈ei|+
∑

j

|f ′
j〉〈e′j |.

We can do better finding a u such that uPViu
∗ = T (PVi) for every i. It suffices to choose the basis

{ei} adapted to the spectral decomposition ρϕ =
∑

i λiPVi .
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6 Tensor product interpretation: a generalization

As specified in Section 2.2.2, the tensor product Hilbert space H ⊗ H corresponds, in quantum
mechanics, to a composite system and a natural way to match two normal states ϕ,ψ of B(H)
would be via a normal state Ξ ∈ Sn(B(H⊗H)) satisfying the partial trace conditions J1

♭ Ξ = ϕ and
J2
♭ Ξ = ψ.
To fix notations we will use

J(ϕ,ψ) :=
{
Ξ ∈ Sn(B(H⊗ H)) : J1

♭ Ξ = ϕ, J2
♭ Ξ = ψ

}
. (6.1)

In this section we will reconcile this approach with the one we presented in Sections 3 and 4
based on transport plans between spectral-projections measures.

We begin with some preliminaries. We will follow [34], and the appendix B.1 for basics on
antilinear operators. Let AHS(H) be the space of the antilinear Hilbert–Schmidt operators acting
on H. Firstly an antilinear operator is an additive operator T : H → H such that T (λx) = λx. To
define the Hilbert–Schmidt ones we begin with the antilinear rank-one operators. They are in the
form x 7→ Tξ,η(x) := 〈x, ξ〉η for fixed vectors ξ, η ∈ H. On such operators we define the Hilbertian
product (conjugate-linear in the first entry) 〈A,B〉 := tr(A∗B) and we complete the linear span of
all the operators in the form Tξ,η with respect to this Hilbert structure. If we compute

〈Tξ,η, Tx,y〉 = tr(Tη,ξTx,y) = tr
(
ζ 7→ 〈x, ζ〉〈y, η〉ξ

)
= 〈ξ, x〉〈y, η〉.

On the right we have the inner product defined on H ⊗ H i.e. 〈ξ ⊗ η, x ⊗ y〉 = 〈ξ, x〉〈η, y〉 indeed
we have a C-linear isomorphism

Θ : H⊗ H −→ AHS(H) (6.2)

uniquely determined by linearity and continuity on simple tensors by Θξ⊗η := Tξ,η ∈ AHS(H).
Some basic identities are immediate to prove

Θ∗
ξ⊗η = Θη⊗ξ, |Θζ |2 = Tr2 |ζ〉〈ζ| and |Θ∗

ζ |2 = Tr1 |ζ〉〈ζ|, (6.3)

for ζ ∈ H ⊗ H. Let now W : H → H be a linear (antilinear) partial isometry with initial space

R(W ∗W ) and final space R(WW ∗), then W | : R(W ∗W ) → R(WW ∗) is a unitary (antiunitary)
isomorphism. Let Pc(R(W

∗W )) ⊂ Pc and Pc(R(W
∗W ) ⊂ Pc be the corresponding grassmannians

(recall Pc = Pc(H)). This means that we are identifying

Pc(R(W
∗W )) ∼=

{
P ∈ Pc : P ≤W ∗W

}

by taking ortogonal complements. The corresponding identification is understood for WW ∗. The
adjoint action induces a diffeomorphism

W̃ : Pc(W
∗W ) −→ Pc(WW ∗), W̃ (P ) := AdW | P = (W |)P (W |)∗

for P ∈ Pc : P ≤ R(W ∗W ). We define

G(H) :=
{

(V, φ,W ) : V,W ⊂ H closed subspaces, φ : Pc(V ) → Pc(W ) smooth map
preserving the connected components

}

6.1 Pure States as transport maps

Let us consider a pure state ωζ ∈ PSn(B(H⊗H)) ⊂ Sn(B(H⊗H)) represented by a vector ζ ∈ H⊗H

with ‖ζ‖ = 1 and reduced density matrices

ρ1 = Tr2 |ζ〉〈ζ|, and ρ2 = Tr1 |ζ〉〈ζ|.

We will associate to ωζ a unique family of transport plans from the spectral-projection measures
of ϕρ1 to the one of ϕρ2 .

We write the polar decomposition (see the appendix B.2) of the antilinear operator Θζ asso-
ciated via (6.2) to ζ. Thus Θζ = Uζ |Θζ | = |Θ∗

ζ |Uζ and |Θ∗
ζ | = Uζ |Θζ |U∗

ζ . By (6.3) we see that

|Θζ | = ρ
1/2
1 and |Θ∗

ζ | = ρ
1/2
2 . It follows

Θζ = Uζ ρ
1/2
1 , Θζ = ρ

1/2
2 Uζ and ρ2 = Uζ ρ1 U

∗
ζ . (6.4)

The antilinear partial isometry Uζ : H −→ H is called correlation operator and restricts to an

antiunitary isomorphism R(ρ1)
∼= // R(ρ2) . The correlation operator is uniquely specified if we

add one of the following equivalent conditions

N(Uζ) = N(ρ1) and U∗
ζUζH = N(ρ1)

⊥
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that we will always consider being satisfied.

We have associated to ζ ∈ H ⊗ H its marginals and an antilinear partial isometry intertwining
them. In the following we won’t use the map Υ in the next proposition, rather some kind of its
measure theory version.

Proposition 6.1. The following map is well defined

Υ : PSn(H⊗ H) −→ G(H), ωζ 7−→
(
R(U∗

ζUζ), Ũζ , R(UζU
∗
ζ )
)
.

It has the property Υ(ωζ) = Υ(ωη) =⇒ Uζ = Uη up to a phase i.e. Uζ = λUη for some λ ∈ U(1).

Proof. If ζ is changed into λζ for a phase λ ∈ U(1) then Uλζ = λUζ and Ũλζ = Ũζ . The map is
well defined at the states level. Assume now that Υ(ωζ) = Υ(ωη); then Uζ and Uη have the same
initial and final space. Let x ∈ R(U∗

ζUζ) be a unit vector. Evaluating on the rank-one projections

Ũζ
(
|x〉〈x|

)
= |Uζx〉〈Uζx| = Ũη

(
|x〉〈x|

)
= |Uηx〉〈Uηx|.

Evaluate again on the vector Uζx to obtain Uζx = 〈Uη|Uζx〉Uηx. By computing the norm we find
|〈Uηx|Uζx〉| = 1. Cauchy–Schwartz implies Uζx = f(x)Uηx for every unit vector x (in the initial
support of the involved isometries) where f is a map from the unit sphere of the initial support to
U(1). But f has to be constant by the antilinearity of our isometries.

Given two sets A,B we denote Bij(A,B) the set of Bijections from A to B and similarly to
before we define a set of triples

M(H) :=
{
(ϕ1, F, ϕ2) : ϕ1, ϕ2 ∈ Sn(B(H)), F ∈ Bij(Λ⊥

ϕ1
,Λ⊥

ϕ2
)
}
. (6.5)

then we have a map
Φ⊗ : PSn(B(H⊗ H)) −→ M(H)

ωζ 7−→
(
ϕ1, (Ũζ)♯, ϕ2

)

marginalsϕ1, ϕ2

ϕ1 = ϕρ1 , ϕ2 = ϕρ2
ρ1 = Tr2 |ζ〉〈ζ|, ρ2 = Tr1 |ζ〉〈ζ|
Θζ = Uζρ

1/2
1

Recall that J1
♭ is the map on Sn(B(H⊗ H)) that takes the first marginal. In the following we are

going to omit the identification C(H) ∼= Sn(B(H)). In particular the integration map Ψ will be
considered as a map Ψ : D⊥

1 (Pc) −→ Sn(B(H)).
Definition 6.2. Let F : PSn(B(H ⊗ H)) −→ D⊥

1 (Pc) be a map. We say that F is compatible
with the first marginal if Ψ(F (ω)) = ρ(J1

♭ (ω)) for any ω ∈ PSn(B(H ⊗ H)). This means that the
following diagram commutes

PSn(B(H⊗ H))
F //

J1
♭

��

D⊥
1 (Pc)

Ψ
ww♣♣
♣♣
♣♣
♣♣
♣♣
♣

Sn(B(H))

Of course as a particular example we can take the map F obtained by the composition

PSn(B(H⊗ H))
J1
♭ // Sn(B(H)) Φ // D⊥

1 (Pc). (6.6)

Theorem 6.3. The map Φ⊗ is well defined and injective. Fix any ϕ ∈ Sn(B(H)) and a measure
µ ∈ Λ⊥

ϕ representing ϕ; then the µ-“component” of Φ⊗ provides a map

Φµ⊗ :
{
ω ∈ PSn(B(H⊗ H)) : J1

♭ ω = ϕ
}
−→ D(Pc × Pc), Φµ⊗(ωζ) = (Id×Ũζ)♯(tr(·)µ).

This map is valued in the set of admissible transport plans

Φµ⊗(ωζ) ∈ Πd
(
tr(·)µ, (Ũζ)♯(tr(·)µ)

)
.

In a similar way a map F which is compatible with the first marginal can be combined with Φ⊗ to
the map

ΦF⊗ : PSn(B(H⊗ H)) −→ D⊥
1 (Pc × Pc), ΦF⊗(ω) := (Id×Ũζ)♯(F (ω)).
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We have a compatibility property expressed by the commutative diagram

PSn(B(H⊗ H))

F

((P
PP

PP
PP

PP
PP

P

J1
♭

��

ΦF⊗
// D⊥

1 (Pc × Pc)

π1
♯

��

Sn(B(H)) D⊥
1 (Pc).

Ψ
oo

When F = F as before (eq. (6.6)) this becomes a compatibility with Φ as the diagram

PSn(B(H⊗ H))

J1
♭

��

ΦF⊗
// D⊥

1 (Pc × Pc)

π1
♯

��

Sn(B(H)) Φ // D⊥
1 (Pc)

commutes.

Proof. Among all the spectral measures associated to ϕ1 there are those with all the projections of
rank-one. Then starting from the assumption Φ⊗(ωζ) = Φ⊗(ωη) and testing the equality Ũζ = Ũη
for an arbitrary choice of one of these rank-one presentations of spectral measures we get the
existence of a ortonormal set of vectors (ei)i spanning the initial domain of Uζ and Uη where
|Uζei〉〈Uζei| = |Uηei〉〈Uηei| for every i. As in the proof of Proposition 6.1 Uζ = λUη for a phase λ.
The marginals now coincide and this means Θζ = λΘη which implies that the corresponding states
are equal. The rest of the proof is straightforward. In particular notice we get admissible transport
plans because at any instance the discrete measures are in the form

∑
i λiPVi for an orthogonal

family of finite rank projections and the transport maps are induced by antilinear partial isometries
Uζ with PVi ≤ U∗

ζUζ . This means that for every i the points PVi and Ũζ(PVi) belong to the same
connected component.

Remark 6.4. Of course the role of the marginals is symmetric. The flip automorphism H⊗H −→
H⊗ H that on simple tensors is defined by x⊗ y = y ⊗ x induces an homeomorphism of the space

of the states that switches the marginals. One checks immediately Φ⊗(ωζ) =
(
ϕ2, (Ũζ

−1
)♯, ϕ1

)
.

Remark 6.5 (Wasserstein Cost of pure states). After Theorem 6.3, we can define a Wasserstein
cost, depending on p, for any pure normal state of B(H⊗ H). In particular given ϕ1, ϕ2 ∈ Sn(B(H))
and ωζ ∈ PSn(B(H⊗ H)), for each µ ∈ Λ⊥

ϕ1
we have the transport plan Φµ⊗(ωζ) (induced by the

map Ũζ) between admissible representations of ϕ1 and ϕ2 whose p-cost will be
ˆ

Pc×Pc

d
p(P,Q) Φµ⊗(ωζ)(dPdQ) =

ˆ

Pc

d
p(P, Ũζ(P ))tr(P )µ(dP ).

Hence, the cost of ωζ will be given by taking the lowest possible cost among all Φµ⊗(ωζ):

Cp(ωζ)p := inf
µ∈Λ⊥

ϕ1

ˆ

Pc

d
p(P, Ũζ(P ))tr(P )µ(dP ). (6.7)

Following Proposition 4.9, it is equivalent to restrict the minimisation only among those µ concen-
trated inside P1. Moreover the inf is actually attained giving that there exists µ ∈ P1, a priori not
unique and depending on p ≥ 1, such that

Cp(ωζ)p =

ˆ

Pc

d
p(P, Ũζ(P ))µ(dP ).

Notice however that by construction, it is immediate to see that

Cp(J1
♭ ωζ , J

2
♭ ωζ) ≤ Cp(ωζ).

A Homogeneous spaces and principal bundles

Homogeneous spaces and principal bundles

Let G be a group acting (say on the right) on a space M . We usually denote this action with x · g.
Sometimes also the symbol Rg(x) = x · g will be used. The action is free whenever x · g = x for
some x ∈ M implies g = e. Assume that G acts on two spaces M and N . A map ϕ : M −→ N is
equivariant if

ϕ(x · g) = ϕ(x) · g, ∀x ∈M, and g ∈ G.
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Definition A.1. Let G be a Lie group. A homogeneous space is a manifold M with a transitive
left action of G.

Given a closed subgroup B ⊂ G we can prove that the space of the left cosets G/B is a
manifold. The left action of G on itself commutes with the right B-action so that it descends to a
left transitive action on G/B. Thus G/B is a basic example of a homogeneous space. On the other
hand, letM be a homogeneous space and fix a point p ∈M . The stabiliser Ip :=

{
g ∈ G : g ·p = p

}

is a closed subgroup. It is easy to prove that M is equivariantly diffeomorphic to G/Ip. Therefore
every homogeneous space is in the form G/B with B ⊂ G closed.

Definition A.2. (cfr [38]). Let M be a manifold and G a Lie group. A principal bundle over M
with structure group G consists in a manifold E with a right action of G such that:

1. The action is free and M is the quotient space E/G with smooth canonical projection π :
E −→M .

2. The following local triviality of E is satisfied: any point x ∈ M has a neighborhood U such
that π−1(U) is isomorphic to U × G. In the present context isomorphic means that we can
find a diffeomorphism ψ : π−1(U) → U × G in the form ψ(u) = (π(u), ϕ(u)) for a smooth
map ϕ : π−1(U) → G satisfying ϕ(u · g) = ϕ(u)g for every g ∈ G.

To synthetize this definition we say that E −→M is a principal bundle.

Example 3. Every homogeneous space G/B is the base of a principal bundle. Indeed we can
prove that G −→ G/B is a principal bundle with structure group B. In particular the local
triviality follows from the existence of local smooth sections of the projection. If we consider the
left translation action of G on itself we also see that the projection is equivariant.

Let E
π // M be a G-principal bundle. At every point p ∈ E, the vertical space Vp := N(dπ :

TpE → TπM) ⊂ TpE is the tangent space of the fiber. Using the G-action it can be canonically
identified with the Lie algebra g of G in the following way: every X ∈ g defines the fundamental

vector field X̃ ∈ Γ(TE) (sections of the tangent bundle) with X̃p :=
d

dt

∣∣∣∣
t=0

p·(exp tX). Fundamental

vector fields are of course vertical and at every point the map g −→ Vp given by X 7−→ X̃p is an
isomorphism. However in general there is no preferred choice of horizontal subspaces of TE. This
is extra structure amounts to a connection.

Definition A.3. A connection on the principal bundle E → M is a smooth distribution p 7→
Hp ⊂ TpE of vector subspaces called horizontal with the properties:

1. For every p ∈ E we have TpE = Vp ⊕ Hp.

2. Invariance: for every g ∈ G and p ∈ E then dRgHp = Hgp.

A connection on E provides us with a notion of horizontal curves and horizontal liftings of
curves. Moreover given any representation G −→ End(V ) on a vector space, a classical construction
going under the name of associated bundle construction produces a vector bundle W →M having
V as typical fiber and the connection on E induces a covariant derivative (in the usual meaning)
on W . In particular this gives a covariant derivative in the tangent bundle TM of the base.

B Some basic facts in operator theory

B.1 Antilinearity

Recall that our Hilbert spaces have inner products complex linear in the first entry. We follow
[13] (there the inner product is linear in the first entry). An antilinear operator T : H −→ K is an
additive operator such that Tλξ = λTξ.

Let J : H −→ H be antilinear and isometric: ‖Jξ‖ = ‖ξ‖ for every ξ. By polarization it follows
〈Jξ, Jη〉 = 〈η, ξ〉 for every couple of vectors. If such J is invertible it is called antiunitary.

An antilinear and isometric J : H −→ H is called an involution if J2 = IdH. It follows that J is
an antiunitary. Involutions always exist for every Hilbert space and are very useful: if T : H −→ K

is antilinear then JT is linear and we can safely talk about bounded antilinear operators by looking
at JT (for just one J ; it does not depends on the choice).

Let T : H −→ K be antilinear bounded, then the adjoint of T is the unique antilinear bounded
operator T ∗ : K −→ H such that

〈T ∗ξ, η〉 = 〈Tη, ξ〉, ξ ∈ K, η ∈ H.

It satisfies: (λT )∗ = λT ∗ as opposite to the behaviour of the adjoint for linear operators. Using
an involution on H we can compute T ∗ := J(TJ)∗ in terms of the adjoint of a linear operator.
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B.2 Polar decompositions

A bounded operator T : H −→ K is a partial isometry if T ∗T is a projection P . Therefore PH =
N(T )⊥ and also Q := TT ∗ is the projection onto R(T ), the range of T . These are called respectively
initial and final support of T . It also follows that T restricts to an isometry N(T )⊥ −→ R(T ).

Theorem B.1. (Left polar decomposition) Any T ∈ B(H,K) (two Hilbert spaces) has the decom-
position T = UP for a non negative operator P : H → H and a partial isometry U : H → K. This
decomposition is unique if we require that N(U) = N(P ). Equivalently if we require that the initial
support (U∗U)H of U is N(P )⊥. In this case we have the properties: P = |T | :=

√
T ∗T and the

decomposition reads
T = U |T |,

with
U∗U = ProjN(T )⊥ and UU∗ = ProjR(T ).

Proof. Let P := |T | =
√
T ∗T then N(P ) = N(T ) and N(T )⊥ = R(T ∗) = R(|T |). It follows that

on R(|T |) is well defined an isometric map U such that U(|T |x) = Tx. On the orthogonal, which
is N(T ) we declare it zero. Then U is defined everywhere (and remains isometric on the closure of
R(|T |). Notice R(U) = R(T ).
Assume we have decomposition T = UP with N(U) = N(P ). Then T ∗ = PU∗ and T ∗T = PU∗UP
but U∗U = ProjR(P ) i.e. T ∗T = P 2 which means P = |T |. We already know that U is uniquely
determined on the range P = |T | and we are done.

The left polar decomposition of T ∗ gives rise to the right polar decomposition

T = |T ∗|U

of T . Begin with T = U |T |. Then T ∗ = |T |U∗ and TT ∗ = U |T |2U∗ which we can iterate getting
for every power: (TT ∗)n = U |T |nU∗. It follows by the unicity of the functional calculus that
|T ∗| = U |T |U∗ i.e. |T ∗|U = U |T | (because |T |U∗U = |T |).

Let us now consider an antilinear bounded operator T : H −→ K. Using an involution as before
we can construct polar decompositions

T = V |T | = |T ∗|V,

for |T | =
√
T ∗T a linear operator while V is an antilinear partial isometry with V ∗∗V = Proj(N(T ))⊥

and V V ∗ = ProjR(T ). In particular V reverts the order inside the inner product: on (N(T ))⊥ we
have 〈V ξ, V η〉 = 〈η, ξ〉. We also have

|T ∗| = V |T |V ∗.
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