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ABSTRACT. We investigate problems in large-strain magnetoelasticity when a Dzyaloshinskii-Moriya
interaction term is included, too. While the magnetoelastic stored energy density is described in the
Lagrangean setting, purely magnetic terms are considered in the Eulerian one. This requires careful
treatment of the invertibility of admissible elastic deformations and of the regularity of the inverse
maps. Besides the existence of a minimizer in the static case, we also show that the model can be
extended to an evolutionary situation and enriched by a rate-independent dissipation. In this case, we
prove that an energetic solution exists.

1. INTRODUCTION

Magnetic skyrmions are spin textures emerging in magnetic systems lacking inversion symmetry, and
which are therefore chiral. From a mathematical point of view, they can be regarded as topological
defects in the magnetic texture, carrying a suitable topological charge, known as skyrmion winding
number.

Figure 1. Numerical simulation of a magnetic skyrmion in a thin three-dimensional
film (see [12]). Courtesy of G. Di Fratta, D. Praetorius, and M. Ruggeri

The notion of skyrmion has been named after the high-energy physicist T. Skyrme, who initially intro-
duced it as a tool for describing the stability of hadrons. Ever since, skyrmions have played a central
role in the description of multiple condensed-matter phenomena, ranging from Bose-Einstein conden-
sates, to liquid crystals, and to quantum Hall systems. The presence of helical structures in magnetic
crystals was originally predicted by I. Dzyaloshinskii. Magnetic skyrmions were then identified both
in magnetic systems lacking inversion symmetry (such as MnSi) [21], as well as in ultrathin films and
multilayers. The chirality of these structures is determined by asymmetric exchange interactions known
as Dzyaloshinskii-Moriya Interactions (DMI) terms [20, 46].

Due to their small size, high stability, and to the fact that they can be written or deleted individually on
magnetic stripes, these quasiparticles are reckoned as the most promising carrier of information for future
storage and computing devices. As such, they are currently regarded as one of the emerging technologies
in next-generation spintronics, and the question of how to manipulate them using mechanical loads is
the focus of an intense research activity [31]. This naturally calls for a mathematical analysis of chiral
effects in the magnetoelastic framework.
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In this paper, we initiate a study of chirality in active materials at large strains by proving an existence
result for optimal configurations of a magnetostrictive material in which DMI terms are also taken into
account, both for the static problem, and for an associated quasistatic evolution.

In order to describe our results, we need to specify our mathematical setting. The variational theory of
static magnetostriction [9, 15, 16, 17, 32] is based on the assumption that equilibrium configurations of
the body are minimizers of an energy functional that depends on the deformation of the reference domain
y:Q — Q¥ C R? and on the magnetization m : Q¥ — S2, where S? denotes the unit sphere in R? and
QY is the deformed set. This energy functional is defined, for ¢ = (y, m), by setting

E(q) ::/W(Vy,moy)da:—i—a/ \Vm\QdE—i—%/ ‘ch|2d€+li/ curlm - md¢€. (1.1)
Q Qv R3 Qv

Here, W denotes a nonlinear, frame-indifferent, magnetostrictive energy density. The second term in
(1.1) is the so-called exchange energy, penalizing spatial changes of m; « > 0 is the exchange constant.
The third contribution in (1.1) encodes the magnetostatic energy and favors divergence-free states of
the magnetization; o > 0 is the permeability of the vacuum. In particular, the stray-field potential
(m: R?® — R is defined as a weak solution of the magnetostatic Maxwell equation [8, 19]:

Al = div(xgum) in R3.

Eventually, the possible lack of centrosymmetry in the crystalline structure of the material is accounted
for by the last contribution in (1.1), describing bulk DMI exchange, in turn defined via the trace of
the chirality tensor Vm x m. Note that the sign of the constant x € R is not prescribed. According
to its value, this energy term alone would be minimized by configurations satisfying curlm = +m, or
equivalently, £m = —Am. Nevertheless, the sum of the symmetric and DMI exchange is optimized by
helical fields m describing a rotation of constant frequency x orthogonal to one of the coordinate axes,
and rotating clockwise or counter-clockwise according to the sign of k (see [18, 40]). For simplicity, in this
paper we will neglect the energy contributions due to crystalline anisotropy and to Zeeman energies [8],
for they behave as continuous perturbations and could easily be included in our analysis without further
mathematical difficulties.

In the absence of DMI exchange, existence of minimizers for the functional in (1.1) has been proven in
[51] in the case of non-simple materials, in [36] without higher-order terms but under incompressibility
of the admissible deformations, as well as in [5] under weaker growth conditions on the energy density
and relying on the notion of topological image. To complete our review on magnetoelasticity, we also
mention a few recent works dealing with the analysis of magnetoelastic thin films. In particular, in [35]
magnetoelastic plates and their corresponding quasistatic evolutions are studied within the purview of
linearized elasticity. A large-strain analysis of magnetoelastic plates has been initiated in [38], under a
priori constraints on the Jacobian of deformations (see also [39, 41] for some numerical results). The
membrane regime for non-simple materials has been recently characterized in [13], whereas von Kdrman
theories starting from a nonlinear elastic setting have been identified in [7] in an incompressible framework.

The literature involving the mathematical analysis of micromagnetic models including DMI terms in the
absence of elastic couplings is vast. Among the many contributions, we single out the seminal works
[43, 49] (see also [37] and the references therein). We refer to [1] and the references therein for a study of
effective theories and chirality transitions in the discrete-to-continuous setting. We also mention [30] for
recent results on the numerics of chiral magnets, as well as [11] and [12] and the references therein, for
periodic homogenization of chiral magnetic materials and for the static, dynamic, and numerical study
of reduced models obtained starting from three-dimensional theories including asymmetric exchange,
respectively.

In this paper, we combine the above perspectives by proving existence of equilibrium configurations for
magnetoelastic energies including a chiral contribution. A simplified version of our first result reads as
follows, we refer to Theorem 3.2 and Section 3 for the precise statement and assumptions.

Theorem 1.1. Assume that the energy density W is continuous, polyconvezx, blows up under extreme
compressions, and is p-coercive, p > 3. Assume also that interpenetration of matter is prevented. Then,
the magnetoelastic energy functional in (1.1) admits a minimizer.
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A peculiar feature of the energy in (1.1) consists in its mixed Eulerian-Lagrangean structure. Whereas
the elastic energy is evaluated on the reference configuration, and is hence Lagrangean, in fact, all
micromagnetic contributions are set on the actual deformed set, thus being Eulerian. This leads to
three main mathematical difficulties in the proof of Theorem 1.1. First, the minimization problem
needs to be formulated in a class of admissible deformations and magnetizations for which the notion
of deformed set Y is well-defined, and in which natural modeling assumptions such as impenetrability
of matter are fulfilled. This is ensured by Lemma 2.1 and Proposition 2.5 below. Second, the class of
admissible deformations must be stable with respect to the natural convergence enforced by the coercivity
assumptions satisfied by W. Third, all Lagrangean terms should be lower-semicontinuous with respect to
this aforementioned topology. As a result of these two latter challenges, the main ingredient in the proof
of Theorem 1.1 is a compactness study for sequences of admissible states with equi-bounded energies, cf.
Proposition 3.3 below.

Exploiting the global invertibility of admissible deformations, in Proposition 3.3 we prove the convergence
of compositions of magnetizations with deformations. For a similar argument relying on equiintegrability
of Jacobian of the inverses we refer to [25]. Note that this could not be achieved with the techniques in [4]
and [5], and that here, in contrast with [36], this is not an easy task as we are not assuming incompress-
ibility of the material. This convergence of compositions proves to be crucial in the evolutionary setting
as well, in order to show the lower semicontinuity of the dissipation distance. An essential ingredient of
the proof is the notion of topological degree: we refer to [14, Chapter 1] or [53, Chapter 3] for an overview
of its main properties.

We mention for completeness that the existence of static minimizers could alternatively be shown with
the arguments in [4] and [5], which are in turn based on local invertibility results. We have chosen not to
pursue this different strategy here, as it would allow for larger classes of admissible deformations but at
the cost of a significant increase in technicality, and would not guarantee convergence of compositions of
magnetizations and deformations, which is instead essential for studying time-evolution. Besides, global
invertibility is physically realistic.

The second part of our paper consists in a study of the quasi-static evolution of our model driven by a
slight variant of the energy functional in (1.1) complemented by time-dependent applied loads representing
external body forces, surface forces, and magnetic fields, respectively, as well as by dissipative effects.
Our analysis is set within the theory of rate-independent processes [45] and energetic solutions.

A key difference with the study in [36] consists in our definition of dissipation. Arguing as in [50], we
introduce the notion of Lagrangean magnetization. For g = (y, m) € Q, we set

Z(q) = (adjVy)moy, (1.2)
where adj is the transpose of the cofactor matrix.
The dissipation distance D: Q x Q — [0, +00) is then defined as

D(q,3) = /Q Z(q) - 2(@)|dz. (1.3)

Note that a rigid body rotation does not create any dissipation. Indeed, let us take a state ¢ = (y, m) and
a rigid motion T'(€) := R&+c. Given the new state ¢ = (3, m), where g := Toy and m == R (moT ),
we have D(gq,q) = 0.

Existence of time-continuous solutions associated to the energy functional in (1.1) and the dissipation
(1.3) is out-of-reach in our framework, due to a lack of compactness of the Lagrangean magnetizations in
(1.2). In this latter part of the paper, we thus resort to a regularized counterpart to (1.1), in which the
energy functional is augmented by the total variation of the cofactor matrix of the deformations. Namely,
for every q € Q, we assume the internal energy of the system to be given by

E(q) = E(q) + | D(cof Vy)|(22). (1.4)

This regularization brings us to the theory of nonsimple materials initiated by Toupin [55, 56] and later
extended by many authors. See [3, 45, 50|, for instance. The idea is to assume that the stored energy
density depends also on higher gradients of the deformations. More regularity allows us to work in a
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stronger topology and pass to the limit in the dissipation. In this work, we apply a fairly weak concept
of nonsimple materials introduced in [6] under the name of gradient polyconvex materials, and assume
only that cof Vy € BV (€;R3*3). See also [34].

We present below a simplified statement of our second main result. We refer to Theorem 4.6 for its
precise formulation.

Theorem 1.2. Let ¢° be a suitably well-prepared initial datum. Then, there exists a quasistatic evolution
t — q(t) associated to the energy in (1.4) augmented by external loads and to the dissipation in (1.3),
such that q(0) = ¢°.

Proofs of both main theorems rely on weak lower semicontinuity, polyconvexity, convexity and fine prop-
erties of injective deformations. Our proof of Theorem 1.2 is based on semidiscretization in time and
passage to the “time-continuous” limit in the spirit of [45]. We point out that existence of time-discrete
solutions can be proven without higher order terms, cf. Subsection 4.1. The regularization is only needed
to pass to the time-continuous setting.

The paper is organized as follows. In Section 2 we recall some preliminary results on the invertibility
of Sobolev functions. Section 3 is devoted to the proof of Theorem 1.1, whereas Section 4 describes the
quasistatic problem and contains the proof of Theorem 1.2.

2. PRELIMINARIES

In this section we collect some results regarding the invertibility of Sobolev maps with supercritical
integrability. Let Q C R? be a bounded Lipschitz domain. We consider maps in W17 (Q; R?) with p > 3.
Any such map admits a representative in C°(Q; R?) which has the Lusin property (N) [42, Corollary 1],
i.e. it maps sets of zero Lebesgue measure to sets of zero Lebesgue measure. Henceforth, we will always
tacitly consider this representative. In this case, the image of measurable sets is measurable and the area
formula holds [42, Corollary 2 and Theorem 2]. As a consequence, if the Jacobian determinant is different
from zero almost everywhere, then the map has also the Lusin property (N~1), i.e. the preimage of every
set with zero Lebesgue measure has zero Lebesgue measure.

Let y € W1P(Q;R3). To make up for the fact that y(Q) might not be open, even if det Vy > 0 almost
everywhere, we introduce the deformed configuration, which is defined as Q¥ = y(Q) \ y(9€). To prove
that this set is actually open, we employ the topological degree. Recall that the degree of y on Q is a
continuous map deg(y,,-): R3\ y(0Q) — Z. For its definition and main properties, we refer to [14,
Chapter 1] or [53, Chapter 3].

Lemma 2.1 (Deformed configuration). Let y € W1P(;R?) be such that det Vy > 0 almost every-
where in 2. Then, the deformed configuration QY is an open set that differs from y(Q) by at most a set
of zero Lebesgue measure. Moreover Q¥ = y(Q2) and 9QY = y(99N).

Proof. We claim that Q¥ = {& € R?\ y(99) : deg(y,, &) > 0}. Once the claim is proved, we deduce
that QY is open. Indeed, the set on the right-hand side is open by the continuity of the degree.
Let £, € R\ y(99Q) be such that deg(y,,£&,) > 0. Then, by the solvability property of the degree,
&, € y(Q) and, in turn, &, € QY. Conversely, let £, € QY. Denote by V the connected component of
R3 \ y(09Q) containing &, and consider R > 0 such that B(&,, R) CC V. Let ¢ € C>°(R3) be such that
¥ >0, suppyy C B(&;,R) C V and [ps9d€ = 1. Then, by the integral formula for the degree, we
compute
deg(y,Q,ﬁ):/woydetVydm:/ 1 oy det Vy da.

Q y~1(B(§o,R))
As oy >0ony Y(B(&),R)) and det Vy > 0 almost everywhere, we obtain deg(y,2,£&) > 0 and this
proves the claim.
By the Lusin property (N), we have #3(y(Q) \ Q¥) < #3(y(0Q)) = 0. For simplicity, set U =
y 1Y) = Q\ y Yy (99Q)), so that y(U) = QY. Then, Q\ U = y~1(y(09Q)), so that £3(Q\ U) = 0 by
the Lusin properties (V) and (N~!). In particular, U is dense in Q.
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Figure 2. The deformation in Example 2.2.

We prove that Q¥ = y(Q). As Q¥ C y(Q), we immediately have Q¥ C y(Q) = y(Q). Let & € y(Q) and
consider x € ) such that y(z) = £&. By density, U = Q. Thus, there exists (x,,) C U such that x,, — =
and, in turn, &, = y(x,) — & As (§,) C QY, this yields £ € Qv.

Finally, we prove that 0Q¥ = y(92). This follows combining

00 = Qv \ (Q¥)° = y() \ ¥ = (y(Q) \ y()) U (y(Q) N y(99)) C y(99)

and

90 = QVNR3\ Q¥ = y(2) N (R3\ y(Q)) Uy(092) D y(2) Ny(90) = y(0).

The next example clarifies the difference between the sets y(2) and QY.

Example 2.2 (Ball’s example). The following is inspired by [2, Example 1]. Let Q = (—=1,1)% and
write @ = QT UPUQ™, where

QF =(0,1) x (=1,1)%, P:={0} x (-1,1)%, Q== (-1,0) x (=1,1)2
Define y: Q — R? by y(x) = (21,12, |21| 23), where & = (x1,22,23). The corresponding deformed set is
depicted in Figure 2. Then y € WH°(Q;R3) and for every © € Q\ P we have

1 0 0
Vy(z) = 0 1 0
xyx3/|z| O |zq]
In particular, det Vy > 0 on Q\ P. We have y(Q1) = VT, y(P) = S and y(Q~) = V~, where, for
£ — (51762763); we set
VE={(eR:0<& <1, —1<& < 6] <&
S ={0} x (-1,1) x {0},
Vo={¢cR?: —1<& <0, -1<& <1, 6] < -4}
Note that ylo\p is injective, but y is not a homeomorphism. Also, y(2) = VTt USUV~ is not open.
Instead, QY = VT UV™, since S C y (Pmaa), and this set is open. Note also that, while y(Q) is
necessarily connected, the deformed configuration QY is not.
Remark 2.3 (Topological image). Let y € W1P(Q;R3). The topological image of y is given by
the set imr(y,Q) = {& € R3\ y(09Q) : deg(y,Q,&) # 0}. Note that deg(y,Q,&) = 0 for every
¢ € R3\ y(Q), so that imr(y,) C y(Q). In relation with the problem of invertibility of deformations
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in elasticity, the topological image was first considered in [54] and then in several other contributions
[5, 27, 28, 29, 47, 48, 52]. Note that in Lemma 2.1, we prove that, if det Vy > 0 almost everywhere, then

0¥ =imr(y,Q) = {£ € R*\ y(99) : deg(y, 2, £) > 0}.

For more information about the topological properties of Sobolev maps with supercritical integrability,
we refer to [33].

We now consider the invertibility of Sobolev maps with supercritical integrability p > 3. Let y €
WP (Q;R?) with det Vy > 0 almost everywhere. Assume that y is almost everywhere injective, i.e.
there exists a set X C Q with .#3(X) = 0 such that Y|\ x is injective. In this case, we can consider the
inverse y\RX: y(Q\ X) — Q\ X. Note that Z3(y(X)) = 0 by the Lusin property (N). We define the

map v: Q¥ — R? by setting

o(€) = {ygix(o, if € € ¥\ y(X), 2.1)

a, it &€ e QYnNy(X),

where a € R? is arbitrarily fixed. The map v satisfies v o y = id almost everywhere in  and y o v = id
almost everywhere in QY. Since y maps measurable sets to measurable sets, the measurability of v
follows. As y has both Lusin properties (N) and (N~!), the map v has the same properties. Moreover,
v € L*®(¥;R3) since v(Q¥) C QU {a} and Q is bounded.

We remark that the definition of v in (2.1) depends on the choice of the set X where y is not injective
and of the value a € R3. However, as y has the Lusin property (N), its equivalence class is uniquely
determined and coincides with the one of the classical inverse y~!, where the latter is defined out of a
subset of y(2) with zero Lebesgue measure. Hence, with a slight abuse of notation, we will denote this
equivalence class of functions defined on Q¥ by y~! and we will refer to it as the inverse of y.

Remark 2.4 (Ciarlet-Necas condition). Let y € W'P(Q;R3) be such that det Vy > 0 almost
everywhere. Then, y is almost everywhere injective if and only if it satisfies the Ciarlet-Necas condition
[10], which reads

/ det Vydz < 23(y()).

This equivalence easily follows from the area formula [10, p. 185]. Note that the Ciarlet-Necas condition
is preserved under weak convergence in W1P(2;R?) thanks to the weak continuity of minors and the
Morrey embedding. As a consequence, given (y,,) C W1P(2;R3) such that each y,, is almost everywhere
injective with det Vy,, > 0 almost everywhere, if y,, — y in WHP(Q; R3) for some y € WHP(Q;R3) with
det Vy > 0 almost everywhere, then y is almost everywhere injective. Note that the condition det Vy > 0
almost everywhere has to be assumed a priori.

The inverse y~! of y turns out to have Sobolev regularity. Note that this makes sense since, by definition,
y~ ! is defined on the deformed configuration Q¥, which is open by Lemma 2.1. The Sobolev regularity
of the inverse has been proved for more general classes of deformations, such as in [5, Proposition 5.3],
[29, Theorem 9.3], [52, Theorem 4.6], and [54, Theorem 8]. For convenience of the reader, we recall the
proof. Note that here the almost everywhere injectivity is assumed a priori.

Proposition 2.5 (Global invertibility). Let y € W1P(Q;R3) be almost everywhere injective with
det Vy > 0 almost everywhere. Then, y=* € W (Q¥; R?) with Vy~—! = (Vy) Loy~! almost everywhere
in QY. Moreover, cof Vy=! € LY (Q¥;R3*3) and det Vy~—* € L1(QY).
Proof. By the Piola identity [24, Proposition 3, p. 235], we have
/ cof Vy : V¢{dz =0 (2.2)
Q

for every ¢ € C2°(£;R?). By density, this actually holds for ¢ € Wol’q/ (2;R?), where q := p/2. Let ¢ €
C>(Q) and ¢ € C2°(Q¥;R3). Choosing ¢ = pp oy in (2.2), after some simple algebraic manipulations,
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we obtain the following identity:
f/gpdiw/:oydetVydm:/1,boy®Vg0:conyda:. (2.3)
Q Q

Let X C Q with .#3(X) = 0 be such that Ylo\x is injective. For clarity, let us consider the representative
v of y~!in (2.1) and let us fix a representative of Vy. Set D := Q\ (y~!(y(9Q)) U {det Vy < 0} U X),
so that v = y|p' on y(D) and Vy is invertible on D. Let ® € C°(Q¥;R3*3) and denote its rows by
®' = (D4, DL, <I>§)T7 where i = 1,2, 3. Using the change-of-variable formula, we compute

—/ v~div‘I>d£:—/ y\Bl-div@déz—/ x - div® o y det Vy da
Qv y(D) D

3
:—/m-div@oy detVyda::—Z/xidiv@ioy det Vy dx.
Q —Ja

Then using (2.3) with p(z) = x; for every « € Q and (&) = ®*(£) for every £ € QY, we obtain

3 3
f/ v-div®@d€ = Z / q);oy(cony)g de = Z / <I>§- oy (ad] Vy)é dx
Qv Q Q

i,j=1 1,5=1

:/<I>oy:8Ldijd:c:/<I>oy:(Vy)_1 det Vy da
Q Q

:/ Poy: (Vy) ! detVyd:cz/ @ (Vy) ' oylp' d,
D y(D)

where, in the last line, we used again the change-of-variable formula. Hence, as .Z3(Q¥ \ y(D)) = 0, we
deduce that v admits a weak gradient with a representative given by

_ J(Vy)Ttoylpl (&) if€ e y(D),
Vo(§) = {A D it ¢ c v\ (D),

where A € R?*3 is arbitrary. Thanks to the Lusin property (N), the equivalence class of Vv is uniquely
determined. Moreover, it belongs to L!(Q¥;R3*3). Indeed, by the change-of-variable formula

/ Wolde= [ |(Vy) Y oylp!de = / |(Vy)~] det Vy dae
Qv y(D) D

:/ |adij|dw:/ ladj Vy| dx.
D Q

Thus, v € WH1(QY;R3). Similarly, using the identity adj (F~") = (det F)"'F for every F € RY*%, we
compute

/ Jadj Vo] dé = (detVyrloyBl|Vy|oy|51ds=/ |Vy|dw:/|Vy|dw,
Qv y(D) D Q

while, using the identity det(F~') = (det F)~' in F € R3*®, we obtain

det Voda = / (det Vy)~toy|pl dé = £3(D) = £3(Q).
y(D)

Therefore, cof Vv € L1(Q¥;R3*3) and det Vv € L(QY). O

Qv

Remark 2.6 (Area formula for the inverse). Let y € WP(Q;R?) be almost everywhere injective
with det Vy > 0 almost everywhere. Let X C Q with .#3(X) = 0 be such that Ylo\x is injective and
let v be the representative of y~! in (2.1). By Proposition 2.5, v € W11(Q¥;R?). Since y has the Lusin
property (N~1), the map v has the Lusin property (N). Moreover, v is almost everywhere injective.
Thus, we can use the area formula to estimate the measure of preimages of sets via y. Let F' C R? be
measurable. Then y~1(F) := {z € Q: y(x) € F}. We assume that F' C y(£2) and we write

F=(Fny(09)u(Fny(X))U(F\ (y(090) Uy(X))),
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so that
y (F) =y (Fny0Q) Uy (FNny(X) Uy ' (F\ (¥(02) Uy(X)))
=y {(FNy(09Q) Uy ((FNy(X)) Un(F\ (y(892) Uy(X))),
where, in the last line, we used (2.1). Exploiting both Lusin properties (N) and (N ~1!) of y and the Lusin

property (N) of v, we have Z3(y~1(F)) = Z3(v(F \ (y(0Q) Uy(X)))) = L3(v(F)). Finally, applying
the area formula [26, Theorem 2] with v, we compute

L3y H(F)) :53(U(F))=/Fdewvds. (2.4)

3. STATIC SETTING

Let © C R3 be a bounded Lipschitz domain. For p > 3 fixed, the class of admissible deformations is
given by

Y= {y e WhP(Q;R3) : det Vy > 0 a.e., y a.e. injective, y =7 on F} , (3.1)
where I' C 99 relatively open with #2(I") > 0 and y € C°(T; R?) are given.

Example 3.1. Let Q and y be as in Example 2.2. Given I := {—1,1} x (=1,1)? and ¥ = id, we have
y € Y. In particular, this is a case in which Y # (.

Henceforth, we identify each y € ) with its continuous representative and we set Q¥ = y(Q) \ y(99Q).
Then, admissible magnetizations are given by maps m € WH2(Q¥;S?). Note that this makes sense as
QY is open by Lemma 2.1. Thus, the class of admissible states is defined as

Q:={(yym)€eQ: ye¥, me W (Q¥;S%}. (3.2)
We endow the set Q with the topology that makes the map g = (y, m) — (y, xavm, xqov Vm) from Q
to WhP(;R?) x L2(R3;R3) x L2(R?;R?**3) a homeomorphism onto its image, where the latter space is
equipped with the weak product topology. Hence q,, — q in Q if and only if the following convergences
hold:

Y, =y in WHP(QRY), (3.3)
XQun M, — Xavm in L?(R?; R?), (3.4)
Xawn Vim, — Yoy Vim in L2(R3; R3*3). (3.5)

In this case, up to subsequences, we actually have xqu. m, — xovm in L%(R3;R3) for every 1 < a < co.

The energy functional E': Q — R is defined, for ¢ = (y, m), by setting

B@= [ W(vgmoydeta [ [VmPag+ 2 [ [VeuPatn [ cutmemdg (30
Q Qv R3 Qv

The first term represents the magnetoelastic energy of the system. Note that, as y satisfies the Lusin
property (N~1), the composition m o y is measurable and its equivalence class does not depend on the
choice of the representative of m. The nonlinear magnetoelastic energy density W : Riﬁ x §% — [0, +00)
is continuous and satisfies the following two assumptions:

(coercivity) there exist a constant K > 0 and a Borel function +: [0, +00) — [0, +00) satisfying
lim ~y(h) = 400 such that
h—0t
W(F,A) > K|F[P + y(det F) (3.7)
for every F € R7* and A € §%;
(polyconvexity) there exists a function W R‘j_xg’ X Rixg x Ry x S? = [0, +00) such that W(, Y A)
is convex for every A € S? and there holds
W(F,\) = W(F,cof F,det F,\) (3.8)
for every F € RY*® and A € §%
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The second term is the exchange energy and comprises the parameter o« > 0. The third term is called
magnetostatic energy and involves the function ¢, : R® — R which is a weak solution of the magnetostatic
Maxwell equation:

Al = div(xqum) in R3. (3.9)
This means that (,,, belongs to the homogeneous Sobolev space

VI2(R?) = {p € L} (R?) : Vg € L*(R%R?)}

loc

and satisfies the following;:
Vo e VEA(R?Y), / Vim - Ve d€ = / xavm - Vo dé.
R3 R3

Note that such weak solutions exist and are unique up to additive constants [5, Proposition 8.8], so
that their gradient is uniquely defined. The fourth term describes the Dzyaloshinskii-Moriya interaction
energy and it is characterized by the parameter x € R. In particular, the energy E can assume negative
values.

The main result of this section is the existence of minimizers of the energy E in (3.6). Recall the definition
of the class of admissible states in (3.1) and (3.2).

Theorem 3.2 (Existence of minimizers). Assume p > 3 and Y # (). Suppose that W is continuous
and satisfies (3.7) and (3.8). If there is q € Q such that E(q) < 400, then the functional E admits a
mainimizer in Q.

We begin by proving a compactness result. Recall the definition of the function v in (3.7).
Proposition 3.3 (Compactness). Let (q,,) C Q with q,, = (y,,, m,) satisfy
IVYullie@pexsy <O, |IVmn|[p2@uagexsy <O, |y(det Vy, )|y ) < C (3.10)

for every n € N. Then, there exists ¢ € Q with ¢ = (y, m) such that, up to subsequences, we have
q, — qin Q and m, oy, — moy in L*(4R?) for every 1 < a < cc.

Proof. For convenience of the reader, the proof is subdivided into three steps. C' > 0 will be a generic
constant, whose value may change from line to line.

Step 1 (Compactness). By (3.10), using the Poincaré inequality with boundary terms, we deduce that
(y,,) is bounded in W1P(Q; R3) . Thus, up to subsequences, (3.3) holds for some y € WP (Q; R3).

We claim that y € ). Given Remark 2.4 and the compactness of the trace operator, we only have to
prove that det Vy > 0 almost everywhere in €). By the weak continuity of minors, det Vy,, — det Vy in
LP/3(Q). Then, for every F C Q measurable, we have

/ det Vydx = lim/ det Vy,, dx > 0,
F " JF

and, given the arbitrariness of F', we deduce that det Vy > 0 almost everywhere in 2. By contradiction,
suppose that det Vy = 0 on a measurable set G C Q with .#3(G) > 0. In this case, up to subsequences,
det Vy,, — 0 almost everywhere in G, and, taking into account (3.7), we obtain y(det Vy,,) — +oo
almost everywhere in G. Then, by the Fatou lemma, we obtain liminf,, [ o (det Vy,,) de = +oco, which
contradicts (3.10). Therefore, det Vy > 0 almost everywhere in Q.

The compactness of the sequence (g,,) is proved as in [36, Proposition 2.1]. By the Morrey embedding,
we have y,, — y uniformly in Q. From this, we obtain the following:

VAcCcC QY%open, ACQY» forn> 1 depending on A, (3.11)

YO DD Q¥open, O DNY forn>> 1 depending on O. (3.12)

To see (3.11), let A CC Q¥ be open so that dist(0A; 00Q¥) > 0. Recall that 9QY = y(9N) by Lemma 2.1.
Then, for n > 1 depending on A, we have

19— ll oo s < dist(94;y(00)).
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Let £ € A. We obtain

1Y = Yllco@ms) < dist(§y(99)),
and, by the stability property of the degree, we deduce &€ ¢ y,,(0€) and deg(y,,, 2, &) = deg(y, 2, &) for
n > 1. As deg(y,Q,&) > 0 by Remark 2.3, the solvability property of the degree gives & € QY» for
n > 1. This proves (3.11), while (3.12) is immediate.

Let A CC QY be open and n > 1 as in (3.11). From (3.10), we have

/ |Vm,|? d¢ g/ |Vm,|? d¢ < C, (3.13)
A QYn

for every n > 1. Recalling that magnetizations are sphere-valued, we deduce that (m,,) is bounded in
W12(A;R?), so that, up to subsequences, m, — m in WH2(4;R?) for some m € WH2(A;R3). By
the Rellich embedding, m,, — m in L?(A;R3) and, in turn, |m| = 1 almost everywhere in A. The
map m € VVILQ(Qy;SQ) does not depend on A. In particular, as the right-hand side of (3.13) does not

ocC

depend on A, we actually have m € W2(Q¥;S?). Therefore, q := (y, m) € Q. Moreover, arguing with
a sequence (A;) of open sets such that A; CC A1 CC QY for every j € Nand QY = Ujoi1 Aj, we select
a (not relabeled) subsequence of (m,,) such that

VA CC Q¥open, m, — m in WH?(A), m, — m almost everywhere in A. (3.14)

We remark that, for every A CC Q¥ open, the sequence (m,,) C W12(A;S?) is defined only for n > 1
depending on A.

Step 2 (Convergence in Q). In order to prove that q,, — ¢ in Q, we are left to show (3.4) and (3.5).
To prove the first claim, we consider ¢ € L?(R3;R3). We need to show that

lim | (xqu.m, —xovm) - @dx =0. (3.15)
n R3

Let A,O C R3 be open such that A CC Q¥ CC O. We write

/ (xounmy — xoum) - pdx = / (XQun My, — xoum) - pdax
R3 A
+ / (Xavn My — xaum) - pdx (3.16)
o\A

+ / (xqvnmy, — Xqvm) - pde.
R3\O
For the first integral on the right-hand side of (3.16), by (3.11) for n > 1 we have
/ (XQvam, — xXovm) - pdx = / (m, —m) - pde, (3.17)
A A

where, as n — oo, the right-hand side goes to zero since m,, — m in W12(A;R3) by (3.14). Using the
Holder inequality, the second integral on the right-hand side of (3.16) is estimated as follows

<2V 230\ A)lellL2rere).- (3.18)
By (3.12), the third integral on the right-hand side of (3.16) equals zero for n > 1. Therefore, we obtain
lim sup

<2 /ZHONA) llgllzawoms).

from which, letting O N\, Q¥ and A Q¥ so that £3(0 \ A) — £3(00¥) = 0, we deduce (3.15). Here,
we used that QY = y(9Q) by Lemma 2.1 and that #3(y(9€)) = 0 thanks to the Lusin property (N).
Thus (3.4) is proved.

For the second claim, we proceed in a similar way. Given ® € L?(R3;R3*3), we need to show

/ (Xaua My — Xavm) - pdx
O\A

/ (XQyn my — XQym) : QDd(L'
R3

lim | (xau. VM, — xovVm): ®dx =0. (3.19)
n Jr3
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As before, we consider A,O C R? open with A CC Q¥ CC O and we write

/ (xovn VM, — xqeVm) : ®dx = / (xouw. VM, — xqvVm) : ®dx
R3 A
+ / (Xovn VM, — xov Vm) : @ dx (3.20)
O\A

+ / (xQun VM, — xqvVm) : ®dx.
R3\O
For the first integral on the right-hand side of (3.20), by (3.11), for n > 1 we have
/ (xovn VM, — xqvVm) : ®dx = / (Vm,, — Vm) : ®dx,
A

A

and, as n — oo, the right-hand side goes to zero since m,, — m in WH2(4;R3) by (3.14). Note that
the sequence (yqu. Vm,) C L?(R3;R?**3) is bounded by (3.10). Using the Holder inequality, the second
integral on the right-hand side of (3.20) is estimated as follows:

/ (xava VM, — xovVm) : @ dx
o\A

< (||X9ynvmn||L2(R3;R3X3) + HXvamHLQ(R3;R3X3)) ||‘I)||L2(O\A;R3XS)
< (C+]|
By (3.12), the third integral on the right-hand side of (3.20) equals zero for n > 1. Therefore, we obtain

Xvam||L2(R3;R3x3)) H@HLQ(O\A;RZSX?)).

lim sup
n

From this, letting O N\, Q¥ and A QY so that Z3(0 \ A) — Z£3(00Y) = 0 and, in turn,
|®]|L2(0\ asr3x3) — 0, we deduce (3.19). Thus also (3.5) is proved.

/ (Xoun VM, — xov Vm) : @ dx
R3

< (C+ HXvam|‘L2(R3;R3X3)) ||¢)||L2(O\A;R3X3)~

Step 3 (Convergence of the compositions). By Proposition 2.5, y,! € WhH(Q¥~;R3) with
det Vy, ! € L} (Q¥») for every n € N . Let A CC QY be open and recall (3.11). We claim that the
sequence (det Vy,, 1) C L1(A) is equi-integrable. To show this, we argue as in [5, Proposition 7.8]. Define
7: (0,400) — [0, +00) by setting F(k) := k~(1/k). In this case
1 — =1 1 =1 =
krtoo K /c—lgloo% /®) hs0+ V() = +oo,
where we used (3.7). Using the change-of-variable formula, we compute

[ At vy g = [ 1/dec Ty det vy, dg
QYn Q¥Yn

= / ~v(det Vy,,) oy;1 (det Vyn)_1 oy,_lldé
Qvn

— [ A(dervy,) de,
Q

where the right-hand side is uniformly bounded by (3.10). Thus, (det Vy, 1) C L'(A) is equi-integrable
by the de la Vallée-Poussin Criterion [22, Theorem 2.29] for n > 1. In particular, using the area formula
as in Remark 2.6, we deduce the following:

for every € > 0 there exists § > 0 such that for every F' C A measurable

. . 3.21
with .Z3(F) < ¢ and for every n € N we have .Z3(y,, }(F)) < e. (3:21)

We now prove that m, oy, — moy in L*(;R3?). Let n > 0. Take A CC QY open such that
L3(Q\ y~1(A)) < n. We compute

/|mnoyn—moy|dm:/ |mnoyn—moy|daz+/ lm, oy, —moy|dex. (3.22)
Q Q\y=1(4) ¥y~ (4)
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As magnetizations are sphere-valued, the first integral on the right-hand side of (3.22) is bounded by
2.73(Q\ y~1(A)) < 2n. For the second integral on the right-hand side of (3.22), we split it as

/ |mnoyn—moy\d$:/ lm, oy, —moy|dx
y~'(4) Y~ (A)\yr ' (A)

+/ |mnoyn_moy|dw'
Yy (A)Nyn ' (4)

We claim that #3(y~1(A) \ y,,}(A)) = 0, as n — oco. To see this, let V C R? be open and such that
ACcV cc QY. In this case, y(y 1 (A4)) = A CC V so that, by uniform convergence, y,,(y~*(4)) C V
for n > 1 which, in turn, gives y~!(A) C y,;}(V) for n > 1. Then, we have

Yy (A \ Y (A) oy (V) Ny H(A) =y (VI A), (3:24)
for n > 1. In particular, for ¢ > 0 arbitrary, Z3(V \ A) < 6 with 6 > 0 given by (3.21). Hence, for
n > 1 depending only on ¢, from (3.21) and (3.24), we obtain Z3(y~(A4) \ y,,'(A)) < ¢ and the claim
is proved. Thus, as magnetizations are sphere-valued, the first integral on the right-hand side of (3.23)
goes to zero, as n — 00.

(3.23)

To estimate the second integral on the right-hand side of (3.23) we proceed as follows. Take ¢ = 1 and
let 6 > 0 be given by (3.21). We assume that § is sufficiently small in order to have Z3(y~1(F)) < n
for every F' C A measurable with .#3(F) < 6. By the Lusin Theorem, there exists B; C A closed with
£3(By) < 6/2 such that m| 4\ p, is continuous while, by the Egorov Theorem, there exists By C A closed
with .#3(Bs) < §/2 such that m,, — m uniformly on A\ By. Set B := B; U Ba, so that B C A is closed
with .Z3(B) < §. We write

vy (A) Ny H(A) = (71 (A) Ny '(A) N (™1 (B) Uy, ' (B)) U (v~ (A\ B) Ny, (A\ B))

and we accordingly split the second integral on the right-hand side of (3.23) as

/ |mnoyn—moy|dw:/ |my, oy, —moy|dz
Yy (A)Ny, ' (4) (y=1 (AN (A))n(y=1(B)uy. ' (B))

(3.25)
—|—/ |my, oy, —moy|de.
y~1(A\B)Ny,, ' (A\B)
The first integral on the right-hand side of (3.25) is simply estimated by
/ a0y, —moylde < 2%y~ (B)U £y, ()
(v (W)Y ()N (¥ (B)uys *(B)) (3.26)

<2(L%(y~'(B)) + 2y, (B))
< 4,
where, in the last line, we used (3.21). For the second integral on the right-hand side of (3.25), we have

|mnoyn—moy|dms/ im0y, — moy,|de

/yl(A\B)ﬁynl(A\B) y~1(A\B)Ny, ' (A\B)

(3.27)

+/ lmoy, —mouy|de.
y~1(A\B)Ny, ' (A\B)

Given our choice of B, for n > 1 depending only on 7, we have Sup 4\ B |m,, —m| < n. In particular, for
every € y, (A \ B), we have |m,(y,(z)) — m(y,(z))| < n, so that

/ |m, oy, —mouy,|dx <nL3Q).
y~1(A\B)ny, ' (A\B)
On the other hand

/ lmoy, —moy|dx = / Xy~1(A\B) Xy (A\B) lm oy, —moy|de.
y~1(A\B)Ny, ' (A\B) Q
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Let z € y~1(A\ B), so that y(x) € A\ B. As A is open and B is closed, by uniform convergence we
have y,(z) € A\ B or, equivalently, z € y,,(A\ B) for n > 1. By our choice of B, we also have
m(y,(z)) - m(y(x)), as n — oo. Thus, by the Dominated Convergence Theorem, the second integral
on the right-hand side of (3.26) tends to zero, as n — oo. Combining (3.22)—(3.23) and (3.25)—(3.27), we
obtain

fimsup [ fm, oy, ~moylde < (6425
n Q

which concludes the proof. The convergence of (m,, oy,,) in L*(Q;R3) for 1 < a < +oo follows by an
analogous argument. 0

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. First, we prove that the energy E is bounded from below. Let q € Q with
g = (y,m) and, for simplicity, set r := p/3. By the Holder inequality and the Young inequality, we have

Z3(QY) g/detVydac SC’/ |Vy|3da:
Q Q

< C||Vyl[isqupsns) L3 (3.28)
Ce" C
<

P 3
— r HVyHL;D(Q;]R.%d) +Wﬁ (Q),

where € > 0 is arbitrary.

Using again the Holder inequality and the Young inequality and (3.28), we estimate

[EPMI(g)| < | | Jeulm]dg < 20| | |Vm]ag
Qv Qv

< 2|/§| vaHLZ(Qy;RBXS) ,,?S(Qy)l/2
, (3.29)
2 K o3
< (svaHL2(Qy;R3x3) + ? <z (Qy)
Cr2e" Cw’
2 _—
< (5|\Vm\|L2(Qy;R3x3) + T ||Vy||ip(Q;R3><3) + e’ s

where ¢ > 0 is arbitrary. Hence, from (3.7) and (3.29), we deduce
E(q) > E%(q) + E™*(q) + E”M(q)

Z°(Q),

Cr2em
> (K — 5 ) ||Vy|\ip(Q;R3x3) + (a - 5) vaHiz(Qy;R?’X?’)

Cr?
r'e™’d
so that, for § < a and ¢ < (C~'rK§k2)1/", we obtain

E(q) > Ch ‘|vy||12p(gz;R3x3) + Co ||vm||i2(QH;JR3X3) —Cs + ||'7(det vy)”ﬂ(ﬂ)y (3-30)

where Cy(p, K, k) > 0, Co > 0 and C3(Q, p, k) > 0. This yields I :=infg E > — Cs.

Let (gq,,) C Q with q,, = (y,,, m,) be a minimizing sequence for E, namely such that FE(q,) — I, as
n — oo. In particular, F(q,,) < C for every n € N. Thanks to (3.30), we deduce (3.10) and we can
apply Proposition 3.3. Then, there exist a subsequence of (g,,) (not relabeled) and an admissible state
q = (y,m) € Q such that q,, — g in Q@ and m,, oy, — moy in L*(;R?) for every 1 < a < oco.

We claim that

+ |[y(det Vy)|| 1 (o) — 23(9),

E(q) < liminf E(q,), (3.31)

so that g is a minimizer of E, as E(q,,) — I. We focus on the elastic energy first. We have Vy, — Vy
in LP(Q;R3*3) and, by the weak continuity of minors, also cof Vy, — cof Vy in LP/2(€;R3*3), and
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det Vy,, — det Vy in L"(Q2). Moreover, the subsequence can be chosen in order to have m, oy, — moy
almost everywhere in 2. Thus, given (3.8), applying [3, Theorem 5.4] we prove that

E(q) < lim inf ENq,,). (3.32)

We have xqu.m, — Yavm in L?(R3R3) and xquv.Vm, — xovVm in L?2(R3;R3*3). The lower
semicontinuity of the norm gives
E®¢(q) < liminf E*“(q,,), (3.33)

while, as

curl my, - m,, = (Gomy — zm2)m} + (9zml, — Oym3)m?2 + (9ym?2 — dam})m3

we have
EPMI(g) =1im EPMl(q,,). (3.34)

We focus on the magnetostatic energy. Denote by (,, a weak solutions of the Maxwell equation corre-
sponding to q,,. Thus, for every n € N and for every ¢ € V12(R?), there holds

/ V(- Vepd€ = / XQun My - Ve dE. (3.35)
R3 R3

Denote by V1:2(R3)/R the quotient of V1:2(R3) with respect to constant functions and recall that this is
an Hilbert space with inner product given by

(ko) = [ V- Vude

Testing (3.35) with ¢ = ¢, and using that |[xqu.my||z2Rs;rs) < C for every n € N by (3.28), we obtain
that [|[Ca]llvizmsyr = |[Vallr2@ersy < C for every n € N. Therefore, there exists ¢ € V1?(R?) such
that, up to subsequences, we have [¢,] — [¢] in V12(R?)/R, or equivalently, V(, — V( in L?(R3;R3).
Passing to the limit, as n — oo, in (3.35), we obtain that

/V§~st:/ awm - Vo de,
R3 R3

for every ¢ € V12(R). Thus ( is a weak solution of the Maxwell equation corresponding to g, so that
Emag(q) = &2 [|V(|[3, (R3;r3)- BY the lower semicontinuity of the norm, we conclude

E™M28(q) < liminf E™*8(q,,). (3.36)
Finally, combining (3.32)-(3.34) and (3.36), we obtain (3.31). O

Remark 3.4 (Existence with applied loads). The existence result given in Theorem 3.2 can be
extended to include applied loads. Consider f € LPI(Q; R3), g € Lp,(Z; R3) with ¥ C 99 relatively open
such that s#2(0Q\ (T UX)) =0, and h € L?(R3;R3), representing the applied body force, surface force
and magnetic field, respectively. Then, the functional

qHE<q)—/f~ydw—/g~yd%2— h-mde,
Q > Qv

where ¢ = (y, m), admits a minimizer in Q. Indeed, the functional determined by the applied loads is
continuous with respect to the topology of Q.

4. QUASISTATIC SETTING

In this section we prove the existence of quasi-static evolutions of the system driven by the energy E under
time-dependent applied loads and dissipative effects. The framework is the theory of rate-independent
processes [45] with the notion of energetic solutions. We start describing the general setting.

The applied loads are determined by the functions
feCcy0,T]; L (% R?), geCH0,T]; LY (Z;R%), he CY([0,T]; L2 (R%;R?),  (4.1)
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representing the external body force, surface force and magnetic field, respectively. Define the functional
L:]0,T] x Q@ — R by setting

Lita) = [ 0 yde+ [ gl ydr+ [ h(o)-mae. (42)
Q by Qv
where g = (y,m). The total energy of the system is given by the functional £: [0,7] x Q — R defined
by
Starting from (3.30), by a repeated application of the Holder inequality and the Young inequality and
using (3.28), we prove

5( ) > C]'lvyH P(Q;R3%3) +CQHVmHL2(Qy R3%3) /Qv(detVy) dili—Cg (44)

for every g = (y,m) € Q. Here, C1(Q,p, K,x) > 0, where K > 0 was introduced in (3.7), C3 > 0 and
Cs(Q,p,k, M, Mg, Mg, Mp) > 0, where M = [Yll o' (s:;r2) takes into account the boundary datum in
(3.1) and we set

My = [fllcoqo e @msy: Mo = llgllcoqorrr mmsy:  Ma = Ihllcooryze@ems)).
In particular, from (4.4), we deduce infjy 710 & > — Cs.

Given the regularity of the applied loads, for every ¢ = (y,m) € Q, the map t — L(t,q) belongs to
C1([0,T]). In particular, for every t € [0,7], we compute

DE(L q) = — DL /f ydw—/ (t)~yd,%”2—/m h(t) - m de. (4.5)

Employing again the Holder inequality and the Young inequality and exploiting (4.4), we prove the
estimate
where L := C(Q,p, K,k,M,L§,Lg,Lp) >0 and M = C(Q,p, K, k, M, My, My, Mp) > 0, where we set
Ly= ||f|\CO([O,T];LP’(Q;Rs))a Lg = 1gllcoo,17:10" (m:m3)),  Lh = ||h||00([07T];L2(R3;R3))'

From this, using the Gronwall inequality, we obtain

Et,q) + M < (E(s,q) + M)e =2, (4.7)
for every q € Q and s,t € [0,T] with s < t.
As in [50], we introduce the Lagrangean magnetization given, for g = (y,m) € Q, by

Z(q) = (adjVy) mo y. (4.8)

The dissipation distance D: Q x Q — [0, +00) is defined as

D(q,q) /IZ q)|dz. (4.9)

Moreover, the variation of any map q: [0,7] — Q with respect to D on the interval [s,¢t] C [0,T] is
defined by

Varp(q; [s, t]) == sup {ZD ,q(ti—1)) : I = (to,...,tn) partition of [s, t]} . (4.10)
=1
Here, by a partition of the interval [s, ] we mean any finite ordered set IT = (t,...,ty) C [0, T]" with

s=tg <ty <---<ty=-t. Note that in (4.10) each partition can have different cardinality.

The existence of energetic solutions is usually proved in two steps: first, one constructs time-discrete
solutions corresponding to a given partition of the time interval, then one obtains the desired solution
from the piecewise constant interpolants by compactness arguments considering a sequence of partitions
of vanishing size. These two steps will be addressed in the next two subsections. We point out that
in Subsection 4.1 we argue without higher-order terms and that the regularization is only added in the
passage to the time-continuous setting.
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4.1. Time-discrete setting. Let I = (to,...,tx) be a partition of [0,7]. We consider the incremental
minimization problem determined by II with initial data g € Q, which reads as follows:

find (q',...,q") € Q" such that each q' is a minimizer

- (4.11)

of g— E(ti,q) +D(¢""",q) fori=1,...,N.
The next result states the existence of solutions of (4.11) and collects their main properties. Recall the
definition of the total energy £ and of the dissipation distance D in (4.3) and (4.9), respectively. Recall
also (4.6).

Proposition 4.1 (Solutions of the incremental minimization problem). Assume p > 3 and
Y # (. Suppose that W is continuous and satisfies (3.7) and (3.8) and that the applied loads satisfy

(4.1). Let I = (to,...,tn) be a partition of [0,T] and let ¢° € Q. Then, the incremental minimization
problem (4.11) admits a solution (q',...,q") € QN. Moreover, if q° is such that
£(0,4°) < £(0,9) +D(q°,9) (4.12)
for every q € Q, then the following holds:
Vi=1,....,N,Vg e Q, &(t;,q') <&(ti,q) +D(d',9), (4.13)
Vizla"'va S(tiaqi)_g(ti—lvq )+D / at ) T, (414)
ti—1
Vi=1,...,N, E(t;,q")+ M+ D@ " q’) < (£(0,q°) + M)e"". (4.15)
j=1

Proof. The main point is to prove the existence of solutions of (4.11). Given a solution of (4.11) where
q° satisfies (4.12), then (4.13)-(4.15) are obtained by standard computations as in [44, Theorem 3.2].

It is sufficient to show that, for £ € [0,7] and q € Q fixed, the auxiliary functional F: Q — R given by
F(q) = E(t,q) + D(q, q), admits a minimizer in Q.

First note that, as D is positive, from (4.4) we obtain
Fla) = £t q) = CrlIVYlIL, qpsxsy + Col[Vm|T2(quiraxs) — Cs + [[1(det Vi)l L1q) (4.16)

for every q € Q with ¢ = (y, m). In particular, we deduce J = infg F > — C5.

Let (q,,) C Q with g,, = (y,,, M) be a minimizing sequence for F, namely such that F(q,,) — J. Thus,
F(q,,) < C for every n € N, and (4.16) yields (3.10). By Proposition 3.3, there exist ¢ € Q such that, up
to subsequences, we have q,, — q in @ and m,, oy, — moy in L%(;R3) for every 1 < a < co. Arguing
as in the proof of Theorem 3.2, we prove (3.31) while, using the Rellich embedding and the compactness
of traces, we show

L(t,q) = lignli(f, q,)- (4.17)

By the weak continuity of minors, adj Vy,, — adj Vy in LP/?(€; R3*3). Hence, we have Z(q,,) — Z(q)
in L'(Q;R3), and, by the lower semicontinuity of the norm, we deduce

D(q,q) < limninfD(a, q,)- (4.18)
Finally, combining (3.31), (4.17) and (4.18), we obtain

F(g) < limninf]:(qn) =J,
so that g is a minimizer of F. O

Remark 4.2 (Time-discrete energetic solutions). Note that (4.13) and (4.14) can be seen as the
discrete counterparts of the stability condition (4.38) and the energy balance (4.39) in Theorem 4.6,
respectively.
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4.2. Time-continuous setting. As it is common for finite strain theories, it is not possible to pass
from the time-discrete formulation to the time-continuous one in our setting without further higher-order
terms. Henceforth, we regularize the problem as follows. Recalling (3.1), we restrict ourselves to the
class of deformations

Y= {y € Y: D(cof Vy) € My(Q;R>***3)} (4.19)
so that the corresponding class of admissible states is given by
0= {(y.m): ye I mew'2ans))}, (4.20)

In (4.19), D(cof Vy) denotes the distributional gradient of cof Vy which is assumed to be given by a
bounded tensor-valued Radon measure.

Example 4.3. Let Q, P and y be as in Fxample 2.2 and recall Example 3.1. Then, y € Y. To see this,
for every @ € Q\ P with x = (z1, 22, 23), we compute

[zl 0 —zyz/|m
cof Vy(xz) = 0 |zq] 0
0 0 1

Set u(zx) = |z1| and v(x) = —x1 x3/|x1|. Then u € WH>(Q), while v € BV (Q) since
Dyv =w#?1_{0} x (—1,1)?,
where Dy denotes the distributional derivative with respect to the first variable and we set w(x) = 2x3.

Therefore y € ).

Recalling (3.6), the regularized energy E: Q — R is given by
E(q) = E(q) + E"*(q), (4.21)
where, for ¢ = (y, m), we set
E™8(q) = |D(cof Vy)|(Q). (4.22)
Here, | D(cof Vy)|(£2) denotes the total variation of the measure D(cof Vy) € My (Q; R3*3%3) over (.
Then, the corresponding total energy E: [0,T] x QO — R is defined as

E(t.q) = E(q) — L(t, q), (4.23)
where L is given by (4.2). Therefore, from (4.6) and (4.7), we deduce
Et,q) + M < (E(s,q) + M)e" =) (4.24)

for every q € O and s,t € [0,T] with s < t.

Let IT = (g, ...,tn) be a partition of [0,T]. Under regularization, the incremental minimization problem

determined by II with initial data ¢° € Q reads as follows:
find (¢',...,q") ¢ OV such that each q' is a minimizer (4.25)
of g E(t;,q) +D(¢" ', q) fori=1,... N. '

Similarly to Proposition 4.1, we have the following result.

Proposition 4.4 (Solutions of the incremental minimization problem under regularization).
Assume p >3 and Y # 0. Suppose that W is continuous and satisfies (3.7) and (3.8) and that the applied

loads satisfy (4.1). Let II = (to,...,tn) be a partition of [0,T] and let q° € Q. Then, the incremental
minimization problem (4.25) admits a solution (q',...,q") € QN. Moreover, if q° satisfies

vge 9, £(0,4°) <£&(0,g) +D(q"q), (4.26)
then the following holds:
Vi=1,...,N, VGe Q, &(tiq')<E(t,q)+D(q,q), (4.27)
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Vi:la"'vNa g(tiaqi)ig(ti—l,q )+D / aif aq 1) T, (428)
Vi=1,...,N, E(tiq)+M+> D@ " q)<(E(0,q°)+M)e". (4.29)
j=1

Proof. Again, the main pomt is to prove the existence of solutions to (4.25). Hence, we show that the
auxiliary functional F: Q — R defined by F(q) = £(f,q) +D(q, q), where € [0,T] and g € Q are fixed,
admits a minimizer in Q

First note that, by (4.4), we have
Fla) 2 E(tq) = CLlIVYIIL, x5 + Col V(32 (g gaxay — Ca

(4.30)
+ [|v(det Vy)[[L1(a) + [[D(cof V)| ar, (o;raxax3)

for every q € O with g = (y,m). In particular, we deduce J = infé F>- Cs.
Let (q,) C Q with q,, = (y,,,m,) be a minimizing sequence for F, namely such that F(q,) — J. As
F(q,) < C for every n € N, from (4.30) we obtain
VY, |l e orexsy < C, IV, | 2 (Qun sraxsy < C,
3(det Vg, )llzioy €€, [ID(cof Vi)l latyosmosans) < C.

In this case, we have ||cof Vy, || gy (q;rsxs) < C for every n € N. Thus, up to subsequence, we have
cof Vy,, — G in L'(Q;R**3),  D(cof Vy,,) = DG in My(Q;R3*3), (4.31)

for some G' € BV (2;R3*3). By Proposition 3.3, there exists ¢ € Q with q = (y, m) such that, up to
subsequences, q,, — q in Q and m,,0y,, — moy in L*(Q;R3) for every 1 < a < co. As cof Vy,, — cof Vy
in LP/2(Q; R3*3) by the weak continuity of minors, from (4.31) we deduce G = cof Vy. Hence, y € Y
and, in turn, q € Q.

Arguing as in the proof of Theorem 3.2, we prove (3.31), while, as in the proof of Proposition 4.1, we
show (4.17) and (4.18). By (4.31) and the lower semicontinuity of the total variation, we have

E™5(q) < liminf E™%(q,). (4.32)
Combining (3.31), (4.17), (4.18) and (4.32), we deduce

f(q) < liminff(qn) =J,
so that g is a minimizer of F. ]

Recall the definition of variation with respect to D in (4.10).

Proposition 4.5 (Piecewise constant interpolants). Assume p > 3 and 37 # (. Suppose that W
is continuous and satisfies (3.7) and (3.8) and that the applied loads satisfy (4.1). Let II = (tg,...,tN)
be a partition of [0,T] and let q° € Q satisfy (4.26). Let (q',...,q") € ON be a solution of the
incremental minimization problem (4.25) and define the (right-continuous) piecewise constant interpolant

qn: [0,T] — 0 as

Lot e [tis,t =1,...,N
an() =49, i f[l 1,ti) for some i =1,..., N, (4.33)
q ift="T
Then, the following holds:
vtell, ¥ge Q, E(t.qn(t) < &(t,g) +Dlgn(1).), (4.34)

Vs, t€Il: s<t, E(tqy(t)) —E(s,qu(s)) + Varp(qy; [s, t]) g/ ,E (T, q (7)) dr, (4.35)
M)

vt € (0,7, E(t,qu(t)) + M + Varp(q; 0,1]) < (£(0,4°) + (4.36)
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Proof. The claims (4.34) and (4.35) follow immediately from (4.27) and (4.28), respectively. We prove
(4.36). Let t € [0,T] and let 4 € {1,..., N} be such that t;_1 <t < ¢;. In this case, we have

au(t) =4, Varp(qy;[0,4]) = SD(qul,qj)
=1
Thus, using (4.24) and (4.29), we compute J
E(t,qu(t)) + M + Varp(gp; [0,1]) < (g(ti—la )+ M) elt=ti-n) 4 SD(qj‘l, @)

j=1

< | Etirqi) + M+ SD(qH,qj) rtt-tiy (437
j=1
< (g(O,qO) + M) oLt

(|

The main result of this section is the following.

Theorem 4.6 (Existence of energetic solutions under regularization). Assume p > 3 and y # (.
Suppose that W is continuous and satisfies (3.7) and (3.8) and that the applied loads satzsfy (4.1). Then,

for every q° € 8) satisfying (4.26), there exists an energetic solution q: [0,T] — Q of the regularized

problem which fulfills the initial condition q(0) = q°. Namely, the following stability condition and

energy balance hold:
vt e[0,T], Vae Q, E(t,q(t)) <E(t,@)+Dl(a(t),d), (4.38)

vt € [0,T], E(t,q(t)) + Varp(q;[0,t]) = £(0,¢°) / 0E (T, q(T (4.39)

In the proof, we will use the following version of the Helly Selection Principle given by [44, Theorem 5.1].

Lemma 4.7 (Helly Selection Principle). Let Z be a Banach space and let KK C Z be compact. Let
(zn) C BV([0,T]; Z) be such that for every n € N there holds

YVt € [0,T], zn(t) €K (4.40)
and
Var(z,;[0,T]) < C. (4.41)
Then, there exist a subsequence (z,, ) and a map z € BV ([0,T]; Z) such that there holds:
YVt e [0,T], zn,(t)— 2(t) in Z. (4.42)

The proof of Theorem 4.6 follows rigorously the well-established scheme introduced in [23]. Therefore,
we simply show how to lead the argument back to the original scheme. For additional details we refer to
[44, Theorem 5.2].

Proof of Theorem 4.6. Following [44, Theorem 5.2], we subdivide the proof into five steps.

Step 1 (A priori estimates). Let (II,) be a sequence of partitions of [0, 7] with II,, = (¢f,...,t} )
such that |IL,| == max{t} =t ;: i=1,...,N,} — 0, as n — oo. For every n € N, by Proposition 4.4,
the incremental minimization problem (4.25) determined by II,, admits a solution and, by Proposition
4.5, the corresponding piecewise constant interpolant q,, := gy, with q,, = (y,, m;) defined according
to (4.33) satisfies the following:

Vtell,, Vg€ Q, E&(t.q,(t) <&(tq)+D(g,(t),q), (4.43)

Vs,tell, : s<t, E(t,q,t)—E(s q,(s)+ Varp(q,; [s,t]) < / ,E(7,q, (1)) dr, (4.44)
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vt e [0,T], E(t q,(t) + M + Varp(q,;[0,t]) < (£(0,q°) + M)e*. (4.45)
In particular, from (4.45), we deduce that, for every n € N, there hold
vt e [0,T], &t q,(t)<C (4.46)
and
Varp(q,,; [0,7]) < C (4.47)

for some C(q°, T, L, M) > 0.
Step 2 (Selection of subsequences). From (4.4) and (4.46), for every n € N and t € [0,7] we have

VY, (| Lo (roxs) < C, IV ()] 22 (qun o) paxsy < C,
H’y(det Vyn(t))||L1(Q) S C, ||D(C0f Vyn(t))HMb(Q;R3X3X3) S C.

This shows that all the maps of the sequence (g,,) take values in the set K C Q defined as

B {a=@m) e 8 [F0lmanss <C. |Vlizqmsons < C.

||'y(det V@)HLl(Q) S C, HD(COf v@)HMb(Q;RSX‘sxs) S C}

Applying Proposition 3.3 and arguing as in the proof of Proposition 4.4, we prove the following:

for every (¢,) C K with §,, = (§,,, M) there exist (g,,) and q € Q with ¢ = (g, m)

such that g,,, — g in Q, my, 0y, — moyin L (Q; R3) for every 1 < a < oo, (4.48)

cof Vg, — cof Vg in L'(Q;R**?) and D(cof Vg, ) = D(cof Vg) in My (Q; R**3*3).

From this, we deduce that the set
K={z@: aek}

is compact with respect to the strong topology of L'(£;R3). Indeed, let (2,) C K be defined by
z, = 2(q,,) with q,, € K for every n € N. Then, by (4.48), we have cof Vg, — cof Vg in L' (Q;R3*3)
and My, 0y, — moy in L'(Q;R?). Therefore, we infer that 2, — 2 in L'(Q;R?), where 2 = Z(q).

Now, consider the sequence (z,) C BV ([0,T]; L*(;R?)) with z,(t) == Z(q,,(t)) for every t € [0,T].
Setting Z = L'(;R3), the sequence (z,,) satisfies (4.40) by construction, as the the maps of the sequence

(g,,) take values in K, while (4.41) holds in view of (4.47). Therefore, by Lemma 4.7, there exist a
subsequence (2,, ) and a map z € BV ([0, T]; L*(£;R3)) such that (4.42) holds.
For every n € N, define ¢,: [0,T] — R by setting U,,(t) := 8,£(t, q,,(t)). Note that, by (4.6) and (4.46),

the sequence (1,) is bounded in L>°(0,T'), hence, up to subsequences, ¥, 59 in L°(0,T) for some
¥ € L>°(0,T). If we define ¢: [0,T] — R as ¥(t) := lim sup,, J,,(¢), then 4 € L>°(0,T) and, by the Fatou

Lemma, 9 < 4.

Finally, for every fixed ¢ € [0,T], exploiting (4.48), we select a subsequence (ant (t)) (depending on t)
£

such that

(t) = q(t)in Q, my, oy, (t) = moy(t) in L(Q;R?) for every 1 < a < oo, (4.49)
€ 13

n,,

4

cof Vy,, , (t) — cof Vy(t) in LY (Q; R3%3), D(cofVy,, , (1)) = D(cof Vy(t)) in My(Q; R¥3%3)  (4.50)
4 4

for some q(t) € Q with q(t) = (y(t), m(t)) and In,, () = J(t). Note that, from (4.49) and (4.50), we
£
obtain z, , (t) = Z(q,, , (t)) = Z(q(t)) in L' (€;R?) which, combined with (4.42), yields z(t) = Z(q(t)).
4

ant
£ ~
The candidate solution gq: [0,7] — Q is pointwise defined by this procedure.

Step 3 (Stability of the limiting function). We claim that g satisfies (4.38). Fix t € [0,T].
Henceforth, for simplicity, we will replace the subscripts nj; and Nkt by k and kf, respectively. For every
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k €N, set 7 (t) := max{s € I : s <t} and note that 74 (t) — ¢, since |IIx| — 0. Then, q,(t) = g, (7% (t))
so that, by (4.27), we have

Vg eQ, E(m(t),qu(t) < E(m(1), @)+ D(gy(t), 9)- (4.51)

Recall (4.49) and (4.50). Arguing as in the proof of Proposition 4.4 and exploiting the continuity of the
applied loads in (4.1), we obtain

E(t,q(1)) < liminf € (myy (1), gy (1)- (4.52)
Moreover, by the continuity of the applied loads in (4.1), there holds
vaed, &(ne),a) — &t a). (4.53)
while, as zy (t) = z(t) in LY(;R?) and z(t) = Z(q(t)), we have
Vg e Q Dlgy(t),d) =1Z(ar 1) — 2@l @z = [12(a(t) — Z@)|| @) = D(a(t),@). (4.54)
Hence, combining (4.51)—(4.54), we deduce
E(t, q(t)) < liminf €(myy (1), gy (1))
< liminf {€ (74 (1),@) + Dlay; (1), @) |
= £(t,@) +D(a(1), ),

for every § € Q, which gives (4.38) for t fixed. O

Step 4 (Upper energy estimate). We claim that g satisfies the upper energy estimate

vt e [0,T], &(t,q(t))+ Varp(q;[0,t]) < 5(0, q°) +/0 8t€~(7, q(1))dr. (4.55)

Recall (4.46). For every n € N, using (4.24), we obtain

Vs, € [0,T],  [E(t (1) ~ E(5,a, ()| < (C+ M) [eH = 1| = p(t —5),  (450)

where p(r) — 0, as r — 0.

Fix ¢t € [0,T7, so that gq,,(t) = gq,,(7,(t)) and Varp(q,,;[0,t]) = Varp(q,; [0, 7, (¢)]) for every n € N. Recall
the definition of 6, in Step 2. By (4.56) and (4.44), we have

E(t,,(t)) + Varp(,,; [0,1]) < E(a(t), @, (Ta (1)) + Varp(g,; [0, 7u(t)]) + p(|a])

. Tn(t) (457)
<E0.q"+ [ Ou(r)dr+ oML,
0
for every n € N. Also, by the lower semicontinuity of the total variation, we have
Varp(q; [0,t]) = Var(z;[0,¢]) < liminf Var(z,; [0,t]) = liminf Varp(q,,; [0, t]), (4.58)

as (4.42) holds and z(s) = Z(q(s)) for every s € [0, T]. Then, from (4.52), (4.57) and (4.58), we deduce

E(t,q(t)) + Varp(qs[0,1]) < lim inf {§<t, a4 (1)) + Varp(qy: [0, t})}
~ Tkg(t)
<£(0,¢") + lim inf {/0 Oyt (1) A7 + p(|y )} (4.59)

= 5(0, q°) +/O Hr)dr < 5(07 q°) -l-/o J(7)dr,

where, in the last line, we used that 9, — o in L>°(0,7T), ¥ < ¥ almost everywhere in (0,7) and
p([Hk[) — 0.
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We claim that 9(s) = 8, (s, q(s)) for almost every s € (0,T). Fix t € (0,T). Testing (4.38) with . (t),
we have N N
—E(t, qy () < —E(t.q(t)) + D(a(t), a5 (t))

so that, using (4.54), we compute
lim sup &(t, qp (1) = — limeinf (—g(t, q: (t)))
¢
< —liminf (~E(t,q() + Dla(t), ax (1)) < E(t,a(®)).

Given (4.52), we conclude that &(t, qp (1)) — E(t,q(t)). Recalling (4.49), by [44, Proposition 5.6], we have
O (1) = QE(t, @ (1)) — 0E(L,q(t)) and, as V() — V(t), we deduce 9(t) = 9,E(t,q(t)). Therefore,
(4.59) gives (4.55) for fixed t.

Step 5 (Lower energy estimate). Finally, we show that g satisfies

Ve [0,T], E(t,q(t)) + Varp(q;[0,1]) 25(0,q0)+/0t 8,& (7, q(7)) dr, (4.60)

which, combined with (4.55), proves (4.39).

Note that, by (4.52), we have E(t, q(t)) < C for every t € [0, T]. Moreover, the function is ¢ OE(t,q(t))
belongs to L>°(0,T), as it coincides almost everywhere with . Hence, by [44, Proposition 5.7], for every
s,t € [0, T] with s < ¢t we have

E(t.q(t)) + Varp(q; [s.1]) > E(s. q(s)) + / & (r,q(r)) dr,
which in turn yields (4.60).

Remark 4.8 (Regularity of the applied loads). The regularity assumptions on the applied loads
in (4.1) can be relaxed. Indeed, following the scheme in [45, Theorem 2.1.6], the existence of energetic
solutions as in Theorem 4.6 can still be proved if we just assume

feWwho,T; LP (;R?), ge Wb (0,T; LP (%;R%), h e WHY(0,T; L2(R%; R?)).
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