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Abstract

We study a two player zero sum game where the initial position zy is not com-
municated to any player. The initial position is a function of a couple (z¢, yo) where
g is communicated to player I while yg is communicated to player II. The couple
(x0,yo) is chosen according a probability measure dm(x,y) = h(x,y)du(z)dv(y).
We show that the game has a value and, under additional regularity assumptions,
that the value is a solution of Hamilton Jacobi Isaacs equation in a dual sense.
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Introduction

In this paper we study a zero-sum two players differential game with symmetric in-
formation on the initial position. The game starts at a fixed time ¢, € [0,7], an initial
position zy € R is chosen (unknown for the players), the actions are controls denoted by
u(-) for Player I and v(-) for player II and taking their values on compact subsets U and
V of some finite dimensional spaces. Then a trajectory t — X/ s senerated via
the following dynamic system in R%:

(1) 2(t) = f((1), ult), v(t)),

(f : R4 x U xV — RY) together with the initial condition z(tg) = zy. The payoff is given
by g(z(T)) with g : R — R*. Player I wants to minimize the payoff, while Player II
wants to maximize it. Both players observe the actions of her/his opponent. The crucial
point is that zg is not communicated to any player, zy = ®(xg, yo) depends on the private
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informations 7y € RY of player I and yo € RM of Player II. Moreover (zg, o) is chosen
randomly according to some bounded non-negative measure m € M,(R¥*M). In order
to get regular upper and lower values, we make the following additional assumptions on
m:

dm(x,y) = h(z,y) du(z)dv(x) with h € L},

UXv

(RN+M,R+), ne P1<RN), Ve Pl(RM)

Note that the informations of the players are correlated by h. Both know the measure m
and the dynamic and the final cost g. They also know the function ® which links their
informations xy and yy to the initial position zg = ®(zg,yo). Moreover, they will play
randomly in order to hide they private information. It is important to notice that none
of the players know really what payoff she/he is actually optimizing.

As usually, an Isaac’s condition (4) will be required. Proving the existence of the value
without Issac’s condition might be done in a different setting where the upper and lower
values are obtained as limits of sequences of values corresponding to a sequence of games
where players have the same delay (see for instance [2] and [14]). The crucial point in
these papers is the knowledge they have of their opponent’s delay.

The game previously defined is a generalization of the game studied by P. Cardaliaguet
in [5], section 6. In his setting, before the game starts, a couple of indices (i,j) €
{1,...,1} x {1,...,J} is chosen on a finite set with some (uncorrelated probability)
p:i X g;. The initial position is then given by some z;; € R? which is not communicated
to any player while 7 is communicated to player I and j to player II. They both know the
family of points (z;;) and the probabilities (p;); (¢g;);. This problem is clearly contained
in the case considered here by setting h =1, p =Y. p;;, v = Z]. pidj, ©(i,j) = x;;. In
[5], it is proved that the game has a value which is characterized as the unique viscosity
solution of a Hamilton-Jacobi equation in R%. Due to the stucture of the information, the
Hamilton Jacobi equation is satisfied in a dual sense. More precisely, the convex conju-
gate on the (p;); variable of the lower value is proved to satisfy a subdynamic principle
while the concave conjugate on the (g;); variable of the upper value satisfies a superdy-
namic principle. The seminal work of P. Cardaliaguet has been widely generalized by M.
Oliu-Barton in [15]. In particular, his setting allows correlated information on the initial
position, the probabilities (p;); and (g;); being replaced by some (p;;); ;. In our case, this
can be obtained by taking a non-constant function A. For an interesting case with signals
that we do not fit in our case, see [19]. In [5] and [15] (also in [19] with a different set-
ting), the values are functions of x;; and p;; which are finite dimensional, in particular, it is
quite easy to show that these functions are continuous with respect to the Euclidian norm.

In the case we are considering, we no longer assume that the initial position should
be taken in a finite set. The upper and lower value are then functionals depending on
® € C(RN*M RY) and m € My(RY*M) which are infinite dimensional. The space
My(RN*M) may naturally be equipped with the weak star topology. Unfortunately, for
a general m, the values don’t seem to be continuous for this topology. Moreover, the
computations of the convex conjugate of the lower value appears quite difficult due to
the lack of regularity of the disintegration z — p® € P(RM) of m with respect to its
first marginal. For these reasons, we restrict ourselves to measures m that are continuous



densities with respect to a product measure. The main difficulty is then to define a proper
notion of dual viscosity solution in C,(RY*M R?) which is a non reflexive space. A good
notion of such solution should provide a comparison principle, which, in this setting, gives
a characterization of the value of the game. This might be the more important contribu-
tion of the present paper.

A case with a continuum of initial positions and no correlation (h constant) was con-
sidered in [7] (see also [10] and [11] for a different approach), the authors proved the
regularity of the values. Then the finitely supported measures being dense in the proba-
bility measures, they got the existence of the value by passing to the limit on the result
of [5]. They also proved that the value exists in pure strategy providing the probability
on the initial position has no atom. We will prove the existence of the value in random
and pure strategy using the same type of arguments. In [13], in the same setting as [7], a
definition of viscosity solution is introduced, unfortunately, the proof of the comparison
principle happens to be false, we will give an erratum.

Note that a case with a continuum of initial positions is also considered in [4] but in the
case where players have no information on the initial position. This leads to a completely
different notion of viscosity solution.

The paper is organized as follows, in section 1, we give the definitions of the objects,
the assumptions and recall some useful results. In section 2, we study the regularity of the
upper and the lower value. Then, in section 3, we prove that the value satisfies some dual
subdynamic and superdynamic principles. In section 5, we introduce the Hamilton Jacobi
[saac equation as well as the notions of dual viscosity sub and supersolution, we show a
comparison principle. In section 6, we characterize the value of our game as the unique
dual solution the Hamilton Jacobi Isaac equation. Finally, in section 7, we consider the
case of the article [13] as an example and give an erratum.

1 Preliminaries and Assumptions

Throughout the paper, finite dimensional spaces are equipped with the euclidean norm
denoted |x| associated with the scalar product denoted by x.z’, the closed ball of center
x and of radius r > 0 is denoted by B(z,r). The Lebesgue measure on R" is denoted by
LY. The notation Cy(RY x RM R?) stands for the space of bounded continuous functions
from RY x RM to R? while Co(RY x RM) is the space of real valued continuous functions
which vanish at the infinity. We will take X € RY and Y C RM two compact sets and
consider C(X x Y,R%) and C(X x Y,R*) the spaces of continuous functions on X x Y
with values on R? and R.

1.1 Dynamics and payment

We denote by U and V' two compact subsets of two finite dimensional spaces. The final
time T > 0 is fixed, the set U(ty) denotes the set of all measurable controls from [to, 7]
to U. Similarly the set of measurable controls from [tg, T] to V' is denoted by V(ty).



The function f : RY x RM x U x V which appears in the dynamics (1) satisfies the
following assumptions:

f 1s continuous with respect to all variables,
f is Lipschitz continuous in the first variable uniformly with respect to (u,v).

Then, it is well-known that for any u(-) € U(ty) and v(-) € V(to), associated with the
initial condition z(tg) = zo there is a unique absolutely continuous solution to (1) denoted
by t — X10%400 which is defined on [to, T]. Standard estimates show that there exists
a constant C(f) > 0 such that for all 2,2’ € R? and all s,s" € [to,T],

‘X?““MJ—X%M““W < C(f) s =5,

E)

(2)
g0 xp 0] <) |z - 2

where C(f) is a constant depending only of f. The cost function g : RY x RM — R

satisfies
{ g s bounded and Lipschitz continuous,

g 1S non-negative.

If the second assumption is not satisfied, just replace g by (g — inf,cpn g()).
We will denote C'(f,g) = Lip(g) x C(f) so that for all 2,2’ € R? and all s,s" € [0, 7],

g(X= 00 — g(x =) < (fg) [s - o,

S

(3)

|g(x=O0) — g(x 0 O0) < (f,g) |2 - 2.

1.2 Isaac’s condition

We will assume the following Isaac’s condition:

()
V(®,p, 1, v) € Co(RNFTM RY) x C,(RVTM R?) x P(RY) x P(RM),
mfsup [ F@(g)u,0) o) du(oddvly) = suping [ f(@Gp)u0) o) du(o)ivo)

uelU veV veEV uelU RN+M
where P(RY) and P(RM) denote the probability measures on RY and R,

The following equivalence result is similar to Proposition 1 in [13].

Proposition 1. The conditions below is equivalent to the Isaacs’ condition (4): For all
keN and (§)=1.. x € R, (2)121

..........

k k
inf sup f(z,u,v) - & = sup inf flz,u,v) - &.
uel yey lzz; ( ) vey uel lzz; ( )

The proof of this result is very close to the one appearing in [13]. Note that the
condition appearing in the proposition implies the Isaac’s conditions required in [5] and

[15].



1.3 Spaces of Measures

In this subsection, we introduce some notations and recall some useful definitions and
results about measures and optimal transport.

Let E be a subset of some R¥. The space of probability measures on E is denoted
by P(E), we also define P;(E) the spaces of probability measures with finite moment of
order 1:

PE) = {nePE): [ lal duto) < +oo}.

Both spaces will be equipped with the Kantorovich norm (see again [18] or [17] for more
details) defined for all py, ps € Pi(E):

1 = pal v = o { /X p(x)dpn (x) — /X w(x)dﬂz(x)}

where Lip, (E) denotes the space of 1-Lipschitz real valued functions. Note that P;(E) is
closed for the topology induced by || - |[arx. The following results are well known:

Theorem 1.1. By duality, we have the equality with the 1-Wassertein distance:

[ = polliex = Wipa, po) := min {/ |71 — 22 dV(Ilasz)}
E‘2

yEIL(p1,12)

where T(uy, p12) s the set of probability measures v on E* which has py as first marginal
and o as second one.

A transport plan v € Il(u, v) achieving the above minimum is called an optimal plan from
p1 to pe. Denote by Io(uy, po) the set of optimal transport plans from py to ps.

Let ® : E — FE be a Bored measurable map, we denote by ®#u, the push-forward of
p1 by ® namely the measure in P(FE) such that

Pt (A) = (971(A)) for any Borel set A C E.

If ®fpuy = pg, @ is called a transport map from gy to pe. If gy has no atom, such a
transport map always exists (see for instance [16]).

We also denote by M, (E) the space of bounded Borelian measures. We recall that,
when E is compact, M, (FE) is topological dual of C(E) the space of continuous functions
on E, moreover a sequence (fi,), in M,(E) converges for the weak star topology to

JURS Mb(E) if:
lm [ () d(p, — p)(z) =0,V € C(E).

n—-+00 X

We recall the following result (see for instance [18], Theorem 7.12 p 212):

Theorem 1.2. When E is compact, the topology of the Wasserstein distance is the weak
star topology of measures.



When E is compact, we will also use the space of zero total mass measures on FE,
namely:

Mo(E) :={ne My(E): n*(E)=n"(E)},

where n = n™ —n~ is the Hahn decomposition of 1. This space is naturally equipped with
the Kantorovich norm, and the corresponding topological dual is Lip,(E) := Lip(E)/R
the space of Lipschitz functions defined up to a constant (see [12]) . This last space is
equipped with its usual norm

. p\r) — ey
Lip(p) = sup #lz) = oly)
z,y€E, vty |z —y|

When FE is not compact, Lip,(E) is the dual of the following slightly different space
(equipped again with the Kantorovich norm):

n"(E) =n (E),

0 Mol = (1M 3 e, [ e sl < oo

We will need some classic definitions of convex analysis on M, (E) with E compact (see
for instance [1] or [9]). Let V : M,(F) — R be a measure functional, we call convex
conjugate and bi-conjugate the following functionals:

Vi(g) = sup { [ o du(x)—v<u>},V¢ec<E>,

BEM(E)

V(o) = sup § [ @) duale) = V() Vo € M)

pEC(E)

We recall the crucial result (see for instance Theorem 9.3.4. in [1]):
Theorem 1.3. IfV is convex l.s.c. for the weak star topology of measures then V** =V .

We will also use the concave conjugate of V:

veEM,(E)

Vi) = int L [ ot avt) - v}

Finally we recall the definitions of the convex subdifferential and superdifferential (possi-
bly empty) of V' at py € My(E):

O V) = e { [ o0) duata) = V() }

OV (o) = argmin@ecm){ [E e(y) dVo(y)—V*(w)}-



1.4 Strategies

The strategies of the players should involve only their available information. This leads
to the following notion of random strategies (comp. [5, 6, 7]). The sets U(ty) and V(to)
are endowed with the Borel o-field associated with L} [to, T] and L [to, T]. As they are
symmetric for Player I and II we only give a definition for player I:

Definitions 1. (i) Let S be the set of triples (2, F, P) such that = [0, 1] for some
m, F is a o-field contained in the class of Borel sets B([0,1]™) and P a probability
measure on (2, F). For any ty € [0,T[, we denote by A,(ty) the set of random
strategies for Player I starting from tg.

A random strategy in A, (to) is a pair ((Q, F, P), ) where o : RN x QxU (to) — V(to)
1s a Borel measurable map and there exists a delay T > 0 such that for all w € €):
a(z,w,-) : V(tg) — U(ty) is nonanticipative with delay 7. Namely for any vy, vy €
V(to), for any t € [to, T|, if vi = va a.e. on [ty,t], then a(z,w,v;) = a(z,w,v2) a.e.
on [to, (t+7) ANT].

(i) A strategy in A,(ty) which does not depend on the random variable w will be called
a pure strategy. We denote by A(ty) the set of pure strategies.

(iii) A strategy in A(tg) which does not depend on the space variable x will be called
constant in space. We denote by A.(to) the set of strategies that are constant in
space.

We denote by B,(ty), B(to) and B.(ty) the symmetric sets for player II.

Now we associate to any pair of random strategies a trajectory thanks to the Lemma
below (we don’t prove it as it is very similar to Lemma 2.4. in ([7]). This enables us to
write the game in a normal form.

Lemma 1. Let (24, Fa, Pa), Tas ) and ((2, Fp, Ps), 75, 8) be two strategies in A, (to)
and B, (ty).

For any w := (wa,wp) € Qo x Qg and for any couple of types (z,y) € RY x RM | there
is @ unique pair (Uy. 4.y, Vozy) € U(to) X V(to), such that
(6) O[(I, Wa vw,x,y) = Uy,z,y and 5(% weg, uw,x,y) = Vu,zy -

Furthermore the map (w, T, y) = (Upzys Vwzy) € Ulto) X V(toy) is Borel measurable.

Consequently to (o, 8) € A,.(tg) X B,(to), ® € C(RNTM RY), (z,7) € RV*M we may
associate a trajectory defined by

tE [tO,T:I — XttO7¢(£7y)7a($7wa7')15(y7wﬁ1') — Xtthq)(xvy)auw,z,yy'Uw,z,y

where u, ., and v, ., are associated to («, ) by the Lemma 1.



1.5 Definitions of several Values

Definitions 2. Firty € [0,T], (®,h,u,v) € L}

#XV(RN-%M Rd) % Ll (RN—i-M) % 7)1<]RN> %
Py (RM).

1137

o We define the upper and lower random values:

Vit @ hiv) = ntsup [ g e 0 ) du(a)do ) aP(e),

acAr(to) BEB(to)

V (to, P, h,pu,v) = sup inf // g(Xx® P@y)ole,) By, ))h(x y) du(z)dv(y)dP(w).
RN+M

BEB-(to) aEA (to)

o We call upper and lower value in pure strategy the following functionals:

V(ty,®, h,p,v) := inf sup / g <Xfp°’¢)(x’y)’a(x")’ﬁ(y")) h(z,y) du(z)dv(y),
RN+M

a€A(to) BeB(to)

V= (ty,®, h,p,v) ;= sup inf / g <X?’®<x’y)’a(x")”8(y")) h(z,y) du(x)dv(y).
RN+M

BEB(to) a€A(to)

We also introduce the following definitions of values (we will see in section 3 that they
coincides with the random values):

Proposition and Definition 1. Fiztg € [0,T], (®, h, p, v) € Co(R¥TM R x Co(RVTM) x
PL(RY) x P (RM). The following upper and lower values are well defined:

Cf (to, ®, h,p,v) == inf / sup { / gt @eIB ) p (g y) du(m)dP(w)} du(y),
R QxRN

(XEAr(tO) M ,BEBc(tO)

C; (t0 0= sup [ [ | gt 0res iy du(y)dP(w)} du(x).
yJR QxRM

BB, (to N a€Ac(to)
The proof of this result is an immediate consequence of the following lemma:

Lemma 2. Fizty € [0,T], (®,h, i, v) € Co(RVNTM RI) x Co(RVNTM) x Py (RY) x Py (RM).
For any € B,(ty) and any o € A.(to), set:

pusle) = [ g (XPEDUON o) doly)aPle)
RM xQ

For any B € B,(to), the application x — infaea, (1) Pa,s(x) is in Co(RY).
In the same way, for any a € A.(ty) the following application is in Co(RM):

po s ([ e Oy duta)ap(e)
BEBe(to) LJOxRN

Proof: We focus on the application = + inf,ca, 1) Pa,5(2).



e We first show the continuity. Let z,, — = in R and € > 0. It exists o, such that:

inf aglx)— Inf as(Tn
aEAc(to)go ”8( ) aEAc(tO)go ﬁ( )

(panaﬁ('x) - QDOMMB('T”) + €
/M <g (X;?7(I>(I:y)7an(')7ﬁ(w7yv')) —g <X§97‘I’(xn,y)van(')»ﬁ(wvyv')>) h(l.’y) dV(y)dp(W)
RMxQ

+ / g (xppt e O (1w, y) — h(wn,y)) dv(y)dP(w) + <.
RM xQ

IN

IN

Then, by (3) we have:
‘g (X? ’é(z’y)’a(')’ﬁ(w’y")) —yg (X?’ ’é(z”’y)’a(')’ﬁ(w’y"))‘ < C(f, 9)|®(zn, y) — (z,y)|

and using dominated convergence theorem, we get:

lim su inf @,g(x) — inf aslxn) | <e.
n_>+oop <a€Ac(t0)g0 ’B( ) aeAc(to)(p ’B( >>

In a symmetric way:

liminf( inf pap(r) — inf gpaﬁ(a:n))Za

n—+o00 \ a€A.(to) a€Ac(to)

As this is true for any € > 0, we get :

lim  inf = inf :
n—1>I-il:loo aef‘lnc(to) Poub (x'rl) aeglc(to) ol ('T>

e Now we show that inf,c (1)) Pa,s vanishes at the infinity. As h is in Co(RY), for all
e > 0, it exists R. such that with C. = B(Og~, R.) X B(Oga, R.), we have:

sup |h(z,y)| = sup |h(z,y)| <e.
xZB(0pn,Re) OF yZB(0pnr,Re) (z,y)€Ce

So that for any € B,(tg) and = ¢ B(Og~, R.):
Va € Adto) 1 pasle) = / g (xpp O (g, y) dvdP < |glle
RM xQ

and inf,gp(o,y k) Nfaca, () Pas(T) < [l

QED
Remark 1. 1) When ® and h are reqular, we have the following inequalities:
C(to, @, by, v) <V (to, @, hy p,v) < ViH(te, @, h,p,v) < CHte, @, h,u,v).

If v is finitely supported, the first inequality is an equality; in a symmetric way, if
v is finitely supported, the last inequality is an equality.
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2) Both Cf and C;~ are meaningful. For instance, as Player I knows the exact o € RY
witially chosen, why should he minimize the average payment

| o e e ) ) () dP()?
QXRN+M
It seems more reasonable for him to minimize

inf / g (X102 OMN b (0 4 i (y)dP(w).
QxRM

aEAc(to)

8) When ® and h are in some L;.,, the map & — infoca @) Pas(x) may be not
measurable so that C.- may not be well defined. The same holds for CF.

2 Regularity of the values

In this subsection, we study the regularity of VX, CF and V*.

The following result is classic (see for instance [3]):

(RVNAM R) x L (RNTM) x P (RM) x Py (RY)

[15:3%

Lemma 3. For any (®,h,v,u) € xL,,,
and for any t,s € [to, T,

Vit @, b, v) = Vil(s, @, by p,v)| < C(f, )y Tt = s
The same property holds for V= and for CE if (®,h) € [0, T] x Cp(RNTM R) x Co (RN M),

Lemma 4. (i) Let (to, ®,p,v) be an element of [to, T| x L, ,(RNM R?) x Py (RY) x
PL(RM). For any hy,he € L. (RYTM) we have:

UXv

|Vri<t07q)>h17:u7 V) - Vri(th(I)ahQa,uu V)l S Hg”OOth - h2|

Lllzxu’
(i) Let (to, ju,v) be an element of [to, T] x PL(RY) x Py(RM). Let h € L}, (RN*M) and
O,y € L (RNTM RY) with p € [1,4+00] and 1/p+ 1/q = 1, we have:

17232

|V;t(t07 (1)17 h,,u, V) - vat(toﬁ CI)Qv hv:uu V)’ < C(f7 g)Hh”LZXVHCI)l - ¢)2||sz”7

in particular, VT is Lipschitz in ® for the norm || - || ., with Lipschitz constant

O(f, ) hllss...

The same properties hold for V= and for CE if (®,h) € [0,T] x Cp(RNTM RY) x
Co(RNTM),

Proof: We make only the proofs for V., the proofs for the other values being similar
(note that here the randomness of the strategies does not play any role).
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(i) Take e > 0 and ((2y, F1, P1), B1) € B, () such that:

OCEA to

Vo (to, @, hy,p,v) < e+ inf / /N+M xlo®@w)ale)Bilwyy ) hy(z,y)dudvd Py (w).
Q JR
Then choose s € A(tg) such that:

inf / /MM to@zy) a(z, '),ﬂl(w,yr)) ho(z, y)dudvd Py (w)
Q1 JR

aEA(to

/ [ o (e sy by dudvdpy o).
o RN+M

Then we have:
V t07q) hla/% V (t07q> h27/’['7 )
< 2 + / / to 2@ y)z@)fi(wy, )> hy(z,y)dudvd Py (w)
RN+M

/ / X0 0z@) i, )) ha(x, y)dudvd Py (w)

N RN+]M

C e / / to P(zy),a2(z, )1 (wy, )) (h1 — ho)(z,y)dudvd Py
Ql RN+M

< 25+ llgllollhn — hallss, / / v(y)dPs ()
RN+M

so that (i) holds (recall that Py, u and v are probability measures).
In a similar way we get the proof for C .

(ii) Repeating the same arguments as above, it exists ((21, F1, P1), 51) € B, (to) and
ap € A(ty) such that:

V th(I)lvh' o, vV V (thq)Qah n, v )
< 2 + / / to 1(@y),02(@)B1wy, )> h(x,y)dudvd Py (w)
Ql RN+M

/ / to o (z,y),02(,), 51(%97')) h(:)j, y)d,udVdPl(w).
o RN+M
Then by (3):

th(I)lah u, v V (to,q)g,h 2204 )
< 2 +/ / Xlo@1 sl b, )) g (X?,<1>2(x,y>,a2<x,~)7ﬁl<w,y,~>)’ h(z, y)dudvdP,
0y JRN+M

2+ C(f.9) / / 1B (2, ) — Do, y)| bz, y)dudvdP,
Ql RNJrM
2+ C(f, ) hllzs | &1 — Pall o

IN

IN

QED
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For any fixed ® € C,(RV*M R?), h € Co(RNTM), v € P (RM) the study of the regularity
in ;1 and v of V¥ make appear the following objects from optimal transport, similar to
the usual Monge Kantorovich norm and defined for all g, 1 € M (RY) with po(RY) =

pr (RY):

- Wa o (o, p1) == 7€Hi££ m)/RzN o hw(To, 1) dy(zo, 1),
7 k]
with can (o a1) = [ 19(0,0) = @len )|+ bz ) — hles )| dv(y),
R

We define Wy, ,, with € P1(R") in the same way:

W@,h,u(VmM) = inf /N+2M \@(z,y@—@(m,yl)]—|—|h(x,y0)—h(x,y1)| dlﬁ<$>d’Y<yO,y1)
R y

Y€ (vo,v1)

for all vy, 1 € M (RM) such that vo(RM) = vy (RM).

Then we can state the regularity property in p and v of V:

Lemma 5. (i) Let (to,v) bein [to, T|x P (RM) and ® € Co(RV*M R?), h € Co(RV*M RT),
For any o, w1 in P1(RY), we have:

Vi (to, ®, s o, v) = Vi (to, @, by i, )| < (C(F, 9) 1 hlloo + 19lloc) W o (0, 1),
C; (o, @, by po, v) — Cp (Lo, @,y pr, V)| < (C(F, ) [[Allos + 19lloc) Weanw (110, 1),
(ii) Let (to, ) be in [to, T] x PL(RY) and ® € Co(RV*M RY), h € Co(RV*M RT). For
any vo, v1 in P1(RM), we have:
Vi (to, @,y v0) = Vi (to, @, b o 10)] < (C(F ) lloc + [191]0) Wt (v0, 1),
|G (to, @, T, 1, v0) = CF (to, @, by 1, 0)| < (C(f, D) 1lloe + [[9lloc) Wa i (v0, 1)

In the proof below, the randomness of the strategies is crucial, the proof will not work
if we replace VI by V.

Proof: We will only prove the result (i) for V.. The other statements being similar.
We mimic the proof contained in [13]. Fix ¢ > 0 and take ((Q2, F, P), o) an e-optimal
random strategy for V¥ (to, @, h, 19, ¥) namely

(8)

i / / (Xt P @m0 BWI) by (10 g (1) d (y)dP(w) < Vi (to, @, By o, v)+e.
BEB(tg) JQ JRNXM

Take v be any element of IT(pg, 111). Then we disintegrate the measure v with respect to
(1 as follows

dy(z0, 21) = dVa, (T0)dpr(21).

It has been proven in [7] there exists a measurable map & : (7,w’) € RY x [0,1]V
£(y,w') € RY such that

E(wy, LN [0, 1] = ~,, for pi-almost all ;.
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This enables us to define the following random strategy for the first player
Qg (xl,w W U) S ]RN x ) x [O 1]N X V(to) — ao(ﬁ(xl,w’),w,v) S Z/l(to)
Then for any 5 € B(ty) we have

[ e s ) b i ()P ()
Qx[0,1]¥ RN+M

:/ / ( / g(Xgp P eolElmenesn) h(:pl,y)dw’) dpis (y)dv (y)dP(w)
Q JRN+M [O,l]N

= / g(Xho® a0 BNy (0 0Y du(y)dy,, (zo)du (21)dP(w)
OxR2N xRM

(Using Fubini Theorem and the definition of ay)

:/Q v SEE TSN @1, y) du(y)dy (o, 31)AP ()

X X

< / xRt Oy ey y) du(y)dP(w)dy (o, 11)
OXR2N xR

LD [ 19a0.0) = Blar, )] d(p)es(an, )

(Using inequality (3))

< / . g(X;),cb(:vo,y),ao(m,w,-)ﬁ(')) h(.To,y) dV(y)dP(w)dfy(xo,xl)
QxR

gl [ | We09) = b )| dvta)d (o)

CULl [ 19(z0.) = Blor )] dvla)d(ao. 1),

Then taking the infimum in v € II(uo, p1) leads:

L o 9 R s ) AP
x[0,1 :

< / (X0 P o eoleoIBON b y) du(y)dP(w)duo(wo)
OQOxR2N xRM

(O D7l + [[9lloc) W (10, p11)-
We conclude by taking the supremum in 5 € B(ty) and recalling (8) :

V;r(t07 (Da h,,LLl, V)

< sup/ / g(Xlo®lerw)en (@ IBWDy b0 ) dpy (y)dv(y)dP(w)dw’
Qx[0,1]N JRN+M

< sup / (X P whecto)BW)y b, o) du(y)dP(w)duo(ao)
B QxR2N xRM

+(C(f, 9Pl + l|9lloc) We pw (1o, 121)
S V:_(t07 (I)a hv Ho, V) +e+ (C(fv g)HhHoo + ||g||OO)W<I>,h7V(:U“Onu1)‘

13



Sending € to zero we finally have:

Vj(t(% CI)7 h’ula V) S Vj_<t07 CI)’ hu Ho, V) + (C(fa g)HhHOO + Hg||OO)W<I>7h7V(M07 ,ul)

Interchanging po and g, the proof is complete.
QED

Lemma 6. Let ® be in C,(RN*M RY) h € Co(RNM RY), and v € Pi(RM). The
following properties hold:

(1) Wa w0, 1) = W o (i1, p10), for all po, pn in My (RY) with uo(RY) =  (RY),

(i1) Wa po(po, 1) > 0 and We . (po, o) = 0, for all pg, p1 in My (RY) with po(RY) =
Ml(RN>’

(iii) Yo, pa, po € MF(RN) with pg(RY) = py (RY) = pe(RY), the triangle inequality
18 satisfied
Wa no (o, 12) < Wa o (10, 1) + Wanw (1, ft2),

() let o, pa be in My (RY) with pg(RY) = p1 (RY), assume Wo p, (1o, p11) < +00 then

W@,h,u(,UOa Ml)

= sup {/ odjiy —/ odpo : p(r1) — (o) < o pp(T0,21) Yo, 21 € ]RN}
RN RN

PECH(RY)
where ce 1, 1s the cost defined in (7).

As a consequence it exists Ng 1, a semi-norm on Mgy(RY) (see (5)) such that:

N¢,h,u(77) = W@,h,u(n+, 77_).

(v) let @1, Dy be in Co(RNTM RY), hy hy € Co(RNTM)  assuming all the quantities are
finite, we have:
W(bl,h,u(,um,ul) - W@z,h,y(/JJO?//Jl) < 2HCI)1 - (I)QHom

Wa hy v (t0, 1) — Wy (o, 1) < 2[|h1 — hal|o-
Of course same properties can be shown for Wg p, ..
Proof: We only show (iii), (iv), the other properties being straightforward.
Proof of (iii): We assume that W 5, (10, 1) < +00 and We p (11, p12) < +o0o. We

use a classic argument (see for instance [17]). Fix ¢ > 0 and let 71 € II(po, 1) and
712 € II(p1, p2) be two e-optimal transport plans that is:

€+ Wao (o, 1) > / co (o, 1) dyoq1(zo, 21),

R2N

€+ Wo (i1, p2) > / Copp(T1,T2) dy1a(x1, 22).

R2N

14



We disintegrate vp; and 7 2 as follows:

dyo(zo, 1) = dygly (wo)dpa (z1),  dyia(x1, 22) i= dyh () dp (21)-

We build and admissible transport plan o12 € I(uo, p2) for We ., (10, pt2) by setting:

0.1 (z0, 2) = / @ (0) P () djan (1),

RN
Note that cg p, satisfies a triangular inequality that is:
o (%0, T2) < Copu(To, 1) + Copp(T1, T2).

Frome this inequality, we get:

W@,h,u(ﬂoam) < /NC<1>,h,u($0,952) d70,1,2($0,902) S/ Ca,hw(T0, T2) d%‘fﬁ(ﬁo)dﬁé(@)dul(%)
RQ

R3N

IN

/ Co,hw(T0, 1) + Conw (1, T2) Ay 5(T2)dp (1)
R3N

IA

/ qu,h,u(xo,xl) d%,1(1‘07$1) +/ ch,h,y(l’l,@) d71,2($1,$2)
]RQN RQN

< 26+ Wanu(po, 1) + Wae pw (i, p12).

Sending € to zero gives the result.

Proof of (iv): For simplicity we denote by ¢ the cost ¢ . It is symmetric, satisfies
c(z,z) = 0 for all z € RY and the triangular inequality holds. It is non-negative and
continuous, so by classic Kantorovich duality (see for instance [17]):

Wonstinpo) = s { [ o aopnton) + [ e tanimion) |

peCo (RN RN

where ¢°(z) := inf cpn{c(x, 2) — P(2)}.
Note that, for all 2o, ; € RY,

(9) o (21) — ¢*(w0) < c(wo, 71).
Indeed, for any € > 0 it exists z. such that
¢“(z0) + & 2 clxo,2:) — p(2:),
and using z. as candidate for inf,cgn{c(x1, 2) — p(2)}:
(1) = ¢%(0) < e, 2) = p(ze) — c(wo, 22) + p(ze) + & < o, 71) + €.
Let us show ¢p* = —¢°. Choosing x; = xg, we get:

©“(wo) == inf {c(zo, 1) — ¥ (21)} < —¢(20),

z1ERN
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the opposite inequality comes from (9). We get that:

W nw (o, 1) == sup ){/ — (o) dpo(0) +/
]RN

peCo(RN RN

o) |

Observe that by (9) and the continuity of ¢, ¢ is continuous for all ¢ € Co(RY). Moreover
©° is bounded because, as ¢ is non-negative and c(z,z) = 0:

p*(x) = nf {c(z,2) —p(2)} < (@) < [lolle,

p(@) = nf {o(z, )~ 9(2)} 2 nf {=0()} = ~llglle

2€RN

So that:
ch,h,,u(HOv ,Ul)
< sup {/ ¢(x) dus(x) —/ o(x) duo(x) : p(x1) — o(z0) < (w0, 71) Yo, 71 € RN}-
pecyRY) LJrN RN

The other inequality is obvious.
QED
Corollary 1. Let ty be in [0,T], ® € Co(RV*M R?), h € Co(RV*M).
e For any fired vy € P1(RM), the maps p € Pi(RY) — VE(to, @, h,u, o) are uni-
formly continuous with respect to || - ||amk-
o For any fized pg € P1(RY), the maps v € Pi(RY) — C (to, ®, h, po,v) are uni-
formly continuous with respect to || - || k-
The same properties hold for CE.

Proof: We fix v € P;(RM) and prove that p — VE(tg, @, h, 1, v) is uniformly contin-
uous, the remaining being similar. We denote by C' the constant (C(f, g) ||hllcc + [lgllc0)-
We fix ¢ > 0 some &, € Lip(RV*M R?), h, € Lip(R¥*M RT) such that:

£ g
CDE_(I)OOS_a ha_h’oog_
[ = Blloe < . e~ oo <

Then, for all po, 1 € Pi(RY) such that || — mllvk < segmmsimmmny: We have for

any optimal plan v € Ty(j0, i£1), by Lemma 5:
‘Vj(t(]u (I)) hu 1, V) - V;r(t(b (1)7 h’7 o, V)| < CW(P,h,l/(MO? /1’1)

<ol [, 19 - @)l + b s) = hor )l oo dv)
R2N+M
< QCHh_hEHOO—"_QCH®_®E”OO+C |:/ ’(bzs(any) - (Dg(xl?y)‘ + |h5(:1:0,y) - h&(x1>y)‘d7(x07$1)dy(y)

€ . :
< 25 + C(Lip(he) + Lip(®:))ll o = pullardr(y) < e.
The proof is complete.

QED
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3 Values in Pure and Mixed Strategies, equalities be-
tween several definitions of values

In view of the regularity of the upper and lower values and the results proved in [19], we
get that the game has a value:
Theorem 1. Assume that Isaac’s condition (4) holds. Then, for any ty € [0,T], v €
Pi(RM) and pp € P1(RY), (®,h) € L, ,(RNTM RY) x LI (RN M) with p € [1, +o00[ and
q = 5, it holds:

P

Vj(tm q)7 h‘7 H, V) = qu(th (I)u ha Ky V)'

We denote by V,(to, ®, h, 1, v) the value above.

Proof: Step 1: Assume for a while that ® and h are regular: ® € C,(RV*M R%),
h € Co(RM*M RT). For any k € N let py be in Pi(RY) and v, € P1(RM) a pair of
probability measures with finite support

ng

my
k
Mk:E Q,L(Sxk, szg bjéy;_e,
Jj=1

i=1
such that

Hm || — pllaee = lim |[v — vg||px = 0.
k—4o00 k—4o0

Set for any k € N, any ¢t = 1,...,n, and any j = 1,...,mg:

k
k. kK k k ak bk k q;,
Xij = (I)(f’fz‘vyj)> q4;; = h(x; 7yj) sz Pi; = <nn in,@

=1 Zz/ 1 ql v

By construction, for any k € N, (pf,j)i,j is non negative and satisfies Z” pm-
belongs to the simplex A(ngmyg). Then using Corollary 1 and [19], we get:

VH(te, @, h, p,v) = lim V:r(tg,fb,h,uk,l/k)

= 1so it

nEg Mg

= lim inf sup / Zg to Xipolom) Bl > q; dP(w)

k—+oo acAr(to) BEB(to) =1 =1

ng mg nE  Mmg
_ : k tO X Oé W, Ty, ) /B(y] )) k
= kgrfoo ( E_ Eﬁ Ql,z') inf  sup / E E g pij dP(w)

a€Ar(to) BeB(to

ng Mg Nk Mg
= (S5 [SS5a (x e

ﬂeB to )y a€A(to)

=1 r=1 =1 j=1
= lim V. (to, P, h, py, ) = Vr_(to,CI),h,,u, v).

k—+o00
Step 2: Let ® € G,(RYM R?), h € L}, (RV*M). Taking a sequence h,, € C.,(RN ™)

such that h, — h in L) (RN*M) and applying Lemma 4, we get:
V! (to, @, by i, v) =V, (to, @, hy i, v).

Repeating the same argument with ® € LP(RY*M R?) h e L], (RV*M), @, € C.(RVM RY)

converging to ® in LP(RM*M R9) and using again Lemma 4, we get the result.
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QED

Corollary 2. Let (to,p1,v) be in [to, T] x Pi(RY) x P(RM) and & € C,(RVTM R?),
h € Co(RNTM RT).

(i) We have: C; (to, ®, h, p,v) = V. (to, @, h, p,v),  Cl(to, @, h, pu,v) = Vi (to, @, h,u,v).
(ii) If Isaac’s condition (4) holds then:

C(to, @, h, p,v) = V. (to, ®, h, p,v) = Vi (te, ®, h, i, v) = CF(to, ®, h, u, v).

Proof: We only show (i). It is easily seen that the first (resp. the second) inequality
holds for any p (resp. v) with finite support. Then, as any p € Pi(RY) (resp. any
v € P(RM)) can be approximate for the || - ||;sx-norm by a sequence of (pi,), (resp.
(Vn)n) ) with finite support, considering the regularity of both sides of the equality with
respect to the || - ||px-norm, we get the desired result.

QED

We now show that if © and v has no atom, the values don’t change if we consider only
pure strategies (cf [7]).

Proposition 2. For anyty € [0,T], v € Py (RM) and p € Py (RY), (®,h) € LE,,
LZXV(RNJFM,IW) with p € [1,400] and q = L=, it holds:

p—1’

(RNJrM’ Rd) %

(i) If u has no atom, the following equality holds: V* (ty, ®, h, u,v) = V. (to, @, h, p, v).
(i) If v has no atom, the following equality holds: V= (to, ®, h, u,v) = V. (to, D, h, u, v).

(iv) Assume that Isaac’s condition (4) holds, then, if u and v has no atom:
V+<t07 (I)J ha K, V) - V_(t(]a (I)’ h7 2 V)'

Proof of (i) : Arguing as in the proof of Theorem 1, it is enough to show the result
for ® € C(RNM RY), h € Co(RNTM). Tt is easily seen that Lemma 4 (ii) is also satisfied
for V*. As a consequence, it is enough to prove (i) when @ is uniformly continuous, indeed
any ® in C, can be approximate for the norm LZXV by a sequence of functions in C°.
Assume @ is uniformly continuous and g has no atom. Take ¢ > 0, as ® and h are

uniformly continuous, it exists /N. such that for all n > N. we have:

/ 1 / /
1) fe—a| <= [ 0y) — 0@yl + |h(r,y) - A y)ldu(y) < <.
RM

Take n := n. > N., we consider a partition (A7);en of RY where all the A? are Borel and

have diameter less than + and choose z € A7 for all i € N. We consider the following
discrete probability measure:

fon = fn. = > (AT )5

1€EN
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It satisfies:

Wanslpotn) 3 [ [ 10000) = 000+ o) = Wt plivty) dnte) <=
»JR

ieN

By Lemma 5, this leads:
(11) lir% VH(to, @, by pin., k) = VE(to, @, b, 1, k).
E—

Let (([0, 1], F, £*[[0,1]%), a®) be a mixed strategy for player 1 such that:

Vi (to, @, hy i, v)+e > sup / / X2 w)ee (), )) h(z?, y)(AT) dwdv(y).
[0,1* JRM

BGB to

For any i € N we consider a map 77" : RY — [0, 1]* such that:

e (LAY o
ﬂ( <A”>) LA, 1 that s 2o

As p has no atoms, such transport map always exists (see for instance [16]). Then we
build a pure strategy for Player 1 by setting:

= Lap(e) aX(T7 (@), a1, ).

€N

/ (T () dul) = /[ L= € Co®),

Using this strategy as a candidate for V' (tg, ®, h, u, v) leads:
V+(t07 (I), h, 2 V)

< s [ g (xR0 o) dua)dy)
RN+M

BEB(to)
< sup Y / g(X?’q)(z’y)’ay(Tin(z)’x?“)’ﬁ(y“)) h(z,y) du(z)dv(y)
BEB(to) {oy J Ap xRM
< (U lal) Y [ 100) = Bl )]+ (o) = il )l db(0)
€N nX

7¢’ 'r,' Y )0 Tln z 7““1' )y )" n
+ sup ) 9 (X? et )) h(x},y) dp(z)dv(y).
A" xRM

BEB(to) ieN
Then, setting C' = (C(f, g)||hlloo + ||g]lo0), using (10), the definition of 7" and o we get:

V+(t07q)ahmua V)
< (C(f: @)l + llglles) x €

n o).l (w.ah ) AP
+ sup g / M(A?)g <X;9,<I>(xl )0 (w,z? ), By, )) h(a::‘, y) Tzn ( NL i ) (w)dl/(y)
BEB(to) ;o Y RM x[0,1]F .

IN

Cet sup H / g (X eI ) B, (AT dwdv(y)
BEB(to) oy Y RM x[0,1]k

< Ce+e+Vi(t,®,h,pin,v).
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We have proved that for any n > N, we have:
Vi(te, @, h,p,v) < (C+ 1)e + Vi(to, @, h, i, , V).
This inequality being true for any &, by (11), making € go to zero, we have:
V¥ (to, @, h, 1, v) < VI (to, @, b, p,v).
The other inequality is straightforward.
QED

4 Subdynamic and superdynamic Programming Prin-
ciples

From now on, we take X C RY and Y ¢ RM two compact sets and we will consider only
probability measures p supported inside X and v supported inside Y. Namely u € P(X)
and v € P(Y). Moreover we will require some regularity for ® and h > 0:

deC(X xY,RY, heC(XxY,RT).

Because of the lack of information, both the subdynamic and superdynamic principles
will be dual. So, as we get into convex analysis, we will need the following properties.

4.1 Convexity/concavity properties

Lemma 7. For any (t,®,h,v) € [0,T] x C(X x Y,R?) x C(X x Y,R*) x P(Y), the map
to € P(X) — VE(t, ®, h, po, v) is conver.

For any (t,®,h, 1) € [0, T] xC(X xY,RY) x C(X x Y,RT) x P(X), the map vy € P(Y)
VE(ty, @, h, 1, 1) is concave.

This lemma can be proved similarly to Lemma 3 in [13]. Nevertheless, note that the

convexity of V~ in the p variable is obvious from the equality with ), indeed, this last

functional is a supremum of a linear application in p. We can get the concavity of VI in
a symmetric way.

In the next sections, we will need the following lemma:
Lemma 8. Let X C RN, Y C RM be two compact subsets.

(i) Let ty be in [0,T], (®,h) € C(X x Y,RY) x Co(X x Y,R"), v € P(Y). For all
po € P(X), the convex subdifferential 0=V, (to, ®, h, 10, v) of V. at po is not empty.

(ii) Let to be in [0,T], (®,h) € C(X x Y,RY) x Co(X x V,RY), p € P(X). For all
vo € P(Y), the convex superdifferential 0TV, (to, @, h, u,v0) of Vi at vy is not
empty.
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Proof: We prove only (i).
Fix tg € [0,T], (®,h) € Co(X x V,R?) x Co(X x YV,R"), v € P(Y). Take xo any point in
X, we introduce the following convex subset of M(X):
ZEBO = {:u - 5:1:0 VIS P(X)}
We set, for any n € My(X):

Gn) = inf  {(C(f, 9o + Nglloc) Naopw(n —10) + Vi (to, @, hy o, v) } -

To=H0 _610 EZIIJO

Remember that, by Lemma 6, Ny, is a semi-norm.
Step 1: We show that G(n) =V, (to, ®, h, u,v) for all n = p — 0, € Zy,.
Indeed, on the one hand, it is easy to see, by choosing 1y = n that:

G(U) S V;(to,(j[),h,u,y).

On the other hand, by Proposition 5 (i), the functional V" is Lipchitz with respect to the
semi-norm Ng j,,, 50, for any 7y = g — 9z,

V, (to, @, h, p1,v) < (C(f, 9)l[Plloo + l|glloc) N (1 = p10) + Vi (to, @, 1, pro, v)

As this last inequality is true for any ny = po — 0z, € Za,, taking the infimum on all
o € Zy gives the desired result.

Step 2: It can be easily proved that G is convex and Lipschitz continuous with
respect to the semi-norm Ng 3 ,. Moreover, arguing as in the proofs of Corollary 1, G is
uniformly continuous for the topology induced by || - || mk-

Step 3:  The functional G is convex, continuous on the normed vectorial space
Mo(X), so its convex subdifferential is non-empty at any 7 (see [9], Proposition 5.2. p
22). So for any po € P(X), it exists pg € Lipy(X) such that:

Gl 52) 2 Gloio — 82) + [ o)l o). ¥ € PLX).
]RN
Recalling Step 1, then:
Vr_(t(b @7 h7M7 V) Z Vr_(t(h CD7 h7 Ho, V) + / QOO(x)d(M - MO)’ VM € P(X)
]RN

QED

4.2 Convex conjugate of 1V :

Fix (to,v) € [0,T] x P(Y) and ® € C(X x Y,R%), h € C(X x Y,R"). We extend
p € P(X)— V. (to,®, h, 1, v) by 400 inside My(X)\P(X). We still denote the extension
by V,-. We are going to compute the convex conjugate of V" in the variable p. Note that,
as V. is convex, l.s.c. with respect to the weak star topology of M;(X), we have:

(V)" (o, @, b, p,v) =V, (to, @, hy 1, v).
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Lemma 9. Fiz (ty,v) € [0,T] x P(Y) and ® € C(X x Y,RY), h € C(X x Y,R*). For
any ¢ € C(X), it holds:

(V;)*(t()? CI), ha 2 V)
< inf  sup sup {gp(m) — / g (X?,‘P(a:,y),a(.),ﬁ(w,y,)> h(x, y)dV(y)dP(W)} :
Y xQ

~ BEBr(t0) aecAL(to) zEX

In the sequel, we set for all ¢ € C(X),

2p) = inf  sup sup{w)— / g (XptemeO ) h(as,wdv(y)dP(w)}.
Y xQ

BEBr(to) acA.(to) z€X
Proof: By Corollary 2:
V) (to, ®, by o, v)
= sup {/Xgo(x)du(a:) —V;(to,(b,h,u,y)}

neP(X)
REP(X) BEB,(to) J X ®EAc(to)

— sup inf { /X {gp(m)— inf / g(X;P’W)’“(')ﬁ(“*y"’) h(x,y)du(y)dP(w)} du(x)}

pueP(X) BEBr(to) a€Ac(to)

< inf  sup sup {gp(x) - / g (X;?’q)(x’y)’a(')’ﬁ(w’y")) h(z, y)du(y)dP(w)} :
Y xQ

" BEBr(t0) e A.(to) v€X

The inequality follows.
QED
Lemma 10. The functional z : C(X) — R is convex and l.s.c. As a consequence z™* = z.

The proof of this lemma is very similar to the proof of Lemma 9 in [13], therefore it
is omitted.

Proposition 3. Fiz (ty,v) € [0,T] x P(Y) and ® € C(X x Y,RY), h € C(X x Y,RT).
For any ¢ € C(X), it holds:

(V) (to, @, hy0,v) = 2(9).
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Proof:
Step 1: Let us show that z*(u) = +o0 if p € M,(X)\P(X). Indeed:

0 = sw { [ ployiuta) - 20}

peC(X)

=¢23&){/xw($)du(:v)—

nt s sup{ole) = [ g (XpE0) by dvtar | |
Y xQ

BEBr(to) a€Ac(tg) reX

zw%@wm+am{/¢w—wwmﬁ
peC(X) X

zeX

We have on the one hand:

0if >0
— > — -
?0?3 {/X el :161)1? go(:z:)} - i?é / pdu { +00 otherwise,

and on the other hand for any p > 0:

0if u(X) =1
i}g{ /X pdps— sup 90(:6)} igrg{ /X pdp — || } { o0 otherwise.

We conclude that z*(u) = +o0 if 1 is not a probability.

Step 2: We show:

Indeed, recalling the notations of Lemma 2:

A = sup /@W—iﬁ sip (@) — Pap(@)]
eec(x) | Jx BEB:(to) aeA.(to), v€X

— s sup inf { /X o d,u—{go(x)— inf soa,ﬂ(x)”

ﬁeBr(tO) ‘PGC(X) zeX CVGAC(to)

By lemma 2, for any fixed , the map & — infyca, () Pas(x) is in C(X) and choosing
© = infaea. () Pa,p We get:

2"(p) > sup {/ inf ¢, dp}
() BEB,(tg) \Jx a€Ac(to) ’

We conclude by using Corollary 2.
Conclusion: Putting together Step 1 and 2 we have:

25(p) >V, (to, @, hyp,v) Y€ My(X).
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Now, using Lemma 10, we get for all ¢ € C(X):

Vo) (to, ®,h,0,v) = sup {/@du—vr‘(to,@,h,u, V)}
HEM(X)
> sup {/s&du - Z*(u)} =2"(p) = 2(p).
HEM(X)

QED

4.3 Subdynamic and superdynamic principles:

Proposition 4. Let to,t; be such that 0 < to < t;, < T, ® € C(X xY,R?), h €
Co(RVTM RT), o € C(X), v € P(X):

(Vo) (to, ®, h,o,v) < inf  sup (V) (ty, X;00 P oo v,
BEBc(t0) uetd(ty)

Proof: We follow [13]. Take ¢ > 0 and S, be an e-optimal strategy such that:
(12)
inf sup (V)" (t2, X(POM T b vy 42> sup (V) (tl, Xt o, V) :

BEBe(to) ue(ty) well(to)

Let also ((£21,F1, P1), 1) be an element of B,(t1). We glue together . and (; to get a
new element of B,.(t1):
(13)

V(w,y1,5) € O X Y X Uk) X b0, T], Blw, y,u)(s) = { S e

Let ag be any element of A.(ty) such that:

sup sup {SO(x) —/ g (X?’q)(m’y)’a(')’ (w’y")) h(ﬂfay)d’/(y)dp(w)}
Y xQ

a€Ac(tg) z€X

< sup {wx) = [ g (prenem0at) h<x,y>du<y>dp<w>} +e.
Y xQ

zeX
Then take (ug,vo) € U(ty) x V(to) associated to (ap, f:) by Lemma 1 and set:
Yv € V(tl), 041(1]) = Oéo(l)gut(], tl] + UHtl, T])
We get:

sup sup {90(35) - / g (XptemeOien) h<x,y>du<y>dp<w>}
Y xQ2

a€Ac(to) TEX

< smp ot = [ g () e ()P 4o

zeX Y xQ

t0,¢>(z,y),u0,5£(u0)a . WY,

= e - [ o(xp O bl |+

zeX Y xQ

t,®(z,y),uq,Be (ug) al- WY,
< sup Sup{sf?(x)— / g(X;“X“ o ‘“) h(x,y)dy(y)dp(w)}+€.
Y xQ

OéEAc(tl) rzeX
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And by the definition of z:

(V;)*(t()? ®7 h? @7 V) = Z(toﬂ ¢)7 h’ (P7 I/)

tl,X:?‘é(z!y)’UOYBE:(’UI(J)7a(')7/31 (w,y7.)

B
a€A(t1) reX Y xQ

As this true for any 8, € B,(t1), we have by 12:

) h(:v,y)du(y)dP(w)} +e

(V) (o, @, by g, v) < (V) (g, X[ OO 0800 ) e

< sup (V) (b, Xt B v) e
ueU (to)

inf  sup (V.)*(t ,Xto’q)("')’“’ﬁ("),h, V) + 2e.
BeBc(to) uEL{(to)< ) ( ! h 4 )

IN

QED
The following can be proved similarly to Proposition 4:

Proposition 5. For any 0 < to < t; < T, ® € C(X x Y,R%Y), h € Co(RVNTM RY),
peCY), peP(Y), it holds:

(VHe(to, @, hy 1, 0) > sup  inf (W)t X000 h oy o).

€A (tg) vEV(t0)

5 Hamilton Jacobi Isaacs equations

We introduce the following Hamiltonian defined for any (1o, 1o, ®o, pe) in P(X) x P(Y) x
C(X x Y,R%)? by:

H (1o, o, Po, ps) = inf sup f((po(%y)a%v) ‘Pcb(x,y) d#o(ﬂf)dVo(y)
u€lU ey XxY

= sup inf f(cI)O(l‘7 y)u u,U) : p‘b(‘x7y) dMO('r)dVO(y)
veV el Jxyy

(where Isaac’s condition (4) is assumed) and the Hamilton Jacobi Isaacs equation:
(14) O W (to, @o, o, vo) + H(pto, o, Po, Do W (to, Po, po, o)) = 0.

In our case this equation will be considered with the terminal condition:
W (T, ®q, 10, o) = / 9 (Po(z,y)) h(z,y) dpo(z)dvo(y).
XxY

We also set:

~

H(MOa LV, cI)mpq)) = —H(Mo, v, Do, —p¢>)

= inf sup f(®o(z,y),u,v) - pa(z,y) duo(x)dry(y)
veV ueU XxY
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= sup inf f(@o(z, y), u,v) - pa(z,y) duo(x)dvo(y)
uelU VeV J xxy

Note that H satisfy the following Lipschitz condition for all (p, vo, pe) € P(X) X P(Y) x
C(X x V,RY), (®g, &1) in C(X x Y, RY)? :

(15) |f7q(/ﬁoa L, CI)Oapd)) - ﬁ(,uoa o, ‘131>p¢)| < Lip(f) Hpi’HLiO 0||(I)0 - CI)1”L2

Xy u0><l/0.

5.1 Dual subsolution and Dual supersolution

Consider the functional w : [0, T] x C(X x Y, R?) x P(X) x P(Y) — R and its convex and
concave conjugate resp. on the p and v variable:

w* : [0,T] x C(X x Y,RY) x C(X) x P(Y) =R
w [0, T] x C(X x V,RY) x P(X) xC(Y) — R.
Slightly abusing, we will use the following notations:
a_w*(t(]? (I)Oa $o, VU)

= {:U’O € P(X) : Vgp € C<X>7 / ¥ — Yo d:u’O S w*(t()vq)(]?gpu VO) - w*<t07q)079007V0)} )
X

aJrUJﬁ(on, Dy, 110, 10)

= {VO S P(Y) : v¢ € C(Y)7 / ¢ - ¢0 dVO Z wu(t()’(I)O?/vLU?l/}) - wﬂ(toaq)()’,u’md}())} .
Y

To define the d-superdifferential Dy w*(to, @0, o, 1), we will need the following lemma:

Lemma 11. Letw : (t, P, pu,v) € [0, T]xC(X, X)xP(X)xP(Y) — R be some functional.
Then the Fenchel conjugate (t,®,@,v) € [0,T] x C(X,X) xC(X) x P(Y) — w*(t,®, p,v)
is Lipschitz-continuous in @, uniformly in (t,®,v). As a consequence, we have, for all

(t,®,0,v) € 0,T] X C(X,X) x C(X) x P(Y): 0" w*(t,®,p,v) # 0.

A symmetric resul holds for w*: 9~ wk(t, ®, u, ) # 0.

Proof of the lemma: Let g, p; € C(X), we have:

W (B, g ) = sup){ [ ulo) duto) = wie, 0,00}

neP(X

= s {0 dute) + [ o) dute) = wie 0,0}

REP(X)
< lvo—gille+ sup { [ o du(x)—w(t,cb,u,u)}
HEP(X) X
< lwo = @il + W (E, @, 01, v).
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QED

Hereafter, we give the appropriate definitions of viscosity subdifferential and superdif-
ferential:

Definition 1. e Take § > 0 and (ty, Po, po, o) € [0, T[XC(X xY,RY) xC(X)x P(Y).
Assume moreover that
0~ w*(to, Po, w0, o) = {0 }-
We say that (p;, ps) € RxC(X xY,R?) belongs to the §-superdifferential D w*(to, ®o, @o, o)
to w* iff
VO € C(X x Y,RY), Vte|0,T],

w*(t, @, o, vo) — w*(to, Po, Yo, o) — Pi(t — to)
b s L[ @ s peleydata)ing) |
HEI_w* (t,P,p0,v0) XxY
—0([|® — Poloo + |t —tol) + o([[® = Pol|oc + [t = to]) <O
where o(T) = Te(7) with (1) — 0 as 7 — 0.

e Take § > 0 and (to, ®o, po, o) € [0, T[xC(X x Y,RY) x P(X) x C(Y). Assume
moreover that

a+wﬁ(t07 q)OJ Mo, wO) - {VO}‘
We say that (p;, ps) € RxC(X xY,R%) belongs to the §-subdifferential Dy w(ty, P, tto, to)
to wh iff
VO € C(X x Y,RY), Vte|0,T],

wﬁ(ta q)a Mo, ,QZ)C') - U}ﬁ(to, <D07ﬂ’07¢0) - pt(t - t())
+ inf —/ O — Dy)(z,y) - po(x,y) duo(z)dr }
it L@ 0)) pate) duale)ivty)
+0([|® = Polloc + [t = to]) + o([|® — Polloc + |t = t0]) = 0

where o(T) = 1e(1) with (1) — 0 as 7 — 0.

Remark 2. We give some comments and explanation on the definition of the d-superdifferential
above, same remarks can be made on the 0-subdifferential.

e The definition of the d-superdifferential has to be understood in the following sense.
For any sequence (@), in C(X,X) and (t,), € [0,T] such that ||®, — $plloc — 0
and t, =ty as n — 400, and any , € O_w*(t,, P, po, o) (which is not empty by
Lemma 11), it holds:

1. w*(tn7(1)n7900,V0) - w*<t0,®0,¢0,V0) _pt(t — to)
im sup
_fXxY((I)n o (bo)(l’, y) ’ p@(xa y) dﬂn(ﬂf)dyo(y)

<.
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e The assumption O_w*(to, Po, o, ) = {10} can be seen as a local strict convexity of
w(ty, Po, -, 1) at po. This type of hypothesis also appears in the finite dimensional

case (see [6]).

The previous definition is unusual as one would expect to have the scalar product
— [y (@ = @0)(x, ) - po(z,y) duo(x)dry(y) instead of

s Ao [ @@ oG |

pHEI—w*(t,P,0,v0)
The following lemma shows that, at the limit, both coincide:
Lemma 12. Consider w: (t,®,u,v) € [0,T] x C(X,X) x P(X) x P(Y) = R a contin-

uous application, Lipschitz in (t,®) uniformly in p, v. Take & € C(X) and a sequence
(tn, Pr, p1n) € [0,T] x C(X, X) x P(X) such that when n — +00:

tn — to, ||(I)n — q)()Hoo — 0, My € 8,w*(tn, (I)n,f, Vo).
Moreover assume that {po} = 0~ w*(ty, Po, &, ). Then Wa(pin, po) — 0 when n — 400.

Proof: First note that, due to the Lipschitz assumption on w, it exists C' > 0 such that
for any (s,t) € [0,T)?, ®,¥ € C(X, X), we have:

w6, ®,6, ) = wp{/g i) = w0, p0,0)

HEP(X
wp{/g ipu(a Mammmﬁ+cw—ﬂ+m—wm»
HeP(X)
< w (s, 0,6, 0) + Clt — 5| + [0 — W[.0).

So that: limy_, 400 w*(tn,, Pn,, & o) = w*(to, Po, &, 10). As (in)n is a sequence of proba-
bility measures on a compact set X, we can extract (fi,, ), converging to some p € P(X).
Then, using the continuity of w:

/ fdlu: i /‘gdlunlC - kgrfoow*(tnk’@nwfv VO) +w(tnk7q)nkhunk>’/0)

k—4o00
= w*(to, o, &, o) + w(to, Po, i, o)

which means p,, = po= po € 0_w*(to, Po,&,10). As this is true for any converging
subsequence of (fi,), we get Wo(fin, o) — 0.

QED

Hereafter, we give the appropriate definitions of solutions:

Definition 2. e The functional w : [0,T] x C(X x Y,R?) x P(X) x P(Y) — R
is a viscosity dual subsolution to (3) iff it exists C > 0 such that for all
§ > 0 and all (ty, Po, po,vo) € [0, T[xC(X x Y,R?Y) x P(X) x C(Y) and (ps, ps) €
Dy wh(to, @o, o, o) with O+ wk(ty, ®o, po, o) = {vo}, we have :

Dt + ﬁ(ﬂ’@? o, (I)Oapfb) S Co.
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e The functional w : [0,T] x C(X x Y,R?) x P(X) x P(Y) — R is a viscosity
dual supersolution to (3) iff it exists C > 0 such that for all § > 0 and all

(to,@o,@o,V@) € [07T[XC<X X KRd) X C(X> X P(Y) and (pt)p<b> € D;_w*(t07q)079007V0)

with 0~ w*(to, Po, vo, vo) = {0}, we have:
pe+ H(po, o, @, pa) > —C0.

We state now a comparison principle for the Hamilton Jacobi Isaacs equation:

Theorem 2. For i = 1,2, let w; : [0,T] x C(X x Y,R?) x P(X) x P(Y) — R be a
continuous bounded maps when C(X x Y, R%) is equipped with the infinity norm and both

P(X) and P(Y) are equipped with the Kantorovich norm. The Hamiltonian H is supposed
to be Lipschitz in ® that is for all (po, vo,ps) € P(X) x P(Y) x C(X x Y,R%), (®g, ;)
in C(X x Y,R%)? :

(16) |ﬁ(u0, v, o, o) — ﬁ(”(): vo, P1,p0)| < Kl[pall L2 ) [Po — P1| 12

Mo X 1 Ko X1

Moreover, we assume that:

(H1) for any fized (11, v) € P(X)xP(Y), wi(-,-, v, u) is k-Lipschitz continuous with k > 0
i.e. for all (®,¥) in C(X x Y,R%)2:

it ®.pv) = wi(s, Vo) <k (Js =t 4+ @ = Wiz )

(H2) the map w; is convex in the p-variable, concave in the v-variable. Moreover, for all
(to, o, 1o, v0) € [0, TIXC(X XY, R)xP(X)xP(Y'), it ewists & € 9~ wi(to, Po, 10, v0)
and (o € 0T w;(tg, Po, 1o, o) i-e. such that:

w (to, Lo, &0, v0) + wi(to, Po, o, o) = / §o(z) dpo(z),
X

w (to, o, o, Co) + wilto, Bo, po, vo) = /YCO(y) dvo(y).
(H3) wy is a dual subsolution of (3) and wy is a dual supersolution of (3);
(H4) the following equality holds: wy(T,-,-,+) < wo(T,-, -, ).
Then for all (t,®, u,v) € [0,T] x C(X x Y,R%) x P(X) x P(Y):
wy(t, @, u,v) < wy(t, P, pu,v).
As we need some bounded distance on C(X x Y, RY), we set:
dy(®, V) := min{||® — V||, 1} for any &, ¥ € C(X x Y,R?).

Note that d; metrizes the uniform topology.

29



Proof of the theorem: By contradiction, assume it exists some a > 0 and (to, Po, po, o)
such that:

(0%
(17) (wy — w1)(to, Po, fto, Vo) < —5

Denote by C' the constant appearing in the definition of the dual subsolution and super-
solution. We choose some 77 > 0 small enough such that

(18) Ty <<,
4
and take € €]0, 1] that satisfies:
(19) % (k(k+1)2+C) <n, elklk+2)+ 2 <%
where
20 = — ), —ul}.
(20 R T e S

We introduce the following functional defined for all (s, t) € [0, T)?, (®, ¥) € C(X xY, R%)?,
(n,v) € P(X) x P(Y):
O(t,s,®, W, p,v) = wa(s, V, u,v)—w(t, P, i, I/)—F(M)—G(V)+é <||\I/ — @H%ZXV + |t — 5|2) —ns
where F' and G are defined by:

F(p) = eW3(Ligyn, 1), G(v) = W5 (Ligyu, v)

where Cfg v and Ef\g ju denote the Lebesgue measures on RY and on RM restricted to

[0, 1]Y and [0, 1]™. Note that both F and G are bounded by c%e.
Set for any (®, V) € C(X x Y,R%):

O(P,¥) = inf O(t,s, @, ¥, pu,v),
(t,9)€[0,T)2,(u,v)EP(X)XP(Y)

note that the infimum is actually a minimum since [0, 7] x P(X) x P(Y) is a compact
set and 6 is continuous.

As O is lower-semicontinuous and (C(X x Y,R%),d;) is a complete metric space, from
Ekeland’s variationnal principle (see [8]), it exists some (®,¥) € C(X x Y, R%)? such that

e O(D,¥) < O(Py, D) where ®y is the function appearing in (17),
o Y(®,0) € C(X x Y, R
O(P, V) < O(P,T) + ¢ (dy(P, D) 4 dy (¥, 1)) .

Then, taking (¢, 5, ii,7) € [0, T)> x P(X) x P(Y) such that

we get:
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L 7) < 0(to, to, o, Do, 110, 0),
LV

V) €[0,T]? x C(X x Y,R¥)2 x P(X) x P(Y):
0(

Y

5, 0,0, fi,0) <O(t,s,®,V, p,v) + e (di (P, D) + di (¥, 1))

Step 1 : We prove some estimates on |f — 5| and ||® — U|[;2

e Applying (E2) with (t,s,®, ¥, u,v) = (£,5, ¥, V, ji, V), we get:
U, i, ) +edy (U, D).
Then, using the Lipschitz property of w; and the definition of d;

—||\If 7z < wilt, i, 0) —wn(t, U, 7) +e <KV — P2

So that p := || — <I>HL§

+5.

_ satisfies:
XU

1
—p*—kp—e<0
£
and p < 5(k + V% +4) < e(k +1). Finally, we get the estimation

(21) IO — Bl <e(k+1).

The using the Lipschitz property of w; given by (H1), we have

Z1E =1 < un(l, @, 7) —wi (5,9, 1,7) < K|t - 5.
Finally, we get:

(22) t

|t —35 | <ke.
Step 2 : Assume 5,¢ € [0, 7] and get a contradiction.

e We build some ¢ such that 0~ wi(5, ¥, &, v) = {i}.
We apply again (E2) with (¢,s,®, U, u,v) =

(t,5,®,



which rewrites as
(23)

We introduce the following map:
o 1 L )
(24) Flu) = [wi(t, @, p,7) + Fp) = - / & — U2d(p x )].

By (H2), we know 0~ w, (, ®, ji, 7) # (), moreover, by definition of F', we have also
O~ F () # 0 (see for instance [17]). We then can choose§ € 0" F(p). As F is strictly
convex (see again [17]), wy is convex and p +— —1 [|® — W|%d(u x 7) being linear,
F is strictly convex so we have:

(25) 0" F (&) = {n}

By (23), we have £ € 0_w(5, V¥, fi, 7) and in a symmetric way i € O_(w})(3, \?,
We are going to prove that fi is indeed the unique element of d_(w3)(s, ¥,
Indeed assume i € 0_(w3)(5, ¥, &, v) and fi # [, then, by (23) we have:

[ = = wals, i) = wals, . 0) 2 F )~ F @)
But, as £ € 0_F (1) we also have
[t -m < F) - Fin).
From these two inequalities we deduce:

/gdu F /gdu F(j

that is @ € 0_F*(§) which is in contradiction with (25). So we can conclude:
(26) 0 wy(s, W, &v) ={n}, £€d F(p).

In the same way, we can build some ¢ € C(Y') such that:

(27) O wi(5,9,1,Q) = {7}, (€07G(p)

with G is the strictly concave functional defined by:

O(v) i=[wals, B, ,v) = G(w) + - [ |8 U d(a x ).
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e We now show that %(5—1?, U—9) ¢ D‘w?(f, ®, 11, 7). We apply (E2) with (¢,5,®, ¥, p,v) =
(t,5,®,V, 1,v) and get:

0(t,5,®, W, i,v) < 0(t,5®, W, ii,v) +ed (¥, V).
So that:

_ _ 1 _ _ _
a5, 0.17) — w6 17) = 6(0) + - ([ 10 = 8 o)+ - o)
_ 1 _ _
< wy(s, ¥, i, v)—w (t, D, f1, V)—G(V)—f—g </ U — ®Pd(fi x v) + |t — s|2) +edy (D, D).

Note that:
19— apatux v - [ 10~ aPagx

:/|\Tf—§>]2dﬂd(y—z7)+2/(ci>—@)-(@—cﬁ) d(ﬂxy)+/\©—§>\2d(ﬂxy)
and
[t—32—|t—5>=20t—-1t)(t—3)+ |t — 1.
So we get: )
wl(ﬂcb,/j,p)—wl(t,®,ﬁ,u)+g(y)—g(z7)
+2/(<T>—\TJ)-(<I>—<T>)d(ﬁxy)+§(t—f)(t—§)

€

= 1 . _
+edy (P, D) + B (/ D — P d(f x v) + |t —t\2> > 0.
Then, as ¢ € 0TG(D):

- 1 - _
+el|® = @lloc + (1P = Dllo + [~ 7])* 2 0

as this inequality is true for any v € dtwi (¢, ®, i, ¢) and ¢ € dtw, (£, ®, i, v):

W1, ®,1.0) — wi (£, 9. 1.0) — 2(t ~ D)5 ~ )

9 _ _
+ mf { —/ — @) di dv
vedtw! (t,8,7,0) €
+e([@ = @lloe + [t = £) + o[ — Dl + |t— t) =0

By definition, as (27) holds, this is 2(5 — ¢, ¥ — ®) € D-w wh(t,®, i, Q) Then as w;
is a viscosity dual subsolution to (3), we get:

2 9
(28> E(S_E)+H(M7V7®72
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e In the same way, we can prove that (2(5 —1) —n, 2(¥V — ®)) € DFw3(5, ¥,&, 7). As
wy is a dual supersolution to (3), we get:

2 AN —
Then, (31) and (32) give:
20 < —n+H(j, v, 7,

and by (16), this implies:

(- @) - H(p,

(O ]

2k - =
~2Ce = Z - |3, <

XD

and by estimation (21) we get:

—20e — 2ke(k +1)* <.

This last inequality is in contradiction with (19).

Step 3 : Let us now prove that 3, ¢ are different from 7'. Indeed, assume 5 = T then

by (E1) and (17):

O, T, ®,V, i, )

IN

IN

Which rewrites as:

- - 1 - = _
wa(T, W, 1, 7) = wi (£, 9, 1,7) = F(p) = G0) + = (110 = W3, | +17—TP%)

9(t07 tO) CI)[)’ (I)Ov Mo, VO)
wa(to, Po, to, o) — w1 (to, Po, 1o, o) — F o) — G(vo) — nto

then by (H1), as (HcT) ~ U, - T|2) > 0, we have:

—

wa(to, Po, po, o) — w1 (to, Po, o, o) < —.

2

—77T§_—a,

wa(T, 0, i, 0) = wi (T o, 0) = k (|0 = Wllye, +[F=T1) = F(5) = G@) =T <

2

—x

5

Recall that, by (20) F' and G are bounded by ce. By use of (H4), (21) and (22), we get:

—2ec® — k(e(k+ 1)+ ke) —nT < —

which, by (19) and (18) rewrites as

and we get a contradiction.

2

© k(b +2) +2) 4T < 2

2
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6 Characterization of the value

Theorem 3. Let X C R", Y C R™ be two compact sets. The value V, := V,F =V~ is
the unique bounded continuous functional from [0,T] x C(X x Y,R?) x C(X x Y,R*) x
P(X) x P(Y) to R satisfying the following properties:

(i) V. is Lipschitz in (t, ®), convez in u, concave in v, moreover for all (t,®, h,u,v) €
[0, 7] x C(X x Y,RY) x C(X x Y,R") x P(X) x P(Y), we have:

OV, (t, D, h, ) £ 0, O V(t,®, h,u,v) #0.

(i) V, is a dual subsolution and a dual supersolution of the following Hamilton-Jacobi-
Isaac equation:

oW (t, Do, 110, v0) + H(tto, Y0, Po, DaW) = 0.

with

H(M, v, (I)()?pfb) ;= inf sup f((I)O(‘Q:? y)7 u, U) : p@(ma y)du(l‘)dy(y)
uelU vev Jxxy

= sup inf f(@o(z,y), u,v) - pa(x, y)du(z)dv(y),
veV ueU XxY

(iii) for all (®g, h, po, ) € C(X X Y,RY) x C(X x Y,RT) x P(X) x P(Y):

V,(T, o, b, io, vo) = / g (Do(z,y)) bz, y) dpo(z)dvo(y).

XxXY

To prove V;~ is a dual supersolution of (3), we need the following lemma:

Lemma 13. Let ® € C(X x Y,R?) and pp € C(X x Y,R%). We consider the following
application:

(u, v, p, V) € UXVXP(X)XP(Y) = O(u,v, p,v) = F(@(z,y),u,v)pe(z,y) du(x)dv(y).

XxY

Then 0 is continuous in the pu X v-variable uniformly in (u, v, p, v), more precisely, for all
e > 0 it exists C(f,py) and C(g) such that for all (u,v, po, pi1,vo,v1) € U x V X P(X)? x
P(Y)?), it holds:

10(u, v, 1o, o) — 0(u, v, 1, v1)| < C(f, pa)[C(€)(Walpo, vo) + Wapa, 1)) + €]
Proof: Let (zo,y0), (z1,y1) € X x Y, then for any u,v € U x V:
| f(@(x0,Y0), us v) - pa (o, Yo) — f(P(z1,41), u,v) - pa(21,y1)]

< ’(f(q)(l"o, yo),u, U)—f@(%, Y1), U,'U))'p@(%, yo)]—i—]f(@(:vl, y1)7u7 U)'(p<1>(fl?0:y0)—p<1>(371a yl))]
< Lip(f) X ||palec|® (w0, y0) — ®(21, y1)| + || f oo [P (20, Y0) — Pa (w1, 41)]-
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Choosing p., ®. € Lip(X x Y, R?) such that

lpe — pe|| < @ — @[] <

Y

£
2

DO ™

leads to:
| f(®(20, v0), u,v) - pa (0, Yo) — f(P(21,91),u,v) - pa(z1,y1)|

< Lip(f) x |[palloc (e + Lip(®e)[(zo, yo) — (21, y1)[) + | flloe (€ + Lip(pe) | (20, yo) — (21, 91)))-
The sequel is straightforward

QED

Proof of the Theorem: The equality of the upper and lower value has already been
stated in Theorem 1.

Property (iii) is straightforward, the convexity/concavity is classic (Lemma 7), see also
Lemma 8.

Let us focus on property (ii), we show that V, is a dual supersolution (the other part
being very similar). Let (to, P, tt0, 10, ¢) €]0, T[xC(X x Y,R%) x P(X) x P(Y) x C(X)
and (pt,pcb) € D;(V;)*(th Do, ¥, VO)’ with ai(V;)*(tO’ P, ¥, VU) = {ILLO}'

Take t €]to, T[, for any v € V', u € U(ty), by Lemma 11, it exists some

ut e 8 (V) (t, X000 o, ).
Then, we have:
(Vr_)*(tO) (D(b @, VO) - (Vr_)*(ta XZOSDO(.),U’% ' VO) +pt(t - tO) + /(Xfo@muﬂ) - (DO) ‘Do d/l?vdVO
> = (X0 = @l + |t~ to] ) {3+ (1K = Dlloe + It — to]) )

where () — 0 when ¢ — 0.
As we have X[ O%0@Vm — ¢ (1 y) + ftz F(XLoPEwl i 4y (5) v) ds, the previous expres-
sion rewrites as:

¢
pe(t — to) + / f(XﬁO’%’“’”, u(s),v) - po dsduy” dvg
XxXY Jtg

> _(Vr_)*uoa (I)Oa 22 VO) + (Vr_)*(t? Xttqu)O(.)’u’Ua 2 VO)
— (IO — @yl + [ = to) (842 (120 = Bolloc + [t = to]) )

Once again we have
(30) X200 @[ < CJt— to)-
Hence
t
pe(t — to) + / f(XﬁO’%’“’”, u(s),v) - pe dsdpydug
XXY Jtg
> (V) (to, o, 0, v0) + (V) (8, X0 0 0g) — (C+ D[t —to] (542 ((C + 1)t — to]))
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Taking the supremum in v and the infimum in v, because by Proposition 4, V. satisfy a
dual subdynamic principle, we deduce that

pe(t —to) + inf sup / f (X220 afu(s)), v(s)) - pa dsdpydig
XxY Jtg

VeV ueld(to)
> —(CHDt—to|(d+e((C+ 1)t —1to])) .

Since f is bounded and Lipschitz and X x Y is compact, there exists a constant - denoted
again by C - such that:

¢
/ l f(XloPowv () v) - pg duf’”duo} ds
to XxXY

t
< {sup f(®o,u,v) - po d,uf’”dl/o] ds + C’/ |s — to| ds
uclU J X xY to
—1
= (t—tp) (sup (o, u,v) - pa du;‘”dV0+C’| 5 0|>
uclU J X xY
So we get:
u,v |t - ZfOl
pe(t —to) + (¢t —to) 12f SUB f Do(2), u,v) - po(x) dpy " (x) + C 5
v ue
> —(C+ 1)t —tol (6 +((C \t—tol))
And, dividing by (t — ty), we get:
(31)
t u,v
=l it sup [ F(@0)pe du e = —(C41) (64 £ (C+ Dt~ ).
2 veV el Jxxy
Let £1,e9 > 0, for all ¢ > 0, it exists u;' € U, v;' € V such that:
inf sup f(@o,u,v) - pe dpy”"dry — inf sup f(@o,u,v) - pa dpodry
veV uelU XxY veV uelU XxY
ugl,v;2 € €
< J(@o,uzt, vi') - pa dpyt " dvg — f(@o, ui*, v3") - pa dpodvy + €1
XxY XxY

< C(f,pe)(Cle2) Wa(py el ;,uo) + &1+ ¢€2),
the last inequality comes from the result of Lemma 13. Then (31) yields:

(32)  CUp)(CleaWalpy ™ o) + &1 + 22) + CUG o py 4 H (o, v, B0, po)
—(C+1)(0+e((C+ 1|t —to])) -

By Lemma 12, we have Wg(,uq:?’vfl , o) — 0 when t — to, indeed recall that by (30)
e VXN o ) and [0 — gl 0.
Finally make ¢ tend to ¢ in (32) and get:
C(f.ps)(e1+€2) + pr + Hlpto, o, Do, pa) > —0(C +1).

As this is true for any 1,9 > 0, we get the desired inequality.
QED
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7 Exemple and Erratum to the article [13]

In C. Jimenez and M. Quincampoix ([13]), we have considered the particular case where
Player II has no information on the initial position of the system and h is constantly equal
to one. The lack of information can be expressed by choosing v = ¢,, with yy any point
of Y. Moreover, ® belongs to C(X x Y, X) (X is compact subset of RY as previously)
and depends only on z, the information of Player I. In this case the values write as:

V¥ (to,®, 1) == Vi (o, ®,1,41,5,)) = inf  sup / [ g0y dua)dp ),
]RN

a€Ar(to) BEB(to)

V= (to, @, 1) = V= (to, B, 1,11, 0,)) = sup  inf / / 0¥ am)86)) () d P (w).
Qz JRN

BEB,(to) ozEA (to)

Note that both functionals do not depend on the choice of 3. Then, applying Proposition
3, we can compute the convex conjugate of V.~ on the p variable, the formula obtained is
exactly the same as the one appearing in ([13]). The computation of the concave conjugate
of VI in the v variable, is, in this case, very simple and leads to the following formula:

(Vj)ﬁ(t(ﬁ CD7 17 1, 90) = ylg; @(y) - V:_(t07 (pa ]-7 1, (Syo)

for any ¢ € C(Y'). The subdynamic and superdynamic principles of Proposition 4 and 5
then coincide with both subdynamics principles of ([13]).

In ([13]), a Hamilton Jacobi equation and some definitions of viscosity subsolution and
dual supersolution are given. Then a comparison principle is stated (Theorem 1 p22). The
proof of this theorem is false. More precisely, there is a mistake in second part of Step
p24. Indeed, the functional @ is build with a Ls-norm depending on pu:

1
Ot 5.2, W, 1) = wals, W, 1) = wa(t, @, ) + = (@ = W, + [t = s[*) —ns.

This choice does not allow to get an element of the superdifferential of w} as defined in
[13], two different L?>-norms appearing in the computation.
The definition of the superdifferential should be changed:

Definition 3. Let 6 > 0 and (ty, ®o, ) €]0, T[xC(X, X) x C(X). Assume moreover that:
9~ w*(to, Po, p) = {po}-

We say that (py,ps) € R x C(X,R?) belongs to the §-superdifferential D w*(t, ®g, @) to
w* at (to, o, ) iff

w*(t, @, 9) — w*(to, Po, ) — pe(t — to) — [ (P — Po)(2) - pa(2) du(z)

lim sup sup < 6.
1 — ®oflos — 0, pED~w* (t,D,p) | — Dol + [t — to
t— to

Then V. is a viscosity dual supersolution to (3). Moreover a comparison principle
similar to Theorem 2 can be stated and proved slightly modifying the proof above.
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