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Abstract. The paper concerns the analysis of global minimizers of a Dirichlet-type energy func-
tional in the class of S2-valued maps defined in cylindrical surfaces. The model naturally arises as
a curved thin-film limit in the theories of nematic liquid crystals and micromagnetics. We show
that minimal configurations are z-invariant and that energy minimizers in the class of weakly ax-
ially symmetric competitors are, in fact, axially symmetric. Our main result is a family of sharp
Poincaré-type inequality on the circular cylinder, which allows establishing a nearly complete pic-
ture of the energy landscape. The presence of symmetry-breaking phenomena is highlighted and
discussed. Finally, we provide a complete characterization of in-plane minimizers, which typically
appear in numerical simulations for reasons we explain.

1. Introduction4

The interplay between geometry and topology plays a fundamental role in many fields of applied5

science. The most basic examples include thin nematic liquid crystal shells [29, 33, 35] and curvilin-6

ear magnetic nanostructures [19, 40]. Curvature effects and topological constraints lead to unusual7

properties of the underlying physical systems and promote the appearance of novel microstructures,8

providing a promising way to design new materials with prescribed properties.9

In the last decade, magnetic systems with curvilinear shapes have been subject to extensive ex-10

perimental and theoretical research (cf. [8, 12, 17, 22, 37, 38, 40]). Recent advances in the fabrication11

of magnetic spherical hollow nanoparticles and rolled-up nanomembranes with a cylindrical shape12

lead to the creation of artificial materials with unexpected characteristics and numerous applica-13

tions in nanotechnology, including high-density data storage, magnetic logic, and sensor devices14

(cf. [21, 34, 40]). Embedding planar structures in the three-dimensional space permits altering their15

magnetic properties by tailoring their local curvature. The interplay between geometry, topology, and16

Dzyaloshinskii–Moriya interaction (DMI) leads to the formation of novel magnetic spin textures, e.g.,17

chiral domain walls and skyrmions [9,13,32]. The curvature effects have been shown to play a crucial18

role in stabilizing these chiral spin-textures. Spherical and cylindrical thin films are of particular19

interest due to their simple geometry and capability to host spontaneous skyrmions (topologically20

protected magnetic structures) even in the absence of DMI [19,27,40].21

In what follows, occasionally, we are going to use the language of micromagnetics. However, our22

mathematical results apply to other physical systems (e.g., the Oseen-Frank theory of nematic liquid23

crystals).24

1.1. State of the art. It is well established that, when the thickness of a thin shell is very small25

relative to the lateral size of the system, the demagnetizing field interactions behave, at the leading26

order, as a local shape-anisotropy, see [8,12,15,20]. In the context of a thin curvilinear shell (generated27

by extruding a regular surface M in R3 along the normal direction), the leading-order contribution28

to the micromagnetic energy functional reads as [12,15]:29

E : m ∈ H1(M,S2) 7→
ˆ
M

|∇ξm(ξ)|2 dξ + α

ˆ
M
(m(ξ) · n(ξ))2dξ, (1.1)

where n is the normal field to the surface M, α ∈ R is an effective anisotropy parameter accounting30

for both shape and crystalline anisotropy, and ∇ξ is the tangential gradient on M.31

The role of α is easy to understand qualitatively. Uniform states are the only local minimizers of32

E when α = 0. For largeα > 0, tangential vector fields are energetically favored; for largeα < 0, i.e.,33

when shape anisotropy prevails over perpendicular crystal anisotropy, energy minimization prefers34

normal vector fields.35
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An exact characterization of the minimizers of this problem is a nontrivial task with far-reaching36

consequences for modern magnetic storage technologies [36]. Recently, a partial answer about the37

structure of minimizers of E has been given for the case M = S2. It has been shown that (see [17])38

(1) for any α ∈ R, the normal vector fields ±n are stationary points of the energy functional E39

on the space H1(S2,S2); moreover, they are strict local minimizers for every α < 0 and are40

unstable for α > 0.41

(2) When α ⩽ −4, the normal vector fields ±n are the only global minimizers of E .42

Also, in [28] it is shown that for α ≪ −1, skyrmionic solutions topologically distinct from the43

ground state emerge as excited states.44

For α > 0, the energy landscape of E is challenging to describe. Indeed, topological obstructions45

(hairy ball theorem) prevent the existence of purely tangential vector fields in H1(S2,S2). Numerical46

simulations suggest that when α > 0, the energy E can exhibit magnetic states with skyrmion number47

0 or ±1 (see, e.g., [27,36,39]). Also, within the homotopy class {degm = 0}, the energy E favors the48

so-called onion state if α is sufficiently small, and the vortex state otherwise.49

Classifying the ground states in spherical thin films in the regime α > 0 is demanding. However,50

many of the difficulties one faces and the emerging symmetry-breaking phenomena are already present51

in the analysis of ground states and axially symmetric solutions in the more tractable geometry of a52

cylinder. This observation triggered our interest in the questions addressed in this paper and led to53

developing some techniques that we believe can be further improved to tackle ground states’ analysis54

in more complex geometries.55

1.2. Contributions of present work. Let Γ ⊆ R2 be the image of a smooth Jordan curve ζ :56

[0, 2π] → Γ, and let C := I×Γ, I := [−1, 1], be the cylindrical surfaces generated by Γ (see Figure 1).57

Given that m is S2-valued, we have that up to the constant term −α|C|, with |C| being the area of58

C, the minimization problem for (1.1) is equivalent to the minimization of the energy functional59

m ∈ H1(C,S2) 7→
ˆ
C
|∇ξm(ξ)|2 dξ − α

ˆ
C
|m(ξ)× n(ξ)|2dξ. (1.2)

The previous expression (1.2) is more convenient for the following reason. When α = 0, any constant60

S2-valued vector field is a minimizer with zero minimal energy. The scenario is still trivial when α > 0.61

There are only two minimizers in this regime, and these are the constant vector fields ±e3 = ±(0, 0, 1)62

whose associated minimal energy is −α|C|. However, the situation suddenly becomes engaging when63

α < 0. This is the regime this paper is devoted to, and working with (1.2) allows dealing with64

nonnegative energies whereas (1.1) does not. Therefore, we set α := −κ2, with κ2 ̸= 0, and, from65

now on, we focus our investigations on the energy functional66

E(m) :=

ˆ
C
|∇ξm|2 dξ + κ2

ˆ
C
|m× n|2dξ, m ∈ H1(C,S2). (1.3)

Here ∇ξ stands for the tangential gradient on C, and κ2 is a positive constant that controls the67

perpendicular anisotropy’s strength. Note that, equivalently, the value of κ2 controls the size of the68

sample C. Indeed, simple rescaling allows reducing the analysis of (1.3) to a scaled cylinder and a69

different value of κ2. This is why when we later analyze the minimizers E on circular cylinders, we70

focus only on C := I × S1.71

This paper’s main aim concerns the analysis of global minimizers of the energy functional (1.3)72

in the class of S2-valued maps defined in the circular cylinder C = I × S1. The analysis we perform73

involves several steps.74

First, for any κ2 > 0, we show that minimizers of the energy E defined in (1.3) are z-invariant. In75

Proposition 1 we prove the result holds under the more general framework of cylindrical surfaces of the76

type C := I × Γ where I := [−1, 1] and Γ ⊆ R2 is the image of a smooth Jordan curve ζ : [0, 2π] → Γ77

(see Figure 1). Also, we prove that when C = I × S1, z-invariance of the minimizers holds in the78

restricted class of weakly axially symmetric configurations which are defined by the condition that79 ˆ
S1
m⊥(z, γ)dγ = 0 ∀z ∈ I, (1.4)

where m⊥ := m − (m · e3)e3. It is simple to show that every axially symmetric configuration80

satisfies (1.4) (cf. Remark 3). In Theorem 1, we prove that every minimizer of E in the class of weakly81

axially symmetric competitors is, in fact, axially symmetric. The proof is based on a symmetrization82

argument in conjunction with the classical Poincaré-Wirtinger inequality for null average and periodic83

functions.84



ON SYMMETRY OF ENERGY MINIMIZING HARMONIC-TYPE MAPS 3

Figure 1. The paper analyzes ground states of the energy functional E in the admissible class of
S2-valued maps defined on cylindrical surfaces C = I × Γ. After a general result on the z-invariance
of the minimizers of E in H1(C, S2), we look for the analytic expression of the minimizers in circular
cylinders (i.e., on the case Γ = S1).

Second, we focus on the analysis of global minimizers of the energy E in the unrestricted class85

H1(I ×S1,S2), i.e., when no weak axial symmetry is assumed on the competitors. Our main result is86

a family of sharp Poincaré-type inequalities (see Theorem 2), which allow us to establish the following87

picture of the energy landscape of E (see Theorem 3).88

(1) If κ2 ⩾ 3, the normal vector fields ±n are the only global minimizers of the energy functional89

E in H1(C,S2).90

(2) Moreover, they are strict local minimizers for every κ2 > 1 and unstable for 0 < κ2 < 1. The91

constant vector fields ±e3 are unstable for all κ2 > 0.92

The sharp Poincaré-type inequality is stated in Theorem 2 and states that for every κ2 > 0 there93

holds94 ˆ
S1
|∇γu|2 dγ + κ2

ˆ
S1
|u× n|2dγ ⩾ c2κ

ˆ
S1
|u|2dγ ∀u ∈ H1(S1,R3). (1.5)

with c2κ = 1 if κ2 ⩾ 3, c2κ = 1
2 (κ

2 − ω2
κ + 4) if 0 < κ2 ⩽ 3, and ω2

κ :=
√
κ4 + 16. Our result also95

includes a precise characterization of the minimizers for which the equality sign is reached in (1.5).96

For the proof, we work in Fourier space. While the frequencies decouple nicely, the vector-valued97

nature of H1(S1,R3) elements, as well as the presence of the anisotropic constant κ2, has the effect98

that different space directions strongly interact, and this requires careful analysis (see [17]).99

Third, motivated by their importance in numerical simulations (see Section 4 for a detailed dis-100

cussion), we investigate global minimizers of E in the class of in-plane configurations. We show that101

if m⊥ ∈ H1(S1,S1) is the profile of a minimizer in H1(C,S1) of the energy functional E , then either102

degm⊥ = 0 or degm⊥ = 1. Indeed, among other things, in Theorem 4 we show the existence of a103

threshold value κ2∗ of the anisotropy parameter for which the following energetic implications hold:104

(1) If κ2 > κ2∗, then any global minimizer has degree one and, moreover, for every κ2 > 0, the105

normal fields ±n are the only two minimizers in the homotopy class {degm⊥ = 1}.106

(2) If κ2 < κ2∗, then any global minimizer has degree zero, and an accurate analytic description107

is given in terms of elliptic integrals.108

The previous two points allow for a complete characterization of the energy landscape of in-plane109

minimizers. The normal vector fields ±n are the only two in-plane energy minimizers when κ2 > κ2∗110

and the common minimum value of the energy is 2π. Instead, when κ2 < κ2∗, the minimal energy111

depends on κ2, and the precise minimal values, as well as the analytic expressions of the minimizers,112

are given in terms of elliptic integrals (see (4.8)-(4.9)).113

1.3. Outline. The paper is organized as follows. In Section 2 we prove that minimal configurations114

are z-invariant (cf. Proposition 1) and that every minimizer of E in the class of weakly axially sym-115

metric competitors is, in fact, axially symmetric (cf. Theorem 1). Section 3 is devoted to the analysis116

of global minimizers of the energy E in the unrestricted class H1(I × S1,S2). Our main result is a117

family of sharp Poincaré-type inequalities (cf. Theorem 2), which allow establishing a nearly complete118

picture of the energy landscape of E (cf. Theorem 3). Finally, in Section 4, we provide a complete119

characterization of the energy landscape of in-plane minimizers of E .120
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1.4. Notation. In what follows, for a given embedded submanifold M of R3, we indicate by121

H1(M,Rm), m ⩾ 1, the Sobolev space of vector-valued functions defined on M, endowed with122

the norm (cf. [1])123

∥u∥2H1(M,Rm) :=

ˆ
M

|u(ξ)|2dξ +
ˆ
M

|∇ξu(ξ)|2 dξ , (1.6)

where ∇ξu is the tangential gradient of u on M. We write H1(M,S2) for the metric subspace124

of H1(M,R3) consisting of vector-valued functions with values in the unit 2-sphere of R3. When125

M := S1 is the unit 1-sphere, H1(S1,Rm) identifies to the Sobolev space H1
♯ ([−π, π],Rm) consisting126

of 2π-periodic vector-valued functions and endowed with the norm127

∥u∥2H1
♯ ([−π,π],Rm) :=

ˆ π

−π

|u(t)|2dt+
ˆ π

−π

|∂tu(t)|2dt. (1.7)

Finally, we denote by H1
♯ ([−π, π],S1) and H1

♯ ([−π, π],S2) the metric subspaces of the Sobolev space128

H1
♯ ([−π, π],Rm) consisting, respectively, of S1-valued and S2-valued periodic functions.129

2. Symmetry properties of the minimizers130

Our first result, stated in the next Proposition 1, shows that for any κ2 > 0 every minimizer m(z, t)131

of the energy E in (1.3) is z-invariant. We state the result in the more general framework of cylindrical132

surfaces of the type C := I × Γ where I := [−1, 1] and Γ ⊆ R2 is the image of a smooth Jordan curve133

ζ : [0, 2π] → Γ. Note that, by parameterizing the cylinder C through the map134

γ(z, t) := (ζ(t), z), (2.1)

we can rewrite the energy functional (1.3) in the form135

E(m) =

ˆ 1

−1

ˆ
Γ

|∇ζm(z, ζ)|2 + |∂zm(z, ζ)|2dζdz + κ2
ˆ 1

−1

ˆ
Γ

|m(z, ζ)× n(ζ)|2dζdz. (2.2)

This equivalent expression of the energy in (1.3) is used in the proof of the following result on the136

z-invariance of energy minimizers.137

Proposition 1 (z-invariance of energy minimizers). Let m ∈ H1(C,S2) be a (global) minimizer138

of the micromagnetic energy functional (1.3) with C := I × Γ and Γ ⊆ R2 the image of a smooth139

Jordan curve ζ : [0, 2π] → Γ. Then there exists a minimizer m∗ ∈ H1(C,S2) of E in (2.2), built from140

m, which is z-invariant, i.e., such that141

m∗(z, ζ) = u∗(ζ) (2.3)

for some u∗ ∈ H1(Γ,S2). Actually, every minimizer of E has the form (2.3) for some minimizer142

u∗ ∈ H1(Γ,S2) of the reduced energy143

F(u) :=

ˆ
Γ

|∇ζu(ζ)|2 dζ + κ2
ˆ
Γ

|u(ζ)× n(ζ)|2dζ. (2.4)

Remark 1. In general, z-invariance does not hold for critical points of the energy. In fact, when144

C := I × S1 and κ2 = 1, the helices satisfy the Euler–Lagrange equations associated with E and are145

not z-invariant (cf. Proposition 3). The observation implies that the helical configurations predicted146

in [40] are critical points of the energy, but not ground states.147

Proof. We use a symmetrization argument. Let m be a minimizer of E , and let us consider the148

function (note that, n(z, ζ) = n(ζ) is z-invariant)149

Φ : z ∈ I := [−1, 1] 7→
ˆ
Γ

|∇ζm(z, ζ)|2 dζ + κ2
ˆ
Γ

|m(z, ζ)× n(ζ)|2dζ. (2.5)

In terms of Φ the energy functional (1.3) reads as150

E(m) =

ˆ 1

−1

(
Φ(z) +

ˆ
Γ

|∂zm(z, ζ)|2dζ
)
dz. (2.6)

Note that, since m minimizes E on the two-dimensional surface C, m is smooth in C. Indeed, the151

Euler-Lagrange equations for m fit into the class of almost harmonic maps treated in [31, Chapter 4].152

In particular (cf. [31, Theorem 4.2]), m is Hölder continuous and, therefore, by the usual bootstrap153

argument, smooth in C. In particular, Φ is continuous on [−1, 1] and argminz∈[−1,1] Φ(z) ̸= ∅.154

We arbitrarily choose a point z∗ ∈ argminz∈[−1,1] Φ(z) and, with that, we define the z-invariant155

configuration156

m∗(z, ζ) := m(z∗, ζ) for every (z, ζ) ∈ I × Γ. (2.7)
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Note that, since m is smooth in C, m∗ is well-defined. Taking into account that for every ξ := (z, ζ) ∈157

I × Γ we have158

|∇ξm(z, ζ)|2 = |∇ζm(z, ζ)|2 + |∂zm(z, ζ)|2 (2.8)
with ∇ζm the tangential gradient on ζ, from (2.2) and (2.5) we get that159

E(m∗) =

ˆ 1

−1

ˆ
Γ

|∇ζm∗(z, ζ)|2 dζdz + κ2
ˆ 1

−1

ˆ
Γ

|m∗(z, ζ)× n(ζ)|2dζdz

=

ˆ 1

−1

ˆ
Γ

|∇ζm(z∗, ζ)|2 dζdz + κ2
ˆ 1

−1

ˆ
Γ

|m(z∗, ζ)× n(ζ)|2dζdz

=

ˆ 1

−1

Φ(z∗)dz

⩽
ˆ 1

−1

Φ(z)dz +

ˆ 1

−1

ˆ
Γ

|∂zm(z, ζ)|2dζdz

= E(m). (2.9)

Hence, if m is a minimizer in H1(C,S2) of (1.3) then so is the z-invariant configuration m∗(z, ζ) :=160

m(z∗, ζ). Moreover, if m is any minimizer in H1(C,S2), then, with m∗ defined as in (2.7), we get161

that E(m∗) = E(m). This entails that all the inequalities in (2.9) are, in fact, equalities. Therefore,162

ˆ 1

−1

ˆ
Γ

|∂zm(z, ζ)|2dζdz = 0, (2.10)

from which we conclude that m is z-invariant. This completes the proof. ■163

Since we are interested in symmetry-breaking phenomena of minimizers, we want to focus on the164

symmetric case when Γ is unit circle S1. Parameterizing the cylinder C := I × S1 through the map165

γ(z, t) := (cos t)e1 + (sin t)e2 + ze3, t ∈ [−π, π] (2.11)

with e1, e2, e3 the standard basis of R3, we can rewrite (2.2) in the following form166

E(m) =

ˆ 1

−1

ˆ π

−π

|∂tm(z, t)|2 + |∂zm(z, t)|2dtdz + κ2
ˆ 1

−1

ˆ π

−π

|m(z, t)× n(t)|2dzdt (2.12)

where we made the common abuse of notation167

m(z, t) := (m ◦ γ)(z, t), n(t) := (n ◦ γ)(z, t) = (cos t, sin t, 0). (2.13)

According to Proposition 1, the energy landscape associated with (1.3) is completely characterized168

as soon as one describes the minimizers in H1(S1,S2) of the energy functional (cf. (2.4))169

F(u) :=

ˆ
S1
|∇γu(γ)|2 dγ + κ2

ˆ
S1
|u(γ)× n(γ)|2dγ. (2.14)

Note that, in terms of the standard (conformal) parameterization of S1 given by γ : t ∈ [−π, π] 7→170

(cos t)e1 + (sin t)e2, the energy functional F reads as171

F(u) =

ˆ π

−π

|∂tu(t)|2dt+ κ2
ˆ π

−π

|u(t)× n(t)|2dt (2.15)

with, again, the convenient abuse of notation172

u(t) := (u ◦ γ)(t), n(t) := (n ◦ γ)(t) = (cos t, sin t, 0). (2.16)

For the next result, stated in Proposition 3, we introduce further notation. For each u ∈ H1(S1,S2)173

we denote by u⊥ the projection of u on R2 × {0}, namely, u⊥ := (u1, u2, 0) if u = (u1, u2, u3). Also,174

we denote by175

⟨u⊥⟩ :=
1

2π

ˆ π

−π

u⊥(t)dt (2.17)

the average of u⊥ on S1 and, for any θ ∈ [−π, π], we set176

uθ(t) := R(t)

 sin θ
0

cos θ

 = (sin θ)n+ (cos θ)e3, R(t) :=

 cos t − sin t 0
sin t cos t 0
0 0 1

 . (2.18)

For every t ∈ [−π, π] the action of R(t) is a rotation through an angle t about the z-axis.177
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In order to prove Proposition 3 we need the sharp form of the Poincaré-Wirtinger inequality on178

S1 that we recall here; its proof is a trivial application of Parseval’s theorem for Fourier series and is179

therefore omitted.180

Proposition 2 (Poincaré-Wirtinger inequality). If u ∈ H1
♯ ([−π, π],R2) is null-average (i.e.,181

⟨u⊥⟩ = 0) then182 ˆ π

−π

|u(t)|2 ⩽
ˆ π

−π

|∂tu(t)|2. (2.19)

The minimizer is reached when u(t) = c1 cos t+ c2 sin t, for arbitrary constant vectors c1, c2 ∈ R2.183

We can now state Proposition 3 and Theorem 1, which are our main results about axially symmetric184

minimizers. Their proof is given at the end of this section.185

Proposition 3 (axially symmetric energy minimizers). In the class of configurations u ∈186

H1(S1,S2) such that ⟨u⊥⟩ = 0, the only global minimizers of (2.14) are given by187  u = ±e3 if 0 < κ2 < 1,
u = uθ if κ2 = 1,
u = ±n if κ2 > 1,

(2.20)

with uθ given by (2.18). Thus, if 0 < κ2 < 1 or κ2 > 1, there exist only two minimizers, while when188

κ2 = 1 there exist infinitely many minimizers described by uθ with θ chosen arbitrarily in [−π, π].189

The corresponding values of the minimal energies are given by190 {
2πκ2 if 0 < κ2 ⩽ 1,
2π if κ2 ⩾ 1.

(2.21)

Remark 2. Note that at κ2 = 1 a symmetry-breaking phenomenon appears. The minimizers suddenly191

pass from the in-plane configurations ±n for κ2 > 1, to the purely axial configurations ±e3 for192

κ2 < 1. Also, note that if e ∈ S1 × {0} is in-plane, then F(e) = πκ2. Therefore, for 0 < κ2 <193

1, the configurations ±e3 are never global minimizers outside of the restricted admissible class of194

weakly axially symmetric configurations (i.e., maps u ∈ H1(S1,S2) such that ⟨u⊥⟩ = 0). A similar195

observation applies to the configurations ±n when 0 < κ2 < 2 (because of F(e) = πκ2); in this range196

of parameters ±n cannot be global minimizers unless we restrict the minimization problem to the197

class of axially symmetric configurations.198

Before stating our main result on axially symmetric minimizers, we give the following definition.199

We say that m ∈ H1(C,S2) is weakly axially symmetric (with respect to the z-axis) if200

⟨m⊥(z, ·)⟩S1 :=
1

2π

ˆ
S1
m⊥(z, γ)dγ = 0 ∀z ∈ I. (2.22)

Remark 3. It is important to stress that every axially symmetric configuration satisfies (2.22). Indeed,201

if m is axially symmetric with respect to the z-axis then, in local coordinates, i.e., through the202

parameterization of S1 given by γ : t ∈ [−π, π] 7→ (cos t)e1 + (sin t)e2, we have that203

m(z, t) = R(t)m̃(z) ∀(z, t) ∈ I × [−π, π] (2.23)

for some profile m̃ ∈ H1(I, S2). Hence, ⟨m(z, ·)⟩S1 = (m̃(z) · e3)e3 for every z ∈ I, and this204

implies that ⟨m⊥(z, ·)⟩S1 = 0 for every z ∈ I. Also, note that the class of weakly axially symmetric205

configurations it is not directly related to the class of null-average configurations in H1(C,S2). Even206

if m is z-invariant, (2.22) does not imply that m is null average, but only that its projection m⊥ is207

null average.208

Theorem 1 (axially symmetric energy minimizers). Let C := I×S1, with I = [−1, 1]. Assume209

that m is a (global) minimizer of the micromagnetic energy functional (1.3) in the class of weakly210

axially symmetric configurations. Then, m is z-invariant and, more precisely, the following assertions211

hold:212

i. If 0 < κ2 < 1 then necessarily m ∈ {±e3}.213

ii. If κ2 > 1 then necessarily m ∈ {±n}.214

iii. When κ2 = 1, there are infinitely many axially symmetric minimizers; they are all z-invariant215

and given by m(z, t) = uθ(t) with θ ∈ [−π, π] and uθ given by (2.18).216

The values of the minimal energies are given by 4πκ2 if 0 < κ2 ⩽ 1 and by 4π if κ2 ⩾ 1.217
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Remark 4. Note that, due to Remark 3 and the fact that ±n and ±e3 are axially symmetric (with218

respect to the z-axis), the conclusions of Theorem 1 still hold in the class of axially symmetric219

minimizers.220

Remark 5. We stress that Theorem 1 does not look for axially symmetric minimizers in the class of221

minimizers of E . In other words, axially symmetric minimizers do not need to be global minimizers.222

In fact, Theorem 1 characterizes the minimizers of E in the class of configurations which satisfy223

condition (2.22) and shows that, in this class, the minimizers are necessarily z-invariant and axially224

symmetric.225

We first give the proof of Proposition 3, then we prove Theorem 1 as a consequence of Proposition 1,226

Proposition 3, and Remark 3.227

Proof of Proposition 3. For every t ∈ [−π, π] we denote by R(t) the rotation through an angle228

t about the z-axis which appears (cf. (2.18)). Clearly, n(t) = R(t)e1. Next, let u ∈ H1(S1,S2) be a229

minimizer of (2.15) and let us choose t∗ ∈ [−π, π] such that230

t∗ ∈ arg min
t∈[−π,π]

(
|u⊥(t)|2 + κ2|u(t)× n(t)|2

)
(2.24)

with u⊥(t) := (u1(t), u2(t), 0). Note that t∗ is well-defined because of the regularity of u (see com-231

ments after (2.6)). Define the new configuration232

u∗(t) := R(t)R⊤(t∗)u(t∗). (2.25)

We then have |u∗(t)| = 1 and ⟨u∗
⊥⟩ = 0 because

〈
R(t)R⊤(t∗)u(t∗)

〉
= (u(t∗) · e3)e3. Moreover,233

|∂tu∗(t)|2 =
∣∣R⊤∂tR(t)R

⊤(t∗)u(t∗)
∣∣2 =

∣∣e3 × (
R⊤(t∗)u(t∗)

)∣∣2 = |u⊥(t∗)|2 (2.26)

and234

|u∗(t)× n(t)|2 =
∣∣R⊤(t∗)u(t∗)× e1

∣∣2 = |u(t∗)× n(t∗)|2 (2.27)
It follows that235

F(u∗) =

ˆ π

−π

|∂tu∗(t)|2dt+ κ2
ˆ π

−π

|u∗(t)× n(t)|2 dt (2.28)

=

ˆ π

−π

|u⊥(t∗)|2 + κ2|u(t∗)× n(t∗)|2 dt (2.29)

⩽
ˆ π

−π

|u⊥(t)|2 + κ2|u(t)× n(t)|2 dt. (2.30)

After that, the sharp Poincaré-Wirtinger inequality on S1 (cf. Proposition 2) assures that for every236

u⊥ ∈ H1(S1,R2) such that ⟨u⊥⟩ = 0 one has237 ˆ π

−π

|u⊥(t)|2 dt ⩽
ˆ π

−π

|∂tu⊥(t)|2dt. (2.31)

Combining (2.30) and (2.31) we conclude that238

F(u∗) ⩽
ˆ π

−π

|∂tu⊥(t)|2 + κ2|u(t)× n(t)|2 dt ⩽ F(u). (2.32)

Thus u∗ and u are both minimizers. This implies that239

F(u) =

ˆ π

−π

|∂tu⊥(t)|2 + κ2|u(t)× n(t)|2 dt = F(u∗). (2.33)

It follows that whenever ⟨u⊥⟩ = 0, then necessarily ∂t(u(t) · e3) = 0 on S1. On the other hand, the240

equality F(u∗) = F(u) also entails that the equality sign is reached in the sharp Poincaré-Wirtinger241

inequality (2.19), i.e., that242 ˆ π

−π

|u⊥(t)|2dt =
ˆ π

−π

|∂tu⊥(t)|2dt (2.34)

whenever u is a minimizer with ⟨u⊥⟩ = 0. However, the equality sign in the Poincaré-Wirtinger243

inequality is achieved if, and only if, u⊥ = (cos t)a1+(sin t)a2 for some a1,a2 ∈ R2×{0}. Combining244

this observation with the conditions ∂t(u(t) · e3) = 0 and |u| = 1 we conclude that if ⟨u⊥⟩ = 0 then245

necessarily246

u(t) = uθ(t) :=

 sin θ cos t
sin θ sin t
cos θ

 (2.35)
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for some θ ∈ R. Finally, we note that with u(t) given by the previous expression, we have247

|∂tuθ(t)|2 = sin2 θ, |uθ(t)× n(t)|2 = 1− sin2 θ.

Therefore248

F(uθ(t)) =

ˆ π

−π

sin2 θ + κ2(1− sin2 θ)dt = 2π[κ2 + sin2 θ(1− κ2)]. (2.36)

Minimizing (2.36) with respect to θ ∈ [−π, π] we get that θ = ±π when 0 < κ2 < 1 and, in this case,249

F(uθ(t)) = F(±e3) = 2πκ2. (2.37)

Also, we get that the angle θ can be arbitrarily chosen when κ2 = 1, and in this case,250

F(uθ(t)) = 2π ∀θ ∈ [−π, π]. (2.38)

Finally, we obtain that θ = ±π/2 when κ2 > 1 and, in this case,251

F(uθ(t)) = 2π. (2.39)

This gives (2.20) and completes the proof. □252

Proof of Theorem 1 The proof is a consequence of Proposition 1, Proposition 3 and Remark 3.253

The only point is to realize that the proof of Proposition 1 does not get affected by the introduction254

of the additional weak-axial symmetry constraint (2.22). □255

3. Global minimizers. A sharp Poincaré-type inequality on the cylinder256

An exact characterization of the minimizers of the energy functional (1.3) is a nontrivial task. Qual-257

itative aspects of the energy landscape have been investigated in [40] through numerical simulations.258

However, sometimes it is enough to obtain a meaningful lower bound on the energy to gain informa-259

tion on the ground states. For that, we relax the constraint from m being S2-valued to the following260

energy constraint:261

1

4π

ˆ
C
|m|2 = 1, (3.1)

with C := I×S1 and I := [−1, 1]. From the physical point of view, this type of relaxation corresponds262

to a passage from classical physics to a probabilistic quantum mechanics perspective, and it has been263

proved to be useful in obtaining nontrivial lower bounds of the ground state micromagnetic energy264

(see, e.g., [7,11,17]). From the mathematical perspective, replacing the pointwise constraint |m| = 1265

a.e. in C with (3.1) frames the minimization problem in the context of Poincaré-type inequalities,266

where sometimes the relaxed problem can be solved exactly, and the dependence of the minimizers267

on the geometrical and physical properties of the model made explicit. This relaxation can help to268

obtain sufficient conditions for minimizers to have specific geometric structures (see, e.g., [7, 11,17]).269

We note that the pointwise constraint |m| = 1 a.e. in C is equivalent to the following two energy270

constraints in terms of the L2 and L4 norms:271

1

4π

ˆ
C
|m|2 = 1,

1

4π

ˆ
C
|m|4 = 1. (3.2)

Indeed, by Cauchy–Schwarz inequality 4π = (|m|2, 1)L2(C) ⩽ ∥|m|2∥L2(C)∥1∥L2(C) = 4π, which as-272

sures that the equality sign in the previous estimate is reached only when |m|2 is constant and,273

therefore, necessarily equal to 1. It follows that the relaxed problem can also be interpreted as the274

one obtained by forgetting about the L4 constraint.275

Our results include the precise characterization of the minimal value and global minimizers of276

the energy functional E defined in (1.3) on the space of H1(C,R3) vector fields satisfying the relaxed277

constraint (3.1). Thanks to Proposition 1, we can focus on the analysis of the minimizers inH1(S1,R3)278

of the normalized energy functional279

G(u) := 1

2π

ˆ
S1
|∇γu|2 dγ +

κ2

2π

ˆ
S1
|u× n|2dγ, (3.3)

subject to the L2-constraint280

1

2π

ˆ
S1
|u|2dγ = 1. (3.4)

Clearly, every minimizer of (3.3) in H1(S1,S2) satisfies the constraint (3.4) and provides an upper281

bound to the minimal energy associated with the problem (3.3)-(3.4). Thus, problem (3.3)-(3.4) is282

a relaxed version of the minimization problem for G in H1(S1,S2). Although the expression of the283
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Figure 2. The graph of the optimal Poincaré constant c2κ as a function of the parameter κ2. The
optimal constant c2κ increases until the saturation value c2κ = 1 is reached at κ2 = 3.

energy functional (3.3) is, up to the constant factor 1
2π , the same as of F in (2.14), we denoted it by284

G to stress that it is part of the relaxed minimization problem.285

The existence of minimizers of the problem (3.3)-(3.4) quickly follows by direct methods in the286

Calculus of Variations. However, uniqueness is out of the question due to the energy’s invariance287

under the orthogonal group and reflections. Indeed, for every κ2 > 0, at least two minimizers always288

exist because if u is a minimizer of G, also −u minimizes G. We only focus on the nontrivial case289

κ2 ̸= 0; otherwise, constant configurations σ ∈ S2 are the only minimizers.290

In what follows, we denote by n the outward normal vector field to S1 and by τ := ∇γn the291

tangential one. When we refer to the local coordinates representation of a configuration u⊥ ∈292

H1(S1,R3), it is always meant the curve u⊥ ◦ γ, with γ : t ∈ [−π, π] 7→ (cos t)e1 + (sin t)e2, and293

t ∈ [−π, π]. Thus, e.g., in local coordinates, we have that τ (t) = (− sin t, cos t) and n(t) = (cos t, sin t).294

Our main result include the precise characterization of the minimal value and global minimizers of295

the relaxed problem (3.3)-(3.4) on the space of H1(S1,R3). In fact, we establish the following sharp296

Poincaré-type inequality in H1(S1,R3).297

Theorem 2 (sharp Poincaré-type inequality in H1(S1,R3)). For every κ2 > 0 the following298

sharp Poincaré-type inequality holds,299 ˆ
S1
|∇γu|2 dγ + κ2

ˆ
S1
|u× n|2dγ ⩾ c2κ

ˆ
S1
|u|2dγ ∀u ∈ H1(S1,R3), (3.5)

where the best Poincaré constant c2κ is the continuous function of κ given by300

c2κ :=

{
1 if κ2 ⩾ 3,
1
2 (κ

2 − ω2
κ + 4) if 0 < κ2 ⩽ 3,

(3.6)

with ω2
κ :=

√
κ4 + 16. Moreover, the equality sign in the Poincaré inequality (3.5) is reached if, and301

only if, u ∈ H1(S1,R3) has the following expressions:302

i. If κ2 > 3, the equality sign in (3.5) is reached only by the normal vector fields ±n.303

ii. If κ2 = 3, the equality is reached if, and only if, u is an element of the family represented in304

local coordinates by305

u(t) =
(
±
√
1− 10ρ21 + 4ρ1 cos(t+ θ)

)
n(t)− 2ρ1 sin(t+ θ)τ (t) (3.7)

for arbitrary θ ∈ [−π, π] and 0 ⩽ ρ1 ⩽ 1/
√
10.306

iii. If 0 < κ2 < 3, the equality sign in (3.5) is reached by any element of the family represented307

in local coordinates by308

u(t) = 2
√
2 sin(ϕκ) cos(t+ θ)n(t)−

√
2 cos(ϕκ) sin(t+ θ)τ (t), (3.8)

with θ ∈ [−π, π] arbitrary, and ϕκ ∈ [0, π/2] given by309

ϕκ =
1

2
arctan(4/κ2). (3.9)

Moreover, there are no S2-valued configurations for which the equality sign is achieved in310

(3.5).311

The normal fields ±n are universal configurations as their energy does not depend on κ2.312
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Figure 3. A plot of the minimal configurations in (3.7) for which the equality sign is attained in the
Poincaré inequality when κ2 = 3. The optimal vector fields are represented for three different values
of ρ1. From left to right, we plot (3.7) for ρ1 = 0.10, ρ1 = 0.17 and ρ1 = 0.27.

Remark 6. In view of our original problem concerning S2-valued minimizers, we note that setting313

ρ1 = 0 in (3.7) we recover the normal vector fields ±n, and these are the only S2-valued minimizers314

of the the problem (3.3)-(3.4) when κ2 = 3. Instead, when 0 < κ2 < 3, there are no S2-valued315

configurations for which the equality sign is achieved in (3.5).316

A graph of the optimal Poincaré constant c2κ as a function of κ2 is depicted in Figure 2. In Figure 3,317

it is represented a plot of the minimal configurations in (3.7) for which the equality sign is attained318

in the Poincaré inequality when κ2 = 3. Also, a plot of the minimal vector fields in (3.8) is given in319

Figure 4 for different values of 0 < κ2 < 3.320

Before giving the proof of Theorem 2, we want to point out some of its consequences.321

Proposition 4. For every κ2 > 0, the map322

u ∈ H1(S1,R3) 7→
(ˆ

S1
|∇γu|2 dγ + κ2|u× n|2dγ

)1/2

is a norm on H1(S1,R3) equivalent to the classical norm323

∥u∥H1(S1,R3) =

(ˆ
S1
|∇γu|2 dγ + |u|2dγ

)1/2

.

Next, by Theorem 2 we get that for κ2 ⩾ 3 the relaxed minimization problem (3.3)-(3.4) admits324

S2-valued minimizers. Thus, as a byproduct of Theorem 2, we obtain the following characterization325

of micromagnetic ground states in thin cylindrical shells.326

Theorem 3 (Micromagnetic ground states in thin cylindrical shells). For every value327

κ2 > 0 of the anisotropy, the normal vector fields ±n, as well as the constant vector fields ±e3 are328

stationary points of the micromagnetic energy functional (cf. (1.3))329

E (m) =

ˆ
C
|∇ξm|2 dξ + κ2

ˆ
C
|m× n|2dξ, m ∈ H1(C,S2),

and the following properties hold:330

i. If κ2 ⩾ 3, the normal vector fields ±n are the only global minimizers of the energy functional331

E in H1(C,S2). Also, they are locally stable for every κ2 ⩾ 1 and unstable for 0 < κ2 < 1.332

Moreover, when κ2 > 1, the normal vector fields ±n are local minimizers of the energy E.333

ii. The constant vector fields ±e3 are unstable for all κ2 > 0.334

Remark 7. Although the constant vector fields ±e3 are unstable for all κ2 > 0, they are stable in the335

class of axially symmetric minimizers, as has been shown in Theorem 1.336

Proof. In coordinates, the energy functional (cf. (2.4)) reads as337

F(m) =

ˆ 1

−1

ˆ π

−π

|∇m|2 + κ2 |m× n|2 dtdz, (3.10)
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Figure 4. A plot of the minimal vector fields in (3.8) for which the equality sign is attained in the
Poincaré inequality when 0 < κ2 < 3. From left to right, we plot (3.8) for κ2 = 0.1, κ2 = 1, and
κ2 = 2.5.

with m ∈ H1(C,S2) and ∇ = (∂z, ∂t). The Euler-Lagrange associated with F read as338

−∆m− κ2(m · n)n = λ(t)m, λ(t) = |∇m|2 − κ2(m · n)2. (3.11)

It is therefore clear that m(t) = ±e3 and m(t) = ±n(t) are critical points of the above energy. Let339

us investigate their stability. The second variation of F is given by340

F ′′(m)(φ) =

ˆ 1

−1

ˆ π

−π

|∇φ|2 − κ2(φ · n)2 − (|∇m|2 − κ2(m · n)2)|φ|2dtdz, (3.12)

and is defined on all φ ∈ H1(C,R3) such that φ ·m ≡ 0 in C.341

Proof of i. It is clear from Theorem 2 that ±n are the only global minimizers of F whenever κ2 ⩾ 3.342

It remains to analyze their stability in the range 0 < κ2 < 3. For that, it is sufficient to evaluate the343

second variation at m = ±n, which reads as344

F ′′(±n)(φ) =

ˆ 1

−1

ˆ π

−π

|∇φ|2 + (κ2 − 1)|φ|2dtdz. (3.13)

Setting φ = e3 we obtain that F ′′(±n)(e3) = 4π(κ2 − 1). Therefore the normal vector fields ±n are345

unstable critical points of F when κ2 < 1.346

However, (3.13) shows that for κ2 > 1 we have uniform local stability of the critical points ±n.347

We want to show that ±n are, in fact, local minimizers of the energy functional F . We focus on348

+n, the argument for −n being the same. Following [17], first, we compute the finite variation of F349

corresponding to an admissible increment v of n, i.e., v ∈ H1(C,R3) such that |n+ v| = 1 in C. A350

simple computation gives351

F(n+ v)−F(n) =

ˆ 1

−1

ˆ π

−π

|∇v|2 + κ2
(
|v|2 − (v · n)2

)
− |v|2 dtdz. (3.14)

Next, we define φ = v − (v · n)n and want to rewrite the previous expression in φ. Since v =352

φ+(v ·n)n we have ∂tv = ∂tφ+(v ·n)τ +(∂t(v · n))n with τ := ∂tn. Using that ∂tφ ·n = −φ · τ353

because of φ · n = 0, we obtain354

|∂tv|2 = |∂tφ|2 + (v · n)2 + |∂t(v · n)|2 + 2(∂tφ · τ )(v · n)− 2(φ · τ )∂t(v · n). (3.15)

Integrating by parts the previous relation, we infer that355

ˆ 1

−1

ˆ π

−π

|∂tv|2dtdz =
ˆ 1

−1

ˆ π

−π

|∂tφ|2 + (v · n)2 + |∂t(v · n)|2 + 4(∂tφ · τ )(v · n)dtdz. (3.16)

Similarly, we have356

|∂zφ|2 = |∂zv − (∂zv · n)n|2 = |∂zv|2 − |∂z (v · n)|2 . (3.17)
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Hence, plugging the previous expression into (3.14), using that |φ|2 = |v|2 − (v ·n)2, and taking into357

account (3.13), we obtain358

F(n+ v)−F(n) =

ˆ 1

−1

ˆ π

−π

|∇v|2 + κ2|φ|2 − |v|2 dtdz

(3.17)
=

ˆ 1

−1

ˆ π

−π

|∇φ|2 + (κ2 − 1)|φ|2 + |∇(v · n)|2 + 4(∂tφ · τ )(v · n)dtdz

(3.13)
= F ′′(n)(φ) +

ˆ 1

−1

ˆ π

−π

|∇(v · n)|2 + 4(∂tφ · τ )(v · n)dt dz. (3.18)

Note that since −2v ·n = |v|2 and v = φ+ (v ·n)n we have that |v|2 = |φ|2 + 1
4 |v|

4. Overall, from359

the previous considerations and (3.18), we obtain that360

F(n+ v)−F(n) = F ′′(n)(φ) +

ˆ 1

−1

ˆ π

−π

|∇(v · n)|2 − 2(∂tφ · τ )|v|2dtdz

⩾ F ′′(n)(φ)−
ˆ 1

−1

ˆ π

−π

(
2|v|4 + 1

2
|∂tφ|2

)
dtdz

⩾
1

2
∥∇φ∥2L2(C) + (κ2 − 1)∥v∥2L2(C) −

(
2 +

κ2 − 1

4

)
∥v∥4L4(C). (3.19)

Now we use Gagliardo–Nirenberg inequality (see, e.g., [18]), i.e., the existence of a positive constant361

cL > 0 such that ∥v∥4L4(C) ⩽ cL∥v∥2H1(C)∥v∥
2
L2(C) for every v ∈ H1(C,R3). Therefore362

F(n+ v)−F(n) ⩾
1

2
∥∇φ∥2L2(C) +

[
(κ2 − 1)− cL

(
2 +

κ2 − 1

4

)
∥v∥2H1(C)

]
∥v∥2L2(C). (3.20)

To conclude, we observe that for a given κ2 > 1 the previous right-hand side is nonnegative as soon363

as ∥v∥2H1(C) is chosen small enough.364

Proof of ii. Testing the second variation at m = ±e3 against v = e1 we obtain365

F ′′(±e3)(e1) = −κ2
ˆ 1

−1

ˆ π

−π

(e1 · n)2dtdz = −κ2 < 0. (3.21)

Therefore we know that the constant S2-valued vector-fields m = ±e3 are unstable for all κ2 > 0. ■366

Remark 8. As already pointed out in the introduction, there are several analogies in the behavior367

of the minimizers of the micromagnetic energy in cylindrical and spherical surfaces. However, there368

are also remarkable differences. Indeed, in both cases, the normal vector fields turn out to be the369

unique global minimizers of the energy functional in a wide range of the parameters [17]. However,370

the topological consequences are very different. On the one hand, the normal vector fields ±nS2 to371

S2 carry a different skyrmion number because deg (±nS2) = ±1, and, by Hopf theorem [30], they372

cannot be homotopically mapped one into the other. This translates into the so-called topological373

protection of the ground states. On the other hand, due to the odd dimension, the two normal vector374

fields ±n to S1 have the same degree, and therefore, they can be “easily” switched one to the other375

through appropriate external fields.376

Remark 9. The result of Theorem 3 can be interpreted in terms of the size of the magnetic particle.377

Indeed, a simple rescaling of the energy functional (1.3) shows that the range κ2 ⩾ 3 corresponds to378

the geometric regime of cylindrical magnets with a large radius. This is the dual version of Brown’s379

fundamental theorem on 3d fine ferromagnetic particles, which shows the existence of a critical di-380

ameter below which the unique energy minimizers are the constant-in-space magnetizations [4,7,11].381

3.1. Proof of the sharp Poincaré inequality (Theorem 2). To prove Theorem 2, we need the382

following result which, in particular, shows that the constant vector field e3 ∈ S2 is never a global383

minimizer of the relaxed minimization problem (3.3)-(3.4). In fact, any critical point of G with energy384

strictly less than κ2 (in particular, any minimizer) is in-plane.385

Lemma 1. Let κ2 ̸= 0. Any critical point u ∈ H1(S1,R3) of the relaxed problem (3.3)-(3.4) satisfying386

the energy bound G(u) < κ2 is in-plane, i.e.,387

u(γ) · e3 = 0 ∀γ ∈ S1. (3.22)

Moreover, the minimal energy satisfies the energy bounds388

0 < G(u) ⩽ min

{
κ2

2
, 1

}
. (3.23)
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In particular, every minimizer of the relaxed problem (3.3)-(3.4) is in-plane.389

Proof. In terms of the standard parameterization of the unit circle S1, the problem reduces to the390

minimization, in the Sobolev space of periodic functions H1
♯ ([−π, π],R3), of the energy functional391

G(u) := 1

2π

ˆ π

−π

|∂tu|2dt +
κ2

2π

ˆ π

−π

|u× n|2dt, (3.24)

subject to the constraint392

1

2π

ˆ π

−π

|u|2dt = 1. (3.25)

We start observing that as soon as κ2 ̸= 0 the minimal energy is strictly positive. Indeed, if G(u) = 0,393

then one gets at the same time u = n and u := σ for some σ ∈ S2 (because of the constraint (3.25)).394

Thus G(u) > 0 for every u ∈ H1
♯ ([−π, π],R3) satisfying the constraint (3.25). In fact, the minimum395

in the class of constant S2-valued configurations is reached by any element of the class of in-plane396

uniform fields, i.e., by any configuration σ ∈ S2 such that σ · e3 = 0. The common minimum value397

in this class being398

G(σ) = κ2

2π

ˆ π

−π

|σ|2 − (σ · n)2dt = κ2

2
> 0. (3.26)

Also, note that since |∂tn|2 = 1 we have G(n) = 1 regardless of the value of κ. Therefore, if u is a399

minimum point of the relaxed minimization problem (3.24)-(3.25) then400

0 < G(u) ⩽ min

{
κ2

2
, 1

}
. (3.27)

This proves (3.23).401

Next, we consider the Euler–Lagrange equations associated with the relaxed minimization problem402

(3.24)-(3.25). A direct computation yields that if u ∈ H1
♯ ([−π, π],R3) is a minimizer, then it satisfies403

the equations404

−∂ttu+ κ2(u− (n⊗ n)u) = λu in
(
H1

♯ ([−π, π],R3)
)′
,

1

2π

ˆ π

−π

|u|2dt = 1, (3.28)

for some Lagrange multiplier λ ∈ R. To ease notation, we write the Euler-Lagrange equations (3.28)405

in their (distributional) form; however, behind the scenes, we always mean the associated weak406

formulation in H1
♯ ([−π, π],R3). To get (3.28) it is sufficient to note that in H1

♯ ([−π, π],R3) one has407

|u× n+ εφ× n|2 − |u× n|2 +O(ε2) = 2ε(u× n) · (φ× n) (3.29)
= 2εφ · (u− (n⊗ n)u). (3.30)

To get an explicit expression of the Lagrange multiplier λ ∈ R we dot multiply by u both members408

of (3.28). Taking into account the constraint (3.25), we get that409

1

2π

ˆ π

−π

|∂tu|2 + κ2(|u|2 − (u⊥ · n)2)dt = λ

2π

ˆ π

−π

|u|2dt, (3.31)

from which the relation λ = G(u) follows. Combining this observation with (3.23), we get that if u410

is a minimizer of the constrained minimization problem (3.24)-(3.25) then necessarily411

0 < λ ≡ G(u) ⩽ min

{
κ2

2
, 1

}
. (3.32)

Next, we show that every solution of the Euler–Lagrange equations (3.28) is an in-plane configuration.412

For that, we dot multiply by e3 both sides of (3.28) to get the relation413

∂ttu3 = µ · u3, with µ = κ2 − |λ|. (3.33)

Note that µ = |µ| > 0 whenever u satisfies the energy bound G(u) < κ2. In this case, the general414

solution of the previous equation is given by415

u3(t) := c1e
t
√

|µ| + c2e
−t
√

|µ|, c1, c2 ∈ R. (3.34)

The only periodic solution of the previous equation is the zero solution. Therefore, any critical point416

u ∈ H1
♯ ([−π, π],R3) of the problem (3.24)-(3.25) satisfying the energy bound G(u) < κ2 is in-plane.417

In particular, because of (3.32), any minimizer of the problem (3.24)-(3.25) is in-plane. This concludes418

the proof. ■419
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Proof of Theorem 2. To deduce the sharp Poincaré inequality (3.5) one has to solve the minimiza-420

tion problem for G given by (3.3)-(3.4). Indeed, let u∗ ∈ H1(S1,R3) be a minimizer of G in the class421

of vector fields u ∈ H1(S1,R3) that satisfy the L2-constraint ∥u∥2L2(S1,R3) = 2π, and set c2κ := G(u∗).422

For every v ∈ H1(S1,R3) \ {0} the configuration423

u :=
√
2π

v

∥v∥L2(S1,R3)
(3.35)

is an admissible competitor of the minimization problem for G in (3.3)-(3.4). Therefore424

G(u) = 1

∥v∥2L2(S1,R3)

(ˆ
S1
|∇γv|2 dγ + κ2

ˆ
S1
|v × n|2dγ

)
⩾ G(u∗) = c2κ. (3.36)

Multiplying all sides of the previous relation by ∥v∥2L2(S1,R3) we get the sharp Poincaré inequality425

(3.5) with c2κ being the minimal energy of G subject to (3.4). The equality sign is achieved by any426

minimizer of the relaxed problem for G in (3.3)-(3.4).427

According to Lemma 1, it is possible to restrict our attention to the class of vector fields in428

u⊥ ∈ H1(S1,R2) satisfying the L2-constraint429

1

2π

ˆ
S1
|u⊥|2dγ = 1, (3.37)

and the minimization problem (3.3)-(3.4) reduces to the minimization of430

G(u⊥) :=
1

2π

ˆ
S1
|∇γu⊥|2 dγ +

κ2

2π

ˆ
S1
(|u⊥|2 − (u⊥ · n)2)dγ (3.38)

in H1
♯ (S1,R2) subject to the constraint (3.37). To solve this minimization problem, we use Fourier431

analysis, and we work in local coordinates, i.e., in H1
♯ ([−π, π],R2). Note that, in local coordinates,432

the Euler–Lagrange equations (3.28) simplify to433

∂ttu⊥ + κ2(n⊗ n)u⊥ = |µ|u⊥, |µ| := κ2 − |λ| > κ2

2
. (3.39)

We consider the moving orthonormal frame of R2 given by (τ ,n), with both τ := ∂tn and n ∈434

C∞
♯ ([−π, π],R2). More explicitly, we have τ (t) = (− sin t, cos t) and n(t) = (cos t, sin t). Then, we435

set u⊥ = u1τ + u2n with u1 := u⊥ · τ and u2 := u⊥ · n. Note that both u1 and u2 belong to436

H1
♯ ([−π, π],R). In this moving frame, the energy (3.38) assumes the expression437

G(u⊥) :=
1

2π

ˆ π

−π

(∂tu1(t) + u2(t))
2 + (∂tu2(t)− u1(t))

2 + κ2u21(t)dt, (3.40)

and the constraint (3.37) reads as438

1

2π

ˆ π

−π

u21(t) + u22(t)dt = 1. (3.41)

In what follows, we denote by ℓ̇2(Z,C2) the Sobolev space of square summable sequences (cn)n∈Z :=439

(c1,n, c2,n)n∈Z in ℓ2(Z,C2) such that (ncn)n∈Z is still in ℓ2(Z,C2). Every in-plane vector field u⊥ ∈440

H1
♯ ([−π, π],R2), with components u1 := u⊥ · τ and u2 := u⊥ ·n, can then be represented in Fourier441

series as follows442

u1(t) =
∑
n∈Z

c1,ne
int, u2(t) =

∑
n∈Z

c2,ne
int, (3.42)

for some (cn)n∈Z := (c1,n, c2,n)n∈Z ∈ ℓ̇2(Z,C2) and with i the imaginary unit. As a side remark, we443

note that444

⟨u⊥⟩ = ⟨u1τ ⟩+ ⟨u2n⟩ =
∑

n∈{±1}

⟨c1,neintτ ⟩+
∑

n∈{±1}

⟨c2,neintn⟩. (3.43)

Therefore, the information on the average of u⊥ is contained in the harmonics of order |n| = 1.445

Next, we represent the energy functional F given by (3.40), in the Fourier domain. For that, we446

first observe the relations447

∂tu1(t) + u2(t) =
∑
n∈Z

(inc1,n + c2,n)e
int, (3.44)

∂tu2(t)− u1(t) =
∑
n∈Z

(inc2,n − c1,n)e
int. (3.45)
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Then, we use Parseval’s theorem to restate the energy G in (3.40) in terms of Fourier coefficients as448

follows449

G(u⊥) =
∑
n∈Z

|inc1,n + c2,n|2 + |inc2,n − c1,n|2 + κ2|c1,n|2. (3.46)

Rigorously speaking, the energy functional G in (3.46) is defined on the space ℓ̇2(Z,C2), but we450

will think ℓ̇2(Z,C2) and H1
♯ ([−π, π],R2) identified. Again, Parseval’s theorem allows to express the451

constraint (3.41) as a constraint on (cn)n∈Z ∈ ℓ̇2(Z,C2):452 ∑
n∈Z

|c1,n|2 + |c2,n|2 = 1. (3.47)

To transfer the Euler-Lagerange equations (3.39) in Fourier’s domain, rather then substituting the453

Fourier series of u⊥ into (3.39), it is easier to compute their expression directly from the energy454

functional (3.46). For that, we observe that, if u⊥ = u1τ + u2n ∈ H1
♯ ([−π, π],R2), is a minimizer of455

(3.46)-(3.47) with u1, u2 given by (3.42), one has, for every (vn)n∈Z := (v1,n, v2,n)n∈Z ∈ ℓ̇2(Z,C2),456

|in(c1,n + εv1,n) + c2,n + εv2,n|2 − |inc1,n + c2,n|2 (3.48)

= 2εℜ[(inc1,n + c2,n) · (inv1,n + v2,n)] +O(ε2), (3.49)

where ℜ[z] stands for the real part of the complex number z and, recall, i stands for the imaginary457

unit. Similarly, one computes458

|in(c2,n + εv2,n)− c1,n − εv1,n|2 − |inc2,n − c1,n|2 (3.50)

= 2εℜ[(inc2,n − c1,n) · (inv2,n − v1,n)] +O(ε2), (3.51)

and459

|c1,n + εv1,n|2 − |c1,n|2 = 2εℜ[c1,n · v1,n] +O(ε2). (3.52)
After that, in Fourier’s domain, the weak form of the Euler-Lagrange equations tell us that if460

(cn)n∈Z := (c1,nc2,n)n∈Z ∈ ℓ̇2(Z,C2) is a global minimizer of (3.46)-(3.47), then for every (vn)n∈Z :=461

(v1,n, v2,n)n∈Z ∈ ℓ̇2(Z,C2) one has462

λ
∑
n∈Z

ℜ[c1,n · v1,n + c2,n · v2,n] =
∑
n∈Z

ℜ[(inc1,n + c2,n) · (inv1,n + v2,n)]

+
∑
n∈Z

ℜ[(inc2,n − c1,n) · (inv2,n − v1,n)]

+ κ2
∑
n∈Z

ℜ[c1,n · v1,n], (3.53)

for some Lagrange multiplier λ ∈ R. Clearly, in agreement with (3.32), we have that if u minimizes463

(3.46)-(3.47) then464

0 < λ ≡ G(u⊥) ⩽ min

{
κ2

2
, 1

}
. (3.54)

Note that the fact that λ ≡ G(u⊥) can be easily double-checked by setting set v1,n := c1,n and465

v2,n := c2,n in (3.53).466

Next, we test (3.53) against the element of ℓ̇2(Z,C2) given by v1,n := 0 for every n ∈ Z and467

v2,n := δn,j , with δn,j = 1 if, and only if, n = j. This leads to the equation468

ℜ[c2,j ]G(u⊥) = ℜ[(ijc1,j + c2,j)] + ℜ[(ijc2,j − c1,j) · (ij)]
= (1 + j2)ℜ[c2,j ]− 2jℑ[c1,j ]. (3.55)

Then we test (3.53) against the element of ℓ̇2(Z,C2) defined by v2,n := 0 for every n ∈ Z and469

v1,n := δn,j . We get470

ℜ[c1,j ]G(u⊥) = ℜ[(ijc1,j + c2,j) · (ij)]−ℜ[ijc2,j − c1,j ] + κ2ℜ[c1,j ]
= (1 + j2 + κ2)ℜ[c1,j ] + 2jℑ[c2,j ]. (3.56)

Next, we test (3.53) against the element of ℓ̇2(Z,C2) defined by v1,n := 0 for every n ∈ Z and471

v2,n := iδn,j . This leads to the equation472

ℜ[−ic2,j ]G(u⊥) = −ℜ[(ijc1,j + c2,j)i]−ℜ[(ijc2,j − c1,j)j]

= ℜ[jc1,j − ic2,j ] + ℜ[−ij2c2,j + jc1,j ], (3.57)
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which can be restated under form473

ℑ[c2,j ]G(u⊥) = 2jℜ[c1,j ] + ℑ[c2,j ] + j2ℑ[c2,j ]. (3.58)

Finally, we test (3.53) against the element of ℓ̇2(Z,C2) defined by v2,n := 0 for every n ∈ Z and474

v1,n := iδn,j . Recalling that ℜ[iz] = −ℑ[z], we get the relation475

ℜ[c1,j · (−i)]G(u⊥) = ℜ[(ijc1,j + c2,j) · (iji)] + ℜ[(ijc2,j − c1,j) · (−i)] + κ2ℜ[c1,j · ī]
= ℜ[−ij2c1,j − 2jc2,j − ic1,j ] + κ2ℑ[c1,j ], (3.59)

which can be restated under the form476

ℑ[c1,j ]G(u⊥) = (1 + j2 + κ2)ℑ[c1,j ]− 2jℜ[c2,j ]. (3.60)

Summarizing, we get the following set of relations:477

ℜ[c1,j ]
(
G(u⊥)− (1 + j2 + κ2)

)
= 2jℑ[c2,j ] (3.61)

ℑ[c2,j ]
(
G(u⊥)− (1 + j2)

)
= 2jℜ[c1,j ] (3.62)

ℑ[c1,j ]
(
G(u⊥)− (1 + j2 + κ2)

)
= − 2jℜ[c2,j ] (3.63)

ℜ[c2,j ]
(
G(u⊥)− (1 + j2)

)
= − 2jℑ[c1,j ]. (3.64)

We shall use the previous relations to infer the properties of the Fourier coefficients.478

3.2. The coefficients for |j| = 0. Evaluating the previous relations (3.61), (3.62), (3.63), and479

(3.64) at j = 0, we infer that480

ℜ[c1,0]
(
G(u⊥)− (1 + κ2)

)
= 0 , (3.65)

ℑ[c2,0] (G(u⊥)− 1) = 0 , (3.66)

ℑ[c1,0]
(
G(u⊥)− (1 + κ2)

)
= 0 , (3.67)

ℜ[c2,0] (G(u⊥)− 1) = 0. (3.68)

We already know from (3.54) that if u is a minimizer of (3.46)-(3.47), then 0 < G(u⊥) ⩽ 1. Hence,481

we can focus on the following two possible cases: either G(u⊥) < 1 or G(u⊥) = 1.482

− If the minimal energy satisfies the relation G(u⊥) < 1, then we have483

c1,0 = c2,0 = 0. (3.69)

Indeed, by (3.66) and (3.68) we get that c2,0 = ℜ[c2,0] = ℑ[c2,0] = 0. Also, since G(u⊥) −484

(1 + κ2) < 0 by (3.65) and (3.67), we infer that c1,0 = ℜ[c1,0] = ℑ[c1,0] = 0.485

− On the other hand, if the minimal energy satisfies the relation G(u⊥) = 1, then there are no486

constraints on c2,0. However, by (3.65) and (3.67), it is still holds that487

c1,0 = ℜ[c1,0] = ℑ[c1,0] = 0. (3.70)

Note that, due to (3.32), it is always the case that G(u⊥) < 1 when 0 < κ2 < 2.488

3.3. The coefficients for |j| ⩾ 1. For |j| ⩾ 1, we first consider relations (3.61) and (3.62). Multi-489

plying both sides of (3.61) by 2j we get the two relations490 (
G(u⊥)− (1 + j2 + κ2)

)
2jℜ[c1,j ] = 4j2ℑ[c2,j ] , (3.71)(

G(u⊥)− (1 + j2)
)
ℑ[c2,j ] = 2jℜ[c1,j ] . (3.72)

Plugging the right-hand side of (3.72) into the left-hand side of (3.71), we get that491 (
G(u⊥)− (1 + j2)

) (
G(u)− (1 + j2 + κ2)

)
ℑ[c2,j ] = 4j2ℑ[c2,j ] . (3.73)

Also, the last two relations (3.63) and (3.64), after multiplying both sides of (3.63) by 2j give492 (
G(u⊥)− (1 + j2 + κ2)

)
(−2jℑ[c1,j ]) = 4j2ℜ[c2,j ] , (3.74)(

G(u⊥)− (1 + j2)
)
ℜ[c2,j ] = − 2jℑ[c1,j ] . (3.75)

Plugging the right-hand side of (3.75) into the left-hand side of (3.74) we get that493 (
G(u⊥)− (1 + j2 + κ2)

) (
G(u⊥)− (1 + j2)

)
ℜ[c2,j ] = 4j2ℜ[c2,j ] . (3.76)
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Overall, combining (3.73) and (3.76), we get that if u⊥ minimizes the relaxed problem (3.24)-(3.25)494

then for |j| ⩾ 1 there holds495 (
G(u⊥)− (1 + j2 + κ2)

) (
G(u⊥)− (1 + j2)

)
c2,j = 4j2c2,j . (3.77)

The previous relation implies that if c2,j ̸= 0, then necessarily496 (
G(u⊥)− (1 + j2 + κ2)

) (
G(u⊥)− (1 + j2)

)
= 4j2. (3.78)

But this is a quadratic equation in G(u⊥) which admits the two possible solutions:497

G(u⊥) =
κ2

2
+ (1 + j2)±

√
κ4 + 16j2 . (3.79)

However, we know from the bound (3.32) that any minimizer u⊥ has to satisfy the bound G(u⊥) ⩽498

κ2/2. This leads to dismissing the + solution in (3.79). Hence, if c2,j ̸= 0 for some |j| ⩾ 1, then499

necessarily500

G(u⊥) =

(
κ2

2
+ (1 + j2)− 1

2

√
κ4 + 16j2

)
. (3.80)

Relying again on the bound (3.32), we see that this last expression satisfies the bound G(u⊥) ⩽ 1 if,501

and only if,502

κ2 ⩽ 4− j2. (3.81)
Therefore, since κ2 > 0, we conclude that if c2,j ̸= 0 for some |j| ⩾ 1, then necessarily |j| = 1. It503

follows that504

c2,j = 0 when |j| ⩾ 2 , (3.82)
and if c2,±1 ̸= 0 (i.e., if c2,j ̸= 0 when |j| = 1) then necessarily 0 < κ2 ⩽ 3.505

Similarly, from (3.61) and (3.62) we get the two relations506

ℜ[c1,j ]
(
G(u⊥)− (1 + j2 + κ2)

)
? 2jℑ[c2,j ], (3.83)

2jℑ[c2,j ]
(
G(u⊥)− (1 + j2)

)
= 4j2ℜ[c1,j ]. (3.84)

Plugging the right-hand side of (3.83) into the left-hand side of (3.84), we get that507

ℜ[c1,j ]
(
G(u⊥)− (1 + j2 + κ2)

) (
G(u⊥)− (1 + j2)

)
= 4j2ℜ[c1,j ]. (3.85)

Also, relations (3.63) and (3.64) brings to508

ℑ[c1,j ]
(
G(u⊥)− (1 + j2 + κ2)

)
= − 2jℜ[c2,j ], (3.86)

−2jℜ[c2,j ]
(
G(u⊥)− (1 + j2)

)
= 4j2ℑ[c1,j ]. (3.87)

Plugging the right-hand side of (3.86) into the left-hand side of (3.87) we get that509

ℑ[c1,j ]
(
G(u⊥)− (1 + j2 + κ2)

) (
G(u⊥)− (1 + j2)

)
= 4j2ℑ[c1,j ]. (3.88)

Overall, combining (3.85) and (3.88), we get that if u⊥ minimizes the relaxed problem (3.24)-(3.25)510

then for |j| ⩾ 1, there holds511 (
G(u⊥)− (1 + j2 + κ2)

) (
G(u⊥)− (1 + j2)

)
c1,j = 4j2c1,j (3.89)

Compared to (3.77), the previous relation (3.89) can be obtained by swapping the roles of c1,j and512

c2,j in (3.77). Therefore, everything we deduced by (3.77) about c2,j still holds for c1,j . In other513

words,514

c1,j = 0 when |j| ⩾ 2 , (3.90)
and if c1,±1 ̸= 0 (i.e., if c1,j ̸= 0 when |j| = 1) then necessarily 0 < κ2 ⩽ 3.515

Summarizing, combining the results stated in (3.69), (3.70), (3.82), and (3.90) we have that the516

minimization problem (3.46)-(3.47) reduces to a finite-dimensional one. Precisely, u⊥ is a minimizer517

if and only if u⊥ = u1τ + u2n with518

u1(t) :=
∑

n∈{±1}

c1,ne
int, u2(t) := c2,0 +

∑
n∈{±1}

c2,ne
int, (3.91)

for complex coefficients c2,0, c1,±1, c2,±1 ∈ C which minimize the energy function519

g(c2,0, c1,±1, c2,±1) = |c2,0|2 +
∑

n∈{±1}

|inc1,n + c2,n|2 + |inc2,n − c1,n|2 + κ2|c1,n|2 (3.92)

under the constraint that520

|c2,0|2 +
∑

n∈{±1}

|c1,n|2 + |c2,n|2 = 1. (3.93)
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Moreover,if c2,±1 ̸= 0 or c1,±1 ̸= 0, then necessarily 0 < κ2 ⩽ 3 and the minimal value of the energy521

in this case can be obtained by evaluating (3.80) at |j| = 1, i.e.,522

G(u⊥) =
1

2
(κ2 − ω2

κ + 4) (3.94)

where we set523

ω2
κ :=

√
κ4 + 16 (3.95)

because it is a convenient notational choice that simplifies some other expressions later on.524

From the previous considerations, it follows that for κ2 > 3 we necessarily have c1,±1 = c2,±1 = 0,525

i.e., the only non-zero Fourier coefficient is c2,0, and this must be necessarily ±1 because of the526

constraint (3.93). This implies that when κ2 > 3 the normal vector fields ±n are the only global527

minimizers of G in problem (3.46)-(3.47) and the minimal value of the energy is G(±n) = 1 regardless528

of the specific value of κ (provided that κ2 > 3). Note that, from (3.94) evaluated at κ2 = 3, we also529

get that G(u⊥) = 1. Therefore ±n are still minimizers of the energy, but no more the only one, as530

we show later in (3.109). This proves (3.6).531

3.4. The regime 0 < κ2 ⩽ 3. We already know from (3.94) that when 0 < κ2 < 3 the minimal532

value of the energy is given by 1
2 (κ

2 − ω2
κ + 4). However we still don’t know the precise form of the533

minimizers. For that, we need a simplified expression of the energy function g in (3.92). To that end,534

first we plug the constraint (3.93) into the expression of g. This leads to535

g(c2,0, c1,±1, c2,±1) = 1−
∑

n∈{±1}

|c1,n|2 + |c2,n|2

+
∑

n∈{±1}

n2(|c1,n|2 + |c2,n|2) + |c2,n|2 + (1 + κ2)|c1,n|2

+
∑

n∈{±1}

2nℜ [ic1,nc2,n]− 2nℜ [ic2,nc1,n] (3.96)

(n2=1)
= 1 +

∑
n∈{±1}

|c1,n|2 + |c2,n|2 + κ2|c1,n|2

+2
∑

n∈{±1}

nℜ [ic1,nc2,n − ic2,nc1,n] . (3.97)

Second, we take advantage of the symmetry properties of the complex Fourier coefficients. Indeed,536

since we are representing real-valued functions, we know that537

c2,0 ∈ R, c1,−1 = c1,1, c2,−1 = c2,1. (3.98)

In particular, |c1,−1|2 = |c1,1|2, |c2,−1|2 = |c2,1|2. Therefore, the expression of the energy function g538

in (3.97) can be simplifed to539

g(c2,0, c1,±1, c2,±1) = 2(1 + κ2)|c1,1|2 + 2|c2,1|2 + 1 + 4ℜ [ic1,1c2,1−ic2,1c1,1] (3.99)

= 2(1 + κ2)|c1,1|2 + 2|c2,1|2 + 1− 8ℑ[c1,1c2,1]. (3.100)

We summarize what we get so far. When 0 < κ2 ⩽ 3 any minimizer of G in problem (3.46)-(3.47)540

is of the form541

u⊥(t) = u1(t)τ (t) + u2(t)n(t) (3.101)

=

 ∑
n∈{±1}

c1,ne
int

 τ (t) +

c2,0 + ∑
n∈{±1}

c2,ne
int

n(t) (3.102)

= 2ρ1 cos(t+ θ1)τ (t) + (c2,0 + 2ρ2 cos(t+ θ2))n(t), (3.103)

where, for the last equality, we used polar coordinates to express c1,1 := ρ1e
iθ1 , c2,1 = ρ2e

iθ2 and we542

used the symmetry properties (3.98) of the complex Fourier coefficients. Given the expression of g in543

(3.100), the coefficients ρ1 ⩾ 0, ρ2 ⩾ 0 and the angles θ1, θ2 ∈ [−π, π] that appear in (3.103), have to544

minimize the energy function (note that c1,1c2,1 = ρ1ρ2e
i(θ1−θ2))545

g(ρ1, ρ2, θ1, θ2, c2,0) = 2(1 + κ2)ρ21 + 2ρ22 − 8ρ1ρ2 sin(θ1 − θ2) + 1 (3.104)

under the constraint546

(ρ21 + ρ22) =
1− c22,0

2
. (3.105)
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Figure 5. Since the quantity 0 ⩽ c22,0 ⩽ 1 does not play any role in the expression of the energy
function g in (3.104), one can replace the constraint in (3.105) with the constraint that (ρ1, ρ2) ∈ R2

has to be in the closed region D+ ⊆ R2 given by the part of the disk of radius
√
2/2, centered at the

origin, which intersects the first quadrant of R2 (i.e., the shaded region in the Figure).

A couple of simple observations follow. First, since θ1, θ2 do not play any role in the constraint547

(3.105), to minimize the function g in (3.104) one must have548

θ1 − θ2 = π/2 mod 2π. (3.106)

After that, the expression of the generic minimizer u⊥ in (3.103) takes the form549

u⊥(t) = (c2,0 + 2ρ2 cos(t+ θ))n(t)− 2ρ1 sin(t+ θ)τ (t) (3.107)

for arbitrary θ ∈ [−π, π]. Also, the minimization problem (3.104)-(3.105) simplifies to the minimiza-550

tion of the quadratic energy551

g(ρ1, ρ2) = 2(1 + κ2)ρ21 + 2ρ22 + 1− 8ρ1ρ2 (3.108)

under the constraint (3.105).552

Note that when κ2 = 3 we have g(ρ1, ρ2) = 2(2ρ1 − ρ2)
2 + 1 and the minimum value is reached553

when ρ2 = 2ρ1. This leads to the family of minimizers554

u⊥(t) = (c2,0 + 4ρ1 cos(t+ θ))n(t)− 2ρ1 sin(t+ θ)τ (t) (3.109)

with θ ∈ [−π, π] arbitrary, ρ2 = 2ρ1, and 0 ⩽ ρ1 ⩽ 1/
√
10 arbitrary as well (because of the constraint555

c22,0 = 1− 10ρ21). The modulus of u⊥ is given by556

|u⊥(t)|2 = 4ρ21 sin
2(t+ θ) + (c2,0 + 4ρ1 cos(t+ θ))2 (3.110)

= 4ρ21 + 12ρ21 cos
2(t+ θ) + c22,0 + 4ρ1 cos(t+ θ)c2,0, (3.111)

As a side remark, we note that for ρ1 = 0 and c22,0 = 1 we recover the normal vector fields ±n, and557

these are the only minimizers with unit modulus when κ2 = 3. This proves (3.7).558

Second, we observe that the quantity 0 ⩽ c22,0 ⩽ 1 does not play any role in the expression of559

the energy function g in (3.108). Thus, we can replace the previous constraint (3.105) with the new560

constraint that (ρ1, ρ2) ∈ R2 has to vary in the closed region D+ ⊆ R2 given by the intersection of561

the disk of R2 of radius
√
2/2, centered at the origin, with the first quadrant of R2 (cf. Figure 5).562

The coefficient c22,0 will then be determined by the value of ρ21 and ρ22.563

It remains to minimize g given by (3.108) on the domain D+. To this end, for any given r⃗ :=564

(ρ1, ρ2) ∈ D+ we set r2 := ρ21 + ρ22, ρ1 = r cosϕ and ρ2 = r sinϕ with ϕ ∈ [0, π/2]. In this new polar565

coordinate system, the energy function g reads as566

g(r, ϕ) = 2r2[κ2 cos2 ϕ+ 1− 2 sin(2ϕ)] + 1. (3.112)

Clearly, since D+ is compact, there is at least a minimum point of g in D+. Also, one can check that567

for any 0 < κ2 < 3 the quantity [κ2 cos2 ϕ+ 1− 2 sin(2ϕ)] is negative when568

arctan
(
2−

√
3− κ2

)
⩽ ϕ ⩽ arctan

(
2 +

√
3− κ2

)
. (3.113)

Therefore, we want to take maximal r2 = 1/2, i.e., the minimum of g is reached on the arc of circle569

included ∂D+. The energy minimization problem then reduces to a parametric problem in the single570

variable ϕ:571

g(ϕ) = κ2 cos2 ϕ+ 2− 2 sin(2ϕ). (3.114)
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The first order minimality conditions can be written under the form572

κ2

ω2
κ

sin(2ϕ) +
4

ω2
κ

cos(2ϕ) = 0. (3.115)

Recalling from (3.95) that ω2
κ :=

√
κ4 + 16, we see that for every κ2 there exists a unique angle in573

ϕκ ∈ [0, π/2] such that574

cos(2ϕκ) = κ2/ω2
κ, sin(2ϕκ) = 4/ω2

κ. (3.116)
The observation allow us to rewrite the first order minimality condition (3.115) under the form575

sin(2(ϕ + ϕκ − π/2)) = 0 (recall thatϕ, ϕκ ∈ [0, π/2]). Thus, given 0 < κ2 < 3, once computed ϕκ,576

the minimal energy is achieved at577

ϕ = −ϕκ + π/2, r =

√
2

2
. (3.117)

This leads to ρ1 =
√
2
2 sin(ϕκ), ρ2 =

√
2
2 cos(ϕκ) with ϕκ ∈ [0, π/2] the unique solution of (3.116), and578

to c2,0 = 0 due to (3.105). The corresponding family of minimizers reads as (cf. (3.109))579

u⊥(t) = 4ρ1 cos(t+ θ)n(t)− 2ρ1 sin(t+ θ)τ (t) (3.118)

= 2
√
2 sin(ϕκ) cos(t+ θ)n(t)−

√
2 cos(ϕκ) sin(t+ θ)τ (t), (3.119)

with θ ∈ [−π, π] arbitrary. This proves (3.8). Finally, we note that580

|u⊥(t)|2 = 8 sin2(ϕκ) cos
2(t+ θ) + 2 cos2(ϕκ) sin

2(t+ θ) (3.120)

and, therefore, u⊥ is S2 valued only when 8 sin2(ϕκ) = 2 cos2(ϕκ) = 1, i.e., when581

sin(ϕκ) =
1

2
√
2
, cos(ϕκ) =

1√
2
, (3.121)

which amounts to ϕκ = arctan(1/2). On the other hand, the relations (3.116) are satisfied only when582

tan(2ϕκ) = 4/κ2, i.e., when ϕκ = 1
2 arctan(4/κ

2). Therefore, we possibly have |u⊥(t)|2 = 1 only583

when κ2 satisfies the equation arctan(4/κ2) = 2 arctan(1/2). But the only solution is κ2 = 3 which is584

not significant due to (3.113). Therefore, when 0 < κ2 < 3, there are no minimizers of G in problem585

(3.46)-(3.47) that are S2-valued. This gives (3.9) and concludes the proof of the theorem. □586

4. The stability of in-plane configurations587

This section is devoted to the analysis of in-plane minimizers of the energy (2.2). The interest in588

such configurations is motivated by numerical simulations. Indeed, numerical schemes for the analysis589

of ground states of F seem to converge towards solutions that are in-plane. The phenomenon, enforced590

by Theorem 3 when κ2 ⩾ 3, and partially endorsed by Lemma 1 for κ2 < 3, motivates the following591

conjecture.592

Conjecture (C). For every κ2 > 0 the minimizers in H1
♯ ([−π, π],S2) the energy functional (cf. (2.4))593

594

F(u) :=

ˆ π

−π

|∂tu(t)|2dt + κ2
ˆ π

−π

|u(t)× n(t)|2dt (4.1)

are in-plane. In other words, if u ∈ H1
♯ ([−π, π],S2) minimizes (4.1) then u · e3 ≡ 0 in [−π, π].595

Theorem 3 assures that conjecture (C) is true when κ2 ⩾ 3, as ±n are the only global minimizers of596

F . When κ2 < 3, the answer remains open. Indeed, while it is simple to prove that all minimizers597

are S1-valued when, as in Lemma 1, the S2-valued constraint is relaxed to the energy constraint598

∥u∥2L2
♯([−π,π],R3) = 2π, (4.2)

the situation seems more involved for S2-valued configurations.599

Let us comment a little bit more about some common aspects of the numerical schemes available600

to compute energy-minimizing maps. We focus on the iteration scheme introduced by Alouges in [2]601

for computing stable S2-valued harmonic maps on bounded domains of R3, but our observations602

transfer to other numerical schemes, e.g., the dissipative flow governed by the Landau–Lifshitz–603

Gilbert equation (see, e.g., [3, 5, 16]). The algorithm proposed in [2] has the advantage of operating604

at a continuous level; this allows us to use it as a versatile theoretical tool to obtain the existence of605

solutions with prescribed properties. Starting from an initial guess m0 ∈ H1
♯ ([−π, π],S2), the scheme606

builds a sequence (mj)j∈N of energy decreasing S2-valued configurations which eventually converges,607

weakly in H1
♯ ([−π, π],S2), to a critical point m∞ of the energy F . The algorithm preserves specific608
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Figure 6. There is a critical value κ2
∗ of the anisotropy parameter, κ2

∗ ≈ 2.31742, below which the
global minimizers of (4.1) have degree zero, and above which the only two global minimizers are the
normal vector fields ±n (and have degree one).

structural properties of the initial guess m0. While structure-preserving features are most often a609

strength of numerical schemes, other times they represent their biggest weakness. For example, as610

we are going to show, the algorithm retains the following properties of the initial guess [14]:611

i. If the initial guess m0 is axially symmetric (with respect to the z-axis), so are the elements612

of the sequence (mj)j∈N produced by the iterative scheme and the weak limit m∞.613

ii. If the initial guess m0 is in-plane, then all the elements of the sequence (mj)j∈N produced by614

the iterative scheme are in-plane, as well as the weak limit m∞. Moreover, if the initial guess615

m0 is in-plane and in a prescribed homotopy class, so is the weak limit m∞ of (mj)j∈N.616

Point ii tells us that regardless of whether conjecture (C) is true or false, in-plane configurations617

appear in simulations and therefore are of interest. For this reason, the second half of the section618

focuses on the characterization of the in-plane critical points of the energy functional F (see (4.1))619

and the analysis of their minimality properties.620

In order to state the main result of this section, we need to introduce some notation. In what621

follows, as before, we denote by n(t) = (cos t, sin t, 0) and τ (t) := ∂tn(t) the normal and tangential622

fields to S1 × {0}. Also, for any κ2 > 0 we denote by ακ > 0 the unique solution of the equation623

1

2π

ˆ π

−π

1√
α2
κ + κ2 sin2 x

dx = 1. (4.3)

The uniqueness of the solution of (4.3) comes from the fact that for every κ2 > 0 the continuous624

function625

α ∈ R+ 7→ 1

2π

ˆ π

−π

1√
α2 + κ2 sin2 x

dx (4.4)

is decreasing in α, diverges to +∞ when α→ 0, and converges to 0 when α→ +∞.626

After that, given ακ, we denote by Fκ the elliptic integral of the first kind defined for any θ ∈ R627

by628

Fκ(θ) :=

ˆ θ

−π

1√
1 + (κ2/α2

κ) sin
2 x

dx. (4.5)

We also denote its inverse function, which is usually referred to as the Jacobi amplitude function, as629

amκ := F−1
κ . Finally, we define Eκ to be the complete elliptic integral630

Eκ :=

ˆ π

−π

√
1 + (κ2/α2

κ) sin
2 xdx. (4.6)

Theorem 4 (in-plane minimizers). Let κ2 > 0. If m⊥ is a (global) minimizer in H1
♯ ([−π, π],S1)631

of the energy functional F (cf. (4.1)), then either degm⊥ = 0 or degm⊥ = 1. Precisely, there exists632

a threshold value κ2∗ of the anisotropy parameter such that the following dichotomy holds:633

i. If κ2 > κ2∗, then any global minimizer has degree one. Moreover, for every κ2 > 0, the normal634

fields ±n are the only two global minimizers of F in the homotopy class {degm⊥ = 1}.635
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ii. If κ2 < κ2∗, then any global minimizer has degree zero. Also, for any κ2 > 0, the minimizers636

of F in the homotopy class {degm⊥} = 0 are given by (cf. Figure 7)637

m⊥(t) = sin θ(t)τ (t) + cos θ(t)n(t) (4.7)

with θ (a strictly decreasing function) being any element of the family638

θ(t) = amκ(−ακt+ b), b ∈ R , (4.8)

and ακ > 0 the unique solution of (4.3). Moreover, the minimal value of the energy is given639

by (cf. Figure 6)640

F (m⊥) = −2π(1 + α2
κ) + 8ακEκ. (4.9)

iii. The exact value of κ2∗ is determined as the solution of the equation641

α2
κ + 8ακEκ = 4π, (4.10)

which gives κ2∗ ≈ 2.31742.642

iv. For any κ2 > 0, the degree-zero solutions (4.8) are locally stable critical points of the energy643

F in (4.1). Also, for any κ2 > 0, degree-one solutions ±n are local minimizers of the energy644

F .645

Combining i and ii we get the following characterization of the energy landscape. The normal vector646

fields ±n are the only two global minimizers of F when κ2 > κ2∗ and the common minimum value647

of the energy is 2π. When κ2 < κ2∗ the minimal energy depends on κ, it is given by (4.9), and is648

reached when θ is given by (4.8). Finally, when κ2 = κ2∗ both the degree one solutions ±n and the649

degree zero solutions (4.7)-(4.8) coexist as energy minimizers and the common value of the energy is650

2π (cf. Figure 6).651

Remark 10. Note that, while in the S1-valued setting the normal vector fields ±n are local minimizers652

for every κ2 > 0, this was not the case in the S2-valued setting reported in Theorem 3 (where ±n653

become unstable for κ2 < 1). The precise reason is that here we are restricted to the class of in-plane654

perturbations, whereas in the S2-valued case the loss of stability is caused by perturbations in the e3655

direction.656

Proof. As in the proof of Theorem 2, it is convenient to set m⊥ = m1τ +m2n with m1 := m⊥ · τ657

and m2 := m⊥ · n, where n(t) = (cos t, sin t, 0) and τ (t) := ∂tn(t) are the normal and tangential658

fields to S1 ×{0}. Note that both m1 and m2 are in H1
♯ ([−π, π],R). In the moving frame (τ ,n), the659

energy (4.1) assumes the expression (cf. (3.40))660

F(m⊥) =

ˆ π

−π

|∂tm2 −m1|2 + |∂tm1 +m2|2dt+ κ2
ˆ π

−π

m2
1 dt. (4.11)

Clearly, the vector field (m1,m2) is S1-valued. We lift it by setting661

m1(t) := sin θ(t), m2(t) := cos θ(t). (4.12)

After that, the energy (4.11) reads as662

F(m⊥) =

ˆ π

−π

|∂tθ(t) + 1|2dt+ κ2
ˆ π

−π

sin2 θ(t)dt (4.13)

=

ˆ π

−π

|∂tθ(t)|2 + κ2 sin2 θ(t)dt+ 2π + 2(θ(π)− θ(−π)). (4.14)

It is clear that since m1,m2 ∈ H1
♯ ([−π, π],R) we necessarily have663

θ(π)− θ(−π) = 2πj (4.15)

for some j ∈ Z. Hence, the energy functional F takes the form664

F(m⊥) =

ˆ π

−π

|∂tθ(t)|2 + κ2 sin2 θ(t)dt+ 2π(1 + 2j) (4.16)

The integer j ∈ Z is nothing but the degree of the S1-valued map (m1,m2) whose components are665

the coordinates of m⊥ in the moving frame (τ ,n). Therefore666

degm⊥ = j + 1. (4.17)

The expression (4.16) can be used to investigate the critical points of F in any prescribed homotopy667

class j ∈ Z. Here, however, we are interested in global minimizers and, as we are going to show, this668

restricts the admissible homotopy classes to only two cases.669
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Figure 7. A plot of the vector fields minimizing the energy (4.1). There is a critical value κ2
∗ of the

anisotropy parameter, κ2
∗ ≈ 2.31742, below which the global minimizers of (4.1) have degree zero, and

above which the only two global minimizers are the normal vector fields ±n (and have degree one).
From left to right, we plot the minimizers for κ2 = 0.25, κ2 = 1, and κ2 = 2.25.

First, we use Jensen’s inequality for Dirichlet part in (4.16) to get that670

F(m⊥) ⩾ 2π(1 + j)2 + κ2
ˆ π

−π

sin2 θ(t)dt (4.18)

for every m⊥ ∈ H1
♯ (S1,S1). Second, we recall that for every κ2 > 0, we have F(n) = 2π, as well as671

F(σ) = πκ2 for any σ ∈ S1. Therefore, if m⊥ is a minimizer of (4.16), then necessarily672

2π(1 + j)2 ⩽ F(m⊥) ⩽ min{2π, πκ2}. (4.19)

Since 2π(1+ j)2 > 2π when |1+ j| > 1, from the previous bounds, we get that the global minimizers673

of F in H1
♯ (S1,S1) have to satisfy the relation (4.15) with j ∈ {−2,−1, 0}. On the other hand, if674

j = −2 we get that F(m⊥) is strictly greater than 2π because the density κ2(sin θ)2 gives a positive675

contribution when j ̸= 0. Hence, necessarily j ∈ {−1, 0}. Hence, recalling (4.17),676

degm⊥ ∈ {0, 1}.
This proves the first part of the statement. After that, given the estimates (4.18) and (4.19) it is easy677

to prove the remaining claims.678

Proof of i. If κ2 ⩾ 3, the first assertion in i follows from Theorem 3. It remains to prove that for every679

κ > 0, the vector fields ±n are the only two global minimizers of F in the homotopy class degm⊥ = 1.680

For that, it is sufficient to observe that when j = 0, from (4.18) we get that F(m⊥) ⩾ 2π = F(±n)681

regardless of the value of κ2 > 0. Moreover, F(m⊥) > 2π if ∥ sin θ∥2L2[−π,π] ̸= 0, i.e., if m⊥ /∈ {±n}.682

This guarantees the uniqueness statement about the minimizers ±n.683

Proof of ii. First, we observe the following. If m⊥ is a global minimizer of F and if degm⊥ = 1,684

i.e., if j = 0, then from (4.19) we know that 2π ⩽ F(m⊥) ⩽ πκ2. Hence, necessarily κ2 ⩾ 2 if685

degm⊥ = 1. It follows that degm⊥ = 0 whenever κ2 < 2. We want to improve the estimate, but we686

also want to find the minimal energy. This amounts to characterize the minimizers in the prescribed687

homotopy class degm⊥ = 0. For that, one has to consider the minimization problem for F under688

the constraint j = −1 in (4.15). In other words, one has to minimize energy (cf. (4.16))689

F(m⊥) = −2π +

ˆ π

−π

|∂tθ(t)|2 + κ2 sin2 θ(t)dt (4.20)

under the constraint that θ(π)− θ(−π) = −2π (cf. (4.15)). The Euler–Lagrange equations associated690

with (4.20) gives the equation691

∂ttθ(t) = κ2 sin θ(t) cos θ(t), (4.21)
subject to the degree constraint692

θ(π) = θ(−π)− 2π . (4.22)
It is worth noticing that, from the mechanical point of view, the nonlinear ordinary differential693

equation (4.21) describes the dynamics of an (ideal) inverted pendulum in the reduced setting where694

the pivot point of the pendulum is fixed in space (cf. Figure 8). In this reduced setting, the equation695

of the inverted pendulum, up to a sign, is the one of a simple pendulum (see, e.g., [6, p. 35]), the696

difference being in the nominal location of the pivot point which, for the inverted pendulum, is below697
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Figure 8. (Left) The ideal inverted pendulum consists of a spherical mass m, subject to the force
of gravity g, placed at the end of a rigid massless rod of length ℓ attached to a (possibly oscillating)
pivot point. When the pivot point of the pendulum is fixed in space, the equation of motion, up to
a sign, is the one of a simple pendulum; the difference is in the nominal location of the pivot point
which, for the inverted pendulum, is below its center of mass. (Right) The typical phase portrait of the
inverted pendulum (4.21). It consists of the level sets of the function fκ(x, y) := y2 − κ2 sin2 x. The
maximal quote of Σ is achieved at κ2; here κ2 = 1.5. The closed level curves correspond to oscillations
of the pendulum about its equilibrium position 2θ = ±π, while the curves outside the separatrix Σ
correspond to full rotations of the pendulum.

its center of mass. Precisely, if the inverted pendulum consists of a spherical mass subject to the698

force of gravity g, placed at the end of a rigid massless rod of length ℓ then, its equation is given by699

(4.21) with κ2 = g/ℓ. Using this mechanical analogy, the minimizers m⊥ in the class {degm⊥ = 0}700

we are interested in, correspond to solutions of the inverted pendulum in which the mass m performs701

a full clockwise turn at the minimal cost of the energy (4.20).702

The problem is solvable in terms of elliptic integrals. For that, we observe that by multiplying703

both parts of (4.22) by ∂tθ one get that if the integral curve704

t ∈ [−π, π] 7→ (θ(t), ∂tθ(t)) ∈ R2 (4.23)

solves (4.22) then there exists a constant cκ ∈ R such that705

(∂tθ(t))
2 − κ2 sin2 θ(t) = cκ ∀t ∈ [−π, π]. (4.24)

Precisely, cκ := |∂tθ(−π)|2−κ2 sin2 θ(−π). In other words, every solution (θ(t), ∂tθ(t)) of the bound-706

ary value problem (4.22) belongs to some level set of the function fκ(x, y) := y2 − κ2 sin2 x, with the707

understanding that we formally set y := ∂tθ and x := θ. The phase diagram is depicted in Figure 8708

where the thicker line represents the separatrix709

Σ :=
{
(x, y) ∈ R2 : y2 = κ2 sin2 x

}
(4.25)

which bounds the region710

S :=
{
(x, y) ∈ R2 : y2 ⩽ κ2 sin2 x

}
. (4.26)

Note that the phase diagram is periodic (in the x-direction) of period π. However, it is convenient711

to consider the range −π ⩽ x = θ ⩽ π of length 2π because we are interested in solutions such that712

θ(π)− θ(−π) = −2π. From the phase diagram represented in Figure 8, it is clear that the solutions713

we are interested in are such that the coordinate y = ∂tθ never vanishes, as this is the only way to714

connect, via a phase curve, two points of the phase portrait whose x coordinates are 2π away. The715

rigorous proof follows by observing that the region S includes the level sets {f−1
κ (c)}c<0 which consist716

of disjoint compact subsets of S, each one of them projecting on the x-axis on a set of diameter less717

than π. However, the solution curves α(t) := (θ(t), ∂tθ(t)) we are interested in, have to satisfy (4.22)718

and, therefore, must have a trace in the phase space whose projection on the x-axis has diameter 2π.719

It follows that any solution α(t) := (θ(t), ∂tθ(t)) of (4.21)-(4.22) lies on the level set f−1
κ (cκ) for some720

cκ ⩾ 0. After that, we observe that the solutions lying on the level set f−1
κ (0) whose projection on721

the x-axis have diameter 2π correspond to the normal vector fields ±n; hence, from now on, we focus722

on solutions in S∁ = ∪c>0f
−1(c). Given the expression of cκ, this implies that723

|∂tθ(−π)|2 > κ2 sin2 θ(−π). (4.27)

First, we note that if (x, y) ∈ S∁ then y ̸= 0. Therefore, the solutions of (4.21)-(4.22) are such that724

∂tθ(t) ̸= 0 for every t ∈ [−π, π]. Thus, θ is either decreasing or increasing. But given the degree725
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condition (4.22) the solutions we are looking for have to be decreasing. Therefore, from (4.24), we726

get that727

∂tθ(t) = −
√

|∂tθ(−π)|2 − κ2 sin2 θ(−π) + κ2 sin2 θ(t). (4.28)

It is convenient to set728

ακ :=

√
|∂tθ(−π)|2 − κ2 sin2 θ(−π), (4.29)

because, as we are going to show, the value of ακ just defined coincides with the value defined by729

(4.3). Note that |∂tθ(−π)|2 ̸= 0 and, therefore ακ > 0. In this way, the expression of ∂tθ(t) can be730

rewritten under the form731

∂tθ(t) = −ακ

√
1 + (κ2/α2

κ) sin
2 θ(t). (4.30)

Next, we introduce the elliptic integral of the first kind Fκ defined for any θ ∈ R by732

Fκ(θ) :=

ˆ θ

−π

1√
1 + (κ2/α2

κ) sin
2 x

dx, (4.31)

and, we set733

βκ :=
1

2π

ˆ π

−π

1√
1 + (κ2/α2

κ) sin
2 x

dx. (4.32)

The function Fκ is increasing (invertible) and vanishes at −π. Therefore from (4.30) we deduce734

Fκ(θ(t))− Fκ(θ(−π)) = −(t+ π)ακ. (4.33)

In particular, evaluating the previous relation at t = π and taking into account (4.22) we obtain735

Fκ(θ(π))− Fκ(θ(−π)) = −2πακ. (4.34)

On the other hand, the integrand defining Fκ is periodic of period π and, therefore, taking also into736

account that θ(π) = θ(−π)− 2π, we obtain737

Fκ(θ(π))− Fκ(θ(−π)) =
ˆ θ(−π)−2π

θ(−π)

1√
1 + (κ2/α2

κ) sin
2 x

dx

= −
ˆ π

−π

1√
1 + (κ2/α2

κ) sin
2 x

dx

= − 2πβκ. (4.35)

From (4.34) and (4.35) it follows that if (θ(t), ∂tθ(t)) is a solution of our problem (4.21)-(4.22) then738

necessarily ακ = βκ. Therefore the value of ακ can be characterized as the unique solution of the739

equation (cf. (4.3))740

1

2π

ˆ π

−π

1√
α2
κ + κ2 sin2 x

dx = 1. (4.36)

Once computed ακ, we can characterize the solutions of (4.21)-(4.22) using (4.34), which gives the741

one-parameter family of functions θ(t) = F−1
κ (Fκ(θ(−π))− (t+ π)ακ), θ(−π) ∈ R, which, by the742

way, is of the form743

θ(t) = amκ(−ακt+ bκ), bκ := Fκ(θ(−π))− πακ ∈ R. (4.37)

This proves (4.8) and gives a parameterization of the family of solutions in terms of the initial744

condition θ(−π), or in terms of the initial condition ∂tθ(−π) due to (4.29).745

In principle, the energy can depend on bκ, but this is not the case as we are going to show next.746

For that, we observe that from (4.30) we get that747

|∂tθ(t)|2 = α2
κ + κ2 sin2 θ(t). (4.38)

Plugging the previous expression into the energy functional (4.20), we obtain that if m⊥ minimizes748

the energy in the homotopy class {degm⊥ = 0}, then749

F(m⊥) = −2π(1 + α2
κ) + 2

ˆ π

−π

|∂tθ(t)|2dt. (4.39)
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Next, we observe that since θ is a decreasing function and θ−1(t) = Fκ(−ακt+ bκ)), we have750

ˆ π

−π

|∂tθ(t)|2dt =
ˆ θ(−π)

θ(π)

|(∂tθ ◦ θ−1)(x)|2|∂xθ−1(x)|dx

=

ˆ θ(−π)

θ(π)

1

|∂xθ−1(x)|
dx. (4.40)

But from (4.37) we know that θ−1(x) = bκ−Fκ(x)
ακ

and, therefore751

ˆ π

−π

|∂tθ(t)|2dt = ακ

ˆ θ(−π)

θ(π)

1

|F ′
κ(x)|

dx

= ακ

ˆ θ(−π)

θ(π)

√
1 + (κ2/α2

κ) sin
2 xdx

= ακ

ˆ θ(−π)

θ(π)

√
1 + (κ2/α2

κ) sin
2 xdx. (4.41)

Making use of the π-periodicity of the integrand, we infer that752 ˆ π

−π

|∂tθ(t)|2dt = ακ

ˆ π

−π

√
1 + (κ2/α2

κ) sin
2 xdx = 4ακE(−(κ2/α2

κ)) (4.42)

Overall, plugging the previous expression into the expression (4.39) of the energy, we get753

F(m⊥) = −2π(1 + α2
κ) + 8ακE(−(κ2/α2

κ)) (4.43)

and this proves (4.9).754

Proof of iii. The proof quickly follows from i and ii because the energy of the normal vector fields ±n755

evaluates to 2π and, therefore, due to (4.43), degree zero configurations given by (4.37) are preferred756

as soon as757

−2π(1 + α2
κ) + 8ακE(−(κ2/α2

κ)) < 2π. (4.44)
This happens when κ2 < κ2∗ ≈ 2.31742.758

Proof of iv. Finally, we want to show that the degree zero solutions (4.37), which we know to be759

global minimizers when κ2 < κ2∗, retain local stability for every κ2 > 0. For that, we compute the760

second variation of the energy (4.11) which, for any ϕ ∈ H1
♯ ([−π, π],R), reads as (cf. (4.13))761

F ′′(θ)(ϕ) =

ˆ π

−π

|∂tϕ(t)|2 + κ2ϕ2(t) cos 2θ(t) dt. (4.45)

From the Euler-Lagrange equations (4.21) we get that762

∂tttθ = κ2(cos 2θ)∂tθ. (4.46)

Moreover, since |∂tθ| ⩾ c′θ > 0 on the compact set [−π, π] for some cθ > 0, we can use the Hardy763

decomposition trick (see [10,23–26]) and say that any ϕ ∈ H1
♯ ([−π, π],R) can be written as ϕ = (∂tθ)ψ764

for some ψ ∈ H1
♯ ([−π, π],R). Therefore765

F ′′(θ)(ϕ) =

ˆ π

−π

|∂tθ|2|∂tψ|2 + |∂ttθ|2|ψ|2 + ∂ttθ∂tθ∂t
∣∣ψ2

∣∣+ κ2|ψ|2|∂tθ|2(cos 2θ) dt. (4.47)

Integrating by parts the previous expression and making use of (4.46) we obtain766

F ′′(θ)(ϕ) =

ˆ π

−π

|∂tθ|2|∂tψ|2 dt ⩾ (c′θ)
2

ˆ π

−π

|∂tψ|2 dt. (4.48)

Finally, plugging θ = 0 into (4.45), we get that ±n are uniform locally stable critical points for every767

κ2 > 0. Therefore, local minimizer of the energy F . This concludes the proof. ■768
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