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ABSTRACT. This note concerns Loomis-Whitney inequalities in Heisenberg groups Hn:

|K| .
2n
ź

j“1

|πjpKq|
n`1

np2n`1q , K Ă Hn.

Here πj , j “ 1, . . . , 2n, are the vertical Heisenberg projections to the hyperplanes txj “ 0u,
respectively, and | ¨ | refers to a natural Haar measure on either Hn, or one of the hyper-
planes. The Loomis-Whitney inequality in the first Heisenberg group H1 is a direct conse-
quence of known Lp improving properties of the standard Radon transform in R2. In this
note, we show how the Loomis-Whitney inequalities in higher dimensional Heisenberg
groups can be deduced by an elementary inductive argument from the inequality in H1.
The same approach, combined with multilinear interpolation, also yields the following
strong type bound: ˆ

Hn

2n
ź

j“1

fjpπjppqq dp .
2n
ź

j“1

}fj}np2n`1q
n`1

for all nonnegative measurable functions f1, . . . , f2n on R2n. These inequalities and their
geometric corollaries are thus ultimately based on planar geometry. Among the applica-
tions of Loomis-Whitney inequalities in Hn, we mention the following sharper version of
the classical geometric Sobolev inequality in Hn:

}u} 2n`2
2n`1

.
2n
ź

j“1

}Xju}
1
2n , u P BV pHn

q,

where Xj , j “ 1, . . . , 2n, are the standard horizontal vector fields in Hn. Finally, we also
establish an extension of the Loomis-Whitney inequality in Hn, where the Heisenberg ver-
tical coordinate projections π1, . . . , π2n are replaced by more general families of mappings
that allow us to apply the same inductive approach based on the L3{2-L3 boundedness of
an operator in the plane.

1. INTRODUCTION

The Loomis-Whitney inequality in Rd bounds the volume of a set K Ă Rd by the areas
of its coordinate projections:

|K| ď
d
ź

j“1

|π̃jpKq|
1

d´1 , (1.1)
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where π̃jpx1, . . . , xdq “ px1, . . . , xj´1, xj`1, . . . , xdq. Here |A| refers to k-dimensional
Lebesgue outer measure in Rk whenever A Ă Rk. The inequality (1.1) is due to Loomis
and Whitney [36] from 1949. It is trivial for d “ 2 and follows by induction, using
Hölder’s inequalities, for d ą 2. The Loomis–Whitney inequality is one of the fundamen-
tal inequalities in geometry and has been studied intensively; we refer to [6, 8, 12, 24, 32]
and references therein for a historical account and some applications of the Loomis-
Whitney inequality.

The present note discusses analogues of (1.1) in Heisenberg groups Hn. It arose as a
complement to manuscript [22] with Tuomas Orponen, in which we reduced the proof
of the Loomis-Whitney inequality for H1 to an incidence geometric problem in the plane
that we resolved using the method of polynomial partitioning. Later we learned that the
Loomis-Whitney inequality in the first Heisenberg group – and inequalities of similar
type – had already been obtained earlier [37, 18, 31, 17] by a Fourier-analytic approach
or the so-called method of refinements, albeit not phrased in terms of Heisenberg pro-
jections. In addition to acknowledging previous work, the aim of the present note is to
show how the Loomis-Whitney inequality in Hn for n ą 1 can be proven by induction,
similarly as the original inequality [36], but now using the version in H1 as a base case.
Alternatively, one could apply the method of refinements also for n ą 1, see the related
comment in [41, Section 4]. The inductive approach in the present note has the advan-
tage of easily yielding certain strong-type endpoint inequalities, see Theorem 1.8, which
are not covered by [41] or other literature we are aware of. For applications to geometric
Sobolev and isoperimetric inequalities in Hn, the weak-type inequalities would however
be sufficient.

Acknowledgements. This paper would not have been written without our previous
project with Tuomas Orponen on the subject of the Loomis-Whitney inequality in H1.
Parts of the introduction and Section 4 draw heavily from [22]. We thank Tuomas for
the past collaboration as well as for valuable suggestions that helped to improve the
exposition of the present paper.

1.1. Heisenberg groups. The n-th Heisenberg group Hn is the group pR2n`1, ¨qwith

px, tq ¨ px1, t1q :“
´

x` x1, t` t1 ` 1
2

n
ÿ

j“1

xjx
1
n`j ´ xn`jx

1
j

¯

, (1.2)

which makes it a nilpotent Lie group of step 2. Here, px, tq denotes a point in R2n`1 with
x “ px1, . . . , x2nq P R2n and t P R. For x P R2n and k P t1, . . . , 2nu, we will use the symbol
x̂k to denote either the point in R2n that is obtained by replacing the k-th coordinate of x
with 0, or the point in R2n´1 that is obtained by simply deleting the k-th coordinate of x.
The meaning should always be clear from the context.

In geometric measure theory of the sub-Riemannian Heisenberg group [40], an impor-
tant role is played by Heisenberg projections that are adapted to the group and dilation
structure of Hn and that map onto homogeneous subgroups of Hn. We only consider
projections associated to the "coordinate" hyperplanes containing the t-axis, so we limit
our discussion to those. Let Wj Ă Hn, j “ 1, . . . , 2n, be the (1-codimensional) vertical
subgroups of Hn given by the hyperplanes tpx, tq P R2n`1 : xj “ 0u, respectively. Write

Lj :“ tp0, . . . , 0, xj , 0, . . . , 0q : xj P Ru
for the span of the j-th standard basis vector. So Lj is a complementary (1-dimensional)
horizontal subgroup of Wj . This means, for example, that every point p P Hn has a unique
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decomposition p “ wj ¨ lj , where wj PWj and lj P Lj . These decompositions give rise to
the vertical coordinate projections

p ÞÑ wj “: πjppq PWj , j “ 1, . . . , 2n.

Using the group product in (1.2), it is easy to write down explicit expressions for πj :

πjpx, tq “ px̂j , t`
xjxn`j

2 q and πn`jpx, tq “ px̂n`j , t´
xjxn`j

2 q, j “ 1, . . . , n. (1.3)

Readers who are not comfortable with the Heisenberg group can simply identify Wj with
R2n, and consider the maps

px, tq ÞÑ px1, . . . , xj´1, xj`1, . . . , x2n, t`
xjxn`j

2 q, for j “ 1, . . . , n,

and their analogs for j “ n`1, . . . , 2n, without paying attention to their origin. It is clear
that the projections π1, . . . , π2n are smooth, and hence locally Lipschitz with respect to
the Euclidean metric in R2n`1, and they satisfy

det
`

DπjppqDπjppq
t
˘

ě 1, j “ 1, . . . , 2n, p P R2n`1. (1.4)

Vertical projections are, in fact, not Lipschitz with respect to the Korányi distance dpp, qq “
}q´1 ¨ p} on Hn. Nonetheless they play a significant role in the geometric measure theory
of Heisenberg groups – as do orthogonal projections in Rd – so they have been actively
investigated in recent years, see [2, 3, 15, 21, 33, 34]. The vertical projections are non-
linear maps, but their fibres π´1

j twu are nevertheless lines. In fact, the fibres of πj are
precisely the left translates of the line Lj , that is, π´1

j twu “ w ¨ Lj for w PWj .
For subsets of Hn – R2n`1, the notation | ¨ | will refer to Lebesgue (outer) measure

on R2n`1, and for subsets of a vertical plane R2n – Wj Ă Hn, the notation | ¨ | will
refer to Lebesgue (outer) measure in R2n. Up to multiplicative constants, they could also
be defined as the p2n ` 2q- and p2n ` 1q-dimensional Hausdorff measures, respectively,
relative to the Korányi metric on Hn. So, our measures coincide with canonical "intrinsic"
objects in Hn. All integrations on Hn or Wj will be performed with respect to Lebesgue
measures.

1.2. Loomis-Whitney inequalities in Hn and their generalizations. We can now state a
variant of the Loomis-Whitney inequality (1.1) for subsets of Hn in terms of the vertical
coordinate projections πj . In Rd, the inequality makes a reference to the d orthogonal
coordinate projections rπ1, . . . , rπd. These are, now, best viewed as the projections whose
fibres are translates of lines parallel to the coordinate axes. In Hn, we consider instead
the vertical projections πj whose fibres are left translates of Lj , j “ 1, . . . , 2n; the precise
formulae were stated in (1.3). With this notation, the following variant of the Loomis-
Whitney inequality holds:

Theorem 1.5 (Loomis-Whitney inequality in Hn). Fix n P N. Let K Ă R2n`1 (or K Ă Hn)
be an arbitrary set. Then

|K| .
2n
ź

j“1

|πjpKq|
n`1

np2n`1q . (1.6)

Here and in the following, the symbol . indicates that the inequality holds up to a
positive and finite multiplicative constant on the right-hand side. We only have to prove
the inequality for Lebesgue measurable sets K Ă R2n`1. In the general case, we simply
pick Gδ-sets Kj Ă R2n with Kj Ě πjpKq and |Kj | “ |πjpKq| for j “ 1, . . . , 2n, assum-
ing that the right-hand side of (1.6) is finite. Then K 1 :“

Ş2n
j“1 π

´1
j pKjq is a Lebesgue
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measurable subset of R2n`1 that contains K and it suffices to apply the Loomis-Whitney
inequality to K 1.

So we consider only Lebesgue measurable sets K in the following. By the inner regu-
larity of the Lebesgue measure, Theorem 1.5 is then equivalent to the validity of (1.6) for
all compact sets K Ă R2n`1. Since every such set satisfies χKppq ď

ś2n
j“1 χπjpKqpπjppqq,

for all p P R2n`1, and on the other hand,
Ş2n
j“1 π

´1
j pKjq is compact in R2n`1 whenever

K1, . . . ,K2n are compact subsets of R2n, Theorem 1.5 is equivalent to the statement that
ˆ
R2n`1

2n
ź

j“1

χKj pπjppqq dp .
2n
ź

j“1

|Kj |
n`1

np2n`1q (1.7)

holds for all compact sets K1, . . . ,K2n Ă R2n. Here we have identified, for j “ 1, . . . , 2n,
the txj “ 0u-plane in R2n`1 with R2n, so that π1, . . . , π2n are now mappings from R2n`1

to R2n. Using this expression, it is evident that Theorem 1.5 follows from the next result:

Theorem 1.8. Fix n P N. Then
ˆ
R2n`1

2n
ź

j“1

fjpπjppqq dp .
2n
ź

j“1

}fj}np2n`1q
n`1

, (1.9)

for all nonnegative Lebesgue measurable functions f1, . . . , f2n on R2n.

The coarea formula coupled with (1.4) shows that the preimages of Lebesgue null sets
in R2n under πj are Lebesgue null sets in R2n`1, and so fj ˝ πj : R2n`1 Ñ r0,`8s is
Lebesgue measurable under the assumptions of the theorem, and the integral on the
left-hand side of (1.9) makes sense.

The bilinear case (n “ 1) of Theorem 1.8 follows directly from the L3{2 ´ L3 bound-
edness of the standard Radon transform in R2, and as such was known – by a Fourier-
analytic proof – at least since the work of Oberlin and Stein [37]; see Section 2. Theorem
1.8 for n “ 1 is also an instance of [17, Theorem 1.1] (with b “ p2, 2q in [17, (1.6)] and
pp1, p2q “ p3{2, 3{2q in [17, (1.8)]). The corresponding weak-type bound (Theorem 1.5 for
n “ 1) was also obtained by Gressman as a special case of the endpoint restricted weak-
type estimates in [31, Theorem 2]. Due to the nilpotent group structure of the Heisenberg
group and the invariance of the problem under Heisenberg dilations, it is a particularly
simple instance of Gressman’s more general theorem. The proofs in [31, 17] used an
adaptation of the method of refinements, which was initiated by Christ [16] in order to
prove Lp ´ Lq bounds for certain convolution-type operators.

To the best of our knowledge, Theorem 1.8 for n ą 1 has not appeared in the literature
before. Stovall proved in [41] similar inequalities for multilinear Radon-like transforms,
but (1.9) for n ą 1 constitutes a strong-type endpoint case that is not covered by her
work. In her notation, our setting corresponds to bppq “ ppn`1q{n, . . . , pn`1q{nq, which
is a point on the boundary of the polytope P mentioned in [41, Theorem 3].

Our approach to Theorem 1.8 can be applied to prove something a bit more general,
see Theorem 5.16 for the precise statement. The idea is to apply the same inductive pro-
cedure and reduce the claim to an L3{2-L3 boundedness statement for a certain operator
in the plane. In the case of Theorem 1.8, this operator happens to be the standard Radon
transform, but other choices are possible as well, for instance convolution by a fixed
parabola in R2, cf. the use of (5.7) in connection with Example 5.4.
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It is easy to see that the exponents in the Heisenberg Loomis-Whitney inequality (1.6)
are sharp by considering boxes of the form r´r, rs2n ˆ r´r2, r2s. Besides the difference
in the definition of the projections π̃j and πj , there is another obvious difference between
(the case d “ 2n ` 1 of) the standard Loomis-Whitney inequality (1.1), and (1.6): the
former bounds the volume of K in terms of 2n` 1 projections, and the latter in terms of
only 2n projections. One might therefore ask: is there a version of (1.1) for 2n orthogonal
projections R2n`1 Ñ R2n – and does it look like (1.6)? The answer is negative. This is a
very special case of [5, Theorem 1.13] (cf. also [19, 42, 41]), but perhaps it is illustrative to
see an explicit computation for n “ 1:

Example 1.10. Consider the two standard orthogonal coordinate projections π̃1, π̃2 in R3 to the
x2t- and x1t-planes. If K “ r0, 1s2 ˆ r0, δs, then |K| “ δ, and also |π̃1pKq| “ δ “ |π̃2pKq|. So,
for δ ą 0 small, an inequality of the form

|K| . |π̃1pKq|
λ ¨ |π̃2pKq|

λ (1.11)

can only hold for λ ď 1
2 . On the other hand, if KR “ r0, Rs

3, with R " 1, then |KR| “ R3 and
|π̃1pKRq| “ R2 “ |π̃2pKRq|, so (1.11) can only hold for λ ě 3

4 . The latter example naturally
does not contradict (1.6): note that |πjpKRq| „ R3 for R " 1.

1.3. Gagliardo-Nirenberg-Sobolev inequalities in Hn. In Rd, it is well-known that the
Loomis-Whitney inequality implies the Gagliardo-Nirenberg-Sobolev inequality

}f}d{pd´1q ď

d
ź

j“1

}Bjf}
1{d
1 , f P C1

c pRdq. (1.12)

Similarly, an Hn-analogue of (1.12) can be obtained as a corollary of Theorem 1.5:

Theorem 1.13. Let f P BV pHq. Then,

}f} 2n`2
2n`1

.
2n
ź

j“1

}Xjf}
1
2n . (1.14)

Here
Xj “ Bxj ´

xn`j

2 Bt and Xn`j “ Bxn`j `
xj
2 Bt, pj “ 1, . . . , nq, (1.15)

are the standard left-invariant "horizontal" vector fields in Hn, and BV pHnq refers to
functions f P L1pHnq whose distributional Xj derivatives are signed Radon measures
with finite total variation, denoted } ¨ }.

Theorem 1.13 presents a sharper version of the well-known "geometric" Sobolev in-
equality

}f} 2n`2
2n`1

. }∇Hf}, f P BV pHnq, (1.16)

proven by Pansu [39] for n “ 1 as a corollary of the isoperimetric inequality in H1. Here
∇Hf “ pX1f, . . . ,X2nfq. Versions of geometric Sobolev inequalities and isoperimetric
inequalities were obtained in Hn and even more general frameworks by several authors,
for instance in [14, 29]. A proof of (1.16) for n “ 1, using the fundamental solution of
the sub-Laplace operator 4H, is discussed in [13, Section 5.3], following the approach of
[14]. On the other hand, Theorem 1.13 can be derived from Theorem 1.5. This deduction
follows a standard argument, but we present it here to highlight the fact that the geomet-
ric Sobolev and isoperimetric inequalities in all Heisenberg groups are ultimately based
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on planar geometry and they can be deduced from boundedness properties of the Radon
transform in R2.

Theorem 1.8 is related to Brascamp-Lieb inequalities. We direct the reader to e.g. [4, 5, 10]
and the references therein. Euclidean Loomis-Whitney and Brascamp-Lieb inequalities
can be proven by the technique of heat flow monotonicity, see [5]. The same approach
has been attempted in Carnot groups by Bramati [9], but there seems to be a gap in
the argument, which has been confirmed with the author. More precisely, the exponents
appearing in the proof of [9, Theorem 3.2.3] have not been chosen consistently. It remains
an open problem to see whether the Loomis-Whitney inequalities in Carnot groups can
be obtained by the heat flow approach.

Structure of the paper. In Section 2, we explain how Theorems 1.5 and 1.8 for n “ 1
follow from known Lp improving properties of the Radon transform in R2. In Section 3,
we deduce Theorems 1.5 and 1.8 for arbitrary n ą 1 by induction from the corresponding
inequalities in H1. In Section 4, we show how to derive the Gagliardo-Nirenberg-Sobolev
inequality, Theorem 1.13, as an application of the Loomis-Whitney inequality in Hn. Fi-
nally, in Section 5 we explain how to adapt the approach from Section 3 to prove the
generalized Loomis-Whitney-type inequality stated in Theorem 5.16.

2. INEQUALITIES IN THE FIRST HEISENBERG GROUP

In this section, we review the proof for the Loomis-Whitney inequality in the first
Heisenberg group. For this purpose is more convenient to use slightly different nota-
tion. In particular, points in R3 will be denoted by px, y, tq (instead of px, tq “ px1, x2, tqq.
The group product of H1 then reads in coordinates as follows:

px, y, tq ¨ px1, y1, t1q :“ px` x1, y ` y1, t` t1 ` 1
2pxy

1 ´ yx1qq. (2.1)

The vertical Heisenberg projections to the yt- and the xt-plane, respectively, are explicitly
given by

π1px, y, tq “ p0, y, t`
xy
2 q and π2px, y, tq “ px, 0, t´

xy
2 q.

We recall the statement of Theorems 1.5 and 1.8 for n “ 1:

Theorem 2.2 (Loomis-Whitney inequality in H1). Let K Ă H1 be arbitrary. Then,

|K| . |π1pKq|
2{3 ¨ |π2pKq|

2{3. (2.3)

Theorem 2.4. For all nonnegative Lebesgue measurable functions f1 and f2 on R2 it holds thatˆ
R3

f1pπ1ppqqf2pπ2ppqq dp . }f1} 3
2
}f2} 3

2
. (2.5)

On the left-hand side of (2.3), the notation "| ¨ |" refers to Lebesgue outer measure
on R3. Similarly, on the right-hand side of (2.3), the notation "| ¨ |" refers to Lebesgue
outer measure on R2. Clearly, Theorem 2.4 implies Theorem 2.2. We now explain how
Theorem 2.4 itself follows directly from known Lp-improving properties of the standard
Radon transform in the plane R2.

Let S1 be the unit sphere in R2. For a smooth, compactly supported function f on R2,
the Radon transform (or X-ray transform) Rf is defined by

Rfpσ, sq :“

ˆ
xz,σy“s

fpzq dz, pσ, sq P S1 ˆ R. (2.6)
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Here dz is the 1-dimensional Lebesgue measure on the line tz P R2 : xz, σy “ su. Using
Fourier analysis (notably Plancherel’s theorem) and complex interpolation, Oberlin and
Stein [37] proved thatR extends to a bounded operator fromL3{2pR2q toL3pS1ˆRq. Their
result is more general, but this is the only information one needs to deduce Theorem 2.4.

The connection between inequality (2.5) and the Radon transform is illustrated by the
formula ˆ

R3

f1pπ1ppqqf2pπ2ppqq dp “

ˆ
R2

R pf1q pσpxq, sx,tqf2px, tq
dpx, tq
?

1` x2
(2.7)

with sx,t “ t{
?

1` x2 and σpxq :“ 1?
1`x2

p´x, 1q for smooth compactly supported func-
tions f1 and f2 on R2. The proof of inequality (2.5) using the result in [37] is an instance of
a more general phenomenon that relates Lp-improving properties of averaging operators
along curves to inequalities of the form (2.5) with two factors in the integral. The gen-
eral framework is explained in detail in [19, 9.5. Double fibration formulation] and [42,
Section 1]. For our purpose it is convenient to work with a linear operator T that yields
functions on R2, rather than S1 ˆ R as in the case of the Radon transform, so instead of
applying directly (2.7), we will pass via an identity of the formˆ

R3

f1pπ1ppqqf2pπ2ppqq dp “

ˆ
R2

Tf1px, tqf2px, tq dpx, tq;

see the proof of Theorem 2.4. For smooth, compactly supported functions f on R2, we
define

Tfpx, tq :“

ˆ
R
fpy, t` xyq dy, px, tq P R2. (2.8)

The next statement follows immediately from [37] by relating the operator T to the Radon
transform R, and we do not claim any novelty for it.

Theorem 2.9. There exists a constant C such that the operator T defined in (2.8) satisfies

}Tf}3 ď C}f} 3
2

for all smooth, compactly supported functions f .

Proof. We reduce Theorem 2.9 to a statement about the Radon transform that was proven
in [37]. We fix a smooth compactly supported function f and start by writing

}Tf}3 “

«ˆ
R2

ˇ

ˇ

ˇ

ˇ

ˆ
R
fpy, t` xyq dy

ˇ

ˇ

ˇ

ˇ

3

dpx, tq

ff
1
3

(2.10)

“

«ˆ
R2

ˇ

ˇ

ˇ

ˇ

ˆ
R
fpy, t` xyq

a

1` x2 dy

ˇ

ˇ

ˇ

ˇ

3 dpx, tq

p1` x2q3{2

ff
1
3

“

»

–

ˆ
R2

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ
`x,t

f dλ`x,t

ˇ

ˇ

ˇ

ˇ

ˇ

3
dpx, tq

p1` x2q3{2

fi

fl

1
3

. (2.11)

Here dλ`x,t denotes the 1-dimensional Lebesgue measure on the line

`x,t :“

"

z P R2 : xz, σpxqy “
t

?
1` x2

*

“ tpy, t`xyq : y P Ruwith σpxq :“
1

?
1` x2

ˆ

´x
1

˙

.



8 KATRIN FÄSSLER AND ANDREA PINAMONTI

Thus, recalling the definition of the Radon transform in (2.6), we obtain from (2.11) that

}Tf}3 “

„ˆ
R2

|Rfpσpxq, sx,tq|
3 dpx, tq

p1` x2q3{2


1
3

“

„ˆ
R

ˆˆ
R
|Rfpσpxq, sx,tq|

3 dt
?

1` x2

˙

dx

1` x2


1
3

with sx,t “ t{
?

1` x2. Changing variables in the inner integral, and observing that x ÞÑ
σpxq parameterizes an arc in S1, we then deduce that

}Tf}3 “

„ˆ
R

ˆˆ
R
|Rfpσpxq, sq|3 ds

˙

|σ1pxq| dx


1
3

ď

„ˆ
S1

ˆˆ
R
|Rfpσ, sq|3 ds

˙

dσ


1
3

“ }Rf}3,

where σ denotes the usual Lebesgue (arc-length) measure on S1. Now the theorem fol-
lows from the inequality }Rf}3 ď C}f} 3

2
for the Radon transform, which was established

as a special case of [37, Theorem 1]. �

Theorem 2.4 is an immediate corollary of Theorem 2.9.

Proof of Theorem 2.4. It suffices to prove the theorem for nonnegative smooth, compactly
supported functions on R2. Indeed, if f1 is an arbitrary nonnegative Lebesgue measur-
able function on R2, we take a sequence pf1,kqkPN of nonnegative C8c functions which
converges to f1 with respect to } ¨ }3{2 and pointwise almost everywhere. In the same
way, we approximate a given nonnegative Lebesgue measurable function f2 by a se-
quence pf2,kqkPN of nonnegative C8c functions. Then, assuming that the theorem holds
for nonnegative C8c functions, we apply it to the pair f1,k, f2,k for every k P N. The de-
sired inequality (2.5) for the functions f1, f2 follows by Fatou’s lemma, observing that for
j P t1, 2u, the sequence pfj,k˝πjqkPN converges pointwise almost everywhere to pfj˝πjqjPN
since the preimage of a Lebesgue null set in R2 is a Lebesgue null set in R3, according to
the remark below Theorem 1.8.

We now prove the theorem for nonnegative C8c functions on R2. Let f1 and f2 be such
functions and let us prove that they satisfy the inequality (2.5). To this end, we rewrite
the left-hand side using the volume-preserving diffeomorphism

Φ : R3 Ñ R3, Φpx, y, tq “ px, 0, tq ¨ p0, y, 0q “
`

x, y, t` 1
2xy

˘

.

With this definition,

π1pΦpx, y, tqq “ py, t` xyq and π2pΦpx, y, tqq “ px, tq

for all px, y, tq P R3. Hence the left-hand side of (2.7) can be expressed as follows:ˆ
R3

f1pπ1ppqqf2pπ2ppqq dp “

ˆ
R2

ˆ
R
f1pπ1pΦpx, y, tqqf2pπ2pΦpx, y, tqqq dy dpx, tq

“

ˆ
R2

ˆˆ
R
f1py, t` xyq dy

˙

f2px, tq dpx, tq

“

ˆ
R2

Tf1px, tqf2px, tq dpx, tq,

using the linear operator T defined in (2.8). Thus, it follows from Hölder’s inequality
with exponents p “ 3 and p1 “ 3{2, and the mapping property of T stated in Theorem
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2.9, that ˆ
R3

f1pπ1ppqqf2pπ2ppqq dp ď }Tf1}3}f2} 3
2
ď C}f1} 3

2
}f2} 3

2
,

as desired. �

3. INEQUALITIES IN HIGHER-DIMENSIONAL HEISENBERG GROUPS

In this section we prove Theorem 1.8 for arbitrary n ą 1 by induction, using Theorem
2.4 as a base case. To be precise, instead of directly aiming at inequality (1.9) in Theo-
rem 1.8, we will prove Theorem 3.1 first. Its statement reflects the algebraic structure of
the Heisenberg group. In brief, for a fixed k P t1, . . . , nu, the different Lebesgue expo-
nents on the right-hand side of (3.2) appear by applying once the commutator relation
rXk, Xn`ks “ Bt, where Xk and Xn`k are defined as in (1.15). This is done by employing
the strong-type bound for H1 given by Theorem 2.4. After this initial step, the remaining
steps of the induction use only standard properties of integrals and elementary estimates
by Hölder’s and Minkowski’s integral inequalities.

Theorem 3.1. Fix n P N. Then, for all nonnegative Lebesgue measurable functions f1, . . . , f2n

on R2n, we have
ˆ
R2n`1

2n
ź

j“1

fjpπjppqq dp . }fk} 2n`1
2
}fn`k} 2n`1

2

n
ź

j“1
j‰k

p}fj}2n`1 }fn`j}2n`1q , k P t1, . . . , nu,

(3.2)
with an implicit constant that may depend on n. For n “ 1, the right-hand side of (3.2) equals
}f1} 3

2
}f2} 3

2
.

The Lebesgue exponents in Theorem 3.1 correspond to vertex points on the bound-
ary of the Newton polytope in [41, Section 3] and as such are not covered by [41, The-
orem 3]. For instance, the exponents in (3.2) for k “ 1 ă n corresponds to bppq “
p2, 1, . . . , 1, 2, 1, . . . , 1q in the notation of [41, (2.5)].

For n “ 1, the statements of Theorem 3.1 and Theorem 1.8 are equivalent. For n ą 1,
Theorem 3.1, (3.2), consists of n separate inequalities. Knowing that they all hold for all
nonnegative measurable functions, one can deduce the inequality

ˆ
R2n`1

2n
ź

j“1

fjpπjppqq dp .
2n
ź

j“1

}fj}np2n`1q
n`1

(3.3)

postulated in Theorem 1.8 by multilinear interpolation, as we will explain below the next
remark.

Remark 3.4. If one is only interested in the Loomis-Whitney inequality in Hn (Theorem
1.5), and not in the strong-type bound stated in Theorem 1.8, then one can finish the proof
without using multilinear interpolation. In particular all the geometric consequences that
we list in Section 4 can be obtained by this simpler argument. Indeed, let K Ă R2n`1 be
a compact set. Then Theorem 3.1 implies that

|K| . |πkpKq|
2

2n`1 |πn`kpKq|
2

2n`1

n
ź

j“1
j‰k

´

|πjpKq|
1

2n`1 |πn`jpKq|
1

2n`1

¯

.



10 KATRIN FÄSSLER AND ANDREA PINAMONTI

for all k P t1, . . . , nu. Multiplying these n inequalities together, we obtain

|K|n .
2n
ź

j“1

|πjpKq|
n`1
2n`1 ,

from where the Loomis-Whitney inequality in Hn follows by taking the n-th root.

To prove Theorem 1.8, we will rephrase Theorem 3.1 by duality as bounds of the type

}T pf1, . . . , f2n´1q}qk .
2n´1
ź

j“1

}fj}pj,k , for k “ 1, . . . , n, (3.5)

for a certain multilinear operator T . Then multilinear interpolation will allow us to de-
duce the bound

}T pf1, . . . , f2n´1q}q .
2n´1
ź

j“1

}fj}pj (3.6)

with
1

q
“

1

n

n
ÿ

k“1

1

qk
, and

1

pj
“

1

n

n
ÿ

k“1

1

pj,k
, j “ 1, . . . , 2n´ 1. (3.7)

Finally, (3.6) will yield (3.3). Before turning to the details, we state the multilinear in-
terpolation theorem which will be applied repeatedly to infer (3.6) from (3.5). It can be
proven by the method of complex interpolation [11, 7] and we simply state here a version
that is useful for our purposes. The theorem is formulated for finitely simple functions on
a measure space. These are functions of the form

řN
i“1 ciχEi with the requirement that

Ei is a measurable set of finite mass. In our application, the relevant measure spaces will
all be equal to R2n with the Lebesgue measure.

Theorem 3.8 (Corollary 7.2.11 in [30]). Assume that T is an m-linear operator on the m-fold
product of spaces of finitely simple functions of σ-finite measure spaces pYj , µjq, and suppose
that T takes values in the set of measurable functions of a σ-finite measure space pZ, νq. Let
1 ď p1,j , p2,j , q1, q2 ď 8 for all 1 ď j ď m, 0 ă θ ă 1. Suppose that for all finitely simple fj on
Yj one has

}T pf1, . . . , fmq}q1 ďM1

m
ź

j“1

}fj}p1,j and }T pf1, . . . , fmq}q2 ďM2

m
ź

j“1

}fj}p2,j .

Then for all finitely simple functions fj on Yj it holds that

}T pf1, . . . , fmq}q ďM1´θ
1 M θ

2

m
ź

j“1

}fj}pj ,

where
1

q
“

1´ θ

q1
`
θ

q2
and

1

pj
“

1´ θ

p1,j
`

θ

p2,j
for j “ 1, . . . ,m.

Recalling Theorem 2.4, it suffices to prove Theorem 1.8 for n ą 1.
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Proof of Theorem 1.8 for n ą 1 using Theorem 3.1. Assume that the statement of Theorem
3.1 holds for a fixed natural number n ą 1. Our aim is to verify (3.3) for all nonneg-
ative measurable functions f1, . . . , f2n on R2n. The desired inequality can be spelled out
as follows:ˆ

R2n`1

n
ź

j“1

`

fjpx̂j , t`
1
2xjxn`jq fn`jpx̂n`j , t´

1
2xjxn`jq

˘

dpx, tq .
2n
ź

j“1

}fj}np2n`1q
n`1

. (3.9)

Here we have used the same notational convention as at the beginning of Section 1.1.
The coordinate expressions appearing in (3.9) help us to define a multilinear operator T
for which a bound of the type (3.6) will yield (3.9). The idea is, essentially, to express the
left-hand side of (3.9) as the pairing of T pf1, . . . , f2n´1q with f2n, similarly as we did in
the proof of Theorem 2.4. To bring the integral into this form, we first apply the Fubini-
Tonelli theorem and then the change of variables τ “ t ´ 1

2xnx2n in the t-coordinate so
that the left-hand side of (3.3) equals
ˆ
R2n`1

2n
ź

j“1

fjpπjppqq dp (3.10)

“

ˆ
R2n

»

—

—

–

ˆ
R
fnpx̂n, τ ` xnx2nq

2n´1
ź

j“1
j‰n

fjpπjpx, τ `
1
2xnx2nqq dx2n

fi

ffi

ffi

fl

f2npx̂2n, τq dpx̂2n, τq.

This identity motivates the following definition of the operator T . For all finitely simple
functions g1, . . . , g2n´1 on R2n, we define

T pg1, . . . , g2n´1qpx̂2n, τq :“

ˆ
R
gnpx̂n, τ ` xnx2nq

2n´1
ź

j“1
j‰n

gjpπjpx, , τ `
1
2xnx2nqq dx2n.

Using (3.10), and applying Hölder’s inequality with exponents np2n` 1q{pn` 1q and its
dual exponent

q :“
np2n` 1q

2n2 ´ 1
, (3.11)

we find for all nonnegative finitely simple functions f1, . . . , f2n´1 and all nonnegative
measurable functions f2n that

ˆ
R2n`1

2n
ź

j“1

fjpπjppqq dp “

ˆ
R2n

T pf1, . . . , f2n´1qpwqf2npwq dw

ď }T pf1, . . . , f2n´1q}q }f2n}np2n`1q
n`1

.

Hence, to prove (3.3) for such functions f1, . . . , f2n´1, we aim to show

}T pf1, . . . , f2n´1q}q .
2n´1
ź

j“1

}fj}pj , for p1 “ . . . “ p2n´1 “
np2n` 1q

n` 1
(3.12)

and q as in (3.11). Having established (3.3) for nonnegative finitely simple functions, it
is straightforward to obtain the inequality also for all nonnegative measurable functions
f1, . . . , f2n. Indeed, given nonnegative measurable functions f1, . . . , f2n, we may assume
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that the right-hand side of (3.3) is finite, and then each fj is the pointwise almost ev-
erywhere limit of an increasing sequence of nonnegative finitely simple functions that
converge to fj also in } ¨ }pj -norm, and Theorem 1.8 follows, by an analogous argument
as described at the beginning of the proof of Theorem 2.4.

Thus it remains to prove the claim (3.12) for nonnegative finitely simple functions. It
may be illustrative to compare this with the bound for the linear operator T in Theorem
2.9, which is essentially the case n “ 1 of what we aim to prove, albeit stated for smooth
and compactly supported functions.

For n ą 1, we will deduce (3.12) from Theorem 3.1. Recall that the left-hand sides of the
inequalities in (3.2) can be expressed as pairings of T pf1, . . . , f2n´1qwith f2n, according to
the formula (3.10) and the definition of T if f1, . . . , f2n´1 are nonnegative finitely simple
functions and f2n is an arbitrary nonnegative measurable function. Then the inequalities
stated in (3.2) for k “ 1, . . . , n imply by duality that

}T pf1, . . . , f2n´1q}qk .
2n´1
ź

j“1

}fj}pj,k , for k “ 1, . . . , n, (3.13)

for all nonnegative finitely simple functions f1, . . . , f2n´1 on R2n, and exponents

qk “

"

p2n` 1q{p2nq, k “ 1, . . . , n´ 1,
p2n` 1q{p2n´ 1q, k “ n,

and

pj,k “

"

2n` 1, k R tj, j ` n, j ´ nu,
p2n` 1q{2, k P tj, j ` n, j ´ nu

, j “ 1, . . . , 2n´ 1, k “ 1, . . . , n.

Here, for every k “ 1, . . . , n, we take the Lebesgue exponent associated to the f2n-term
on the right-hand side of the corresponding inequality in (3.2), and we let qk be the dual
of that exponent. This explains why the formula for qn is different from q1 “ . . . “ qn´1.
The exponent pj,k is simply the Lebesgue exponent of the fj-term that appears in the k-th
inequality of (3.2).

The key property of the exponents in (3.12) and (3.13) is that they are related by convex
combinations as indicated in (3.7). Indeed, we compute that

1

q
“

2n2 ´ 1

np2n` 1q
“

1

n

2n´ 1

2n` 1
`

n´1
ÿ

k“1

1

n

2n

2n` 1
“

n
ÿ

k“1

1

n

1

qk
,

and similarly,

1

pj
“

n` 1

np2n` 1q
“

1

n

2

2n` 1
`

n
ÿ

k“1
kRtj,n´ju

1

n

1

2n` 1
“

n
ÿ

k“1

1

n

1

pj,k
, j “ 1, . . . , 2n´ 1.

To conclude the proof, we apply multilinear interpolation. Theorem 3.8 allows us to
interpolate between two operator bounds. In order to deduce (3.12) from the family of n
operator bounds stated in (3.13), we apply Theorem 3.8 form “ 2n´1 iteratively pn´1q-
times, noting that (3.13) also holds for finitely simple functions, as required by Theorem
3.8. The specific form of the exponents is not used in this argument, we only need to
know that we are dealing with convex combinations as in (3.7), and observe the identity

1
k ra1 ` ¨ ¨ ¨ ` aks “

`

1´ 1
k

˘

´

1
k´1 ra1 ` ¨ ¨ ¨ ` ak´1s

¯

` 1
kak,
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for k ą 1, which allows to obtain (3.12) by successive interpolation. More precisely, we
apply first Theorem 3.8 for θ “ 1

2 to the two operator bounds given by (3.13) for k “ 1

and k “ 2. Then we apply Theorem 3.8 with θ “ 1
3 to interpolate between this newly

obtained bound and the operator bound stated in (3.13) for k “ 3. We continue until,
in the last step, we apply the theorem with θ “ 1

n to interpolate between the previously
obtained bound and the bound for k “ n. This yields (3.12) for all nonnegative finitely
simple functions f1, . . . , f2n´1, and thus concludes the proof of the theorem. �

Proof of Theorem 3.1. First, by the same reasoning as at the beginning of the proof of Theo-
rem 2.4, it suffices to verify the claim for nonnegative, smooth, and compactly supported
functions.

We fix n P N, n ą 1, and assume that the statement of Theorem 3.1 has already been
proven for all natural numbers from 1 to n´ 1. Recall that the base case of this induction
is the content of Theorem 2.4. Given nonnegative C8c functions f1, . . . , f2n, we now aim
to show the n inequalities stated in (3.2). We will explain the details only for k “ 1, as the
other inequalities can be proven in exactly the same manner.

Throughout the following computation, points in R2n`1 will be denoted in coordinates
by px, tqwith x P R2n and t P R. For 1 ď i ă 2n, we also write x̂j1,...,ji to denote the point
in R2n´i that is obtained by deleting the j1, . . . , ji-th coordinates of x.

First, we apply the Fubini-Tonelli theorem and then the transformation t ÞÑ t´1
2xnx2n “

τ in the inner integral:

I :“

ˆ
R2n

ˆ
R

2n
ź

j“1

fjpπjpx, tqq dt dx “

ˆ
R2n

ˆ
R

2n
ź

j“1

fjpπjpx, τ `
1
2xnx2nqq dτdx

“

ˆ
R2n

ˆ
R
fnpx̂n, τ ` xnx2nqf2npx̂2n, τq

2n
ź

j“1
j‰n,2n

fjpπjpx, τ `
1
2xnx2nqq dτ dx

“

ˆ
R2n

f2npx̂2n, τq

»

—

—

–

ˆ
R
fnpx̂n, τ ` xnx2nq

2n
ź

j“1
j‰n,2n

fjpπjpx, τ `
1
2xnx2nqq dx2n

fi

ffi

ffi

fl

dpx̂2n, tq.

Here, dx̂2n “ dx1 . . . dx2n´1, and similar notation will be used also below. The change of
variables was motivated by the observation that

π2n

`

x, τ ` 1
2xnx2n

˘

“ px̂2n, τq,

so that the f2n-term becomes independent of the 2n-th coordinate of x. Applying Hölder’s
inequality with exponents p “ 2n` 1 and p1 “ p2n` 1q{2n, we can split this factor off to
obtain I ď }f2n}2n`1 J with

J :“

»

—

—

—

–

ˆ
R2n

¨

˚

˚

˝

ˆ
R
fnpx̂n, τ ` xnx2nq

2n
ź

j“1
j‰n,2n

fjpπjpx, τ `
1
2xnx2nqq dx2n

˛

‹

‹

‚

2n`1
2n

dpx̂2n, tq

fi

ffi

ffi

ffi

fl

2n
2n`1

.
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The remaining task is to show that

J . }f1} 2n`1
2
}fn`1} 2n`1

2
}fn}2n`1

n´1
ź

j“2

p}fj}2n`1}fn`j}2n`1q . (3.14)

We will next extract the fn-term from the expression J . First, by Minkowski’s integral
inequality, Fubini’s theorem, and the transformation τ ÞÑ t “ τ ` xnx2n, we obtain the
bound

J ď

ˆ
R

»

—

—

–

ˆ
R2n´1

ˆ
R
fnpx̂n, tq

2n`1
2n

2n
ź

j“1
j‰n,2n

fjpπjpx, t´
1
2xnx2nqq

2n`1
2n dt dx̂2n

fi

ffi

ffi

fl

2n
2n`1

dx2n.

After this transformation, the fn-term is independent of the n-th coordinate of x. We can
separate it from the other factors by applying Hölder’s inequality with exponents p “ 2n
and p1 “ 2n{p2n´ 1q to the expression inside the square brackets. This yields

J ď

ˆ
R
Fn FΠ dx2n (3.15)

where

Fn :“

„ˆ
R2n´1

fnpx̂n, tq
2n`1 dpx̂n,2n, tq


1

2n`1

and

FΠ :“

»

—

—

—

–

ˆ
R2n´1

¨

˚

˚

˝

ˆ
R

2n
ź

j“1
j‰n,2n

fjpπjpx, t´
1
2xnx2nqq

2n`1
2n dxn

˛

‹

‹

‚

2n
2n´1

dpx̂n,2n, tq

fi

ffi

ffi

ffi

fl

2n´1
2n`1

.

Applying once more Hölder’s inequality, but now to the x2n-integral in (3.15), and with
exponents p “ 2n` 1 and p1 “ p2n` 1q{2n, yields

J ď

ˆˆ
R
F 2n`1
n dx2n

˙
1

2n`1
ˆˆ

R
F

2n`1
2n

Π dx2n

˙
2n

2n`1

“ Jn ¨ JΠ.

Here

Jn :“

ˆˆ
R
F 2n`1
n dx2n

˙
1

2n`1

“

ˆˆ
R2n

fnpx̂n, tq
2n`1 dpx̂n, tq

˙
1

2n`1

“ }fn}2n`1

is one of the factors in the desired upper bound for J , recall (3.14). Hence, in order to
prove (3.14), it suffices to show that

JΠ :“

ˆˆ
R
F

2n`1
2n

Π dx2n

˙
2n

2n`1

. }f1} 2n`1
2
}fn`1} 2n`1

2

n´1
ź

j“2

p}fj}2n`1 }fn`j}2n`1q . (3.16)
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To do so, we will finally use our induction hypothesis. We start by expanding

JΠ “

¨

˚

˚

˚

˚

˝

ˆ
R

»

—

—

—

–

ˆ
R2n´1

¨

˚

˚

˝

ˆ
R

2n
ź

j“1
j‰n,2n

fjpπjpx, t´
1
2xnx2nqq

2n`1
2n dxn

˛

‹

‹

‚

2n
2n´1

dpx̂n,2n, tq

fi

ffi

ffi

ffi

fl

2n´1
2n

dx2n

˛

‹

‹

‹

‹

‚

2n
2n`1

.

Applying Minkowski’s integral inequality inside the square brackets, then Fubini’s the-
orem and the transformation t ÞÑ τ “ t´ 1

2xnx2n yields

JΠ ď

¨

˚

˚

˚

˝

ˆ
R2

»

—

—

–

ˆ
R2n´1

2n
ź

j“1
j‰n,2n

fjpπjpx, τqq
2n`1
2n´1 dpx̂n,2n, τq

fi

ffi

ffi

fl

2n´1
2n

dpxn, x2nq

˛

‹

‹

‹

‚

2n
2n`1

. (3.17)

We recall that

fjpπjpx, τqq “

"

fjpx̂j , τ `
1
2xjxn`jq, if j “ 1, . . . , n´ 1,

fjpx̂j , τ ´
1
2xj´nxjq, if j “ n` 1, . . . , 2n´ 1.

(3.18)

We will continue the upper bound for JΠ by applying the induction hypothesis to the
expression inside the square brackets. To do so, we temporarily denote points in Hn´1

in coordinates by pu, tq “ pu1, . . . , u2n´2, τq. Here, u is a point in R2n´2, and similarly
as before, ûk denotes the point in R2n´3 that is obtained from u by deleting the k-th
coordinate.

To write the inner integral on the right-hand side of (3.17) in a form where the in-
duction hypothesis is applicable, we fix xn, x2n P R and define the functions gxn,x2n,j ,
j P t1, . . . , 2n´ 2u on R2n´2:

gxn,x2n,jpûj , tq :“

$

’

’

’

&

’

’

’

%

f1pu2, . . . , un´1, xn, un, . . . , u2n´2, x2n, tq
2n`1
2n´1 , j “ 1,

fjpu1, . . . , uj´1, uj`1, . . . , un´1, xn, un, . . . , u2n´2, x2n, t q
2n`1
2n´1 ,

2 ď j ď n´ 2

fn´1pu1, . . . , un´2, xn, un, . . . , u2n´2, x2n, tq
2n`1
2n´1 , j “ n´ 1,

(3.19)
and

gxn,x2n,jpûj , tq :“

$

’

’

’

&

’

’

’

%

fn`1pu1, . . . , un´1, xn, un`1, . . . , u2n´2, x2n, tq
2n`1
2n´1 , j “ n,

fj`1pu1, . . . , un´1, xn, un, . . . , uj´1, uj`1, . . . u2n´2, x2n, tq
2n`1
2n´1 ,

n` 1 ď j ď 2n´ 3,

f2n´1pu1, . . . , un´1, xn, un, . . . , u2n´3, x2n, tq
2n`1
2n´1 , j “ 2n´ 2.

(3.20)
With this notation in place, and recalling (3.18), we can restate (3.17) equivalently as
follows

JΠ ď

¨

˝

ˆ
R2

«ˆ
R2n´1

2n´2
ź

j“1

gxn,x2n,jpπjpu, tqq dpu, tq

ff
2n´1
2n

dpxn, x2nq

˛

‚

2n
2n`1

,
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where πj now denotes the Heisenberg projection from Hn´1 to the vertical plane tuj “ 0u
(identified with R2n´2). The induction hypothesis applied to the inner integral yields

JΠ .

¨

˚

˚

˚

˝

ˆ
R2

»

—

—

–

}gxn,x2n,1} 2n´1
2
}gxn,x2n,n} 2n´1

2

2n´2
ź

j“1
jR1,n

}gxn,x2n,j}2n´1

fi

ffi

ffi

fl

2n´1
2n

dpxn, x2nq

˛

‹

‹

‹

‚

2n
2n`1

.

(3.21)

Next we apply the multilinear Hölder inequality with exponents

p1 “ pn “ n and p2 “ . . . “ pn´1 “ pn`1 “ . . . “ p2n´2 “ 2n.

Note that
2n´2
ÿ

j“1

1

pj
“

2

n
`

2n´ 4

2n
“ 1,

as desired. Hence we deduce from (3.21) that

JΠ .

ˆˆ
R2

}gxn,x2n,1}
2n´1

2
2n´1

2

dpxn, x2nq

˙
2

2n`1
ˆˆ

R2

}gxn,x2n,n}
2n´1

2
2n´1

2

dpxn, x2nq

˙
2

2n`1

¨

2n´2
ź

j“1
jR1,n

ˆˆ
R2

}gxn,x2n,j}
2n´1
2n´1dpxn, x2nq

˙
1

2n`1

.

Recalling the definition of gxn,x2n,j for j “ 1, . . . , 2n ´ 2 as stated in (3.19) and (3.20), we
obtain immediately

JΠ . }f1} 2n`1
2
}fn`1} 2n`1

2

n´1
ź

j“2

p}fj}2n`1 }fn`j}2n`1q .

as desired; recall (3.16). This proves (3.14) and thus establishes the statement about k “ 1
in the induction claim (3.2) for n. The other values of k are treated analogously, and
hence we have established (3.2). �

4. APPLICATIONS OF THE LOOMIS-WHITNEY INEQUALITIES IN HEISENBERG GROUPS

In this section, we derive the Gagliardo-Nirenberg-Sobolev inequality in Hn, and its
variant Theorem 1.13, from the Loomis-Whitney inequality, Theorem 1.5. As a corol-
lary of Theorem 1.13, we obtain the isoperimetric inequality in Hn (with a non-optimal
constant). At the end of the section, we also show how the Loomis-Whitney inequality
can be used, directly, to infer a variant of the isoperimetric inequality, without passing
through the Sobolev inequality.

The arguments presented here are very standard ([36, 28, 1]), and we claim no orig-
inality. A version of this section, in the context of the first Heisenberg group, was al-
ready contained in our joint work [22] with Tuomas Orponen. In his thesis [9], Bramati
also gave an argument to deduce the Gagliardo-Nirenberg-Sobolev and isoperimetric
inequalities in H1 from the strong version of the Loomis-Whitney inequality stated in
Theorem 2.4.

We start by recalling the statement of Theorem 1.13:
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Theorem 4.1. Let f P BV pHnq. Then,

}f} 2n`2
2n`1

.
2n
ź

j“1

}Xjf}
1
2n . (4.2)

Recall that f P BV pHnq if f P L1pHnq, and the distributional derivatives Xjf , j “
1, . . . , 2n, are finite signed Radon measures. Smooth compactly supported functions
are dense in BV pHnq in the sense that if f P BV pHnq, then there exists a sequence
tϕkukPN Ă C8c pR2n`1q such that ϕk Ñ f almost everywhere (and in L1pHnq if desired),
and }Zϕk} Ñ }Zf} for Z P tX1, . . . , X2nu. For a reference, see [26, Theorem 2.2.2]. With
this approximation in hand, it suffices to prove Theorem 4.1 for, say, f P C1

c pR2n`1q. The
following lemma contains most of the proof:

Lemma 4.3. Let f P C1
c pR2n`1q, and write

Fk :“ tp P R2n`1 : 2k´1 ď |fppq| ď 2ku, k P Z. (4.4)

Then,

|πjpFkq| ď 2´k`2

ˆ
Fk´1

|Xjf |, j “ 1, . . . 2n. (4.5)

Proof. By symmetry, it suffices to prove the inequality in (4.5) for j “ 1, . . . , n. Let w “
px̂j , tq P πjpFkq, denote by ej the j-th unit vector, and fix p “ w ¨ xjej P Fk such that
πjppq “ w. In particular, |fppq| ě 2k´1. Recall the notation Lj “ spanpejq “ txjej : xj P
Ru and the definition of x̂j given below (1.2). Since f is compactly supported, we may
pick another point p1 P w ¨ Lj such that fpp1q “ 0. Since |f | is continuous, we infer that
there is a non-degenerate line segment I on the line w ¨Lj such that 2k´2 ď |fpqq| ď 2k´1

for all q P I (hence I Ă Fk´1), and |f | takes the values 2k´2 and 2k´1, respectively, at the
endpoints qi “ w ¨ xj,iej of I , i P t1, 2u. Define γpxjq :“ w ¨ xjej “ px, t´

1
2xjxn`jq. With

this notation,

2k´2 ď |fpq1q ´ fpq2q| ď

ˆ xj,2

xj,1

|pf ˝ γq1pxjq| dxj

ď

ˆ
txj :px,t´ 1

2
xjxn`jqPFk´1u

|Xjfpx, t´
1
2xjxn`jq| dy.

Writing Φpx, tq :“ px̂j , tq ¨ xjej “ px, t´
1
2xjxn`jq, and integrating over

px1, . . . , xj´1, xj`1, . . . , x2n, tq “ px̂j , tq P πjpFkq ĂWj ,

it follows that

2k´2|πjpFkq| ď

ˆ
πjpFkq

«ˆ
txj :Φpx,tqPFk´1u

|XjfpΦpx, tqq| dxj

ff

dx̂j dt. (4.6)

Finally, we note that JΦ “ detDΦ ” 1. Therefore, using Fubini’s theorem, and perform-
ing a change of variables to the right-hand side of (4.6), we see that

2k´2|πjpFkq| ď

ˆ
tpx,tqPR2n`1:Φpx,tqPFk´1u

|XjfpΦpx, tqq| dpx, tq

“

ˆ
Fk´1

|Xjfpx, tq| dpx, tq.

This completes the proof. �
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We are then prepared to prove Theorem 4.1:

Proof of Theorem 4.1. Fix f P C1
c pR2n`1q, and define the sets Fk, k P Z, as in (4.4). Using

first Theorem 1.5, then Lemma 4.3, then the generalized Hölder’s inequality with p1 “

. . . “ p2n “ 2n, and finally the embedding `1 ãÑ `p2n`2q{p2n`1q, we estimate as follows:ˆ
|f |

2n`2
2n`1 „

ÿ

kPZ
2
p2n`2qk
2n`1 |Fk|

.
ÿ

kPZ
2
p2n`2qk
2n`1

2n
ź

j“1

|πjpFkq|
n`1

np2n`1q

.
ÿ

kPZ

2n
ź

j“1

´

ˆ
Fk´1

|Xjf |
¯

n`1
np2n`1q

.
2n
ź

j“1

”

ÿ

kPZ

´

ˆ
Fk´1

|Xjf |
¯

2n`2
2n`1

ı
1
2n

.
2n
ź

j“1

”

ÿ

kPZ

ˆ
Fk´1

|Xjf |
ı

2n`2
2np2n`1q

„

2n
ź

j“1

}Xjf}
2n`2

2np2n`1q

1 .

Raising both sides to the power p2n` 1q{p2n` 2q completes the proof. �

We conclude the section by discussing isoperimetric inequalities. A measurable set
E Ă Hn has finite horizontal perimeter if χE P BV pHnq. Here χE is the characteristic
function of E. Note that our definition of BV pHnq implies, in particular, that |E| ă 8.
We follow common practice, and write PHpEq :“ }∇HχE}. For more information on sets
of finite horizontal perimeter, see [25]. Now, applying Theorem 4.1 to f “ χE , we recover
the following isoperimetric inequality (with a non-optimal constant):

Theorem 4.7. There exists a constant C ą 0 such that

|E|
2n`1
2n`2 ď CPHpEq (4.8)

for any measurable set E Ă Hn of finite horizontal perimeter.

For n “ 1, this is Pansu’s isoperimetric inequality [39], which has later been gener-
alized to Hn and beyond [29, 14]. We remark that the a priori assumption |E| ă 8 is
critical here; for example the theorem evidently fails for E “ Hn, for which |E| “ 8 but
}∇HχE} “ 0. We conclude the paper by deducing a weaker version of (4.8) (even) more
directly from the Loomis-Whitney inequality. Namely, we claim that

|E|
2n`1
2n`2 ď CH2n`1

d pBEq (4.9)

for any bounded measurable set E Ă Hn, where H2n`1
d denotes the 2n ` 1-dimensional

Hausdorff measure on Hn with respect to the Korányi distance (or the standard left-
invariant sub-Riemannian metric). This inequality is, in general, weaker than (4.8): at
least for open sets E Ă Hn, the property H2n`1

d pBEq ă 8 implies that PHpEq ă 8, and
then PHpEq . H2n`1

d pBEq, see [27, Theorem 4.18]. However, if E is a bounded open set
with C1 boundary, then H2n`1

d pBEq „ PHpEq, see [25, Corollary 7.7].
To prove (4.9), we need the following auxiliary result, see [15, Lemma 3.4] and [23,

Remark 4.7]:
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Lemma 4.10. Let n P N. There exists a constant Cn ą 0 such that the following holds. Let
W Ă Hn be a vertical subgroup of codimension 1. Then,

|πWpAq| ď CH2n`1
d pAq, A Ă Hn. (4.11)

Proof of (4.9). Let E Ă H be bounded and measurable. We first claim that

πjpEq Ď πjpBEq, j “ 1, . . . , 2n. (4.12)

Let w P πjpEq and consider π´1
j twu “ w ¨ Lj where Ly “ spanpejq. By definition there

exists xj,1 P R such that w ¨ xj,1ej P E and since E is bounded there also exists xj,2 P R
such that w ¨ xj,2 P Hn zE. Since w ¨ Lj is connected, there finally exists xj,3 P R such that
w ¨ xj,3ej P BE which immediately implies (4.12). Using Theorem 1.5 and (4.12), we get

|E| .
2n
ź

j“1

|πjpBEq|
n`1

np2n`1q .

Now the isoperimetric inequality (4.9) follows using Lemma 4.11. �

5. GENERALIZED LOOMIS-WHITNEY INEQUALITIES BY INDUCTION

The approach described in Section 3 can be used to prove something a bit more gen-
eral, namely we can replace the vertical Heisenberg projections π1, . . . , π2n by projection-
type mappings of the form

ρj : R2n`1 Ñ R2n, ρjpx, tq “ px̂j , t` hjpxqq, j “ 1, . . . , 2n, (5.1)

for suitable C1 maps hj : R2n Ñ R. The precise condition is stated in Definition 5.2
and it is tailored so that a Loomis-Whitney-type inequality for ρ1, . . . , ρ2n can be estab-
lished based on the L3{2-L3 boundedness of a linear operator in the plane, analogously
as we did for π1, . . . , π2n and the Radon transform in Sections 2-3. By a simple change-
of-variables, one can generalize the setting even slightly further, see Remark 5.18.

For arbitrary C1 functions hj , the mappings ρj defined in (5.1) satisfy a condition analo-
gous to (1.4) for πj , which ensures by the coarea formula that the preimage of a Lebesgue
null set in R2n under ρj is a Lebesgue null set in R2n`1. More precisely, we have

detpDρjDρ
t
jq “ det

¨

˚

˚

˚

˝

1
. . . ∇x̂jh

1
∇x̂jh p1` |∇h|2q

˛

‹

‹

‹

‚

“ 1` pBxjhq
2.

By the reasoning below Theorem 1.8 it follows that f ˝ ρj is Lebesgue measurable on
R2n`1 if f is Lebesgue measurable on R2n.

Definition 5.2 (L3{2-L3 property). We say that a family th1, . . . , h2nu of C1 functions hj
on R2n has the L3{2-L3 property if there exists a constant C ă 8 such that the following
holds for all k “ 1, . . . , n:

‚ If n ą 1, then for every x̂k,n`k P R2n´2, the operator Tk,x̂k,n`k
, defined by

Tk,x̂k,n`k
fpxk, tq :“

ˆ
R
fpxn`k, t` hkpxq ´ hn`kpxqq dxn`k, f P C8c pR2q

satisfies
}Tk,x̂k,n`k

f}3 ď C}f} 3
2
, f P C8c pR2q.
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Here, the coordinates of x̂k,n`k P R2n´2 are xi, i P t1, . . . , 2nuztk, n ` ku, and
x “ px1, . . . , xk, . . . , xn`k, . . . , x2nq.

‚ If n “ 1, then the operator T1 “ T , defined by

Tfpx1, tq :“

ˆ
R
fpx2, t` h1px1, x2q ´ h2px1, x2qqdx2, f P C8c pR2q

satisfies
}Tf}3 ď C}f} 3

2
, f P C8c pR2q.

We next give examples of functions th1, . . . , h2nu with the properties stated in Defini-
tion 5.2. Essentially, for k “ 1, . . . , n, we take hk and hn`k to be polynomials of second
degree as functions of xk and xn`k so that Theorem 5.5 is applicable. This class of exam-
ples includes the functions

hjpxq “

"

1
2xjxn`j , j “ 1, . . . , n,
´1

2xj´nxj , j “ n` 1, . . . , 2n.
(5.3)

associated to the standard Heisenberg vertical coordinate projections ρj “ πj , j “ 1, . . . , 2n.

Example 5.4. Fix n ą 1, bj P R and cj,a P C1pR2n´2q for j “ 1, . . . , 2n and multi-indices
a P A :“ tp0, 0q, p1, 0q, p0, 1q, p2, 0q, p0, 2qu. For k “ 1, . . . , n, we define

hkpxq :“ bk xkxn`k `
ÿ

a“pa1,a2qPA
ck,apx̂k,n`kqx

a1
k x

a2
n`k

and
hn`kpxq :“ bn`k xkxn`k `

ÿ

a“pa1,a2qPA
cn`k,apx̂k,n`kqx

a1
k x

a2
n`k.

Then the operators appearing in Definition 5.2 are given by

Tk,x̂k,n`k
fpxk, tq :“

ˆ
R
f pxn`k, t`Hk,n`kpxqq dxn`k, f P C8c pR2q,

where

Hk,n`kpxq :“ pbk ´ bn`kqxkxn`k `
ÿ

a“pa1,a2qPA
rck,apx̂k,n`kq ´ cn`k,apx̂k,n`kqsx

a1
k x

a2
n`k.

If bk ´ bn`k ‰ 0 for k “ 1, . . . , n, then th1, . . . , h2nu has the L3{2-L3 property by Theorem 5.5
with constant C . pmink“1,...,n |bk ´ bn`k|q

´1{3. This is the case in particular for th1, . . . , h2nu

as in (5.3). Hence, Theorems 3.1 and 1.8 are special cases of Theorems 5.8 and 5.16 below.

We claim no originality for Theorem 5.5 that was applied in the previous example. It
is an instance of much more general results available in the literature. We merely explain
here how the statement follows from the L3{2-L3 improving property of (i) the Radon
transform and (ii) convolution with a measure on a parabola. Even though (i) involves
integration over lines with different slopes, and (ii) concerns convolution with a fixed
parabola, both operators fit in the same framework [42, p.606].

Theorem 5.5. Let α, β, γ, δ, ε, κ P R. If β ‰ 0, then the operator S, defined by

Sfpx, tq “

ˆ
R
fpy, t` αy2 ` βxy ` γx2 ` δx` εy ` κq dy, f P C8c pR2q,

satisfies
}Sf}3 . |β|

´1{3}f} 3
2
, f P C8c pR2q. (5.6)
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Proof. We divide the proof in two cases: α “ 0 and α ‰ 0. In the first case, we apply the
L3{2-L3 improving property of the Radon transform [37] (in the form of Theorem 2.9). In
the second case, we reduce matters to the L3{2-L3 improving property of the convolution
operator with a measure on a parabola [35, 20, 38].

First, if α “ 0, then, for f P C8c pR2q, we relate Sf to the operator T from Theorem 2.9
as follows:

Sfpx, tq “

ˆ
R
fpy, t` rβx` εsy ` rγx2 ` δx` κsq dy “ Tfpβx` ε, t` γx2 ` δx` κq.

Thus

}Sf}3 “

ˆˆ
R2

|Tfpβx` ε, t` γx2 ` δx` κq|3 dpx, tq

˙
1
3

“ |β|´1{3

ˆˆ
R2

|Tfpξ, τq|3 dpξ, τq

˙
1
3

“ |β|´1{3}Tf}3,

and hence Theorem 2.9 implies (5.6) in that case.
If α ‰ 0, we instead reduce matters to [35], or the more general [20, Theorem 1]. A

special case of that theorem says that

}µα ˚ f}3 . }f} 3
2
, f P L

3
2 pR2q, (5.7)

where

µα ˚ fpx, tq :“

ˆ
R
fppx, tq ´ py, αy2qq|α|1{3 dy,

see also [38, Theorem 1]. To employ this result, we aim to relate Sf for f P C8c pR2q to
µα ˚ f . We apply elementary transformations to one of the expressions that appear in the
definition of Sf , namely

t` αy2 ` βxy ` γx2 ` δx` εy ` κ

“ α
”

y ` 1
2

´

β
αx`

ε
α

¯ı2
`

„

´α
4

´

β
αx`

ε
α

¯2
` γx2 ` δx` κ` t



.

Hence, by the change-of-variables y ÞÑ η “ ´ry ` 1
2

´

β
αx`

ε
α

¯

s, we obtain

Sfpx, tq “

ˆ
R
f

ˆ

y, α
”

y ` 1
2

´

β
αx`

ε
α

¯ı2
`

„

´α
4

´

β
αx`

ε
α

¯2
` γx2 ` δx` κ` t

˙

dy

“

ˆ
R
f

ˆ

´1
2

´

β
αx`

ε
α

¯

´ η,

„

´α
4

´

β
αx`

ε
α

¯2
` γx2 ` δx` κ` t



´ p´αqη2

˙

dη

“|α|´1{3µ´α ˚ f pΦpx, tqq ,

with

Φpx, tq :“

ˆ

´1
2

´

β
αx`

ε
α

¯

,´α
4

´

β
αx`

ε
α

¯2
` γx2 ` δx` κ` t

˙

.

Since
| detDΦpx, tq| “ |β| |2α|´1 ,

we find that

}Sf}3 “ |α|
´1{3} pµ´α ˚ fq ˝ Φ}3 “ |α|

´1{3 |β|´1{3
|2α|1{3 }µ´α ˚ f}3.

Thus (5.6) in the case α ‰ 0 follows from (5.7). �
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We next prove a generalization of Theorem 3.1 that applies in particular to mappings
ρ1, . . . , ρ2n as in (5.1) for h1, . . . , h2n as in Example 5.4.

Theorem 5.8. Let n P N. Assume that th1, . . . , h2nu is a family of C1 functions on R2n with the
L3{2-L3 property and define

ρj : R2n`1 Ñ R2n, ρjpx, tq “ px̂j , t` hjpxqq , j “ 1, . . . , 2n.

Then, for all nonnegative Lebesgue measurable functions f1, . . . , f2n on R2n, we have

ˆ
R2n`1

2n
ź

j“1

fjpρjppqq dp . }fk} 2n`1
2
}fn`k} 2n`1

2

n
ź

j“1
j‰k

p}fj}2n`1 }fn`j}2n`1q , k P t1, . . . , nu,

(5.9)
with an implicit constant that may depend on n and the boundedness constant C associated to
the family th1, . . . , h2nu. If n “ 1, then (5.9) reads

ˆ
R3

f1pρ1ppqqf2pρ2ppqq dp . }f1} 3
2
}f2} 3

2
.

The statement can be deduced by following the proof of Theorem 3.1 almost verbatim.
We decided to give the argument for Theorem 3.1 first in Section 3 since it is a bit easier
to read and helps motivate the more general discussion in the present section. Below we
merely explain how to adapt the proof of Theorem 3.1 to establish Theorem 5.8.

Proof. It suffices to verify the claim for nonnegative, smooth, and compactly supported
functions f1, . . . , f2n. The case n “ 1 follows directly from theL3{2-L3 property of th1, h2u

in Definition 5.2, and a simple change-of-variables argument, observing that

ˆ
R3

f1pρ1ppqqf2pρ2ppqq dp “

ˆ
R3

f1px2, t` h1px1, x2qqf2px1, t` h2px1, x2qq dpx1, x2, tq

“

ˆ
R2

f2px1, τq

ˆˆ
R
f1px2, τ ` h1px1, x2q ´ h2px1, x2qq dx2

˙

dpx1, τq

“

ˆ
R2

f2px1, τqT1f1px1, τq dpx1, τq

ď }T1f1}3}f2} 3
2
ď C}f1} 3

2
}f2} 3

2
,

for nonnegative f1, f2 P C8c pR2q.
Suppose next that the statement of Theorem 5.8 has already been established for all

natural numbers up to n ´ 1. We will argue that it holds also for the integer n. To this
end, we fix an arbitrary family th1, . . . , h2nu of C1 functions R2n Ñ R with the L3{2-L3

property. Given nonnegative C8c functions f1, . . . , f2n, we aim to show the n inequalities
stated in (5.9), and by symmetry it suffices to discuss this for k “ 1. By the same argument
as in the proof of Theorem 3.1, but now using the transformation t ÞÑ t` h2npxq “ τ , we
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find that

I :“

ˆ
R2n

ˆ
R

2n
ź

j“1

fjpρjpx, tqq dt dx (5.10)

“

ˆ
R2n

f2npx̂2n, τq

»

—

—

–

ˆ
R
fnpx̂n, τ ` hnpxq ´ h2npxqq

2n
ź

j“1
j‰n,2n

fjpρjpx, τ ´ h2npxqqq dx2n

fi

ffi

ffi

fl

dpx̂2n, tq.

Applying Hölder’s inequality, we can split off the factor with f2n (which no longer de-
pends on x2n) and we obtain I ď }f2n}2n`1 J with

J :“

»

—

—

—

–

ˆ
R2n

¨

˚

˚

˝

ˆ
R
fnpx̂n, τ ` hnpxq ´ h2npxqq

2n
ź

j“1
j‰n,2n

fjpρjpx, τ ´ h2npxqqq dx2n

˛

‹

‹

‚

2n`1
2n

dpx̂2n, tq

fi

ffi

ffi

ffi

fl

2n
2n`1

.

The remaining task is to show that

J .n,C }f1} 2n`1
2
}fn`1} 2n`1

2
}fn}2n`1

n´1
ź

j“2

p}fj}2n`1}fn`j}2n`1q , (5.11)

and this is done as in the proof of Theorem 3.1, but using the transformation τ ÞÑ t “
τ ` hnpxq ´ h2npxq. Then, as in the proof of Theorem 3.1, we find that in order to prove
(5.11), it suffices to show that

JΠ .n,C }f1} 2n`1
2
}fn`1} 2n`1

2

n´1
ź

j“2

p}fj}2n`1 }fn`j}2n`1q , (5.12)

where

JΠ :“

¨

˚

˚

˚

˚

˝

ˆ
R

»

—

—

—

–

ˆ
R2n´1

¨

˚

˚

˝

ˆ
R

2n
ź

j“1
j‰n,2n

fjpρjpx, t´ hnpxqqq
2n`1
2n dxn

˛

‹

‹

‚

2n
2n´1

dpx̂n,2n, tq

fi

ffi

ffi

ffi

fl

2n´1
2n

dx2n

˛

‹

‹

‹

‹

‚

2n
2n`1

.

Applying Minkowski’s integral inequality inside the square brackets, then Fubini’s the-
orem and the transformation t ÞÑ τ “ t´ hnpxq yields

JΠ ď

¨

˚

˚

˚

˝

ˆ
R2

»

—

—

–

ˆ
R2n´1

2n
ź

j“1
j‰n,2n

fjpρjpx, τqq
2n`1
2n´1 dpx̂n,2n, τq

fi

ffi

ffi

fl

2n´1
2n

dpxn, x2nq

˛

‹

‹

‹

‚

2n
2n`1

. (5.13)

We recall that
fjpρjpx, τqq “ fjpx̂j , τ ` hjpxqq. (5.14)

We will continue the upper bound for JΠ by applying the induction hypothesis to the
expression inside the square brackets. To do so, we temporarily denote points in Hn´1

in coordinates by pu, tq “ pu1, . . . , u2n´2, τq. Here, u is a point in R2n´2, and similarly as
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before, ûk denotes the point in R2n´3 that is obtained from u by deleting the k-th coordi-
nate. With this notation in place, and recalling (5.14), we can restate (5.13) equivalently
as follows

JΠ ď

¨

˝

ˆ
R2

«ˆ
R2n´1

2n´2
ź

j“1

gxn,x2n,jprρj,xn,x2npu, tqq dpu, tq

ff
2n´1
2n

dpxn, x2nq

˛

‚

2n
2n`1

,

where gxn,x2n,jpûj , tq are defined exactly as in (3.19)-(3.20) and

rρj,xn,x2npu, tq “

"

pûj , t` hjpu1, . . . , un´1, xn, un, . . . , u2n´2, x2nqq , 1 ď j ď n´ 1,
pûj , t` hj`1pu1, . . . , un´1, xn, un, . . . u2n´2, x2nqq , n ď j ď 2n´ 2.

Thus, the functions rρj,xn,x2n are as in the statement of Theorem 5.8 for n´ 1, with

rhj,xn,x2npuq :“

"

hjpu1, . . . , un´1, xn, un, . . . , u2n´2, x2nq, 1 ď j ď n´ 1,
hj`1pu1, . . . , un´1, xn, un, . . . , u2n´2, x2nq, n ď j ď 2n´ 2.

In particular, if th1, . . . , h2nu has the L3{2-L3 property with constant C as assumed, then
so does trh1,xn,x2n , . . . ,

rh2n´2,xn,x2nu for every pxn, x2nq P R2. The induction hypothesis
applied to the inner integral therefore yields

JΠ .C

¨

˚

˚

˚

˝

ˆ
R2

»

—

—

–

}gxn,x2n,1} 2n´1
2
}gxn,x2n,n} 2n´1

2

2n´2
ź

j“1
jR1,n

}gxn,x2n,j}2n´1

fi

ffi

ffi

fl

2n´1
2n

dpxn, x2nq

˛

‹

‹

‹

‚

2n
2n`1

.

(5.15)

At the point, the proof can be concluded as in the case of Theorem 3.1, recalling that the
functions gxn,x2n,j have been defined exactly as in (3.19)-(3.20). �

As in the case of the Heisenberg vertical coordinate projections, we can use multilinear
interpolation to deduce a Loomis-Whitney type inequality for generalized projections
tρ1, . . . , ρ2nu.

Theorem 5.16. Fix n P N, n ą 1. Given a family th1, . . . , h2nu of C1 functions on R2n that has
the L3{2-L3 property with constant C, we define

ρj : R2n`1 Ñ R2n, ρjpx, tq “ px̂j , t` hjpxqq , j “ 1, . . . , 2n.

Then ˆ
R2n`1

2n
ź

j“1

fjpρjppqq dp .
2n
ź

j“1

}fj}np2n`1q
n`1

, (5.17)

for all nonnegative Lebesgue measurable functions f1, . . . , f2n on R2n, where the implicit con-
stant may depend on n and C.

Remark 5.18. A straightforward generalization of Theorem 5.16 can be obtained for the
family tΦj ˝ ρj : j “ 1, . . . , 2nu, where Φj : R2n Ñ R2n are C1 diffeomorphisms with
Λ :“ minj“1,...,2n |detDΦj | ą 0 and ρj are as in Theorem 5.16. Indeed, simply apply
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Theorem 5.16 to the functions gj :“ fj ˝ Φj , j “ 1, . . . , 2n, and then perform changes-of-
variables in the integrals in }gj}np2n`1q

n`1

to deduce that

ˆ
R2n`1

2n
ź

j“1

fjpΦj ˝ ρjppqq dp .n,C,Λ
2n
ź

j“1

}fj}np2n`1q
n`1

for all nonnegative Lebesgue measurable functions f1, . . . , f2n on R2n.

Proof of Theorem 5.16 using Theorem 5.8. By the comment made at the beginning of the
proof of Theorem 5.8, we already know the case n “ 1 of Theorem 5.16. Suppose that
the statement of Theorem 5.8 holds for a given integer n ą 1. Fix mappings hj and ρj ,
j “ 1, . . . , 2n, as in the statement of Theorems 5.8 and 5.16. Our aim is to verify (5.17) for
all nonnegative measurable functions f1, . . . , f2n on R2n. The desired inequality can be
spelled out as follows:

ˆ
R2n`1

2n
ź

j“1

fjpx̂j , t` hjpxqq dpx, tq .
2n
ź

j“1

}fj}np2n`1q
n`1

. (5.19)

Similarly as in the proof of Theorem 1.8, we introduce a suitable multilinear operator T .
Namely, for all finitely simple functions g1, . . . , g2n´1 on R2n, we define

T pg1, . . . , g2n´1qpx̂2n, τq :“

ˆ
R
gnpx̂n, τ ` hnpxq ´ h2npxqq

2n´1
ź

j“1
j‰n

gjpρjpx, τ ´ h2npxqqqdx2n.

Hence, by the same computation that led to (5.10), we find for all finitely simple functions
f1, . . . , f2n´1 and nonnegative measurable function f2n that

ˆ
R2n`1

2n
ź

j“1

fjpρjppqq dp “

ˆ
R2n

T pf1, . . . , f2n´1qpwqf2npwq dw.

From this point on, the argument is entirely abstract and does no longer use the specific
form of the operator T . Analogously as in the proof of Theorem 1.8, the inequalities we
obtained in Theorem 5.8 yield bounds of the form (3.13) for the operator T . These bounds
can be combined using multilinear interpolation, as in Theorem 3.8, to yield a bound of
the form (3.12) for the operator T , which eventually gives (5.19). �
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