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Abstract

We study a two player zero sum game where the initial position z0 is not com-
municated to any player. The initial position is a function of a couple (x0, y0) where
x0 is communicated to player I while y0 is communicated to player II. The couple
(x0, y0) is chosen according a probability measure dm(x, y) = h(x, y)dµ(x)dν(y).
We show that the game has a value and, under additional regularity assumptions,
that the value is a solution of Hamilton Jacobi Isaacs equation in a dual sense.
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Introduction

In this paper we study a zero-sum two players differential game with symmetric in-
formation on the initial position. The game starts at a fixed time t0 ∈ [0, T ], an initial
position z0 ∈ Rd is chosen (unknown for the players), the actions are controls denoted by
u(·) for Player I and v(·) for player II and taking their values on compact subsets U and

V of some finite dimensional spaces. Then a trajectory t 7→ X
t0,z0,u(·),v(·)
t is generated via

the following dynamic system in Rd:

(1) z′(t) = f(z(t), u(t), v(t)),

(f : Rd×U × V → Rd) together with the initial condition z(t0) = z0. The payoff is given
by g(z(T )) with g : Rd → R+. Player I wants to minimize the payoff, while Player II
wants to maximize it. Both players observe the actions of her/his opponent. The crucial
point is that z0 is not communicated to any player, z0 = Φ(x0, y0) depends on the private
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informations x0 ∈ RN of player I and y0 ∈ RM of Player II. Moreover (x0, y0) is chosen
randomly according to some bounded non-negative measure m ∈ Mb(RN+M). In order
to get regular upper and lower values, we make the following additional assumptions on
m:

dm(x, y) = h(x, y) dµ(x)dν(x) with h ∈ L1
µ×ν(RN+M ,R+), µ ∈ P1(RN), ν ∈ P1(RM).

Note that the informations of the players are correlated by h. Both know the measure m
and the dynamic and the final cost g. They also know the function Φ which links their
informations x0 and y0 to the initial position z0 = Φ(x0, y0). Moreover, they will play
randomly in order to hide they private information. It is important to notice that none
of the players know really what payoff she/he is actually optimizing.

As usually, an Isaac’s condition (4) will be required. Proving the existence of the value
without Issac’s condition might be done in a different setting where the upper and lower
values are obtained as limits of sequences of values corresponding to a sequence of games
where players have the same delay (see for instance [2] and [14]). The crucial point in
these papers is the knowledge they have of their opponent’s delay.

The game previously defined is a generalization of the game studied by P. Cardaliaguet
in [5], section 6. In his setting, before the game starts, a couple of indices (i, j) ∈
{1, . . . , I} × {1, . . . , J} is chosen on a finite set with some (uncorrelated probability)
pi × qj. The initial position is then given by some xij ∈ Rd which is not communicated
to any player while i is communicated to player I and j to player II. They both know the
family of points (xij) and the probabilities (pi)i (qj)j. This problem is clearly contained
in the case considered here by setting h = 1, µ =

∑
i piδi, ν =

∑
j piδj, Φ(i, j) = xi,j. In

[5], it is proved that the game has a value which is characterized as the unique viscosity
solution of a Hamilton-Jacobi equation in Rd. Due to the stucture of the information, the
Hamilton Jacobi equation is satisfied in a dual sense. More precisely, the convex conju-
gate on the (pi)i variable of the lower value is proved to satisfy a subdynamic principle
while the concave conjugate on the (qj)j variable of the upper value satisfies a superdy-
namic principle. The seminal work of P. Cardaliaguet has been widely generalized by M.
Oliu-Barton in [15]. In particular, his setting allows correlated information on the initial
position, the probabilities (pi)i and (qj)j being replaced by some (pij)i,j. In our case, this
can be obtained by taking a non-constant function h. For an interesting case with signals
that we do not fit in our case, see [19]. In [5] and [15] (also in [19] with a different set-
ting), the values are functions of xij and pij which are finite dimensional, in particular, it is
quite easy to show that these functions are continuous with respect to the Euclidian norm.

In the case we are considering, we no longer assume that the initial position should
be taken in a finite set. The upper and lower value are then functionals depending on
Φ ∈ Cb(RN+M ,Rd) and m ∈ Mb(RN+M) which are infinite dimensional. The space
Mb(RN+M) may naturally be equipped with the weak star topology. Unfortunately, for
a general m, the values don’t seem to be continuous for this topology. Moreover, the
computations of the convex conjugate of the lower value appears quite difficult due to
the lack of regularity of the disintegration x 7→ ρx ∈ P(RM) of m with respect to its
first marginal. For these reasons, we restrict ourselves to measures m that are continuous
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densities with respect to a product measure. The main difficulty is then to define a proper
notion of dual viscosity solution in Cb(RN+M ,Rd) which is a non reflexive space. A good
notion of such solution should provide a comparison principle, which, in this setting, gives
a characterization of the value of the game. This might be the more important contribu-
tion of the present paper.

A case with a continuum of initial positions and no correlation (h constant) was con-
sidered in [7] (see also [10] and [11] for a different approach), the authors proved the
regularity of the values. Then the finitely supported measures being dense in the proba-
bility measures, they got the existence of the value by passing to the limit on the result
of [5]. They also proved that the value exists in pure strategy providing the probability
on the initial position has no atom. We will prove the existence of the value in random
and pure strategy using the same type of arguments. In [13], in the same setting as [7], a
definition of viscosity solution is introduced, unfortunately, the proof of the comparison
principle happens to be false, we will give an erratum.
Note that a case with a continuum of initial positions is also considered in [4] but in the
case where players have no information on the initial position. This leads to a completely
different notion of viscosity solution.

The paper is organized as follows, in section 1, we give the definitions of the objects,
the assumptions and recall some useful results. In section 2, we study the regularity of the
upper and the lower value. Then, in section 3, we prove that the value satisfies some dual
subdynamic and superdynamic principles. In section 5, we introduce the Hamilton Jacobi
Isaac equation as well as the notions of dual viscosity sub and supersolution, we show a
comparison principle. In section 6, we characterize the value of our game as the unique
dual solution the Hamilton Jacobi Isaac equation. Finally, in section 7, we consider the
case of the article [13] as an example and give an erratum.

1 Preliminaries and Assumptions

Throughout the paper, finite dimensional spaces are equipped with the euclidean norm
denoted |x| associated with the scalar product denoted by x.x′, the closed ball of center
x and of radius r > 0 is denoted by B(x, r). The Lebesgue measure on RN is denoted by
LN . The notation Cb(RN ×RM ,Rd) stands for the space of bounded continuous functions
from RN ×RM to Rd while C0(RN ×RM) is the space of real valued continuous functions
which vanish at the infinity. We will take X ⊂ RN and Y ⊂ RM two compact sets and
consider C(X × Y,Rd) and C(X × Y,R+) the spaces of continuous functions on X × Y
with values on Rd and R.

1.1 Dynamics and payment

We denote by U and V two compact subsets of two finite dimensional spaces. The final
time T > 0 is fixed, the set U(t0) denotes the set of all measurable controls from [t0, T ]
to U . Similarly the set of measurable controls from [t0, T ] to V is denoted by V(t0).
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The function f : RN × RM × U × V which appears in the dynamics (1) satisfies the
following assumptions:{

f is continuous with respect to all variables,
f is Lipschitz continuous in the first variable uniformly with respect to (u, v).

Then, it is well-known that for any u(·) ∈ U(t0) and v(·) ∈ V(t0), associated with the
initial condition z(t0) = z0 there is a unique absolutely continuous solution to (1) denoted

by t 7→ X
t0,z0,u(·),v(·)
t which is defined on [t0, T ]. Standard estimates show that there exists

a constant C(f) > 0 such that for all z, z′ ∈ Rd and all s, s′ ∈ [t0, T ],

(2)


∣∣∣X t0,z,u(·),v(·)

s −X t0,z,u(·),v(·)
s′

∣∣∣ ≤ C(f) |s− s′|,∣∣∣X t0,z,u(·),v(·)
s −X t0,z′,u(·),v(·)

s

∣∣∣ ≤ C(f) |z − z′|

where C(f) is a constant depending only of f . The cost function g : RN × RM 7→ R
satisfies {

g is bounded and Lipschitz continuous,
g is non-negative.

If the second assumption is not satisfied, just replace g by (g − infx∈RN g(x)).
We will denote C(f, g) = Lip(g)× C(f) so that for all z, z′ ∈ Rd and all s, s′ ∈ [0, T ],

(3)


∣∣∣g(X

t0,z,u(·),v(·)
s )− g(X

t0,z,u(·),v(·)
s′ )

∣∣∣ ≤ C(f, g) |s− s′|,∣∣∣g(X
t0,z,u(·),v(·)
s )− g(X

t0,z′,u(·),v(·)
s )

∣∣∣ ≤ C(f, g) |z − z′|.

1.2 Isaac’s condition

We will assume the following Isaac’s condition:

(4)
∀(Φ, p, µ, ν) ∈ Cb(RN+M ,Rd)× Cb(RN+M ,Rd)× P(RN)× P(RM),

inf
u∈U

sup
v∈V

∫
RN+M

f(Φ(x, y), u, v) · p(x, y) dµ(x)dν(y) = sup
v∈V

inf
u∈U

∫
RN+M

f(Φ(x, y), u, v) · p(x, y) dµ(x)dν(y)

where P(RN) and P(RM) denote the probability measures on RN and RM .

The following equivalence result is similar to Proposition 1 in [13].

Proposition 1. The conditions below is equivalent to the Isaacs’ condition (4): For all
k ∈ N and (ξl)l=1,...,k ∈ Rd, (zl)l=1,...,k ∈ Rd:

inf
u∈U

sup
v∈V

k∑
l=1

f(zl, u, v) · ξl = sup
v∈V

inf
u∈U

k∑
l=1

f(zl, u, v) · ξl.

The proof of this result is very close to the one appearing in [13]. Note that the
condition appearing in the proposition implies the Isaac’s conditions required in [5] and
[15].
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1.3 Spaces of Measures

In this subsection, we introduce some notations and recall some useful definitions and
results about measures and optimal transport.

Let E be a subset of some Rk. The space of probability measures on E is denoted
by P(E), we also define P1(E) the spaces of probability measures with finite moment of
order 1:

P1(E) :=

{
µ ∈ P(E) :

∫
E

|x| dµ(x) < +∞
}
.

Both spaces will be equipped with the Kantorovich norm (see again [18] or [17] for more
details) defined for all µ1, µ2 ∈ P1(E):

‖µ1 − µ2‖MK = sup
ϕ∈Lip1(E)

{∫
X

ϕ(x)dµ1(x)−
∫
X

ϕ(x)dµ2(x)

}
where Lip1(E) denotes the space of 1-Lipschitz real valued functions. Note that P1(E) is
closed for the topology induced by ‖ · ‖MK . The following results are well known:

Theorem 1.1. By duality, we have the equality with the 1-Wassertein distance:

‖µ1 − µ2‖MK = W1(µ1, µ2) := min
γ∈Π(µ1,µ2)

{∫
E2

|x1 − x2| dγ(x1, x2)

}
where Π(µ1, µ2) is the set of probability measures γ on E2 which has µ1 as first marginal
and µ2 as second one.
A transport plan γ ∈ Π(µ, ν) achieving the above minimum is called an optimal plan from
µ1 to µ2. Denote by Π0(µ1, µ2) the set of optimal transport plans from µ1 to µ2.

Let Φ : E → E be a Bored measurable map, we denote by Φ]µ1 the push-forward of
µ1 by Φ namely the measure in P(E) such that

φ]µ1(A) = µ1

(
φ−1(A)

)
for any Borel set A ⊂ E.

If Φ]µ1 = µ2, Φ is called a transport map from µ1 to µ2. If µ1 has no atom, such a
transport map always exists (see for instance [16]).

We also denote by Mb(E) the space of bounded Borelian measures. We recall that,
when E is compact,Mb(E) is topological dual of C(E) the space of continuous functions
on E, moreover a sequence (µn)n in Mb(E) converges for the weak star topology to
µ ∈Mb(E) if:

lim
n→+∞

∫
X

ϕ(x) d(µn − µ)(x) = 0,∀ϕ ∈ C(E).

We recall the following result (see for instance [18], Theorem 7.12 p 212):

Theorem 1.2. When E is compact, the topology of the Wasserstein distance is the weak
star topology of measures.
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When E is compact, we will also use the space of zero total mass measures on E,
namely:

M0(E) :=
{
η ∈Mb(E) : η+(E) = η−(E)

}
,

where η = η+−η− is the Hahn decomposition of η. This space is naturally equipped with
the Kantorovich norm, and the corresponding topological dual is Lip0(E) := Lip(E)/R
the space of Lipschitz functions defined up to a constant (see [12]) . This last space is
equipped with its usual norm

Lip(ϕ) = sup
x,y∈E, x6=y

ϕ(x)− ϕ(y)

|x− y|
.

When E is not compact, Lip0(E) is the dual of the following slightly different space
(equipped again with the Kantorovich norm):

(5) M0,b(E) :=

η ∈Mb(E) :
η+(E) = η−(E),

∃γ ∈ Π(η+, η−),

∫
E2

|x− y|dγ(x, y) < +∞

 .

We will need some classic definitions of convex analysis on Mb(E) with E compact (see
for instance [1] or [9]). Let V : Mb(E) → R be a measure functional, we call convex
conjugate and bi-conjugate the following functionals:

V ∗(ϕ) := sup
µ∈Mb(E)

{∫
E

ϕ(x) dµ(x)− V (µ)

}
, ∀ϕ ∈ C(E),

V ∗∗(µ0) := sup
ϕ∈C(E)

{∫
E

ϕ(x) dµ0(x)− V ∗(ϕ)

}
, ∀ϕ ∈Mb(E).

We recall the crucial result (see for instance Theorem 9.3.4. in [1]):

Theorem 1.3. If V is convex l.s.c. for the weak star topology of measures then V ∗∗ = V .

We will also use the concave conjugate of V :

V ](ϕ) := inf
ν∈Mb(E)

{∫
E

ϕ(y) dν(y)− V (ν)

}
.

Finally we recall the definitions of the convex subdifferential and superdifferential (possi-
bly empty) of V at µ0 ∈Mb(E):

∂−V (µ0) := argmaxϕ∈C(E)

{∫
E

ϕ(x) dµ0(x)− V ∗(ϕ)

}
∂+V (µ0) := argminϕ∈C(E)

{∫
E

ϕ(y) dν0(y)− V ∗(ϕ)

}
.
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1.4 Strategies

The strategies of the players should involve only their available information. This leads
to the following notion of random strategies (comp. [5, 6, 7]). The sets U(t0) and V(t0)
are endowed with the Borel σ-field associated with L1

U [t0, T ] and L1
V [t0, T ]. As they are

symmetric for Player I and II we only give a definition for player I:

Definitions 1. (i) Let S be the set of triples (Ω,F , P ) such that Ω = [0, 1]m for some
m, F is a σ-field contained in the class of Borel sets B([0, 1]m) and P a probability
measure on (Ω,F). For any t0 ∈ [0, T [, we denote by Ar(t0) the set of random
strategies for Player I starting from t0.

A random strategy in Ar(t0) is a pair ((Ω,F , P ), α) where α : RN×Ω×U(t0)→ V(t0)
is a Borel measurable map and there exists a delay τ > 0 such that for all ω ∈ Ω:
α(x, ω, ·) : V(t0) 7→ U(t0) is nonanticipative with delay τ . Namely for any v1, v2 ∈
V(t0), for any t ∈ [t0, T [, if v1 = v2 a.e. on [t0, t], then α(x, ω, v1) = α(x, ω, v2) a.e.
on [t0, (t+ τ) ∧ T ].

(ii) A strategy in Ar(t0) which does not depend on the random variable ω will be called
a pure strategy. We denote by A(t0) the set of pure strategies.

(iii) A strategy in A(t0) which does not depend on the space variable x will be called
constant in space. We denote by Ac(t0) the set of strategies that are constant in
space.

We denote by Br(t0), B(t0) and Bc(t0) the symmetric sets for player II.
Now we associate to any pair of random strategies a trajectory thanks to the Lemma

below (we don’t prove it as it is very similar to Lemma 2.4. in ([7]). This enables us to
write the game in a normal form.

Lemma 1. Let ((Ωα,Fα, Pα), τα, α) and ((Ωβ,Fβ, Pβ), τβ, β) be two strategies in Ar(t0)
and Br(t0).

For any ω := (ωα, ωβ) ∈ Ωα×Ωβ and for any couple of types (x, y) ∈ RN ×RM , there
is a unique pair (uω,x,y, vω,x,y) ∈ U(t0)× V(t0), such that

(6) α(x, ωα, vω,x,y) = uω,x,y and β(y, ωβ, uω,x,y) = vω,x,y .

Furthermore the map (ω, x, y) 7→ (uω,x,y, vω,x,y) ∈ U(t0)× V(t0) is Borel measurable.

Consequently to (α, β) ∈ Ar(t0)× Br(t0), Φ ∈ Cb(RN+M ,Rd), (x, y) ∈ RN+M we may
associate a trajectory defined by

t ∈ [t0, T ] 7→ X
t0,Φ(x,y),α(x,ωα,·),β(y,ωβ ,·)
t := X

t0,Φ(x,y),uω,x,y ,vω,x,y
t

where uω,x,y and vω,x,y are associated to (α, β) by the Lemma 1.
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1.5 Definitions of several Values

Definitions 2. Fix t0 ∈ [0, T ], (Φ, h, µ, ν) ∈ L1
µ×ν(RN+M ,Rd)×L1

µ×ν(RN+M)×P1(RN)×
P1(RM).

• We define the upper and lower random values:

V+
r (t0,Φ, h, µ, ν) = inf

α∈Ar(t0)
sup

β∈B(t0)

∫
Ω

∫
RN+M

g(X
t0,Φ(x,y),α(ω,x,·),β(y,·)
T )h(x, y) dµ(x)dν(y)dP (ω),

V−r (t0,Φ, h, µ, ν) = sup
β∈Br(t0)

inf
α∈A(t0)

∫
Ω

∫
RN+M

g(X
t0,Φ(x,y),α(x,·),β(ω,y,·)
T )h(x, y) dµ(x)dν(y)dP (ω).

• We call upper and lower value in pure strategy the following functionals:

V+(t0,Φ, h, µ, ν) := inf
α∈A(t0)

sup
β∈B(t0)

∫
RN+M

g
(
X
t0,Φ(x,y),α(x,·),β(y,·)
T

)
h(x, y) dµ(x)dν(y),

V−(t0,Φ, h, µ, ν) := sup
β∈B(t0)

inf
α∈A(t0)

∫
RN+M

g
(
X
t0,Φ(x,y),α(x,·),β(y,·)
T

)
h(x, y) dµ(x)dν(y).

We also introduce the following definitions of values (we will see in section 3 that they
coincides with the random values):

Proposition and Definition 1. Fix t0 ∈ [0, T ], (Φ, h, µ, ν) ∈ Cb(RN+M ,Rd)×C0(RN+M)×
P1(RN)× P1(RM). The following upper and lower values are well defined:

C+
r (t0,Φ, h, µ, ν) := inf

α∈Ar(t0)

∫
RM

sup
β∈Bc(t0)

[∫
Ω×RN

g(X
t0,Φ(x,y),α(ω,x,·)β(·)
T )h(x, y) dµ(x)dP (ω)

]
dν(y),

C−r (t0,Φ, h, µ, ν) := sup
β∈Br(t0)

∫
RN

inf
α∈Ac(t0)

[∫
Ω×RM

g(X
t0,Φ(x,y),α(·)β(ω,y,·)
T )h(x, y) dν(y)dP (ω)

]
dµ(x).

The proof of this result is an immediate consequence of the following lemma:

Lemma 2. Fix t0 ∈ [0, T ], (Φ, h, µ, ν) ∈ Cb(RN+M ,Rd)×C0(RN+M)×P1(RN)×P1(RM).
For any β ∈ Br(t0) and any α ∈ Ac(t0), set:

ϕα,β(x) :=

∫
RM×Ω

g
(
X
t0,Φ(x,y),α(·),β(ω,y,·)
T

)
h(x, y) dν(y)dP (ω),

For any β ∈ Br(t0), the application x 7→ infα∈Ac(t0) ϕα,β(x) is in C0(RN).
In the same way, for any α ∈ Ar(t0) the following application is in C0(RM):

y 7→ sup
β∈Bc(t0)

[∫
Ω×RN

g(X
t0,Φ(x,y),α(ω,x,·)β(·)
T )h(x, y) dµ(x)dP (ω)

]
Proof: We focus on the application x 7→ infα∈Ac(t0) ϕα,β(x).
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• We first show the continuity. Let xn → x in RN and ε > 0. It exists αn such that:

inf
α∈Ac(t0)

ϕα,β(x)− inf
α∈Ac(t0)

ϕα,β(xn)

≤ ϕαn,β(x)− ϕαn,β(xn) + ε

≤
∫
RM×Ω

(
g
(
X
t0,Φ(x,y),αn(·),β(ω,y,·)
T

)
− g

(
X
t0,Φ(xn,y),αn(·),β(ω,y,·)
T

))
h(x, y) dν(y)dP (ω)

+

∫
RM×Ω

g
(
X
t0,Φ(xn,y),αn(·),β(ω,y,·)
T

)
(h(x, y)− h(xn, y)) dν(y)dP (ω) + ε.

Then, by (3) we have:∣∣∣g (X t0,Φ(x,y),α(·),β(ω,y,·)
T

)
− g

(
X
t0,Φ(xn,y),α(·),β(ω,y,·)
T

)∣∣∣ ≤ C(f, g)|Φ(xn, y)− Φ(x, y)|

and using dominated convergence theorem, we get:

lim sup
n→+∞

(
inf

α∈Ac(t0)
ϕα,β(x)− inf

α∈Ac(t0)
ϕα,β(xn)

)
≤ ε.

In a symmetric way:

lim inf
n→+∞

(
inf

α∈Ac(t0)
ϕα,β(x)− inf

α∈Ac(t0)
ϕα,β(xn)

)
≥ ε.

As this is true for any ε > 0, we get :

lim
n→+∞

inf
α∈Ac(t0)

ϕα,β(xn) = inf
α∈Ac(t0)

ϕα,β(x).

• Now we show that infα∈Ac(t0) ϕα,β vanishes at the infinity. As h is in C0(RN), for all
ε > 0, it exists Rε such that with Cε = B(0RN , Rε)×B(0RM , Rε), we have:

sup
x 6∈B(0RN ,Rε) or y 6∈B(0RM ,Rε)

|h(x, y)| = sup
(x,y)6∈Cε

|h(x, y)| ≤ ε.

So that for any β ∈ Br(t0) and x 6∈ B(0RN , Rε):

∀α ∈ Ac(t0) : ϕα,β(x) =

∫
RM×Ω

g
(
X
t0,Φ(x,y),α(·),β(ω,y,·)
T

)
h(x, y) dνdP ≤ ‖g‖∞ε

and infx 6∈B(0RN ,Rε)
infα∈Ac(t0) ϕα,β(x) ≤ ‖g‖∞ε.

QED

Remark 1. 1) When Φ and h are regular, we have the following inequalities:

C−r (t0,Φ, h, µ, ν) ≤ V−r (t0,Φ, h, µ, ν) ≤ V+
r (t0,Φ, h, µ, ν) ≤ C+

r (t0,Φ, h, µ, ν).

If µ is finitely supported, the first inequality is an equality; in a symmetric way, if
ν is finitely supported, the last inequality is an equality.

9



2) Both C+
r and C−r are meaningful. For instance, as Player I knows the exact x0 ∈ RN

initially chosen, why should he minimize the average payment∫
Ω×RN+M

g(X
t0,Φ(x,y),α(x,·)β(ω,y,·)
T )h(x, y) dµ(x)dν(y)dP (ω)?

It seems more reasonable for him to minimize

inf
α∈Ac(t0)

∫
Ω×RM

g(X
t0,Φ(x0,y),α(·)β(y,·)
T )h(x0, y) dν(y)dP (ω).

3) When Φ and h are in some Lpµ×ν, the map x 7→ infα∈Ac(t0) ϕα,β(x) may be not
measurable so that C−r may not be well defined. The same holds for C+

r .

2 Regularity of the values

In this subsection, we study the regularity of V±r , C±r and V±.

The following result is classic (see for instance [3]):

Lemma 3. For any (Φ, h, ν, µ) ∈ ×L1
µ×ν(RN+M ,Rd)×L1

µ×ν(RN+M)×P1(RM)×P1(RN)
and for any t, s ∈ [t0, T ],

|V±r (t,Φ, h, µ, ν)− V±r (s,Φ, h, µ, ν)| ≤ C(f, g)‖h‖L1
µ×ν
|t− s|.

The same property holds for V± and for C±r if (Φ, h) ∈ [0, T ]×Cb(RN+M ,Rd)×C0(RN+M).

Lemma 4. (i) Let (t0,Φ, µ, ν) be an element of [t0, T ]× L1
µ×ν(RN+M ,Rd)×P1(RN)×

P1(RM). For any h1,h2 ∈ L1
µ×ν(RN+M), we have:

|V±r (t0,Φ, h1, µ, ν)− V±r (t0,Φ, h2, µ, ν)| ≤ ‖g‖∞‖h1 − h2‖L1
µ×ν

,

(ii) Let (t0, µ, ν) be an element of [t0, T ]×P1(RN)×P1(RM). Let h ∈ Lqµ×ν(RN+M) and
Φ1,Φ2 ∈ Lpµ×ν(RN+M ,Rd), with p ∈ [1,+∞] and 1/p+ 1/q = 1, we have:

|V±r (t0,Φ1, h, µ, ν)− V±r (t0,Φ2, h, µ, ν)| ≤ C(f, g)‖h‖Lqµ×ν‖Φ1 − Φ2‖Lpµ×ν ,

in particular, V±r is Lipschitz in Φ for the norm ‖ · ‖Lpµ×ν with Lipschitz constant

C(f, g)‖h‖Lqµ×ν .

The same properties hold for V± and for C±r if (Φ, h) ∈ [0, T ] × Cb(RN+M ,Rd) ×
C0(RN+M).

Proof: We make only the proofs for V−r , the proofs for the other values being similar
(note that here the randomness of the strategies does not play any role).
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(i) Take ε > 0 and ((Ω1,F1, P1), β1) ∈ Br(t0) such that:

V−r (t0,Φ, h1, µ, ν) ≤ ε+ inf
α∈A(t0)

∫
Ω1

∫
RN+M

g
(
X
t0,Φ(x,y),α(x,·),β1(ω,y,·)
T

)
h1(x, y)dµdνdP1(ω).

Then choose α2 ∈ A(t0) such that:

ε + inf
α∈A(t0)

∫
Ω1

∫
RN+M

g
(
X
t0,Φ(x,y),α(x,·),β1(ω,y,·)
T

)
h2(x, y)dµdνdP1(ω)

≥
∫

Ω1

∫
RN+M

g
(
X
t0,Φ(x,y),α2(x,·),β1(ω,y,·)
T

)
h2(x, y)dµdνdP1(ω).

Then we have:

V−r (t0,Φ, h1, µ, ν)− V−r (t0,Φ, h2, µ, ν)

≤ 2ε +

∫
Ω1

∫
RN+M

g
(
X
t0,Φ(x,y),α2(x,·),β1(ω,y,·)
T

)
h1(x, y)dµdνdP1(ω)

−
∫

Ω1

∫
RN+M

g
(
X
t0,Φ(x,y),α2(x,·),β1(ω,y,·)
T

)
h2(x, y)dµdνdP1(ω)

= 2ε +

∫
Ω1

∫
RN+M

g
(
X
t0,Φ(x,y),α2(x,·),β1(ω,y,·)
T

)
(h1 − h2)(x, y)dµdνdP1

≤ 2ε + ‖g‖∞‖h1 − h2‖L1
µ×ν

∫
Ω1

∫
RN+M

dµ(x)dν(y)dP1(ω)

so that (i) holds (recall that P1, µ and ν are probability measures).
In a similar way we get the proof for C−r .

(ii) Repeating the same arguments as above, it exists ((Ω1,F1, P1), β1) ∈ Br(t0) and
α2 ∈ A(t0) such that:

V−r (t0,Φ1, h, µ, ν)− V−r (t0,Φ2, h, µ, ν)

≤ 2ε +

∫
Ω1

∫
RN+M

g
(
X
t0,Φ1(x,y),α2(x,·),β1(ω,y,·)
T

)
h(x, y)dµdνdP1(ω)

−
∫

Ω1

∫
RN+M

g
(
X
t0,Φ2(x,y),α2(x,·),β1(ω,y,·)
T

)
h(x, y)dµdνdP1(ω).

Then by (3):

V−r (t0,Φ1, h, µ, ν)− V−r (t0,Φ2, h, µ, ν)

≤ 2ε+

∫
Ω1

∫
RN+M

∣∣∣g (X t0,Φ1(x,y),α2(x,·),β1(ω,y,·)
T

)
− g

(
X
t0,Φ2(x,y),α2(x,·),β1(ω,y,·)
T

)∣∣∣ h(x, y)dµdνdP1

≤ 2ε+ C(f, g)

∫
Ω1

∫
RN+M

|Φ1(x, y)− Φ2(x, y)| h(x, y)dµdνdP1

≤ 2ε+ C(f, g)‖h‖Lqµ×ν‖Φ1 − Φ2‖Lpµ×ν .

QED
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For any fixed Φ ∈ Cb(RN+M ,Rd), h ∈ C0(RN+M), ν ∈ P1(RM) the study of the regularity
in µ and ν of V±r make appear the following objects from optimal transport, similar to
the usual Monge Kantorovich norm and defined for all µ0, µ1 ∈M+

b (RN) with µ0(RN) =
µ1(RN):

(7)
WΦ,h,ν(µ0, µ1) := inf

γ∈Π(µ0,µ1)

∫
R2N

cΦ,h,ν(x0, x1) dγ(x0, x1),

with cΦ,h,ν(x0, x1) :=

∫
RM
|Φ(x0, y)− Φ(x1, y)|+ |h(x0, y)− h(x1, y)| dν(y).

We define Wφ,h,µ with µ ∈ P1(RN) in the same way:

WΦ,h,µ(ν0, ν1) := inf
γ∈Π(ν0,ν1)

∫
RN+2M

|Φ(x, y0)−Φ(x, y1)|+ |h(x, y0)−h(x, y1)| dµ(x)dγ(y0, y1)

for all ν0, ν1 ∈M+
b (RM) such that ν0(RM) = ν1(RM).

Then we can state the regularity property in µ and ν of V±r :

Lemma 5. (i) Let (t0, ν) be in [t0, T ]×P1(RM) and Φ ∈ Cb(RN×M ,Rd), h ∈ C0(RN×M ,R+).
For any µ0, µ1 in P1(RN), we have:

|V±r (t0,Φ, h, µ0, ν)− V±r (t0,Φ, h, µ1, ν)| ≤ (C(f, g)‖h‖∞ + ‖g‖∞)WΦ,h,ν(µ0, µ1),

|C−r (t0,Φ, h, µ0, ν)− C−r (t0,Φ, h, µ1, ν)| ≤ (C(f, g)‖h‖∞ + ‖g‖∞)WΦ,h,ν(µ0, µ1),

(ii) Let (t0, µ) be in [t0, T ] × P1(RN) and Φ ∈ Cb(RN×M ,Rd), h ∈ C0(RN×M ,R+). For
any ν0, ν1 in P1(RM), we have:

|V±r (t0,Φ, h, µ, ν0)− V±r (t0,Φ, h, µ, ν0)| ≤ (C(f, g)‖h‖∞ + ‖g‖∞)WΦ,h,µ(ν0, ν1),

|C+
r (t0,Φ, h, µ, ν0)− C+

r (t0,Φ, h, µ, ν0)| ≤ (C(f, g)‖h‖∞ + ‖g‖∞)WΦ,h,µ(ν0, ν1).

In the proof below, the randomness of the strategies is crucial, the proof will not work
if we replace V+

r by V+.

Proof: We will only prove the result (i) for V+
r . The other statements being similar.

We mimic the proof contained in [13]. Fix ε > 0 and take ((Ω,F , P ), α0) an ε-optimal
random strategy for V+

r (t0,Φ, h, µ0, ν) namely
(8)

sup
β∈B(t0)

∫
Ω

∫
RN×M

g(X
t0,Φ(x0,y),α(x0,ω,·)β(y,·)
T ) h(x0, y)dµ0(x0)dν(y)dP (ω) ≤ V+

r (t0,Φ, h, µ0, ν)+ε.

Take γ be any element of Π(µ0, µ1). Then we disintegrate the measure γ with respect to
µ1 as follows

dγ(x0, x1) = dγx1(x0)dµ1(x1).

It has been proven in [7] there exists a measurable map ξ : (x1, ω
′) ∈ RN × [0, 1]N 7→

ξ(y, ω′) ∈ RN such that

ξ(x1, ·)]LNb[0, 1]N = γx1 for µ1-almost all x1.
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This enables us to define the following random strategy for the first player

α1 : (x1, ω, ω
′, v) ∈ RN × Ω× [0, 1]N × V(t0) 7→ α0(ξ(x1, ω

′), ω, v) ∈ U(t0).

Then for any β ∈ B(t0) we have∫
Ω×[0,1]N

∫
RN+M

g(X
t0,Φ(x1,y),α1(x1,ω,ω′,·)β(y,·)
T ) h(x1, y)dµ1(y)dν(y)dP (ω)dω′

=

∫
Ω

∫
RN+M

(∫
[0,1]N

g(X
t0,Φ(x1,y),α0(ξ(x1,ω′),ω,·)β(y,·)
T ) h(x1, y)dω′

)
dµ1(y)dν(y)dP (ω)

=

∫
Ω×R2N×RM

g(X
t0,Φ(x1,y),α0(x0,ω,·)β(y,·)
T )h(x1, y) dν(y)dγx1(x0)dµ1(x1)dP (ω)

(Using Fubini Theorem and the definition of α1)

=

∫
Ω×R2N×RM

g(X
t0,Φ(x1,y),α0(x0,ω,·)β(y,·)
T )h(x1, y) dν(y)dγ(x0, x1)dP (ω)

≤
∫

Ω×R2N×RM
g(X

t0,Φ(x0,y),α0(x0,ω,·)β(·)
T ) h(x1, y) dν(y)dP (ω)dγ(x0, x1)

+C(f, g)‖h‖∞
∫
R2N

|Φ(x0, y)− Φ(x1, y)| dν(y)dγ(x0, x1)

(Using inequality (3))

≤
∫

Ω×R2N+M

g(X
t0,Φ(x0,y),α0(x0,ω,·)β(·)
T ) h(x0, y) dν(y)dP (ω)dγ(x0, x1)

+‖g‖∞
∫
R2N

|h(x0, y)− h(x1, y)| dν(y)dγ(x0, x1)

+C(f, g)‖h‖∞
∫
R2N

|Φ(x0, y)− Φ(x1, y)| dν(y)dγ(x0, x1).

Then taking the infimum in γ ∈ Π(µ0, µ1) leads:∫
Ω×[0,1]N

∫
RN+M

g(X
t0,Φ(x1,y),α1(x1,ω,ω′,·)β(y,·)
T ) h(x1, y)dµ1(y)dν(y)dP (ω)dω′

≤
∫

Ω×R2N×RM
g(X

t0,Φ(x0,y),α0(x0,ω,·)β(·)
T ) h(x0, y) dν(y)dP (ω)dµ0(x0)

+(C(f, g)‖h‖∞ + ‖g‖∞)WΦ,h,ν(µ0, µ1).

We conclude by taking the supremum in β ∈ B(t0) and recalling (8) :

V+
r (t0,Φ, h, µ1, ν)

≤ sup
β

∫
Ω×[0,1]N

∫
RN+M

g(X
t0,Φ(x1,y),α1(x1,ω,ω′,·)β(y,·)
T ) h(x1, y)dµ1(y)dν(y)dP (ω)dω′

≤ sup
β

∫
Ω×R2N×RM

g(X
t0,Φ(x0,y),α0(x0,ω,·)β(y,·)
T ) h(x0, y) dν(y)dP (ω)dµ0(x0)

+(C(f, g)‖h‖∞ + ‖g‖∞)WΦ,h,ν(µ0, µ1)

≤ V+
r (t0,Φ, h, µ0, ν) + ε+ (C(f, g)‖h‖∞ + ‖g‖∞)WΦ,h,ν(µ0, µ1).
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Sending ε to zero we finally have:

V+
r (t0,Φ, h, µ1, ν) ≤ V+

r (t0,Φ, h, µ0, ν) + (C(f, g)‖h‖∞ + ‖g‖∞)WΦ,h,ν(µ0, µ1).

Interchanging µ0 and µ1, the proof is complete.

QED

Lemma 6. Let Φ be in Cb(RN+M ,Rd), h ∈ C0(RN+M ,R+), and ν ∈ P1(RM). The
following properties hold:

(i) WΦ,h,ν(µ0, µ1) = WΦ,h,ν(µ1, µ0), for all µ0, µ1 in M+
b (RN) with µ0(RN) = µ1(RN),

(ii) WΦ,h,ν(µ0, µ1) ≥ 0 and WΦ,h,ν(µ0, µ0) = 0, for all µ0, µ1 inM+
b (RN) with µ0(RN) =

µ1(RN),

(iii) ∀µ0, µ1, µ2 ∈ M+
b (RN) with µ0(RN) = µ1(RN) = µ2(RN), the triangle inequality

is satisfied
WΦ,h,ν(µ0, µ2) ≤ WΦ,h,ν(µ0, µ1) +WΦ,h,ν(µ1, µ2),

(iv) let µ0, µ1 be inM+
b (RN) with µ0(RN) = µ1(RN), assume WΦ,h,µ(µ0, µ1) < +∞ then

WΦ,h,ν(µ0, µ1)

= sup
ϕ∈Cb(RN )

{∫
RN
ϕdµ1 −

∫
RN
ϕdµ0 : ϕ(x1)− ϕ(x0) ≤ cΦ,h,ν(x0, x1) ∀x0, x1 ∈ RN

}
where cΦ,h,ν is the cost defined in (7).

As a consequence it exists NΦ,h,ν a semi-norm on M0,b(RN) (see (5)) such that:

Nφ,h,ν(η) = WΦ,h,ν(η
+, η−).

(v) let Φ1,Φ2 be in Cb(RN+M ,Rd), h1, h2 ∈ C0(RN+M), assuming all the quantities are
finite, we have:

WΦ1,h,ν(µ0, µ1)−WΦ2,h,ν(µ0, µ1) ≤ 2‖Φ1 − Φ2‖∞,

WΦ,h1,ν(µ0, µ1)−WΦ,h2,ν(µ0, µ1) ≤ 2‖h1 − h2‖∞.

Of course same properties can be shown for WΦ,h,µ.

Proof: We only show (iii), (iv), the other properties being straightforward.
Proof of (iii): We assume that WΦ,h,ν(µ0, µ1) < +∞ and WΦ,h,ν(µ1, µ2) < +∞. We
use a classic argument (see for instance [17]). Fix ε > 0 and let γ0,1 ∈ Π(µ0, µ1) and
γ1,2 ∈ Π(µ1, µ2) be two ε-optimal transport plans that is:

ε+WΦ,h,ν(µ0, µ1) ≥
∫
R2N

cΦ,h,ν(x0, x1) dγ0,1(x0, x1),

ε+WΦ,h,ν(µ1, µ2) ≥
∫
R2N

cΦ,h,ν(x1, x2) dγ1,2(x1, x2).

14



We disintegrate γ0,1 and γ1,2 as follows:

dγ0,1(x0, x1) := dγx1
0,1(x0)dµ1(x1), dγ1,2(x1, x2) := dγx1

1,2(x2)dµ1(x1).

We build and admissible transport plan γ0,1,2 ∈ Π(µ0, µ2) for WΦ,h,ν(µ0, µ2) by setting:

dγ0,1,2(x0, x2) :=

∫
RN
dγx1

0,1(x0)dγx1
1,2(x2)dµ1(x1).

Note that cΦ,h,ν satisfies a triangular inequality that is:

cΦ,h,ν(x0, x2) ≤ cΦ,h,ν(x0, x1) + cΦ,h,ν(x1, x2).

Frome this inequality, we get:

WΦ,h,ν(µ0, µ2) ≤
∫
R2N

cΦ,h,ν(x0, x2) dγ0,1,2(x0, x2) ≤
∫
R3N

cΦ,h,ν(x0, x2) dγx1
0,1(x0)dγx1

1,2(x2)dµ1(x1)

≤
∫
R3N

cΦ,h,ν(x0, x1) + cΦ,h,ν(x1, x2) dγx1
1,2(x2)dµ1(x1)

≤
∫
R2N

cΦ,h,ν(x0, x1) dγ0,1(x0, x1) +

∫
R2N

cΦ,h,ν(x1, x2) dγ1,2(x1, x2)

≤ 2ε+WΦ,h,ν(µ0, µ1) +WΦ,h,ν(µ1, µ2).

Sending ε to zero gives the result.

Proof of (iv): For simplicity we denote by c the cost cΦ,h,ν . It is symmetric, satisfies
c(x, x) = 0 for all x ∈ RN and the triangular inequality holds. It is non-negative and
continuous, so by classic Kantorovich duality (see for instance [17]):

WΦ,h,ν(µ0, µ1) = sup
ϕ∈C0(RN )

{∫
RN
ϕcc(x0)dµ0(x0) +

∫
RN
ϕc(x1)dµ1(x1)

}
where ψc(x) := infz∈RN{c(x, z)− ψ(z)}.
Note that, for all x0, x1 ∈ RN ,

(9) ϕc(x1)− ϕc(x0) ≤ c(x0, x1).

Indeed, for any ε > 0 it exists zε such that

ϕc(x0) + ε ≥ c(x0, zε)− ϕ(zε),

and using zε as candidate for infz∈RN{c(x1, z)− ϕ(z)}:

ϕc(x1)− ϕc(x0) ≤ c(x1, zε)− ϕ(zε)− c(x0, zε) + ϕ(zε) + ε ≤ c(x0, x1) + ε.

Let us show ϕcc = −ϕc. Choosing x1 = x0, we get:

ϕcc(x0) := inf
x1∈RN

{c(x0, x1)− ϕc(x1)} ≤ −ϕc(x0),
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the opposite inequality comes from (9). We get that:

WΦ,h,ν(µ0, µ1) := sup
ϕ∈C0(RN )

{∫
RN
−ϕc(x0)dµ0(x0) +

∫
RN
ϕc(x1)dµ1(x1)

}
.

Observe that by (9) and the continuity of c, ϕc is continuous for all ϕ ∈ C0(RN). Moreover
ϕc is bounded because, as c is non-negative and c(x, x) = 0:

ϕc(x) = inf
z∈RN
{c(x, z)− ϕ(z)} ≤ −ϕ(x) ≤ ‖ϕ‖∞,

ϕc(x) = inf
z∈RN
{c(x, z)− ϕ(z)} ≥ inf

z∈RN
{−ϕ(z)} ≥ −‖ϕ‖∞.

So that:

WΦ,h,µ(µ0, µ1)

≤ sup
ϕ∈Cb(RN )

{∫
RN
ϕ(x) dµ1(x)−

∫
RN
ϕ(x) dµ0(x) : ϕ(x1)− ϕ(x0) ≤ c(x0, x1) ∀x0, x1 ∈ RN

}
.

The other inequality is obvious.

QED

Corollary 1. Let t0 be in [0, T ], Φ ∈ Cb(RN×M ,Rd), h ∈ C0(RN×M).

• For any fixed ν0 ∈ P1(RM), the maps µ ∈ P1(RN) 7→ V±r (t0,Φ, h, µ, ν0) are uni-
formly continuous with respect to ‖ · ‖MK.

• For any fixed µ0 ∈ P1(RN), the maps ν ∈ P1(RN) 7→ C−r (t0,Φ, h, µ0, ν) are uni-
formly continuous with respect to ‖ · ‖MK.

The same properties hold for C±r .

Proof: We fix ν ∈ P1(RM) and prove that µ 7→ V±r (t0,Φ, h, µ, ν) is uniformly contin-
uous, the remaining being similar. We denote by C the constant (C(f, g) ‖h‖∞ + ‖g‖∞).
We fix ε > 0 some Φε ∈ Lip(RN+M ,Rd), hε ∈ Lip(RN+M ,R+) such that:

‖Φε − Φ‖∞ ≤
ε

6C
, ‖hε − h‖∞ ≤

ε

6C
.

Then, for all µ0, µ1 ∈ P1(RN) such that ‖µ0− µ1‖MK ≤ ε
3C(Lip(hε)+Lip(Φε))

, we have for

any optimal plan γ ∈ Π0(µ0, µ1), by Lemma 5:

|V+
r (t0,Φ, h, µ1, ν)− V+

r (t0,Φ, h, µ0, ν)| ≤ CWΦ,h,ν(µ0, µ1)

≤ C

[∫
R2N+M

|Φ(x0, y)− Φ(x1, y)|+ |h(x0, y)− h(x1, y)|dγ(x0, x1)dν(y)

]
≤ 2C‖h−hε‖∞+2C‖Φ−Φε‖∞+C

[∫
|Φε(x0, y)− Φε(x1, y)|+ |hε(x0, y)− hε(x1, y)|dγ(x0, x1)dν(y)

]
≤ 2

ε

3
+ C(Lip(hε) + Lip(Φε))‖µ0 − µ1‖MKdν(y) ≤ ε.

The proof is complete.

QED
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3 Values in Pure and Mixed Strategies, equalities be-

tween several definitions of values

In view of the regularity of the upper and lower values and the results proved in [19], we
get that the game has a value:

Theorem 1. Assume that Isaac’s condition (4) holds. Then, for any t0 ∈ [0, T ], ν ∈
P1(RM) and µ ∈ P1(RN), (Φ, h) ∈ Lpµ×ν(RN+M ,Rd)×Lqµ×ν(RN+M) with p ∈ [1,+∞[ and
q = p

p−1
, it holds:

V+
r (t0,Φ, h, µ, ν) = V−r (t0,Φ, h, µ, ν).

We denote by Vr(t0,Φ, h, µ, ν) the value above.

Proof: Step 1: Assume for a while that Φ and h are regular: Φ ∈ Cb(RN×M ,Rd),
h ∈ C0(RN×M ,R+). For any k ∈ N let µk be in P1(RN) and νk ∈ P1(RM) a pair of
probability measures with finite support

µk =

nk∑
i=1

aki δxki , νk =

mk∑
j=1

bkj δykj ,

such that
lim

k→+∞
‖µ− µk‖MK = lim

k→+∞
‖ν − νk‖MK = 0.

Set for any k ∈ N, any i = 1, . . . , nk and any j = 1, . . . ,mk:

Xk
ij := Φ(xki , y

k
j ), qki,j = h(xki , y

k
j )aki b

k
j , pki,j =

qki,j∑nk
l=1

∑mk
l′=1 q

k
l,l′
.

By construction, for any k ∈ N, (pki,j)i,j is non negative and satisfies
∑

i,j p
k
i,j = 1 so it

belongs to the simplex ∆(nkmk). Then using Corollary 1 and [19], we get:

V+
r (t0,Φ, h, µ, ν) = lim

k→+∞
V+
r (t0,Φ, h, µk, νk)

= lim
k→+∞

inf
α∈Ar(t0)

sup
β∈B(t0)

∫
Ω

nk∑
i=1

mk∑
j=1

g
(
X
t0,Xk

i,j ,α(ω,xi,·),β(yj ,·)
T

)
qki,j dP (ω)

= lim
k→+∞

(
nk∑
l=1

mk∑
l′=1

qkl,l′

)
inf

α∈Ar(t0)
sup

β∈B(t0)

∫
Ω

nk∑
i=1

mk∑
j=1

g
(
X
t0,Xk

i,j ,α(ω,xi,·),β(yj ,·)
T

)
pki,j dP (ω)

= lim
k→+∞

(
nk∑
l=1

mk∑
l′=1

qkl,l′

)
sup

β∈Br(t0)

inf
α∈A(t0)

∫
Ω

nk∑
i=1

mk∑
j=1

g
(
X
t0,Xk

i,j ,α(ω,xi,·),β(yj ,·)
T

)
pki,j dP (ω)

= lim
k→+∞

V−r (t0,Φ, h, µk, νk) = V−r (t0,Φ, h, µ, ν).

Step 2: Let Φ ∈ Cb(RN×M ,Rd), h ∈ L1
µ×ν(RN+M). Taking a sequence hn ∈ Cc(RN+M)

such that hn → h in L1
µ×ν(RN+M) and applying Lemma 4, we get:

V+
r (t0,Φ, h, µ, ν) = V−r (t0,Φ, h, µ, ν).

Repeating the same argument with Φ ∈ Lp(RN×M ,Rd), h ∈ Lqµ×ν(RN+M), Φn ∈ Cc(RN+M ,Rd)
converging to Φ in Lp(RN+M ,Rd) and using again Lemma 4, we get the result.
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QED

Corollary 2. Let (t0, µ, ν) be in [t0, T ] × P1(RN) × P1(RM) and Φ ∈ Cb(RN+M ,Rd),
h ∈ C0(RN+M ,R+).

(i) We have: C−r (t0,Φ, h, µ, ν) = V−r (t0,Φ, h, µ, ν), C+
r (t0,Φ, h, µ, ν) = V+

r (t0,Φ, h, µ, ν).

(ii) If Isaac’s condition (4) holds then:

C−r (t0,Φ, h, µ, ν) = V−r (t0,Φ, h, µ, ν) = V+
r (t0,Φ, h, µ, ν) = C+

r (t0,Φ, h, µ, ν).

Proof: We only show (i). It is easily seen that the first (resp. the second) inequality
holds for any µ (resp. ν) with finite support. Then, as any µ ∈ P1(RN) (resp. any
ν ∈ P1(RM)) can be approximate for the ‖ · ‖MK-norm by a sequence of (µn)n (resp.
(νn)n) ) with finite support, considering the regularity of both sides of the equality with
respect to the ‖ · ‖MK-norm, we get the desired result.

QED

We now show that if µ and ν has no atom, the values don’t change if we consider only
pure strategies (cf [7]).

Proposition 2. For any t0 ∈ [0, T ], ν ∈ P1(RM) and µ ∈ P1(RN), (Φ, h) ∈ Lpµ×ν(RN+M ,Rd)×
Lqµ×ν(RN+M ,R+) with p ∈ [1,+∞[ and q = p

p−1
, it holds:

(i) If µ has no atom, the following equality holds: V+(t0,Φ, h, µ, ν) = V+
r (t0,Φ, h, µ, ν).

(ii) If ν has no atom, the following equality holds: V−(t0,Φ, h, µ, ν) = V−r (t0,Φ, h, µ, ν).

(iv) Assume that Isaac’s condition (4) holds, then, if µ and ν has no atom:
V+(t0,Φ, h, µ, ν) = V−(t0,Φ, h, µ, ν).

Proof of (i) : Arguing as in the proof of Theorem 1, it is enough to show the result
for Φ ∈ Cb(RN+M ,Rd), h ∈ C0(RN+M). It is easily seen that Lemma 4 (ii) is also satisfied
for V+. As a consequence, it is enough to prove (i) when Φ is uniformly continuous, indeed
any Φ in Cb can be approximate for the norm L2

µ×ν by a sequence of functions in C∞c .
Assume Φ is uniformly continuous and µ has no atom. Take ε > 0, as Φ and h are
uniformly continuous, it exists Nε such that for all n ≥ Nε we have:

(10) |x− x′| ≤ 1

n
⇒
∫
RM
|Φ(x, y)− Φ(x′, y)|+ |h(x, y)− h(x′, y)|dν(y) ≤ ε.

Take n := nε ≥ Nε, we consider a partition (Ani )i∈N of RN where all the Ani are Borel and
have diameter less than 1

n
and choose xni ∈ Ani for all i ∈ N. We consider the following

discrete probability measure:

µn := µnε =
∑
i∈N

µ(Ani )δxni .

18



It satisfies:

WΦ,h,ν(µ, µnε) ≤
∑
i∈N

∫
Ani

∫
RM
|Φ(x, y)− Φ(xni , y)|+ |h(x, y)− h(xni , y)|dν(y) dµ(x) ≤ ε.

By Lemma 5, this leads:

(11) lim
ε→0
V+
r (t0,Φ, h, µnε , k) = V+

r (t0,Φ, h, µ, k).

Let (([0, 1]k,F ,Lkb[0, 1]k), αnε ) be a mixed strategy for player 1 such that:

V+
r (t0,Φ, h, µn, ν)+ε ≥ sup

β∈B(t0)

∑
i∈N

∫
[0,1]k

∫
RM

g
(
X
t0,Φ(xni ,y),αnε (ω,xni ,·),β(y,·)
T

)
h(xni , y)µ(Ani ) dωdν(y).

For any i ∈ N we consider a map T ni : RN → [0, 1]k such that:

T ni ]

(
µbAni
µ(Ani )

)
= Lkb[0, 1]k that is

1

µ(Ani )

∫
Ani

ϕ(T ni (x))dµ(x) =

∫
[0,1]k

ϕ(z)dz ∀ϕ ∈ C0(Rk).

As µ has no atoms, such transport map always exists (see for instance [16]). Then we
build a pure strategy for Player 1 by setting:

α̂nε (x, ·) =
∑
i∈N

1Ani (x) αnε (T ni (x), xni , ·).

Using this strategy as a candidate for V+(t0,Φ, h, µ, ν) leads:

V+(t0,Φ, h, µ, ν)

≤ sup
β∈B(t0)

∫
RN+M

g
(
X
t0,Φ(x,y),α̂ni (x,·),β(y,·)
T

)
h(x, y) dµ(x)dν(y)

≤ sup
β∈B(t0)

∑
i∈N

∫
Ani ×RM

g
(
X
t0,Φ(x,y),αni (Tni (x),xni ,·),β(y,·)
T

)
h(x, y) dµ(x)dν(y)

≤ (C(f, g)‖h‖∞ + ‖g‖∞)
∑
i∈N

∫
Ani ×RM

|Φ(x, y)− Φ(xni , y)|+ |h(x, y)− h(xni , y)|dν(y)

+ sup
β∈B(t0)

∑
i∈N

∫
Ani ×RM

g
(
X
t0,Φ(xni ,y),αni (Tni (x),xni ,·),β(y,·)
T

)
h(xni , y) dµ(x)dν(y).

Then, setting C = (C(f, g)‖h‖∞ + ‖g‖∞), using (10), the definition of T ni and αnε we get:

V+(t0,Φ, h, µ, ν)

≤ (C(f, g)‖h‖∞ + ‖g‖∞)× ε

+ sup
β∈B(t0)

∑
i∈N

∫
RM×[0,1]k

µ(Ani )g
(
X
t0,Φ(xni ,y),αni (ω,xni ,·),β(y,·)
T

)
h(xni , y) T ni ]

(
µbAni
µ(Ani )

)
(ω)dν(y)

≤ Cε+ sup
β∈B(t0)

∑
i∈N

∫
RM×[0,1]k

g
(
X
t0,Φ(xni ,y),αnε (ω,xni ,·),β(y,·)
T

)
h(xni , y)µ(Ani ) dωdν(y)

≤ Cε+ ε+ V+
r (t0,Φ, h, µn, ν).
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We have proved that for any n ≥ Nε we have:

V+(t0,Φ, h, µ, ν) ≤ (C + 1)ε+ V+
r (t0,Φ, h, µnε , ν).

This inequality being true for any ε, by (11), making ε go to zero, we have:

V+(t0,Φ, h, µ, ν) ≤ V+
r (t0,Φ, h, µ, ν).

The other inequality is straightforward.

QED

4 Subdynamic and superdynamic Programming Prin-

ciples

From now on, we take X ⊂ RN and Y ⊂ RM two compact sets and we will consider only
probability measures µ supported inside X and ν supported inside Y . Namely µ ∈ P(X)
and ν ∈ P(Y ). Moreover we will require some regularity for Φ and h ≥ 0:

Φ ∈ C(X × Y,Rd), h ∈ C(X × Y,R+).

Because of the lack of information, both the subdynamic and superdynamic principles
will be dual. So, as we get into convex analysis, we will need the following properties.

4.1 Convexity/concavity properties

Lemma 7. For any (t,Φ, h, ν) ∈ [0, T ]× C(X × Y,Rd)× C(X × Y,R+)×P(Y ), the map
µ0 ∈ P(X) 7→ V±r (t,Φ, h, µ0, ν) is convex.
For any (t,Φ, h, µ) ∈ [0, T ]×C(X×Y,Rd)×C(X×Y,R+)×P(X), the map ν0 ∈ P(Y ) 7→
V±r (t0,Φ, h, µ, ν0) is concave.

This lemma can be proved similarly to Lemma 3 in [13]. Nevertheless, note that the
convexity of V−r in the µ variable is obvious from the equality with C−r , indeed, this last
functional is a supremum of a linear application in µ. We can get the concavity of V+

r in
a symmetric way.

In the next sections, we will need the following lemma:

Lemma 8. Let X ⊂ RN , Y ⊂ RM be two compact subsets.

(i) Let t0 be in [0, T ], (Φ, h) ∈ C(X × Y,Rd) × C0(X × Y,R+), ν ∈ P(Y ). For all
µ0 ∈ P(X), the convex subdifferential ∂−V−r (t0,Φ, h, µ0, ν) of V−r at µ0 is not empty.

(ii) Let t0 be in [0, T ], (Φ, h) ∈ C(X × Y,Rd) × C0(X × Y,R+), µ ∈ P(X). For all
ν0 ∈ P(Y ), the convex superdifferential ∂+V−r (t0,Φ, h, µ, ν0) of V−r at ν0 is not
empty.
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Proof: We prove only (i).
Fix t0 ∈ [0, T ], (Φ, h) ∈ Cb(X × Y,Rd)× C0(X × Y,R+), ν ∈ P(Y ). Take x0 any point in
X, we introduce the following convex subset of M0(X):

Zx0 := {µ− δx0 : µ ∈ P(X)} .

We set, for any η ∈M0(X):

G(η) := inf
η0=µ0−δx0∈Zx0

{
(C(f, g)‖h‖∞ + ‖g‖∞)NΦ,h,ν(η − η0) + V−r (t0,Φ, h, µ0, ν)

}
.

Remember that, by Lemma 6, NΦ,h,ν is a semi-norm.
Step 1: We show that G(η) = V−r (t0,Φ, h, µ, ν) for all η = µ− δx0 ∈ Zx0 .

Indeed, on the one hand, it is easy to see, by choosing η0 = η that:

G(η) ≤ V−r (t0,Φ, h, µ, ν).

On the other hand, by Proposition 5 (i), the functional V−r is Lipchitz with respect to the
semi-norm NΦ,h,ν so, for any η0 = µ0 − δx0 :

V−r (t0,Φ, h, µ, ν) ≤ (C(f, g)‖h‖∞ + ‖g‖∞)NΦ,h,ν(µ− µ0) + V−r (t0,Φ, h, µ0, ν)

As this last inequality is true for any η0 = µ0 − δx0 ∈ Zx0 , taking the infimum on all
η0 ∈ Z0 gives the desired result.

Step 2: It can be easily proved that G is convex and Lipschitz continuous with
respect to the semi-norm NΦ,h,ν . Moreover, arguing as in the proofs of Corollary 1, G is
uniformly continuous for the topology induced by ‖ · ‖MK .

Step 3: The functional G is convex, continuous on the normed vectorial space
M0(X), so its convex subdifferential is non-empty at any η (see [9], Proposition 5.2. p
22). So for any µ0 ∈ P(X), it exists ϕ0 ∈ Lip0(X) such that:

G(µ− δx0) ≥ G(µ0 − δx0) +

∫
RN
ϕ0(x)d(µ− µ0), ∀µ ∈ P(X).

Recalling Step 1, then:

V−r (t0,Φ, h, µ, ν) ≥ V−r (t0,Φ, h, µ0, ν) +

∫
RN
ϕ0(x)d(µ− µ0), ∀µ ∈ P(X).

QED

4.2 Convex conjugate of V−r :

Fix (t0, ν) ∈ [0, T ] × P(Y ) and Φ ∈ C(X × Y,Rd), h ∈ C(X × Y,R+). We extend
µ ∈ P (X) 7→ V−r (t0,Φ, h, µ, ν) by +∞ insideMb(X)\P(X). We still denote the extension
by V−r . We are going to compute the convex conjugate of V−r in the variable µ. Note that,
as V−r is convex, l.s.c. with respect to the weak star topology of Mb(X), we have:

(V−r )∗∗(t0,Φ, h, µ, ν) = V−r (t0,Φ, h, µ, ν).
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Lemma 9. Fix (t0, ν) ∈ [0, T ] × P(Y ) and Φ ∈ C(X × Y,Rd), h ∈ C(X × Y,R+). For
any ϕ ∈ C(X), it holds:

(V−r )∗(t0,Φ, h, ϕ, ν)

≤ inf
β∈Br(t0)

sup
α∈Ac(t0)

sup
x∈X

{
ϕ(x)−

∫
Y×Ω

g
(
X
t0,Φ(x,y),α(·),β(ω,y,·)
T

)
h(x, y)dν(y)dP (ω)

}
.

In the sequel, we set for all ϕ ∈ C(X),

z(ϕ) = inf
β∈Br(t0)

sup
α∈Ac(t0)

sup
x∈X

{
ϕ(x)−

∫
Y×Ω

g
(
X
t0,Φ(x,y),α(·),β(ω,y,·)
T

)
h(x, y)dν(y)dP (ω)

}
.

Proof: By Corollary 2:

(V−r )∗(t0,Φ, h, ϕ, ν)

= sup
µ∈P(X)

{∫
X

ϕ(x)dµ(x)− V−r (t0,Φ, h, µ, ν)

}
= sup

µ∈P(X)

{∫
ϕdµ− sup

β∈Br(t0)

∫
X

inf
α∈Ac(t0)

[∫
g
(
X
t0,Φ(x,y),α(·),β(ω,y,·)
T

)
h(x, y)dν(y)dP (ω)

]
dµ(x)

}

= sup
µ∈P(X)

inf
β∈Br(t0)

{∫
X

[
ϕ(x)− inf

α∈Ac(t0)

∫
g
(
X
t0,Φ(x,y),α(·),β(ω,y,·)
T

)
h(x, y)dν(y)dP (ω)

]
dµ(x)

}
≤ inf

β∈Br(t0)
sup

α∈Ac(t0)

sup
x∈X

{
ϕ(x)−

∫
Y×Ω

g
(
X
t0,Φ(x,y),α(·),β(ω,y,·)
T

)
h(x, y)dν(y)dP (ω)

}
.

The inequality follows.

QED

Lemma 10. The functional z : C(X)→ R is convex and l.s.c. As a consequence z∗∗ = z.

The proof of this lemma is very similar to the proof of Lemma 9 in [13], therefore it
is omitted.

Proposition 3. Fix (t0, ν) ∈ [0, T ] × P(Y ) and Φ ∈ C(X × Y,Rd), h ∈ C(X × Y,R+).
For any ϕ ∈ C(X), it holds:

(V−r )∗(t0,Φ, h, ϕ, ν) = z(ϕ).
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Proof:
Step 1: Let us show that z∗(µ) = +∞ if µ ∈Mb(X)\P(X). Indeed:

z∗(µ) := sup
ϕ∈C(X)

{∫
X

ϕ(x)dµ(x)− z(ϕ)

}
= sup

ϕ∈C(X)

{∫
X

ϕ(x)dµ(x)−

inf
β∈Br(t0)

sup
α∈Ac(t0)

sup
x∈X

{
ϕ(x)−

∫
Y×Ω

g
(
X
t0,Φ(x,y),α(·),β(ω,y,·)
T

)
h(x, y) dν(y)dP (ω)

}}
≥ −‖g‖∞‖h‖∞ + sup

ϕ∈C(X)

{∫
X

ϕdµ− sup
x∈X

ϕ(x)

}

We have on the one hand:

sup
ϕ≤0

{∫
X

ϕdµ− sup
x∈X

ϕ(x)

}
≥ sup

ϕ≤0

∫
ϕdµ =

{
0 if µ ≥ 0
+∞ otherwise,

and on the other hand for any µ ≥ 0:

sup
ϕ≥0

{∫
X

ϕdµ− sup
x∈X

ϕ(x)

}
= sup

ϕ≥0

{∫
X

ϕdµ− ‖ϕ‖∞
}

=

{
0 if µ(X) = 1
+∞ otherwise.

We conclude that z∗(µ) = +∞ if µ is not a probability.

Step 2: We show:

z∗(µ) ≥ V−r (t0,Φ, h, µ, ν) ∀µ ∈ P(X).

Indeed, recalling the notations of Lemma 2:

z∗(µ) = sup
ϕ∈C(X)

{∫
X

ϕ dµ− inf
β∈Br(t0)

sup
α∈Ac(t0), x∈X

[ϕ(x)− ϕα,β(x)]

}

= sup
β∈Br(t0)

sup
ϕ∈C(X)

inf
x∈X

{∫
X

ϕ dµ−
[
ϕ(x)− inf

α∈Ac(t0)
ϕα,β(x)

]}

By lemma 2, for any fixed β, the map x 7→ infα∈Ac(t0) ϕα,β(x) is in C(X) and choosing
ϕ = infα∈Ac(t0) ϕα,β we get:

z∗(µ) ≥ sup
β∈Br(t0)

{∫
X

inf
α∈Ac(t0)

ϕα,β dµ

}
We conclude by using Corollary 2.

Conclusion: Putting together Step 1 and 2 we have:

z∗(µ) ≥ V−r (t0,Φ, h, µ, ν) ∀µ ∈Mb(X).
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Now, using Lemma 10, we get for all ϕ ∈ C(X):

(V−r )∗(t0,Φ, h, ϕ, ν) = sup
µ∈Mb(X)

{∫
ϕdµ− V−r (t0,Φ, h, µ, ν)

}
≥ sup

µ∈Mb(X)

{∫
ϕdµ− z∗(µ)

}
= z∗∗(ϕ) = z(ϕ).

QED

4.3 Subdynamic and superdynamic principles:

Proposition 4. Let t0, t1 be such that 0 ≤ t0 < t1 ≤ T , Φ ∈ C(X × Y,Rd), h ∈
C0(RN+M ,R+), ϕ ∈ C(X), ν ∈ P(X):

(V−r )∗(t0,Φ, h, ϕ, ν) ≤ inf
β∈Bc(t0)

sup
u∈U(t0)

(V−r )∗(t1, X
t0,Φ(·,·),u,β(u)
t1 , h, ϕ, ν).

Proof: We follow [13]. Take ε > 0 and βε be an ε-optimal strategy such that:
(12)

inf
β∈Bc(t0)

sup
u∈U(t0)

(V−r )∗(t1, X
t0,Φ(·,·),u,β(u)
t1 , h, ϕ, ν) + ε ≥ sup

u∈U(t0)

(V−r )∗
(
t1, X

t0,Φ,u,βε(u)
t1 , ϕ, ν

)
.

Let also ((Ω1,F1, P1), β1) be an element of Br(t1). We glue together βε and β1 to get a
new element of Br(t1):
(13)

∀(ω, y, u, s) ∈ Ω1 × Y × U(t0)× [t0, T ], β̄(ω, y, u)(s) :=

{
βε(u)(s) if s ∈ [t0, t1[
β1(ω, y, u)(s) else.

Let α0 be any element of Ac(t0) such that:

sup
α∈Ac(t0)

sup
x∈X

{
ϕ(x)−

∫
Y×Ω

g
(
X
t0,Φ(x,y),α(·),β̄(ω,y,·)
T

)
h(x, y)dν(y)dP (ω)

}
≤ sup

x∈X

{
ϕ(x)−

∫
Y×Ω

g
(
X
t0,Φ(x,y),α0(·),β̄(ω,y,·)
T

)
h(x, y)dν(y)dP (ω)

}
+ ε.

Then take (u0, v0) ∈ U(t0)× V(t0) associated to (α0, βε) by Lemma 1 and set:

∀v ∈ V(t1), α1(v) = α0(v0b[t0, t1] + vb[t1, T ]).

We get:

sup
α∈Ac(t0)

sup
x∈X

{
ϕ(x)−

∫
Y×Ω

g
(
X
t0,Φ(x,y),α(·),β̄(ω,y,·)
T

)
h(x, y)dν(y)dP (ω)

}
≤ sup

x∈X

{
ϕ(x)−

∫
Y×Ω

g
(
X
t0,Φ(x,y),α0(·),β̄(ω,y,·)
T

)
h(x, y)dν(y)dP (ω)

}
+ ε

= sup
x∈X

{
ϕ(x)−

∫
Y×Ω

g

(
X
t1,X

t0,Φ(x,y),u0,βε(u0)
t1

,α1(·),β1(ω,y,·)
T

)
h(x, y)dν(y)dP (ω)

}
+ ε

≤ sup
α∈Ac(t1)

sup
x∈X

{
ϕ(x)−

∫
Y×Ω

g

(
X
t1,X

t0,Φ(x,y),u0,βε(u0)
t1

,α(·),β1(ω,y,·)
T

)
h(x, y)dν(y)dP (ω)

}
+ ε.
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And by the definition of z:

(V−r )∗(t0,Φ, h, ϕ, ν) = z(t0,Φ, h, ϕ, ν)

≤ sup
α∈Ac(t1)

sup
x∈X

{
ϕ(x)−

∫
Y×Ω

g

(
X
t1,X

t0,Φ(x,y),u0,βε(u0)
t1

,α(·),β1(ω,y,·)
T

)
h(x, y)dν(y)dP (ω)

}
+ ε

As this true for any β1 ∈ Br(t1), we have by 12:

(V−r )∗(t0,Φ, h, ϕ, ν) ≤ (V−r )∗(t1, X
t0,Φ(·,·),u0,βε(u0)
t1 , h, ϕ, ν) + ε

≤ sup
u∈U(t0)

(V−r )∗(t1, X
t0,Φ(·,·),u,βε(u)
t1 , h, ϕ, ν) + ε

≤ inf
β∈Bc(t0)

sup
u∈U(t0)

(V−r )∗(t1, X
t0,Φ(·,·),u,β(u)
t1 , h, ϕ, ν) + 2ε.

QED

The following can be proved similarly to Proposition 4:

Proposition 5. For any 0 ≤ t0 < t1 ≤ T , Φ ∈ C(X × Y,Rd), h ∈ C0(RN+M ,R+),
φ ∈ C(Y ), µ ∈ P(Y ), it holds:

(V+
r )](t0,Φ, h, µ, φ) ≥ sup

α∈Ac(t0)

inf
v∈V(t0)

(V+
r )](t1, X

t0,Φ(·,·),α(v),v
t1 , h, µ, ϕ).

5 Hamilton Jacobi Isaacs equations

We introduce the following Hamiltonian defined for any (µ0, ν0,Φ0, pΦ) in P(X)×P(Y )×
C(X × Y,Rd)2 by:

H(µ0, ν0,Φ0, pΦ) := inf
u∈U

sup
v∈V

∫
X×Y

f(Φ0(x, y), u, v) · pΦ(x, y) dµ0(x)dν0(y)

= sup
v∈V

inf
u∈U

∫
X×Y

f(Φ0(x, y), u, v) · pΦ(x, y) dµ0(x)dν0(y)

(where Isaac’s condition (4) is assumed) and the Hamilton Jacobi Isaacs equation:

(14) ∂tW (t0,Φ0, µ0, ν0) +H(µ0, ν0,Φ0, DΦW (t0,Φ0, µ0, ν0)) = 0.

In our case this equation will be considered with the terminal condition:

W (T,Φ0, µ0, ν0) =

∫
X×Y

g (Φ0(x, y))h(x, y) dµ0(x)dν0(y).

We also set:
Ĥ(µ0, ν0,Φ0, pΦ) := −H(µ0, ν0,Φ0,−pΦ)

= inf
v∈V

sup
u∈U

∫
X×Y

f(Φ0(x, y), u, v) · pΦ(x, y) dµ0(x)dν0(y)
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= sup
u∈U

inf
v∈V

∫
X×Y

f(Φ0(x, y), u, v) · pΦ(x, y) dµ0(x)dν0(y)

Note that Ĥ satisfy the following Lipschitz condition for all (µ0, ν0, pΦ) ∈ P(X)×P(Y )×
C(X × Y,Rd), (Φ0,Φ1) in C(X × Y,Rd)2 :

(15) |Ĥ(µ0, ν0,Φ0, pΦ)− Ĥ(µ0, ν0,Φ1, pΦ)| ≤ Lip(f) ‖pΦ‖L2
µ0×ν0
‖Φ0 − Φ1‖L2

µ0×ν0
.

5.1 Dual subsolution and Dual supersolution

Consider the functional w : [0, T ]×C(X×Y,Rd)×P(X)×P(Y ) 7→ R and its convex and
concave conjugate resp. on the µ and ν variable:

w∗ : [0, T ]× C(X × Y,Rd)× C(X)× P(Y ) 7→ R

w] : [0, T ]× C(X × Y,Rd)× P(X)× C(Y ) 7→ R.

Slightly abusing, we will use the following notations:

∂−w∗(t0,Φ0, ϕ0, ν0)

:=

{
µ0 ∈ P(X) : ∀ϕ ∈ C(X),

∫
X

ϕ− ϕ0 dµ0 ≤ w∗(t0,Φ0, ϕ, ν0)− w∗(t0,Φ0, ϕ0, ν0)

}
,

∂+w](t0,Φ0, µ0, ψ0)

:=

{
ν0 ∈ P(Y ) : ∀ψ ∈ C(Y ),

∫
Y

ψ − ψ0 dν0 ≥ w](t0,Φ0, µ0, ψ)− w](t0,Φ0, µ0, ψ0)

}
.

To define the δ-superdifferentialD+
δ w
∗(t0,Φ0, ϕ0, ν0), we will need the following lemma:

Lemma 11. Let w : (t,Φ, µ, ν) ∈ [0, T ]×C(X,X)×P(X)×P(Y )→ R be some functional.
Then the Fenchel conjugate (t,Φ, ϕ, ν) ∈ [0, T ]×C(X,X)×C(X)×P(Y ) 7→ w∗(t,Φ, ϕ, ν)
is Lipschitz-continuous in ϕ, uniformly in (t,Φ, ν). As a consequence, we have, for all
(t,Φ, ϕ, ν) ∈ [0, T ]× C(X,X)× C(X)× P(Y ): ∂−w∗(t,Φ, ϕ, ν) 6= ∅.

A symmetric resul holds for w]: ∂−w](t,Φ, µ, ψ) 6= ∅.

Proof of the lemma: Let ϕ0, ϕ1 ∈ C(X), we have:

w∗(t,Φ, ϕ0, ν) := sup
µ∈P(X)

{∫
X

ϕ0(x) dµ(x)− w(t,Φ, µ, ν)

}
= sup

µ∈P(X)

{∫
X

(ϕ0 − ϕ1)(x) dµ(x) +

∫
X

ϕ1(x) dµ(x)− w(t,Φ, µ, ν)

}
≤ ‖ϕ0 − ϕ1‖∞ + sup

µ∈P(X)

{∫
X

ϕ1(x) dµ(x)− w(t,Φ, µ, ν)

}
≤ ‖ϕ0 − ϕ1‖∞ + w∗(t,Φ, ϕ1, ν).
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QED

Hereafter, we give the appropriate definitions of viscosity subdifferential and superdif-
ferential:

Definition 1. • Take δ > 0 and (t0,Φ0, ϕ0, ν0) ∈ [0, T [×C(X×Y,Rd)×C(X)×P(Y ).
Assume moreover that

∂−w∗(t0,Φ0, ϕ0, ν0) = {µ0}.

We say that (pt, pΦ) ∈ R×C(X×Y,Rd) belongs to the δ-superdifferential D+
δ w
∗(t0,Φ0, ϕ0, ν0)

to w∗ iff
∀Φ ∈ C(X × Y,Rd), ∀t ∈ [0, T [,

w∗(t,Φ, ϕ0, ν0)− w∗(t0,Φ0, ϕ0, ν0)− pt(t− t0)

+ sup
µ∈∂−w∗(t,Φ,ϕ0,ν0)

{
−
∫
X×Y

(Φ− Φ0)(x, y) · pΦ(x, y)dµ(x)dν0(y)

}
−δ(‖Φ− Φ0‖∞ + |t− t0|) + o(‖Φ− Φ0‖∞ + |t− t0|) ≤ 0

where o(τ) = τε(τ) with ε(τ)→ 0 as τ → 0.

• Take δ > 0 and (t0,Φ0, µ0, ψ0) ∈ [0, T [×C(X × Y,Rd) × P(X) × C(Y ). Assume
moreover that

∂+w](t0,Φ0, µ0, ψ0) = {ν0}.

We say that (pt, pΦ) ∈ R×C(X×Y,Rd) belongs to the δ-subdifferential D−δ w(t0,Φ0, µ0, ψ0)
to w] iff

∀Φ ∈ C(X × Y,Rd), ∀t ∈ [0, T [,

w](t,Φ, µ0, ψ0)− w](t0,Φ0, µ0, ψ0)− pt(t− t0)

+ inf
ν∈∂+w](t,Φ,µ0,ψ0)

{
−
∫
X×Y

(Φ− Φ0)(x, y) · pΦ(x, y) dµ0(x)dν(y)

}
+δ(‖Φ− Φ0‖∞ + |t− t0|) + o(‖Φ− Φ0‖∞ + |t− t0|) ≥ 0

where o(τ) = τε(τ) with ε(τ)→ 0 as τ → 0.

Remark 2. We give some comments and explanation on the definition of the δ-superdifferential
above, same remarks can be made on the δ-subdifferential.

• The definition of the δ-superdifferential has to be understood in the following sense.
For any sequence (Φn)n in C(X,X) and (tn)n ∈ [0, T ] such that ‖Φn − Φ0‖∞ → 0
and tn → t0 as n→ +∞, and any µn ∈ ∂−w∗(tn,Φn, ϕ0, ν0) (which is not empty by
Lemma 11), it holds:

lim sup
n→+∞

w∗(tn,Φn, ϕ0, ν0)− w∗(t0,Φ0, ϕ0, ν0)− pt(t− t0)

‖Φn − Φ0‖∞ + |tn − t0|

−
∫
X×Y (Φn − Φ0)(x, y) · pΦ(x, y) dµn(x)dν0(y)

‖Φn − Φ0‖∞ + |tn − t0|
≤ δ.
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• The assumption ∂−w
∗(t0,Φ0, ϕ0, ν0) = {µ0} can be seen as a local strict convexity of

w(t0,Φ0, ·, ν0) at µ0. This type of hypothesis also appears in the finite dimensional
case (see [6]).

The previous definition is unusual as one would expect to have the scalar product
−
∫
X×Y (Φ− Φ0)(x, y) · pΦ(x, y) dµ0(x)dν0(y) instead of

sup
µ∈∂−w∗(t,Φ,ϕ0,ν0)

{
−
∫
X×Y

(Φ− Φ0)(x, y) · pΦ(x, y)dµ(x)dν0(y)

}
The following lemma shows that, at the limit, both coincide:

Lemma 12. Consider w : (t,Φ, µ, ν) ∈ [0, T ]× C(X,X)× P(X)× P(Y )→ R a contin-
uous application, Lipschitz in (t,Φ) uniformly in µ, ν. Take ξ ∈ C(X) and a sequence
(tn,Φn, µn) ∈ [0, T ]× C(X,X)× P(X) such that when n→ +∞:

tn → t0, ‖Φn − Φ0‖∞ → 0, µn ∈ ∂−w∗(tn,Φn, ξ, ν0).

Moreover assume that {µ0} = ∂−w∗(t0,Φ0, ξ, ν0). Then W2(µn, µ0)→ 0 when n→ +∞.

Proof: First note that, due to the Lipschitz assumption on w, it exists C > 0 such that
for any (s, t) ∈ [0, T ]2, Φ,Ψ ∈ C(X,X), we have:

w∗(t,Φ, ξ, ν0) := sup
µ∈P(X)

{∫
X

ξ(x)dµ(x)− w(t,Φ, µ, ν0)

}

≤ sup
µ∈P(X)

{∫
X

ξ(x)dµ(x)− w(s,Ψ, µ, ν0)

}
+ C(|t− s|+ ‖Φ−Ψ‖∞)

≤ w∗(s,Ψ, ξ, ν0) + C(|t− s|+ ‖Φ−Ψ‖∞).

So that: limk→+∞w
∗(tnk ,Φnk , ξ, ν0) = w∗(t0,Φ0, ξ, ν0). As (µn)n is a sequence of proba-

bility measures on a compact set X, we can extract (µnk)k converging to some µ ∈ P(X).
Then, using the continuity of w:∫

X

ξdµ = lim
k→+∞

∫
X

ξdµnk = lim
k→+∞

w∗(tnk ,Φnk , ξ, ν0) + w(tnk ,Φnk , µnk , ν0)

= w∗(t0,Φ0, ξ, ν0) + w(t0,Φ0, µ, ν0)

which means µnk
∗
⇀ µ = µ0 ∈ ∂−w

∗(t0,Φ0, ξ, ν0). As this is true for any converging
subsequence of (µn)n we get W2(µn, µ0)→ 0.

QED

Hereafter, we give the appropriate definitions of solutions:

Definition 2. • The functional w : [0, T ] × C(X × Y,Rd) × P(X) × P(Y ) 7→ R
is a viscosity dual subsolution to (3) iff it exists C > 0 such that for all
δ > 0 and all (t0,Φ0, µ0, ψ0) ∈ [0, T [×C(X × Y,Rd) × P(X) × C(Y ) and (pt, pΦ) ∈
D−δ w

](t0,Φ0, µ0, ψ0) with ∂+w](t0,Φ0, µ0, ψ0) = {ν0}, we have :

pt + Ĥ(µ0, ν0,Φ0, pΦ) ≤ Cδ.
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• The functional w : [0, T ] × C(X × Y,Rd) × P(X) × P(Y ) 7→ R is a viscosity
dual supersolution to (3) iff it exists C > 0 such that for all δ > 0 and all
(t0,Φ0, ϕ0, ν0) ∈ [0, T [×C(X × Y,Rd)× C(X)× P(Y ) and (pt, pΦ) ∈ D+

δ w
∗(t0,Φ0, ϕ0, ν0)

with ∂−w∗(t0,Φ0, ϕ0, ν0) = {µ0}, we have:

pt + Ĥ(µ0, ν0,Φ0, pΦ) ≥ −Cδ.

We state now a comparison principle for the Hamilton Jacobi Isaacs equation:

Theorem 2. For i = 1, 2, let wi : [0, T ] × C(X × Y,Rd) × P(X) × P(Y ) → R be a
continuous bounded maps when C(X × Y,Rd) is equipped with the infinity norm and both

P(X) and P(Y ) are equipped with the Kantorovich norm. The Hamiltonian Ĥ is supposed
to be Lipschitz in Φ that is for all (µ0, ν0, pΦ) ∈ P(X) × P(Y ) × C(X × Y,Rd), (Φ0,Φ1)
in C(X × Y,Rd)2 :

(16) |Ĥ(µ0, ν0,Φ0, pΦ)− Ĥ(µ0, ν0,Φ1, pΦ)| ≤ k‖pΦ‖L2
µ0×µ1

‖Φ0 − Φ1‖L2
µ0×µ1

.

Moreover, we assume that:

(H1) for any fixed (µ, ν) ∈ P(X)×P(Y ), wi(·, ·, ν, µ) is k-Lipschitz continuous with k > 0
i.e. for all (Φ,Ψ) in C(X × Y,Rd)2:

|wi(t,Φ, µ, ν)− wi(s,Ψ, µ, ν)| ≤ k
(
|s− t|+ ‖Φ−Ψ‖L2

µ×ν

)
.

(H2) the map wi is convex in the µ-variable, concave in the ν-variable. Moreover, for all
(t0,Φ0, µ0, ν0) ∈ [0, T ]×C(X×Y,Rd)×P(X)×P(Y ), it exists ξ0 ∈ ∂−wi(t0,Φ0, µ0, ν0)
and ζ0 ∈ ∂+wi(t0,Φ0, µ0, ν0) i.e. such that:

w∗i (t0,Φ0, ξ0, ν0) + wi(t0,Φ0, µ0, ν0) =

∫
X

ξ0(x) dµ0(x),

w]i(t0,Φ0, µ0, ζ0) + wi(t0,Φ0, µ0, ν0) =

∫
Y

ζ0(y) dν0(y).

(H3) w1 is a dual subsolution of (3) and w2 is a dual supersolution of (3);

(H4) the following equality holds: w1(T, ·, ·, ·) ≤ w2(T, ·, ·, ·).

Then for all (t,Φ, µ, ν) ∈ [0, T ]× C(X × Y,Rd)× P(X)× P(Y ):

w1(t,Φ, µ, ν) ≤ w2(t,Φ, µ, ν).

As we need some bounded distance on C(X × Y,Rd), we set:

d1(Φ,Ψ) := min{‖Φ−Ψ‖∞, 1} for any Φ,Ψ ∈ C(X × Y,Rd).

Note that d1 metrizes the uniform topology.
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Proof of the theorem: By contradiction, assume it exists some α > 0 and (t0,Φ0, µ0, ν0)
such that:

(17) (w2 − w1)(t0,Φ0, µ0, ν0) ≤ −α
2
.

Denote by C the constant appearing in the definition of the dual subsolution and super-
solution. We choose some η > 0 small enough such that

(18) Tη <
α

4
,

and take ε ∈]0, 1[ that satisfies:

(19) 2ε(k(k + 1)2 + C) < η, ε(k(k + 2) + 2c2) <
α

4

where

(20) c = max{ max
x0∈X,x1∈[0,1]N

|x0 − x1|, max
y0∈Y,y1∈[0,1]M

|y0 − y1|}.

We introduce the following functional defined for all (s, t) ∈ [0, T ]2, (Φ,Ψ) ∈ C(X×Y,Rd)2,
(µ, ν) ∈ P(X)× P(Y ):

θ(t, s,Φ,Ψ, µ, ν) := w2(s,Ψ, µ, ν)−w1(t,Φ, µ, ν)−F (µ)−G(ν)+
1

ε

(
‖Ψ− Φ‖2

L2
µ×ν

+ |t− s|2
)
−ηs

where F and G are defined by:

F (µ) = εW 2
2 (LN[0,1]N , µ), G(ν) = εW 2

2 (LM[0,1]M , ν)

where LN[0,1]N and LM[0,1]M denote the Lebesgue measures on RN and on RM restricted to

[0, 1]N and [0, 1]M . Note that both F and G are bounded by c2ε.
Set for any (Φ,Ψ) ∈ C(X × Y,Rd):

Θ(Φ,Ψ) := inf
(t,s)∈[0,T ]2,(µ,ν)∈P(X)×P(Y )

θ(t, s,Φ,Ψ, µ, ν),

note that the infimum is actually a minimum since [0, T ]2 × P(X) × P(Y ) is a compact
set and θ is continuous.
As Θ is lower-semicontinuous and (C(X × Y,Rd), d1) is a complete metric space, from
Ekeland’s variationnal principle (see [8]), it exists some (Φ̄, Ψ̄) ∈ C(X × Y,Rd)2 such that

• Θ(Φ̄, Ψ̄) ≤ Θ(Φ0,Φ0) where Φ0 is the function appearing in (17),

• ∀(Φ,Ψ) ∈ C(X × Y,Rd)2:

Θ(Φ̄, Ψ̄) ≤ Θ(Φ,Ψ) + ε
(
d1(Φ, Φ̄) + d1(Ψ, Ψ̄)

)
.

Then, taking (t̄, s̄, µ̄, ν̄) ∈ [0, T ]2 × P(X)× P(Y ) such that

Θ(Φ̄, Ψ̄) = θ(t̄, s̄, Φ̄, Ψ̄, µ̄, ν̄)

we get:
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(E1) θ(t̄, s̄, Φ̄, Ψ̄, µ̄, ν̄) ≤ θ(t0, t0,Φ0,Φ0, µ0, ν0),

(E2) ∀(t, s,Φ,Ψ, µ, ν) ∈ [0, T ]2 × C(X × Y,Rd)2 × P(X)× P(Y ):

θ(t̄, s̄, Φ̄, Ψ̄, µ̄, ν̄) ≤ θ(t, s,Φ,Ψ, µ, ν) + ε
(
d1(Φ, Φ̄) + d1(Ψ, Ψ̄)

)
.

Step 1 : We prove some estimates on |t̄− s̄| and ‖Φ̄− Ψ̄‖L2
µ̄×ν̄

.

• Applying (E2) with (t, s,Φ,Ψ, µ, ν) = (t̄, s̄, Ψ̄, Ψ̄, µ̄, ν̄), we get:

−w1(t̄, Φ̄, µ̄, ν̄) +
1

ε
‖Ψ̄− Φ̄‖2

L2
µ̄×ν̄
≤ −w1(t̄, Ψ̄, µ̄, ν̄) + εd1(Ψ̄, Φ̄).

Then, using the Lipschitz property of w1 and the definition of d1:

1

ε
‖Ψ̄− Φ̄‖2

L2
µ̄×ν̄
≤ w1(t̄, Φ̄, µ̄, ν̄)− w1(t̄, Ψ̄, µ̄, ν̄) + ε ≤ k‖Ψ̄− Φ̄‖L2

µ̄×ν̄
+ ε.

So that ρ := ‖Ψ̄− Φ̄‖L2
µ̄×ν̄

satisfies:

1

ε
ρ2 − kρ− ε ≤ 0

and ρ ≤ ε
2
(k +

√
k2 + 4) ≤ ε(k + 1). Finally, we get the estimation:

(21) ‖Ψ̄− Φ̄‖L2
µ̄×ν̄
≤ ε(k + 1).

• Now applying (E2) with (t, s,Φ,Ψ, µ, ν) = (s̄, s̄, Φ̄, Ψ̄, µ̄, ν̄), we get:

−w1(t̄, Φ̄, µ̄, ν̄) +
1

ε
|t̄− s̄|2 ≤ −w1(s̄, Φ̄, µ̄, ν̄).

The using the Lipschitz property of w1 given by (H1), we have:

1

ε
|t̄− s̄|2 ≤ w1(t̄, Φ̄, µ̄, ν̄)− w1(s̄, Φ̄, µ̄, ν̄) ≤ k|t− s|.

Finally, we get:

(22) | t̄− s̄ | ≤ kε.

Step 2 : Assume s̄, t̄ ∈ [0, T [ and get a contradiction.

• We build some ξ such that ∂−w∗2(s̄, Ψ̄, ξ, ν̄) = {µ̄}.
We apply again (E2) with (t, s,Φ,Ψ, µ, ν) = (t̄, s̄, Φ̄, Ψ̄, µ, ν̄), we get:

w2(s̄, Ψ̄, µ̄, ν̄)− w1(t̄, Φ̄, µ̄, ν̄)− F (µ̄) +
1

ε

∫
|Φ̄− Ψ̄|2d(µ̄× ν̄)

≤ w2(s̄, Ψ̄, µ, ν̄)− w1(t̄, Φ̄, µ, ν̄)− F (µ) +
1

ε

∫
|Φ̄− Ψ̄|2d(µ× ν̄)
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which rewrites as

(23)

[w1(t̄, Φ̄, µ, ν̄) + F (µ)− 1

ε

∫
|Φ̄− Ψ̄|2d(µ× ν̄)]

−[w1(t̄, Φ̄, µ̄, ν̄) + F (µ̄)− 1

ε

∫
|Φ̄− Ψ̄|2d(µ̄× ν̄)]

≤ w2(s̄, Ψ̄, µ, ν̄)− w2(s̄, Ψ̄, µ̄, ν̄).

We introduce the following map:

(24) F(µ) = [w1(t̄, Φ̄, µ, ν̄) + F (µ)− 1

ε

∫
|Φ̄− Ψ̄|2d(µ× ν̄)].

By (H2), we know ∂−w1(t̄, Φ̄, µ̄, ν̄) 6= ∅, moreover, by definition of F , we have also
∂−F (µ̄) 6= ∅ (see for instance [17]). We then can choose ξ ∈ ∂−F(µ̄). As F is strictly
convex (see again [17]), w1 is convex and µ 7→ −1

ε

∫
|Φ̄ − Ψ̄|2d(µ × ν̄) being linear,

F is strictly convex so we have:

(25) ∂−F∗(ξ) = {µ̄}.

By (23), we have ξ ∈ ∂−w2(s̄, Ψ̄, µ̄, ν̄) and in a symmetric way µ̄ ∈ ∂−(w∗2)(s̄, Ψ̄, ξ, ν̄).
We are going to prove that µ̄ is indeed the unique element of ∂−(w∗2)(s̄, Ψ̄, ξ, ν̄).
Indeed assume µ̂ ∈ ∂−(w∗2)(s̄, Ψ̄, ξ, ν̄) and µ̂ 6= µ̄, then, by (23) we have:∫

ξd(µ̂− µ̄) ≥ w2(s̄, Ψ̄, µ̂, ν̄)− w2(s̄, Ψ̄, µ̄, ν̄) ≥ F(µ̂)−F(µ̄).

But, as ξ ∈ ∂−F(µ̄) we also have∫
ξd(µ̂− µ̄) ≤ F(µ̂)−F(µ̄).

From these two inequalities we deduce:

F∗(ξ) =

∫
ξdµ̄−F(µ̄) =

∫
ξdµ̂−F(µ̂)

that is µ̂ ∈ ∂−F∗(ξ) which is in contradiction with (25). So we can conclude:

(26) ∂−w∗2(s̄, Ψ̄, ξ, ν̄) = {µ̄}, ξ ∈ ∂−F(µ̄).

• In the same way, we can build some ζ ∈ C(Y ) such that:

(27) ∂+w]1(s̄, Ψ̄, µ̄, ζ) = {ν̄}, ζ ∈ ∂+G(ν̄)

with G is the strictly concave functional defined by:

G(ν) := [w2(s̄, Ψ̄, µ̄, ν)−G(ν) +
1

ε

∫
|Φ̄− Ψ̄|2 d(µ̄× ν)].
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• We now show that 2
ε
(s̄−t̄, Ψ̄−Φ̄) ∈ D−ε w

]
1(t̄, Φ̄, µ̄, ν̄).We apply (E2) with (t, s,Φ,Ψ, µ, ν) =

(t, s̄,Φ, Ψ̄, µ̄, ν) and get:

θ(t̄, s̄, Φ̄, Ψ̄, µ̄, ν̄) ≤ θ(t, s̄,Φ, Ψ̄, µ̄, ν) + εd1(Ψ, Ψ̄).

So that:

w2(s̄, Ψ̄, µ̄, ν̄)− w1(t̄, Φ̄, µ̄, ν̄)−G(ν̄) +
1

ε

(∫
|Ψ̄− Φ̄|2d(µ̄× ν̄) + |t̄− s̄|2

)
≤ w2(s̄, Ψ̄, µ̄, ν)−w1(t,Φ, µ̄, ν)−G(ν)+

1

ε

(∫
|Ψ̄− Φ|2d(µ̄× ν) + |t− s̄|2

)
+εd1(Φ, Φ̄).

Note that: ∫
|Ψ̄− Φ|2d(µ̄× ν)−

∫
|Ψ̄− Φ̄|2d(µ̄× ν̄)

=

∫
|Ψ̄− Φ̄|2dµ̄ d(ν − ν̄) + 2

∫
(Φ̄− Ψ̄) · (Φ− Φ̄) d(µ̄× ν) +

∫
|Φ− Φ̄|2 d(µ̄× ν)

and
|t− s̄|2 − |t̄− s̄|2 = 2(t− t̄)(t̄− s̄) + |t− t̄|2.

So we get:
w1(t̄, Φ̄, µ̄, ν̄)− w1(t,Φ, µ̄, ν) + G(ν)− G(ν̄)

+
2

ε

∫
(Φ̄− Ψ̄) · (Φ− Φ̄) d(µ̄× ν) +

2

ε
(t− t̄)(t̄− s̄)

+εd1(Φ, Φ̄) +
1

ε

(∫
|Φ− Φ̄|2 d(µ̄× ν) + |t− t̄|2

)
≥ 0.

Then, as ζ ∈ ∂+G(ν̄):

w1(t̄, Φ̄, µ̄, ν̄)− w1(t,Φ, µ̄, ν) +

∫
ζd(ν − ν̄)

−2

ε

∫
(Ψ̄− Φ̄) · (Φ− Φ̄) d(µ̄× ν)− 2

ε
(t− t̄)(s̄− t̄)

+ε‖Φ− Φ̄‖∞ +
1

ε
(‖Φ− Φ̄‖∞ + |t− t̄|)2 ≥ 0,

as this inequality is true for any ν ∈ ∂+w]1(t,Φ, µ̄, ζ) and ζ ∈ ∂+w1(t̄, Φ̄, µ̄, ν̄):

w]1(t,Φ, µ̄, ζ)− w]1(t̄, Φ̄, µ̄, ζ)− 2

ε
(t− t̄)(s̄− t̄)

+ inf
ν∈∂+w]1(t,Φ,µ̄,ζ)

{
−2

ε

∫
(Ψ̄− Φ̄) · (Φ− Φ̄) dµ̄ dν

}
+ε(‖Φ− Φ̄‖∞ + |t− t̄|) + o(‖Φ− Φ̄‖∞ + |t− t̄|) ≥ 0.

By definition, as (27) holds, this is 2
ε
(s̄ − t̄, Ψ̄ − Φ̄) ∈ D−ε w

]
1(t̄, Φ̄, µ̄, ζ). Then as w1

is a viscosity dual subsolution to (3), we get:

(28)
2

ε
(s̄− t̄) + Ĥ(µ̄, ν̄, Φ̄,

2

ε
(Ψ̄− Φ̄)) ≤ Cε.

33



• In the same way, we can prove that (2
ε
(s̄− t̄)− η, 2

ε
(Ψ̄− Φ̄)) ∈ D+

ε w
∗
2(s̄, Ψ̄, ξ, ν̄). As

w2 is a dual supersolution to (3), we get:

(29)
2

ε
(s̄− t̄)− η + Ĥ(µ̄, ν̄, Ψ̄,

2

ε
(Ψ̄− Φ̄)) ≥ −Cε.

Then, (31) and (32) give:

−2Cε ≤ −η + Ĥ(µ̄, ν̄, Ψ̄,
2

ε
(Ψ̄− Φ̄))− Ĥ(µ̄, ν̄, Φ̄,

2

ε
(Ψ̄− Φ̄))

and by (16), this implies:

−2Cε− 2k

ε
‖Ψ̄− Φ̄‖2

L2
µ̄×ν̄
≤ −η

and by estimation (21) we get:

−2Cε− 2kε(k + 1)2 ≤ η.

This last inequality is in contradiction with (19).

Step 3 : Let us now prove that s̄, t̄ are different from T . Indeed, assume s̄ = T then
by (E1) and (17):

θ(t̄, T, Φ̄, Ψ̄, µ̄, ν̄) ≤ θ(t0, t0,Φ0,Φ0, µ0, ν0)

:= w2(t0,Φ0, µ0, ν0)− w1(t0,Φ0, µ0, ν0)− F (µ0)−G(ν0)− ηt0
≤ w2(t0,Φ0, µ0, ν0)− w1(t0,Φ0, µ0, ν0) ≤ −α

2
.

Which rewrites as:

w2(T, Ψ̄, µ̄, ν̄)− w1(t̄, Φ̄, µ̄, ν̄)− F (µ̄)−G(ν̄) +
1

ε

(
‖Φ̄− Ψ̄‖2

L2
µ̄×ν̄

+ |t̄− T |2
)
− ηT ≤ −α

2
,

then by (H1), as
(
‖Φ̄− Ψ̄‖L2

µ̄×ν̄
+ |t̄− T |2

)
≥ 0, we have:

w2(T, Ψ̄, µ̄, ν̄)− w1(T, Ψ̄, µ̄, ν̄)− k
(
‖Φ̄− Ψ̄‖L2

µ̄×ν̄
+ |t̄− T |

)
− F (µ̄)−G(ν̄)− ηT ≤ −α

2
.

Recall that, by (20) F and G are bounded by cε. By use of (H4), (21) and (22), we get:

−2εc2 − k(ε(k + 1) + kε)− ηT ≤ −α
2

which, by (19) and (18) rewrites as

α

2
≤ ε(k(k + 2) + 2c2) + ηT <

α

2

and we get a contradiction.

QED
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6 Characterization of the value

Theorem 3. Let X ⊂ Rn, Y ⊂ Rm be two compact sets. The value Vr := V+
r = V−r is

the unique bounded continuous functional from [0, T ] × C(X × Y,Rd) × C(X × Y,R+) ×
P(X)× P(Y ) to R satisfying the following properties:

(i) Vr is Lipschitz in (t,Φ), convex in µ, concave in ν, moreover for all (t,Φ, h, µ, ν) ∈
[0, T ]× C(X × Y,Rd)× C(X × Y,R+)× P(X)× P(Y ), we have:

∂+Vr(t,Φ, h, µ, ν) 6= ∅, ∂−Vr(t,Φ, h, µ, ν) 6= ∅.

(ii) Vr is a dual subsolution and a dual supersolution of the following Hamilton-Jacobi-
Isaac equation:

∂tW (t,Φ0, µ0, ν0) +H(µ0, ν0,Φ0, DΦW ) = 0.

with

H(µ, ν,Φ0, pΦ) := inf
u∈U

sup
v∈V

∫
X×Y

f(Φ0(x, y), u, v) · pΦ(x, y)dµ(x)dν(y)

= sup
v∈V

inf
u∈U

∫
X×Y

f(Φ0(x, y), u, v) · pΦ(x, y)dµ(x)dν(y),

(iii) for all (Φ0, h, µ0, ν0) ∈ C(X × Y,Rd)× C(X × Y,R+)× P(X)× P(Y ):

Vr(T,Φ0, h, µ0, ν0) =

∫
X×Y

g (Φ0(x, y))h(x, y) dµ0(x)dν0(y).

To prove V−r is a dual supersolution of (3), we need the following lemma:

Lemma 13. Let Φ ∈ C(X × Y,Rd) and pΦ ∈ C(X × Y,Rd). We consider the following
application:

(u, v, µ, ν) ∈ U×V×P(X)×P(Y ) 7→ θ(u, v, µ, ν) =

∫
X×Y

f(Φ(x, y), u, v)·pΦ(x, y) dµ(x)dν(y).

Then θ is continuous in the µ× ν-variable uniformly in (u, v, µ, ν), more precisely, for all
ε > 0 it exists C(f, pφ) and C(ε) such that for all (u, v, µ0, µ1, ν0, ν1) ∈ U × V ×P(X)2×
P(Y )2), it holds:

|θ(u, v, µ0, ν0)− θ(u, v, µ1, ν1)| ≤ C(f, pΦ)[C(ε)(W2(µ0, ν0) +W2(µ1, ν1)) + ε].

Proof: Let (x0, y0), (x1, y1) ∈ X × Y , then for any u, v ∈ U × V :

|f(Φ(x0, y0), u, v) · pΦ(x0, y0)− f(Φ(x1, y1), u, v) · pΦ(x1, y1)|

≤ |(f(Φ(x0, y0), u, v)−f(Φ(x1, y1), u, v))·pΦ(x0, y0)|+|f(Φ(x1, y1), u, v)·(pΦ(x0, y0)−pΦ(x1, y1))|

≤ Lip(f)× ‖pΦ‖∞|Φ(x0, y0)− Φ(x1, y1)|+ ‖f‖∞|pΦ(x0, y0)− pΦ(x1, y1)|.
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Choosing pε, Φε ∈ Lip(X × Y,Rd) such that

‖pΦ − pε‖ ≤
ε

2
, ‖Φ− Φε‖ ≤

ε

2

leads to:
|f(Φ(x0, y0), u, v) · pΦ(x0, y0)− f(Φ(x1, y1), u, v) · pΦ(x1, y1)|

≤ Lip(f)×‖pΦ‖∞(ε+Lip(Φε)|(x0, y0)− (x1, y1)|) + ‖f‖∞(ε+Lip(pε)|(x0, y0)− (x1, y1)|).
The sequel is straightforward

QED

Proof of the Theorem: The equality of the upper and lower value has already been
stated in Theorem 1.
Property (iii) is straightforward, the convexity/concavity is classic (Lemma 7), see also
Lemma 8.
Let us focus on property (ii), we show that Vr is a dual supersolution (the other part
being very similar). Let (t0,Φ0, µ0, ν0, ϕ) ∈]0, T [×C(X × Y,Rd) × P(X) × P(Y ) × C(X)
and (pt, pΦ) ∈ D+

δ (V−r )∗(t0,Φ0, ϕ, ν0), with ∂−(V−r )∗(t0,Φ0, ϕ, ν0) = {µ0}.
Take t ∈]t0, T [, for any v ∈ V , u ∈ U(t0), by Lemma 11, it exists some

µu,vt ∈ ∂−(V−r )∗(t,X
t0,Φ0(·),u,v
t , ϕ, ν0).

Then, we have:

(V−r )∗(t0,Φ0, ϕ, ν0)− (V−r )∗(t,X
t0,Φ0(·),u,v
t , ϕ, ν0) + pt(t− t0) +

∫
(X t0,Φ0,u,v

t − Φ0) · pΦ dµu,vt dν0

≥ −
(
‖X t0,Φ0(·),u,v

t − Φ0‖∞ + |t− t0|
)(

δ + ε
(
‖X t0,Φ0(·),u,v

t − Φ0‖∞ + |t− t0|
))

where ε(t)→ 0 when t→ 0.

As we have X
t0,Φ0(x,y),u,v
t = Φ0(x, y) +

∫ t
t0
f(X

t0,Φ0(x,y),u,v
s , u(s), v) ds, the previous expres-

sion rewrites as:

pt(t− t0) +

∫
X×Y

∫ t

t0

f(X t0,Φ0,u,v
s , u(s), v) · pΦ dsdµu,vt dν0

≥ −(V−r )∗(t0,Φ0, ϕ, ν0) + (V−r )∗(t,X
t0,Φ0(·),u,v
t , ϕ, ν0)

−
(
‖X t0,Φ0(·),u,v

t − Φ0‖∞ + |t− t0|
)(

δ + ε
(
‖X t0,Φ0(·),u,v

t − Φ0‖∞ + |t− t0|
))

Once again we have

(30) ‖X t0,Φ0(·),u,v
t − Φ0‖∞ ≤ C|t− t0|.

Hence

pt(t− t0) +

∫
X×Y

∫ t

t0

f(X t0,Φ0,u,v
s , u(s), v) · pΦ dsdµu,vt dν0

≥ −(V−r )∗(t0,Φ0, ϕ, ν0) + (V−r )∗(t,X
t0,Φ0(·),u,v
t , ϕ, ν0)− (C + 1)|t− t0| (δ + ε ((C + 1)|t− t0|)) .
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Taking the supremum in u and the infimum in v, because by Proposition 4, V−r satisfy a
dual subdynamic principle, we deduce that

pt(t− t0) + inf
v∈V

sup
u∈U(t0)

∫
X×Y

∫ t

t0

f(X t0,Φ0,u,v
s , α(v(s)), v(s)) · pΦ dsdµu,vt dν0

≥ −(C + 1)|t− t0| (δ + ε ((C + 1)|t− t0|)) .
Since f is bounded and Lipschitz and X×Y is compact, there exists a constant - denoted
again by C - such that:∫ t

t0

[∫
X×Y

f(X t0,Φ0,u,v
s , u(s), v) · pΦ dµu,vt dν0

]
ds

≤
[
sup
u∈U

∫
X×Y

f(Φ0, u, v) · pΦ dµu,vt dν0

]
ds+ C

∫ t

t0

|s− t0| ds

= (t− t0)

(
sup
u∈U

∫
X×Y

f(Φ0, u, v) · pΦ dµu,vt dν0 + C
|t− t0|

2

)
.

So we get:

pt(t− t0) + (t− t0) inf
v∈V

sup
u∈U

(∫
X

f(Φ0(x), u, v) · pΦ(x) dµu,vt (x) + C
|t− t0|

2

)
≥ −(C + 1)|t− t0| (δ + ε ((C + 1)|t− t0|)) .

And, dividing by (t− t0), we get:

(31)

C
|t− t0|

2
+pt+ inf

v∈V
sup
u∈U

∫
X×Y

f(Φ0, u, v) ·pΦ dµ
u,v
t dν0 ≥ −(C+1) (δ + ε ((C + 1)|t− t0|)) .

Let ε1, ε2 > 0, for all t > 0, it exists uε1t ∈ U , vε1t ∈ V such that:

inf
v∈V

sup
u∈U

∫
X×Y

f(Φ0, u, v) · pΦ dµu,vt dν0 − inf
v∈V

sup
u∈U

∫
X×Y

f(Φ0, u, v) · pΦ dµ0dν0

≤
∫
X×Y

f(Φ0, u
ε1
t , v

ε1
t ) · pΦ dµ

u
ε1
t ,v

ε2
t

t dν0 −
∫
X×Y

f(Φ0, u
ε1
t , v

ε1
t ) · pΦ dµ0dν0 + ε1

≤ C(f, pΦ)(C(ε2)W2(µ
u
ε1
t ,v

ε1
t

t , µ0) + ε1 + ε2),

the last inequality comes from the result of Lemma 13. Then (31) yields:

(32) C(f, pΦ)(C(ε2)W2(µ
u
ε1
t ,v

ε1
t

t , µ0) + ε1 + ε2) + C |t−t0|
2

+ pt + Ĥ(µ0, ν0,Φ0, pΦ)
≥ −(C + 1) (δ + ε ((C + 1)|t− t0|)) .

By Lemma 12, we have W2(µ
u
ε1
t ,v

ε1
t

t , µ0)→ 0 when t→ t0, indeed recall that by (30)

µ
u
ε1
t ,v

ε1
t

t ∈ ∂−(V−r )∗(t,X
t0,Φ0(·),uε1t ,v

ε1
t

t , ϕ, ν0) and ‖X t0,Φ0(·),ut,vt
t − Φ0‖∞ → 0.

Finally make t tend to t0 in (32) and get:

C(f, pΦ)(ε1 + ε2) + pt + Ĥ(µ0, ν0,Φ0, pΦ) ≥ −δ(C + 1).

As this is true for any ε1, ε2 > 0, we get the desired inequality.

QED
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7 Exemple and Erratum to the article [13]

In C. Jimenez and M. Quincampoix ([13]), we have considered the particular case where
Player II has no information on the initial position of the system and h is constantly equal
to one. The lack of information can be expressed by choosing ν = δy0 with y0 any point
of Y . Moreover, Φ belongs to C(X × Y,X) (X is compact subset of RN as previously)
and depends only on x, the information of Player I. In this case the values write as:

V+
r (t0,Φ, µ) := V+

r (t0,Φ, 1, µ, δy0) = inf
α∈Ar(t0)

sup
β∈B(t0)

∫
Ωα

∫
RN
g(X

t0,Φ(x),α(x,ω,·)β(·)
T ) dµ(x)dPα(ω),

V−r (t0,Φ, µ) := V−r (t0,Φ, 1, µ, δy0) = sup
β∈Br(t0)

inf
α∈A(t0)

∫
Ωβ

∫
RN
g(X

t0,Φ(x),α(x,·)β(ω,·)
T ) dµ(x)dPβ(ω).

Note that both functionals do not depend on the choice of y0. Then, applying Proposition
3, we can compute the convex conjugate of V−r on the µ variable, the formula obtained is
exactly the same as the one appearing in ([13]). The computation of the concave conjugate
of V+

r in the ν variable, is, in this case, very simple and leads to the following formula:

(V+
r )](t0,Φ, 1, µ, ϕ) = inf

y∈Y
ϕ(y)− V+

r (t0,Φ, 1, µ, δy0)

for any ϕ ∈ C(Y ). The subdynamic and superdynamic principles of Proposition 4 and 5
then coincide with both subdynamics principles of ([13]).

In ([13]), a Hamilton Jacobi equation and some definitions of viscosity subsolution and
dual supersolution are given. Then a comparison principle is stated (Theorem 1 p22). The
proof of this theorem is false. More precisely, there is a mistake in second part of Step
p24. Indeed, the functional θ is build with a L2-norm depending on µ:

θ(t, s,Φ,Ψ, µ) = w2(s,Ψ, µ)− w1(t,Φ, µ) +
1

ε

(
‖Φ−Ψ‖2

L2
µ

+ |t− s|2
)
− ηs.

This choice does not allow to get an element of the superdifferential of w∗2 as defined in
[13], two different L2-norms appearing in the computation.
The definition of the superdifferential should be changed:

Definition 3. Let δ > 0 and (t0,Φ0, ϕ) ∈]0, T [×C(X,X)×C(X). Assume moreover that:

∂−w∗(t0,Φ0, ϕ) = {µ0}.

We say that (pt, pΦ) ∈ R× C(X,Rd) belongs to the δ-superdifferential D+
δ w
∗(t0,Φ0, ϕ) to

w∗ at (t0,Φ0, ϕ) iff

lim sup
‖Φ− Φ0‖∞ → 0,

t→ t0

sup
µ∈∂−w∗(t,Φ,ϕ)

w∗(t,Φ, ϕ)− w∗(t0,Φ0, ϕ)− pt(t− t0)−
∫
X

(Φ− Φ0)(x) · pΦ(x) dµ(x)

‖Φ− Φ0‖∞ + |t− t0|
≤ δ.

Then V−r is a viscosity dual supersolution to (3). Moreover a comparison principle
similar to Theorem 2 can be stated and proved slightly modifying the proof above.
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