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Determining the anisotropic traction state in a membrane

by boundary measurements

G. Alessandrini ∗ E. Cabib †

1 Introduction

Consider an elastic thin membrane which occupies a planar region represented by a simply
connected bounded open set Ω ⊂ R

2. In the same plane a vector force field T is applied on its
boundary ∂Ω, so that the membrane is subject to a distributed pretraction state, expressed by a
positive and symmetric tensor σ = {σij}, i, j = 1, 2, which satisfies the plane equilibrium equations

div σ = 0 , in Ω , (1.1)

σν = T , on ∂Ω , (1.2)

where ν is the outer unit normal to ∂Ω. The transverse displacement u(x) of the membrane will be
governed by the equation

− div(σ∇u) = f , in Ω , (1.3)

u = ϕ , on ∂Ω , (1.4)

where f(x) represents the distributed transverse load applied to it, and ϕ represents the prescribed
transverse displacement at the boundary.

In this note we wish to investigate the inverse problem of determining the plane traction state
tensor σ from boundary measurements on displacements and on the corresponding forces. As an
initial attempt, since the external load f has no influence on the pretraction state σ, and in analogy
with many other well-known inverse boundary problems, see for instance [2, 8, 15], it seems natural
to treat the case when f = 0 in (1.3), and consider as available data an arbitrary transverse
displacement ϕ on the boundary and the corresponding transverse load on the boundary, namely
the reaction of the boundary constraints

Λσϕ = σ∇u · ν . (1.5)

Hence, fixing any ϕ ∈ H1/2(∂Ω), if we denote by u ∈ H1(Ω) the weak solution to the Dirichlet
problem

div(σ∇u) = 0 , in Ω , (1.6)

u = ϕ , on ∂Ω , (1.7)

we introduce the Dirichlet-to-Neumann (D-N) map as the bounded linear operator

Λσ : H
1

2 (∂Ω) → H− 1

2 (∂Ω) , (1.8)

defined, in weak terms, by the formula

< Λσϕ, v|∂Ω >=

∫

Ω

σ∇u · ∇v , for every v ∈ H1(Ω) , (1.9)

∗Dipartimento di Matematica e Informatica, Via Valerio, 12 - 34127 Trieste, Italy, email:

alessang@univ.trieste.it. Work supported in part by MIUR, PRIN n. 2004011204 and by GNAMPA,

INdAM Progetto Problemi al contorno inversi 2006 .
†Dipartimento di Ingegneria Civile, Via delle Scienze, 208 - 33100 Udine, Italy, email: cabib@uniud.it

1

http://arxiv.org/abs/math.AP/0702176v1


2

where v|∂Ω denotes the trace on ∂Ω of v ∈ H1(Ω).
Thus we examine here the problem of determining σ from the knowledge of Λσ. The peculiarity

of this problem is that, by its own nature, the tensor σ is anisotropic, and since Tartar’s example, as
reported in [11], it is well-known that a general anisotropic tensor σ cannot be uniquely determined
by the D-N map Λσ. In this case however, we shall see, in the next Section 2 that we can take
advantage of the null divergence condition (1.1) and obtain the uniqueness in such restricted class
of genuinely anisotropic tensors, see Theorem 2.1.

In Section 3 we also consider the question of stability, that is of the continuous dependence
upon the data. And although the present results are very preliminary, they show up interesting
phenomena, which are markedly different from those available for the well-known inverse conduc-
tivity problem. In fact, on one hand, we prove, Theorem 3.2, a qualitative form of stability, when a
very weak topology is assigned on the class of tensors, namely the topology of G-convegence. And,
on the other hand, we show that a Lipschitz stability bound holds for the mean value of σ.

2 Uniqueness

For any given K ≥ 1 we consider the class of tensors

MK = {σ ∈ L∞(Ω,M2×2) | K−1|ξ|2 ≤ σξ · ξ ≤ K|ξ|2 for every ξ ∈ R
2 } , (2.1)

here M2×2 denotes the set of 2 × 2 symmetric matrices. Let us also introduce

ΣK = {σ ∈MK | div σ = 0} , (2.2)

where the null divergence condition div σ = 0 is meant in the weak sense

∫

Ω

σ∇v = 0 for every v ∈ H1

0 (Ω) . (2.3)

Let us also introduce
M = ∪K≥1MK , Σ = ∪K≥1ΣK . (2.4)

Given a W 1,2 mapping Φ : Ω → D ⊂ R
2 we denote its Jacobian matrix as follows

DΦ(x) =

{

∂Φi(x)

∂xj

}

i, j = 1, 2 . (2.5)

We recall that Φ is said to be quasiconformal if, for some Q ≥ 1 it satisfies

‖DΦ‖2 ≤ Q detDΦ a.e. in Ω , (2.6)

and it is invertible, see for instance Ahlfors [1]. Here, for any matrix A, we denote ‖A‖2 = trAAT

and the suffix T denotes transpose.
For any tensor σ ∈MK and any quasiconformal mapping Φ, we introduce

TΦσ(y) =
DΦσDΦT

detDΦ
(Φ−1(y)) , for every y ∈ D . (2.7)

This new tensor defined in D, called the push-forward of σ by Φ, is again symmetric and satisfies the
ellipticity condition with some possibly new K ≥ 1. Moreover, one can verify that such operation
preserves the bilinear Dirichlet form associated to σ, that is

∫

Ω

σ∇u · ∇v =

∫

D

TΦσ∇(u ◦ Φ−1) · ∇(v ◦ Φ−1) for every u, v ∈ H1(Ω) . (2.8)

Theorem 2.1. Λσ uniquely determines σ among all tensors in Σ.

The proof will be a consequence of the following two Lemmas.



3

Lemma 2.2. Let σ ∈ Σ. Then the tensor

TΦσ(DΦ−1)T (2.9)

is divergence free in D.

Proof. Condition (2.3) can be rewritten as

∫

Ω

σ∇xj · ∇v = 0 for every v ∈ H1

0 (Ω) , j = 1, 2 . (2.10)

By (2.8) one computes

∫

D

TΦσ∇((Φ−1)j) · ∇(v ◦ Φ−1) = 0 for every v ∈ H1

0 (Ω) , j = 1, 2 , (2.11)

and the thesis follows. 2

Lemma 2.3. Let σ ∈ M and suppose that for a given mapping Φ we have div TΦσ = 0 in D.
Then

div(σDΦT ) = 0 . (2.12)

Proof. The proof follows immediately from Lemma 2.2, just by reversing the roles of Φ , Φ−1 and
of σ, TΦσ, respectively. 2

We are now in a position to prove our main result.

Proof of Theorem 2.1. By the results of Astala, Päivärinta and Lassas [4, Theorem 1], which have
extended to the L∞ setting those of Sylvester [18] and Nachman [14], we have that Λσ determines
uniquely the class

Eσ = {σ′ ∈M |σ′ = TΦσ, with Φ : Ω → Ω quasiconformal and such that Φ|∂Ω = I} . (2.13)

The class Eσ contains at most one divergence free element. In fact, if Φ is a quasiconformal
mappings which fixes the boundary, and such that div TΦσ = 0 then, by Lemma 2.3, we have

{

div(σDΦT ) = 0 in Ω ,

Φ = I on ∂Ω .
(2.14)

Note that this system, is formed by two uncoupled Dirichlet problems for the two components of the
mapping Φ. On the other hand we observe that, if σ is divergence free, then the identity mapping
I is itself a solution to (2.14) and by uniqueness for the Dirichlet problem, we obtain Φ = I on Ω.
2

Remark 2.4. It is worth mentioning, that the crucial fact used in this proof is that all linear
functions are solutions to the elliptic equation (1.3), this is a condition on σ which is in fact
equivalent to the null divergence condition (2.3). Indeed this property has been used already in
a study on optimization of tension structures in the different context of variational problems and
G-convergence, see [6], [7] and also Section 3 below.

A further application of this property of linear functions is the possibility to identify the traction
T applied on the boundary. For every ξ ∈ R

2 let ϕξ(x) = ξ · x be the Dirichlet data. Since the
corresponding solution is uξ(x) = ξ · x all over Ω, we have

Λσϕξ = σ∇uξ · ν = σξ · ν = σν · ξ = T · ξ , (2.15)

whose knowledge for every ξ ∈ R
n is equivalent to the knowledge of T .

If the same argument is applied to the particular case of a square network Q = [0, 1] × [0, 1],
that is, a portion of fabrics made by two families of parallel elastic strings which cross orthogonally,
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the identification of σ is immediate. The particular situation leads to define as admissible all the
tensors of the form

σ(x) =

(

σ1(x2) 0
0 σ2(x1)

)

.

with K−1 ≤ σ1, σ2 ≤ K. Consider the Dirichlet data ϕ(x) = x1 on ∂Q, so that also u(x) = x1 on
Q, and the corresponding ψ(x2) = Λσϕ on the edge x1 = 1 where ν = (1, 0). Then we have

σ1(x2) = σ(1, x2)∇u · ν = ψ(x2) ,

likewise, σ2(x1) can be identified as well.

3 Stability

This section is devoted to the continuity properties of the inverse of the map

ΣK ∋ σ → Λσ ∈ L (H1/2(Ω), H−1/2(Ω))

when we assign to ΣK the topology of G-convergence. Let us recall here the basic notions and
some important properties of the G-convergence. A wide literature is available on this subject, we
refer for example to the classical papers [10, 13, 16, 17] and to the book by Dal Maso [9] where
G-convegence is cast in the more general theory of Γ-convegence.

Definition 3.1. A sequence {σh} ⊂ MK is said to G-converge to σ ∈ MK , and we write

σh
G
→ σ, if for every f ∈ H−1(Ω) the corresponding sequence {uh} ⊂ H1

0 (Ω) of solutions to the
inhomogeneous problems

− div(σh∇uh) = f in Ω , uh = 0 on ∂Ω , (3.1)

converges weakly in H1
0 (Ω) to the solution u ∈ H1

0 (Ω) of the problem

− div(σ∇u) = f in Ω , u = 0 on ∂Ω . (3.2)

It is well known that G-convergence is induced by a compact metrizable topology on MK , [17,
Remark 4].

It is also worth recalling that the L1

loc
-strong convergence implies the G-convergence, [16, Propo-

sition 5], [17, Remark 11].

Theorem 3.2. Given K ≥ 1, the mapping ΣK ∋ σ → Λσ ∈ L (H1/2(Ω), H−1/2(Ω)) has a
continuous inverse when ΣK is endowed with the topology of G-convergence.

Proof. First we recall that [7], by the characterization of ΣK as the subclass of those σ ∈ MK for
which all linear functions are solutions to (1.6), implies that ΣK is a closed set in the G-topology
and hence it is compact. Let {σh} ⊂ ΣK and σ ∈ ΣK be such that ‖Λσh

−Λσ‖ → 0. By the above

mentioned compactness , there exists a subsequence {σrh
} of {σh} such that σrh

G
→ σ′ ∈ ΣK and

we prove σ′ = σ. For any ϕ ∈ H1/2(∂Ω), let uh, u′ the solutions to (1.6) when σ is replaced with
with σh, σ′, respectively. Then, by convergence of the energies [17], we have

< Λσr
h
ϕ,ϕ >=

∫

Ω

σrh
∇urh

· ∇urh
→

∫

Ω

σ′∇u′ · ∇u′ =< Λσ′ϕ,ϕ > , (3.3)

on the other hand, Λσh
→ Λσ, therefore < Λσ′ϕ,ϕ >=< Λσϕ,ϕ > for every ϕ ∈ H1/2(∂Ω). From

the uniqueness Theorem 2.1, we get σ′ = σ. The above argument applies to any subsequence of
{σh}. Thus we have obtained that for any subsequence of {σh} there is a sub-subsequence which
G-converges to σ, and hence, the full sequence {σh} must G-converge to σ. 2
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Remark 3.3. It is worthwhile to compare this result with the case of the inverse conductivity
problem, that is when the unknown σ ∈MK is a-priori known to be isotropic, that is σ = γI where
γ ∈ L∞(Ω) is a scalar function satisfying K−1 ≤ γ ≤ K and I denotes the identity matrix. Indeed
for the inverse conductivity problem, stability with respect to G-convergence fails, see [12] for related
arguments. In fact, as is well-known, Marino and Spagnolo [13] proved that there exist a constant
c > 1, depending only on the space dimension n (in our case n = 2), such that any tensor in MK/c

can be approximated in the sense of G-convegence by isotropic tensors of MK. Hence if we had
stability with respect to G-convergence for isotropic tensors, that would imply the uniqueness in the
class MK/c of anisotropic tensors, which, by the above mentioned example of Tartar cannot hold
true. Hence the stability result above, Theorem 3.2, is crucially based on the property of our set of
admissible matrices, ΣK , of being G-closed.

We recall that in [6], and in [7] in a more general context, it was proved that on ΣK the G-
convergence is equivalent to the L∞(Ω)-weak* convergence. Therefore, as a consequence of Theorem
3.2, we also obtain that for every ψ ∈ L1(Ω) and for every i, j = 1, 2 the functional F defined by

F (σ) =

∫

Ω

ψσi,j , σ ∈ ΣK , (3.4)

depends continuously on Λσ.
In the very special case when, in (3.4), we choose ψ ≡ 1

|Ω| a concrete stability estimate can be

obtained. In fact, in the next Proposition we show that the average of σ, a quantity which can be
interpreted as a global measure of the pretraction field, depends in a Lipschitz continuous fashion
on the Dirichlet-to-Neumann map.

Proposition 3.4. For any σ, σ′ ∈ Σ we have

∥

∥

∥

∥

1

|Ω|

∫

Ω

(σ − σ′)

∥

∥

∥

∥

≤ (1 + (diamΩ)2)‖Λσ − Λσ′‖ . (3.5)

Proof. Being linear functions solutions, we can use (1.9), with u = xi , v = xj , i, j = 1, 2, both for
σ and σ′. We obtain

∫

Ω

(σ − σ′)ij =< (Λσ − Λσ′)xi, xj > , (3.6)

and the thesis follows by straightforward computations. 2

Remark 3.5. Also in this case it may be interesting to make a comparison with the inverse
conductivity problem. In fact it is an open problem whether, for the average 1

|Ω|

∫

Ω
γ of an isotropic

tensor σ = γI, the Lipschitz stability in terms of the corresponding the Dirichlet-to-Neumann map
holds true, see [3].
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