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Abstract

We compute the value of the L1-relaxed area of the graph of the map u : Bl(0) ⊂ R2 → R2,
u(x) := x/|x|, x 6= 0, for all values of l > 0. Interestingly, for l in a certain range, in particular
l not too large, a Plateau-type problem, having as solution a sort of catenoid constrained to
contain a segment, has to be solved.
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1 Introduction

Determining the domain and the expression of the relaxed area functional for graphs of nonsmooth
maps in codimension greater than 1 is a challenging problem whose solution is far from being
reached. Given a bounded open set Ω ⊂ Rn and a map v : Ω → RN of class C1, the area of the
graph of v over Ω is given by the classical formula

A(v,Ω) =

∫
Ω
|M(∇v)| dx, (1.1)

where M(∇v) is the vector whose entries are the determinants of the minors of the gradient ∇v
of v of all orders1 k, 0 ≤ k ≤ min{n,N}. Classical methods of relaxation suggest to consider the
functional defined, for any v ∈ L1(Ω,RN ), as

A(v,Ω) := inf
{

lim inf
k→+∞

A(vk,Ω)
}
, (1.2)

1By convention, the determinant of order 0 is 1.
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and called (sequential) relaxed area functional. The infimum is computed over all sequences of
maps vk ∈ C1(Ω,RN ) approaching v in L1(Ω,RN ). The results of Acerbi and Dal Maso [1] show
that A(·,Ω) extends A(·,Ω) and is L1-lower-semicontinuous. This procedure of relaxation, besides
extending the notion of graph’s area to non-smooth maps, is needed also because A(·,Ω) is not
L1-lower-semicontinuous2, in contrast with similar polyconvex functionals that enjoy a growth
condition of the form F (u) ≥ C|M(∇u)|p for some C > 0, and suitable p > 1 (see, e.g., [11,17,26]).

When N = 1 it is possible to characterize the domain of A(·,Ω) and its expression [12]: A(v,Ω)
is finite if and only if v ∈ BV (Ω), in which case

A(v,Ω) =

∫
Ω

√
1 + |∇v|2dx+ |Dsv|(Ω), (1.3)

∇v and Dsv representing the absolutely continuous and singular parts of the distributional gradient
Dv of v. Formula (1.3) is a basic example of non-parametric variational integral that is a measure
when considered as a function of Ω [20], and is crucial, among others, in the study of capillarity
problems [16], and in the analysis of the Cartesian Plateau problem [19]. The case N > 1 (referred
here to as the case of codimension greater than 1) is much more involved. Again, one of its main
motivations is the study of the Cartesian Plateau problem in higher codimension; in addition, from
the point of view of Calculus of Variations, it is of interest in those vector minimum problems
involving nonconvex integrands with nonstandard growth [3], [11], [18].

Let us restrict our attention to the case n = N = 2. For a map v ∈ C1(Ω,R2) and Ω ⊂⊂ R2,
A(v,Ω) coincides with the area of the graph Gv := {(x, y) ∈ Ω × R2 : y = v(x)} of v seen as a
Cartesian surface of codimension 2 in Ω× R2, and is given by

A(v,Ω) =

∫
Ω

√
1 + |∇v(x1, x2)|2 + |Jv(x1, x2)|2 dx1dx2.

Here ∇v is the gradient of v, a 2× 2 matrix, |∇v|2 is the sum of the squares of all elements of ∇v,
and Jv is the Jacobian determinant of v, i.e., the determinant of ∇v. It is worth to point out once
more a couple of relevant difficulties arising when the codimension is greater than 1: the functional
A(·,Ω) is no longer convex, but just polyconvex; in addition it has a sort of unilateral linear
growth, in the sense that it is bounded below, but not necessarily above, by the total variation.
A characterization of the domain of A(·,Ω) and of its expression is, at the moment, not available.
Specifically, it is only known that the domain of A(·,Ω) is a proper subset of BV (Ω,R2), and that
integral representation formulas such as (1.3) (on the domain of A(·,Ω)) are not possible. This is
due to the additional difficulty that in general, for a fixed map v, the set function A ⊆ Ω 7→ A(v,A)
may be not subadditive, and in particular it cannot be a measure (as opposite to what happens
in codimension 1 for a large class of non-parametric variational integrals [20]). This interesting
phenomenon was conjectured by De Giorgi [13] for the triple junction map uT : Ω = Bl(0) → R2,
and proved in [1], where the authors exhibited three subsets Ω1,Ω2,Ω3 of the open disk Bl(0) of
radius l centered at 0, such that

Ω1 ⊂ Ω2 ∪ Ω3 and A(uT ,Ω1) > A(uT ,Ω2) +A(uT ,Ω3). (1.4)

The triple junction map uT ∈ BV (Ω,R2) takes only three values α, β, γ ∈ R2, the vertices of an
equilateral triangle, in three circular 120o-degree sectors of Ω meeting at 0. The same authors

2When n = N = 2, there are sequences (vk) ⊂ W 1,p(Ω,R2), with p ∈ [1, 2), weakly converging in W 1,p(Ω,R2) to
a smooth map v for which A(v,Ω) > lim supk→+∞A(vk,Ω), where A(vk,Ω) is defined as for C1-maps in (1.1), with
the determinant of ∇vk intended in the almost everywhere pointwise sense; see [4, Counterexample 7.4] and [1]. This
counterexample must be slightly modified, considering uk(x) = kx+ λ(x/‖x‖∞ − x) for x ∈ [−1/k, 1/k], with λ > 0
satisfying (1 + λ2)/2 >

√
1 + λ2, in order to get the strict inequality above.
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show that the non-locality property (1.4) holds also for the Sobolev map u(x) = x
|x| , called here the

vortex map, where Ω is a ball of radius l centered at the origin, the singular point, and n = N ≥ 3.
For these two maps uT and u much effort has been done to understand the exact value of the area
functional; the corresponding geometric problem stands in finding the optimal way, in terms of area,
to “fill the holes” of the graph of uT and u (two non-smooth 2-dimensional sets of codimension two)
with limits of sequences of smooth two-dimensional graphs. In [1] it is proved that both uT and u
have finite relaxed area, but only lower and upper bounds were available for uT , whereas the sharp
estimate for u is provided only for l large enough. For the triple junction map uT an improvement is
obtained in [6], where it is exhibited a sequence (uk) of Lipschitz maps uk : Bl(0)→ R2 converging
to u in L1(Ω,R2), such that

lim
k→+∞

A(uk,Bl(0)) = |GuT |+ 3ml,

where |GuT | is the area of the graph of uT out of the jump set, and ml is the area of an area-
minimizing surface, solution of a Plateau-type problem in R3. Roughly speaking, three entangled
area-minimizing surfaces with area ml (each sitting in a copy of R3 ⊂ R4, the three R3’s being
mutually nonparallel) are needed in Bl(0) × R2 to “fill the holes” left by the graph GuT of uT ,
which is not boundaryless (i.e., the boundary as a current is nonzero). The optimality of (uk) was
also conjectured in [6], and proven subsequently in [28], where a crucial tool is a symmetrization
technique for boudaryless integral currents.

In the present paper we compute the value of the relaxed area functional for the vortex map u
in two dimensions. That is,

u(x) :=
x

|x|
, x ∈ Ω \ {0}, Ω = Bl(0) ⊂ R2. (1.5)

Observe that u belongs to W 1,p(Ω,R2) for all p ∈ [1, 2), and that the image of u is the one-
dimensional unit circle S1 ⊂ R2, so that Ju(x) = det(∇u(x)) = 0 for all x ∈ Ω \ {0}. In [1, Lemma
5.2], the authors show3 that, for l large enough,

A(u,Bl(0)) = |Gu|+ π =

∫
Bl(0)

√
1 + |∇u|2dx+ π. (1.6)

With the aid of an example, they also show that A(u,Bl(0)) must be strictly smaller than the right-
hand side of (1.6), since there is a sequence of C1-maps approximating u and having, asymptotically,
a lower value of A(·,Ω). We anticipate here that, when l is small, the above mentioned sequence
is not optimal, and the construction of a recovery sequence for A(u,Bl) is much more involved
and requires to solve a sort of Plateau-type problem in R3 with singular boundary, with a part of
multiplicity 2. Equivalently, with a reflection argument with respect to a plane, it can be seen as
a non-parametric Plateau-type problem with a partial free boundary; one of our results (Theorem
12.16, valid for any l > 0) consists in the analysis of solutions of this problem, in particular we
show that, excluding a singular configuration4, there is a non-parametric solution attaining a zero
boundary condition on the free part.

In order to give an idea of how the value π in (1.6) pops up, it is convenient to introduce the
tool of Cartesian currents. One can regard the graphs Gv = {(x, y) ∈ Ω × R2 : y = v(x)} of C1

maps v : Ω→ R2 as integer multiplicity 2-currents in Ω×R2. It is seen that a sequence (Guk) with
uk approaching u and with supkA(uk,Ω) < +∞, converges5, up to subsequences, to a Cartesian

3In [1] the proof of (1.6) is given also for N = n ≥ 2, where now π in (1.6) is replaced by ωn.
4This corresponds to assumption (iii) in Lemma 12.13.
5This is a consequence of Federer-Fleming closure theorem.
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current T which splits as T = Gu + S, with S a vertical integral current such that ∂S = −∂Gu. A
direct computation shows that

∂Gu = −δ0 × ∂〚B1〛

(see [18, Section 3.2.2]), so that the problem of determining the value of A(u,Ω) is somehow related
to the computation of the mass of a mass-minimizing vertical current Smin ∈ D2(Ω×R2) satisfying

∂Smin = δ0 × ∂〚B1〛 in D1(Ω× R2). (1.7)

In some cases, and in particular for l large, these two problems are related, and it turns out that
Smin = δ0 × 〚B1〛, whose mass is π. However Smin 6= δ0 × 〚B1〛 for l small. Moreover, the two
problems of determining Smin and the value of the relaxed area functional are, unfortunately, not
related in general. This is mainly due to the following two obstructions:

• we have to guarantee that the current Gu + Smin is obtained as a limit of smooth graphs,
that is not easy to establish since not all Cartesian currents can be obtained as such limits
(see [18, Section 4.2.2]);

• even if Gu +Smin is limit of graphs Guk of smooth maps uk, nothing ensures that A(uk,Ω)→
A(u,Ω), due to possible cancellations of the currents Guk that, in the limit, might overlap
with opposite orientation.

Actually, in many cases, as in the one considered in this paper, for an optimal sequence (uk)
realizing the value of A(u,Ω), it holds

Guk ⇀ Gu + Sopt 6= Gu + Smin, (1.8)

and the limit vertical part Sopt satisfies |Sopt| > |Smin|. For instance, if l is small, it is possible to
construct a sequence (ûk) approaching u which is not a recovery sequence for A(u,Ω), but whose
limit vertical part Smin has mass strictly smaller than the one of Sopt (see Section 10.2). In this
case, a suitable projection of Smin in R3 is half of a classical area-minimizing catenoid between two
unit circles at distance 2l from each other.

An additional source of difficulties in the computation of A(u,Ω) is due to an example [28] valid
for the triple junction map uT , and showing that the equality

A(uT ,Ω) = |GuT |+ 3ml (1.9)

holds only under some additional requirements; for instance if the triple junction point is exactly
located at the origin 0 and the domain is a disc Ω = Bl(0) around it. In particular, for different
domains, (1.9) is no longer valid, and Sopt is a vertical current whose support projection on Ω is a
set connecting the triple point with ∂Ω, and which does not coincide with (neither is a subset of)
the jump set of uT (see [28, Example in Section 6] and also [5] for other non-symmetric settings).

A similar behaviour of the vertical part Sopt holds for u: when l is small, the projection of Sopt

on Bl(0) concentrates over a radius connecting 0 to ∂Bl(0), see Fig. 2, left. However, if the domain
Ω loses its symmetry, almost nothing is known about Sopt.

This kind of phenomena have been observed also in other cases, as in [7, 8] where BV -maps
u : Ω → R2 with a prescribed discontinuity on a curve (jump set) are considered. The creation of
such “phantom bridges” between the singularities of the map u and the boundary of the domain
is very specific of the choice of the L1 topology in the computation of A(·,Ω). Other choices are
possible, giving rise to different relaxed functionals6 (see [7, 8]).

6Relaxing A(·,Ω) in stronger topologies τ is possible; however, this would make more difficult to prove, eventually,
τ -coercivity of A(·,Ω). In addition, it could destroy the interesting nonlocal phenomena related to the appearence of
certain nonstandard Plateau problems, which are the focus of this paper.
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The nonlocality and the uncontrollability of Sopt are more and more evident if we try to generalize
(1.9) dropping the assumption that the range of uT consists of the vertices of an equilateral triangle.
If we assume that uT takes values in {α, β, γ}, three generic (not aligned) points in R2 then, also
if the domain of uT is symmetric, there is no sharp computation of A(uT ,Ω). In this case, the
analysis is related to an entangled Plateau problem, where three area-minimizing discs have as
partial free boundary three curves connecting the couples of points in {α, β, γ}, respectively, and
where these three curves are forced to overlap. Some partial results had been obtained in [5], where
the authors find an upper bound for A(uT ,Ω). However the question of finding the value of A(·,Ω)
for this piecewise constant maps seems to be difficult.

Before stating our main results we need to fix some notation7. For l > 0 we denote R2l :=
(0, 2l)× (−1, 1) and let ∂DR2l := ({0, 2l} × [−1, 1])∪ ((0, 2l)× {−1}) be what we call the Dirichlet
boundary of R2l. Define ϕ : ∂DR2l → [0, 1] as ϕ(t, s) :=

√
1− s2 if (t, s) ∈ {0, 2l} × [−1, 1] and

ϕ(t, s) := 0 if (t, s) ∈ (0, 2l)× {−1}. Let

H̃2l := {h : [0, 2l]→ [−1, 1], h continuous, h(0) = h(2l) = 1},
XD,ϕ := {ψ ∈W 1,1(R2l) : ψ = ϕ on ∂DR2l},

and for any h ∈ H̃2l set Gh := {(t, s) ∈ R2l : s = h(t)} and SGh := {(t, s) ∈ R2l : s ≤ h(t)} (see
Fig. 18 for a view of the setting). The main result of the present paper (see Theorems 11.16 and
13.2) reads as follows:

Theorem 1.1. Let N = n = 2, l > 0 and u : Bl(0)→ R2 be the vortex map defined in (1.5). Then

A(u,Bl(0)) =

∫
Bl(0)

√
1 + |∇u|2dx+ inf{A(ψ, SGh) : (h, ψ) ∈ H̃2l ×XD,ϕ, ψ = 0 on Gh}. (1.10)

We show that for l large enough the infimum is not attained in H̃2l × XD,ϕ and equals π. We
prove that a minimizer instead exists for l small, hence ψ is real analytic in the interior of SGh;
furthermore, we show that h is smooth and convex, and ψ has vanishing trace on the graph of h
(Theorem 12.16).

We also show that the infimum on the right-hand side of (1.10) can be equivalently rewritten in
many ways. Let us first point out that the functional A(·, SG·) is not lower-semicontinuous, so also
at this stage we need a relaxation of the infimum problem, and we introduce the functional F2l,
defined on a new class Xconv

2l of admissible pairs of functions, which is obtained after specializing

the choice of h ∈ H̃2l and then generalizing the choice of ψ ∈ XD,ϕ (see Definition 12.2 in Section
12).

An equivalent formulation for this minimum problem is the following: Let us consider any Lip-
schitz simple curve γ : [0, 1] → R2l with γ(0) = (0, 1, 0) and γ(1) = (2l, 1, 0), and then the closed
curve Γ ⊂ R3 defined by glueing the trace of γ with the graph of ϕ over ∂DR2l. We can then con-
sider an area-minimizing disc Σ+ spanning Γ, solution of the classical Plateau problem. Assuming
for simplicity that γ([0, 1]) is the graph of a function h ∈ H̃2l, then

inf{A(ψ, SGh) : (h, ψ) ∈ H̃2l ×XD,ϕ, ψ = 0 on Gh} = infH2(Σ+), (1.11)

where the infimum on the right-hand side is computed over the set of all such curves γ (see Corollary
12.17). For l sufficiently small, say l ∈ (0, l0), the infimum is attained by a disc-type surface Σ+,

7The relation with the map u will be clear after Section 11; at this point we remark that R2l has its first
coordinate which is essentially the radial coordinate in the source Ω = Bl(0), and the second coordinate is instead the
first coordinate ρ in the target space R2. The graph of the function ϕ is (half of) the lateral boundary of a cylinder,
which coincides with (one half of) the image of the map Ω 3 x = (ρ, θ) 7→ (ρ, u(x)).
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and γ([0, 1]) coincides with the graph of a smooth convex function h ∈ H̃2l. On the contrary, for
l ≥ l0, γ is degenerate, in the sense that if σn ⊂ R2l is the free-boundary of Σ+

n , where (Σ+
n ) is a

minimizing sequence of discs for the Plateau problem, then σn converges to the set ∂DR2l and Σ+
n

converges to two distinct half-circles of radius 1, whose total area is π.
We do not know the explicit value of the threshold l0. However, it is clear that l0 > 1

2 (see
the discussion at the end of Section 2.6 and Remark 2.2). Furthermore, doubling the surface
Σ+ by considering its symmetric with respect to the plane containing R2l, and then taking the
union Σ of these two area-minimizing surfaces, it turns out that Σ solves a non-standard Plateau
problem, spanning a nonsimple curve which shows self-intersections (this is the union of Γ with
its symmetric with respect to R2l, the obtained curve is the union of two circles connected by a
segment, see Section 2.6 and Fig. 1). Again, the obtained area-minimizing surface is a sort of
catenoid forced to contain a segment (see Fig. 2, left) for l small, and two distinct discs spanning
the two circles for l large (Fig. 2, right). The restriction of Σ to the set B1 × [0, l] is a suitable
projection in R3 of the aforementioned vertical current Sopt.

We will discuss on the appearence of this Plateau problem in the end of this introduction: Let us
first spend some words on how we prove Theorem 1.1. The proof is divided into two parts, namely
the lower bound (Sections 3-11 excluding Section 10) and the upper bound (Sections 12 and 13).
The proof of the lower bound, i.e., the inequality ≥ in (1.10), is extremely involved: we assume
(uk) to be a recovery sequence converging to u, so that A(uk,Bl(0))→ A(u,Bl(0)), and we analyse
the behaviour of the graphs Guk over two distinct subsets of Bl(0), respectively one on which uk
converges uniformly to u, and one where concentration phenomena are allowed (let us call this the
“bad set”, denoted Dk in the sequel). In the former, studied in Section 4, we see that, up to small
errors, the contribution of the areas of Guk gives the first term on the right-hand side of (1.10).
In the set Dk, the graphs Guk might behave very badly. In order to detect their behaviour we
introduce suitable projections in R3 (the maps Ψk in Definition 5.1 and the maps πλk in Definition
5.3) and use them to reduce the currents carried by the graphs Guk to integral 2-currents supported
in the cylinder [0, l]× B1(0) ⊂ R3. It is necessary to use a cylindrical Steiner-type symmetrization
technique for these integral currents, described in Section 3. Afterwards, an additional partition of
the domain is needed, and we focus on what happens far from the origin and in a neighbourhood
Bε(0) of it. The first analysis is carried on in Sections 5, 6, and 7. The analysis around 0 is instead
done in Section 8. Roughly speaking, we construct a cylindrically symmetric integral 2-current
in [0, l] × B1(0) whose area, up to small errors, is equal to the area of Guk over Dk. In order to
relate the area of this current with the second term on the right-hand side of (1.10), we have to
artificially add some rectifiable sets to this current (see Section 9)8, in such a way to force the new
integral current to be a candidate for the minimum problem on the left-hand side of (1.11). Some
additional rearrangements are needed here, which are described in Section 11. The passage to the
limit as k → +∞ is then performed in Theorem 11.16, where we also show that all the errors in
the estimates of the previous sections are negligible.

The second part of the paper concerns the upper bound in (1.10). This consists in a careful
definition of a recovery sequence (uk) converging to the vortex map, and thus such that A(uk,Bl(0))
approaches the value on the right-hand side of (1.10) as k → +∞. In order to explicitely construct
uk, we need first to show that the minimum problem stated in Theorem 11.16 is in fact equivalent
to the non-parametric Plateau-type problem in (1.10), i.e., we have to prove (1.11). This is done in
Section 12, where we exploit the convexity of the domain together with some well-known regularity
results for the solution of the Plateau problem in this setting. This analysis leads us to Theorem

8To elucidate the meaning of all the objects we introduce, we have complemented this section with some examples
contained in Section 10. Note that the construction in Section 10.1, as well as the catenoid with flap in Fig. 16
analysed in Section 10.2, does not lead to a recovery sequence, for any value of l. Nevertheless, we believe the
examples to be useful in order to follow the construction made to prove the lower bound.
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12.6, which characterizes the solution of (1.11), and which is based on a regularity result for the
minimizing pair (h?, ψ?) ∈ H̃2l × XD,ϕ. Finally, thanks to the regularity results that we have
obtained (especially, boundary regularity), in Section 13 we define explicitely the maps uk, making
a crucial use of rescaled versions of the area-minimizing surface Σ in a vertical copy of R3 inside
R4, and prove the upper bound in Theorem 13.2.

From this discussion the appearence of the aforementioned nonstandard Plateau problem should
be more clear. The shape of the solution Σ of this problem (after a suitable projection from R4 to
R3) is related to the graph Gu upon the “limit of the bad set” (in turn related to Sopt in (1.8)).
More precisely, let us fix a map uk in the recovery sequence for A(u,Bl(0)), and let us call Duk

the corresponding bad set, roughly the set where the values of uk remain “far” from those of u.
Essentially, the slice of the half catenoid-type (containing the segment) surface Σ ⊂ B1(0) × [0, l]
with respect to a plane R2 × {t}, t ∈ (0, l), is a closed curve touching the lateral boundary of
B1(0) × [0, l] at a point. This will be the limit of the image of the restriction uk |Duk∩∂Bt(0) in R2

(identified with R2 × {t}). Indeed, uk((B1(0) \Duk) ∩ ∂Bt(0)) is a closed curve that lies very close
to S1, whereas uk(Duk ∩∂Bt(0)) makes a trip in (B1(0)× [0, l])∩ (R2×{t}) in order to approach the
shape of a t-slice of Σ. Since uk(∂Bt(0)) is a closed curve, after passing to the limit as k → +∞,
we obtain a closed curve which overlaps S1 (limit of the images of the complements of the bad sets)
and then is a closed curve (limit of the images of Duk) attached to S1 at a point whose shape is
the slice of Σ.

2 Preliminaries

2.1 Notation and conventions

The symbol A(v,Ω) denotes the classical area of the graph of a smooth map v : Ω ⊂ Rn → RN ,
given by (1.1). We will deal with the case n = 2 and mostly with the cases (n,N) = (2, 1) and
(n,N) = (2, 2). The relaxed area functional (with respect to the L1-convergence) is denoted by
A(v,Ω) and is defined in (1.2).

We first remark that the infimum in (1.2) can be considered as taken over the class of sequences
vk ∈ Lip(Ω;R2). This does not change the value of A(·,Ω), as observed in [6].

Recall that in formula (1.1) the symbol M(∇v) denotes the vector whose entries are all de-
terminants of the minors of ∇v. Precisely, let α and β be subsets of {1, 2}, let ᾱ denote the
complementary set of α, namely ᾱ = {1, 2} \ α, let | · | denote the cardinality, and let A ∈ R2×2 be
a matrix. Then, if |α|+ |β| = 2, we denote by

Mβ
ᾱ (A) (2.1)

the determinant of the submatrix of A whose lines are those with index in β, and columns with
index in ᾱ. By convention MØ

Ø (A) = 1 and moreover

M i
j = aij , i, j ∈ {1, 2}, M

{1,2}
{1,2} (A) = detA,

and the vector M(A) will take the form

M(A) = (Mβ
ᾱ )(A)) = (1, a11, a12, a21, a22,detA),

where α and β run over all the subsets of {1, 2} with the constraint |α|+ |β| = 2. We will identify
α and β as multi-indeces in {1, 2}.
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2.1.1 Area in cylindrical coordinates

Polar coordinates in R2
source are denoted by (r, α). Polar coordinates in the target space R2

target are
denoted by (ρ, θ).

Assume that B = {(r, α) ∈ R2 : r ∈ (r0, r1), α ∈ (α0, α1)}; then the area of the graph of
v = (v1, v2) in polar coordinates is given by

A(v,B) =

∫ r1

r0

∫ α1

α0

|M(∇v)|(r, α) rdrdα.

Recall that, for i ∈ {1, 2}, we have

∂x1vi = cosα∂rvi −
1

r
sinα∂αvi, ∂x2vi = sinα∂rvi +

1

r
cosα∂αvi.

Hence

|∇vi|2 = (∂rvi)
2 +

1

r2
(∂αvi)

2, i ∈ {1, 2}, (2.2)

∂x1v1∂x2v2 − ∂x2v1∂x1v2 =
1

r

(
∂rv1∂αv2 − ∂αv1∂rv2

)
.

Thus the area of the graph of v on B is given by

A(v,B)

=

∫ r1

r0

∫ α1

α0

√
1 + (∂rv1)2 + (∂rv2)2 +

1

r2

{
(∂αv1)2 + (∂αv2)2 +

(
∂rv1∂αv2 − ∂αv1∂rv2

)2
}
rdrdα.

(2.3)
We denote by Br = Br(0) ⊂ R2 = R2

source the open disc centered at 0 with radius r > 0 in the
source space. Our reference domain is Ω = Bl ⊂ R2

source = R2
(x1,x2) where l > 0 is fixed once for all.

The symbol u will be used to note the vortex map in (1.5), which we assume to be defined on Bl.
For any % > 0, it is convenient to introduce the (portion of) cylinder Cl(%), as

Cl(%) := (−1, l)×B% = {(t, ρ, θ) ∈ (−1, l)× R+ × (−π, π] : ρ < %} ⊂ R3 = Rt × R2
target, (2.4)

where (t, ρ, θ) are cylindrical coordinates in R3, with the cylinder axis the t-axis. For % = 1 we
simply write

Cl(1) = Cl. (2.5)

For a fixed parameter ε ∈ (0, l), we introduce the cylinders

Cεl (%) := (ε, l)×B% = {(t, ρ, θ) ∈ (0, l)× R+ × (−π, π] : ε < ρ < %} ⊂ Rt × R2
target. (2.6)

Also in this case we use the notation
Cεl (1) = Cεl . (2.7)

The closure of Cl(ρ) (resp. Cεl (ρ)) is denoted by C l(ρ) (resp. C
ε
l (ρ)), and the lateral boundary of

Cl(ρ) (resp. Cεl (ρ)) is denoted by ∂latCl(ρ) (resp. ∂latC
ε
l (ρ)).

We will often deal with integral currents whose support is in the cylinder

[0, l]×B1 ⊂ C l.

Remark 2.1. The choice of Cl = (−1, l) × B1 covering also certain negative values of the first
coordinate t is useful to control and detect the behaviour of these currents on the plane {t = 0}.
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2.1.2 Area formula

Let f : U ⊂ Rk → Rn be Lipschitz continuous, with k ≤ n. The area of the image f(U) of U by f
is given by ∫

U
Jf(x)dx

with the Jacobian matrix of f given by

Jf =
√

det
(
(∇f)T∇f

)
=
√∑

(detA)2 a.e.in U,

where, for almost every x ∈ U , the sum is made on all submatrices A(x) of ∇f(x) of dimension
k × k.

2.2 Currents

For the reader convenience we recall some basic notion on currents. We refer to [23] and [18] for a
more exhaustive discussion (see also [15]).

Given an open set U ⊂ Rn we denote by Dk(U) the space of smooth k-forms compactly supported
in U and by Dk(U) the space of k-dimensional currents, for 0 ≤ k ≤ n. If T ∈ Dk(Rn), the symbol
|T | denotes the mass of the current T , and if U ⊂ Rn is an open set, the symbol |T |U will denote
the mass of T in U , namely

|T |U := supT (ω),

the supremum being over all ω ∈ Dk(U) with ‖ω‖ ≤ 1.
For k ≥ 1 it is defined the boundary ∂T ∈ Dk−1(U) of a current T ∈ Dk(U) by the formula

∂T (ω) := T (dω) for all ω ∈ Dk−1(U),

where dω is the external differential of ω. For T ∈ D0(U) one sets ∂T := 0.
If F : U → V a Lipschitz map between open sets, and T ∈ Dk(U), we denote by F]T ∈ Dk(V )

the push-forward of T by F (see [23, Section 7.4.2]).
Given a k-dimensional rectifiable set S ⊂ U and a tangent unit simple k-vector τ to it, we denote

by 〚S〛 the current given by integration over S, namely

〚S〛(ω) =

∫
S
<τ(x), ω(x)> dHk(x), ω ∈ Dk(U).

We will often omit specifying which is the vector τ if it is clear from the context. We will often
deal with the case k = 2, and U ⊂ R3 where there are only two possible orientations. Moreover in
the case k = 3 and U ⊂ R3 the current 〚S〛 reduces to the integration over the 3-dimensional set
S ⊂ R3, and τ = e1 ∧ e2 ∧ e3.

We call T ∈ Dk(U) an integral current if it is rectifiable with integer multiplicity and if both
|T |U and |∂T |U are finite. The Federer-Fleming theorem for integral currents then states that
a sequence of integral currents Ti ∈ Dk(U) with supi(Ti| + |∂Ti|) < +∞ admits a subsequence
converging weakly in the sense of currents to an integral current T .

A finite perimeter set is a subset E ⊂ Rn such that the current 〚E〛 ∈ Dn(U) is integral. The
symbol ∂∗E denotes the reduced boundary of E. E is unique up to negligible sets, so that we always
choose a representative of E for which the closure of the reduced boundary equals the topological
boundary [24].
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An integral current T ∈ Dk(U) is called indecomposable if there is no integral current R ∈ Dk(U)
such that R 6= 0 6= T −R with

|T |U + |∂T |U = |R|U + |∂R|U + |T −R|U + |∂(T −R)|U .

We will often use the following decomposition theorem for integer multiplicity currents: For every
integral current T ∈ Dk(U) there is a sequence of indecomposable integral currents Ti ∈ Dk(U)
with T =

∑
i Ti and |T | + |∂T | =

∑
i |Ti| +

∑
i |∂Ti| (see [15, Section 4.2.25]). In the case that

T ∈ Dn(U), U ⊆ Rn, the previous decomposition theorem can be stated as follows: There is
a sequence of finite perimeter sets with {Ei}i∈Z such that T =

∑
i≥0 〚Ei ∩ U〛 −

∑
i<0 〚Ei ∩ U〛

with
∑

i |Ei ∩ U | +
∑

iHn−1(U ∩ ∂∗Ei) = |T | + |∂T | (see [23, Theorem 7.5.5] and its proof).
Moreover, the decomposition theorem applied to Ei allows us to assume that the sequence (〚Ei〛)
consists of indecomposable currents. In the case of 1-dimensional currents, it is possible also to
characterize indecomposable currents, namely T ∈ D1(Rn) is indecomposable if T = γ]〚[0, |T |]〛
with γ : [0, |T |]→ Rn a 1-Lipschitz simple curve, i.e., injective on [0, |T |). If moreover ∂T = 0 then
γ(0) = γ(|T |).

We will exploit the property that any boudaryless current T ∈ Dn−1(Rn) is the boundary of a
sum of currents given by integration over locally finite perimeter sets Ei, i.e., T =

∑
i ∂〚Ei〛. This

is a consequence of the cone construction, and for integral currents can be obtained also from the
isoperimetric inequality (see [23, Formula (7.26)] and [23, Theorem 7.9.1]).

We need also the concept of slice of an integral current with respect to a Lipschitz function f
(see [23, Section 7.6]). Since we only employ it for slices with respect to parallel planes, the function
f will be f(x) = xh where xh is the coordinate in Rn whose axis is orthogonal to the considered
planes. We denote by Tt ∈ Dk−1(Rn) the slices of T ∈ Dk(Rn) on the plane {xh = t}, which will
be supported on this plane. We will also use that, if T is boundaryless, then

∂(T {xh < t}) = Tt for a.e. t ∈ R.

2.3 Generalized graphs in codimension 1

Let v ∈ L1(Ω). We denote by Rv ⊆ Ω the set of regular points of v, i.e., the set consisting of
points x which are Lebesgue points for v, v(x) coincides with the Lebesgue value of v at x, and v
is approximately differentiable at x. We also set

GRv := {(x, v(x)) ∈ Rv × R},
SGRv := {(x, y) ∈ Rv × R : y < v(x)}.

We often will identify SGRv with the integral 3-current 〚SGv〛 ∈ D3(Ω × R). If v is a function of
bounded variation, Ω \ Rv has zero Lebesgue measure, so that the current 〚SGv〛 coincides with
the integration over the subgraph

SGv := {(x, y) ∈ Ω× R : y < v(x)}.

For this reason we often identify SGv = SGRv . It is well-known that the perimeter of SGv in Ω×R
coincides with A(v,Ω).

The support of the boundary of 〚SGv〛 includes the graph GRv , but in general consists also of
additional parts, called vertical. We denote by

Gv := ∂〚SGv〛 (Ω× R),

the generalized graph of u, which is a 2-integral current supported on ∂∗SGv, the reduced boundary
of SGv in Ω× R.
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Let Ω̂ ⊂ R2 be a bounded open set such that Ω ⊆ Ω̂, and suppose that L := Ω̂∩∂Ω is a rectifiable
curve. Given ψ ∈ BV (Ω) and a W 1,1 function ϕ : Ω̂→ R, we can consider

ψ :=

{
f on Ω,

ϕ on Ω̂ \ Ω.

Then (see [19], [2])

A(ψ, Ω̂) = A(ψ,Ω) +

∫
L
|ψ − ϕ|dH1 +A(ϕ, Ω̂ \ Ω).

2.4 Polar graphs in a cylinder

Consider the (portion of) cylinder Cl = (−1, l) × B1 defined in (2.5), endowed with cylindrical
coordinates (t, ρ, θ) ∈ (−1, l) × [0, 1) × (−π, π]. Take the rectangle H = {(t, ρ, θ) ∈ Cl : θ = 0},
which is endowed with Cartesian coordinates (t, ρ) ∈ (−1, l)× (0, 1). If Θ : H → [0, π] is a function
defined on H, we can associate to it the map id ./ Θ : H → Cl defined as

(t, ρ)→ (t, ρ,Θ(t, ρ)), (t, ρ) ∈ H.

The polar graph of Θ is defined as

Gpol
Θ := {(t, ρ,Θ(t, ρ)) : t ∈ (−1, l), ρ ∈ (0, 1)} = id ./ Θ(H),

where again we have used cylindrical coordinates.
We define a sort of polar subgraph of Θ as

SGpol
Θ := {(t, ρ, θ) : t ∈ (−1, l), ρ ∈ [0, 1), θ ∈ (−η,Θ(t, ρ))}.

Here η > 0 is a small number introduced for convenience, and it will suffice to take η < 1. If the
set SGpol

Θ has finite perimeter, its reduced boundary in {−η < θ < π + η} ∩ Cl coincides with the
generalized polar graph GΘ of Θ,

GΘ = (∂∗SGpol
Θ ) ∩ ({−η < θ < π + η} ∩ Cl). (2.8)

This set includes, up to H2-negligible sets, the polar graph Gpol
Θ . When SGpol

Θ has finite perimeter,

we see that the current 〚SGpol
Θ 〛 ∈ D3(Cl) is integral and its boundary in {−η < θ < π + η} ∩Cl is

the integration over the generalized polar graph of Θ, i.e.,

∂〚SGpol
Θ 〛 ({−η < θ < π + η} ∩ Cl) = 〚GΘ〛,

where GΘ is naturally oriented by the outer normal to ∂∗SGpol
Θ .

Notice also that since Θ ∈ [0, π] the current 〚GΘ〛 carried by the generalized polar graph GΘ is
supported in {0 ≤ θ ≤ π} ∩ Cl.

2.5 Plateau problem in parametric form

We report here some results about the classical solution to the disc-type Plateau problem. If Γ ⊂ R3

is a closed rectifiable Jordan curve, the Plateau problem consists into minimize the functional

PΓ(X) :=

∫
B1

|∂x1X ∧ ∂x2X|dx1dx2, (2.9)
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on the class of all functions X ∈ C0(B1;R3)∩H1(B1;R3) with X ∂B1 being a weakly monotonic
parametrization of the curve Γ. The functional (2.9) measures the area (with multiplicity) of the
surface X(B1). We can always associate to a map X the current X]〚B1〛, the integration over the
surface X(B1). Notice in general

|X]〚B1〛| ≤ PΓ(X),

and strict inequality can occur if for instance the map X parametrizes two times and with opposite
orientation a part of the surface X(B1).

A solution XΓ to the Plateau problem exists and satisfies the properties: it is harmonic (hence
analytic)

∆XΓ = 0 in B1,

it is a conformal parametrization

|∂x1XΓ|2 = |∂x2XΓ|2, ∂x1XΓ · ∂x2XΓ = 0 in B1,

and XΓ ∂B1 is a strictly monotonic parametrization of Γ. We will say that the surface XΓ(B1)
has the topology of the disc.

Thanks to the properties above it is always possible, with the aid of a conformal change of
variables, to parametrize X(B1) over any simply connected bounded domain. In other words, if U
is any such domain, and if Φ : U → B1 is any conformal homeomorphism, then X ◦Φ is a solution
to the Plateau problem on U .

2.6 A Plateau problem for a self-intersecting boundary space curve

The classical disc-type Plateau problem is solved for boundary value a simple Jordan space curve,
in particular Γ does not have self-intersections. Here we will treat a specific Plateau problem where
the curve Γ has non-trivial intersections, and it overlaps itself on a segment which is parametrized
two times with opposite directions.

Specifically, we consider the cylinder (0, 2l)×B1 and two circles C1, C2 which are the boundaries
of its two circular bases, namely C1 := {0}× ∂B1 and C2 := {2l}× ∂B1. Then we take the segment
(0, 2l)× {1} × {0}. If γ0 is a monotonic parametrization of this segment, starting from (0, 1, 0) up
to (2l, 1, 0), γ1 is a monotonic parametrization of C1 starting from the point (0, 1, 0) and ending at
the same point, and γ2 a parametrization of C2 with initial and final point (2l, 1, 0) with the same
orientation of C1, then we consider the parametrization

γ := γ1 ? γ0 ? (−γ2) ? (−γ0), (2.10)

(read from left to right) which is a closed curve in R3 which travels two times across the segment
(0, 2l)×{1}×{0} with opposite directions (the orientation of this curve is depicted in Fig. 1). We
want to solve the Plateau problem with Γ to be the image of γ.

The existence of solutions to the Plateau problem spanning self-intersecting boundaries has been
addressed in [21], whose results have been recently improved in [10]. Without entering deeply
into the details, it is known that, depending on the geometry of γ (in this case, depending on the
distance between the two circles C1 and C2) two kind of solutions are expected:

(a) The solution consists of two discs filling C1 and C2, see Fig. 2, right. In this case, a
parametrization of it X : B1 → R3 can be chosen so that, if L1 and L2 are two parallel
chords in B1 dividing B1 in three sectors, then X restricted to the sector enclosed between
L1 and L2 parametrizes the segment γ0 (and then its resulting area is null), X(L1) = P1 and
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Figure 1: The self-overlapping curve Γ with its orientation.

X(L2) = P2 are the two endpoints of γ0, and X restricted to the sectors between Li, i = 1, 2,
and ∂B1 parametrizes the disc filling Ci, i = 1, 2. Moreover the map X can be still taken
Sobolev regular (see [10] for details).

(b) There is a classical solution, i.e., there is a harmonic and conformal map X : B1 → R3, con-
tinuous up to the boundary of B1, such that X ∂B1 is a weakly monotonic parametrization
of Γ. In this case the resulting minimal surface is a sort of catenoid attached to the segment
(0, 2l)× {(1, 0)} (see Fig. 2 left).

Remark 2.2. We expect that there is a threshold l0 such that if l < l0 an area-minimizing disc
with boundary γ is of the form (b), and for values l > l0 the two discs have minimal area. We do
not find explicitly l0 but it is easy to see that if l ≤ 1

2 an area-minimizing disc with boundary γ has
always less area than the solution with two discs. Indeed, the area of the two discs is 2π, whereas
we can always compare the area of the surface Σ as in (b) with the area of the lateral surface of
the cylinder (0, 2l)×B1, that is 4lπ. Hence H2(Σ) < 4lπ ≤ 2π for l ≤ 1

2 .

3 Cylindrical Steiner symmetrization

In this section we introduce the cylindrical Steiner symmetrization of a finite perimeter9 set U ⊆
Cl = (−1, l)×B1(0). This rearrangement is obtained slice by slice by spherical (two dimensional)
symmetrization, a technique introduced first by Pòlya. We refer to [9] and references therein for a
exhaustive description of the subject. Here we collect the main properties we will use in the sequel
of the paper. Furthermore we will introduce a generalization of this symmetrization in order to
apply it to 2-integral currents.

Let us recall that Cl is endowed with cylindrical coordinates (t, ρ, θ) ∈ (−1, l)× [0, 1)× (−π, π].
If x1, x2, x3 are cartesian coordinates, we have x1 = t, x2 = ρ cos θ, x2 = ρ sin θ. Sometimes it will
be convenient to extend 2π-periodically the values of θ on the whole of R.

9Recall that we choose a representative of U such that the closure of its reduced boundary ∂∗U equals the
topological boundary.
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Figure 2: on the left the shape of a possible solution to the Plateau problem with boundary Γ. On
the right another solution to the Plateau problem with boundary Γ. See Section 2.6

For every t ∈ (−1, l) let Ut := U ∩ ({t} × R2) the slice of U on the plane with first coordinate t,
and for every ρ ∈ (0, 1) let Ut(ρ) := Ut ∩ ({t} × {ρ} × (−π, π]) be the slice of Ut with the circle of
radius ρ.

Definition 3.1 (Symmetrization of solid sets in Cl). For every t ∈ (−1, l) and ρ ∈ (0, 1) we
let

Θ(t, ρ) = ΘU (t, ρ) :=
1

ρ
H1(Ut(ρ)), (3.1)

and we define the cylindrically symmetrized set S(U) ⊆ Cl as

S(U) :=
{

(t, ρ, θ) : t ∈ (−1, l), ρ ∈ (0, 1), θ ∈
(
−Θ(t, ρ)/2,Θ(t, ρ)/2

)}
. (3.2)

Notice that ΘU = ΘS(U). The set S(U) enjoys the following properties:

(1) H2(S(U)t) = H2(Ut) and H1(∂∗(S(U)t)) ≤ H1(∂∗(Ut)) for every t ∈ (−1, l);

(2) |S(U)| = |U | and H2(∂∗S(U)) ≤ H2(∂∗U).

A proof of these properties is contained in [9, Theorem 1.4]. In particular, since U has finite
perimeter, so is S(U) and its perimeter cannot increase after symmetrization. We will need to apply
it to 3-integral currents in Cl. That is, (possibly infinite) sums of finite perimeter sets with integer
coefficients. For this reason we introduce the following generalization of cylindrical symmetrization.

Let E ∈ D3(Cl) be an integral 3-current. By Federer decomposition theorem [15, Section 4.2.25,
p. 420] (see also [15, Section 4.5.9] and [23, Theorem 7.5.5]) it follows that there is a sequence
(Ei)i∈N of finite perimeter sets such that

E =
∑
i

(−1)σi〚Ei〛, (3.3)
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for suitable σi ∈ {0, 1}. We can also assume the decomposition is done in undecomposable compo-
nents, so that

|E| =
∑
i

|Ei| and |∂E| =
∑
i

H2(∂∗Ei). (3.4)

According to Definition 3.1, we can symmetrize each set Ei into S(Ei).

Definition 3.2 (Symmetrization of an integer 3-current). Let E := supp(E) denote the
support of the current E∈ D3(Cl). We let

S(E) :=
⋃
i

S(Ei),

which will be referred to as the symmetrized support of E. The symmetrized current S(E)∈ D3(Cl)
is defined as

S(E) := 〚S(E)〛. (3.5)

Notice that the multiplicity of 〚S(E)〛 is one, hence 〚S(E)〛 is the integration over a finite perimeter
set.

3.1 Cylindrical symmetrization of a two-current. Slicings

Let us focus on a slice Et of the current E with respect to a plane {t} × R2
target. Suppose for the

moment that E is the integration over a finite perimeter set (that we identify with E) in Cl; Et
is the integration over the slice Et of E, and suppose that the boundary of Et is the trace σ of a
rectifiable Jordan curve. Applying Definition 3.2 to the set E we see that Et is transformed into the
symmetrized set S(Et) whose boundary is again10 the trace σs of a Jordan curve. By the properties
of the symmetrization we infer H1(σ) ≥ H1(σs).

However, if the boundary of Et is the trace σ of a nonsimple curve, then the procedure is more
involved. More generally, from Definition 3.2, we see that for a.e. t ∈ (−1, l) the slice Et of E is an
integral 2-current, and it can be represented by integration over finite perimeter sets (Ei)t (with
suitable signs) which are exactly the slices of the sets Ei in (3.3). Moreover for a.e. t ∈ (−1, l)
the boundary of Et is a 1-dimensional integral current with finite mass, and it coincides with the
integration (with suitable signs) over the boundaries of (Ei)t, namely

∂Et =
∑
i

(−1)σi∂〚(Ei)t〛.

Let us call this boundary σ (which, with a little abuse of notation, we identify with an integral
1-current, an at most countable sum of simple curves), and set σs := ∂〚S(E)t〛. By Definition
3.2 it then follows that S(E)t = 〚S(E)t〛. Now, by the properties of the symmetrization, we see
that H1(supp(σ)) ≥ H1(supp(σs)). Also in this case it turns out that σs is the integration over
countable many simple curves (with suitable orientation).

We have described so far how the boundary of E is trasformed slice by slice. In general if E is a
3-integral current in Cl, then the current S := ∂E has the property that

|S| ≥ H2(∂∗S(E)).

There is also a viceversa. Precisely assume that S is any boundaryless integral 2-current in Cl. Then
there is an integral 3-current E whose boundary is S. So that we can define the symmetrization of
S by symmetrizing E .

10S(Et) is simply connected. Indeed the support of ρ 7→ Θ(t, ρ) is a connected subset of (0, 1).
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Definition 3.3 (Cylindrical symmetrization of the boundary of a three-current). The
symmetrization of S = ∂E is defined as

S(S) := ∂S(E).

The next lemma will be useful in Section 8.

Lemma 3.4. Let t ∈ (−1, l) be such that S ({t} × R2) = 0. Then

S(S) ({t} × R2) = 0. (3.6)

Proof. We know that S = ∂E . By the properties of the cylindrical symmetrization (see item (2)
above) for each set Ei we have

H2
(

({t} × R2) ∩ ∂∗Ei
)
≥ H2

(
({t} × R2) ∩ ∂∗S(Ei)

)
.

From our assumption it follows11 that for all i we have H2(({t} × R2) ∩ ∂∗Ei) = 0, and thus

H2(({t} × R2) ∩ ∂∗S(Ei)) = 0, i ∈ N.

To conclude the proof we have to show that

H2
(

({t} × R2) ∩ ∂∗S(E)
)

= H2
(

({t} × R2) ∩ ∂∗(∪iS(Ei))
)

= 0. (3.7)

The conclusion easily follows if the family {Ei} is finite, since in this case ∂(∪iS(Ei)) ⊆ ∪i∂S(Ei).
If this family is not finite we argue as follows: fix ε > 0 and Nε ∈ N so that (see (3.4))

+∞∑
i=Nε+1

H2(∂∗Ei) ≤ ε. (3.8)

We have
S(E) = ∪iS(Ei) =

(
∪Nεi=1 S(Ei)

)
∪
(
∪+∞
i=Nε+1 S(Ei)

)
=: A ∪B,

thus
({t} × R2) ∩ ∂S(E) ⊆

(
({t} × R2) ∩ ∂∗A

)
∪
(

({t} × R2) ∩ ∂∗B
)
.

By the previous observations H2(({t} × R2) ∩ ∂∗A) = 0; we will prove that

H2(({t} × R2) ∩ ∂∗B) = H2
(

({t} × R2) ∩ ∂∗(∪+∞
i=Nε+1S(Ei))

)
≤ ε,

so that (3.7) follows by arbitrariness of ε > 0. To do so, it suffices to write

H2
(

({t} × R2) ∩ ∂∗(∪+∞
i=Nε+1S(Ei))

)
≤ H2

(
∂∗(∪+∞

i=Nε+1S(Ei))
)
≤

+∞∑
i=Nε+1

H2(∂∗S(Ei)) ≤ ε.

The last inequality follows from (3.8) and from the fact that symmetrization does not increase the
perimeter. As for the second inequality, it follows from the lower semicontinuity of the perimeter.
Indeed, setting Fk := ∪ki=Nε+1S(Ei) for k ≥ Nε + 1, we see that Fk → F∞ := ∪∞i=Nε+1S(Ei) in
L1(Cl), and since Fk has finite perimeter we infer

H2(∂∗F∞) ≤ lim inf
k→+∞

H2(∂∗Fk) ≤ lim inf
k→+∞

k∑
i=Nε+1

H2(∂∗S(Ei)).

11This follows since the decomposition is done in undecomposable components: if there is some boundary of some
Ei then it cannot cancel with some other boundary (opposite oriented) of some Ej .
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As before, we can look at what happens to the current S slice by slice. If ∂E = S, then
St = −∂(Et) for a.e. t ∈ (−1, l). Assume that E decomposes as in (3.3), then

Et =
∑
i

(−1)σi〚(Ei)t〛 for a.e. t ∈ (−1, l). (3.9)

Now the sets (Ei)t are symmetrized as before, and their union, denoted S(Et) (so that S(E)t =
〚S(Et)〛) satisfies

∂〚S(Et)〛 = −S(S)t

and

|St| ≥ H1(∂∗S(E)t).

Let us go back to (3.9). In general

|Et| ≤
∑
i

H2((Ei)t); (3.10)

however, since the decomposition is made of undecomposable components, (3.4) holds and hence

|Et| =
∑
i

H2((Ei)t) for a.e. t ∈ (−1, l). (3.11)

This can be seen integrating in t formula (3.10), so that if strict inequality holds for a positive
measured set of t ∈ (−1, l) we would get strict inequality in the first equation of (3.4), which is a
contradiction.

Moreover, by construction, H2((Ei)t) = H2(S(Ei)t) for all i, and since S(E)t = ∪iS(Ei)t it also
follows

|Et| =
∑
i

H2((Ei)t) =
∑
i

H2(S(Ei)t) ≥ H2(S(E)t).

Now we fix t such that (3.11) holds and set Fi := (Ei)t, F := Et, F := supp(F), S(F ) = S(E)t.
The set Fi ∈ B1 can be sliced with respect to the radial coordinate ρ ∈ (0, 1), so that exploiting
that

(Et)ρ =
∑
i

(−1)σi〚((Ei)t)ρ〛

holds for a.e. ρ, we can repeat the same argument as before to obtain

|Fρ| =
∑
i

H1((Fi)ρ) for a.e. ρ ∈ (0, 1).

Again we have
∑

iH1((Fi)ρ) ≥ H1(S(F )ρ). Recalling that S(F )ρ = S(E)t ∩ ∂Bρ, we conclude that,
for a.e. t ∈ (−1, l) and for a.e. ρ ∈ (0, 1) the slice (Et)ρ satisfies

|(Et)ρ| ≥ H1(S(E)t ∩ ∂Bρ) = ρΘ(t, ρ), (3.12)

where we have defined Θ(t, ρ) := ρ−1H1(S(E)t∩∂Bρ) the measure in radiants of the arc S(E)t∩∂Bρ.

Remark 3.5. In the sequel we are going to apply the cylindrical symmetrization to a current
supported in the portion of the cylinder (0, l)×B1 ⊂ Cl. The fact that we set the symmetrization
in Cl = (−1, l)×B1 will be useful to avoid possible creation of boundary on the disc {0} ×B1.
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Figure 3: The symmetrization of a subset of B1 bounded by a Jordan curve, with the respect to
the radius {θ = 0}; see formula (3.1).

4 Lower bound: first reductions on a recovery sequence

Let u(x) = x/|x|, x 6= 0, be the vortex map and Ω = Bl; we aim to prove that

A(u,Ω) ≥
∫

Ω
|M(∇u)| dx+

1

2
PΓ(X),

where Γ is the image of the self-intersecting curve parametrized in (2.10), see Fig. 2, and X is a
disc-type solution of the Plateau problem for Γ.

Let (uk) ⊂ C1(Ω,R2) be a recovery sequence for the area of the graph of u, i.e., uk → u in
L1(Ω,R2) and

lim inf
k→+∞

A(uk,Ω) = A(u,Ω);

with no loss of generality we can suppose that uk → u almost everywhere in Ω and

lim inf
k→+∞

A(uk,Ω) = lim
k→+∞

A(uk,Ω) < +∞. (4.1)

If Π : R2
target → B1 ⊂ R2

target is the projection map onto B1,

Π(x) :=

{
x
|x| if |x| > 1

x if |x| ≤ 1,
(4.2)

then

A(v,Ω) ≥ A(Π ◦ v,Ω) ∀v ∈ C1(Ω,R2).

Notice that in general Π◦v /∈ C1(Ω,R2); however Π◦v is of class C1 on the set {x ∈ Ω : |v(x)| < 1}
and Lipschitz continuous in Ω. Therefore, possibly replacing uk by Π ◦ uk, we can assume that uk
takes values in B1 for all k ∈ N.

We start by dividing the source disc Ω in several suitable subsets. First we observe that from
(4.1) there exists a constant C > 0 such that

C ≥
∫

Ω
|∇uk| dx =

∫ l

0

∫
∂Br

|∇uk(r, α)| dH1(α)dr ∀k ∈ N. (4.3)
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By Fatou’s lemma, we then infer ∫ l

0
L(r) dr ≤ C,

where

L(r) := lim inf
k→+∞

∫
∂Br

|∇uk(r, α)| dH1(α) for a.e. r ∈ (0, l).

In particular, L(r) is finite for almost every r ∈ (0, l). Since uk → u almost everywhere in Ω, we
have that for almost every r ∈ (0, l)

uk(r, α)→ u(r, α) for H1 − a.e. α ∈ ∂Br.

Thus we can choose ε ∈ (0, 1) arbitrarily small such that the two following properties are satisfied:

L(ε) ≤ Cε for a constant Cε > 0 depending on ε; (4.4)

lim
k→+∞

uk(ε, α) = u(ε, α) for H1 − a.e. α ∈ ∂Bε. (4.5)

4.1 The functions dk, the subdomains An and Dδ
k, and selection of (λk)

By Egorov lemma, there exists a sequence (An) of measurable subsets of Ω such that, for any n ∈ N,
An+1 ⊆ An,

|An| <
1

n
, (4.6)

and

uk → u in L∞(Ω \An,R2) as k → +∞. (4.7)

Definition 4.1 (The function dk and the set Dδ
k). We indicate by dk : Ω \ {0} → [0, 2] the

function
dk :=

∣∣uk − u∣∣, (4.8)

and for any δ > 0 we set

Dδ
k := {x ∈ Ω \ {0} : dk(x) > δ} =: {dk > δ}. (4.9)

Notice that
∂Dδ

k ⊆ {x ∈ Ω \ {0} : dk(x) = δ} =: {dk = δ}. (4.10)

For ε satisfying (4.4) and (4.5), we have dk ∈ Lip(Ω \ Bε;R2) ∩W 1,1(Ω;R2). For any n ∈ N, from
(4.7) it follows that for any δ > 0 there exists kδ,n ∈ N such that dk <

δ
2 in Ω \An for any k ≥ kδ,n,

and thus

Ω \An ⊆
{
dk <

δ

2

}
⊆ Ω \Dδ

k ∀k > kδ,n.

Passing to the complement, from (4.10) and the inclusion {dk = δ} ⊆ {dk ≥ δ/2}, we get

Dδ
k ⊆ An and ∂Dδ

k ⊆ An ∀k > kδ,n. (4.11)

Lemma 4.2 (Choice of λk and estimates on Dλk
k ). Let ε ∈ (0, 1) satisfy (4.4) and (4.5). Let

n > 0 and An ⊂ Ω be a measurable set satisfying (4.6) and (4.7). Then there are a (not relabelled)
subsequence of (uk) and a decreasing infinitesimal sequence (λk) of positive numbers, both depending
on n and ε, such that the following properties hold:
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(i) for all k ∈ N we have λk 6= 1− |uk(0)| and the boundary of the set Dλk
k = {dk > λk} consists

of an at most countable number of continuous curves which are either closed or with endpoints
on ∂Ω, and whose total length is finite;

(ii) Dλk
k ∪ ∂D

λk
k ⊆ An for all k ∈ N;

(iii) lim
k→+∞

∫
∂D

λk
k

dk dH1 = lim
k→+∞

(
λkH1(∂Dλk

k )
)

= 0;

(iv) ∂Dλk
k ∩∂Bε consists of a finite set of points. Hence12, also the relative boundary of Dλk

k ∩∂Bε

in ∂Bε consists of a finite set {xi}i∈Ik of points which are the endpoints of the corresponding

finite number of arcs forming Dλk
k ∩ ∂Bε, and

lim
k→+∞

∑
i∈Ik

dk(xi) = 0; (4.12)

(v) H1(Dλk
k ∩ ∂Bε) ≤ 1

n for all k ∈ N.

Proof. Let

I := (0, 2) \
⋃
k∈N
{1− |uk(0)|},

which is of full measure in (0, 2).
We have, for an absolute positive constant α, recalling the definition of dk in (4.8),∫

Ω
|∇uk −∇u| dx ≥ α

∫
Ω
|∇dk| dx = α

∫ 2

0
H1({dk = λ}) dλ, (4.13)

where the last equality follows from the coarea formula, recalling also that uk takes values in
B1. The left-hand side is uniformly bounded with respect to k, thanks to (4.3) and the fact that
∇u ∈ L1(Ω,R2). Thus, denoting

ϕk(·) := H1({dk = ·}), ϕ := lim inf
k→+∞

ϕk, (4.14)

we get, from Fatou’s lemma, ∫ 2

0
ϕ(λ) dλ =

∫
I
ϕ(λ) dλ ≤ C1, (4.15)

for some constant C1 > 0.
Let us now focus attention on the set ∂Bε. We apply the tangential coarea formula to ∂Bε (see

for instance [24, Theorems 11.4, 18.8]) so that, if ∂tg stands for the tangential derivative along ∂Bε,
we have ∫

∂Bε

∣∣∂tgdk
∣∣ dH1 =

∫ 2

0
H0({dk = λ} ∩ ∂Bε) dλ.

Arguing in a similar manner as before, denoting

ψk(·) := H0({dk = ·} ∩ ∂Bε), ψ := lim inf
k→+∞

ψk, (4.16)

12The relative boundary of D
λk
k ∩ ∂Bε is contained in ∂D

λk
k ∩ ∂Bε.
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it follows that, exploiting condition (4.4), there exists a constant C ′ε > 0 such that∫
I
ψ(λ) dλ ≤ C ′ε. (4.17)

We now claim that

∃(λm) ⊂ I : lim
m→+∞

λm = 0, lim
m→+∞

(ϕ(λm)λm) = 0 = lim
m→+∞

(ψ(λm)λm). (4.18)

Recalling that I is of full measure, assume (4.18) is false, so that either there are c0 > 0 and δ0 > 0
such that

ϕ(λ) >
c0

λ
∀λ ∈ (0, δ0) ∩ I, (4.19)

or there are c′0 > 0 and δ′0 > 0 such that

ψ(λ) >
c′0
λ

∀λ ∈ (0, δ′0) ∩ I. (4.20)

Suppose for instance we are in case (4.19): since I has full measure, this contradicts (4.15); the
same argument applied to (4.20) leads to contradict (4.17). Hence claim (4.18) is proven, and
therefore, upon passing to a (not relabelled) subsequence we might assume that (λm) is decreasing,
and

ϕ(λm)λm <
1

m
, ψ(λm)λm <

1

m
∀m ∈ N.

Thus, recalling (4.14) and (4.16), for any m ∈ N there are infinitely many l ∈ N such that

ϕl(λm)λm <
2

m
, ψl(λm)λm <

2

m
. (4.21)

Moreover, for any n ∈ N and m ∈ N there exists k(n, λm) ∈ N such that

Dλm
h ∪ ∂Dλm

h ⊆ An and H1(Dλm
h ∩ ∂Bε) ≤

1

n
∀h ≥ k(n, λm), (4.22)

where the inclusion follows from (4.11) and the inequality being a consequence of (4.5). For any
m ∈ N we can choose hm ∈ N (depending also on n) such that hm < hm+1, hm ≥ k(n, λm), and
(4.21) is verified for l = hm. Therefore

lim
m→+∞

(ϕhm(λm)λm) = 0, (4.23)

Dλm
hm
∪ ∂Dλm

hm
⊆ An for all n,m ∈ N, (4.24)

lim
m→+∞

(ψhm(λm)λm) = 0, (4.25)

H1(Dλm
hm
∩ ∂Bε) ≤

1

n
for all n,m ∈ N. (4.26)

Notice also that from (4.21) we have ψhm(λm) < +∞, so that {dhm = λm} ∩ ∂Bε is a finite
set {x̃i} of points. The relative boundary ∂(Dλm

hm
∩ ∂Bε) of Dλm

hm
∩ ∂Bε in ∂Bε must belong to

∂Dλm
hm
∩ ∂Bε ⊆ {dhm = λm} ∩ ∂Bε = {x̃i}. Hence, let {xi} ⊆ {x̃i} be the set of boundary points of

Dλm
hm
∩ ∂Bε in ∂Bε.
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Since Dλm
hm
∩ ∂Bε is open in ∂Bε, we have that (whenever it is nonempty) it consists either of the

union of arcs with endpoints {xi} or is the whole of ∂Bε, and statements (ii) and (v) follow. Notice
also that ∑

x∈∂(Dλmhm∩∂Bε)

dhm(x) = H0(∂(Dλm
hm
∩ ∂Bε))λm ≤ ψhm(λm)λm,

and (4.12) follows from (4.25).
To prove (iii) we see that, by definition of ϕk in (4.14) and recalling (4.23), we obtain

lim
m→+∞

∫
{dhm=λm}

dhm dH1 = lim
m→+∞

(
H1({dhm = λm})λm

)
= lim

m→+∞
(ϕhm(λm)λm) = 0.

A similar argument holds for ψk using (4.25), and also (v) follows.
It remains to prove (i). The first assertion follows since λm ∈ I from (4.18). As for the second

assertion, we see that Dλm
hm

is a subset of Ω\{0} whose perimeter is finite: indeed, by definition the

reduced boundary of Dλm
hm

is a subset of {dhm = λm}, which has finite H1 measure by (4.21). Thus

∂Dλm
hm

is a closed 1-integral current in Ω \ {0} and by the decomposition theorem for 1-dimensional
currents it is the sum of integration on simple curves [15, pag. 420, 421], either closed or with
endopoints on the boundary of Ω \ {0}, i.e., {0} ∪ ∂Ω. The finiteness of the total length of these
curves follows, since Dλm

hm
is a set of finite perimeter. This concludes the proof of (i), and of the

lemma.

Corollary 4.3. Let ε, n and (λk) be as in Lemma 4.2. Then

lim
k→+∞

(
H1({dk = λk})λk

)
= 0, lim

k→+∞

(
H0
(
{dk = λk} ∩ ∂Bε(0)

)
λk
)

= 0.

Proof. It follows from the proof of Lemma 4.2.

Once for all we fix the sequence (λk) as in Lemma 4.2 and, in order to shorten the notation, we
give the following:

Definition 4.4 (Definite choice of Dk). We set

Dk := Dλk
k . (4.27)

Let us recall that

∂Dk ⊆ {dk = λk}. (4.28)

Also, observe that, upon extracting a further (not relabelled) subsequence, we might assume that
the characteristic functions χDk converge weakly∗ in L∞(Ω) to some ζn ∈ L∞(Ω; [0, 1]) (the sequence

(Dk) depends on n, and so ζn depends on n). Since the limit holds also weakly in L1(Ω) we see
that

‖ζn‖L1(Ω) ≤ lim inf
k→+∞

‖χDk‖L1(Ω) ≤
1

n
. (4.29)

Recalling the definition of Mβ
ᾱ (A) in (2.1), we prove the following statement.
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Lemma 4.5 (The currents Tk and the limit current Tn). Let n ∈ N be fixed and let An satisfy
(4.6) and (4.7). For any k ∈ N define the current Tk ∈ D2(Ω× R2) as

Tk(ω) :=


∫

Ω\Dk
ϕ(x, uk(x))Mβ

ᾱ (∇uk(x)) dx if |β| ≤ 1,

0 if |β| = 2,

where ω ∈ D2(Ω× R2) is a 2-form that writes as

ω(x, y) = ϕ(x, y)dxα ∧ dyβ, ϕ ∈ C∞c (Ω× R2), |α|+ |β| = 2. (4.30)

Then
lim

k→+∞
Tk = Tn ∈ D2(Ω× R2) weakly in the sense of currents,

where

Tn(ω) :=

∫
Ω
ϕ(x, u(x))Mβ

ᾱ (∇u(x))(1− ζn(x)) dx ∀ω as in (4.30).

Proof. Since the Jacobian of u vanishes almost everywhere it follows that Tn(ϕdy1 ∧ dy2) = 0 for
all ϕ as in (4.30). Then for 2-forms ω = ϕdy1 ∧ dy2 the convergence Tk(ω) → Tn(ω) is achieved.
We are then left to prove that for all 2-forms ω with ω(x, y) = ϕ(x, y)dxα ∧ dyβ, ϕ ∈ C∞c (Ω×R2),
|α|+ |β| = 2, and |β| ≤ 1, it holds

lim
k→+∞

∫
Ω\Dk

ϕ(x, uk(x))Mβ
ᾱ (∇uk(x)) dx =

∫
Ω
ϕ(x, u(x))Mβ

ᾱ (∇u)(1− ζn(x)) dx. (4.31)

To simplify the argument we treat separately the cases ω = ϕ(x, y)dx1∧dx2 and ω = ϕ(x, y)dxi∧dyj
for some i, j ∈ {1, 2}. In the former case we simply have∫

Ω\Dk
ϕ(x, uk(x)) dx =

∫
Ω
ϕ(x, uk(x))χΩ\Dk(x) dx.

Then, using that uk → u uniformly in Ω \Dk (see (4.7), Lemma 4.2(ii) and (4.27)) and χΩ\Dk →
χΩ − ζn weakly∗ in L∞(Ω), it follows

lim
k→+∞

∫
Ω\Dk

ϕ(x, uk(x)) dx =

∫
Ω
ϕ(x, u(x))(1− ζn(x)) dx = Tn(ω).

Assume now ω = ϕ(x, y)dxi ∧ dyj , i, j ∈ {1, 2}, i 6= j. In this case (4.31) reads as

lim
k→+∞

(∫
Ω\Dk

ϕ(x, uk(x))Dī[(uk(x))j ] dx−
∫

Ω
ϕ(x, u(x))Dīuj(x)(1− ζn(x)) dx

)
= 0,

with ī = {1, 2} \ {i}. Since χDk → ζn weakly∗ in L∞(Ω), this is equivalent to proving

lim
k→+∞

(∫
Ω\Dk

ϕ(x, uk(x))Dī[(uk(x))j ] dx−
∫

Ω\Dk
ϕ(x, u(x))Dīuj(x) dx

)
= 0.

The quantity between parentheses on the left-hand side can be written as∫
Ω\Dk

(
ϕ(x, uk(x))− ϕ(x, u(x))

)
Dī[(uk(x))j ] dx+

∫
Ω\Dk

ϕ(x, u(x))
(
Dī[(uk(x))j ]−Dīuj(x)

)
dx,
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and we see that the first integral tends to zero as k → +∞, since uk → u uniformly in Ω \Dk, ϕ
is Lipschitz continuous, and the L1(Ω)-norm of Dī[(uk)j ] is uniformly bounded with respect to k.
The second integral can be instead integrated by parts13, obtaining∫

Ω\Dk
ϕ(x, u(x))(Dī[(uk(x))j ]−Dīuj(x)) dx

=

∫
∂Dk

ϕ(x, u(x))((uk(x))j − uj(x))νī(x) dH1(x)−
∫

Ω\Dk
Dī(ϕ(x, u(x)))((uk(x))j − uj(x)) dx

=: Ik + IIk.

Thanks to the fact that ϕ is bounded and that |(uk)j(x)−uj(x)| ≤ dk(x) = λk on ∂Dk, we conclude
by Corollary 4.3 that limk→+∞ Ik = 0. Moreover

IIk =−
∫

Ω\Dk
∂xīϕ(x, u(x))((uk(x))j − uj(x))dx

−
2∑
l=1

∫
Ω\Dk

∂ylϕ(x, u(x))Dīul(x)((uk)j(x)− uj(x))dx =: IIk,1 + IIk,2.

Then limk→+∞ IIk,1 = limk→+∞ IIk,2 = 0, since the partial derivatives of ϕ are bounded, Dīu ∈
L1(Ω \Dk,R2), |(uk)j − uj | ≤ dk ≤ λk on Ω \Dk, and limk→+∞ λk = 0.

Remark 4.6. The mass of the current Tk is given by

|Tk| =
∫

Ω\Dk

√
1 + |∇uk|2dx. (4.32)

To see (4.32) we choose a 2-form ω ∈ D2(Ω× R2) as

ω :=
∑

|α|+|β|=2

ϕᾱβdx
α ∧ dyβ, ‖ω‖ ≤ 1,

set14 ω̂(x, y) =: (ϕᾱβ(x, y)) ∈ R6, and

M̃(∇uk(x)) := (1, D1[(uk(x))1], D2[(uk(x))1], D1[(uk(x))2], D2[(uk(x))2], 0) ∈ R6 = R× R4 × R,

so that

Tk(ω) =

∫
Ω\Dk

〈ω̂(x, uk(x)),M̃(∇uk(x))〉dx

≤ ‖ω̂‖
∫

Ω\Dk
|M̃(∇uk(x))|dx ≤

∫
Ω\Dk

√
1 + |∇uk|2dx.

(4.33)

To prove the converse inequality, choosing ω̂(x, y) = M̃(∇uk(x))

|M̃(∇uk(x))|
would give the equality in (4.33).

However, M̃(∇uk)

|M̃(∇uk)|
is not necessarily of class C∞c , so we need to use the density of C∞c (Ω× R2) in

L1(Ω× R2) (here we use that M̃(∇uk) ∈ L∞(Ω,R6) since uk is Lipschitz continuous).
With a similar argument, setting

M̃(∇u(x)) := (1− ζn(x))M(∇u(x)) ∈ R6, x ∈ Ω \ Bε

we can show that the total mass of Tn in (Ω \ Bε)× R2 is given by

|Tn|(Ω\Bε)×R2 =

∫
Ω\Bε

|M(∇u)||1− ζn| dx. (4.34)

13From Lemma 4.2(i), Dk has rectifiable boundary; moreover, ϕ(·, uk(·)) is Lipschitz. We can then apply a version
of the Gauss-Green theorem, see for instance [24, pag. 124, exercise 12.12].

14Here α and β run over all the multi-indeces in {1, 2} with the constraint |α|+ |β| = 2.
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4.2 Estimate of the mass of 〚Guk〛 over Ω \Dk

We denote by Φk = Φuk = Id ./ uk : Ω→ Ω× R2 the map

Φk(x) = (x, uk(x)), (4.35)

in such a way that Φk(Ω) = Guk , with Guk = {(x, y) ∈ Ω× R2 : y = uk(x)} the graph of uk.
We denote as usual by

〚Guk〛 ∈ D2(Ω× R2) (4.36)

the integral current supported by the graph of uk.
We now want to estimate the area of the graph of uk over the set (Ω \ Bε) \Dk.

Proposition 4.7. Let ε ∈ (0, l) satisfy (4.4) and (4.5), n ∈ N, (λk) be as in Lemma 4.2, and let
Dk be as in (4.27). Then

lim inf
k→+∞

∫
Ω\Dk

|M(∇uk)| dx ≥
∫

Ω\Bε
|M(∇u)| dx− 1

n
− 2

εn
. (4.37)

Proof. Set Ωε := Ω \ Bε. Since, by definition, Tk vanishes on smooth 2-forms supported in (Dk ∩
Ωε)× R2, we employ (4.32) to obtain

lim inf
k→+∞

∫
Ω\Dk

|M(∇uk)| dx ≥ lim inf
k→+∞

∫
Ω\Dk

√
1 + |∇uk|2 dx ≥ lim inf

k→+∞
|Tk|(Ωε\Dk)×R2

= lim inf
k→+∞

|Tk|Ωε×R2 ≥ |Tn|Ωε×R2 ,
(4.38)

where we use that (Tk) weakly converges to Tn (Lemma 4.5), and the weak lower semicontinuity of
the mass. In turn, from (4.34) and (4.29),

|Tn|Ωε×R2 =

∫
Ωε

|M(∇u)||1− ζn| dx ≥
∫

Ωε

|M(∇u)| dx−
∫

Ωε

|M(∇u)||ζn| dx

≥
∫

Ωε

|M(∇u)| dx− ‖M(∇u)‖L∞(Ωε)‖ζn‖L1(Ωε) (4.39)

≥
∫

Ωε

|M(∇u)| dx− 1

n
‖M(∇u)‖L∞(Ωε).

Next, using
√

1 + z2 ≤ 1 + |z| and15 |∇u(x)| ≤ 2
|x| which, on Ωε, is bounded by 2/ε, we also get

‖M(∇u)‖L∞(Ωε) = ‖
√

1 + |∇u|2‖L∞(Ωε) ≤ 1 +
2

ε
.

We deduce

|Tn|Ωε×R2 ≥
∫

Ωε

|M(∇u)| dx− 1

n
− 2

εn
.

From (4.39) and (4.38) inequality (4.37) follows.

15Diuj(x) =
δij
|x| −

xixj
|x|3 , hence

∑
ij(Diuj(x))2 = 2

|x|2 + 2
x21x

2
2

|x|6 ≤
4
|x|2 .
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5 The maps Ψk, πλk, and the currents Dk, D̂k, Ek
Recalling that Dk is defined in (4.27) and (4.9), in Section 4.2 we have estimated the area of the
graph of uk over Ω \ Dk. The next step, which is considerably more difficult, is to estimate this
area over Dk, and this will be splitted in several parts (Sections 6-9). After introducing some
preliminaries in Section 5.1, the first step is to reduce the graph of uk (a surface of codimension
2 in R4) to a suitable rectifiable set (Ψk(Dk) and their projections) of codimension 1 sitting in
C l ⊂ R3. In this section we introduce all various objects needed to prove the lower bound.

Definition 5.1 (The map Ψk). For all k ∈ N, we define the map Ψk = Ψuk : Ω → R3 =
R|x| × R2

target as

Ψk(x) :=(|x|, uk(x)) ∀x ∈ Ω. (5.1)

Notice that Ψk takes values in Cl, and is Lipschitz continuous. Moreover Ψk = R ◦ Φk, where
Φk = Id ./ uk : Ω → R4 is defined in (4.35), and R : R4 3 (x, y) 7→ (|x|, y) ∈ R3. By the area
formula and since Lip(R) = 1 we have∫

B
(∇ΨT

k∇Ψk)
1
2 dx ≤

∫
B

(∇ΦT
k∇Φk)

1
2 dx =

∫
B
|M(∇uk)| dx = |Guk |B×R2 ,

for any Borel set B ⊆ Ω.

5.1 The sets Ψk(Dk) and the currents (Ψk)]〚Dk〛

We start noticing that
Ψk(Ω \Dk) ⊂ C l \ Cl(1− λk), k ∈ N, (5.2)

where we recall that Cl(1−λk) is defined in (2.4). Indeed, since Ω \Dk ⊆ {dk ≤ λk} for any k ∈ N
we have

λk ≥ |uk(x)− x

|x|
| ≥ dist(uk(x), S1) = 1− |uk(x)|, x ∈ Ω \Dk, (5.3)

so that |uk(x)| ≥ 1− λk. In particular

Ψk(∂Dk) ⊂ C l \ Cl(1− λk), k ∈ N. (5.4)

As a consequence, since the map Ψk is Lipschitz continuous, we have:

Corollary 5.2. For all k ∈ N the integral 2-current (Ψk)]〚Dk〛 is boundaryless in Cl(1− λk).

Observe that Ψk(Dk) is rectifiable and contains16 the support of (Ψk)]〚Dk〛; also Ψk(Dk) is
contained in [0, l)×B1. Specifically, the fact that Cl has axial coordinate in (−1, l) and not in (0, l)
will be convenient in order to control the behaviour of (Ψk)]〚Dk〛 on {0} × R2.

Definition 5.3 (The projection πλk). We let

πλk = πλk : R3 → C l(1− λk) (5.5)

be the orthogonal projection onto the compact convex set C l(1− λk).
16It could be different because of possible cancellations.
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In Section 5.2 we project Ψk(Dk) on C l(1−λk) in order to get a rectifiable set (and its associated
current) whose area (counted with multiplicity) is less than or equal to the area of the original
set; the area of the projected set, in turn, gives a lower bound for the mass of 〚Guk〛 over Dk

(see formulas (5.7) and (5.11)). Then, as a second step, we symmetrize πλk ◦ Ψk(Dk) using the
cylindrical rearrangement introduced in Section 3 to get a still smaller (in area) object. The
estimate of the area of the symmetrized object is divided in two parts: the first one (Section 7)
deals with πλk ◦Ψk(Dk ∩ (Ω\Bε)) whose symmetrized set can be seen as the generalized graph of a
suitable polar function. In Section 8 we deal with the second part, where we estimate the area of the
symmetrization obtained from πλk ◦Ψk(Dk∩Bε). In Sections 9 and 11, we collect our estimates and
we utilize the symmetrized object as a competitor for a suitable non-parametric Plateau problem.
To do this we need to glue to the obtained rectifiable set some artificial surfaces, whose areas are
controlled and are infinitesimal in the limit as k → +∞. This limit is taken only at the end of
Section 11, allowing us to analyse a non-parametric Plateau problem whose boundary condition
does not depend on k, so that also its solution does not depend on k. The area of such a solution
will be the lower bound for the area of the rectifiable set πλk ◦Ψk(Dk∩(Ω\Bε))∪πλk ◦Ψk(Dk∩Bε),
and then finally for the area of the graph of uk on Dk.

5.2 Construction of the current D̂k via the currents Dk and Wk

We are interested in the part of the set Ψk(Dk) included in C l(1−λk); we need an explicit description
of the boundary of Ψk(Dk), and to this aim we compose Ψk with the projection πλk in (5.5).

Definition 5.4 (Projection of Ψk(Dk): the current Dk). We define the current Dk∈ D2(Cl)
as

Dk := (πλk ◦Ψk)]〚Dk〛. (5.6)

Remark 5.5. In general Ψk(Dk) ⊆ Cl(1− λk) ∪ (Cl \ Cl(1− λk)), while spt(Dk) ⊆ Cl(1− λk).

Since Lip(πλk) = 1, the map πλk does not increase the area, and therefore∫
Dk

|J(πλk ◦Ψk)| dx ≤
∫
Dk

|J(Ψk)| dx ≤ |〚Guk〛|Dk×R2 , (5.7)

∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)| dx ≤
∫
Dk∩(Ω\Bε)

|J(Ψk)| dx ≤ |〚Guk〛|(Dk∩(Ω\Bε))×R2 , (5.8)

The same holds for the mass of the current Dk, i.e.,

|Dk| ≤ |(Ψk)]〚Dk〛|,

and recalling also (2.7),

|Dk|Cεl ≤ |(Ψk)]〚Dk〛|Cεl ≤ |〚Guk〛|(Dk∩(Ω\Bε))×R2 . (5.9)

Remark 5.6. The area, counted with multiplicity, of the 2-rectifiable set πλk ◦Ψk(Dk) is greater
than or equal to the mass of the current Dk, more specifically∫

Dk

|J(πλk ◦Ψk)| dx ≥ |Dk|Cl(1−λk) and

∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)| dx ≥ |Dk|Cεl (1−λk).

(5.10)
This is due to the fact that πλk ◦ Ψk(Dk) might overlap with opposite orientations so that the
multiplicity of Dk vanishes, and the overlappings do not contribute to its mass. In particular,
spt(Dk) ⊆ πλk ◦Ψk(Dk).
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From (5.7) and (5.10) it follows

|〚Guk〛|Dk×R2 ≥ |Dk|Cl(1−λk), |〚Guk〛|(Dk∩(Ω\Bε))×R2 ≥ |Dk|Cεl (1−λk). (5.11)

We now analyse the boundary of Dk. Up to small modifications, we will prove that it is bound-
aryless in Cl(1− λ′k) (see (5.20) and (5.23), where λ′k are suitable small numbers in (0, λk) chosen
below in Definition 5.12) and so Dk can be symmetrized according to Definition 3.3. Before pro-
ceeding to the symmetrization we need some preliminaries. We build suitable currents Wk, with
their support sets denoted by Wk (see (5.17) and (5.16)), with ∂Wk coinciding with ∂Dk (see (5.21),
(5.22), and (5.23)).

Remark 5.7. By (5.4), πλk ◦ Ψk(∂Dk) is contained in ∂latCl(1 − λk). By Lemma 4.2(i), πλk ◦
Ψk(∂Dk) is the union of the image of at most countably many curves, and this union, counted with
multiplicities, has finite H1 measure: specifically, if we define

M(πλk ◦Ψk(∂Dk)) :=

∫
∂Dk

∣∣∣∂tg (πλk ◦Ψk)
∣∣∣ dH1,

where ∂tg stands for the tangential derivative along ∂Dk, then M(πλk ◦ Ψk(∂Dk)) < +∞ since
H1(∂Dk) < +∞ (still by Lemma 4.2(i)) and uk is Lipschitz continuous.

Moreover
∂Dk = (πλk ◦Ψk)]∂〚Dk〛∈ D1(Cl) in Cl. (5.12)

It is convenient to introduce a suitable map τ parametrizing the region C l \Cl(1−λk) in between
the two concentric cylinders; this map can then be pulled back by πλk ◦Ψk, but only in Ω \Dk, to
get the map τ̃ .

Definition 5.8 (The maps τ , τ̃). We set

τ = τλk : [1− λk, 1]× ∂Cl(1− λk)→ C l \ Cl(1− λk) ⊂ R3,

τ(ρ, t, y) :=
(
t,
y

|y|
ρ
)
, ρ ∈ [1− λk, 1], (t, y) ∈ ∂Cl(1− λk) = [−1, l]× ∂B1−λk .

(5.13)

By (5.2) it follows πλk ◦Ψk(Ω \Dk) ⊂ ∂Cl(1− λk), hence we can also set

τ̃(ρ, x) = τ̃uk,λk(ρ, x) := τ(ρ, πλk ◦Ψk(x)), ρ ∈ [1− λk, 1], x ∈ Ω \Dk. (5.14)

Notice that τ(ρ, ·, ·) takes values in ∂Cl(ρ) for any ρ ∈ [1− λk, 1], that τ(·, t, y) moves along the
normal to the lateral boundary of ∂Cl(1− λk) at the point (t, y), and τ(1− λk, ·, ·) is the identity.
We also observe that, due to the fact that πλk ◦Ψk takes values in [0, l)×B1, the same holds for τ̃ .

Remark 5.9. If λk > 0 is small enough (which is true for k large enough), the Jacobian of τ is
close to 1 so that the H1-measure, counted with multiplicities, of the set τ(ρ, πλk ◦Ψk(∂Dk)) is, for
fixed ρ, bounded by two times the H1-measure of πλk ◦Ψk(∂Dk), still counted with multiplicities.
More precisely,

2

∫
∂Dk

∣∣∣∂tg (πλk ◦Ψk)
∣∣∣ dH1 ≥

∫
∂Dk

∣∣∣∂tg τ(ρ, πλk ◦Ψk)
∣∣∣ dH1, ρ ∈ [1− λk, 1], (5.15)

2

∫
(Ω\Bε)∩∂Dk

∣∣∣∂tg (πλk ◦Ψk)
∣∣∣ dH1 ≥

∫
(Ω\Bε)∩∂Dk

∣∣∣∂tg τ(ρ, πλk ◦Ψk)
∣∣∣ dH1,

for all ρ ∈ [1 − λk, 1] and k ∈ N large enough, where we recall that, from Lemma 4.2(i), ∂Dk is
rectifiable.
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Now we take a sequence17 of numbers λ′k ∈ (0, λk), which will be fixed in the sequel (see Definition
5.13).

Definition 5.10 (The set Wk and the current Wk). We define the 2-rectifiable set18

Wk := τ
(
[1− λk, 1− λ′k]× πλk ◦Ψk(∂Dk)

)
= τ̃

(
[1− λk, 1− λ′k]× ∂Dk

)
, (5.16)

and the 2-current

Wk := τ̃]〚[1− λk, 1− λ′k]× ∂Dk〛 ∈ D2(Cl). (5.17)

Clearly spt(Wk) ⊆ Wk; Again, although Wk is defined as a current in Cl, it is supported in
[0, l]×B1.

Remark 5.11 (Use of 〚·〛 for not top-dimensional currents). ∂Dk is endowed with a natural
orientation, inherited from the fact that it is the boundary of the set Dk; consistently, we sometimes
use the identification 〚∂Dk〛 = ∂〚Dk〛. With a little abuse of notation we have noted the current
integration over [1−λk, 1−λ′k]×∂Dk, meaning that ∂Dk is endowed with this natural orientation.
Finally, recalling that τ̃(ρ, ·) takes values in ∂Cl(ρ), we can do the following identification:

τ̃]〚[1− λk, 1− λ′k]× ∂Dk〛 = τ̃]∂〚[1− λk, 1− λ′k]×Dk〛
(
Cl(1− λ′k) \ C l(1− λk)

)
.

We denote

M(Wk) :=

∫
[1−λk,1−λ′k]×∂Dk

|J(τ̃(ρ, x))| dρ dH1(x) (5.18)

the area of Wk counted with multiplicities. By the area formula and using (5.15) we infer

|Wk| ≤M(Wk) ≤ 2(λk − λ′k)
∫
∂Dk

∣∣∣∂tg (πλk ◦Ψk)
∣∣∣ dH1 = 2(λk − λ′k)M(πλk ◦Ψk(∂Dk)). (5.19)

Then we are led to the following

Definition 5.12 (The sequence (λ′k)). We select λ′k ∈ (0, λk) so that

2(λk − λ′k)M(πλk ◦Ψk(∂Dk)) ≤
1

n
∀k ∈ N. (5.20)

Finally we observe that

∂Wk = τ(1− λ′k, ·, ·)]
(

(πλk ◦Ψk)]∂〚Dk〛
)
− (πλk ◦Ψk)]∂〚Dk〛. (5.21)

Definition 5.13 (The current D̂k). We define

D̂k := Dk +Wk∈ D2(Cl). (5.22)

The next result will be useful to select a primitive of D̂k.

Corollary 5.14. The current D̂k is supported in [0, l]×B1−λ′k and

D̂k is boundaryless in the open cylinder Cl(1− λ′k). (5.23)

In particular ∂D̂k = 0 in D1((−∞, l)×B1−λ′k).

Proof. The statement follows by construction, and noticing that, since τ(1−λ′k, ·, ·)]
(

(πλk◦Ψk)]∂〚Dk〛
)

has support in ∂latCl(1− λ′k), one can use (5.12) to deduce (5.23).
17The sequence (λ′k) depends on ε and n.
18The set Wk consists of “vertical” walls, normal to ∂Cl(1−λk), build on πλk ◦Ψk(∂Dk), with height λ′k −λk: see

Fig. 11.
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5.3 The 3-current Ek and the symmetrization of D̂k

Since we want to symmetrize D̂k according to Definition 3.3, we need to identify a unique primitive
3-current Ek such that ∂Ek = D̂k.

The restriction of the map πλk ◦Ψk to Ω \Dk takes Ω \Dk into ∂Cl(1− λk) (see (5.2)), and can
also be written as

πλk ◦Ψk(x) =
(
|x|, uk(x)

|uk(x)|
(1− λk)

)
, x ∈ Ω \Dk. (5.24)

The current (πλk ◦Ψk)]〚Ω \Dk〛 has boundary

∂(πλk ◦Ψk)]〚Ω \Dk〛 = −(πλk ◦Ψk)]∂〚Dk〛. (5.25)

Definition 5.15 (The currents Yk and Xk). Recalling the definition of τ (see (5.14), (5.13)) we
set

Yk :=τ̃]〚[1− λk, 1− λ′k]× (Ω \Dk)〛 ∈ D3(Cl), (5.26)

Xk :=〚Cl(1− λ′k) \ Cl(1− λk)〛− Yk ∈ D3(Cl). (5.27)

Notice that Xk cannot be directly defined as a push-forward via the map τ̃ , for part of Ψk(Dk)
could be contained in Cl(1− λk), and for this reason we are led to define it as a difference.

The current Yk could have multiplicity different from 0 and 1, and in particular could not be the
integration over a finite perimeter set. This depends on the fact that the map Ψk could generate
overlappings and self-intersections of the set πλk ◦ Ψk(Ω \Dk). If the multiplicity of Yk is only 1
or 0 then the same holds for Xk. Also, Yk might be null, and in this case Xk coincides with the
integration over the region Cl(1 − λ′k) \ C l(1 − λk). A finer description of these two currents will
be necessary later, and this will be done by a slicing argument in Lemma 6.4 below.

Recalling (5.17),

∂Yk = −Wk = −∂Xk in Cl(1− λ′k) \ Cl(1− λk),

as it can be seen by considering the push-forward by τ of (5.25). We proceed to the symmetrization
in Cl(1−λ′k) of the current D̂k in (5.22). By (5.23) it follows the existence of an integer multiplicity
3-current Ek ∈ D3(Cl(1− λ′k)) such that

∂Ek = D̂k in Cl(1− λ′k). (5.28)

The current Ek is unique up to a constant, that we might assume to be integer, since Ek has integer
multiplicity. Hence we choose such a constant19 so that

Ek
(
Cl(1− λ′k) \ Cl(1− λk)

)
= Xk. (5.29)

Let Ek denote the support of Ek; by decomposition,

Ek =
∑
i

(−1)σi〚Ek,i〛 in Cl(1− λ′k), (5.30)

19The fact that this choice is possible is a consequence of the constancy theorem (see for instance [23, Proposition

7.3.1]). Indeed, let Êk have the same boundary (i.e., Wk) of Xk in Cl(1 − λ′k) \ Cl(1 − λk). Thus Êk − Xk is

boundaryless, and must be an integer multiple of the integration over Cl(1 − λ′k) \ Cl(1 − λk), i.e., Êk − Xk =

h〚Cl(1− λ′k) \ Cl(1− λk)〛. We then set Ek := Êk − h〚Cl(1− λ′k)〛 so that Ek = Xk in Cl(1− λ′k) \ Cl(1− λk).
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with Ek,i ⊂ Cl(1− λ′k) finite perimeter sets, the decomposition done with undecomposable compo-
nents, see (3.3), (3.4). We denote

S(Ek) := ∪iS(Ek,i)

the union of the cylindrical symmetrizations of the sets Ek,i, see (3.2). Recalling (5.28), Definition

3.3 and (3.5), the symmetrization of the current D̂k is

S(D̂k) = ∂S(Ek) = ∂〚S(Ek)〛 Cl(1− λ′k). (5.31)

Formula (5.31) contains the needed information about the symmetrization of Ψk(Dk), since by
construction Dk = D̂k Cl(1− λk) (recall (5.6)).

We have

D̂k =
∑
i

(−1)σi〚∂∗Ek,i〛 in Cl(1− λ′k), (5.32)

and since the decomposition in (5.30) is done by undecomposable components, by (3.4) it follows,
in Cl(1− λ′k),

|D̂k| =
∑
i

H2(∂∗Ek,i) and ∂∗Ek,i ⊆ spt(D̂k).

Remark 5.16 (Nonuniqueness of the decomposition). Once the decomposition (5.30) is fixed,
the symmetrization is uniquely determined. However, the decomposition might not be unique, and
the resulting symmetrized current in general depends on the choice of the decomposition. This will
not be an issue, since our procedure will lead to a minimization problem which will not depend on
this step.

Since

H2(∂∗S(Ek,i)) ≤ H2(∂∗Ek,i) for all i ∈ N,

and S(Ek) = ∪iS(Ek,i), we also have

H2(∂∗S(Ek)) ≤
∑
i

H2(∂∗Ek,i) = |D̂k|. (5.33)

The same inequalities hold if we restrict the mass to the set Cεl , namely

|S(D̂k)|Cεl ≤ |D̂k|Cεl . (5.34)

Now we want to understand whether S(D̂k) has some boundary on {0}×R2. We have already ob-
served (Corollary 5.14) that D̂k has no boundary in Cl(1−λ′k). The same holds for the symmetrized
current:

Corollary 5.17 (Closedness of S(D̂k) in (−∞, l)× B1−λ′k). The current S(D̂k) is supported in

[0, l]×B1−λ′k and ∂S(D̂k) = 0 in D1((−∞, l)×B1−λ′k).

Proof. By definition, S(D̂k) is the boundary of the current carried by the integration over the finite
perimeter set S(Ek) in Cl(1 − λ′k). Hence ∂S(D̂k) = 0 in D1(Cl(1 − λ′k)). The conclusion then

follows from the fact that S(D̂k) is supported in [0, l)×B1−λ′k ⊂ Cl(1− λ
′
k).
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6 Towards an estimate of |S(D̂k)|: two useful lemmas

Now that the symmetrization S(D̂k) of the current D̂k in Cl(1 − λ′k) is obtained (see (5.31)), we
need to estimate its mass. This will be done separately in C

ε
l (1 − λk) = [ε, l] × B1−λk and in

Cε(1− λk) = [−1, ε]×B1−λk . In formula (7.4) of Section 7 we express the restriction of S(D̂k) to
Cεl as generalized graph of suitable functions ϑk,ε and −ϑk,ε and estimate the area of these graphs
(see Proposition 7.9, below). In addition, we need a fine description of the trace of the symmetrized
set boundary ∂S(Ek) on the lateral part of ∂Cl(1− λ′k); this will be done in Section 8.

We start by collecting in Lemma 6.3 and Lemma 6.4 two important preliminary estimates; we
need to introduce the functions |uk|−, |uk|+.

For any r ∈ (ε, l) we consider the closed curve20 α ∈ (0, 2π] 7→ Ψk(r, α) ∈ {r}×B1; the image of
Ψk(r, ·) is the slice of Ψk(Ω \ Bε) with the plane {t = r}.

Definition 6.1 (The functions |uk|±). For all r ∈ (ε, l) we define

|uk|−(r) := min
α∈(0,2π]

|uk(r, α)|, |uk|+(r) := max
α∈(0,2π]

|uk(r, α)|, (6.1)

Thus the map Ψk(r, ·) defined in (5.1) takes values in

{r} × (B|uk|+(r) \B|uk|−(r)).

Let us remark that |uk|−(r) might be equal to 0, that |uk|+(r) ≤ 1, and that it might happen that
|uk|+(r) = |uk|−(r), see Fig. 4. Moreover, from (5.4),

|uk| ≥ 1− λk in Ω \Dk, (6.2)

so that

|uk|+(r) ≥ 1− λk if r is such that (Ω \Dk) ∩ ∂Br 6= Ø,

whereas it might happen that

|uk|+(r) < 1− λk if r is such that (Ω \Dk) ∩ ∂Br = Ø. (6.3)

In such a case, since Dk ⊆ An (Lemma 4.2 (ii)), this can happen only if ∂Br ⊆ An.

Definition 6.2 (The set Qk,ε). We define

Qk,ε := {r ∈ (ε, l) : |uk|+(r) < 1− λk}. (6.4)

Then
Qk,ε ⊆ {r ∈ (ε, l) : ∂Br ⊆ An}. (6.5)

The next lemma, that will be used in Section 9, shows that the measure of Qk,ε is small (see Fig.
4).

Lemma 6.3 (Estimate of Qk,ε). We have

H1(Qk,ε) <
1

2πεn
.

Proof. If t ∈ Qk,ε then ∂Bt ⊆ An. Then

H1(Qk,ε) =

∫
Qk,ε

1dt ≤ 1

2πε

∫
Qk,ε

2πt dt =
1

2πε

∫
Qk,ε

H1(∂Bt)dt ≤
1

2πε
|An|,

where the last inequality is a consequence of the coarea formula and (6.5). The thesis then follows
recalling that |An| < 1

n , see (4.6).
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Figure 4: The graphs of the functions |uk|+ and |uk|− defined in (6.1), and the set Qk,ε in (6.4).

By slicing and from (5.29), (5.30), we have for almost every t ∈ (0, l) and almost every ρ ∈
(1− λk, 1− λ′k),

(Xk)t,ρ =
∑
i

(−1)σi〚Ek,i ∩ ({t} × ∂Bρ)〛,

and

H1(S(Ek) ∩ ({t} × ∂Bρ)) ≤
∑
i

H1(Ek,i ∩ ({t} × ∂Bρ)) = |(Xk)t,ρ|, (6.6)

since the decomposition is done in undecomposable components (see (3.12)).
Recalling the definition of Θ in (3.1) we have, for fixed t ∈ (0, l) and for any ρ ∈ (0, 1− λ′k],

Θk(t, ρ) := ΘS(Ek)(t, ρ) =
1

ρ
H1(S(Ek) ∩ ({t} × ∂Bρ)) (6.7)

denotes the measure (in radiants) of the slice S(Ek) ∩ ({t} × ∂Bρ). By construction,

Θk(t, ρ) = Θk(t, %) for any ρ, % ∈ (1− λk, 1− λ′k),

since the slices of Xk, and hence of the sets Ek,i, are radially symmetric21 in Cl(1−λ′k)\Cl(1−λk).
Also, the right-hand side of (6.7) vanishes for ρ ∈ (1− λk, 1− λ′k).

We now look for an estimate of Θk(t, ρ), for t ∈ (ε, l) and ρ ∈ (1− λk, 1− λ′k): the next lemma
will be used in Section 9.

Lemma 6.4 (L1-estimate of the angular slices). We have∫ l

ε
Θk(t, ρ) dt ≤ 1

εn
+ ok(1) ∀ρ ∈ (1− λk, 1− λ′k), (6.8)

where ok(1) is a nonnegative function, depending on ε and n, and infinitesimal as k → +∞.
20We use here polar coordinates (r, α).
21Each radial section is (suitably rescaled) the same since, by definition, function τ in (5.13) is radial.
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Proof. It is convenient to set

Hk,t := Dk ∩ ∂Bt, Hc
k,t := (Ω \Dk) ∩ ∂Bt ∀t ∈ (ε, l). (6.9)

Observe that the relative boundary of Hk,t, i.e., the boundary of Hk,t when considered as a subset
of ∂Bt, is contained in ∂Dk ∩ ∂Bt.

We fix t ∈ (ε, l) such that the relative boundary of Hk,t is a finite set of points (this happens for
H1-a.e. t, since H1(∂Dk) < +∞ from Lemma 4.2(i)) and fix any ρ ∈ (1−λk, 1−λ′k). By inequality
(6.6) we have

Θk(t, ρ) ≤ 1

ρ
|(Xk)t,ρ|, (6.10)

so it is sufficient to estimate the mass of a (slice of a) slice of the 3-current Xk defined in (5.27).
We recall that by (5.27) we have22

(Xk)t,ρ = 〚{t} × ∂Bρ〛− (Yk)t,ρ, (6.11)

where 〚{t} × ∂Bρ〛 has a natural orientation23 inherited by the fact that it is the boundary of
〚{t} ×Bρ〛 in {t} × R2, which in turn is a slice of 〚Cl(ρ)〛. By (5.26)

(Yk)t,ρ = τ̃]〚{ρ} × ((Ω \Dk) ∩ ∂Bt)〛 = τ(ρ, πλk ◦Ψk(·))]〚Hc
k,t〛, (6.12)

see (5.13), (5.14), (5.24), and Remark 5.11 for the orientation of 〚{ρ} × ((Ω \Dk) ∩ ∂Bt)〛. As for
〚Hc

k,t〛 we endow the set Hc
k,t ⊂ ∂Bt with the orientation inherited by ∂Bt, i.e., by a counterclockwise

tangent unit vector. Now, since the restriction of τ(ρ, πλk ◦Ψk(·)) to ∂Bt takes values in {t}×∂Bρ,
the current (Yk)t,ρ is the integration over arcs24 in {t}× ∂Bρ. To identify these arcs we distinguish
the following three cases (A), (B), (C):

(A) Hc
k,t = Ø. From (6.12) it follows (Yk)t,ρ = 0 and (Xk)t,ρ = 〚{t} × ∂Bρ〛 from (6.11). Thus

Θk(t, ρ) = 2π ≤ 2π
t

ε
=

1

ε
H1(Hk,t). (6.13)

(B) Hc
k,t = ∂Bt ⊂ Ω \Dk, hence (Yk)t,ρ = τ(ρ, πλk ◦Ψk(·))]〚∂Bt〛 from (6.12). Then

(Yk)t,ρ = 〚{t} × ∂Bρ〛. (6.14)

Indeed, fix three points x1, x2, x3 ∈ ∂Bt in counterclockwise order such that | xi|xi| −
xj
|xj | | > 4λk for

i 6= j. Since dk(x) = | x|x| − uk(x)| < λk for x ∈ Ω \Dk, x 6= 0, the points zi := πλk ◦Ψk(xi) are still

in counterclockwise order in {t}× ∂B1−λk (the image of the arc x1x2 covers the arc z1z2 that does
not contain z3). Therefore (πλk ◦ Ψk(·))]〚xixi+1〛 = 〚zizi+1〛 for i = 1, 2, 325 (with the convention
x4 = x1, z4 = z1), and hence

(πλk ◦Ψk(·))]〚∂Bt〛 =

3∑
i=1

(πλk ◦Ψk(·))]〚xixi+1〛 =

3∑
i=1

〚zizi+1〛 = 〚{t} × ∂B1−λk〛.

22The orientation of ∂Bρ is taken counterclockwise.
23The orientation of the 3-current 〚Cl(ρ)〛 induces an orientation of its slice 〚{t} ×Bρ〛. This orientation induces

an orientation of 〚{t} × ∂Bρ〛, which coincides with the orientation of 〚{t} × R2〛ρ induced by the slicing by ρ.
24Such arcs could overlap, since in general the multiplicity of Yk might be different from 1.
25The boundary of (πλk ◦ Ψk(·))]〚xixi+1〛 is δzi+1 − δzi , hence (πλk ◦ Ψk(·))]〚xixi+1〛 is an arc connecting zi and

zi+1. Since this arc cannot contain the third point, it must be 〚zizi+1〛, counterclockwise oriented.
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Taking the push-forward by τ we get (6.14). From this and (6.11) we deduce (Xk)t,ρ = 0, and
Θk(t, ρ) = 0.

Before passing to case (C), we anticipate an observation which will be useful to deal with it.
Let x1x2 ⊂ (Ω \Dk) ∩ ∂Bt be an arc oriented counterclockwise. We want to identify the current
(πλk ◦Ψk)]〚x1x2〛; to do that we consider three different cases for x1x2. Case 1: | x1

|x1| −
x2
|x2| | > 2λk.

Hence z1 := πλk ◦ Ψk(x1) and z2 := πλk ◦ Ψk(x2) must have the same order on ∂B1−λk of x1 and
x2, moreover (πλk ◦ Ψk)]〚x1x2〛 = 〚z1z2〛, where z1z2 is the arc connecting z1, z2, starting from
z1 and oriented counterclockwise. Case 2: | x1

|x1| −
x2
|x2| | ≤ 2λk (that implies |z1 − z2| ≤ 4λk, and

z1, z2 could have reversed order of x1 and x2). Let z1, z2 have the same order of x1, x2, then
(πλk ◦ Ψk)]〚x1x2〛 = 〚z1z2〛 where z1z2 is the arc connecting z1, z2, starting from z1 and oriented
counterclockwise. Now let z1, z2 have the reversed order of x1, x2. If x1x2 is the short path arc
connecting x1, x2, then (πλk ◦Ψk)]〚x1x2〛 = 〚z1z2〛, where z1z2 is the (short path) arc connecting z1,
z2, starting from z1, and oriented clockwise. If x1x2 is instead the long path arc joining x1, x2, then
(πλk ◦ Ψk)]〚x1x2〛 = 〚{t} × ∂B1−λk〛 + 〚z1z2〛, where 〚{t} × ∂B1−λk〛 is oriented counterclockwise,
and z1z2 is the (short path) arc starting from z1 and oriented counterclockwise. Notice also that
in case 2 we always have H1(z1z2) < 8λk.

Now, we analyse the third case.

(C) Hc
k,t is union of finitely many arcs. Let us denote by

{
xi1x

i
2

}
i

these distinct arcs with

endpoints26 xij = (t, αij) ∈ ∂Bt, with the index i ∈ {1, . . . , h = hk,t} varying in a finite set, so that

〚Hc
k,t〛 =

h∑
i=1

〚xi1xi2〛 and 〚Hk,t〛 =
h∑
i=1

〚xi2x
i+1
1 〛,

where again the orientation of xi1x
i
2 is the one inherited by the counterclockwise orientation of ∂Bt

and, by convention, h+1 = 1. Being Hc
k,t relatively closed set in ∂Bt, it might happen that xi1 = xi2

for some i. Notice that xij belongs to the relative boundary of Hk,t which, in turn, is a subset of
∂Dk ∩ ∂Bt.

We denote
zij := πλk ◦Ψk(x

i
j) ∈ {t} × ∂B1−λk .

After applying πλk ◦Ψk(·), the points xij might also reverse their order, i.e., the orientation of the

arc πλk ◦Ψk

(
xi1x

i
2

)
could be the opposite of the orientation of xi1x

i
2.

In order to describe the current (Xk)t,ρ we need first to extend τ(ρ, πλk ◦ Ψk(·)) to Hk,t: note
carefully that πλk ◦Ψk(·) is well-defined in Hc

k,t, but not necessarily in Hk,t, since πλk ◦Ψk(Hk,t) ∩
Cl(1− λk) may not be empty, and in such a case it is not in the domain of τ(ρ, ·). The extension
we get (see (6.16)) will allow to write a specific double slice of Xk as push-forward, see (6.25).
We stress that this extension is done for a fixed slice {t} × R2 and in general it cannot be done
globally27 for all t ∈ (ε, l).

For t fixed such that case (C) holds, we extend the function πλk ◦ Ψk(·) to Hk,t as follows. Let

xi2x
i+1
1 be an arc of Hk,t; we want to map this arc on an arc in {t}× ∂B1−λk joining the two image

points zi2, z
i+1
1 , with the orientation from zi2 to zi+1

1 . However there are infinitely many28 choices
of an arc connecting zi2 to zi+1

1 . To specify which arc we choose we distinguish two possibilities:
|zi2− z

i+1
1 | ≤ 2λk, and |zi2− z

i+1
1 | > 2λk. Notice that |zi2− z

i+1
1 | ≤ 2λk is the only case in which the

26In polar coordinates.
27We do not need a global extension since we aim to obtain an estimate which holds for a fixed t.
28We can for instance join zi2 to zi+1

1 travelling along an oriented arc connecting them, and then travelling along
the whole circle an arbitrary number of times (thus considering a self-overlapping arc).

36



Figure 5: The choice of the arc between zi2 and zi+1
1 . The correct arc is the one in bold on the

dashed circle {t}×∂B1−λk . On top left the case |zi2−z
i+1
1 | ≤ 2λk and the arc is clockwise oriented;

on top center again case |zi2 − z
i+1
1 | ≤ 2λk and the arc counterclockwise oriented; on top right the

case |zi2− z
i+1
1 | > 2λk; on bottom left again the case |zi2− z

i+1
1 | ≤ 2λk when the oriented arc zi2z

i+1
1

is the long one. Finally on bottom right it is depicted again the case |zi2 − z
i+1
1 | ≤ 2λk but the

counterclockwise arc between zi2 and zi+1
1 has reversed order with respect to αi2 and αi+i1 , so that

βi is the long arc; in this case the correct arc such that |β̂i − βi| ≤ 2λ̂k is the short one connecting
zi2 and zi+1

1 (double bold) together with a complete turn around the circle.

points xi2 and xi+1
1 could have images zi2 and zi+1

1 with a reversed order on {t} × ∂B1−λk . Indeed,

since xi2, x
i+1
1 ∈ ∂Bt ∩ ∂Dk, we have dk(x

i
j) = | x

i
j

|xij |
− uk(xij)| = λk. In particular, if the distance

between zi2 and zi+1
1 is larger than 2λk, it means that the distance between uk(x

i
2) and uk(x

i+1
1 )

were larger than 2λk (πλk does not increase the distance), so that zi2 and zi+1
1 must have the same

order of
xi2
|xi2|

and
xi+1

1

|xi+1
1 |

on ∂B1, which is the same order of xi2 and xi+1
1 on ∂Bt.

We are now in a position to specify the arc: when |zi2 − zi+1
1 | > 2λk we define zi2z

i+1
1 to be

the counterclockwise oriented arc29 from zi2 to zi+1
1 . When |zi2 − z

i+1
1 | ≤ 2λk we argue as follows:

Let βi be the angular amplitude of the arc xi2x
i+1
1 . We define zi2z

i+1
1 as the unique oriented arc

from zi2 to zi+1
1 satisfying the following property: If β̂i is its oriented angular amplitude (positive

if counterclockwise oriented, negative otherwise), then

|β̂i − βi| ≤ 2λ̂k, (6.15)

where λ̂k is the angular amplitude of a chord on ∂B1−λk of length λk (see Fig. 5). It is easy to

check that there is a unique arc zi2z
i+1
1 satisfying this property. Moreover the same property holds

for βi and β̂i in the case that |zi2 − z
i+1
1 | > 2λk, since πλk ◦ Ψk(·) does not change the angular

coordinate of a point xij of a quantity larger than λ̂k.

Once we have specified the image arc, we can define P̂k,i : xi2x
i+1
1 → zi2z

i+1
1 to be the affine (with

respect to the angular coordinate) function mapping xi2 to zi2 and xi+1
1 to zi+1

1 . We then introduce

29Likewise the orientation from xi2 to xi+1
1 .
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Pk = Pk,t : ∂Bt → {t} × ∂B1−λk as follows:

Pk(x) :=


πλk ◦Ψk(x) if x ∈ Hc

k,t,

P̂k,i(x) if x ∈ xi2x
i+1
1 for some i.

(6.16)

We claim that

τ(ρ, Pk(·))]〚∂Bt〛 = 〚{t} × ∂Bρ〛. (6.17)

Since the map τ(ρ, ·) is an orientation preserving homeomorphism between ∂B1−λk and ∂Bρ, it is
sufficient to show that

Pk(·)]〚∂Bt〛 = 〚{t} × ∂B1−λk〛. (6.18)

Equivalently, we will prove that

h∑
i=1

(〚zi1zi2〛 + 〚zi2z
i+1
1 〛) = 〚{t} × ∂B1−λk〛. (6.19)

Let ωi (resp. βi) be the angular amplitude, in counterclockwise order, of the arc xi1x
i
2 (resp.

xi2x
i+1
1 ). Trivially we have

∑h
i=1(ωi + βi) = 2π. If ω̂i (resp. β̂i) is the angular amplitude of zi1z

i
2

(resp. zi2z
i+1
1 ), taken with sign ±1 according to their orientation, we see that to prove (6.19) it

suffices to show

h∑
i=1

(ω̂i + β̂i) = 2π. (6.20)

To do this we use (6.15); notice first that the counterpart of (6.15) holds for the arc between xi1
and xi2: Namely the map πλk ◦Ψk transforms the arc xi1x

i
2 of angular amplitude ωi, in the arc zi1z

i
2

of amplitude ω̂i in such a way that

|ω̂i − ωi| ≤ 2λ̂k. (6.21)

Now, if θij is the angular coordinate of zij , and αij is the angular coordinate of xij , we know that

θij = αij + rij , with |rij | ≤ λ̂k. (6.22)

Here again λ̂k is the angle of a chord of length λk on ∂B1−λk . To prove (6.20) we reduce ourselves
to show that

ω̂i = ωi + ri2 − ri1, (6.23)

β̂i = βi + ri+1
1 − ri2, (6.24)

for all i. Fix i; we can assume αi2 = αi1 + ωi, and by (6.22) we get

ω̂i = ωi + ri2 − ri1 + 2kiπ,

with ki ∈ Z accordingly to the number of oriented complete turns around the circle ∂B1−λk . From
(6.21) we have ki = 0 for all i, and (6.23) follows. A similar argument, using (6.15), leads to (6.24),
hence (6.20) is proved, and (6.17) follows at once. Define
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yij := τ(ρ, zij) ∈ {t} × ∂Bρ.

From (6.17), (6.11), and (6.12) it follows that

(Xk)t,ρ = τ(ρ, Pk(·))]〚∂Bt〛− τ(ρ, πλk ◦Ψk(·))]〚Hc
k,t〛 = τ(ρ, Pk(·))]〚Hk,t〛, (6.25)

so that, since the maps τ(ρ, ·) send the arcs zi2z
i+1
1 onto yi2y

i+1
1 , we have

(Xk)t,ρ =
h∑
i=1

〚yi2y
i+1
1 〛, (6.26)

hence

|(Xk)t,ρ| ≤
h∑
i=1

H1(yi2y
i+1
1 ). (6.27)

We now estimate the length of the arcs yi2y
i+1
1 . For simplicity we fix i and set Y1 := yi2, Y2 := yi+1

1 ,
X1 := xi2 and X2 := xi+1

1 . Let d(·, ·) denote the distance between points of {t} × ∂Bρ (i.e., the
length of the minimal arc connecting the two points), let πρ be the orthogonal projection of R2

target

onto the convex set Bρ, and write Yi = (t, Ỹi) with Ỹi ∈ Bρ, for i = 1, 2. Then, setting X̂i := Xi
|Xi|

and denoting X̂1X̂2 the arc between X̂1 and X̂2 on {t} × ∂B1, we have

H1(Y1Y2) ≤ H1
(
πρ(X1)πρ(X2)

)
+ d(πρ(X1), Ỹ1) + d(πρ(X2), Ỹ2)

= ρH1
(
X̂1X̂2

)
+ d(πρ(X1), Ỹ1) + d(πρ(X2), Ỹ2)

≤ ρH1
(
X̂1X̂2

)
+
π

2
|πρ(X1)− Ỹ1|+

π

2
|πρ(X2)− Ỹ2|

≤ ρH1
(
X̂1X̂2

)
+
π

2
|πρ(X1)− πρ ◦ uk(X1)|+ π

2
|πρ ◦ uk(X1)− Ỹ1|

+
π

2
|πρ(X2)− πρ ◦ uk(X2)|+ π

2
|πρ ◦ uk(X2)− Ỹ2|

≤ ρ

ε
H1
(
X1X2

)
+
π

2

(
dk(X1) + dk(X2)

)
+ π(λk − λ′k),

(6.28)

where we use that, for x 6= 0,

dk(x) = | x
|x|
− uk(x)| = |u(x)− uk(x)| ≥ |πρ ◦ u(x)− πρ ◦ uk(x)|,

because Lip(πρ) = 1, |πρ ◦ uk(Xi) − Ỹi| ≤ λk − λ′k for i = 1, 2, and Xi ∈ ∂Bt, t > ε. By (6.10)
(6.27) and (6.28), we infer

Θk(t, ρ) ≤ 1

ε
H1(Hk,t) +

π

2ρ

∑
x∈∂Hk,t

(dk(x) + λk). (6.29)

Estimate (6.29) holds for H1-almost every t ∈ (ε, l) such that neither case (A) nor (B) happens.
Moreover, by (6.13) it holds also in case (A). Case (B) does not contribute to the L1 norm of
Θk(·, ρ), and therefore (6.29) holds for H1-almost every t ∈ (ε, l).

Denoting by m(x) = |x|, so that |∇m| = 1 out of the origin, the coarea formula allows us to
write∫

∂Dk

dk(σ)dH1(σ) ≥
∫
∂Dk

|∂m
∂σ
|dk(σ)dH1(σ) =

∫ l

ε

∑
x∈m−1(t)∩∂Dk

dk(x)dt =

∫ l

ε

∑
x∈∂Hk,t

dk(x)dt.
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Similarly ∫
∂Dk

λk dH1(σ) ≥
∫ l

ε
λkH0({x ∈ ∂Hk,t}) dt.

Recalling (4.6), from (6.29) we finally get∫ l

ε
Θk(t, ρ)dt ≤ 1

ε
|Dk|+

π

2(1− λk)

∫
∂Dk

(dk(σ) + 2λk) dH1(σ) ≤ 1

εn
+ ok(1),

where ok(1) depends on ε and n (since λk does) and vanishes as k → +∞, thanks to Lemma 4.2
(iii).

7 Estimate from below of the mass of 〚Guk〛 over Dk ∩ (Ω \ Bε)

Now we want to identify the current S(D̂k) in (5.31) as sum of polar graphs (Section 2.4), and to
do this we need some preliminaries.

Definition 7.1 (The function ϑk,ε). Recalling the definition of Θk = ΘS(Ek) in (6.7), we set

ϑk,ε : (ε, l)× (0, 1− λ′k]× {0} → [0, π], ϑk,ε(t, ρ, 0) :=
Θk(t, ρ)

2
. (7.1)

Note that dom(ϑk,ε) ( dom(Θk). The polar graph of ϑk,ε is the set Gpol
ϑk,ε

= {(t, ρ, ϑk,ε(t, ρ, 0)) :

(t, ρ, 0) ∈ (ε, l)× (0, 1− λ′k]× {0}}. By construction S(Ek) is the polar subgraph of ϑk,ε restricted
to the half-cylinder {(t, ρ, θ) : t ∈ (ε, l), θ ∈ (0, π)}. More precisely, let η be any number30 with
0 < η < π

4 ; then the polar subgraph

SGpol
ϑk,ε

:= {(t, ρ, θ) ∈ (ε, l)× (0, 1− λ′k]× (−π/4, π) : θ ∈ (−η, ϑk,ε(t, ρ, 0))}

satisfies

SGpol
ϑk,ε
∩ {θ ∈ (0, π)} = S(Ek) ∩ {θ ∈ (0, π)}, (7.2)

and similarly (for the polar epigraph), setting

UGpol
−ϑk,ε := {(t, ρ, θ) ∈ (ε, l)× (0, 1− λ′k]× (−π, π/4) : θ ∈ (−ϑk,ε(t, ρ, 0), η)},

we have

UGpol
−ϑk,ε ∩ {θ ∈ (−π, 0)} = S(Ek) ∩ {θ ∈ (−π, 0)}. (7.3)

Remark 7.2 (The sets ϑk,ε = 0, ϑk,ε = π). Careful attention must be paid to the sets {ϑk,ε = 0}
and {ϑk,ε = π}. Indeed on such sets the two graphs of ϑk,ε and −ϑk,ε overlap and then, when
considered as integral currents, they cancel each other. Moreover the set ∂∗S(Ek) includes the two
graphs of ϑk,ε and −ϑk,ε with the exception of these two sets. In other words, from (7.2) and (7.3)
we have

S(Ek) ∩ Cεl =
(
SGpol

ϑk,ε
∩ {θ ∈ (0, π)}

)
∪
(
UGpol

−ϑk,ε ∩ {θ ∈ (−π, 0)}
)

(7.4)

up to H3-negligible sets. From this formula it is evident that the graphs of ϑk,ε and −ϑk,ε over
{Θk = 0} ∪ {Θk = 2π} cancel each other, and thus they do not belong to the reduced boundary
of S(Ek). Moreover, the polar subgraph and the polar epigraph are sets of finite perimeter, as is
their union in (7.4).

30η = 0 is not allowed, since in this case the boundary of the subgraph (as a current) does not include the set
where θ = 0.
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Figure 6: The graphs of the functions |uk|+ and |uk|− and the set S
(2)
k,ε in Definition 7.4. See also

Fig. 4.

Definition 7.3 (The polar projection map πpol
0 ). We let πpol

0 = πpol
0,λ′k,ε

: C
ε
l (1− λ′k)→ C

ε
l (1−

λ′k) ∩ {θ = 0} be the polar projection defined by

πpol
0 (t, ρ, θ) := (t, ρ, 0). (7.5)

We now introduce various subsets of (0, l) × (0, 1) × {0} in cylindrical coordinates, namely

πpol
0 (πλk ◦ Ψk(Ω \ Bε)) ⊆ S

(2)
k,ε ⊆ S

(2)
k,ε ∪ JQk,ε ⊆ S

(4)
k,ε . We start with S

(2)
k,ε (see also formulas (7.16)

and (9.4) below), and note preliminarly that

πpol
0 (πλk ◦Ψk(Ω \ Bε)) (7.6)

coincides with{
(t, ρ, 0) ∈ Cl : t ∈ (ε, l), ρ ∈ [|uk|−(t) ∧ (1− λk), |uk|+(t) ∧ (1− λk)]

}
,

|uk|−, |uk|+ being the functions introduced in (6.1).

Definition 7.4 (The set S
(2)
k,ε). Recalling the expression of Qk,ε in (6.4), we define

S
(2)
k,ε := πpol

0 (πλk ◦Ψk(Ω \ Bε)) ∪
(

((ε, l) \Qk,ε)× [1− λk, 1− λ′k]× {0}
)
, (7.7)

see Fig. 6.

We have S
(2)
k,ε = πpol

0

(
πλk ◦ Ψk(Ω \ Bε) ∪ τ

(
[1 − λk, 1 − λ′k] × A

))
, where τ is defined in (5.13),

and A := {(t, y) ∈ πλk ◦ Ψk(Ω \ Bε) : t ∈ (ε, l), y ∈ ∂B1−λk}, since (t, y) ∈ πλk ◦ Ψk(Ω \ Bε) and
y ∈ ∂B1−λk implies that t ∈ (ε, l) \Qk,ε, see Fig. 4 and (5.5).

Remark 7.5. (i) It might happen that πλk ◦Ψk(Dk \ Bε) = Ø. By construction we have

πpol
0 (πλk ◦Ψk(Ω\Bε))∩

(
((ε, l)\Qk,ε)× [1−λk, 1−λ′k]×{0}

)
= ((ε, l)\Qk,ε)×{1−λk}×{0}.
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The two functions |uk|− and |uk|+ could coincide in large portions of (ε, l) (and even every-

where), so that πpol
0 (πλk ◦Ψk(Ω\Bε)) could collapse to a curve (for instance if Ψk(Ω) ⊂ ∂Cl);

see also the example in Section 10.1. On the other hand, H2(S
(2)
k,ε) > 0 (see Lemma 6.3).

(ii) Notice that A ⊇ πλk ◦ Ψk(∂Dk \ Bε) ∪ πλk ◦ Ψk((Ω \ Bε) \Dk). Moreover A ∩ πλk ◦ Ψk(Dk)
may not be empty.

(iii) Inside the cylinder Cεl (1−λk), S
(2)
k,ε is exactly the πpol

0 -projection of πλk◦Ψk(Dk\Bε); remember

also that (πλk ◦Ψk)](〚Dk \ Bε〛) = (∂Ek) Cεl (1− λk), by (5.6), (5.22) and (5.28).

(iv) Recalling the definition of Wk in (5.16),

πpol
0

(
πλk ◦Ψk(Dk \ Bε) ∪Wk

)
⊆ S(2)

k,ε , (7.8)

and the above inclusion might be strict.

(v) If ϑk,ε(t, ρ, 0) ∈ (0, π) then (t, ρ, 0) ∈ S(2)
k,ε , by (7.8). Indeed in this case the circle (πpol

0 )−1(t, ρ, 0)
intersects both some sets in {Ek,i} (see (5.30)) and their complement, so in particular

(πpol
0 )−1(t, ρ, 0) must intersect the reduced boundary of some of the sets in {Ek,i}, namely

πλk ◦Ψk(Dk \ Bε) ∪Wk, for H2-a.e. (t, ρ, 0) ∈ S(2)
k,ε . Furthermore

{(t, ρ, 0) : ϑk,ε(t, ρ, 0) ∈ (0, π)} = πpol
0

(
spt(S(D̂k))

)
,

up to H2− negligible sets31

Remark 7.6. (i) Θk = 2π on {(t, ρ, 0) : t ∈ Qk,ε, ρ ∈ (|uk|+(t), 1 − λ′k)}. Notice that the part
of the cylinder {(t, ρ, θ) : t ∈ Qk,ε, ρ ∈ (|uk|+(t), 1 − λ′k), θ ∈ (−π, π]} does not intersect
πλk ◦ Ψk(Dk), and neither Wk, by construction. As a consequence it does not intersect

spt(S(D̂k)).

(ii) We write {(t, ρ, 0) ∈ S(2)
k,ε : either Θk(t, ρ) = 0 or Θk(t, ρ) = 2π} = S

(2)
k,ε ∩ {Θk ∈ {0, 2π}}.

Then S
(2)
k,ε ∩ {Θk ∈ {0, 2π}} corresponds to the values of t and ρ for which (t, ρ, 0) ∈ S(2)

k,ε and
the slice S(Ek)(t,ρ) = S(Ek)∩ ({t}×∂Bρ) is either empty or the whole circle {t}×∂Bρ (up to

H1-negligible sets). Notice also that the intersection πpol
0

(
πλk ◦Ψk(Dk \ Bε) ∪Wk

)
∩ S(2)

k,ε ∩
{Θk ∈ {0, 2π}} may not be empty on a set of positive H2−measure. Indeed in the proof of

Proposition 7.9, we show that the πpol
0 -projection of32

(
πλk ◦Ψk(Dk)

)
\ spt(D̂k) is contained

in S
(2)
k,ε ∩ {Θk ∈ {0, 2π}}.

7.1 The current S(D̂k) as sum of a polar subgraph and a polar epigraph

Let Gpol

±ϑk,ε
(
S

(2)
k,ε∩{Θk∈{0,2π}}

) be the polar graph of ±ϑk,ε
(
S

(2)
k,ε ∩ {Θk ∈ {0, 2π}}

)
; these two sets,

by symmetry, overlap, and

〚Gpol

−ϑk,ε
(
S

(2)
k,ε∩{Θk∈{0,2π}}

)〛 + 〚Gpol

ϑk,ε

(
S

(2)
k,ε∩{Θk∈{0,2π}}

)〛 = 0,

31There could be (t, ρ, 0) ∈ πpol
0

(
spt(S(D̂k))

)
such that ϑk,ε(t, ρ, 0) /∈ (0, π). Indeed take t ∈ (ε, l) such that

∂Bt ⊂ Dk and assume that Ψk(∂Bt) = {t}×∂Bρ, ρ < 1−λk. Then ϑk,ε(t, ρ) = π and {t}×∂Bρ ⊂ ∂∗S(Ek); however
this can only happen for (t, ρ) in a negligible H2-set.

32This is the set where πλk ◦ Ψk(Dk) overlaps itself with opposite orientation; this set might have positive area,
see Fig. 10.

42



due to the fact that 〚Gpol

ϑk,ε

(
S

(2)
k,ε∩{Θk∈{0,2π}}

)〛 and 〚Gpol

−ϑk,ε
(
S

(2)
k,ε∩{Θk∈{0,2π}}

)〛 are oriented in op-

posite way. Indeed we endow 〚Gpol

ϑk,ε

(
S

(2)
k,ε∩{Θk∈{0,2π}}

)〛 with the orientation inherited by looking

at it as the boundary of the polar subgraph of ϑk,ε, and we endow 〚Gpol

−ϑk,ε
(
S

(2)
k,ε∩{Θk∈{0,2π}}

)〛 with

the opposite orientation, since we look at it as boundary of an epigraph.

Definition 7.7 (The currents G±k,ε). We set

G+
k,ε := (∂〚SGpol

ϑk,ε
〛)

(
{θ ∈ (0, π)} ∩ Cεl (1− λ′k)

)
+ 〚Gpol

ϑk,ε

(
S

(2)
k,ε∩{Θk∈{0,2π}}

)〛,
G−k,ε := (∂〚UGpol

−ϑk,ε〛)
(
{θ ∈ (−π, 0)} ∩ Cεl (1− λ′k)

)
+ 〚Gpol

−ϑk,ε
(
S

(2)
k,ε∩{Θk∈{0,2π}}

)〛. (7.9)

The non standard orientation of G−k,ε is chosen in such a way that condition (7.10) in Proposition
7.9 below takes place. In this proposition we will also see that, being S(Ek) a finite perimeter set
in Cεl , its reduced boundary, seen as a current, has finite mass. In turn, the integration on its
boundary is exactly G+

k,ε + G−k,ε (see also (7.4)).

Remark 7.8. The generalized polar graph of ϑk,ε might have large parts on which ϑk,ε ∈ {0, π};
for this reason we neglected this part in the currents introduced in (7.9) by restricting the boundary
of the subgraph in {θ ∈ (0, π)} ∩Cεl (1− λ′k) (and similarly for the epigraph). However we want to

consider the graph above the set ϑk,ε ∈ {0, π} on the strip S
(2)
k,ε , in particular the projection of the

set where πλk ◦Ψk(Dk) overlaps itself (which may have positive area)33, for this reason we have to

add the term 〚Gpol

ϑk,ε

(
S

(2)
k,ε∩{Θk∈{0,2π}}

)〛 in formulas (7.9). The reason why we have to get rid of

the graph of ϑk,ε on {ϑk,ε ∈ {0, π}} outside S
(2)
k,ε is that this term is not controlled by the area of

(πλk ◦Ψk(Ω \ Bε)) (see also Remark 7.6 (iv)).

Proposition 7.9 (Estimate of the mass of G±k,ε ). Let ε be fixed as in (4.4) and (4.5), and

recall the definition (5.31) of S(D̂k). Then the following properties hold:

G+
k,ε + G−k,ε = S(D̂k) Cεl (1− λ′k), (7.10)

|G+
k,ε|+ |G

−
k,ε| = |S(D̂k)|Cεl (1−λ′k) + 2H2

(
S

(2)
k,ε ∩ {Θk ∈ {0, 2π}}

)
, (7.11)

|G+
k,ε|+ |G

−
k,ε| ≤

∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)| dx+
1

n
+ ok(1), (7.12)

where ok(1) is a nonnegative infinitesimal sequence as k → +∞, depending on n and ε.

Proof. Identity (7.10) follows by definition and from (7.4). Concerning (7.11), setting for simplicity

J0,2π
k,ε := S

(2)
k,ε ∩ {Θk ∈ {0, 2π}}, (7.13)

it is sufficient to observe that spt(〚G+
k,ε〛) and spt(〚G−k,ε〛) coincide on the set ϑk,ε(J

0,2π
k,ε ) (whose

measure is equal34 to the measure of J0,2π
k,ε ). Thus, the currents G+

k,ε and G−k,ε cancel each other on
this set, since they are endowed with opposite orientation. Hence

|G+
k,ε|+ |G

−
k,ε| = |G

+
k,ε + G−k,ε|+ 2H2(J0,2π

k,ε ), (7.14)

33See the example in Section 10.2.
34Indeed ϑk,ε restricted to J0,2π

k,ε ∩ {Θk = 0} is the identity map and ϑk,ε restricted to J0,2π
k,ε ∩ {Θk = 2π} is a

π-rotation.
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and (7.11) follows from (7.10).
Let us prove (7.12). We recall that the rectifiable set πλk ◦ Ψk(Dk) ∪Wk includes the support

of the current D̂k. There might be parts of πλk ◦ Ψk(Dk) ∪Wk where the multiplicity of D̂k is
zero, and this happens for instance where two pieces of πλk ◦ Ψk(Dk) ∪Wk overlap with opposite
orientations. We decompose πλk ◦Ψk(Dk) ∪Wk as follows:

πλk ◦Ψk(Dk) ∪Wk = Z0
k ∪ spt(D̂k) = Z0

k ∪ spt(Dk) ∪ spt(Wk), (7.15)

where
Z0
k :=

(
πλk ◦Ψk(Dk) \ spt(Dk)

)
∪
(
Wk \ spt(Wk)

)
is the set where D̂k has vanishing multiplicity. It is convenient to introduce the following notation
for the set in (7.6):

S
(1)
k,ε := πpol

0 (πλk ◦Ψk(Ω \ Bε)). (7.16)

We claim that
S

(1)
k,ε ∩ J

0,2π
k,ε ⊆ π

pol
0

(
Z0
k

)
, (7.17)

where πpol
0 is the projection introduced in (7.5) (again, here the inclusion is intended up to H2-

negligible sets). To prove this we argue by slicing: for t ∈ (ε, l) set

(S
(1)
k,ε ∩ J

0,2π
k,ε )t := (S

(1)
k,ε ∩ J

0,2π
k,ε ) ∩ ({t} × R2).

It is sufficient to show that

(S
(1)
k,ε ∩ J

0,2π
k,ε )t ⊆ πpol

0

(
Z0
k

)
for H1 − a.e. t ∈ (ε, l). (7.18)

In turn, denoting (Z0
k)t := Z0

k ∩ ({t} × R2) we will prove35

(S
(1)
k,ε ∩ J

0,2π
k,ε )t ⊆ πpol

0

(
(Z0

k)t
)

for H1 − a.e. t ∈ (ε, l). (7.19)

Now, (Z0
k)t is, for H1-a.e. t ∈ (ε, l), the set where the coefficient of the integral current (D̂k)t is zero.

Recalling (7.13), we have that36 Θk(t, ρ) ∈ {0, 2π} for ρ ∈ [|uk|−(t) ∧ (1− λk), |uk|+(t) ∧ (1− λk)]
such that (t, ρ, 0) ∈ J0,2π

k,ε . This means that either

• for all i the intersection between Ek,i (see (5.30)) and {t}×∂Bρ is empty (up to H1-negligible
sets), or

• for at least one i, it happens Ek,i ∩ ({t} × ∂Bρ) = {t} × ∂Bρ (up to H1-negligible sets).

In both cases, for H1-a.e. ρ ∈ (S
(1)
k,ε ∩ J

0,2π
k,ε )t, the current (S(D̂k))t is null on the set

{(t, ρ, θ) : θ ∈ (−π, π), ρ ∈ (S
(1)
k,ε ∩ J

0,2π
k,ε )t}.

Indeed, recalling that S(D̂k) = ∂〚S(Ek)〛, in the first case this is obvious, in the second one it is
sufficient to remember that Ek = ∪iEk,i. In other words, the set (πλk ◦Ψk(Dk))t must overlap itself

with opposite directions in this set, because the multiplicity of (D̂k)t is null there. Hence we have
proved (7.19), and claim (7.17) follows.

35The only fact we will use is that the πpol
0 -projection of the set πλk ◦Ψk(Dk) is surjective on S

(2)
k,ε (essentially by

definition) and then the inverse image of a point where S(D̂k) is null is covered at least two times.
36See Fig. 10, the two bold segments: on one Θk = 0 and on the other one Θk = 2π
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As a consequence of (7.17) and of its proof, we have

2H2(J0,2π
k,ε ) ≤ 2H2

(
πpol

0 (Z0
k ∩ Cεl (1− λk))

)
+ 2(λk − λ′k)l

≤
∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)|dx+M(Wk ∩ Cεl (1− λ′k))− |D̂k|Cεl (1−λ′k) + ok(1), (7.20)

see (5.18). Indeed, the first inequality is easy to see, recalling that J0,2π
k,ε is the union of S

(1)
k,ε ∩J

0,2π
k,ε

and J0,2π
k,ε \ S

(1)
k,ε , and the latter has measure less than (λk − λ′k)l that is infinitesimal as k → +∞

(we denote it by ok(1)). To see the second inequality we use decomposition (7.15). Since Z0
k is

covered at least two times (with opposite directions), the area M((πλk ◦Ψk(Dk)∪Wk)∩Cεl (1−λ′k))
of πλk ◦Ψk(Dk) ∪Wk in Cεl (1− λ′k) counted with multiplicity, i.e.,

M((πλk ◦Ψk(Dk) ∪Wk) ∩ Cεl (1− λ′k)) :=

∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)|dx+M(Wk ∩ Cεl (1− λ′k)),

satisfies

M((πλk ◦Ψk(Dk) ∪Wk) ∩ Cεl (1− λ′k)) ≥2H2(Z0
k ∩ Cεl (1− λ′k)) + |D̂k|Cεl (1−λ′k)

≥2H2
(
πpol

0 (Z0
k ∩ Cεl (1− λ′k))

)
+ |D̂k|Cεl (1−λ′k),

≥2H2
(
πpol

0 (Z0
k ∩ Cεl (1− λk))

)
+ |D̂k|Cεl (1−λ′k),

and (7.20) follows.
In order to prove (7.12) it is now sufficient to observe that

|G+
k,ε|+ |G

−
k,ε| = |S(D̂k)|Cεl (1−λ′k) + 2H2(J0,2π

k,ε )

≤|S(D̂k)|Cεl (1−λ′k) +

∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)|dx+M(Wk ∩ Cεl (1− λ′k))− |D̂k|Cεl (1−λ′k) + ok(1)

≤
∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)|dx+
1

n
+ ok(1),

where we have used (5.20) and (5.34) localized in the cylinder Cεl (1− λ′k).

Corollary 7.10. We have

|〚Guk〛|Dk∩(Ω\Bε))×R2 ≥ |G+
k,ε|+ |G

−
k,ε| −

1

n
− ok(1).

Proof. It follows from (7.12) and (5.8).

Now we restrict our attention to the rectifiable sets spt(G±k,ε), the supports of the currents in

(7.9). We recall that the function ϑk,ε might take values in (0, π) only in the “strip” S
(2)
k,ε , see

Remark 7.5 (v), and

S
(2)
k,ε ⊂ (ε, l)× [0, 1]× {0} ⊂ Cl.

Now we add to G+
k,ε a graph on some additional set outside S

(2)
k,ε , see Fig.8.

Definition 7.11. We let

JQk,ε := {(t, ρ, 0) ∈ Cl : t ∈ Qk,ε, ρ ∈ [|uk|+(t), 1− λ′k]}. (7.21)
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Figure 7: Intersection of the cylinder Cl(1−λk) with {t = t}×R2. The symmetrization of a closed
current in B1−λ′k , which on the left is emphasized in grey, and with dark grey the area in which the
multiplicity of the current is 2. The set is bounded by a generic curve with endpoints on ∂B1−λk ,
in turn these endpoints have been joined with ∂B1−λ′k by radial segments Li. The area emphasized
has been symmetrized with the respect to the radius {θ = 0} in the right picture. In the picture
on the right, we have indicated the angles ±Θk(t, 1− λ′k)/2.

Figure 8: The graphs of the functions |uk|+ and |uk|− and the set JQk,ε in (7.21). See also Fig. 4.
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By definition of Qk,ε in (6.4), we have that for H2-a.e. (t, ρ, 0) ∈ JQk,ε it holds (πpol
0 )−1((t, ρ, 0))∩

spt(S(D̂k)) = Ø, so that ϑk,ε ∈ {0, π} on JQk,ε . Recalling (5.29) and (5.27), it is not difficult to see

that (πpol
0 )−1(JQk,ε) ⊆ S(Ek). Hence

ϑk,ε = π in JQk,ε

(see also Remark 7.6).
Now, we want to add to the currents G±k,ε in (7.7) a new part above a region that becomes, in

Section 11, the subgraph of the function h.

Definition 7.12 (The currents G(3)
ϑk,ε

and G(3)
−ϑk,ε). We define

G(3)
ϑk,ε

:=G+
k,ε + 〚Gpol

ϑk,ε JQk,ε
〛 ∈ D2(Cεl (1− λ′k)),

G(3)
−ϑk,ε :=G−k,ε + 〚Gpol

−ϑk,ε JQk,ε
〛 ∈ D2(Cεl (1− λ′k)).

Lemma 7.13. The following assertions hold:

(i)

|G(3)
ϑk,ε
| = |G+

k,ε|+H
2(JQk,ε); (7.22)

(ii)

H2(JQk,ε) ≤ |Qk,ε| ≤
1

2πεn
; (7.23)

(iii)

G(3)
ϑk,ε

+ G(3)
−ϑk,ε = ∂〚S(Ek)〛 Cεl (1− λ′k). (7.24)

Proof. (i) follows from the fact that G+
k,ε and 〚Gϑk,ε JQk,ε

〛 have disjoint supports, and |〚Gϑk,ε JQk,ε
〛| =

H2(JQk,ε). (ii) follows from

H2(JQk,ε) =

∫
Qk,ε

(1− λ′k − |uk|+(t)) dt ≤ |Qk,ε| ≤
1

2πεn
,

where the last inequality is a consequence of Lemma 6.3. (iii) follows as in Proposition 7.9 using
the fact that 〚Gϑk,ε JQk,ε

〛 and 〚G−ϑk,ε JQk,ε
〛 have opposite orientation.

Current G(3)
ϑk,ε

+ G(3)
−ϑk,ε is closed in Cεl (1 − λ′k). We can look at its boundary as a current in

D2((ε, l) × R2), which stands on the lateral boundary of the cylinder Cεl (1 − λ′k). To this aim we
study the trace of ϑk,ε (that is Θk(t, ρ)/2) on the segment

(ε, l)× {1− λ′k} × {0}. (7.25)

Observe that by definition

ϑk,ε = π on Qk,ε × {1− λ′k} × {0} ⊆ (ε, l)× {1− λ′k} × {0},

whereas on ((ε, l) \Qk,ε)× {1− λ′k} × {0} we have

ϑk,ε(t, 1− λ′k, 0) = Θk(t, 1− λ′k)/2 = Θk(t, ρ)/2, t ∈ (ε, l) \Qk,ε,

for all ρ ∈ (1− λk, 1− λ′k).
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Definition 7.14 (The 2-rectifiable set Σk,ε). We let

Σk,ε :=
{

(t, ρ, θ) : t ∈ (ε, l), ρ = 1− λ′k, θ ∈ (−Θk(t, 1− λ′k)/2,Θk(t, 1− λ′k)/2)
}
. (7.26)

Referring to the right picture in Figure 7, the section of Σε
k is the short arc connecting the points

(t, 1− λ′k,−Θk(t, 1− λ′k)/2) and (t, 1− λ′k,Θk(t, 1− λ′k)/2); see also Fig. 11.
If we denote by 〚Σk,ε〛 the current given by integration over Σk,ε (suitably oriented), its boundary

coincides with the boundary of G(3)
ϑk,ε

+ G(3)
−ϑk,ε on ∂latC

ε
l (1− λ′k).

Lemma 7.15 (Properties of Σk,ε). Σk,ε, oriented by the outward unit normal to the lateral
boundary of Cl(1− λ′k), is such that

G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 ∈ D2((ε, l)× R2) is boundaryless.

Moreover

H2(Σk,ε) ≤
1

εn
+ ok(1), (7.27)

where the sequence ok(1) ≥ 0 depends on n and ε, and is infinitesimal as k → +∞. Finally

(∂〚Σk,ε〛) ({ε} × R2) = 〚{ε} × {1− λ′k} ×
[
−Θk(ε, 1− λ′k)

2
,
Θk(ε, 1− λ′k)

2

]
〛, (7.28)

oriented counterclockwise37.

Proof. The fact that the current G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 is boundaryless in D2((ε, l) × R2) is a

consequence of the fact that Σk,ε is a subset of the polar subgraph of the trace of ϑk,ε on (ε, l) ×
{1− λ′k} × {0}. Concerning (7.27) we have

H2(Σk,ε) =

∫ l

ε

∫ Θk(t,1−λ′k)/2

−Θk(t,1−λ′k)/2
(1− λ′k)dθdt ≤

1

εn
+ ok(1), (7.29)

where the last inequality follows from Lemma 6.4. As for the last assertion, we have to understand

which is the orientation of 〚Σk,ε〛, which has been chosen in such a way that G(3)
ϑk,ε

+G(3)
−ϑk,ε+〚Σk,ε〛 =

(∂〚S(Ek)〛) ((ε, l)× [0, 1− λ′k]×{θ ∈ (−π, π]}). Hence, since S(Ek) is contained in Cl(1− λ′k), the
orientation of 〚Σk,ε〛 is the one inherited by the external normal to ∂〚S(Ek)〛, namely the outward
unit normal to the lateral boundary of Cl(1− λ′k).

8 Estimate from below of the mass of 〚Guk〛 over Dk ∩ Bε

We now analyse the image of Dk ∩ Bε through Ψk. We want to reduce this set to a current
Vk ∈ D2({ε} × R2) (defined in (8.12)), in order that it contains the necessary information on the
area of Ψk(Dk ∩Bε). To this aim we need first to describe the boundary of Vk and then show that
its mass gives a lower bound for the area of the graph of uk (see formula (8.13)).

Borrowing the notation from the proof of Lemma 6.4, the set ∂Bε is splitted as:

∂Bε = (Dk ∩ ∂Bε) ∪ ((Ω \Dk) ∩ ∂Bε) =: Hk,ε ∪Hc
k,ε. (8.1)

37Looking at the plane {ε} × R2 from the side t > ε.
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We denote by

{xi}Iki=1 ⊆ {x̂i}
Jk
i=1 := ∂Bε ∩ ∂Dk, (8.2)

the finite family of points (see Lemma 4.2 (v)) which represents the relative boundary of Hk,ε in

∂Bε. Recall that {x̂i}Jki=1 is finite as well by Lemma 4.2 (iv). For notational simplicity, we skip the
dependence on ε.

Recalling the definition of Wk in (5.16), the following crucial lemma states that (πλk ◦Ψk(Dk))∪
Wk does not intersect the plane {ε} × R2 in a set of positive H2-measure.

Lemma 8.1. The rectifiable set (πλk ◦Ψk(Dk)) ∪Wk satisfies

H2
((
πλk ◦Ψk(Dk) ∪Wk

)
∩ {t = ε}

)
= 0.

Proof. It is sufficient to show that H2((πλk ◦ Ψk(Dk)) ∩ {t = ε}) = 0 and H2(Wk ∩ {t = ε}) = 0.
To show the first equality, suppose H2(πλk ◦ Ψk(Dk) ∩ {t = ε}) > 0. Since Lip(πλk) = 1 and
πλk takes on the plane {t = ε} into itself, we have H2(Ψk(Dk) ∩ {t = ε}) > 0. Again, being
Ψk Lipschitz continuous, we deduce that Ψ−1

k (Ψk(Dk) ∩ {t = ε}) has positive measure. But
Ψ−1
k (Ψk(Dk) ∩ {t = ε}) ⊂ Ψ−1

k ({t = ε}) = ∂Bε which has obviously H2 null measure.
Let us prove that H2(Wk ∩{t = ε}) = 0. Recalling (see (5.16)) that Wk = τ([1−λk, 1−λ′k]×γk)

with γk := πλk ◦Ψk(∂Dk), and since τ(·, z) in (5.13) does not change the axial coordinate of z, we
see38 that τ([1−λk, 1−λ′k]×γk)∩{t = ε} has positive H2 measure only if γk ∩{t = ε} has positive
H1 measure. Again, since also πλk does not change the axial coordinate, as before this happens
only if Ψ−1

k (γ̂k∩{t = ε}) has positive H1-measure, where γ̂k := Ψk(∂Dk); by Lemma 4.2, this is not
possible, since we know that γ̂k∩{t = ε} = {Ψk(x̂i)} (see (8.2)), and then Ψ−1

k (γ̂k∩{t = ε}) = {x̂i}
which is a finite set.

We recall from (5.6) and (5.22) that

D̂k = (πλk ◦Ψk)]〚Dk〛 +Wk. (8.3)

An immediate consequence of Lemma 8.1, formula (8.3), and the fact that D̂k is boundaryless in
Cl(1− λ′k), is the following:

Corollary 8.2. We have D̂k {t = ε} = 0. In particular

∂(D̂k {ε < t < l}) ({t = ε}) = −∂(D̂k {−1 < t < ε}) ({t = ε}) in Cl(1− λ′k).

If {Ek,i}i∈N, Ek,i ∈ Cl are the sets which we have symmetrized (see (5.30)), S(Ek) is the sym-

metrized set, and S(D̂k) is the symmetrized current, we have to understand the behaviour of S(D̂k)
on {ε}×R2. We have observed that D̂k ({ε}×R2) = 0 becauseH2

(
(πλk ◦Ψk(Dk) ∪Wk) ∩ {ε} × R2

)
=

0. The same holds for the symmetrized current, as a particular consequence of Lemma 3.4:

S(D̂k) ({ε} × R2) = 0.

8.1 Description of the boundary of the current S(D̂k) ((−1, ε)×B1−λ′k)

Our first aim is to describe the boundary of S(D̂k) on {ε} × R2 (Corollary 8.5). To do so, let us
recall that πλk is given in Definition 5.3 and that the points xi are defined in (8.2).

38For instance, using the coarea formula.
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Definition 8.3 (The current Hk,ε). Recalling (8.1), we set

Hk,ε := (πλk ◦Ψk)]〚Hk,ε〛 ∈ D1({ε} ×B1), (8.4)

where Hk,ε is oriented counterclockwise.

Let us denote by {x̃i} ⊆ {xi} the points which represent the support of the current ∂〚Hk,ε〛. We
can consider the orthogonal projection39 onto the lateral boundary of Cl(1 − λ′k), and we denote
by Lk,i the segment connecting πλk(Ψk(x̃i)) (which belongs to the lateral boundary of Cl(1− λk))
to the image point of Ψk(x̃i) through this projection.

We consider the 1-integral current in {ε} ×B1−λ′k given by

Hk,ε +
∑
i

〚Lk,i〛 ∈ D1({ε} ×B1−λ′k), (8.5)

where 〚Lk,i〛 are the integrations over the segments Lk,i taken with suitable orientation in order
that

∂
(
Hk,ε +

∑
i

〚Lk,i〛
)

= 0 in {ε} ×B1−λ′k . (8.6)

Before stating the following crucial lemma, we recall that the current D̂k is defined in Cl but is
supported in [0, l]×B1−λ′k .

Lemma 8.4 (Boundary of D̂k ((−1, ε)× R2) in {ε} ×B1−λ′k). We have

∂
(
D̂k ((−1, ε)× R2)

)
= Hk,ε +

∑
i

〚Lk,i〛 in D1({ε} ×B1−λ′k). (8.7)

Proof. We recall that
D̂k = Dk +Wk,

where Dk is defined in (5.6) and, by (5.17), Wk = τ̃]〚[1− λk, 1− λ′k]× ∂Dk〛. Observe that

∂
(
Wk ((−1, ε)× R2)

)
=
∑
i

〚Lk,i〛 in the annulus {ε} × (B1−λ′k \B1−λk).

Indeed, this follows from the definition of Lk,i, the equality40

Wk ((−1, ε)× R2) =τ̃]〚[1− λk, 1− λ′k]× (Bε ∩ ∂Dk)〛
=τ̃]〚[1− λk, 1− λ′k]× ∂(Dk ∩ Bε)〛− τ̃]〚[1− λk, 1− λ′k]×Hk,ε〛,

and (8.6). Moreover, from (5.6),

∂
(
Dk ((−1, ε)× R2)

)
({ε} ×B1) = ∂

(
((πλk ◦Ψk)]〚Dk〛) ((−1, ε)× R2)

)
({ε} ×B1)

= ∂
(

(πλk ◦Ψk)]〚Dk ∩ Bε〛
)

({ε} ×B1)

=
(

(πλk ◦Ψk)]∂〚Dk ∩ Bε〛
)

({ε} ×B1)

= Hk,ε on {ε} ×B1,

where in the last equality we use41 〚∂(Dk ∩ Bε)〛 = 〚Dk ∩ ∂Bε〛 = 〚Hk,ε〛 on ∂Bε.

39Defined at least in the region Cl(1− λ′k) \ Cl(1− λk).
40Notice that ∂(Dk ∩Bε) = (∂Dk ∩Bε)∪ (∂Dk ∩∂Bε)∪ (Dk ∩∂Bε); recall also that, by Lemma 4.2 (iv), ∂Dk ∩∂Bε

consists of a finite set of points.
41Here we take the boundary of Dk in ∂Bε in the sense of currents, so that isolated points are neglected.
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Thanks to Corollary 5.17, both D̂k and S(D̂k) have no boundary in (−∞, l) × B1−λ′k . Now, we

need to describe the boundary of the symmetrized current S(D̂k) restricted to (−1, ε) × B1−λ′k ,
see (8.11). We recall the definitions of Xk and Yk in (5.27) and (5.26), and for t ∈ (−1, ε] and
ρ ∈ (1− λk, 1− λ′k) the function Θk(t, ρ) defined in (6.10). Also in this case

Θk(t, ρ) = Θk(t, %) for all ρ, % ∈ (1− λk, 1− λ′k).

In cylindrical coordinates, if

X1 := (ε, 1− λk,Θk(ε, 1− λk)/2), X2 := (ε, 1− λk,−Θk(ε, 1− λk)/2),

we denote the two 1-currents

S(L)1 := τ(·, X1)]〚(1− λk, 1− λ′k)〛 and S(L)2 := τ(·, X2)]〚(1− λk, 1− λ′k)〛, (8.8)

see Fig. 9. Set
Y1 = τ(1− λ′k, X1), Y2 = τ(1− λ′k, X2). (8.9)

We know, by construction and definition of Θk, that

∂
(
S(D̂k) ((−1, ε)× (B1−λ′k \B1−λk))

)
({ε} × R2) = S(L)1 − S(L)2

in D1({ε} × (B1−λ′k \B1−λk)). We define

S(Hk,ε) := ∂
(
S(D̂k) ((−1, ε)×B1−λ′k)

)
({ε} × R2)− S(L)1 + S(L)2 (8.10)

in D1({ε} ×B1−λk), see again Fig. 9. With these definitions at our disposal we can now write

∂
(
S(D̂k) ((−1, ε)×B1−λ′k)

)
=S(Hk,ε) + S(L)1 − S(L)2 + ∂

(
S(D̂k) {t ∈ (−1, ε)}

)
({−1} ×B1−λ′k)

=S(Hk,ε) + S(L)1 − S(L)2.

(8.11)

Here we have used once again that S(D̂k) is supported in [0, l] × B1, and then its boundary on
{t = −1} is always null.

We can clarify the meaning of the last term in formula (8.11).

Corollary 8.5. We have

S(Hk,ε) + S(L)1 − S(L)2 = −∂
(
S(D̂k) ((ε, l)×B1−λ′k)

)
({ε} × R2).

Proof. It follows from (8.11), Corollary 8.2, and Lemma 3.4.

8.2 Construction of the current Vk,ε
Let Πε : R3 → {ε} × R2 be the orthogonal projection on {ε} × R2.

Definition 8.6. We set

Vk,ε := (Πε)]

(
S(D̂k) ((−1, ε)×B1−λ′k)

)
∈ D2(Cl). (8.12)

Lemma 8.7. We have
|〚Guk〛|(Dk∩Bε)×R2 ≥ |Vk,ε| − 2π(λk − λ′k).
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Figure 9: The current S(D̂k) ((ε, l) × B1−λ′k) is depicted. At t = ε we emphasized the various
objects composing its boundary, taken with their orientation.

Proof. By (8.12), since Lip(Πε) = 1, we have, using (8.3), (5.17),

|Vk,ε| =|Vk,ε|(−1,ε)×(B1−λ′
k
\B1−λk ) + |Vk,ε|(−1,ε)×B1−λk

≤|Vk,ε|(−1,ε)×(B1−λ′
k
\B1−λk ) + |D̂k|(−1,ε)×B1−λk

=|Vk,ε|(−1,ε)×(B1−λ′
k
\B1−λk ) + |Dk|(−1,ε)×B1−λk

≤2π(λk − λ′k) + |〚Guk〛|(Dk∩Bε)×R2 ,

(8.13)

where we have also used a localized version of (5.34) in (−1, ε)×B1−λk .

By Corollary 8.5 it holds42

∂Vk,ε = S(Hk,ε) + S(L)1 − S(L)2 in {ε} ×B1−λ′k . (8.14)

Clearly the above current is boundaryless in {ε} × B1−λ′k ; more precisely it is an oriented curve

connecting Y2 to Y1 (defined in (8.9)) as soon as Y2 6= Y1, with S(Hk,ε) clockwise oriented43. If we
extend Vk,ε to 0 on the whole plane {ε} × R2 (keeping the same notation) we have

∂Vk,ε = Lk + S(Hk,ε) + S(L)1 − S(L)2 on {ε} × R2, (8.15)

for some current Lk supported on {ε} × ∂B1−λ′k and whose boundary is two deltas, with suitable
signs, on Y1 and Y2. In particular Lk is the integration between Y1 to Y2 on the circle {ε}×∂B1−λ′k .

42Recall that ∂(Πε)]
(
S(D̂k) {t < ε}

)
= (Πε)]∂

(
S(D̂k) {t < ε}

)
and that the map Πε does not move the plane

where ∂(S(D̂k) {t < ε}) is supported.
43When looking at the plane {ε} × R2 from t > ε.
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However there are two arcs which connect these two points, namely (in cylindrical coordinates)

{ε} × {1− λ′k} ×
[
−Θk(ε, 1− λ′k)

2
,
Θk(ε, 1− λ′k)

2

]
(8.16)

oriented clockwise and(
{ε} × ∂B1−λ′k

)
\
{
{ε} × {1− λ′k} ×

[
−Θk(ε, 1− λ′k)

2
,
Θk(ε, 1− λ′k)

2

]}
(8.17)

oriented counterclockwise. We have to identify Lk with the integration over one of these two arcs.

Proposition 8.8. Lk is the counterclockwise integration over the arc connecting Y1 and Y2 given
by (8.17).

Before proving this proposition we anticipate a useful observation.

Remark 8.9. We set
S(Ek)ε := S(Ek) ∩ {t = ε}.

Since S(D̂k) is the boundary of the integration over S(Ek), the current S(D̂k) ((−1, ε)×B1−λ′k) +
〚S(Ek)ε〛 is boundaryless in D2(Cl(1 − λ′k)) (with S(Ek)ε suitably oriented). It follows, invoking
Corollary 8.5, that

∂〚S(Ek)ε〛 = −S(Hk,ε)− S(L)1 + S(L)2 in {ε} ×B1−λ′k .

The fact that

∂Vk,ε = Lk + S(Hk,ε) + S(L)1 − S(L)2 in {ε} × R2, (8.18)

(where Lk is as in Proposition 8.8) means that Vk,ε is the integration over the set

B1−λ′k \ S(Ek)ε.

In particular Vk,ε has coefficient 1 in B1−λ′k \ S(Ek)ε and zero in S(Ek)ε. On the other hand, if Lk
were the integration over (8.16) oriented clockwise, then we would have that Vk,ε had coefficient
−1 in S(Ek)ε and 0 in B1−λ′k \ S(Ek)ε.

We can now prove Proposition 8.8.

Proof. Appealing to Remark 8.9, it is sufficient to show that the coefficient of Vk,ε is 1 in B1−λ′k \
S(Ek)ε. Equivalently we can show that this coefficient is zero in B1−λ′k ∩ S(Ek)ε.

Let us recall, by definitions (5.26) and (5.27),

(Yk)t = τ̃]〚[1− λk, 1− λ′k]× ((Ω \Dk) ∩ ∂Bt)〛 for a.e. t ∈ (0, ε], (8.19)

(Xk)t = 〚{t} × (B1−λ′k \B1−λk)〛− (Yk)t for a.e. t ∈ (0, ε]. (8.20)

Recalling Lemma 4.2(i), we now divide our analysis in two cases:

(1) |uk(0)| < 1− λk.

(2) |uk(0)| > 1− λk.

53



We notice that, in both cases, by continuity of uk, for all δ ∈ (0, 1) there is tδk > 0 such that

uk(Bt) ⊂ Bδ(uk(0)) ∀t ∈ (0, tδk]. (8.21)

Case (1): If δ is sufficiently small, we can also assume that

Bδ(uk(0)) ⊂ B1−λk(0), (8.22)

and therefore

uk(Bt) ⊂ B1−λk(0) ∀t ∈ (0, tδk]. (8.23)

In this case it turns out that if t ≤ tδk then the current (Yk)t in (8.19) is null, because |uk|+(t) <
1− λk, hence (Ω \Dk) ∩ ∂Bt = Ø by (6.2). In particular, by (8.20),

(Xk)t = 〚{t} × (B1−λ′k \B1−λk)〛 for a.e. t ≤ tδk.

Eventually, since Bt ⊂ Dk for any t ∈ [0, tδk], from (8.21), we also deduce uk(Btδk
∩Dk) = uk(Btδk

) ⊂
Bδ(uk(0)), so that

Ψk(Dk) ∩ ([0, tδk]×B1) = πλk ◦Ψk(Dk) ∩ ([0, tδk]×B1) ⊂ [0, tδk]×Bδ(uk(0)). (8.24)

Now, consider the decomposition (5.30) of Ek. By the crucial identification (5.29) and (8.22) we
infer that there must be a set Ek,h ∈ {Ek,i}i∈N with44

Xk ((−1, tδk)×B1−λ′k) = 〚(−1, tδk)× (B1−λ′k \B1−λk)〛

= 〚Ek,h ∩
(
(−1, tδk)× (B1−λ′k \B1−λk)

)
〛.

Therefore

Ek,h ∩
(
(−1, tδk)× (B1−λ′k \B1−λk)

)
= (−1, tδk)× (B1−λ′k \B1−λk).

This has the following consequence: denoting as usual S(Ek,h) the cylindrical symmetrization of
Ek,h we infer

S(Ek,h) ∩
(
(−1, tδk)× (B1−λ′k \B1−λk)

)
= (−1, tδk)× (B1−λ′k \B1−λk),

and since S(Ek,h) ⊂ S(Ek) we also have

S(Ek) ∩
(
(−1, tδk)× (B1−λ′k \B1−λk)

)
= (−1, tδk)× (B1−λ′k \B1−λk). (8.25)

We now consider two subcases.

(1A) H2
((
{ε}× (B1−λ′k \B1−λk)

)
\S(Ek)ε

)
> 0. To conclude the proof it is sufficient to show that

the multiplicity of Vk,ε on
(
{ε} × (B1−λ′k \B1−λk)

)
\ S(Ek)ε is 1, (8.26)

because ({ε} ×B1−λ′k) \ S(Ek)ε is, by definition, outside the finite perimeter set S(Ek).

We argue by slicing, and consider the lines lρ,θ in R3 given by lρ,θ = R × {ρ} × {θ}, with ρ
and θ fixed. Consider any point p0 of coordinates ρ ∈ (1 − λk, 1 − λ′k) and θ ∈ (−π, π] such
that

p0 ∈ ({ε} ×B1−λ′k) \ S(Ek)ε. (8.27)

44Since the decomposition in (5.30) is done in undecomposable components, such a set is unique.
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For a.e. such ρ ∈ (1 − λk, 1 − λ′k) and θ ∈ (−π, π] the slice of D̂k ((−1, ε) × B1−λ′k) with
respect to this line is the sum of some Dirac deltas with suitable signs, according to the
orientation of D̂k. Indeed D̂k is the integration over the boundary of the finite perimeter set
S(Ek), so it turns out that, for a.e. ρ ∈ (1− λk, 1− λ′k) and θ ∈ (−π, π] the slice of 〚S(Ek)〛
with respect to the line lρ,θ is exactly

〚S(Ek)ρ,θ〛 = 〚S(Ek) ∩ lρ,θ〛, (8.28)

that is the integration over some disjoint intervals. If p1, p2, . . . pm are the intervals endpoints
(written in order45 on lρ,θ) and if we assume that the last interval between the points p1 and
p0 = (ε, ρ, θ) is outside S(Ek), then it results

∂〚S(Ek)ρ,θ〛 = −
∑
i>0
i even

δpi +
∑
i>0
i odd

δpi . (8.29)

If instead the last interval [p1, p0] is inside S(Ek) we have

∂〚S(Ek)ρ,θ〛 =
∑
i>0
i even

δpi −
∑
i>0
i odd

δpi . (8.30)

Let us now prove claim (8.26). We have obtained that, for a.e. ρ ∈ (1 − λk, 1 − λ′k) and
any θ ∈ (−π, π] such that (8.27) holds, the slice ∂〚S(Ek)ρ,θ〛 is the sum in (8.29), and thanks
to (8.25) we deduce that the total number of points involved in (8.29) must be odd. As a
consequence, the push-forward by Πε of ∂〚S(Ek)ρ,θ〛 is a Dirac delta with coefficient −1. Since
this holds for a.e. ρ ∈ (1− λk, 1− λ′k) and any θ ∈ (−π, π], the conclusion follows.

(1B) SupposeH2
((
{ε}×(B1−λ′k \B1−λk)

)
\S(Ek)ε

)
= 0. In this case we pass to the complementary

set; namely, if {ε}× (B1−λ′k \B1−λk) = S(Ek)ε∩
(
{ε}× (B1−λ′k \B1−λk)

)
, up to H2-negligible

sets, we show that the multiplicity of Vk,ε on this set is null. To do so it is sufficient to repeat
the slicing argument above for a.e. (ρ, θ) such that p0 = (ε, ρ, θ) ∈ {ε} × (B1−λ′k \ B1−λk).
For these points (8.30) takes place, since by (8.25) the number of points involved in the sum
is even. The conclusion follows.

Case (2): Choosing δ ∈ (0, 1) small enough,

Ψk(Btδk
) ⊂ [0, tδk]×Bδ(uk(0)), (8.31)

and, using |uk(0)| > 1− λk,

πλk ◦Ψk(Dk ∩ Btδk
) ⊂ [0, tδk]× (B1−λ′k \B1−λk).

Recalling the definition of D̂k, it is not difficult to see that the current D̂k ((−1, tδk) × B1−λ′k) is

supported in [0, tδk] × (B1−λ′k \ B1−λk). By the properties of cylindrical symmetrization, we have

also that S(D̂k) ((−1, tδk)×B1−λ′k) is supported in [0, tδk]× (B1−λ′k \B1−λk).
Obviously, being Yk null on (−1, 0)×B1−λ′k , we have

Xk
(

(−1, 0)× (B1−λ′k \B1−λk)
)

= 〚(−1, 0)× (B1−λ′k \B1−λk)〛,

45p1 is the point closer to {ε} × R2
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Figure 10: We represent the symmetrization of a general closed current in B1. On the left it
is visible that on two parts the curve overlaps itself in such a way that the multiplicity of the
associated current is zero. In the symmetrized set, on the right picture, we have emphasized in
bold the corresponding set J0,2π

k,ε in (7.13).

and we find a set Ek,h, such that

Xk
(

(−1, 0)× (B1−λ′k \B1−λk)
)

= 〚Ek,h ∩ ((−1, 0)× (B1−λ′k \B1−λk))〛.

If we pass to the symmetrized set, arguing as in case (1A), we infer

S(Ek) ∩
(
(−1, 0)× (B1−λ′k \B1−λk)

)
= (−1, 0)× (B1−λ′k \B1−λk).

In other words, (−1, 0)× (B1−λ′k \B1−λk) is contained in S(Ek), and since the support of ∂∗S(Ek)
does not intersect the set (−1, 0)×B1−λ′k , we infer that also

(−1, 0)×B1−λ′k ⊂ S(Ek). (8.32)

We now decompose {ε} ×B1−λk as

{ε} ×B1−λk =
(
({ε} ×B1−λk) ∩ S(Ek)ε

)
∪
(
({ε} ×B1−λk) \ S(Ek)ε

)
,

and one of these two sets on the right-hand side must have positive H2-measure. Assume that
H2(({ε} × B1−λk) \ S(Ek)ε) > 0. Then we will prove that the multiplicity of Vk,ε on this set is 1
(if instead ({ε} ×B1−λk) \ S(Ek)ε has zero measure then it is sufficient to prove that Vk,ε has zero
multiplicity on ({ε} ×B1−λk) ∩ S(Ek)ε; we drop this case being completely similar to the former).

Therefore we now proceed as in case (1), slicing with respect to lines lρ,θ with (ε, ρ, θ) ∈ {ε} ×
({ε} × B1−λk) \ S(Ek)ε. Since the last point p0 = (ε, ρ, θ) does not belong to S(Ek)ε, we are
concerned with the sum in (8.29), and by (8.32) we infer that the number of {pi} involved in the
sum is odd. The conclusion follows as in case (1).

9 Gluing rectifiable sets

In this section we show that, up to adding to ∂S(Ek) a rectifiable set with smallH2-measure, ∂S(Ek)
can be described as a polar graph of a suitable modification of the function ϑk,ε over a subset46 of

46called S
(4)
k,ε, see (9.4).
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Figure 11: The largest (resp. smaller) basis circle has radius 1 (resp. 1 − λ′k). The smallest

top circle has radius 1 − λk. The symbol Wk,ε denotes the restriction of Wk to C
l
ε(1 − λ′k), after

symmetrization. Note that G(3)
ϑk,ε

+ G(3)
−ϑk,ε does not include Σk,ε and Vk,ε; see (7.24).

the rectangle47 (0, l) × [0, 1] × {0} ⊂ R3, and with Dirichlet boundary conditions independent of
k. In Section 11 we will reduce the estimate of the area of the graph of uk to an estimate for a
non-parametric Plateau problem which in turn will be independent of k.

First we remark that S(Ek) ⊆ Cl(1 − λ′k) and S(D̂k) = ∂S(Ek) in Cl(1 − λ′k), see (5.31). If we

look at S(Ek) as a subset of Cl, we cannot conclude ∂∗S(Ek) = S(D̂k) in Cl, and S(D̂k) is not a
closed current in Cl. For this reason we have to identify the boundary of S(D̂k) in Cl.

Recalling Corollary 8.5 and Definition 7.14,

∂
((
G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛

)
((ε, l)× R2)

)
({ε} × R2)

=∂
(
S(D̂k) ((ε, l)× R2)

)
({ε} × R2) = −S(Hk,ε)− S(L)1 + S(L)2 − 〚Y1Y2〛,

in D2((−∞, l) × R2), where 〚Y1Y2〛 is the integration on Y1Y2 (see (8.16)) oriented from Y1 to Y2.
As a consequence, from (8.18), we obtain

∂
(
G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 + Vk,ε

)
({ε} × R2) = 〚{ε} × ∂B1−λ′k〛 in D2((−∞, l)× R2),

where ∂B1−λ′k is counterclockwisely oriented.

47In cartesian coordinates.
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9.1 Enforcing boundary conditions at {0} × R2; a modification of ϑk,ε

Let ak,ε denote the integration over the annulus {ε} × (B1 \B1−λ′k), in such a way that

∂ak,ε = 〚{ε} × ∂B1〛− 〚{ε} × ∂B1−λ′k〛,

see Fig. 11. Then

|ak,ε| = π(1− (1− λ′k)2) ≤ 2πλ′k, (9.1)

and

∂
(
G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 + Vk,ε + ak,ε

)
= 〚{ε} × ∂B1〛 in D2((−∞, l)× R2).

Finally, we add to the current G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 + Vk,ε + ak,ε the integration over the lateral

boundary of the cylinder (0, ε)×B1, so that the resulting current

G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 + Vk,ε + ak,ε + 〚(0, ε)× ∂B1〛 ∈ D2((0, l)× R2), (9.2)

satisfies

∂
(
G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 + Vk,ε + ak,ε + 〚(0, ε)× ∂B1〛

)
= 〚{0} × ∂B1〛 in D2((−∞, l)× R2);

in particular it is boundaryless in D2((0, l)× R2).
Now, we want to identify the solid region that we can call the “inside” of the current in (9.2).

Definition 9.1 (The sets Ok,ε). We let

Ok,ε :=
(
S(Ek) ∩ ((ε, l)× R2)

)
∪ ((0, ε]×B1) ⊂ [0, l]× R2. (9.3)

A direct check shows that the current built in (9.2) is the integration over the boundary of 〚Ok,ε〛.
Indeed, by Lemma 7.13(iii) and Definition 7.14 we see that the integration over S(Ek)∩ ((ε, l)×R2)

has as boundary G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 in (ε, l) × R2, whereas (0, ε] × B1 trivially has boundary

(0, ε)× ∂B1 in (0, ε)× R2. The current Vk,ε + ak,ε represents the boundary of 〚Ok,ε〛 concentrated
on the plane {ε} × R2. In turn we will see (formulas (9.6), (9.7)) that Ok,ε is the polar subgraph
of a suitable modification of ϑk,ε. Thus we are going to introduce the new extra “strip” (recalling

the definition of S
(2)
k,ε in (7.7) and of JQk,ε in (7.21)):

S
(4)
k,ε : = S

(2)
k,ε ∪ JQk,ε ∪ ((ε, l)× [1− λ′k, 1]× {0})

= {(t, ρ, θ) : t ∈ (ε, l), ρ ∈ [|uk|−(t) ∧ (1− λk), 1], θ = 0},
(9.4)

see Fig. 12 (and also Figs. 4, 8).

Definition 9.2 (The function ϑ̂k,ε). We define ϑ̂k,ε : (0, l)× [0, 1]× {0} → R as

ϑ̂k,ε :=


ϑk,ε in (ε, l)× [0, 1− λ′k]× {0}
0 in (ε, l)× [1− λ′k, 1]× {0}
π in (0, ε]× [0, 1]× {0}.

(9.5)
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Figure 12: The graphs of the functions |uk|+ and |uk|− and the set S
(4)
k,ε in (9.4). See also Fig. 4.

Accordingly, we extend the currents G(3)
ϑk,ε

and G(3)
−ϑk,ε as follows: As in (7.2) we fix η ∈ (0, π4 ),

and set

SGpol

ϑ̂k,ε
:= {(t, ρ, θ) ∈ (0, l)× [0, 1]× {0} : θ ∈ (−η, ϑ̂k,ε(t, ρ, 0))},

UGpol

−ϑ̂k,ε
:= {(t, ρ, θ) ∈ (0, l)× [0, 1]× {0} : θ ∈ (−ϑ̂k,ε(t, ρ, 0), η)}.

Remark 9.3. By construction,

SGpol

ϑ̂k,ε
∩ {θ ∈ (0, π)} = Ok,ε ∩ {θ ∈ (0, π)}, (9.6)

UGpol

−ϑ̂k,ε
∩ {θ ∈ (−π, 0)} = Ok,ε ∩ {θ ∈ (−π, 0)}, (9.7)

where the set Ok,ε is defined in (9.3).

The next currents are constructed to reach the segment (0, l)× {1} × {0}.

Definition 9.4 (The currents G(4)

±ϑ̂k,ε
). We define the currents

G(4)

ϑ̂k,ε
:= (∂〚SGpol

ϑ̂k,ε
〛) {θ ∈ (0, π)}+ 〚Gpol

ϑ̂k,ε

({
ϑ̂k,ε∈{0,π}

}
∩S(4)

k,ε

)〛,
G(4)

−ϑ̂k,ε
:= (∂〚UGpol

−ϑ̂k,ε
〛) {θ ∈ (−π, 0)}+ 〚Gpol

−ϑ̂k,ε
({

ϑ̂k,ε∈{0,π}
}
∩S(4)

k,ε

)〛. (9.8)

In other words, the support of G(4)

ϑ̂k,ε
coincides with the generalized polar graph of ϑ̂k,ε restricted to

S
(4)
k,ε×[0, π]. Notice that also in this case 〚Gpol

−ϑ̂k,ε
({

ϑ̂k,ε∈{0,π}
}
∩S(4)

k,ε

)〛+〚Gpol

ϑ̂k,ε

({
ϑ̂k,ε∈{0,π}

}
∩S(4)

k,ε

)〛 =

0, and

G(4)

ϑ̂k,ε
+ G(4)

−ϑ̂k,ε
= 〚∂∗Ok,ε〛 in (0, l)× R2. (9.9)

59



Moreover, by (9.8) and (7.9),

|G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
| = |G(4)

ϑ̂k,ε
+ G(4)

−ϑ̂k,ε
|+ 2H2

({
ϑ̂k,ε ∈ {0, π}

}
∩ S(4)

k,ε

)
. (9.10)

Finally

G(4)

ϑ̂k,ε
=G(3)

ϑk,ε
+ 〚(ε, l)× [1− λ′k, 1]× {0}〛 + 〚Σk,ε ∩ {0 ≤ θ ≤ π}〛 + Vk,ε {0 ≤ θ ≤ π}

+ ak,ε {0 ≤ θ ≤ π}+ 〚((0, ε)× ∂B1) ∩ {0 ≤ θ ≤ π}〛, (9.11)

and

G(4)

−ϑ̂k,ε
=G(3)
−ϑk,ε − 〚(ε, l)× [1− λ′k, 1]× {0}〛 + 〚Σk,ε ∩ {−π ≤ θ ≤ 0}〛 + Vk,ε {−π ≤ θ ≤ 0}

+ ak,ε {−π ≤ θ ≤ 0}+ 〚((0, ε)× ∂B1) ∩ {−π ≤ θ ≤ 0}〛,

so that
G(4)

ϑ̂k,ε
+ G(4)

−ϑ̂k,ε
= G(3)

ϑk,ε
+ G(3)

−ϑk,ε + 〚Σk,ε〛 + Vk,ε + ak,ε + 〚(0, ε)× ∂B1〛.

Remark 9.5. The function ϑ̂k,ε is defined on the whole domain (0, l) × [0, 1] × {0}, but it might

take values in (0, π) only in S
(2)
k,ε , see Remark 7.5(v). Moreover, referring also to Remark 7.8, we

see that the currents G(4)

ϑ̂k,ε
and G(4)

−ϑ̂k,ε
neglect the generalized polar graph of ϑ̂k,ε (defined in (2.8))

on ((0, l)× [0, 1]× {0}) \ S(4)
k,ε , with the only exception of the “vertical” part 〚(0, ε)× ∂B1〛.

An important step in the proof of the estimate from below in Theorem 11.16 is given by the next
inequality.

Proposition 9.6 (Estimate from below in terms of the mass of G(4)

ϑ̂k,ε
and G(4)

−ϑ̂k,ε
). Let ε be

fixed as in (4.4) and (4.5). The following inequality holds:

|〚Guk〛|Dk×R2 ≥ |G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
| − πε− C

εn
− ok(1) (9.12)

for an absolute constant C > 0, where the sequence ok(1) ≥ 0 depends on ε and n, and is infinites-
imal as k → +∞.

Proof. By (9.11) we get

|G(4)

ϑ̂k,ε
| ≤|G(3)

ϑk,ε
|+ λ′kl + |〚Σk,ε ∩ {0 < θ < π}〛|+ |Vk,ε {0 < θ < π}|

+ |ak,ε {0 ≤ θ ≤ π}|+ |〚((0, ε)× ∂B1) ∩ {0 ≤ θ ≤ π}〛|.

A similar estimate holds for |G(4)

−ϑ̂k,ε
| so that

|G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
| ≤ |G(3)

ϑk,ε
|+ |G(3)

−ϑk,ε |+ |〚Σk,ε〛|+ |Vk,ε|+ |ak,ε|+ |〚(0, ε)× ∂B1〛|+ 2λ′kl.
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Coupling the above inequality with (7.22) and (7.23) gives

|G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
|

≤|G+
k,ε|+ |G

−
k,ε|+ |〚Σk,ε〛|+ |Vk,ε|+ |ak,ε|+ |〚(0, ε)× ∂B1〛|+ 2λ′kl +

1

πεn

≤
∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)|dx+ |〚Σk,ε〛|+ |Vk,ε|+ |ak,ε|+ |〚(0, ε)× ∂B1〛|

+ 2λ′kl +
1

πεn
+

1

n

≤
∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)|dx+ |〚Guk〛|(Dk∩Bε)×R2 + πε+
C

εn
+ ok(1),

where the second inequality follows from (7.12), the last inequality follows from (7.27), (9.1) and
(8.13), and C > 0 is an absolute constant. Here ok(1) is a nonnegative quantity infinitesimal as
k → +∞, depending on ε and n. In conclusion

|G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
| − πε− C

εn
− ok(1)

≤|〚Guk〛|(Dk∩(Ω\Bε))×R2 + |〚Guk〛|(Dk∩Bε)×R2 = |〚Guk〛|Dk×R2 .

10 Three examples

Before concluding the proof of the lower bound, we aim to explain the various geometric objects
introduced in the previous sections (for a recovery sequence) through three interesting examples of
sequences converging to the vortex map u. We warn the reader that the sequences of Sections 10.1
and 10.2, as well as the one of Section 10.3 for l small, are not recovery sequences; nevertheless, we
believe it is useful to describe the various quantities introduced in Sections 5-9 in correspondence
to these sequences, since this shades some light on the proof of the lower bound.

10.1 An approximating sequence of maps with degree zero: cylinder

In [1] the authors describe an approximating sequence (uk) of smooth maps taking values in S1

which, in our context, are defined in polar coordinates as follows:

uk(r, θ) :=



(cos θ, sin θ) in Ω1 := Ω \ (Brk ∪ {θ ∈ (−θk, θk)}),
(cos( rrk (θ − π) + π), sin( rrk (θ − π) + π)) in Brk \ {θ ∈ (−θk, θk)},
(cos( θk−πθk

θ + π), sin( θk−πθk
θ + π)) in {θ ∈ [0, θk)} \ Brk ,

(cos(−θk+π
−θk θ + π), sin(−θk+π

−θk θ + π)) in {θ ∈ (−θk, 0)} \ Brk ,

(cos( rrk ( θk−πθk
θ) + π), sin( rrk ( θk−πθk

θ) + π)) in Ω4 := Brk ∩ {θ ∈ [0, θk)},
(cos( rrk (−θk+π

−θk θ) + π), sin( rrk (−θk+π
−θk θ) + π)) in Ω4 := Brk ∩ {θ ∈ (−θk, θk)},

(10.1)
where (rk) and (θk) are two infinitesimal sequences of positive numbers; see Fig. 13. Recall that
in the previous sections we introduced the number ε; we may assume here that rk << ε for all
k ∈ N. Notice that uk(0, 0) = (−1, 0) = uk(r, 0) for r ∈ (0, l). Moreover for t ∈ (0, l) we have
uk(∂Bt) = ∂B1 \ {θ ∈ (−θk, θk)}, and the degree of uk is zero.

61



Figure 13: The map uk in (10.1). We set P̂ := P/|P | = θk, Q̂ := Q/|Q|. All points in Ω1 ∪ Ω2 are
retracted on S1. The image of Ω3 through uk is as follows: uk sends the generic dotted segment
onto the (long) dotted arc on S1. Finally, the image of Ω4 through uk is as follows: uk sends the
generic dotted segment onto the (short) dotted arc on S1.

Figure 14: The set emphasized is Dk for the sequence in (10.1).
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Now we fix an infinitesimal sequence (λk) of positive numbers. Inspecting (10.1), it turns out
that the set Dk defined in (4.27) and (4.9) satisfies Dk ( Brk ∪ {θ ∈ (−θk, θk)} ∩ Ω, see Fig. 14.

Notice that spt(uk]〚(Ω \Dk) ∩ ∂Bt〛) ⊆ uk((Ω \ Dk) ∩ ∂Bt) with strict inclusion whenever t is
such that (Ω\Dk)∩{θ = ±θk}∩∂Bt 6= Ø. For instance, for t ∈ (rk, l), we have uk((Ω\Dk)∩∂Bt) =
∂B1 \ {θ ∈ (−θk, θk)} and uk(Dk ∩ ∂Bt) = ∂B1 \ {θ ∈ (−θk − ak, θk + ak)}, where ak is a positive
small angle; on the other hand48 spt(uk]〚(Ω \Dk) ∩ ∂Bt〛) = ∂B1 \ {θ ∈ (−θk − ak, θk + ak)} =
spt(uk]〚Dk ∩ ∂Bt〛). Similarly we have spt(uk]〚Dk ∩ ∂Bt〛) ⊆ uk(Dk ∩ ∂Bt) with strict inclusion49

whenever Dk ∩ {θ = ±θk} ∩ ∂Bt 6= Ø (thus, t ∈ (0, rk)).
The support of the current Dk = (πλk ◦ Ψk)]〚Dk〛 in (5.6) is a connected set contained in

∂lat(Cl(1− λk)). But in this example we also have spt(Dk) = spt ((πλk ◦Ψk)]〚Ω \Dk〛); moreover

spt(Dk) ∩ Cεl = (ε, l)× {1− λk} × ((−π, π) \ (−θk − ak, θk + ak)) .

The support of the currentWk in (5.17), an orthogonal “wall” over Cl(1−λk) of height λk−λ′k, built
on ∂Dk, divides Cl(1− λ′k) \Cl(1− λk) into two connected sets; one of them, spt(Yk) (see (5.26)),
has spt(πλk ◦ Ψk)]〚Ω \Dk〛 as part of its boundary, and the other one, spt(Xk) (see (5.27)), has

∂Cl(1−λk)\ spt((πλk ◦Ψk)]〚Ω \Dk〛) as part of its boundary. Hence the support of D̂k = Dk +Wk

(Definition 5.13) divides Cl(1−λ′k) into two connected sets, one of them, Ek, is Cl(1−λk)∪spt(Xk),
and the second one is its complement in Cl(1− λ′k) and equals spt(Yk). In this particular example
the cylindrical Steiner symmetrization introduced in Section 3 is unnecessary, since S(Ek) = Ek
and hence S(D̂k) = D̂k. Thus the function ϑk,ε in (7.1) reads as

ϑk,ε(t, ρ) =
Θk(t, ρ)

2
=

1

2ρ
H1((Ek)t,ρ) =

{
θk + ak for (t, ρ) ∈ (ε, l)× (1− λk, 1− λ′k],
π for (t, ρ) ∈ (ε, l)× (0, 1− λk].

Note that

spt(D̂k) ∩ Cεl = (spt(Dk) ∪ spt(Wk)) ∩ Cεl
=
(

spt(Dk) ∪
(

(ε, l)× [1− λk, 1− λ′k]× {−θk − ak, θk + ak}
))
∩ Cεl ,

and that spt(D̂k) ∩ ({0} × R2) is the segment {0} × [1− λk, 1− λ′k]× {π}.
Concerning the functions in (6.1), we have |uk|+ = |uk|− = 1, thus πpol

0 (πλk ◦ Ψk(Ω \ Bε)) =

(ε, l)× {1− λk} × {0}, and the sets Qk,ε in (6.4) and JQk,ε in (7.21) are empty. Hence, for S
(2)
k,ε in

(7.7), we have S
(2)
k,ε = (ε, l)×[1−λk, 1−λ′k]×{0}. Moreover, for Θk in (6.7), we have Θk(t, ρ) ∈ (0, π)

for (t, ρ, 0) ∈ S(2)
k,ε ; thus, recalling Definitions 7.7 and 7.12, and since 〚Gpol

±ϑk,ε S
(2)
k,ε∩{Θk∈{0,2π}}

〛 = 0,

G(3)
±ϑk,ε = G±k,ε = D̂k {(t, ρ, θ) : t ∈ (ε, l), ± θ ∈ (0, π)},

where the last equality follows by construction (see (7.4) and (5.31)).
The set Σk,ε in Definition 7.14 equals

Σk,ε = (ε, l)× {1− λ′k} × (−θk − ak, θk + ak),

hence the current G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 = D̂k + 〚Σk,ε〛 is boundaryless in Cεl (with Σk,ε suitably

oriented).

48This is due to the fact that uk|Ω\Dk
covers the arcs (∂B1) ∩ {θ ∈ (θk, θk + ak) ∪ (−θ − ak,−θ)} twice, with

opposite orientations.
49This could only happen for t ∈ (0, rk).
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Recalling (8.12), we have

Vk,ε = 〚{ε} × [1− λk, 1− λ′k]× ((−π, π] \ (−θk − ak, θk + ak))〛,

hence
∂Vk,ε = S(Hk,ε) + S(L)1 − S(L)2 + Lk,

see (8.4), (8.10), (8.8), (8.15), and Proposition 8.8,

S(Hk,ε) = Hk,ε = (πλk ◦Ψk)]〚∂Bε ∩Dk〛 = (πλk ◦Ψk)]〚{ε} × (−θ + ak, θ − ak)〛
= 〚{ε} × {1− λk} × ((−π, π] \ (−θk − ak, θk + ak))〛 (clockwise oriented when looking at

the plane {ε} × R2 from t > ε),

S(L)1 = 〚{ε} × [1− λk, 1− λ′k]× {θk + ak}〛,
S(L)2 = 〚{ε} × [1− λk, 1− λ′k]× {−θk − ak}〛,
Lk = 〚{ε} × {1− λ′k} × ((−π, π] \ (−θk − ak, θk + ak))〛

(counterclockwise oriented when looking at the plane {ε} × R2 from t > ε).

Notice that

∂
(
G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛

) (
{ε} × R2

)
= −

(
S(Hk,ε) + S(L)1 − S(L)2

)
+ 〚{ε} × ∂B1−λ′k〛− Lk,

Hence
∂
(
G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 + Vk,ε

) (
{ε} × R2

)
= 〚{ε} × ∂B1−λ′k〛

Thus, for ϑ̂k,ε in (9.5),

ϑ̂k,ε(t, ρ) =


θk + ak in (ε, l)× (1− λk, 1− λ′k]× {0},
0 in (ε, l)× (1− λ′k, 1]× {0},
π in ((0, ε]× (0, 1]) ∪ ((ε, l)× (0, 1− λk])× {0},

and G(4)

±ϑ̂k,ε
in (9.8) is given by

G(4)

±ϑ̂k,ε
=G(3)
±ϑk,ε +

(
〚Σk,ε〛 + Vk,ε + ak,ε + 〚(0, ε)× ∂B1〛

)
{0 ≤ ±θ ≤ π} ± 〚(ε, l)× [1− λ′k, 1]× {0}〛,

where ak,ε = 〚{ε} × (B1 \B1−λ′k)〛. Observe that

({0} × {1} × {θ ∈ [0, π]}) ∪ {[0, l]× {1} × {0}} ⊂ supp(∂G(4)

±ϑ̂k,ε
).

Hence
G(4)

ϑ̂k,ε
+ G(4)

−ϑ̂k,ε
= G(3)

ϑk,ε
+ G(3)

−ϑk,ε + 〚Σk,ε〛 + Vk,ε + ak,ε + 〚(0, ε)× ∂B1〛,

and
∂(G(4)

ϑ̂k,ε
+ G(4)

−ϑ̂k,ε
) {t < l} = 〚{0} × ∂B1〛

Remark 10.1. (uk) is not a recovery sequence, due to Theorem 13.2. We have

lim
k→+∞

A(uk,Ω) =

∫
Ω
|M(∇u)| dx+ 2πl,

and 2πl has the meaning of the lateral area of the cylinder of height l and basis the unit disc. This
surface is not a minimizer of the problem on the right-hand side of (11.25) (where it corresponds
to h ≡ 1).
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10.2 An approximating sequence of maps with degree zero: catenoid union a
flap

In this section we discuss another example of a possible approximating sequence (uk). We replace
the cylinder lateral surface50 [0, l] × {1} × (−π, π], which contains the image of (rk, l) × (−θk, θk)
through the map Ψk in the example of Section 10.1, with half51 of a catenoid union a flap (see Fig.
16): calling this union CF (0, l)× R2, we have

CF =: {(t, ρ(t), θ) : t ∈ [0, 2l], θ ∈ (−π, π]} ∪ {(t, r, 0) : t ∈ (0, 2l), r ∈ [ρ(t), 1]},

where ρ(t) := a cosh( t−la ), and a > 0 is such that ρ(0) = 1 (and ρ(2l) = 0).

Notice that CF “spans”
(
{0, 2l} × {1} × (−π, π]

)
∪
(

[0, 2l]× {1} × {0}
)

, which is the union of

two unit circles connected by a segment.
Let rk > 0, θk > 0, θk > θk be such that rk, θk, (θk − θk)→ 0+ as k → +∞. Set

ρ(t) := ρ

(
t− rk
l − rk

l

)
, t ∈ (rk, l).

We define uk := u in Ω \
(

Brk ∪ {θ ∈ (−θk, θk)}
)

, in particular

uk(∂Bt \ {θ ∈ (−θk, θk)}) = ∂B1 \ {θ ∈ (−θk, θk)}, t ∈ (rk, l).

On {θ ∈ (−θk, θk)} \ Brk we define uk in such a way that for each t ∈ (rk, l) we have

uk
(
∂Bt ∩ {±θ ∈ (θk, θk)}

)
= ∂B1 ∩ {±θ ∈ (0, θk)},

uk (∂Bt ∩ {±θ ∈ (0, θk)}) = {(r, 0) ∈ B1 : r ∈ [ρ(t), 1]} ∪
(
∂Bρ(t) ∩ {±θ ∈ (0, π)}

)
.

See Fig. 15 for a representation of the map uk. To define uk on Brk we adopt a construction similar
to the one in (10.1). First of all, uk(0, 0) := (−1, 0). Then, in Brk ∩ {θ ∈ (−π, π) \ (−θk, θk)} we
impose uk as in (10.1) with θk replacing θk. In Brk ∩ {θ ∈ (−θk, θk)} we require

uk([0, rk], α) := ∂B1 ∩ {±θ ∈ (uk(rk, α), π)}, ±α ∈ (0, π].

Hence

uk(∂Bt)

{
( ∂B1 if t ∈ (0, rk],

= (∂B1) ∪ {(r, 0) ∈ B1 : r ∈ [ρ(t), 1]} ∪ (∂Bρ(t)) if t ∈ (rk, l).

Remark 10.2. For an explicit construction, see Section 13 with h? = ρ and

ψ?(s, t) =

{
0 for t ∈ (0, l), s ∈ [−1,−ρ(t)],√

(ρ(t))2 − s2 for t ∈ (0, l), s ∈ [−ρ(t), ρ(t)].

Now we fix an infinitesimal sequence (λk) of positive numbers; we may also assume that |(cos θk, sin θk)−
(1, 0)| << λk. Hence Dk ( (Brk ∪ {θ ∈ (−θk, θk)}).

50In polar coordinates.
51For convenience, we consider the doubled segment [0, 2l], in order to define the catenoid; then we restrict the

construction to (0, l).
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Figure 15: Source and target of the map uk in the example of Section 10.2. The small interior
circle in the right figure is a t-slice of a catenoid, whereas the horizontal segment is the t-section of
the flap.

Figure 16: Catenoid union a flap (Section 10.2). This is the set CF , namely the limit (as k → +∞)
of the image by πλk ◦Ψk of Dk.
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By construction there exists tk ∈ (rk, ε) such that ρ(tk) = 1− λk. Hence for t ∈ [tk, l) we have

spt
(

(uk)](∂Bt ∩ (Ω \Dk))
)

= ∂B1, ∂B1 ( uk(∂Bt ∩ (Ω \Dk)),

spt
(

(uk)](∂Bt ∩Dk)
)

= ∂Bρ(t), ∂Bρ(t) ( uk(∂Bt ∩Dk).

Notice that the above strict inclusions are due to the fact that the segments {(r, 0) ∈ B1 : r ∈
[ρ(t), 1]} ∩ uk(Dk) and {(r, 0) ∈ B1 : r ∈ [ρ(t), 1]} ∩ uk(Ω \ Dk) are covered twice with opposite
orientation.

On the other hand, for t ∈ [rk, tk) we have

∂B1 ⊂ spt
(

(uk)](∂Bt ∩ (Ω \Dk))
)
, spt

(
(πλk ◦Ψk)](∂Bt ∩ (Ω \Dk))

)
⊂ ∂B1−λk

∂Bρ(t) ⊃ spt
(

(uk)](∂Bt ∩Dk)
)
, spt

(
(πλk ◦Ψk)](∂Bt ∩Dk)

)
⊂ ∂B1−λk ,

where the second inclusion is due to the fact that (πλk ◦ Ψk)(∂Bt ∩ (Ω \ Dk)) covers two arcs of
∂B1−λk twice with opposite orientation. Notice also that the only cancellation that could happen
on (πλk ◦ Ψk)(∂Bt ∩ Dk) due to covering more than one with opposite orientation is along the
segment {(r, 0) ∈ B1 : r ∈ [ρ(t), 1]}, in particular we have

spt
(

(πλk ◦Ψk)](∂Bt ∩ (Ω \Dk))
)

= spt
(

(πλk ◦Ψk)](∂Bt ∩Dk)
)
.

By definition the above equality holds also for t ∈ (0, rk); moreover we have

spt
(

(πλk ◦Ψk)](∂Bt1 ∩Dk)
)
( spt

(
(πλk ◦Ψk)](∂Bt2 ∩Dk)

)
, t1 < t2, t1, t2 ∈ (0, rk),

where πλk ◦Ψk(0) = {0} × {1− λk} × {π}.
From the above discussion we can see that the support of the current Dk is a connected set

contained in C l(1 − λk) and the support of (πλk ◦ Ψk)]〚Ω \Dk〛 is a connected set contained in
∂latCl(1− λk), in particular we have

spt
(
Dk

)
Ctk = spt

(
(πλk ◦Ψk)]〚Ω \Dk〛

)
Ctk ( ∂Ctk(1− λk),

spt
(
Dk

)
Ctkl = {(t, r, θ) : t ∈ (tk, l), r = ρ(t), θ ∈ (−π, π]} ( Ctkl (1− λk),

spt
(
∂Dk

)
⊂ ∂Ctk(1− λk),

spt
(

(πλk ◦Ψk)]〚Ω \Dk〛
)

Ctkl = ∂Ctkl (1− λk).

The current Wk, a normal wall over ∂Dk over Cl(1− λk) of height λk − λ′k, built on ∂Dk, divides
Cl(1−λ′k)\Cl(1−λk) into two connected sets; one of them, spt(Yk), contains Ctkl (1−λ′k)\C

tk
l (1−λk)

and has spt ((πλk ◦Ψk)]〚Ω \Dk〛) as part of its boundary. The other one, spt(Xk) (see (5.27)),
contains C0(1−λ′k)\C0(1−λk) and has ∂Cl(1−λk)\spt(πλk ◦Ψk)]〚Ω \Dk〛 as part of its boundary.

Hence D̂k = Dk +Wk divides Cl(1− λ′k) into two connected sets, one of them is

Ek = Ctk(1− λk) ∪ spt(Xk) ∪ {(t, r, θ) ∈ Ctkl (1− λk) : r ∈ (0, ρ(t)]},

and the second one is its complement in Cl(1 − λ′k) and contains spt(Yk). Note that spt(Wk) ⊂
[0, tk]×[1−λk, 1−λ′k]×(−π, π] and that spt(D̂k)∩({0}×R2) is the segment {0}×[1−λk, 1−λ′k]×{π}.
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In this particular example when we apply the cylindrical Steiner symmetrization introduced in
Section 3 nothing changes, i.e., S(Ek) = Ek and hence S(D̂k) = D̂k. Observe that

|uk|+ = 1, |uk|− =

{
1, r ≤ rk,
ρ(t), r > rk.

Thus
πpol

0 (πλk ◦Ψk(Ω \ Bε)) = {(t, r, 0) : t ∈ (ε, l) r ∈ [ρ(t), 1− λk]},
and the sets Qk,ε in (6.4) and JQk,ε in (7.21) are empty. Hence

S
(2)
k,ε = {(t, r, 0) : t ∈ (ε, l) r ∈ [ρ(t), 1− λ′k]}.

Moreover we have Θk(t, ρ) = 0 for (t, ρ, 0) ∈ S(2)
k,ε thus, recalling Definitions 7.7 and 7.12,

G(3)
±ϑk,ε = G±k,ε = D̂k {(t, ρ, θ) : t ∈ (ε, l), ± θ ∈ (0, π)}+ 〚Gpol

±ϑk,ε S
(2)
k,ε∩{Θk∈{0,2π}}

〛

= D̂k {(t, ρ, θ) : t ∈ (ε, l), ± θ ∈ (0, π)} ± 〚{(t, r, 0) : t ∈ (ε, l), r ∈ [ρ(t), 1− λ′k]}〛.

The set Σk,ε in Definition 7.14 is empty, hence G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 = D̂k which is boundaryless

in Cεl .
We have, recalling (8.12),

Vk,ε = 〚{ε} × [ρ(ε), 1− λ′k]× (−π, π]〛,

i.e.,
∂Vk,ε = S(Hk,ε) + S(L)1 − S(L)2 + Lk = −〚{ε} × ∂Bρ(ε)〛 + 〚{ε} × ∂B1−λ′k〛,

where (see (8.10) (8.4), (8.8), (8.15), and Proposition 8.8)

S(Hk,ε) = Hk,ε = (πλk ◦Ψk)]〚Dk ∩ ∂Bε〛 (oriented counterclockwise) = −〚{ε} × ∂Bρ(ε)〛,

S(L)1 = S(L)2 = 〚{ε} × [1− λk, 1− λ′k]× {0}〛,
Lk = 〚Y2Y1〛 = 〚{ε} × ∂B1−λ′k〛.

Notice that

∂(G(3)
ϑk,ε

+ G(3)
−ϑk,ε) {ε} × R2 = 〚{ε} × ∂B1−λk〛

= −
(
S(Hk,ε) + S(L)1 − S(L)2

)
+ 〚{ε} × ∂B1−λ′k〛− Lk.

Thus
∂(G(3)

ϑk,ε
+ G(3)

−ϑk,ε + Vk,ε) ({ε} × R2) = 〚{ε} × ∂B1−λ′k〛,

and

G(4)

±ϑ̂k,ε
=G(3)
±ϑk,ε +

(
Vk,ε + ak,ε + 〚(0, ε)× ∂B1〛

)
{0 ≤ ±θ ≤ π} ± 〚(ε, l)× [1− λ′k, 1]× {0}〛,

where ak,ε = 〚{ε} × (B1 \B1−λ′k)〛; observe that

(∂B1 ∩ {0 ≤ ±θ ≤ π}) ∪ {[0, l]× {1} × {0}} ⊂ supp(∂G(4)

±ϑ̂k,ε
).

Hence
G(4)

ϑ̂k,ε
+ G(4)

−ϑ̂k,ε
= G(3)

ϑk,ε
+ G(3)

−ϑk,ε + Vk,ε + ak,ε + 〚(0, ε)× ∂B1〛,

and
∂(G(4)

ϑ̂k,ε
+ G(4)

−ϑ̂k,ε
) {t < l} = 〚{0} × ∂B1〛.
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Remark 10.3. (uk) is not a recovery sequence, due to Theorem 13.2. We have

lim
k→+∞

A(uk,Ω) =

∫
Ω
|M(∇u)| dx+H2(catenoid) + 2H2(flap).

This surface is not a minimizer of problem on the right-hand side of (11.25).

10.3 Smoothing by convolution: the case of the two discs

In [1], the authors describe a sequence (uk) of maps converging to the vortex map u, simply defined
as follows:

uk(r, θ) := φk(r)u(r, θ), (10.2)

where φk : [0, l] → [0, 1] is a smooth function such that φk = 0 in [0, 1
k2 ], φk = 1 in [ 1

k , l], and
0 ≤ φ′k ≤ 2k. Hence |uk − u| = 1− φk. We shall assume that for all k > 0, we have 1

k << ε.
Now we fix an infinitesimal sequence (λk) of positive numbers, hence for any k ∈ N there exists

rk ∈ (0, 1/k) such that φk(rk) = 1− λk, and we have

Dk = Brk . (10.3)

Notice that uk(∂Br) = ∂Bφk(r),

spt(Dk) = {(t, r, θ) : t ∈ [1/k2, rk], r = φk(t), θ ∈ (−π, π]} ( Crk(1− λk),
spt((πλk ◦Ψk)]〚Ω \Dk〛) = πλk ◦Ψk(Ω \Dk) = ∂Crkl (1− λk).

Also, using (10.3), πλk ◦Ψk(Dk)\ spt(Dk) = [0, 1/k2)×{0}×{0} = πλk ◦Ψk(B1/k2) and, unlike the
examples in Sections 10.1, 10.2, there is no cancellation due to covering the same 2-dimensional set
with two opposite orientations; the fact that πλk ◦Ψk(Dk) \ spt(Dk) is nonempty is due to the fact
that πλk ◦Ψk(B1/k2) is one-dimensional. Moreover we have

spt((πλk ◦Ψk)]〚∂Dk〛) = spt(Dk) ∩ spt((πλk ◦Ψk)]〚Ω \Dk〛) = {rk} × {1− λk} × (−π, π].

Hence
spt(Wk) = {rk} × [1− λk, 1− λ′k]× (−π, π],

i.e., the currentWk divides Cl(1−λ′k)\Cl(1−λk) into two connected sets; one of them, spt(Yk) =
Crkl (1 − λ′k) \ C

rk
l (1 − λk), and the other one, spt(Xk) = Crk(1 − λ′k) \ Crk(1 − λk). Therefore

D̂k = Dk +Wk divides Cl(1− λ′k) into two connected sets, one of them is

Ek = Crk(1− λ′k) \ {(t, r, θ) : t ∈ (1/k2, rk), r ∈ (0, φk(t)), θ ∈ (−π, π]},

and the second one is its complement in Cl(1− λ′k) and contains spt(Yk).
Also in this example, when we apply the cylindrical Steiner symmetrization introduced in Section

3, nothing changes, i.e., S(Ek) = Ek and hence S(D̂k) = D̂k.

Note also that |uk|+ = |uk|− = 1 in (rk, l), thus πpol
0 (πλk ◦Ψk(Ω \Bε)) = (ε, l)× {1− λk} × {0},

and the sets Qk,ε in (6.4) and JQk,ε in (7.21) are empty. Hence S
(2)
k,ε = (ε, l)× [1−λk, 1−λ′k]×{0}.

We have Θk(t, ρ) = 0 for (t, ρ, 0) ∈ S(2)
k,ε thus, recalling Definitions 7.7 and 7.12,

G(3)
±ϑk,ε = G±k,ε = ±〚S(2)

k,ε〛 = ±〚(ε, l)× [1− λk, 1− λ′k]× {0}〛.

The set Σk,ε in Definition 7.14 is empty, hence G(3)
ϑk,ε

+G(3)
−ϑk,ε +〚Σk,ε〛 = 0. We have, recalling (8.12),

Vk,ε = 〚{ε} ×B1−λ′k〛,
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and
∂Vk,ε = S(Hk,ε) + S(L)1 − S(L)2 + Lk = 〚{ε} × ∂B1−λ′k〛,

where (see (8.10) (8.4), (8.8), (8.15), and Proposition 8.8)

S(Hk,ε) = Hk,ε = 0,

S(L)1 = S(L)2 = 〚{ε} × [1− λk, 1− λ′k]× {0}〛,
Lk = 〚{ε} × ∂B1−λ′k〛.

Notice that

∂(G(3)
ϑk,ε

+ G(3)
−ϑk,ε) ({ε} × R2) = −

(
S(Hk,ε) + S(L)1 − S(L)2

)
+ 〚{ε} × ∂B1−λ′k〛− Lk = 0,

and
∂(G(3)

ϑk,ε
+ G(3)

−ϑk,ε + Vk,ε) ({ε} × R2) = 〚{ε} × ∂B1−λ′k〛.

Finally we have

G(4)

±ϑ̂k,ε
=G(3)
±ϑk,ε +

(
Vk,ε + ak,ε + 〚(0, ε)× ∂B1〛

)
{0 ≤ ±θ ≤ π} ± 〚(ε, l)× [1− λ′k, 1]× {0}〛

=〚{ε} ×B1〛 + 〚(0, ε)× ∂B1〛± 〚(ε, l)× [1− λk, 1]× {0}〛,

where ak,ε = 〚{ε} × (B1 \B1−λ′k)〛. Notice that

(∂B1 ∩ {0 ≤ ±θ ≤ π}) ∪ {[0, l]× {1} × {0}} ⊂ supp({∂G(4)

±ϑ̂k,ε
}).

Hence
G(4)

ϑ̂k,ε
+ G(4)

−ϑ̂k,ε
= 〚{ε} ×B1〛 + 〚(0, ε)× ∂B1〛,

and
∂(G(4)

ϑ̂k,ε
+ G(4)

−ϑ̂k,ε
) {t < l} = 〚{0} × ∂B1〛.

Remark 10.4. (uk) is a recovery sequence for l sufficiently large, due to [1, Lemma 4.2]. We have

lim
k→+∞

A(uk,Ω) =

∫
Ω
|M(∇u)| dx+ π,

and π has the meaning of the area of the unit disc. This surface, for l sufficiently large, is a
minimizer of problem on the right-hand side of (11.25) (where it corresponds to h ≡ −1).

11 Lower bound

In this section we reduce the analysis of G(4)

±ϑ̂k,ε
in Definition 9.4 to a non-parametric Plateau-type

problem with a sort of free boundary. Precisely, after suitable projections, we will arrive to a
Plateau-type problem on the closed rectangle Rl, where

Rl := (0, l)× (−1, 1)× {0}

in Cartesian coordinates, equivalently Rl = {t ∈ (0, l), ρ ∈ [0, 1), θ = 0}∪{t ∈ (0, l), ρ ∈ [0, 1), θ =
π} in cylindrical coordinates. The rectangle Rl will be often identified with (0, l) × (−1, 1), thus
neglecting the third coordinate. We will impose a Dirichlet boundary condition ϕ on a part

∂DRl := ({0} × [−1, 1]) ∪ ([0, l]× {−1}) (11.1)
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of ∂Rl, while no conditions will be imposed on {l} × (−1, 1); more involved conditions will be
assigned on (0, l)× {1}, see the mutual relations between ψ and h in (11.23) (see also the problem
on the right-hand side of (11.25) and Section 12).

Then the strategy to estimate from below the relaxed area of the graph of the vortex map u will
be the following: We split

A(uk,Ω) =

∫
Ω\Dk

|M(∇uk)| dx+

∫
Dk

|M(∇uk)| dx.

In order to estimate the lim infk→+∞ of the first term on the right-hand side we will employ (4.37),
whereas, in order to pass to the limit as k → +∞ in the second term, we will use (9.12), so that we
first want to render the right-hand side of this latter inequality independent of k. This will be done
with the aid of the non-parametric Plateau-type problem studied in this section and in Section 12.

Definition 11.1 (The projection p). We let p : Cl ∩ {t ≥ 0} → Rl be the othogonal projection.

Recall that G(4)

±ϑ̂k,ε
are defined in (9.8), that G(4)

ϑ̂k,ε
is the generalized polar graph of ϑ̂k,ε on its

domain of definition (see (9.5)), and that ϑ̂k,ε takes values in [0, π]. We first prove the following
preliminary result:

Lemma 11.2. Let ε ∈ (0, 1) be as in (4.4), (4.5), and k ∈ N. Then there is a negligible set
Ck,ε ⊂ (0, l) such that for all t ∈ (0, l) \ Ck,ε

p
(

spt(G(4)

ϑ̂k,ε
)
)
∩ ({t} × R2) (11.2)

is a subinterval of the segment Rl ∩ ({t} × R2) = {t} × [−1, 1] × {0} with one endpoint (t, 1, 0).

Moreover p(spt(G(4)

ϑ̂k,ε
)) = p(spt(G(4)

−ϑ̂k,ε
)).

Proof. The latter assertion follows by symmetry. To prove the former, we argue by slicing. For a.e.

t ∈ (0, l) the set spt(G(4)

ϑ̂k,ε
) ∩ ({t} ×R2) coincides with support of the current (G(4)

ϑ̂k,ε
)t, see [23, Def.

7.6.2]. First notice that for all t ∈ (0, ε) the conclusion follows by construction52.

It remains to consider the case t ∈ (ε, l). Recall that the set S
(4)
k,ε in (9.4) has the form

{t ∈ (ε, l), ρ ∈ [|uk|−(t) ∧ (1− λk), 1], θ = 0}.

Therefore, for a.e. t ∈ (ε, l) the slice (G(4)

ϑ̂k,ε
)t is the integration over spt(G(4)

ϑ̂k,ε
) restricted to the

plane {t} ×R2, which in turn is the integration over the generalized polar graph (see (2.8)) of ϑ̂k,ε
restricted to the closed set

{t} × [|uk|−(t) ∧ (1− λk), 1]× [0, π].

Namely

(G(4)

ϑ̂k,ε
)t = 〚spt(G(4)

ϑ̂k,ε
) ∩
(
{t} × [|uk|−(t) ∧ (1− λk), 1]× [0, π]

)
〛,

52In this set we have ϑk,ε = π and the current (G(4)

ϑ̂k,ε
)t is the integration over the half-circle {t} × ((∂B1) ∩

{θ ∈ (0, π)}), whose projection through p is the whole interval with endpoints (t, 1, 0) and (t, 1, 0) (in cylindrical
coordinates).
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so that the support σt of (G(4)

ϑ̂k,ε
)t can also be obtained as

σt =

+∞⋂
h=1

σht , (11.3)

where

σht := spt(G(4)

ϑ̂k,ε
) ∩
(
{t} × [

(
|uk|−(t) ∧ (1− λk)

)
− 1

h
, 1]× [0, π]

)
.

For h ∈ N large enough, let

Uh := {t} ×
(
(|uk|−(t) ∧ (1− λk))−

1

h
, 1
)
× (−1

h
, π +

1

h
),

which is a relatively open set in {t}×B1, and let (G(4)

ϑ̂k,ε
)t be the slice of G(4)

ϑ̂k,ε
on {t}×B1. We have

spt((G(4)

ϑ̂k,ε
)t Uh) ⊂ σht ⊂ {t} × [

(
|uk|−(t) ∧ (1− λk)

)
− 1

h
, 1]× [0, π]. (11.4)

On the other hand since G(4)

ϑ̂k,ε
({t} × B1) is the boundary of the subgraph of ϑ̂k,ε in {t} × B1, it

is a closed 1-integral current in Uh and in ({t} × (B1 \ B(|uk|−(t)∧(1−λk))− 1
h
), so that the boundary

∂((G(4)

ϑ̂k,ε
)t Uh) in D1({t} × B1) is supported on (∂Uh) ∩ ((∂B1) ∪ ∂B(|uk|−(t)∧(1−λk))− 1

h
). From

(11.4), the fact that ϑ̂k,ε = 0 at (t, 1) and that ϑ̂k,ε is constant on the segment
(
(|uk|−(t) ∧ (1 −

λk))− 1
h , |uk|

−(t) ∧ (1− λk)
)

with value either 0 or π, we deduce that

spt(∂((G(4)

ϑ̂k,ε
)t Uh))

⊂
(
{t} × {(|uk|−(t) ∧ (1− λk))−

1

h
} × {0, π}

)⋃(
{t} × {1} × {0}

)
. (11.5)

Moreover, if we set

P1 := (t, 1, 0) and P h2 :=
(
t, (|uk|−(t) ∧ (1− λk))−

1

h
, ϑ̂k,ε((|uk|−(t) ∧ (1− λk))−

1

h
)
)
,

from (11.5) it follows that

∂((G(4)

ϑ̂k,ε
)t Uh) = δPh2

− δP1 .

By decomposition of the integral 1-current (G(4)

ϑ̂k,ε
)t Uh (see [15, Section 4.2.25]), there are at most

countable Lipschitz curves {αhi } such that αh0 connects P h2 to P1, and αhi is closed for i > 0.
We claim that there cannot be closed curves αhi , namely {αhi }i∈N = {αh0}. Indeed, since αh0
connects P1 and P h2 , we see that ({t} × ∂Bρ) ∩ αh0 consists of at least one point for H1-a.e. ρ ∈(
(|uk|−(t)∧ (1− λk))− 1

h , 1
)
. On the other hand, ({t} × ∂Bρ)∩ σht consists of only one point53 for

H1-a.e. ρ ∈
(
(|uk|−(t) ∧ (1 − λk)) − 1

h , 1
)
. So there cannot be other curves αhi otherwise the last

condition will be violated.
From the claim we deduce that the current (G(4)

ϑ̂k,ε
)t Uh is the integration over a simple curve αh0

connecting P h2 and P1, and its support coincides with σht . Now, from (11.3) and the fact that σt is
a segment on {t} ×

(
(|uk|−(t) ∧ (1 − λk)) − 1

h , |uk|
−(t) ∧ (1 − λk)

)
, we conclude that also σt must

be a unique curve, say α0, connecting P1 to P2 := limh→∞ P
h
2 . By continuity of the projection by

p, α0 is an interval with one endpoint in p(P1) = (t, 1, 0), for a.e. t ∈ (ε, l).

53Because σht is the support of a polar graph; the points where this intersection is not a singleton coincide with
the values of ρ where ϑ̂k,ε has a jump.
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The new coordinates (w1, w2, w3). In what follows, it is convenient to revert the rectangle with
respect to its second coordinate: if (t, ρ, θ) ∈ [0, l]× [0, 1]×(−π, π] are the cylindrical coordinates in
the cylinder Cl exploited so far, we introduce Cartesian coordinates (w1, w2, w3) ∈ [0, l]× [−1, 1]×
[−1, 1] defined as

w1 := t, w2 := −ρ cos θ, w3 := −ρ sin θ, (11.6)

in such a way that the segment {0 ≤ t ≤ l, ρ = 1, θ = 0} coincides with the bottom edge [0, l] ×
{−1} × {0} of the rectangle Rl.

Thanks to Lemma 11.2 we are allowed to give the following

Definition 11.3 (The function hk,ε). Let ε ∈ (0, 1) be as in (4.4), (4.5), and k ∈ N. We define
hk,ε : [0, l]→ [−1, 1] as

hk,ε(w1) := H1
(
p
(
spt(G(4)

ϑ̂k,ε
)
)
∩ ({w1} × R2)

)
− 1.

For all w1 ∈ (0, l) for which Lemma 11.2 is valid, we have that 1 + hk,ε(w1) equals the length of

the interval in (11.2). Now the content of Lemma 11.2 is that the p-projection of spt(G(4)

ϑ̂k,ε
) on Rl

is of the form

p
(

spt(G(4)

ϑ̂k,ε
)
)

= SGhk,ε := {(w1, w2) ∈ Rl : w1 ∈ (0, l), w2 ∈ (−1, hk,ε(w1))}, (11.7)

up to a set of zero H2-measure. The function hk,ε is built in such a way that (w1,−1) and

(w1, hk,ε(w1)) are the endopoints of the interval p(spt(G(4)

ϑ̂k,ε
)) ∩ ({w1} × R2) for almost every w1 ∈

(0, l). Observe that
hk,ε ≥ −1 + λ′k in (ε, l),

and
hk,ε = 1 in (0, ε).

Indeed, from Definition 9.2, equation (9.4) and Definition 9.4, we see that the set
(

(0, l) × [1 −

λ′k, 1]× {0}
)
∪
(

(0, ε)× [−1, 1]× {0}
)

is contained in p(spt(G(4)

ϑ̂k,ε
)).

We have built Ok,ε in (9.3) as the set enclosed between G(4)

−ϑ̂k,ε
and G(4)

ϑ̂k,ε
, see formula (9.9).

We now perform a (classical) Steiner symmetrization54 of the set Ok,ε with respect to the plane
{w3 = 0}. We denote by Scl(Ok,ε) the symmetrized set.

Remark 11.4. We emphasize that the set Ok,ε in (0, ε)×R2 is exactly (0, ε)×B1, and is already
symmetric with respect to the plane containing Rl. For this reason Ok,ε does not change (in that
region) after Steiner symmetrization,

Ok,ε ∩ {w1 ∈ (0, ε)} = Scl(Ok,ε) ∩ {w1 ∈ (0, ε)}. (11.8)

Since the perimeter does not increase when symmetrizing, from (9.9) we conclude

|G(4)

ϑ̂k,ε
+ G(4)

−ϑ̂k,ε
| ≥ H2(∂∗Scl(Ok,ε) ∩ ((0, l)× R2)). (11.9)

54Despite Ok,ε is obtained by cylindrical symmetrization, it still can have “holes” (see Fig. 10 for a slice), that
disappear when further performing the Steiner symmetrization.
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Definition 11.5 (The function ψk,ε). We introduce the function ψk,ε : Rl → [0,+∞) as

ψk,ε(w1, w2) :=
1

2
H1({w3 : (w1, w2, w3) ∈ Ok,ε}), (w1, w2) ∈ Rl. (11.10)

We stress that the set where ψk,ε > 0 is contained, up to H2-negligible sets, in the region
SGhk,ε defined in (11.7). Notice also that ψk,ε may take the value 0 in SGhk,ε on a set of positive
H2-measure.

Remark 11.6. (i) By definition of classical Steiner symmetrization,

Scl(Ok,ε) = {w = (w1, w2, w3) ∈ Rl × R : w3 ∈ (−ψk,ε(w1, w2), ψk,ε(w1, w2))}
= {w = (w1, w2, w3) ∈ SGhk,ε × R : w3 ∈ (−ψk,ε(w1, w2), ψk,ε(w1, w2))},

up to Lebesgue-negligible sets, the second equality following from the fact that ψk,ε = 0
almost everywhere in Rl \ SGhk,ε ;

(ii) since Ok,ε has finite perimeter, it follows that ψk,ε ∈ BV (Rl);

(iii) since Ok,ε ([0, ε) × R2) = Cl ([0, ε) × R2) and Ok,ε ([ε, l) × R2) is contained in Cl(1 −
λ′k) ([ε, l)×R2) (as a consequence of (9.5)), it follows that ψk,ε has null trace on the segments
(0, l)× {−1} and (0, l)× {1}.

We can split ∂∗Scl(Ok,ε) as

∂∗Scl(Ok,ε) = ((∂∗Scl(Ok,ε))∩{w3 > 0})
⋃

((∂∗Scl(Ok,ε))∩{w3 < 0}) =: (∂∗Scl(Ok,ε))
+∪(∂∗Scl(Ok,ε))

−

(11.11)
up to a set of H2-measure zero, in such a way that

(∂∗Scl(Ok,ε))
+ = (∂∗SGψk,ε)∩

(
Rl× (0,+∞)

)
, (∂∗Scl(Ok,ε))

− = (∂∗UG−ψk,ε)∩
(
Rl× (−∞, 0)

)
,

(11.12)
where SGψk,ε and UG−ψk,ε are, respectively, the (standard) generalized subgraph and epigraph of
±ψk,ε in Rl × R. Notice that, since ψk,ε ≥ 0,

(∂∗SGψk,ε) ∩ (Rl × [0,+∞))

= (∂∗Scl(Ok,ε))
+ ∪ {(w1, w2, 0) ∈ SGhk,ε : ψk,ε = 0} ∪ (Rl \ SGhk,ε),

(∂∗UG−ψk,ε) ∩ (Rl × (−∞, 0])

= (∂∗Scl(Ok,ε))
− ∪ {(w1, w2, 0) ∈ SGhk,ε : ψk,ε = 0} ∪ (Rl \ SGhk,ε),

(11.13)

up to H2-negligible sets.
We are ready to prove the following:

Lemma 11.7. We have

|G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
| ≥H2

(
(∂∗SGψk,ε) ∩ (Rl × [0,+∞)

)
+H2

(
(∂∗UG−ψk,ε) ∩ (Rl × (−∞, 0])

)
− 2H2(Rl \ SGhk,ε).

(11.14)
Moreover, H2

(
(∂∗SGψk,ε) ∩ (Rl × [0,+∞))

)
= H2

(
(∂∗UG−ψk,ε) ∩ (Rl × (−∞, 0])

)
.
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Proof. The last assertion follows by symmetry. Let us prove the former: By (11.13) we have

H2(∂∗SGψk,ε ∩ (Rl × [0,+∞))) =H2
(
(∂∗Scl(Ok,ε))

+
)

+H2({(w1, w2) ∈ SGhk,ε : ψk,ε = 0})
+H2(Rl \ SGhk,ε),

H2(∂∗UG−ψk,ε ∩ (Rl × (−∞, 0])) =H2
(
(∂∗Scl(Ok,ε))

−)+H2({(w1, w2) ∈ SGhk,ε : ψk,ε = 0})
+H2(Rl \ SGhk,ε).

Taking the sum of these two expressions and using (11.9), (11.11), we obtain

H2(∂∗SGψk,ε ∩ (Rl × [0,+∞))) +H2(∂∗UG−ψk,ε ∩ (Rl × (−∞, 0]))

≤ |G(4)

ϑ̂k,ε
+ G(4)

−ϑ̂k,ε
|+ 2H2({(w1, w2) ∈ SGhk,ε : ψk,ε = 0}) + 2H2(Rl \ SGhk,ε).

Recalling (9.4), we now claim that, up to H2-negligible sets,

{(w1, w2) ∈ SGhk,ε : ψk,ε(w1, w2) = 0} ⊂
{
ϑ̂k,ε = 0

}
∩ S(4)

k,ε , (11.15)

see Fig. 10. From the claim it follows that

H2({(w1, w2) ∈ SGhk,ε : ψk,ε = 0}) ≤ H2
({
ϑ̂k,ε ∈ {0, π}

}
∩ S(4)

k,ε

)
,

and hence by (9.10) we conclude

H2(∂∗SGψk,ε ∩ (Rl × [0,+∞))) +H2(∂∗UG−ψk,ε ∩ (Rl × (−∞, 0]))

≤ |G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
|+ 2H2(Rl \ SGhk,ε),

that is (11.14). It remains to show (11.15). As usual, we argue by slicing; hence for almost all
w1 ∈ (0, l) we will show that (11.15) holds (up to H1-negligible sets). Notice that both the left
and right-hand sides of (11.15) are empty for w1 < ε, so we assume w1 > ε. Therefore, fix
(w̃1, w̃2) ∈ SGhk,ε (with w̃1 > ε) such that ψk,ε(w̃1, w̃2) = 0 and assume, by contradiction, that

ϑ̂k,ε(w̃1, w̃2) > 0. In a first step we will suppose w̃2 < 0. We might further assume that w̃2 is a

Lebesgue point for the function ϑ̂k,ε(w̃1, ·). Hence in any left-neighbourhood of this point ϑ̂k,ε is
strictly positive on a set of positive meausure, i.e., we can find positive numbers δ1, δ2 such that
for all δ ∈ (0, δ1), there exists a set B ⊂ (w̃2 − δ, w̃2), of positive measure such that

ϑ̂k,ε(w̃1, w) > δ2 > 0 ∀w ∈ B. (11.16)

If πpol
0 is the projection in Definition (7.5), since w̃2 < 0 for δ3 > 0 small enough the segment

I := {(w̃1, w̃2, w3) : w3 ∈ (0, δ3)} satisfies

I0 := πpol
0 (I) ⊂ {(w̃1, w2, 0) : w2 ∈ (w̃2 − δ2, w̃2)}.

We have that πpol
0 : I → I0 is a homeomorphism. Now, if ψk,ε(w̃1, w̃2) = 0 the segment I cannot

intersect the subgraph of ϑ̂k,ε (on a set of positive H1-measure), and thus

ϑ̂k,ε(w̃1, w2) ≤ θ
(
(πpol

0 |I0)−1(w̃1, w2, 0)
)

for H1-a.e. (w̃1, w2, 0) ∈ I0, (11.17)

where θ represents the usual angular coordinate. Since θ
(
(πpol

0 |I0)−1(w̃1, w2, 0)
)

is infinitesimal as

w2 → w̃−2 , condition (11.17) contradicts (11.16).
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Let us now treat the case w̃2 > 0. This is much simpler to deal with, up to noticing that ϑ̂k,ε

is defined on S
(4)
k,ε ⊂ {(w1, w2, w3) : w2 ∈ [−1, 0]}. The fact that ψk,ε(w̃1, w̃2) = 0 means that the

line (w̃1, w̃2) × R does not intersect Ok,ε on a set of positive H1-measure but this contradicts the
fact that (w̃1, w̃2) ∈ SGhk,ε . Indeed since (w̃1, w̃2) ∈ SGhk,ε hence there exists w2 > w̃2 such that
ψk,ε(w̃1, w2) > 0. Let A := Ok,ε ∩ (w̃1, w2) × R) then a suitable rotation of A around the axis of

the cylinder shall meet (w̃1, w̃2)×R on a set Ã of positive H1-measure (note that Ã ⊂ Ok,ε), which
contradicts ψk,ε(w̃1, w̃2) = 0.

Remark 11.8. By (11.8), (11.10) and (9.3), we deduce

the trace of ψk,ε on Rl ∩ {w1 = 0} is
√

1− w2
2, for w2 ∈ [−1, 1]. (11.18)

Moreover, by construction and by Remark 11.6 (iii),

ψk,ε(w1,−1) = 0 and ψk,ε(w1, 1) = 0, w1 ∈ (0, l). (11.19)

Remark 11.9. We can write [19]

H2
(

(∂∗SGψk,ε) ∩ (Rl × [0,∞))
)

= A(ψk,ε, Rl), (11.20)

where

A(ψk,ε, Rl) =

∫
Rl

√
1 + |∇ψk,ε|2 dx+ |Dsψk,ε|(Rl)

is the classical area of the graph of the BV -function ψk,ε in Rl. Moreover, by (11.19), it follows
|Dsψk,ε|(Rl) = |Dsψk,ε|

(
Rl \ ({w1 = 0} ∪ {w1 = l})

)
and hence

A(ψk,ε, Rl) = A
(
ψk,ε, Rl \ ({w1 = 0} ∪ {w1 = l})

)
.

Recalling the expression (11.1) of ∂DRl, define ϕ : ∂DRl → [0, 1] as

ϕ(w1, w2) :=

{√
1− w2

2 if (w1, w2) ∈ {0} × [−1, 1],

0 if (w1, w2) ∈ (0, l)× {−1}.
(11.21)

Definition 11.10 (The functional Fl). Given h ∈ L∞([0, l], [−1, 1]) and ψ ∈ BV(Rl; [0, 1]) we
define

Fl(h, ψ) := A(ψ,Rl)−H2(Rl \ SGh) +

∫
∂DRl

|ψ − ϕ| dH1 +

∫
(0,l)×{1}

|ψ| dH1. (11.22)

We further define

Xl := {(h, ψ) : h ∈ L∞([0, l], [−1, 1]), ψ ∈ BV(Rl, [0, 1]), ψ = 0 in Rl \ SGh}. (11.23)

Remark 11.11. (i) The Borel function hk,ε : [0, l] → [−1, 1] satisfies hk,ε = 1 in [0, ε), and
ψk,ε ∈ BV ([0, l] × [−1, 1]) is such that ψk,ε = 0 almost everywhere in Rl \ SGhk,ε . More-

over ψk,ε(w1, w2) =
√

1− w2
2 for (w1, w2) ∈ (0, ε) × [−1, 1], and ψk,ε(·,−1) = 0 in [0, l]. In

particular
(hk,ε, ψk,ε) ∈ Xl.

(ii) if (h, ψ) ∈ Xl, and if h is smaller than 1 almost everywhere on (0, l) then the last addendum
on the right-hand side of (11.22) vanishes.
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(iii) Thanks to (11.18) and (11.19), it follows from Remark 11.9 that

H2
(
(∂∗SGψk,ε) ∩ (Rl × [0,+∞)

)
−H2(Rl \ SGhk,ε)

=A(ψk,ε, Rl \
(
{w1 = 0} ∪ {w1 = l}

)
)−H2(Rl \ SGhk,ε) = Fl(hk,ε, ψk,ε).

As a consequence, from Lemma 11.7 we have

|G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
| ≥ 2Fl(hk,ε, ψk,ε). (11.24)

Notice that in minimizing Fl we have a free boundary condition on the edge {l} × [−1, 1]. By
Remark 11.11 (i) and (11.24) we have

|G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
| ≥ 2 inf

(h,ψ)∈Xl
Fl(h, ψ), (11.25)

which leads to the investigation of the minimum problem on the right-hand side.

Remark 11.12. Let (h, ψ) ∈ Xl. If t0 ∈ (0, l) is a Lebesgue point for h, and if h(t0) < 1, then the
trace of ψ over the segment {w1 = t0, h(t0) ≤ w2 ≤ 1} vanishes. Indeed for any η > 0 we can find
δη > 0 such that

1

2δ

∫ t0+δ

t0−δ
|h(w1)− h(t0)| dw1 < η ∀δ ∈ (0, δη). (11.26)

Let now s0 ∈ (−1, 1) be such that h(t0) < s0 ≤ 1 (i.e., (t0, s0) ∈ {w1 = t0, w2 > h(t0)}), and
set 2∆ := s0 − h(t0). By Chebyschev inequality and (11.26) it follows that the set B∆ := {w1 ∈
(t0 − δ, t0 + δ) : |h(w1)− h(t0)| > ∆} satisfies

H1(B∆) ≤ 2δη

∆
. (11.27)

Then, for any ξ ∈ (0,∆) we infer55

1

2δ

∫ t0+δ

t0−δ

∫ s0+ξ

s0−ξ
ψ(w1, w2) dw2dw1 ≤

1

2δ

∫ t0+δ

t0−δ

∫ s0+ξ

s0−ξ
χ{ψ>0}(w1, w2) dw2dw1

≤ 1

2δ

∫ t0+δ

t0−δ

∫ s0+ξ

s0−ξ
χSGh(w1, w2) dw2dw1 ≤

ξ

δ

∫ t0+δ

t0−δ
χB∆

(w1)dw1 ≤
2ξη

∆
,

(11.28)

where the penultimate inequality follows from the inclusions

SGh ∩
(
[t0 − δ, t0 + δ]× [s0 − ξ, s0 + ξ]

)
⊆ SGh ∩

(
[t0 − δ, t0 + δ]× [s0 −∆, s0 + ∆]

)
⊆ B∆ × [s0 −∆, s0 + ∆],

and the last inequality follows from (11.27). Now (11.28) entails the claim by the arbitrariness of
η > 0 and since ψ ≥ 0.

We now refine the choice of the class of pairs (h, ψ) where the infimum in (11.25) is computed.

Definition 11.13 (The classes Hl and Xconv
l ). We set

Hl := {h ∈ L∞([0, l], [−1, 1]) : h convex and nonincreasing in [0, l], h(0) = 1},
Xconv
l := {(h, ψ) ∈ Xl : h ∈ Hl}.

55In the first inequality we have used that 0 ≤ ψ ≤ 1; in the second inequality that SGh is the subgraph of h in
(0, l)× (−1, 1); in the third inequality we have used that s0 − h(t0) = 2∆ and that ξ < ∆.
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Proposition 11.14 (Convexifying h). We have

inf
(h,ψ)∈Xl

Fl(h, ψ) = inf
(h,ψ)∈Xconv

l

Fl(h, ψ). (11.29)

Proof. It is enough to show the inequality “≥”. By extending ψ outside Rl as ψ := 0 in ((0, l) ×
R) \Rl, we see that

Fl(h, ψ) = A
(
ψ,Rl \

(
{w1 = 0} ∪ {w1 = l}

))
−H2(Rl \ SGh) +

∫
{0}×[−1,1]

|ψ− − ϕ| dH1, (11.30)

where, with a little abuse of notation,

A
(
ζ,Rl \

(
{w1 = 0} ∪ {w1 = l}

))
= A(ζ,Rl) +

∫
(0,l)×{1,−1}

|ζ−| dH1,

ζ− being the trace of ζ ∈ BV (Rl) on (0, l)× {1,−1}.
The thesis of the proposition will follow from the next three observations:

(1) If h ∈ Hl is such that h(t0) = −1 for some Lebesgue point t0 ∈ (0, l), then the subgraph
SGh of h splits in two mutually disjoint components: SG−h = SGh ∩ {w1 < t0} and SG+

h =
SGh ∩ {w1 > t0}. Let ψ ∈ BV (Rl, [0, 1]) be such that

ψ = 0 a.e. in Rl \ SGh.

The trace of ψ over the segment {w1 = t0, h(t0) ≤ w2 ≤ 1} is 0, as a consequence of Remark
11.12. Then the function ψ? : Rl → [0, 1] defined as

ψ?(w1, w2) :=

{
ψ(w1, w2) if w1 < t0,

0 otherwise,

still satisfies (h, ψ?) ∈ Xl, and

Fl(h, ψ?) ≤ Fl(h, ψ).

Being ψ? identically zero in {w1 > t0}, in particular in SGh ∩ {w1 > t0}, we can introduce

h?(w1) :=

{
h(w1) if w1 < t0,

−1 otherwise,

so that (h?, ψ?) ∈ Xl and we easily see that Fl(h?, ψ?) ≤ Fl(h, ψ?); hence

Fl(h?, ψ?) ≤ Fl(h, ψ).

(2) More generally, let (h, ψ) ∈ Xl and let t0 ∈ (0, l) be any Lebesgue point of h; we can also
suppose that h(t0) < 1. Consider

h?(w1) :=

{
h(w1) if w1 < t0,

h(w1) ∧ h(t0) otherwise,
(11.31)

ψ?(w1, w2) :=


ψ(w1, w2) if w1 < t0,

ψ(w1, w2) if w1 ≥ t0, w2 ≤ h(t0),

0 otherwise.
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We claim that Fl(h?, ψ?) ≤ Fl(h, ψ). Define

U := {(w1, w2) ∈ (0, l)× (−1, 1) : w1 > t0, h(t0) < w2 < h(w1)},

that is the set where we have replaced ψ by 0. To prove the claim, using (11.30) and the
equalities ∫

{0}×[−1,1]
|ψ− − ϕ| dH1 =

∫
{0}×[−1,1]

|ψ?− − ϕ| dH1,

H2(Rl \ SGh?) = H2(U ∪ (Rl \ SGh)) = H2(U) +H2(Rl \ SGh),

we have to show that

A
(
ψ?, Rl \

(
{w1 = 0} ∪ {w1 = l}

))
≤ A

(
ψ,Rl \

(
{w1 = 0} ∪ {w1 = l}

))
+H2(U). (11.32)

Assume that U is non-empty and that H2(U) > 0. It is convenient to introduce

V := {(w1, w2) ∈ Rl : t0 < w1 < l, h(w1) ∨ h(t0) ≤ w2 < 1},

so that U ∪ V = {(w1, w2) : w1 > t0, h(t0) < w2 < 1} is an open rectangle. Since we have
modified ψ only in U , inequality (11.32) is equivalent to

A(ψ?, U ∪ V ) +

∫
(t0,l)×{h(t0)}

|ψ?+ − ψ?−|dH1 +

∫
(t0,l)×{1}

|ψ?−|dH1

≤A(ψ,U ∪ V ) +

∫
(t0,l)×{h(t0)}

|ψ+ − ψ−|dH1 +

∫
(t0,l)×{1}

|ψ−|dH1 +H2(U),

(11.33)

with ψ± (resp. ψ?±) the external and internal traces of ψ (resp. ψ?) on ∂(U ∪ V ); here
we have used from Remark 11.12 that the trace of ψ on {t0} × (h(t0), 1) is zero (hence∫
{t0}×(h(t0),1) |ψ

+−ψ−|dH1 =
∫
{t0}×(h(t0),1) |ψ

?+−ψ?−|dH1 = 0) and that the external traces

ψ+, ψ?+ on (t0, l) × {1} vanish as well. Hence, exploiting that ψ? = 0 on U ∪ V , so that
A(ψ?, U ∪ V ) = H2(U) + H2(V ), and that ψ? = ψ on Rl \ (U ∪ V ), inequality (11.33) is
equivalent to

H2(V ) +

∫
(t0,l)×{h(t0)}

|ψ+|dH1

≤A(ψ,U ∪ V ) +

∫
(t0,l)×{h(t0)}

|ψ+ − ψ−|dH1 +

∫
(t0,l)×{1}

|ψ−|dH1.

(11.34)

We split
(t0, l) = H1 ∪H2 ∪H3,

with H1 := {w1 ∈ (t0, l) : h(w1) = 1}, H2 := {w1 ∈ (t0, l) : h(t0) ≤ h(w1) < 1}, and
H3 := {w1 ∈ (t0, l) : h(w1) < h(t0)}. Since A(ψ;U ∪ V ) = H2(Gψ ∩ ((U ∪ V )×R)), by slicing
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and looking at Gψ as an integral current, we have56

A(ψ,U ∪ V ) ≥
∫

(t0,l)
H1
(

(Gψ)t∩((t0, l)× (h(t0), 1)× R)
)
dt

≥
∫

(t0,l)

∫
(h(t0),1)

|Dw2ψ(t, s)| dt+H2(V )

=

∫
H1∪H2

∫
(h(t0),1)

|Dw2ψ(t, s)| dt+H2(V )

≥
∫
H2

|ψ−(t, h(t0))| dt+

∫
H1

|ψ−(t, h(t0))− ψ−(t, 1)| dt+H2(V )

≥
∫
H1∪H2

|ψ−(t, h(t0))| dt−
∫
H1

|ψ−(t, 1)| dt+H2(V )

=

∫
(t0,l)
|ψ−(t, h(t0))| dt−

∫
H1

|ψ−(t, 1)| dt+H2(V )

=

∫
(t0,l)
|ψ−(t, h(t0))| dt−

∫
(t0,l)
|ψ−(t, 1)| dt+H2(V ),

where (Gψ)t is the slice of Gψ on the plane {w1 = t}, that is the generalized graph of the
function ψ {w2 = t}. From the above expression, the triangular inequality implies (11.34).

(3) Let (h, ψ) ∈ Xl. Let t1, t2 ∈ (ε, l) be Lebesgue points for h with t1 < t2, and let r12(t) :=

h(t1) + h(t2)−h(t1)
t2−t1 (t− t1). We consider the following modifications of h and ψ:

h#(w1) :=

{
h(w1) if 0 < w1 < t1 or l > w1 > t2,

h(w1) ∧ r12(w1) otherwise,

and

ψ#(w1, w2) :=


ψ(w1, w2) if 0 < w1 < t1 or l > w1 > t2,

ψ(w1, w2) if w1 ∈ [t1, t2] and w2 ≤ r12(w1),

0 otherwise.

In other words we set ψ equal to 0 above the segment L12 connecting (t1, h(t1)) to (t2, h(t2)).
Also in this case we have

Fl(h#, ψ#) ≤ Fl(h, ψ). (11.35)

Indeed, if h(t1) = h(t2) the proof is identical to the case (2). Otherwise, it can be obtained
by slicing as well, parametrizing L12 by an arc length parameter, then slicing the region
{(w1, w2) : w1 ∈ (t1, t2), w2 ∈ (`12(w1), 1)}57 by lines perpendicular to L12, and exploiting
the fact that ψ equals zero on the segments {ti} × (h(ti), 1).

Let (h, ψ) ∈ Xl be given; from (3) we can always replace h by its convex envelope and modifying
accordingly ψ, we get two functions h# and ψ# such that (11.35) holds. Moreover, by (2), if
t0 ∈ (0, l) is a Lebesgue point for h#, we can always replace h# by h? in (11.31), so that h? turns
out to be nonincreasing. The assertion of the proposition follows.

56Here we use that Dw2ψ = 0 in V .
57`12 represents the affine function whose graph is L12.
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Let us rewrite the functional Fl in a convenient way. Let (h, ψ) ∈ Xconv
l , and let Gh =

{(w1, h(w1)) : w1 ∈ (0, l)} ⊂ Rl be the graph of h. We have, using (11.22),

Fl(h, ψ) = A(ψ, SGh) +

∫
Gh\{h=−1}

|ψ| dH1 +

∫
∂DRl

|ψ − ϕ| dH1, (11.36)

where, in the integral over Gh, we consider the trace of ψ SGh on Gh.

Corollary 11.15. Let ε ∈ (0, 1) and n ∈ N. Then for any k ∈ N we have

|〚Guk〛|Dk×R2 ≥ 2 inf
(h,ψ)∈Xconv

l

Fl(h, ψ)− πε− C

εn
− ok(1), (11.37)

for an absolute constant C > 0, and where the sequence ok(1) depends on ε and n and is infinitesimal
as k → +∞.

Proof. From (11.25) and Proposition 11.14, we get

|G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
| ≥ 2 inf

(h,ψ)∈Xconv
l

Fl(h, ψ). (11.38)

Combining (11.38) with (9.12), inequality (11.37) follows.

11.1 Lower bound: reduction to a Plateau-type problem on the rectangle Rl

We now state and prove our first main result.

Theorem 11.16 (Lower bound for the area of the vortex map). The relaxed area of the
graph of the vortex map u satisfies

A(u,Ω) ≥
∫

Ω
|M(∇u)| dx+ 2 inf

(h,ψ)∈Xconv
l

Fl(h, ψ). (11.39)

Proof. We write

A(uk,Ω) = A(uk,Ω \Dk) +A(uk, Dk) =

∫
Ω\Dk

|M(∇uk)| dx+

∫
Dk

|M(∇uk)| dx.

Therefore

A(u,Ω) ≥ lim inf
k→+∞

∫
Ω\Dk

|M(∇uk)| dx+ lim inf
k→+∞

∫
Dk

|M(∇uk)| dx. (11.40)

Given ε ∈ (0, l) and n ∈ N, from (4.37) it follows

lim inf
k→+∞

∫
Ω\Dk

|M(∇uk)| dx ≥
∫

Ω\Bε
|M(∇u)| dx− 1

n
− 2

εn
. (11.41)

From (11.37) we have∫
Dk

|M(∇uk)| dx = |〚Guk〛|Dk×R2 ≥ 2 inf
(h,ψ)∈Xconv

l

Fl(h, ψ)− πε− C

εn
− ok(1). (11.42)

Exploiting the fact that the right-hand side of (11.38) does not depend on k, we can pass to the
liminf as k → +∞ in the above expression, to obtain

lim inf
k→+∞

∫
Dk

|M(∇uk)| dx ≥ 2 inf
(h,ψ)∈Xconv

l

Fl(h, ψ)− πε− C

εn
. (11.43)
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From (11.40), (11.41) and (11.43) we obtain

A(u,Ω) ≥
∫

Ω\Bε
|M(∇u)| dx+ 2 inf

(ψ,h)∈Xconv
l

Fl(ψ, h)− πε− C + 2

εn
− 1

n
, (11.44)

for all n ∈ N and ε ∈ (0, l). Letting n → +∞ and then ε → 0+, by the dominated convergence
theorem (since Ω \ Bε → Ω as ε→ 0+) we get

A(u,Ω) ≥ lim inf
ε→0+

(∫
Ω\Bε

|M(∇u)| dx+ 2 inf
(h,ψ)∈Xconv

l

Fl(h, ψ)− πε
)

=

∫
Ω
|M(∇u)| dx+ 2 inf

(h,ψ)∈Xconv
l

Fl(h, ψ).

12 Structure of minimizers of F2l

In this section we analyse the minimum problem on the right-hand side of (11.29). We prove the
existence of minimizers, and exploy it to show that the inequality (11.39) in Theorem 11.16 is
optimal. First it is convenient to write the analogue of Fl in a doubled rectangle, see (12.4).

We start by introducing some notation. We denote R2l the open doubled rectangle, R2l :=
(0, 2l)× (−1, 1), and define its Dirichlet boundary58 ∂DR2l ⊂ ∂R2l as

∂DR2l :=
(
{0, 2l} × [−1, 1]

)
∪
(
(0, 2l)× {−1}

)
,

so that ∂R2l \ ∂DR2l = (0, 2l)× {1}.

Definition 12.1. We set

H2l =
{
h : [0, 2l]→ [−1, 1], h convex, h(w1) = h(2l − w1) ∀w1 ∈ [0, 2l]

}
. (12.1)

For each h ∈ H2l, we further define

Gh := {(w1, h(w1)) : w1 ∈ (0, 2l)}, SGh := {(w1, w2) ∈ R2l : w2 < h(w1)},

where SGh := Ø in the case h ≡ −1. We set

Lh :=
(
{0} × (h(0), 1)

)
∪
(
{2l} × (h(2l), 1)

)
, (12.2)

which is either empty, or the union of two equal intervals, see Fig. 17.
Define

ϕ : ∂DR2l → [0, 1], ϕ(w1, w2) :=

{√
1− w2

2 if (w1, w2) ∈ {0, 2l} × [−1, 1],

0 if (w1, w2) ∈ (0, 2l)× {−1}.
(12.3)

The graph of ϕ on {0, 2l} × [−1, 1] consists of two half-circles of radius 1 centered at (0, 0) and
(2l, 0) respectively, see Fig. 18. We notice that such a ϕ extends definition (11.21).

58Note that ∂DR2l consists of three edges of ∂R2l, while ∂DRl (see (11.1)) consists of two edges of ∂Rl.
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Figure 17: the graph of a convex symmetric function h ∈ H2l; Lh, defined in (12.2), consists of the
two vertical segments over the boundary of (0, 2l), from h(0) = h(2l) to 1.

Figure 18: the graph of the boundary condition function ϕ in (12.3) on the Dirichlet boundary of
R2l. We also draw the graph of a function h ∈ H2l, and the two segments Lh.
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Definition 12.2 (The functional F2l). We define

Xconv
2l := {(h, ψ) : h ∈ H2l, ψ ∈ BV (R2l, [0, 1]), ψ = 0 on R2l \ SGh} ,

and for any (h, ψ) ∈ Xconv
2l ,

F2l(h, ψ) := A(ψ;R2l)−H2(R2l \ SGh) +

∫
∂DR2l

|ψ − ϕ|dH1 +

∫
∂R2l\∂DR2l

|ψ| dH1. (12.4)

Remark 12.3. (i) The only case in which the last addendum on the right-hand side of (12.4)
may be positive is when h is identically 1 on ∂R2l \ ∂DR2l;

(ii) We have

F2l(h, ψ) = A(ψ, SGh) +

∫
∂DSGh

|ψ − ϕ| dH1 +

∫
Gh\{w2=−1}

|ψ−| dH1 +

∫
Lh

ϕ dH1, (12.5)

where
∂DSGh := (∂DR2l) ∩ ∂SGh, (12.6)

and ψ− denotes the trace of ψ from the side of SGh. To show (12.5), we start to observe that,
using that ψ = 0 on R2l \SGh, it follows

∫
∂R2l\∂DR2l

|ψ| dH1 =
∫
Gh∩{w2=1} |ψ| dH

1. This last

term is nonzero only if h ≡ 1, in which case Lh is empty, and the equivalence between (12.4)
and (12.5) easily follows. If instead h is not identically 1, then, using again that ψ = 0 on
R2l \ SGh, we see that the last term on the right-hand side of (12.4) is null, and

A(ψ, SGh) = A(ψ,R2l)−H2(R2l \ SGh)−
∫
Gh∩R2l

|ψ−|dH1. (12.7)

Hence, if h is not identically 1, inserting (12.7) into (12.4), we obtain, splitting ∂DR2l =
(∂DSGh) ∪ Lh ∪ (Gh ∩ {w2 = −1}), and using that ϕ = 0 on (0, 2l)× {−1},

F2l(h, ψ) =A(ψ,R2l)−H2(R2l \ SGh) +

∫
∂DR2l

|ψ − ϕ|dH1

=A(ψ, SGh) +

∫
∂DR2l

|ψ − ϕ|dH1 +

∫
Gh∩R2l

|ψ−|dH1

=A(ψ, SGh) +

∫
∂DSGh

|ψ − ϕ|dH1 +

∫
Lh

|ϕ|dH1 +

∫
Gh∩{w2=−1}

|ϕ|dH1

+

∫
Gh∩R2l

|ψ−|dH1

=A(ψ, SGh) +

∫
∂DSGh

|ψ − ϕ|dH1 +

∫
Gh\{w2=−1}

|ψ−|dH1 +

∫
Lh

ϕdH1.

(iii) We have

inf
(h,ψ)∈Xconv

2l

F2l(h, ψ)

= inf
{
A(ψ, SGh) +

∫
∂DSGh

|ψ − ϕ| dH1 +

∫
Gh\{w2=−1}

|ψ−| dH1 +

∫
Lh

ϕ dH1

: h ∈ H2l \ {h ≡ −1}, ψ ∈ BV(SGh, [0, 1])
}
.

(12.8)
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(iv) If h > −1 everywhere, then SGh is connected, ∂DSGh = ∂DR2l \Lh, and the sum of the first
three terms on the right-hand side of (12.5) gives the area of the graph of ψ on SGh, with
the boundary condition ϕ set to be 0 on Gh.

(v) Our aim is to have a surface in R2l ×R ⊂ R3 = R2
(w1,w2)×R, of graph type, whose boundary

consists of the union of the graph of ϕ and the graph of a convex function h ∈ H2l. The last
three terms in (12.5) are an area penalization to force the solution to attain these boundary
conditions by filling, with vertical walls, the gap between the boundary of any competitor
surface (the generalized graph of ψ) and the required boundary conditions. In particular
the presence of the last term of (12.5) is explained as follows: assume that h(0) < 1, i.e.,
Lh 6= Ø; the graph of any ψ ∈ BV(SGh, [0, 1]) does not reach the graph of ϕ|Lh (simply
because Lh ∩ SGh = Ø). To overcome this, the graph of ψ is glued to the wall consisting of
the subgraph of ϕ|Lh (inside R2l).

(vi) Take hn := −1+ 1
n , and ψn := c > 0 on SGhn , then lim

n→+∞
A(ψn, SGhn) = 0, lim

n→+∞

∫
∂DSGhn

|ψn−

ϕ| dH1 = 2cl, and lim
n→+∞

∫
Ghn\{hn=−1}

|ψ| dH1 = 2cl, lim
n→+∞

∫
Lhn

ϕ dH1 = π, hence

F2l(−1, 0) = π < lim
n→+∞

F2l(hn, ψn) = 4cl + π,

that is the functional F2l in some sense forces a minimizing sequence to attain the boundary
conditions as much as possible.

By symmetry, we easily infer

2 inf
(h,ψ)∈Xconv

l

Fl(h, ψ) = inf
(h,ψ)∈Xconv

2l

F2l(h, ψ), (12.9)

therefore we can now restate the content of Theorem 11.16 as follows:

A(u,Ω) ≥
∫

Ω
|M(∇u)| dx+ inf

(h,ψ)∈Xconv
2l

F2l(h, ψ). (12.10)

Remark 12.4 (Two explicit estimates from above). Let h ≡ 1 and ψ(w1, w2) :=
√

1− w2
2 =:

ψs(w1, w2) for any (w1, w2) ∈ R2l. Then (h, ψ) is one of the competitors in (12.9) and therefore

inf
(h,ψ)∈Xconv

2l

F2l(h, ψ) ≤ F2l(1, ψs) = 2πl ∀l > 0,

which is the lateral area of the cylinder (0, 2l)×B1. Also, F2l is well defined for h ≡ −1, in which
case SGh = Ø, ψ ≡ 0 in R2l, and therefore

F2l(−1, 0) =

∫
{0,2l}×(−1,1)

ϕ dH1 = π, (12.11)

which is the area of the two half-disks joined by the segment (0, 2l)×{−1}, see Fig. 18. In particular

inf
(h,ψ)∈Xconv

2l

F(h, ψ) ≤ π ∀l > 0. (12.12)

In the next section we shall prove the existence and regularity of minimizers for the minimum
problem on the right-hand side of (12.10).
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12.1 Existence of a minimizer of F2l

The construction of a suitable recovery sequence for the relaxed area of the graph of the vortex
map u depends on the existence and regularity of one-codimensional area minimizing surfaces of
graph type for problem (12.9). We start by analysing the features of the space H2l in (12.1).
Clearly the graph of h ∈ H2l is symmetric with respect to {w1 = l}; also, the convexity of h implies
h ∈ Liploc((0, 2l)), and h has a continuous extension on [0, 2l].

Lemma 12.5 (Compactness of H2l). Every sequence (hk) ⊂ H2l has a subsequence converging
uniformly on compact subsets of (0, 2l) to some element of H2l.

Proof. See for instance [22, Sec. 1.1].

It is convenient to extend ϕ in the doubled rectangle R2l by defining the extension ϕ̂ as:

ϕ̂(w1, w2) = ϕ̂(0, w2) :=
√

1− w2
2 ∀(w1, w2) ∈ R2l. (12.13)

In the rest of this section we want to prove the following result.

Theorem 12.6 (Minimizing pairs). There exists (h?, ψ?) ∈ Xconv
2l such that

F2l(h
?, ψ?) = min

{
F2l(h, ψ) : (h, ψ) ∈ Xconv

2l

}
, (12.14)

and ψ? is symmetric with respect to {w1 = l} ∩R2l. Moreover, if h? is not identically −1, then

(i) h?(0) = 1 = h?(2l), and h? > −1 in (0, 2l);

(ii) ψ? is locally Lipschitz (hence analytic) and strictly positive in SGh?;

(iii) ψ? is continuous up to the boundary of SGh?, and attains the boundary conditions, i.e., for
(w1, w2) ∈ ∂SGh∗,

ψ?(w1, w2) =

{
0 if w2 = −1 or w2 = h?(w1),√

1− w2
2 if w1 = 0 or w1 = 2l,

(12.15)

hence
F2l(h

?, ψ?) = A(ψ?, SGh?); (12.16)

(iv) we have
ψ? < ϕ̂ in R2l. (12.17)

The rest of this section is devoted to prove this theorem; we start with some preparation.

Definition 12.7 (Convergence in Xconv
2l ). We say that a sequence ((hn, ψn)) ⊂ Xconv

2l converges
to (h, ψ) ∈ Xconv

2l , if

- (hn) converges to h uniformly on compact subsets of (0, 2l);

- (ψn) converges to ψ in L1(R2l).

Lemma 12.8 (Closedness of Xconv
2l ). Let ((hn, ψn)) ⊂ Xconv

2l be a sequence such that (hn) con-
verges to h ∈ H2l uniformly on compact subsets of (0, 2l), and (ψn) converges to ψ ∈ BV(R2l) in
L1(R2l). Then (h, ψ) ∈ Xconv

2l .
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Proof. Possibly passing to a (not relabelled) subsequence, we can assume that (ψn) converges to ψ
pointwise in A ⊆ R2l, with H2(R2l \A) = 0, and ψn = 0 in A∩ (R2l \SGhn) for all n ∈ N. We only
have to show that ψ = 0 in A ∩ (R2l \ SGh). We can also assume that A does not intersect the
graph of h. If (w1, w2) ∈ A∩ (R2l \SGh), then w2 > h(w1). From the local uniform convergence of
(hn) to h in (0, 2l) it follows that w2 > hn(w1) for n large enough, i.e., (w1, w2) ∈ A∩ (R2l \SGhn),
and the assertion follows.

Lemma 12.9 (Lower semicontinuity of F2l). Let ((hn, ψn)) ⊂ Xconv
2l be a sequence converging

to (h, ψ) ∈ Xconv
2l in the sense of Definition 12.7. Then

F2l(h, ψ) ≤ lim inf
n→+∞

F2l(hn, ψn). (12.18)

Proof. It is standard59 to show that the functional

ψ ∈ BV (R2l, [0, 1])→ A(ψ,R2l) +

∫
∂DR2l

|ψ − ϕ| dH1 +

∫
∂R2l\∂DR2l

|ψ| dH1 (12.19)

is L1(R2l)-lower semicontinuous. Since (hn) converges to h pointwise in (0, 2l), we also have
limn→+∞H2(R2l \ SGhn) = H2(R2l \ SGh). The assertion follows.

Proposition 12.10 (Existence of a minimizer of (12.14)). There exists (h?, ψ?) ∈ Xconv
2l

satisfying (12.14).

Proof. Note that
h(w1) := −1, ψ(w1, w2) := 0, (w1, w2) ∈ R2l,

is a competitor in (12.14). Hence, for a minimizing sequence ((hn, ψn)) ⊂ Xconv
2l , recalling (12.11)

we have
lim

n→+∞
F2l(hn, ψn) = inf

{
F2l(h, ψ) : (h, ψ) ∈ Xconv

2l

}
≤ π. (12.20)

Thus supn∈N |Dψn|(R2l) < +∞, and there exists ψ? ∈ BV (R2l, [0, 1]) such that, up to a (not
relabelled) subsequence, (ψn) converges to ψ? in L1(Ω).

Using Lemmas 12.5 and 12.8, we may assume that (hn) converges locally uniformly to some
h? ∈ H2l, and ψ? = 0 in R2l \ SGh? . The assertion then follows from Lemma 12.9.

We now turn to the regularity of minimizers.

Proposition 12.11 (Analyticity and positivity of a minimizer). Suppose that (h, ψ) is a
minimizer of (12.14), and that h is not identically −1. Then ψ is analytic in SGh, and solves the
equation

div
( ∇ψ√

1 + |∇ψ|2
)

= 0 in SGh. (12.21)

Moreover ψ > 0 in SGh.

59Indeed, let ϕ̃ : ∂R2l → [0, 1] be defined as ϕ̃ := ϕ on ∂DR2l, and ϕ̃ := 0 on ∂R2l \ ∂DR2l. Let B ⊂ R2 be an open
disc containing R2l. We extend ϕ̃ to a W 1,1 function in B \ R2l, [19, Thm. 2.16], and we still denote by ϕ̃ such an

extension. For every ψ ∈ BV (R2l), define ψ̂ := ψ in R2l and ψ̂ := ϕ̃ in B \R2l. We have

A(ψ,R2l) +

∫
∂DR2l

|ψ − ϕ|dH1 +

∫
∂R2l\∂DR2l

|ψ|dH1 = A(ψ,R2l) +

∫
∂R2l

|ψ − ϕ̃|dH1 = A(ψ̂, B)− A(ϕ̃, B \R2l),

where the last equality follows from [19, (2.15)]. Thus the lower semicontinuity of the functional in (12.19) follows
from the L1(B)-lower semicontinuity of the area functional.
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Proof. Since by assumption h is not identically −1, we have that SGh is nonempty. Moreover
minimality ensures ∫

SGh

√
1 + |Dψ|2 ≤

∫
SGh

√
1 + |Dψ1|2

for any ψ1 ∈ BV (SGh), spt(ψ − ψ1) ⊂⊂ SGh. Thus, by [19, Thm 14.13], ψ is locally Lipschitz,
and hence analytic, in SGh, and (12.21) follows. Now, let z ∈ SGh and take a disc Bη(z) ⊂⊂ SGh.
Since ψ ≥ 0 on ∂Bη(z) we find, by the strong maximum principle [19, Thm. C.4], that either
ψ is identically zero in Bη(z), or ψ > 0 in Bη(z). Hence from the analyticity of ψ and the
arbitrariness of z, we have that either ψ is identically zero in SGh or ψ > 0 in SGh. Now
F2l(h, 0) = |SGh| + π > F2l(−1, 0) = π, see (12.11). Thus (h, 0) is not a minimizer, and the
positivity of ψ in SGh is achieved.

Lemma 12.12 (Symmetric minimizers). There exists a minimizer (h, ψ) of (12.14) such that
h(·) = h(2l − ·) and ψ is symmetric with respect to {w1 = l} ∩R2l.

Proof. Let (h, ψ) be a minimizer of (12.14). Let I ⊂ (0, 2l) be an open interval; consistently with
(12.4), and since ψ is continuous in SGh, we set

F2l(h, ψ; I) :=A(ψ, I × (−1, 1))−H2
(
I × (−1, 1) \ SGh

)
+

∫
(∂DR2l)∩(I×[−1,1))

|ψ − ϕ| dH1

+

∫
(∂R2l\∂DR2l)∩(I×(−1,1])

|ψ| dH1.

Recall that h ∈ H2l, hence its graph is symmetric with respect to {w1 = l} ∩ R2l. Define ψ̃ := ψ
on (0, l)× (−1, 1) and ψ̃(w1, w2) := ψ(2l−w1, w2) for (w1, w2) ∈ (l, 2l)× (−1, 1), in particular the
graph of ψ̃ is symmetric with respect to {w1 = l} ∩ R2l. Since F2l(h, ψ; (0, l)) = F2l(h, ψ; (l, 2l)),
it follows F2l(h, ψ̃) = F2l(h, ψ) for, if F2l(h, ψ; (0, l)) < F2l(h, ψ; (l, 2l)), then F2l(h, ψ̃) < F2l(h, ψ)
which contradicts the minimality of (h, ψ).

Lemma 12.13. Suppose that (h, ψ) is a minimizer of (12.14) such that:

(i) h(·) = h(2l − ·);

(ii) ψ is symmetric with respect to {w1 = l} ∩R2l;

(iii) h is not identically −1.

Then
h(w1) > −1 ∀w1 ∈ [0, 2l].

Proof. By the symmetry of h and ψ with respect to {w1 = l}∩R2l (Lemma 12.12) we may restrict
our argument to [0, l]. Assume by contradiction that there exists w1 ∈ (0, l] such that h(w1) = −1.
Recall that h is convex, nonincreasing in [0, l] and continuous at l. Let

w0
1 := min{w1 ∈ (0, l] : h(w1) = −1}.

Since h is not identically −1, we have w0
1 > 0, and h is strictly decreasing in (0, w0

1). Let

h−1 : [−1, h(0)]→ [0, w0
1]
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be the inverse of h|[0,w0
1 ]. We have, using (12.5) and (12.6),

1

2
F2l(h, ψ) =

1

2

[
A(ψ, SGh) +

∫
∂DSGh

|ψ − ϕ| dH1 +

∫
Gh\{w2=−1}

|ψ−| dH1 +

∫
Lh

ϕ dH1

]

=
1

2
A(ψ, SGh) +

∫
(−1,h(0))

|ψ(0, w2)− ϕ(0, w2)| dw2 +

∫
(0,w0

1)
|ψ(w1,−1)− ϕ(w1,−1)| dw1

+

∫
G
hx(0,w0

1)

|ψ−|dH1 +

∫
(h(0),1)

ϕ(0, w2)dw2.

Now, we argue by slicing the rectangle Rl = (0, l)×(−1, 1) with lines {w1 = τ}, τ ∈ (0, l). Recalling
the expression of SGh (which is non empty by assumption (iii)), and neglecting the third addendum,

1

2
F2l(h, ψ) =

∫ w0
1

0

∫ h(w1)

−1

√
1 + |∇ψ|2 dw2dw1

+

∫
(−1,h(0))

|ψ(0, w2)− ϕ(0, w2)|dw2 +

∫
(0,w0

1)
|ψ(w1,−1)− ϕ(w1,−1)| dw1

+

∫
G
hx(0,w0

1)

|ψ|dH1 +

∫
(h(0),1)

ϕ(0, w2)dw2

≥
∫ w0

1

0

∫ h(w1)

−1

√
1 + |∇ψ|2dw2dw1 +

∫
(−1,h(0))

|ψ(0, w2)− ϕ(0, w2)|dw2

+

∫
G
hx(0,w0

1)

|ψ−|dH1 +

∫
(h(0),1)

ϕ(0, w2)dw2

>

∫ w10

0

∫ h(w1)

−1
|Dw1ψ(w1, w2)|dw2dw1 +

∫
(−1,h(0))

|ψ(0, w2)− ϕ(0, w2)|dw2

+

∫
G
hx(0,w0

1)

|ψ−|dH1 +

∫
(h(0),1)

ϕ(0, w2)dw2,

where Dw1 stands for the partial derivative with respect to w1. Neglecting
√

1 + ( ddsh
−1)2 in the

third addendum on the right-hand side, we deduce

1

2
F2l(h, ψ) >

∫ h(0)

−1

∫ h−1(w2)

0
|Dw1ψ(w1, w2)| dw1dw2 +

∫
(−1,h(0))

|ψ(0, w2)− ϕ(0, w2)|dw2

+

∫
(−1,h(0))

ψ(h−1(w2), w2)dw2 +

∫
(h(0),1)

ϕ(0, w2)dw2

≥
∫ h(0)

−1

∣∣∣ ∫ h−1(w2)

0
Dw1ψ(w1, w2)dw1

∣∣∣dw2 −
∫

(−1,h(0))
ψ(0, w2)dw2

+

∫
(−1,h(0))

ψ(h−1(w2), w2)dw2 +

∫
(−1,1)

ϕ(0, w2)dw2

≥
∫

(−1,h(0))
|ψ(h−1(w2), w2)− ψ(0, w2)|dw2 −

∫
(−1,h(0))

ψ(0, w2)dw2

+

∫
(−1,h(0))

ψ(h−1(w2), w2)dw2 +

∫
(−1,1)

ϕ(0, w2)dw2

≥
∫

(−1,1)
ϕ(0, w2)dw2 =

1

2
F2l(−1, 0).
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Hence the value of F2l on the pair h ≡ −1, ψ ≡ 0 is smaller than F2l(h, ψ), thus contradicting the
minimality of (h, ψ).

We now prove point (iii) of Theorem 12.6: this will be a consequence of the next lemma and
Theorem 12.16.

Lemma 12.14. Let (h, ψ) be as in Lemma 12.13. Then ψ attains the boundary condition on
∂DSGh.

Proof. The result follows from [19, Theorem 15.9], since ∂DSGh is union of three segments.

Remark 12.15. In the hypotheses of Lemma 12.13, if h ≡ 1 then the graph of h is a segment and,
as in Lemma 12.14, ψ = 0 on Gh.

The conclusion of the proof of Theorem 12.6 (iii) is given by the following delicate result.

Theorem 12.16. Let (h, ψ) be as in Lemma 12.13. Then there exists a solution (h̃, ψ̃) ∈ Xconv
2l of

the minimum problem (12.14) such that L
h̃

is empty, ψ̃ is continuous up to G
h̃
, and

ψ̃ = 0 on G
h̃
.

Proof. By Remark 12.15, we can assume that h is not identically 1 and, by Lemma 12.13, also that
h(w1) ≥ h(l) > −1 for any w1 ∈ [0, 2l]. Therefore, fix a number s̄ ∈ (−1, h(l)) and set

K := (0, 2l)× (s̄, 1) ⊂ R2l.

We extend ψ in R2 \R2l as follows: we define ψ̂ : R2 → [0, 1], ψ̂ := ψ in R2l, and

ψ̂(w1, w2) :=

{
ϕ(w2) if w1 < 0 or w1 > 2l, and |w2| ≤ 1,

0 if |w2| > 1.

In this way ψ̂ is continuous in R2 \R2l.
Now, we divide the proof into six steps. We start by regularizing ψ̂ (step 1) in order that the

regularized functions have smooth graphs (hence of disc-type60). Next (step 2), we will compare
these graphs with the solution of a suitable disc-type Plateau problem.

Step 1: Approximation of ψ̂. Let n > 0 be a natural number (that will be sent to +∞ later)
such that s̄+ 1

n < h(l), and consider the enlarged rectangle

Kn :=

(
− 1

n
, 2l +

1

n

)
×
(
s̄, 1 +

1

n

)
, (12.22)

see Fig. 19. Note that
ψ̂ is continuous on ∂Kn.

Given n ∈ N, we claim that we can build a sequence (ψnk )k∈N (depending on n) which satisfies the
following properties:

ψnk ∈ C∞(Kn, [0, 1]) ∩ C(Kn, [0, 1]) ∀k > 0,

ψnk ⇀ ψ̂ weakly? in BV (Kn) as k → +∞,∫
Kn

|∇ψnk | dw → |Dψ̂|(Kn) as k → +∞,

ψnk = ψ̂ on ∂Kn ∀k > 0.

(12.23)

60We expect the graph of ψ̂, considering also a possible vertical part over the graph of h, to be a surface of disc-type;
however, we miss the proof of this fact, mainly due to possible high degree of irregularity of the trace of ψ̂ over Gh.
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In order to obtain these features for ψnk we use standard arguments (details can be found in [2, Thm.
3.9] or [18, Thm. 1, Section 4.1.1]). To the aim of our discussion, we just recall that we proceed
by constructing an increasing sequence (Ui)i≥1 of subsets of Kn, Ui = Ui,n, Ui ⊂⊂ Ui+1 ⊂⊂ Kn,
∪iUi = Kn (for i ≥ 1 we take Ui := {x ∈ R2 : dist(x,R2 \Kn) > 1

i+n} for definitiveness) and with

the aid of a partition of unity (ηi) associated to V1 := U2, Vi = Vi,n := Ui+1 \ U i−1 for i ≥ 2, we

mollify ψ̂ accordingly in Vi. For our purpose we choose61 ηi in such a way that

supp (ηi) = V i. (12.24)

Since ψnk is obtained by mollification we have ψnk ∈ C∞(Kn) and moreover ψnk ∈ C(Kn) because

it attains the continuous boundary datum ψ̂ on ∂Kn. Notice that we use the same mollifier
ρ ∈ C∞c (B1) in each Vi, choosing ρi(w) = ρi,k(w) := ρ(w/ri,k) with ri,k := ri/k > 0, ri decreasing
with respect to i ≥ 1, with62 ri → 0+ as i → +∞. Finally, [0, 2l] × [s̄ + 1

n , 1] ⊂ U1 ⊂ V1, and
Vi ∩

(
[0, 2l]× [s̄+ 1

n , 1]
)

= Ø for i ≥ 2. It follows

ψnk = ψ̂ ? ρ1,k in [0, 2l]×
[
s̄+

1

n
, 1
]

∀n ∈ N. (12.25)

Using [18, Prop. 3 Sec. 4.2.4 pag. 408, and Th. 1 Sec. 4.1.5 pag. 331] we infer

A(ψnk ,Kn)→ A(ψ̂,Kn) as k → +∞. (12.26)

Now that properties (12.23) are achieved, by a diagonal argument we select functions ψn := ψnkn ∈
(ψnk ) such that

ψn ⇀ ψ̂ weakly∗ in BV (K) as n→ +∞,∫
Kn

|∇ψn| dw → |Dψ̂|(K) as n→ +∞,

ψn = ψ̂ on ∂Kn ∀n ∈ N.

(12.27)

On the basis of (12.26) and (12.27), we can also ensure63 that

A(ψn,Kn)→ A(ψ̂,K) as n→ +∞. (12.28)

Here, by A(ψ̂,K) we mean the area of the graph of ψ̂ relative to the closed rectangle K, which,
recalling also Proposition 12.11, reads as

A(ψ̂,K) = A(ψ̂,K) +

∫
{0}×(s̄,1)

|ψ̂− − ϕ| dH1 +

∫
{2l}×(s̄,1)

|ψ̂− − ϕ| dH1, (12.29)

where ψ̂− denotes the trace of ψ̂ on ∂K.

61We need the full set V i as support in order that the argument to detect the behaviour of hn (defined in (12.32))
in [− 1

n
, 0] applies.

62ρi,k and ri,k depend on n. We could take ri = 1
i+2+n

.
63To prove claim (12.28), fix m ∈ N, and set ψ̃n := ψ̂ outside Kn and ψ̃n = ψn in Kn, so that

ψ̃n ⇀ ψ̂ weakly∗ in BV (Km) as n→ +∞,

|∇ψ̃n|(Km)→ |Dψ̂|(Km) = |Dψ̂|(K) + |Dψ̂|(Km \K) as n→ +∞.

Then lim supn→+∞ A(ψn,Kn) ≤ lim supn→+∞ A(ψ̃n,Km) = A(ψ̂,Km) = A(ψ̂,K) + A(ψ̂,Km \K), the first equality

following from the strict convergence of ψ̃n to ψ̂ [18, Prop. 3 Sec. 4.2.4 pag. 408 and Thm. 1 Sec. 4.1.5 pag. 371].

Taking the limit as m → +∞, since ψ̂ ∈ W 1,1(Km \ K) we conclude lim supn→+∞ A(ψn,Kn) ≤ A(ψ,K). Then
(12.28) follows by lower-semicontinuity.
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We now construct functions hn : (− 1
n , 2l + 1

n)→ (s̄, 1 + 1
n) such that

hn(·) = hn(2l − ·),
ψn = 0 Kn \ SGhn ,

hn is nondecreasing in
[
− 1

n
, l
]
,

H2(Shn)→ H2(SGh ∩K),

(12.30)

where

Shn :=

{
(w1, w2) : w1 ∈

(
− 1

n
, 2l +

1

n

)
, w2 ∈ (s̄, hn(w1))

}
, (12.31)

and finally
lim

n→+∞
A(ψn, Shn) = F2l(h, ψ)− A(ψ,R2l \K).

For any n ∈ N we define

hn(w1) := sup

{
w2 ∈

(
s̄, 1 +

1

n

)
: ψn(w1, w2) > 0

}
∀w1 ∈

(
− 1

n
, 2l +

1

n

)
.

ĥ(w1) := sup

{
w2 ∈

(
s̄, 1 +

1

n

)
: ψ̂(w1, w2) > 0

}
∀w1 ∈

(
− 1

n
, 2l +

1

n

)
.

(12.32)

Since (see Proposition 12.11) ψ̂ is positive in SGh∪ ((− 1
n , 0)× (s̄, 1))∪ ((2l, 2l+ 1

n)× (s̄, 1)) it turns
out, recalling also that ψn is obtained by mollification, that

− 1 < h(w1) < hn(w1) < 1 +
1

n
∀w1 ∈ (0, 2l),

1 < hn(w1) < 1 +
1

n
∀w1 ∈

(
− 1

n
, 0
]
∪
[
2l, 2l +

1

n

)
.

(12.33)

Also, ĥ = h in [0, 2l], and ĥ = 1 in (−1/n, 0) ∪ (2l, 2l + 1/n). Moreover, again the positivity of ψ̂
implies that

ψn > 0 in Shn ⊂ Kn, (12.34)

whereas

ψn(w1, w2) = 0 if w1 ∈
(
− 1

n
, 2l +

1

n

)
, w2 ∈

[
hn(w1), 1 +

1

n

)
, (12.35)

because ψ̂(w1, w2) = 0 if w1 ∈ [0, 2l], w2 > h(w1) and if w2 > 1. Exploiting (12.25), and the fact
that h is nonincreasing (resp. nondecreasing) in [0, l] (resp. in [l, 2l]), one checks64 that also hn is
nonincreasing in [0, l] (and nondecreasing in [l, 2l]). Concerning the behaviour of hn in (− 1

n , 0] (and
similarly in [2l, 2l+ 1

n)), we see that in Vi = Vi,n (i > 1), we are mollifying with ρi,kn whose radius of

mollification is ri/kn, so that ψ̂ ? ρi,kn equals 0 on the line {w2 = 1 + ri
kn
}, and nonzero below inside

64Let us show for instance that hn is decreasing in [0, l]. Recall that the function ψ̂ vanishes above the graph of h,
which is decreasing in [0, l]. Now, take a point (w1, w2) ∈ Kn, w1 ∈ [0, l), w2 > h(w1); suppose first that w1 ≥ r1.

If dist((w1, w2), graph(h)) > r1, then ψn(w1, w2) = ψ̂ ? ρ1(w1, w2) = 0, and if dist((w1, w2), graph(h)) < r1, then

ψn(w1, w2) = ψ̂ ? ρ1(w1, w2) > 0. Hence, if ψ̂ ? ρ1(w1, w2) = 0 then also ψ̂ ? ρ1(w1 + ε, w2) = 0 for ε > 0 small enough,
because dist((w1 + ε, w2), graph(h)) > dist((w1, w2), graph(h)), being h decreasing in [0, l]. This argument applies
also when w1 ∈ [0, r1), by (12.25), since h is nonincreasing also in (−1/n, l).
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Kn (this follows from the fact that ψ̂ is 0 on the line {w2 = 1} ∩K and nonzero below). We have
defined the radii ri in such a way that they are decreasing with respect to i, so that, ψn being the
sum of ψ̂ ? ρi,kn (whose support is V i,n by (12.24)), it turns out that ψn is 0 on {w2 = 1 + ri

kn
} and

nonzero below65 in Vi,n \ Vi−1,n (from this it follows that hn = 1 + ri
kn

in (− 1
n + 1

i+n+1 ,−
1
n + 1

i+n ]).

In particular hn is piecewise constant and nondecreasing in (− 1
n , 0].

Therefore we have

hn ∈ BV
(

(− 1

n
, 2l +

1

n
)
)
. (12.36)

Finally, it is not difficult to see that the functions hn converge to h in L1((0, 2l)) as n→∞, and

H2(Shn)→ H2(SGh ∩K). (12.37)

From this, (12.28), Lemma 12.14, (12.29) and (12.4) we deduce

A(ψn, Shn) = A(ψn,Kn)−H2(Kn \ Shn)→ F2l(h, ψ)− A(ψ,R2l \K). (12.38)

Step 2: Comparison with a Plateau problem. In this step we want to compare the graph of ψn
with the solution of a disc-type Plateau problem. In particular we will obtain a disc-type surface
Σ+
n whose area is smaller than or equal to the area of the graph of ψn, see (12.39). In step 3 (see

(12.41)) we will compare this surface with the graph of ψ on K.
We recall that ψn is continuous in Kn, it is positive on the bottom edge [− 1

n , 2l+
1
n ]×{s̄} of Kn

(see (12.27)), it is zero on the top edge [− 1
n , 2l+ 1

n ]× {1 + 1
n} by (12.33), and on the lateral edges

of Kn it coincides with ψ̂; more specifically

ψn

(
− 1

n
,w2

)
= ψn

(
2l +

1

n
,w2

)
= ϕ(0, w2) > 0 for w2 ∈ [s̄, 1),

ψn

(
− 1

n
,w2

)
= ψn

(
2l +

1

n
,w2

)
= 0 for w2 ∈

[
1, 1 +

1

n

)
.

Define

∂DKn :=
([
− 1

n
, 2l +

1

n

]
× {s̄}

)
∪
({
− 1

n
, 2l +

1

n

}
× [s̄, 1]

)
.

From (12.27), we see that ψn coincides with ψ̂ over ∂DKn, and its graph over this set is a curve,
that we denote by Γ+

n . This curve, excluding its endpoints Pn = (− 1
n , 1, 0) and Qn = (2l+ 1

n , 1, 0),
is contained in the half-space {w3 > 0}, while Pn, Qn ∈ {w3 = 0}. We further denote by Γ−n the
symmetric of Γ+

n with respect to the plane {w3 = 0}, so that

Γn := Γ+
n ∪ Γ−n

is a Jordan curve in R3, see Fig. 19. We can now solve the disc-type Plateau problem with boundary
Γn [14] and call Σn ⊂ R3 one of its solutions66. Finally, we can assume that Σn is symmetric with
respect to {w3 = 0} and that

H2(Σ+
n ) = H2(Σ−n ),

with Σ±n := Σn ∩ {w3 ≷ 0}, respectively (see Fig. 19).
We now want to compare the area of the graph of ψn in Shn with H2(Σ+

n ). To this aim we start
by observing that ψn, being smooth in Kn and continuous in Kn, is such that its graph over Shn

65Notice that in Vi,n \ Vi−1,n only ψ̂ ? ρi,kn and ψ̂ ? ρi+1,kn , are nonzero.
66Σn is the image of an area-minimizing map from the unit disc into R3.
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Figure 19: The rectangle Kn in (12.22) is colored, and the rectangle inside is K. Γ is the curve
passing through Q and P , the curves Γn (which pass through Qn and Pn) approach the curve Γ (Γ
and Γn coincide and overlap on the graph of ψ over the bold segment {w2 = s̄} ∩K).

has the topology of Shn , that is the topology of the disc67. Denoting by G+
ψn

the graph of ψn over

Shn , we consider the graph G−ψn of −ψn over Shn , and observe that the closure of G+
ψn
∪ G−ψn is a

disc-type surface with boundary Γn. Therefore, by minimality,

A(ψn, Shn) = H2(G+
ψn

) ≥ H2(Σ+
n ). (12.39)

Step 3: Passing to the limit as n → +∞: the surface Σ. The graph of ψ over the segment
[0, 2l] × {s̄} and the graph of ϕ over the two segments {0, 2l} × [s̄, 1] form a simple continuous
curve Γ+ which, excluding the two endpoints P = (0, 1, 0) and Q = (2l, 1, 0), is contained in the
half-space {w3 > 0}, while P,Q ∈ {w3 = 0} (see Fig. 19). If we consider

Γ := Γ+ ∪ Γ−,

with Γ− the symmetric of Γ+ with respect to {w3 = 0}, a direct check shows that the curves Γn
converge to the curve Γ in the sense of Frechet [27], as n → +∞. As a consequence, the area-
minimizing disc-type surfaces Σn satisfy H2(Σn)→ H2(Σ) (see [27, Paragraphs 301, 305]), with Σ
a disc-type area-minimizing surface spanned by Γ. It follows

H2(Σ+
n )→ H2(Σ+) as n→ +∞, (12.40)

67Shn is bounded by construction, and it is open from (12.34), (12.35). In addition, it is connected and simply
connected. Indeed, take any continuous curve γ : S1 → Shn . Using (12.33), let ŝ ∈ (s̄, 1) be such that {w2 =
ŝ} ∩Kn ⊂ Shn ; hence we can (vertically) contract γ continuously to its projection on the line {w2 = ŝ}, and then
contract it continuously to the middle point of {w2 = ŝ} ∩Kn, showing that γ is homotopic to the constant curve.
Hence, by the Riemann mapping theorem, Shn is biholomorphic to the open unit disc, and Shh is homeomorphic to
the closure of the disc, thanks to the fact that ∂Shn is a Jordan curve, due to the BV-regularity of hn.
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where Σ+ := Σ ∩ {w3 > 0}. From (12.40), (12.39), (12.38) we deduce

H2(Σ+) = lim
n→+∞

H2(Σ+
n ) ≤ lim

n→+∞
A(ψn, Shn)

= lim
n→+∞

(
A(ψn,Kn)−H2(Kn \ Shn)

)
= F2l(h, ψ)− A(ψ,R2l \K).

Since ψn = ψ on R2l \K, we get

lim
n→+∞

(A(ψn, Shn) + A(ψ,R2l \K)) = F2l(h, ψ) ≥ H2(Σ+) + A(ψ,R2l \K). (12.41)

Let Φ = (Φ1,Φ2,Φ3) : B1 → Σ ⊂ R3 be a parametrization of Σ, which is analytic and conformal
in the open unit disc B1 and continuous up to ∂B1 with Φ(∂B1) = Γ. Exploiting the results in [25]
(see also [14, pag. 343]) we know that

Φ is an embedding, (12.42)

since Γ is a simple curve on the boundary of the convex set K × R.

Now, we need to prove several qualitative properties of Σ.

Step 4: Σ∩{w3 = 0} is a simple curve connecting P and Q. This can be seen as follows: Assume
Φ(p0) = P and Φ(q0) = Q for two distinct points p0, q0 ∈ ∂B1. By standard arguments68, the disc
B1 is splitted into two connected components {x ∈ B1 : Φ3(x) ≥ 0} and {x ∈ B1 : Φ3(x) < 0}
and the set {Φ3 = 0} must be a simple curve in B1 connecting p0 and q0 (here we use that the
points p0 and q0 are the unique points in ∂B1 where Φ3 = 0 and that the two arcs in ∂B1 with
extreme points p0 and q0 are mapped in {w3 > 0} and {w3 < 0} respectively). By the injectivity
of Φ (property (12.42)) we conclude that

Γ0 := Φ({Φ3 = 0}) (12.43)

is a simple curve connecting P and Q on the plane {w3 = 0}, and more specifically Γ0 ⊂ K.

In the next step we show that, due to the particular form of Γ, the surface Σ admits a semicarte-
sian parametrization [8], namely that if we slice Σ with a plane orthogonal to the first coordinate (in
(0, 2l)) then the intersection is a curve connecting the two corresponding points on Γ; in addition,
in this present case, this curve turns out to be simple. We will also show that the free part of Σ,
i.e., Γ0, leaves a trace on R2l which is the graph of a convex function (of one variable).

Step 5: The projection p(Σ) of Σ on the plane {w3 = 0} is the subgraph of a convex function
h̃ ∈ H2l.

We first show that p(Σ) is the subgraph of a function h̃, and then we prove that h̃ ∈ H2l.
Take a point W = (W1,W2,W3) ∈ Σ \ Γ; by the strong maximum principle, p(W ) /∈ ∂K (this
follows since points in Σ \ Γ are in the interior of the convex envelope of Γ, see [14]). Consider
the (unique) point x ∈ B1 such that Φ(x) = W . Due to the particular structure of Γ, one
easily checks that ∂B1 = Φ−1(Γ) splits into two connected components, Φ−1

1 ((W1, 2l]) ∩ ∂B1 and
Φ−1

1 ([0,W1])∩ ∂B1, since Φ−1
1 ({W1})∩ ∂B1 consists of two points q1, q2 in ∂B1. In particular, the

continuous function Φ1(·)−W1 changes sign only twice on ∂B1, namely at q1 and q2. From Rado’s
lemma [14, Lemma 2, pag. 295] it follows that there are no points on Σ ∩ {w1 = W1} where the
two area-minimizing surfaces Σ and the plane {w1 = W1} are tangent to each other69. It follows
that, if P ∈ (Σ \Γ)∩{w1 = W1}, then the set (Σ \Γ)∩{w1 = W1} is, in a neighbourhood of P, an

68See also step 5 where a similar statement is proved.
69If P is a tangence point, then the differential of Φ1 must vanish at Φ−1(P) ∈ B1.
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analytic curve, see again [14, Lemma 2, pag. 295]. Hence, {Φ1 = W1} ∩B1 is, in a neighbourhood
of Φ−1(P), an analytic curve. If γI : I → B1 is a parametrization of this curve, I = (a, b) a
bounded open interval, we see that the limits as t→ a+ and t→ b− of γI(t) exist70 and are points
in B1. If limt→a+ γI(t) belongs to ∂B1, it must be either q1 or q2, if instead it is in B1, then we
can always extend γI in a neighbourhood of a and find a larger interval J ⊃ I on which γI can be
extended. Similarly, for limt→b− γI(t). Let now Im = (am, bm) be a maximal interval on which γI
is defined, so that, by maximality, the limits as t → a+

m and t → b−m are q1 and q2, respectively.
We can then consider the closure Im of Im and we have that γIm(Im) is a curve in B1 joining q1

and q2. Thus we have proved that σW := Σ ∩ {w1 = W1} equals Φ(γIm(Im)). In particular σW is

a curve in R3 contained in the plane {w1 = W1} and connecting the points Q1 := Φ(q1) ∈ Γ and
Q2 := Φ(q2) ∈ Γ. But we know that p(Q1) = p(Q2) = (W1, s̄, 0), so p(σW ) is a segment in R2l

with endpoints (W1, s̄, 0) and (W1, s
+, 0) for some s+ > s̄, and s+ ≥ W2. In particular the whole

segment “below” p(W ), namely the one with endpoints (W1, s̄, 0) and (W1,W2, 0), belongs to p(Σ),
and p(Σ) is then the subgraph of some function h̃. As a remark, due to the symmetry of the curve
Γ, we can assume h̃ is symmetric with respect to {w1 = l}, namely h̃(·) = h̃(2l − ·).

Now we show that h̃ is convex. Assume it is not, and take two points (t1, h̃(t1), 0), (t2, h̃(t2), 0) ∈
R2l, such that there is a third point (t3, h̃(t3), 0), with t1 < t3 < t2, which is strictly above the
segment l12 in R2l joining (t1, h̃(t1), 0) and (t2, h̃(t2), 0). Let f : R3 → R be a nonzero affine
function71 vanishing on the plane passing through l12 and orthogonal to {w3 = 0}, and assume
that f is positive at (t3, h̃(t3), 0). Let Q ∈ Σ be such that p(Q) = (t3, h̃(t3), 0). Then f ◦Φ : B1 → R
is harmonic, and by the maximum principle there is a continuous curve γQ in B1 joining Φ−1(Q)
to ∂B1 such that f ◦ Φ is always positive on γQ. But now, the continuous curve p ◦ Φ(γQ) joins
(t3, h̃(t3), 0) to p(Γ) and remains, in R2l, strictly above the segment l12. This is a contradiction,
because p ◦ Φ(γQ) must be in the interior of the subgraph of h̃.

Before passing to step 6, recall the definition of Γ0 in (12.43), and observe that the Jordan curve
Γ+ ∪ Γ0 is the boundary of the disc-type surface Σ+. Let us denote by U ⊂ K the connected
component of K \ Γ0 with boundary Γ0 ∪ ({0} × [s̄, 1]) ∪ ([0, 2l]× {s̄}) ∪ ({2l} × [s̄, 1]).

We are now in a position to show that Σ+ admits a non-parametric description over the plane
{w3 = 0}.

Step 6: Graphicality of Σ+: the disc-type surface Σ+ can be written as a graph over the plane
{w3 = 0} of a W 1,1 function ψ̃ : U → [0,+∞). At first we observe that if Σ+ is not Cartesian with
respect to {w3 = 0}, then there is some point P ∈ Σ+ \ ∂Σ+ where the tangent plane to Σ+ is
vertical72, that is, it contains the line {P + (0, 0, w3) : w3 ∈ R}. We will show, with an argument
similar to the one needed to prove Rado’s Lemma [14, Lemma 2, pag. 295], that any vertical plane
is tangent to Σ in at most one point.

70B1 is compact, hence γI(t) has some accumulation point as t→ a+. Notice that I and γI(I) are homeomorphic
by contruction; in turn γI(I) is homeomorphic to the analytic curve Φ ◦ γI(I). Assume x is an accumulation point
for γI(t) as t → a+. If x ∈ B1, there is a small neighborhood U of x such that σ := Φ(U) ∩ {w1 = W1} is an
analytic curve. Then γI , in a right neighbourhood J of a, is homeomorphic to the analytic curve Φ ◦ γI(J) ∈ R3

emanating from Φ(x), which in turn is the restriction of σ. In particular γI(I) is a curve emanating from x and
the limit as t → a+ of γI(t) is x. If instead x ∈ ∂B1 then x must be the unique accumulation point. Indeed,
limt→a+ Φ1 ◦ γI(t) = W1, and then x = q1 or x = q2 (say x = q1). Assume there is another accumulation point y as
t→ a+; then y /∈ B1, otherwise we fall in the previous case, and therefore necessarily y = q2. But in this case, we see
that there must be another accumulation point z ∈ B1 (as t→ a+, we move between a neighbourhood U of x and a
neighbourhood V of y frequently, so that there should be some other accumulation point in B1 \ (U ∪ V )) leading us
to the previous case again.

71Take the signed distance from the plane.
72This can be seen as follows: as shown in step 5, the intersection between Σ+ and any plane {w1 = cost},

cost ∈ (0, 2l), is a simple curve with endpoints in ∂Σ+. If Σ+ is not Cartesian, one of these curves γ is not Cartesian,
and then there is a point where the tangent vector to γ is vertical. At such a point the tangent plane to Σ+ is vertical.
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Claim: If Π is a vertical plane which is tangent to Σ, then there is at most one point where Π and Σ
are tangent.

Assume Π intersects the relative interior of Σ. It is easy to see that the intersection between Π and
the Jordan curve Γ consists at most of four points73 pi, i = 1, 2, 3, 4. Let f be a linear function on
R3 vanishing on Π. Then f ◦Φ is harmonic in B1 and continuous in B1; in addition, it vanishes at
{pi, i = 1, 2, 3, 4}, and alternates its sign on the four arcs pipi+1 on ∂B1 with endpoints pi. With
no loss of generality, we may assume f ◦ Φ > 0 on p1p2 and p3p4. By harmonicity of f ◦ Φ, any
connected component of the region {x ∈ B1 : f ◦ Φ(x) > 0} must contain part of p1p2 or p3p4, so
that we deduce that these connected components are at most two.

Assume now by contradiction that there are two distinct points P and Q of Σ such that Π is
tangent to Σ at P andQ. Since f◦Φ has null differential at Φ−1(P) and Φ−1(Q), the set {f◦Φ = 0},
in a neighbourhood of Φ−1(P), consists of 2mp analytic curves crossing at Φ−1(P), whereas in a
neighbourhood of Φ−1(Q), it consists of 2mq analytic curves crossing at Φ−1(Q). Therefore, in a
neighbourhood of Φ−1(P), the set {f ◦ Φ > 0} counts at least 2 open regions (and similarly at
Φ−1(Q)). Let us call the two of these regions Ai, i = 1, 2 and Bi, i = 1, 2 (Ai’s around Φ−1(P) and
Bi’s around Φ−1(Q)). By harmonicity each Ai and Bi must be connected to one of the arcs p1p2 or
p3p4. Hence some of these regions must belong to the same connected component of {f ◦ Φ > 0}.
Then we are reduced to two following cases (see Fig. (20)):

(Case A) A1 and A2 belong to the same connected component (say the one containing p1p2). Hence
we can construct two disjoint curves in {f ◦ Φ > 0}, both joining Φ−1(P) to a point in
p1p2, emanating from Φ−1(P), one in region A1 and one in region A2. This contradicts the
maximum principle, because these two curves would enclose a region where f ◦ Φ takes also
negative values, whereas its boundary is in {f ◦ Φ > 0}.

(Case B) A1 and B1 are joined to p1p2 and A2 and B2 are joined to p3p4. In this case we can construct
four curves in {f ◦ Φ > 0}: σ1 and σ2 emanating from Φ−1(P) in regions A1 and A2 and
reaching p1p2 and p3p4, respectively; β1 and β2 emanating from Φ−1(Q) in regions B1 and
B2 and reaching p1p2 and p3p4, respectively. The region enclosed between these 4 curves has
boundary contained in {f ◦ Φ > 0} and necessarily inside it the function f ◦ Φ takes also
negative values, again in contrast with the maximum principle.

From the above discussion our claim follows.
We are now ready to conclude the proof of step 6: suppose by contradiction that Σ+ is not

Cartesian with respect to {w3 = 0}, and take a point P+ ∈ Σ+ \ Γ where the tangent plane Π
to Σ+ at P+ is vertical. By symmetry of Σ, the point P−, defined as the symmetric of P+ with
respect to the rectangle R2l, belongs to Σ−, and the tangent plane to Σ− at P− is the same plane
Π. This contradicts the claim. We eventually observe that ψ̃ is analytic on the subgraph of h̃,
since its graph is Σ+. We conclude that ψ̃ belongs to W 1,1(SG

h̃
), since also its total variation is

bounded by the area of its graph, which is finite.

Step 7: the pair (h̃, ψ̃) is an admissible competitor for F2l. To see this, we recall that in step 5
we proved that h̃ is convex and h̃(·) = h̃(2l − ·), i.e. h̃ ∈ H2l. Furthermore Σ+ is the graph of ψ̃,

73A vertical plane intersects K on a straight segment. In turn, this segment intersects ∂K in two points. If a
vertical plane intersects Γ in a point (W1,W2,W3), then (W1,W2, 0) ∈ ∂K. Moreover this plane intersects Γ also
at (W1,W2,−W3). Thus, the points of intersection are at most four. The degenerate cases in which Π contains a
full H1-measured part of Γ are excluded by this analysis, because in these cases Π does not intersect the interior of
Σ. Instead, the cases in which the intersection consists of 2 or 3 points are easier to treat, and we detail only the
4-points case (notice that by the geometry of Γ, the case of 3 points occurs when this plane is tangent to Γ at one of
the points (0, 1, 0) or (2l, 1, 0)).
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Figure 20: On the left it is represented case A in step 6 of the proof of Theorem 12.16. The
point Φ−1(P) is in the cross where the two emphasized paths start from. These curves stand in
the region {f ◦ Φ > 0} and join Φ−1(P) with the boundary arc p1p2. The picture on the right
represents instead case B. The two cross points are Φ−1(P) and Φ−1(Q) and the paths σ1, σ2, β1,
β2 are depicted.

and its projection on the plane {w3 = 0} is the subgraph of h̃. It follows that the area of the graph
of ψ̃ is exactly the area of Σ+ upon SG

h̃
. Let us also recall the W 1,1 regularity of ψ̃ proved in step

6. Setting ψ̃ := ψ in R \K we infer the admissibility of (h̃, ψ̃).

Step 8: Conclusion. From (12.41) we deduce

F2l(h, ψ) ≥ H2(Σ+) + A(ψ,R \K) = F2l(h̃, ψ̃), (12.44)

where the last equality follows from the fact that ψ̃ is continuous on ∂DR2l. Hence, also (h̃, ψ̃) is a
minimizer for F2l. We now show that ψ̃ is continuous and equals 0 on G

h̃
. Indeed Σ = Σ+ ∪Σ− is

analytic, hence also h̃ is smooth (and convex). Moreover we know that ψ̃ is smooth in SG
h̃
. If its

trace ψ̃+ on G
h̃

is strictly positive somewhere, we infer that the vertical subset of Σ+ defined as

{(w1, w2, w3) : (w1, w2) ∈ G
h̃
, w3 ∈ (0, ψ̃+(w1, w2))},

has positive H2-measure and cannot have zero mean curvature (the only case in which its mean
curvature vanishes is when h̃ is linear, but in this case Σ+ must be contained in a plane containing
G
h̃

which is impossible, since Γ+ is not). We conclude ψ̃+ = 0 on G
h̃
. Finally, L

h̃
= Ø for, if not,

the vertical part of Σ+ obtained on L
h̃

is flat and then, by analyticity, also Σ+ is, a contradiction.
The thesis of the theorem, and hence of Theorem 12.6 (iii), is achieved.

To conclude the proof of Theorem 12.6, it remains to show (iv). The pair (h ≡ 1, ϕ̂) , where the
function ϕ̂ is as in (12.13), is one of the competitors for problem (12.14) (notice that ϕ̂ attains the
boundary condition); in addition, its subgraph is strictly convex (see Fig. 18), hence74 necessarily
ψ? ≤ ϕ̂ in R2l (where we have taken ψ? = ψ̃, the solution given by Theorem 12.16).

Eventually, the strict inequality in (12.17) is a consequence of the strong maximum principle:
indeed, the internal points of a minimal surface are always strictly inside the convex hull of its
boundary, with the only exception in the case of part of a plane (see [27, pag 63, section 70]);

74As observed, the minimal surface Σ+ is the graph of ψ? = ψ̃, and it must be contained in the convex envelope of
Γ, i.e., inside the subgraph of ϕ̂.
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so that internal points of Σ+ are strictly inside the the graph Gϕ̂ of ϕ̂ (that is half of the lateral
boundary of a cylinder).

We conclude this section by observing a consequence of Theorem 12.16: Let Gw be the graph
in R2l of a function w ∈ C([0, 2l], (−1, 1]) such that w(0) = w(2l) = 1, and consider the curve Γw
obtained by concatenation of Gw with the graph of ϕ over ∂DR2l.

Corollary 12.17. We have

F2l(h, ψ) = inf PΓw(Xmin), (12.45)

where (h, ψ) ∈ Xconv
2l is a minimizer of F2l, Xmin is a parametrization of a disc-type area-mininizing

solution of the Plateau problem spanning Γw (see (2.9)), and the infimum is computed over all
functions w as above.

The proof of this corollary can be achieved by adapting the proof of Theorem 12.16, which shows
that the solution to the Plateau problem in (12.45) is Cartesian and the optimal w is convex.

13 Upper bound

A minimizer (h?, ψ?) of (12.14) needs to be used for constructing a recovery sequence (uk) ⊂
Lip(Ω,R2), see formulas (13.25) and (13.27): we know that ψ? is locally Lipschitz, but not Lipschitz,
in R2l; therefore we need first a regularization procedure.

Let (h?, ψ?) be a minimizer provided by Theorem 12.6, and assume that h? is not identically −1.
We fix an integer m > 0 and, recalling the definition of ϕ̂ in (12.13), define

ϕm :=
(
ϕ̂− 2

m

)
∨ 0 in R2l. (13.1)

We observe that ϕm is Lipschitz continuous in R2l. We then set

ψ?m :=
((
ψ? − 1

m
) ∨ 0

))
∧ ϕm in R2l. (13.2)

Since ψ? is locally Lipschitz in R2l, an easy check shows that ψ?m is Lipschitz continuous in R2l for
any m (with an unbounded Lipschitz constant as m→ +∞). This follows from the fact that ψ? is
continuous up to the boundary of R2l (see Theorem 12.6 (iii)) and hence ψ?m coincides with either
0 or ϕm in a neighbourhood of (∂DR2l)∪Gh? in R2l. Furthermore still ψ?m = 0 on the upper graph
R2l \ SGh? = {(w1, w2) ∈ R2l : w2 ≥ h?(w1)} of h?.

Lemma 13.1 (Properties of ψ?m). Let (h?, ψ?) be a minimizer of F2l as in Theorem 12.6 and
assume h? is not identically −1. For all m > 0 let ψ?m be defined as in (13.2). Then:

(i) ψ?m is Lipschitz continuous in SGh?, ψ?m = 0 on ([0, 2l]×{−1})∪(R2l \SGh?), and ψ?m(0, ·) =
ϕm(0, ·), so that |∂w2ψ

?
m(0, ·)| ≤ |∂w2ϕ(0, ·)| = |∂w2ψ

?(0, ·)| a.e. in [−1, 1];

(ii) (ψ?m) converges to ψ? uniformly on {0, 2l} × [−1, 1] as m→ +∞;

(iii) we have

lim
m→+∞

A(ψ?m, SGh?) = A(ψ?, SGh?). (13.3)

As a consequence F2l(h
?, ψ?m)→ F2l(h

?, ψ?) as m→ +∞.
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Proof. (i) and (ii) are direct consequences of the definitions. To show (iii) we start to observe
that ψ?m → ψ? pointwise in R2l: indeed, this follows from the definitions of ϕ?m and ψ?m up to
noticing that ϕm → ϕ̂ pointwise in R2l as m → +∞, and ψ? ≤ ϕ̂ on R2l. From Theorem 12.6
(iv) it follows that, at any point (w1, w2) ∈ R2l, for m large enough ϕm(w1, w2) > ψ?(w1, w2)
(since ϕ̂(w1, w2) > ψ?(w1, w2)), so that ψ?m(w1, w2) = ψ?(w1, w2) − 1

m . As a consequence the set
Am := {0 < ψ? − 1

m < ϕm} satisfies

lim
m→+∞

H2(SGh? \Am) = 0,

and on Am it holds ψ?m = ψ? − 1
m and ∇ψ?m = ∇ψ?. Moreover, on SGh? \Am, either ψ?m = 0 (and

hence ∇ψ?m = 0) or ψ?m = ϕm (and hence ∇ψ?m = ∇ϕm). Therefore∫
SGh?\Am

√
1 + |∇ψ?m|2 dx ≤

∫
SGh?\Am

√
1 + |∇ϕm|2 dx

and

lim
m→+∞

∫
SGh?\Am

√
1 + |∇ψ?m|2 dx ≤ lim

m→+∞

∫
SGh?\Am

√
1 + |∇ϕm|2 dx = 0,

because |∇ϕm| are uniformly bounded in L1(R2l). Also

A(ψ?m, SGh?) =

∫
Am

√
1 + |∇ψ?|2 dx+

∫
SGh?\Am

√
1 + |∇ψ?m|2 dx,

and (13.3) follows.

The main result of this section reads as follows.

Theorem 13.2 (Upper bound for the area of the vortex map). The relaxed area of the
graph of the vortex map u satisfies

A(u,Ω) ≤
∫

Ω
|M(∇u)| dx+ 2 min

{
Fl(h, ψ) : (h, ψ) ∈ Xconv

l

}
. (13.4)

Proof of theorem 13.2. To prove the theorem, we need to construct a sequence (uk) ⊂ Lip(Ω,R2)
converging to u in L1(Ω,R2) such that

lim
k→+∞

A(uk,Ω) ≤
∫

Ω
|M(∇u)|dx+ F2l(h

?, ψ?),

where (h?, ψ?) is a pair minimizing F2l as in Theorem 12.6. We can assume that h? is not identically
−1, otherwise the result follows from [1].

We will specify various subsets of Ω and define the sequence (uk) on each of these sets (see
Fig. 21). More precisely, we will define uk as a map into S1 in the largest sector (step 1). This
construction is similar to the one in [1] (see also Remark 13.3 below). The contribution of the
area in this sector will equal, as k →∞, the first term in (13.4). The second term will be instead
provided by the contribution of uk in region Ck \ Brk (step 2), where we will need the aid of the
functions (h?, ψ?) (suitably regularized, in order to render uk Lipschitz continuous). The other
regions surrounding Ck \ Brk are needed to glue uk between the aforementioned regions. This
is done in steps 3, 4 and 5, where it is also proven that the corresponding area contribution is
negligible. Finally, in steps 6 and 7 we show the crucial estimates to prove (13.4). In Fig. 21 this
subdivion of the domain Ω is drawn.
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Remark 13.3. Our construction differs from the one in [1], even when in place of (h?, ψ?) we use
(1,
√

1− s2) (i.e., the one in Section 10.1) in the following sense. We use the full graph of ±ψ? to
construct uk (and therefore, in the case when (h?, ψ?) is replaced by (1,

√
1− s2), the image of uk

covers the whole cylinder and not only a part of it). Since h? may be not identically 1 (and actually
is not explicit in general), the presence of a new set Tk is now needed, as an intermediate region to
glue the trace of uk along two segments {θ = ±θk}. The image set uk(Tk) covers a small part of
the unit circle. See Fig. 21.

Let k ∈ N and let (rk), (θk), (θk) be infinitesimal sequences of positive numbers such that θk−θk =:
δk > 0. We shall suppose75

lim
k→+∞

(θkk) = 0. (13.5)

Let Brk be the open disc centered at the origin with radius rk, and

Ck := {(r, θ) ∈ [0, l)× [0, 2π) : θ ∈ [0, θk] ∪ [2π − θk, 2π)}, (13.6)

be the half-cone in Ω, with vertex at the origin and aperture equal to 2θk, see Fig. 21. Let

Tk := {(r, θ) ∈ [0, l)× [0, 2π) : θ ∈ [θk, θk] ∪ [2π − θk, 2π − θk]}. (13.7)

We set
C+
k := Ck ∩ {θ ∈ [0, θk]}, C−k := Ck ∩ {θ ∈ [2π − θk, 2π]},

and divide Ck ∩ (Ω \ Brk) into two sets

Ck \ Brk :=
(
C+
k \ Brk

)
∪
(
C−k \ Brk

)
. (13.8)

Step 1. Definition of uk in Ω \ (Ck ∪ Tk).
In this step our construction is similar to the one in [1, Lem. 5.3], see also (10.1); in order to

define uk, in the source we use polar coordinates (r, θ) and in the target Cartesian coordinates.
Define

uk(r, θ) :=

{
u(r, θ) = (cos θ, sin θ), (r, θ) ∈ (Ω \ (Ck ∪ Tk)) \ Brk/2,(

cos(2r
rk

(θ − π) + π), sin(2r
rk

(θ − π) + π)
)
, (r, θ) ∈ Brk/2 \ (Ck ∪ Tk).

(13.9)

Observe that

uk(0, 0) = (−1, 0) = uk(r, π), r ∈ [0, l);

uk(r, θk) = (cos θk, sin θk), uk(r, 2π − θk) = (cos θk, sin(−θk)), r ∈ (rk/2, l);

uk(r, θk) =
(

cos(
2r

rk
(θk − π) + π) , sin(

2r

rk
(θk − π) + π)

)
, r ∈ [0, rk/2],

uk(r, 2π − θk) =
(

cos(
2r

rk
(π − θk) + π) , sin(

2r

rk
(π − θk) + π)

)
, r ∈ [0, rk/2]. (13.10)

The relevant contribution to the area of the graph of uk is the one in region Ck, and more
specifically in Ck \Brk ; it is in this region that we need to use a minimizing pair of F2l.

Step 2. Definition of uk on Ck \ Brk .
We first need a regularization of h?: assuming without loss of generality 1/k < l, we define

h?k(w1) :=

{
h?(w1) for w1 ∈ [ 1

k , l],

k
(
h?( 1

k )− h?(0)
)
w1 + h?(0) for w1 ∈ [0, 1

k ),
(13.11)

75This assumption will be used only in step 7.
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Figure 21: On the left the subdivision of Bl in sectors. Specifically, the sectors C+
k \ Brk and

C−k \ Brk are emphasized in light grey. The map Tk defined in (13.22) sends C+
k \ Brk in the

(reflected) subgraph of h?k in Rl, depicted on the right. This parametrization maps the segment
joining (rk, 0) to (1, 0) onto the graph of h?k, and the radius corresponding to θ = θk to the basis
of Rl, following the orientation emphasized by the dashed arrow. The graph of h?k starts linearly
from the point (0, 1) with negative derivative, then joins and next coincides with the graph of h?.
The definition of uk in C+

k \ Brk makes use of this parametrization of SGh?k (see (13.25)). This
parametrization needs a reflection, in order to glue uk on the horizontal segment {θ = 0} with the
definition of uk in C−k \ Brk . Note that Ψk(C

+
k \ Brk) ⊂ R3, with Ψk defined in (5.1), is the graph

of ψ∗k(w1,−w2) above the reflection of the two-dimensional region in between the graph of h∗k and
the horizontal segment {w2 = −1}.
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where we recall that h?(0) = 1 (see Theorem 12.6), and we set h?k(w1) := h?k(2l−w1) for w1 ∈ [l, 2l]
(see Fig. 21, right). Notice that h?k(0) = 1, h?k ∈ Lip([0, 2l]) and the convexity of h? implies that
also h?k is convex, h?k ≥ h?, and therefore by Lemma 13.1 (i) we see that (h?k, ψ

?
k) ∈ Xconv

2l , where
ψ?k is the approximation of ψ? in Lemma 13.1 (with k = m), see formula (13.2). Again by Lemma

13.1, F2l(h
?
k, ψ

?
k) = F2l(h

?, ψ?k) +
∫ 2l

0 (h?k(w1)− h?(w1)) dw1 → F2l(h
?, ψ?) as k → +∞.

We start with the construction of uk on C+
k \ Brk . Set

τk : [rk, l]→ [0, l], τk(r) :=
l

l − rk
(r − rk), (13.12)

sk : [rk, l]× [0, θk]→ [−1, 1], sk(r, θ) :=
1 + h?k(τk(r))

θk
θ − h?k(τk(r)). (13.13)

Note that sk(r, ·) : [0, θk] → [−h?k(τk(r)), 1] is a bijective increasing function, for any r ∈ [rk, l].
Thus

sk(r, 0) = −h?k(τk(r)) for any r ∈ [rk, l], in particular sk(rk, 0) = −1, (13.14)

sk(r, θk) = 1, r ∈ [rk, l], (13.15)

sk(rk, θ) =
2θ

θk
− 1, θ ∈ [0, θk]. (13.16)

We have, for all r ∈ [rk, l] and θ ∈ [0, θk],

τ ′k(r) =
l

l − rk
, (13.17)

∂θsk(r, θ) =
1 + h?k(τk(r))

θk
, (13.18)

and, for almost every r ∈ [rk, l] and all θ ∈ [0, θk],

∂rsk(r, θ) =

(
θ

θk
− 1

)
τ ′k(r)h

?
k
′(τk(r)) =

l

l − rk

(
θ

θk
− 1

)
h?k
′(τk(r)). (13.19)

Moreover we define

Rk : [0, l]→ [rk, l], Rk(w1) :=
l − rk
l

w1 + rk (13.20)

to be the inverse of τk and, recalling that Rl = [0, l]× [−1, 1],

Θk : SGh?k ∩Rl → [0, θk], Θk(w1, w2) :=
θk

1 + h?k(w1)
(h?k(w1)− w2). (13.21)

Notice that Θk(w1, ·) : [−1, h?k(w1)]→ [0, θk] is a linearly decreasing bijective function.
The map

Tk : C+
k \ Brk → SGh?k ∩Rl, Tk(r, θ) := (τk(r),−sk(r, θ)), (13.22)

is invertible, and its inverse is the map

T −1
k : SGh?k ∩Rl → C+

k \ Brk , T −1
k (w1, w2) := (Rk(w1),Θk(w1, w2)). (13.23)

The modulus of the determinant of the Jacobian of T −1
k is given by

|JT −1
k
| =

(
l − rk
l

)
θk

1 + h?k(w1)
. (13.24)
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We set

uk(r, θ) :=
(
sk(r, θ), ψ

?
k

(
Tk(r, θ)

))
=
(
uk1(r, θ), uk2(r, θ)

)
, r ∈ [rk, l], θ ∈ [0, θk]. (13.25)

Observe that, using the definition of ψ?k,

uk ∈ Lip(C+
k \ Brk ,R

2),

uk(r, θk) = (sk(r, θk), ψ
?
k(Tk(r, θk))) = (1, 0),

uk(r, 0) = (−h?k(τk(r)), ψ?k(τk(r), h?k(τk(r)))) = (−h?k(τk(r)), 0),

uk(rk, θ) = (sk(rk, θ), ψ
?
k(0,−sk(rk, θ))) = (sk(rk, θ), ϕk(0,−sk(rk, θ))),

(13.26)

for r ∈ [rk, l] and θ ∈ [0, θk], as it follows from (13.12), (13.14), (13.15), and (12.15), where ϕk is
defined in (13.1) (with k = m).

Eventually we define uk on C−k \ Brk as

uk(r, θ) := (uk1(r, 2π − θ),−uk2(r, 2π − θ)), r ∈ [rk, l], θ ∈ [2π − θk, 2π). (13.27)

It turns out

uk ∈ Lip(C−k \ Brk ,R
2),

uk(r, 2π − θk) = (1, 0),

uk(r, 2π) = (−h?k(τk(r)),−ψ?k(τk(r), h?k(τk(r)))) = (−h?k(τk(r)), 0),

uk(rk, θ) = (sk(rk, 2π − θ),−ψ?k(0,−sk(rk, 2π − θ))),

for r ∈ [rk, l], θ ∈ [2π − θk, 2π).
The area of the graph of uk on Ck \Brk/2 will be computed in step 7.

Step 3. Definition of uk on Ck ∩ (Brk \ Brk/2) and its area contribution.
Let Gψ?k(0,·) ⊂ R2 (resp. Gψ?(0,·) ⊂ R2) denote the graph of ψ?k(0, ·) (resp. of ψ?(0, ·)) on [−1, 1].

We introduce the retraction map Υ : (R × [0,+∞)) \ O ⊂ R2
target → Gψ?(0,·) ⊂ R2

target, O = (0, 0),
defined by

Υ(p) = q := Gψ?(0,·) ∩ `Op ∀p ∈ (R× [0,+∞)) \O,

where `Op is the line passing through O and p. Then Υ is well-defined and it is Lipschitz continuous
in a neighbourhood of Gψ?(0,·) in R× [0,+∞). We also define

Υk : Gψ?k(0,·) → Gψ?(0,·)

as the restriction of Υ to Gψ?k(0,·); see Fig. 22. As a consequence, since for k ∈ N large enough
Gψ?k(0,·) is contained in a neighbourhood of Gψ?(0,·), we have that Υk is Lipschitz continuous with
Lipschitz constant independent of k. Notice also that Υk((−1, 0)) = (−1, 0) and Υk((1, 0)) = (1, 0).

We define uk on C+
k ∩ (Brk \ Brk/2) setting, for r ∈ [ rk2 , rk] and θ ∈ [0, θk],

uk(r, θ) :=
(

2− 2r

rk

)
Υk

(
sk(rk, θ), ψ

?
k(0,−sk(rk, θ))

)
+
(2r

rk
− 1
)(
sk(rk, θ), ψ

?
k(0,−sk(rk, θ))

)
.

We have
uk(rk, θ) = (sk(rk, θ), ψ

?
k(0,−sk(rk, θ))),

so that uk glues, on C+
k ∩ ∂Brk , with the values obtained in step 2 (last formula in (13.26)), and

uk(r, θk) = (1, 0), uk(r, 0) = (−1, 0).
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This formula shows that uk also glues, on C+
k ∩ {(r, θ) : r ∈ [rk/2, rk], θ ∈ {0, θk}}, with the values

obtained in step 2 (second and third formula in (13.26)). Moreover

uk(rk/2, θ) = Υk

(
sk(rk, θ), ψ

?
k(0,−sk(rk, θ))

)
, θ ∈ [0, θk]. (13.28)

In addition, the derivatives of uk satisfy, for r ∈ ( rk2 , rk) and θ ∈ (0, θk), using (13.16),

∂ruk(r, θ) = − 2

rk
Υk

(
sk(rk, θ), ψ

?
k(0,−sk(rk, θ))

)
+

2

rk

(
sk(rk, θ), ψ

?
k(0,−sk(rk, θ))

)
,

∂θuk(r, θ) =
(

2− 2r

rk

)
∇Υk

(
sk(rk, θ), ψ

?
k(0,−sk(rk, θ))

)
·
( 2

θk
,− 2

θk
∂w2ψ

?
k(0,−sk(rk, θ))

)
+
(2r

rk
− 1
)( 2

θk
,− 2

θk
∂w2ψ

?
k(0,−sk(rk, θ))

)
,

so that

|∂ruk(r, θ)| ≤
4

rk
,

|∂θuk(r, θ)| ≤
2(Ĉ + 1)

θk
(|∂w2ψ

?
k(0,−sk(rk, θ))|+ 1),

where Ĉ is a positive constant independent of k, which bounds the gradient of Υk. Since ψ?k is
Lipschitz, we deduce that uk is Lipschitz continuous76 on C+

k ∩ (Brk \ Brk/2).
Furthermore the image of ( rk2 , rk)×(0, θk) through the map (r, θ) 7→ uk(r, θ) is the region enclosed

by Gψ?k and Gψ? (with multiplicity 1). The area of this region is infinitesimal as k → +∞, so that,
by the area formula, ∫ rk

rk/2

∫ θk

0
r|Juk(r, θ)|dθdr = o(1) as k → +∞.

Hence, using the fact that the gradient in polar coordinates is (∂r,
1
r∂θ), we eventually estimate

(see also (2.3))∫ rk

rk/2

∫ θk

0
r|M(∇uk)|dθdr ≤

∫ rk

rk/2

∫ θk

0

(
r +

4r

rk
+
C

θk
|∂w2ψ

?
k(0, 1−

2θ

θk
)|+ C

θk

)
dθdr + o(1),

= o(1) + C
rk
2θk

∫ θk

0
|∂w2ψ

?
k(0, 1−

2θ

θk
)|dθ = o(1) (13.29)

as k → +∞. In the last equality we use that |∂w2ψ
?
k(0, ·)| ≤ |∂w2ψ

?(0, ·)|, which is integrable via
the change of variables w2 = 1− 2θ

θk
(it also makes θk disappear at the denominator in front of the

integral in (13.29)).
This proves that the contribution of area of the graph of uk over C+

k ∩(Brk \Brk/2) is infinitesimal
as k → +∞.

Eventually, for r ∈ [rk/2, rk], θ ∈ [2π − θk, 2π), we set

uk(r, θ) := (uk1(r, 2π − θ),−uk2(r, 2π − θ)). (13.30)

Observe that, thanks to (13.27), uk is continuous on ∂Brk , and similar estimates as in (13.29) for
the area hold on (Brk \ Brk/2) ∩ C−k .

Step 4. Definition of uk on Ck ∩ Brk/2 and its area contribution.

76The Lipschitz constant of uk on this set turns out to be unbounded with respect to k.
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Figure 22: the graphs of the functions ψ?k(0, ·) and ψ?(0, ·); these contain arcs of circle centered at
(0, 0) and (0,− 2

k ) respectively. The map Υk is emphasized. This turns out to be the restriction of
x 7→ x

|x| on ψ?k(0, ·).

We start with the construction of uk on C+
k ∩ Brk/2. For r ∈ [0, rk/2) and θ ∈ [0, θk] we set

uk(r, θ) := Υk

( 4rθ

rkθk
− 1, ψ?k

(
0, 1− 4rθ

rkθk

))
. (13.31)

First we observe that

uk

(rk
2
, θ
)

:= Υk

(2θ

θk
− 1, ψ?k

(
0, 1− 2θ

θk

))
, θ ∈ (0, θk),

so that uk is continuous on C+
k ∩ ∂Brk/2 (see (13.28) and (13.16)), and

uk(r, θk) = Υk

(4r

rk
− 1, ψ?k(0, 1−

4r

rk
)
)
, (13.32)

uk(r, 0) = (−1, ψ?k(0, 1)) = (−1, 0). (13.33)

Direct computations lead to the following estimates:

|∂ruk(r, θ)| ≤ Ĉ
4θ

rkθk

(
1 + |∂w2ψ

?
k(0, 1−

4θr

rkθk
)|
)
, (13.34)

|∂θuk(r, θ)| ≤ Ĉ
4r

rkθk

(
1 + |∂w2ψ

?
k(0, 1−

4θr

rkθk
)|
)
, (13.35)

where Ĉ is the constant bounding the gradient of Υk as in step 3. Finally, since by (13.31) uk takes
values in S1 ⊂ R2, we have Juk(r, θ) = 0 for all r ∈ (0, rk/2), θ ∈ [0, θk]. Hence, the area of the
graph of uk on C+

k ∩ Brk/2 is∫ rk/2

0

∫ θk

0
r|M(∇uk)(r, θ)| dθdr ≤

∫ rk/2

0

∫ θk

0
(r + C) +

C

θk
+
Cr

rk
(1 +

1

θk
)|∂w2ψ

?
k(0, 1−

4θr

rkθk
)|dθdr,

where C is a positive constant independent of k. Exploiting that |∂w2ψ
?
k(0, ·)| ≤ |∂w2ψ

?(0, ·)|, we
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can estimate the right-hand side of the previous formula as follows:

C

∫ rk/2

0

∫ θk

0

r

rk

(
1 +

1

θk

)
|∂w2ψ

?(0, 1− 4θr

rkθk
)|dθdr + o(1)

≤C
∫ rk/2

0

∫ 1

−1
θk

(
1 +

1

θk

)
|∂w2ψ

?(0, w2)|dw2dr + o(1)

≤C
∫ rk/2

0
(θk + 1)dr + o(1) = o(1),

(13.36)

where o(1) → 0 as k → +∞, and C is a positive constant independent of k which might change
from line to line.

In C−k ∩ Brk/2 we set, for r ∈ [0, rk/2), θ ∈ [2π − θk, 2π),

uk(r, θ) := (uk1(r, 2π − θ),−uk2(r, 2π − θ)).

Similar estimates as in (13.36) for the area hold on C−k ∩ Brk/2.

Step 5. Definition of uk on Tk and its area contribution.
We first construct uk on Tk∩{(r, θ) : r ∈ [0, rk/2], θ ∈ [θk, θk]}. We define βk : [0, rk/2]×[θk, θk]→

[0, π] as

βk(r, θ) :=
θk − θ
θk − θk

αk(r) + (1− θk − θ
θk − θk

)
(2r

rk
(θk − π) + π

)
,

where

αk(r) := arccos
(
Υk1(

4r

rk
− 1, ψ?k(0, 1−

4r

rk
))
)
, r ∈ [0, rk/2].

Notice that αk is decreasing and takes values in [0, π]. Therefore we set

uk(r, θ) :=
(

cos(βk(r, θ)), sin(βk(r, θ))
)
, (r, θ) ∈ [0, rk/2]× [θk, θk].

One checks that βk(r, θk) = αk(r), βk(r, θk) = 2r
rk

(θk − π) + π (see also (13.9)), and

αk(rk/2) = 0,

uk(rk/2, θ) =
(

cos((1− θk − θ
θk − θk

)θk), sin((1− θk − θ
θk − θk

)θk)
)
,

uk(r, θk) =
(

cos(αk(r)), sin(αk(r))
)

= Υk(
4r

rk
− 1, ψ?k(0, 1−

4r

rk
)),

uk(r, θk) =
(

cos(
2r

rk
(θk − π) + π), sin(

2r

rk
(θk − π) + π)

)
,

so that uk is continuous on {θ ∈ {θk, θk}, r ∈ [0, rk/2]} ∩ Ω, see (13.10) and (13.32).
Notice also that uk is continuous at (0, 0) ∈ R2 and uk(0, 0) = (−1, 0). Finally, since uk takes

values in S1, the determinant of its Jacobian vanishes, so that in order to estimate the area contri-
bution of the graph of uk in Tk ∩ {(r, θ) : r ∈ [0, rk/2], θ ∈ [θk, θk]} it is sufficient to estimate the
derivatives of uk. We have

|∂ruk(r, θ)| = |∂rβk(r, θ)| ≤ |∂rαk(r)|+
2π

rk
,

|∂θuk(r, θ)| = |∂θβk(r, θ)| ≤
|αk(r)|
θk − θk

+
π

θk − θk
≤ 2π

θk − θk
.
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Therefore∫ rk/2

0

∫ θk

θk

r|M(∇uk)(r, θ)|dθdr ≤
∫ rk/2

0

∫ θk

θk

[rk
2

(1 + |∂rβk(r, θ)|) + |∂θβk(r, θ)|
]
dθdr

≤ o(1) +

∫ rk/2

0

∫ θk

θk

(
rk
2
|∂rαk(r)|+ π +

2π

θk − θk

)
dθdr = o(1), (13.37)

with o(1)→ 0 as k → +∞. Notice that the integral of |∂rαk(r)| with respect to r can be computed
via the fundamental integration theorem, since αk is monotone.

In Tk ∩ {(r, θ) : r ∈ [0, rk/2], θ ∈ [2π − θk, 2π − θk]} we set

uk(r, θ) := (uk1(r, 2π − θ),−uk2(r, 2π − θ)).

We now define uk on Tk ∩ {(r, θ) : r ∈ (rk/2, l), θ ∈ [θk, θk]}. We set

uk(r, θ) :=
(

cos((1− θk − θ
θk − θk

)θk), sin((1− θk − θ
θk − θk

)θk)
)
.

Then uk ∈ Lip(Tk, S1), and

uk(r, θk) = (1, 0), uk(r, θk) = (cos θk, sin θk) for r ∈ (rk/2, l),

∂ruk(r, θ) = 0,

∂θuk(r, θ) =
θk

θk − θk

(
− sin((1− θk − θ

θk − θk
)θk), cos((1− θk − θ

θk − θk
)θk)

)
.

Hence ∫ l

rk/2

∫ θk

θk

r|M(∇uk)(r, θ)|dθdr ≤
∫ l

rk/2

∫ θk

θk

(
r +

θk

θk − θk

)
dθdr = o(1) (13.38)

as k → +∞.
Finally in Tk ∩ {(r, θ) : r ∈ (rk/2, l), θ ∈ [2π − θk, 2π − θk]} we set

uk(r, θ) := (uk1(r, 2π − θ),−uk2(r, 2π − θ)).

Similar estimates as in (13.37), (13.38) for the area hold on Tk ∩ {(r, θ) : r ∈ (0, rk/2), θ ∈ [2π −
θk, 2π − θk]}, Tk ∩ {(r, θ) : r ∈ (rk/2, l), θ ∈ [2π − θk, 2π − θk]}, respectively.

Step 6. We claim that∫
Ω\(Ck∪Tk)

|M(∇uk)|dx −→
∫

Ω
|M(∇u)| dx as k → +∞, (13.39)

where we recall that Ck ∪ Tk = {(r, θ) ∈ Ω : r ∈ [0, l), θ ∈ [0, θk] ∪ [2π − θk, 2π)}.
Indeed, on Ω \ (Ck ∪ Tk) the maps uk and u take values in the circle S1, hence

det(∇uk) = 0, det(∇u) = 0, in Ω \ (Ck ∪ Tk).

Thus ∫
Ω\(Ck∪Tk)

|M(∇uk)−M(∇u)| dx ≤
∑
i=1,2

∫
Ω\(Ck∪Tk)

|∇(uki − ui)| dx.
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From (13.9), we have
|∂r(uk − u)| = 0 in Ω \ (Brk ∪ Ck ∪ Tk),

|∂r(uk − u)| ≤ π

rk
in Brk \ (Ck ∪ Tk),

|∂θ(uk − u)| = 0 in Ω \ (Brk ∪ Ck ∪ Tk),
|∂θ(uk − u)| ≤ 2 in Brk \ (Ck ∪ Tk).

(13.40)

Our previous remarks and the fact that rk, θk, (θk − θk)→ 0+ as k → +∞, imply (13.39).

Step 7. We know from (13.29), (13.36), (13.37), and (13.38), that the integral of |M(∇uk)| is
infinitesimal as k → +∞, on the region (Brk ∩Ck) ∪ Tk. Therefore it remains to compute the area
of the graphs of uk in the region Ck \ Brk . We claim that this contribution is

lim
k→+∞

∫
Ck\Brk

|M(∇uk)| dx ≤ 2Fl(h?, ψ?) = A(ψ?, SGh?). (13.41)

To prove this, we start to compute the area of the graph of uk restricted to C+
k \Brk . From (13.25),

(13.17), (13.19) and (13.18), we have

∂ruk1 =
( θ
θk
− 1
)
τ ′kh

?
k
′ =

l

l − rk

( θ
θk
− 1
)
h?k
′,

∂θuk1 =
1 + h?k
θk

,

∂ruk2 = τ ′k

[(
1− θ

θk

)
h?k
′∂w2ψ

?
k + ∂w1ψ

?
k

]
=

l

l − rk

[(
1− θ

θk

)
h?k
′∂w2ψ

?
k + ∂w1ψ

?
k

]
,

∂θuk2 = −
[1 + h?k

θk

]
∂w2ψ

?
k,

∂ruk1∂θuk2 − ∂θuk1∂ruk2 = −
(

1 + h?k
θk

)
l

l − rk
∂w1ψ

?
k,

(13.42)

where h?k
′ denotes the derivative of h?k with respect to w1, h?k, h

?
k
′ are evaluated at τk(r), and the

two partial derivatives ∂w2ψ
?
k, ∂w1ψ

?
k of ψ?k with respect to w2, w1 are evaluated at (τk(r),−sk(r, θ)).

Note carefully that, in the computation of the Jacobian, the terms containing ∂w2ψ
?
k cancel each

other.
Notice that, since h?k is convex, its derivative is nonincreasing, and therefore

∫ l
rk
|h?k
′| dr < +∞.

As a consequence of (13.42), from (2.3), we have

A(uk, C
+
k \ Brk)

=

∫ l

rk

∫ θk

0
r

{
1 +

(
l

l − rk

)2( θ

θk
− 1

)2

(h?k
′)2

+

(
l

l − rk

)2 [( θ
θk
− 1
)2

(h?k
′)2(∂w2ψ

?
k)

2 + 2
(
1− θ

θk

)
h?k
′∂w2ψ

?
k∂w1ψ

?
k + (∂w1ψ

?
k)

2

]

+
1

r2

(
1 + h?k
θk

)2
(

1 + (∂w2ψ
?
k)

2 +

(
l

l − rk

)2

(∂w1ψ
?
k)

2

)} 1
2

drdθ,

where ∂w2ψ
?
k, ∂w1ψ

?
k are evaluated at (τk(r),−sk(r, θ)), and h?k, h

?
k
′ are evaluated at τk(r). Now we
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use the change of variable (13.22): from (13.24), we have

A(uk, C
+
k \ Brk)

=

∫ l

0

∫ h?k(w1)

−1

(
l − rk
l

)(
θk

1 + h?k

)
Rk(w1)

{
1 +

( l

l − rk
)2(Θk(w1, w2)

θk
− 1

)2

(h?k
′)2

+

(
l

l − rk

)2 [(
1− Θk(w1, w2)

θk

)2
(h?k
′)2(∂w2ψ

?
k)

2 + 2
(
1− Θk(w1, w2)

θk

)
h?k
′∂w2ψ

?
k∂w1ψ

?
k + (∂w1ψ

?
k)

2
]

+
1

(Rk(w1))2

(1 + h?k
θk

)2(
1 + (∂w2ψ

?
k)

2 +
( l

l − rk
)2

(∂w1ψ
?
k)

2
)} 1

2

dw2dw1,

where Rk(w1), Θk(w1, w2) are defined in (13.20), (13.21), h?k
′ is evaluated at w1, and ∂w1ψ

?
k and

∂w2ψ
?
k are evaluated at (w1, w2). Therefore

A(uk, C
+
k \ Brk) =

∫ l

0

∫ h?k(w1)

−1

{
Ik + IIk + IIIk + IVk + Vk + VIk

} 1
2
dw2dw1, (13.43)

where 

Ik =
(
l−rk
l

)2 (
θk

1+h?k

)2
(Rk(w1))2,

IIk =
(

θk
1+h?k

)2 (
1− Θk(w1,w2)

θk

)2
(Rk(w1))2(h?k

′)2,

IIIk =
(

θk
1+h?k

)2
(Rk(w1))2

[(
1− Θk(w1,w2)

θk

)2
(h?k
′)2(∂w2ψ

?
k)

2

+2
(
1− Θk(w1,w2)

θk

)
h?k
′∂w2ψ

?
k∂w1ψ

?
k + (∂w1ψ

?
k)

2
]
,

IVk =
(
l−rk
l

)2
,

Vk =
(
l−rk
l

)2
(∂w2ψ

?
k)

2,

VIk = (∂w1ψ
?
k)

2.

Since limk→∞
l−rk
l = 1 and limk→+∞ θk = 0, we deduce from (13.20), (13.21),

lim
k→+∞

Rk(w1) = w1, lim
k→+∞

Θk(w1, w2)

θk
=
h?(w1)− w2

1 + h?(w1)
.

Therefore we see that ∫ l

0

∫ h?k(w1)

−1
(Ik)

1
2 + (IIk)

1
2dw2dw1 = o(1),

as k → +∞. Moreover ∫ l

0

∫ h?k(w1)

−1
(IIIk)

1
2dw2dw1 = o(1) (13.44)
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as k → +∞. Indeed we may estimate∫ l

0

∫ h?k(w1)

−1
(IIIk)

1
2dw2dw1 ≤ Cθk

∫ l

0

∫ h?k(w1)

−1
|h?k
′(w1)||∂w2ψ

?
k(w1, w2)|+ |∂w2ψ

?
k(w1, w2)|dw2dw1,

and using that |h?k
′(w1)| ≤ 2k (see (13.11)), if we assume (13.5), i.e., θkk → 0, then (13.44) follows,

since the BV -norm of ψ?k is bounded uniformly with respect to k.
Hence, from (13.43),

A(uk, C
+
k \ Brk) ≤

∫ l

0

∫ h?k(w1)

−1

{
IVk + Vk + VIk

} 1
2
dw2dw1 + o(1)

≤
∫ l

0

∫ h?k(w1)

−1

√
1 + (∂w1ψ

?
k)

2 + (∂w2ψ
?
k)

2 dw2dw1 + o(1)

= A(ψ?k, SGh? ∩Rl) + o(1) =
1

2
A(ψ?k, SGh?) + o(1) (13.45)

as k → +∞. Then taking the limit as k → +∞ in (13.45), and using Lemma 13.1 (iii), we get

lim
k→+∞

A(uk, C
+
k \ Brk) ≤ A(ψ?, SGh?) = F2l(h

?, ψ?), (13.46)

where the last equality follows from (12.16).

Step 8. Conclusion. Notice that uk ∈ Lip(Ω,R2), and uk → u in L1(Ω,R2). Inequality (13.4)
follows from (13.39) (which gives the term

∫
Ω |M(∇u)|dx), from (13.41) (which gives the second

term in (13.4)), and from estimates (13.29), (13.36), (13.37), and (13.38), showing that all the other
contributions are negligible.

Corollary 13.4 (Minimizers for l large enough). For l large enough, a solution to the minimum
problem on the right-hand side of (12.9) is given by h ≡ −1 and ψ ≡ 0.

Proof. Recall that for l large enough, we have

A(u,Ω) =

∫
Ω
|M(∇u)|dx+ π,

see [1]. The assertion then follows from Theorem 11.16 and (12.10).
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Inc., Boston, MA, 2008.

[24] F. Maggi, “Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to
Geometric Measure Theory”, Cambridge Univ. Press, Cambridge, 2012.

[25] W. H. Meeks and S. T. Yau, The classical Plateau problem and the topology of three-dimensional
manifolds, Topology 21 (1982), 409-440.

[26] C.B. Morrey, “Multiple Integrals in the Calculus of Variations”, Grundlehren der mathema-
tischen Wissenschaften, Vol. 130, Springer-Verlag, New York, 1966.

[27] J. C. C. Nitsche, “Lectures on Minimal Surfaces”, Vol. I, Cambridge University Press, Cam-
bridge, 1989.

[28] R. Scala, Optimal estimates for the triple junction function and other surprising aspects of the
area functional, Ann. Sc. Norm. Super. Pisa Cl. Sci. XX (2020), 491-564.

113


	Introduction
	Preliminaries
	Notation and conventions
	Area in cylindrical coordinates
	Area formula

	Currents
	Generalized graphs in codimension 1
	Polar graphs in a cylinder
	Plateau problem in parametric form
	A Plateau problem for a self-intersecting boundary space curve

	Cylindrical Steiner symmetrization
	Cylindrical symmetrization of a two-current. Slicings

	Lower bound: first reductions on a recovery sequence
	The functions dk, the subdomains An and Dk, and selection of (k)
	Estimate of the mass of Guk over Dk

	 The maps k, k, and the currents Dk, D"0362Dk, Ek
	The sets k(Dk) and the currents (k)Dk 
	Construction of the current D"0362Dk via the currents Dk and Wk
	 The 3-current Ek and the symmetrization of D"0362Dk

	Towards an estimate of S(D"0362Dk): two useful lemmas
	 Estimate from below of the mass of Guk over Dk(B)
	The current S(D"0362Dk) as sum of a polar subgraph and a polar epigraph

	Estimate from below of the mass of Guk over DkB
	Description of the boundary of the current S(D"0362Dk)height 7pt width 0.5pt depth 0pt height 0.5pt width 6pt depth 0pt((-1,)B1-k')
	Construction of the current Vk,

	Gluing rectifiable sets
	Enforcing boundary conditions at {0}R2; a modification of k,

	Three examples
	An approximating sequence of maps with degree zero: cylinder
	An approximating sequence of maps with degree zero: catenoid union a flap
	Smoothing by convolution: the case of the two discs

	Lower bound
	Lower bound: reduction to a Plateau-type problem on the rectangle Rl

	Structure of minimizers of F2l
	Existence of a minimizer of F2l

	Upper bound
	References

