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Abstract

In this paper we are concerned with labelled apparent contours, namely with apparent
contours of generic orthogonal projections of embedded surfaces in R3, endowed with a
suitable depth information. We show that there exists a finite set of elementary moves
(i.e. local topological changes) on labelled apparent contours such that the following
theorem holds: two generic embeddings of a closed surface M in R

3 are isotopic if and
only if their apparent contours can be connected using only smooth isotopies and a finite
sequence of moves.

1 Introduction

In knot theory it is well known that two link diagrams represent ambiently isotopic knots or
links, if and only if they can be related by a finite number of local Reidemeister moves or
their inverses. The diagram of a link is simply the orthogonal projection of the image of the
link onto some plane, with the addition of the knowledge of which strand goes over at each
crossing. Up to a small perturbation of the link, transversal crossings are the only possible
singularities of the diagram.
A similar question can be formulated in the setting of two-dimensional closed (i.e. compact
without boundary) manifolds M embedded in R

3; namely we are interested in understand-
ing whether two embedded surfaces can be deformed into each other by a smooth path of
embeddings.
In analogy with the link diagram, we can rely on the apparent contour AppCon(ϕ) of ϕ :=
π ◦ e : M → R

2, i.e. the image of the singular points of a generic orthogonal projection
π : R

3 → R
2 of an embedding e : M → R

3. The apparent contour carries a natural
orientation and leads to a graph similar to a link diagram, with possibly the addition of cusp
points (see e.g. [22]). If we also add a so-called Huffman labelling (see [13], [23], [6], [3]) which
is a nonnegative integer attached to each arc, giving information about the relative depth of
the corresponding fold with respect to the remaining preimages of the arc, an apparent
contour provides complete information on the 3D embedding (up to compactly supported
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deformations of R
3 in the projection direction) [3]. In Section 3 we recall the main properties

of the apparent contours needed in our paper.
It turns out that there are six basic moves (local change of topology) on the apparent contour
that correspond to a general deformation of the corresponding embedded surface; they can
be used in exactly the same way as the Reidemeister moves on link diagrams. We show
that this set of moves, namely K (from the russian word kasanie = tangency), L (lips), B
(beak-to-beak), C (cusp-fold), S (swallow tail) and T (triple point) is complete. This means
that two embedded surfaces in generic position with respect to the projection, that can be
deformed into each other, have apparent contours that can be connected using only smooth
isotopies and a finite sequence of such moves.
This list of moves (see Figure 2 for a graphical representation) is essentially the same found
in the literature for the related subject of maps from two-manifolds into R

2 (see e.g. [16]),
however the addition of the Huffman labelling entails a different classification of the list of
moves belonging to each of the six aforementioned types: see Section 4. We remark that
the problem of finding a complete set of Reidemeister moves relating two equivalent knotted
surfaces in R

4 has been solved. We refer in particular to the set of moves found by Roseman
[19], to the papers of Carter and Saito [4], [5] where generic embedded surfaces in R

4 are
considered, projected in R

3 (diagram) and projected further in R
2 to construct a chart, and

to the paper [11] of Goryunov. Similar classifications appear in various contexts, in particular
in Thom’s catastrophe theory [20] and in Cerf’s theory [8], in the paper of Wassermann [21],
in the papers of Mancini and Ruas [14], and of Rieger [18]. We refer to the books [6], [7], [1]
and [2] for further information.
Our proof, similar in spirit to the one described in [6] for the embedding of surfaces in R

4,
relies on the classification (reported very quickly in Section 2) of the singularities of stable
maps between 3-manifolds: see [9] and references therein. Roughly, the idea of the proof is the
following. Given an orthogonal projection π : R

3 → R
2 and a smooth closed surface M , we

consider an isotopy γ ∈ C∞(M × [0, 1]; R3) between an initial embedding (t = 0) and a final
embedding (t = 1) of M in R

3, in generic positions with respect to π. Since it is convenient
to deal with closed source manifolds, we extend in a smooth periodic way γ to a map (still
denoted by γ) defined on X := M × S

1. Let us interpret as time the last coordinate t ∈ S
1,

and denote by (x, t) the points of X . Let us now consider the level preserving map Fγ : X →
Y := R

2×S
1 obtained as the composition of the track (x, t) ∈M×S

1 → (γ(x, t), t) ∈ R
3×S

1

of γ with the projection map (y, z, t) ∈ R
3 × S

1 → (y, t) ∈ R
2 × S

1, i.e.,

Fγ(x, t) = (γ1(x, t), γ2(x, t), t).

Provided Fγ is stable, its singular locus gives a stratification of X into smooth submanifolds
and, in a natural way, also a stratification {Y0, Y1, Y2, Y3} of Y . The family of apparent
contours relating the two embeddings then satifies

⋃

t∈S1

(AppCon(ϕt) × {t}) = Y1 ∪ Y2 ∪ Y3, (1.1)

where ϕt(x) := (γ1(x, t), γ2(x, t)), Y1 being the stratum of fold surfaces, Y2 the stratum of
cusp curves and double curves, and Y3 the discrete stratum of cusp-fold points, swallow tails
and triple points. Let us now consider the projection p : Y → S

1, p(y, t) = t. It turns out
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that, provided p is a stratified Morse function, the union of Y3 and the critical points of the
restriction p|Y2

determine the complete list of moves on the apparent contours (see Corollary

6.1 and Figure 3). The main technical points (see Lemmata 5.6, 5.8 and Corollary 5.7) rely
in showing that the original map Fγ can be slightly deformed and made stable, and then
perturbed once more in order to make p stratified: this is the content of Theorem 5.5.

2 Preliminaries on stable maps and their singularities

We shall recover here briefly a few well known facts about singularity theory (see for instance
[9], [2], [1] and references therein).

2.1 Density of stable maps

Let X denote a closed smooth manifold of dimension m, and let Y be a smooth manifold
of dimension n without boundary. We denote by C∞(X ,Y ) the set of smooth maps from
X to Y endowed with the Whitney topology; C∞(X ,Y ) turns out to be a Baire space.

Definition 2.1. Two maps F,G ∈ C∞(X ,Y ) are smoothly left-right equivalent (briefly,
equivalent) if there exist two diffeomorphisms φ : X → X and ψ : Y → Y such that
G ◦ φ = ψ ◦ F .

Definition 2.2. A map F ∈ C∞(X ,Y ) is smoothly stable (briefly, stable) if there exists a
neighbourhood UF ⊂ C∞(X ,Y ) of F such that any map in UF is equivalent to F .

We set
Stab(X ,Y ) := {F ∈ C∞(X ,Y ) : F is stable},

which is an open subset of C∞(X ,Y ). We recall that if F is stable, then any map equivalent
to F is stable. We also recall that the set Emb(X ;Y ) of embeddings of X into Y is open
in C∞(X ,Y ), and Emb(X ;Y ) ⊆ Stab(X ,Y ).

2.2 Nonremovable singularities of maps for m = n = 3

Assume in this section that m = n = 3. These dimensions are nice, so that Stab(X ,Y ) is
dense in C∞(X ,Y ).

2.2.1 Stratification of X associated with a stable map

We recall (see [9, Chap. 7, Sec. 6]) that a map F ∈ Stab(X ,Y ) has a singular locus in the
source manifold X of the following types:

• folds. Denoted by S1(F ), it is a smooth submanifold of X of codimension 1, consisting
in the points where the differential dFξ of F at ξ ∈ X has corank 1;

• pleats. Denoted by S12
(F ) ⊂ S1(F ), it is a smooth submanifold of X of codimension

2 in X ;

• swallow-tails in X . Denoted by S13
(F ) ⊂ S12

(F ), it is a smooth submanifold of X

of codimension 3, hence it is a finite set of points.
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Define X0 as the set of the regular points of F and

X1 := S1(F ) \ S12
(F ), X2 := S12

(F ) \ S13
(F ), X3 := S13

(F ),

the index denoting the codimension in X . Then {X0,X1,X2,X3} forms a stratification of
X , in the sense that X is the union of the mutually disjoint smooth submanifolds Xj (the
strata), such that Xj =

⋃
j≤h≤3Xh for any j = 0, 1, 2, 3. We call such a stratification the

stratification of X associated with the stable map F .

2.2.2 Stratification of Y induced by a stable map

By [9, Chap. 7, Th. 6.3], if F ∈ Stab(X ,Y ) the images of the strata Xi must intersect
transversally. On F (X0) there are no conditions. The set F (X1) must selfintersect transver-
sally, the resulting intersection is a set of double curves of codimension 2 in Y (points
having two singular preimages, i.e. two preimages in S1(F )) and a set of triple points

(codimension 3, points with three singular preimages) in Y ; moreover F (X1) must intersect
F (X2) transversally, giving a finite set of cusp-fold points in Y . The remaining cases have
dimension that is too low to give rise to any intersection set. Therefore, we define the fol-
lowing subsets of the target manifold Y (the index denoting the codimension in Y and the
superscript denoting the number of singular preimages):

• Y0 is the set of all η ∈ Y such that no element in F−1(η) belongs to X1 ∪ X2 ∪ X3;
hence Y0 ∩ F (X ) ⊆ F (X0), namely Y0 is contained in the set of regular values of F ;

• Y1 is the set of all η ∈ Y such that F−1(η) has one element in X1 and the other elements
in X0. Hence Y1 is contained in F (X1); we call Y1 the set of fold surfaces. It carries a
natural orientation since it separates points where the number of preimages of F jumps
of two units;

• Y 1
2 is the set of all η ∈ Y such that F−1(η) has one element in X2, and the other

elements in X0. We call Y 1
2 the set of cusp curves;

• Y 2
2 is the set of all η ∈ Y such that F−1(η) has two elements in X1 and the other

elements in X0. We call Y 2
2 the set of double curves;

• Y 1
3 is is the set of all η ∈ Y such that F−1(η) has one element in X3, and the other

elements in X0. We call Y 1
3 the set of swallow tails;

• Y 2
3 is the set of all η ∈ Y such that F−1(η) has one element in X2, one element in X1

and the other elements in X0. We call Y 2
3 the set of cusp-fold points;

• Y 3
3 is the set of all η ∈ Y such that F−1(η) has three elements in X1 and the other

elements in X0. We call Y 3
3 the set of triple points.

Such a description allows to define a natural stratification of the target manifold Y in the
smooth submanifolds Y0, Y1, Y2, Y3 (the strata), where

Y2 := Y 1
2 ∪ Y 2

2 , Y3 := Y 1
3 ∪ Y 2

3 ∪ Y 3
3 .

4



This stratification will be denoted by {Yj}F , and will be called the stratification of Y induced
by the stable map F . For simplicity of notation, unless otherwise specified we drop the
dependence on F of each strata Yj .

We conclude this section by recalling the definition of a stratified Morse function defined on
the stratified space (Y , {Yj}F ) induced by the stable map F (see [17], [10]).

Definition 2.3. Let F ∈ Stab(X ,Y ) and let u : Y → R be a smooth function. We say that
u is a stratified Morse function on (Y , {Yj}F ) if the following three conditions hold:

- for any j ∈ {0, 1, 2} the restriction u|Yj
of u to stratum Yj is a Morse function, and the

set crit(u|Yj
) of its critical points is finite;

- the critical values
⋃

j∈{0,1,2}

u|Yj

(
crit(u|Yj

)
)
∪ u(Y3) are distinct, where points of Y3 are

considered as critical points;

- if j ∈ {1, 2, 3} and η ∈ Yj, then ker(duη) does not contain any limit of a sequence of
tangent spaces to Yh at ηk ∈ Yh, where 0 ≤ h < j and limk→+∞ ηk = η.

3 Apparent contours

In this section we briefly recall the notions of apparent contour and labelling of an apparent
contour. In the sequel M is a two-dimensional smooth closed orientable manifold, and ϕ :
M → R

2 is a smooth stable map.
The apparent contour AppCon(ϕ) ⊂ R

2 of ϕ (also called the discriminant set of ϕ) is the
image through ϕ of the singular locus of ϕ in M . We set

f(y) := #{ϕ−1(y)}, y = (y1, y2) ∈ R
2. (3.1)

The function f is constant on each connected component (called region) of R
2 \AppCon(ϕ),

and it jumps of two units along an arc of AppCon(ϕ). The apparent contour carries a natural
orientation, so that the highest value of f lies locally on the left, in this way f can also be
recovered as twice the winding number of the apparent contour.
It is well known (see for instance [24] and references therein) that the stability of ϕ implies
that AppCon(ϕ) has the following structure: any point of AppCon(ϕ) has a neighbourhood
in R

2 which is diffeomorphic to one of the pictures in Figure 1 (AppCon(ϕ) = Arcs(ϕ) ∪
Cusps(ϕ) ∪ Crossings(ϕ)), with matching orientations and appropriate choice of the values
of f and d (see below). Because of the depth information coming from the embedding we
distinguish cusps where the d value is decreasing from cusps where d is increasing; a similar
distinction is made for crossings. The gap shown in the pictures for arcs at a crossing is
just added for visual convenience to help distinguish the arc with larger values of d (where d
jumps by two, broken arc) from the arc with smaller value of d (unbroken).

3.1 Labelling of apparent contours

A Huffman labelling (labelling for short) of AppCon(ϕ) (see [13], [23], [6, p. 19], [7, pp.
19,20], [3]) is the pair (f, d), where the function d : Arcs(ϕ) → N has the following properties:
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Figure 1: (b), (c): the canonical cusp of AppCon(ϕ), i.e. the semicubic curve (y2

1
, y3

1
). (d), (e): the

canonical crossings of AppCon(ϕ). (a)-(e): compatibility conditions between f (defined in (3.1)) and
d (defined in Section 3.1).

- d is locally constant on Arcs(ϕ);

- 0 ≤ d(ȳ) ≤ lim infy→ȳ f(y), for all ȳ ∈ Arcs(ϕ);

- the compatibility conditions betweeen f and d depicted in Fig. 1 must be satisfied.

3.2 Factorization of ϕ through an embedding and a projection

Definition 3.1. Let π : R
3 → R

2 be an orthogonal projection and let Σ be a smooth closed
surface embedded in R

3. We say that Σ is in generic position with respect to π if π|Σ : Σ → R
2

is stable.

Remark 3.2. As shown in [3], the existence of a labelling (as defined in Section 3.1) on a
planar graph with crossings and cusps, is a necessary and sufficient condition for the existence
of a smooth closed two-manifold S and of a smooth map ϕ : S → R

2 factorizing as

ϕ = π ◦ e,

where e : S → R
3 is a smooth embedding, π : R

3 → R
2 is an orthogonal projection such

that Σ := e(S) is in generic position with respect to π, and such that the planar graph is
AppCon(ϕ). Moreover such an embedding is unique up to reparametrizations of S and a
compactly supported deformation of R

3 invariant with respect to π.
The meanings of f and d then become the following:

- f(y) is the number of points of Σ that project on y ∈ R
2;

- d(y) counts the number of layers of Σ in front of the point of the singular locus of ϕ
that projects on y.

The following simple observation is concerned with the stability of π ◦ e (see [15] for general
stability theorems for composite mappings), and shows that, in the statement of Theorem
5.5, there is no loss of generality in assuming the initial and final surfaces Σ0 and Σ1 to be
in generic position with respect to π.

Remark 3.3. Given e ∈ Emb(M,R3) and a neighbourhood Ue ⊂ C∞(M,R3) of e, there
exists ê ∈ Emb(M,R3) ∩ Ue such that Σ̂ := ê(M) is in generic position with respect to
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π. Indeed, by identifying M with Σ := e(M) we can suppose that e : Σ → R
3 is the

identity. Then κ := π ◦ e ∈ C∞(Σ,R2) is a map between two 2-manifolds, with Σ closed.
From the density of Stab(Σ,R2) in C∞(Σ,R2) it follows that, given any neighboourhood
Uκ ⊂ C∞(Σ,R2) of κ there exists a map ϕ ∈ Stab(Σ,R2) ∩ Uκ. Define Σ̂ := {(ϕ(y, z), z) :
(y, z) ∈ Σ}. Taking Uκ small enough and recalling that Emb(Σ,R3) is open in C∞(Σ,R3),
we obtain that there exists ê ∈ Emb(M,R3)∩Ue such that ê(M) = Σ̂. Moreover π

|bΣ
= ϕ, so

that the stability of ϕ implies that Σ̂ is in generic position with respect to π.

4 The moves on apparent contours

In this section we list the moves on the apparent contour; in view of Theorem 5.5, and as
explained in the introduction, this list is complete (see Corollary 6.1).

Definition 4.1. The moves on an apparent contour are given as K, L, B, C, S, T, by
identifying a box in R

2 diffeomorphic to the box on the left side of the picture and replacing
it with a box diffeomorphic to the box on the right, see Figure 2.

Remark 4.2. We require that the moves leave unchanged a (small) neighbourhood of the
boundary of the box. The same definition as Definition 4.1 can be given, but for the move
T, by switching the role of the two boxes: this is equivalent to reverse the orientation of
the t-axis, and to consider the inverse moves as temporal inverse moves. The corresponding
moves will be denoted by K−1, L−1, B−1, C−1, S−1. The (direct) moves K, L, B, C, S, T are
chosen in such a way that they simplify the local topology of the apparent contour (i.e., they
decrease the number of crossings/cusps). There is no distinction between direct and inverse
moves of type T as will be explained in the sequel.

We recall that all apparent contours that we consider are oriented, and different orientations
determine different moves: for simplicity of notation in Figure 2 often the orientations will
not be depicted; moreover, we do not indicate the values of f before and after the moves (the
values of f can be inferred from the orientation of the apparent contour).

- The four moves of type K. We divide the moves of type K into four different moves as
follows. Up to a rotation of 180 degrees, we can assume that the arc with the two extremal
points on the left is in front of the other arc. The four moves therefore are classified on the
basis of the four possible orientations of the two arcs. In addition they are parameterized by
two nonnegative integers d and k as explained in Section 4.1 below.

- The moves L and B. Up to a rotation of 180 degrees, we can assume that the highest value
of d is on the upper arc. Then there is one move L and one move B, as depicted in Figure 2.

- The eight moves of type C. We divide the moves of type C into two groups of four different
types. First we distinguish the case when the cusp is in front of the (vertical) arc. The first
of the figures for C is in turn divided into four cases, depending on whether the value of d
decreases of increases when parameterizing the cusp, and on the orientation of the vertical
arc. In the second figure the cusp is behind the vertical arc: similarly as before, we have four
cases. The set of values taken by d along the cusped arc are {d+k, d+k+1, d+k+2, d+k+3}.
Again the meaning of the two parameters d and k is explained in Section 4.1.
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S
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Figure 2: List of moves on the apparent contour

- The two moves of type S. We divide the moves of type S into two groups: in the first picture
the value of d jumps up by two at the crossing and is decreasing at (both) cusps (the arcs are
traversed according to their natural orientation), whereas in the second picture d is increasing
at the cusps.

- The sixteen moves of type T. The three arcs carry a natural ordering according to their
relative depth (increasing values of d); we can always rotate the picture so that the nearest
arc (lowest d), is the vertical one. We then have two different possibilities for the position
of the itermediate and of the furthest arcs. Each of the three arcs can be oriented in two
ways: the internal triangular region can lie on the left or on the right. In the end we have
sixteen different possibilities which however also account for the corresponding time reversed
moves, in the sense that the inverse of a T move is still a T move. This is in contrast to what
happens for all the other moves. If d1, k1 and k2 denote respectively the number of layers
in front of the first fold (nearest arc), the number of layers interposed between the first and
second fold and the number of layers interposed between the second and the third fold, then
d1 is the (constant) value of d on the first arc, d1 + k1 and d1 + k1 + 2 are the two values
taken by d on the second arc, and the values of d on the third arc are contained in the set
{d1 + k1 + k2 + i : i = 0, 2, 4}, the precise values depending on the orientation of the first and
second arcs.
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4.1 Number of layers involved

In order to make a complete classification of the moves, the number of layers, at different
depths, of the corresponding three dimensional embedded surface must be taken into account:
this introduces further degrees of freedom in the list of different moves, as follows. Moves L,
B and S have one nonnegative integer parameter d, counting the number of layers in front of
the fold. Moves of type K and C have two nonnegative integer parameters d and k, counting
the number of layers in front of the first fold, and the number of layers in between the two
folds. Moves of type T have three nonnegative integer parameters, given respectively by the
number of layers in front of the first fold surface, by the number of layers between the first
and the second fold surface, an by the number of layers between the second and the third
fold surface.

5 Stability of Fγ and stratifiability of p

In order to state the main result (Theorem 5.5) we need some preparation. In this section
M denotes a smooth two-dimensional closed manifold.
Recall [12] that an isotopy from M to R

3 is a map γ ∈ C∞(M × [0, 1],R3) such that for any
t ∈ [0, 1] the map γ(·, t) : M → R

3 is an embedding.

Definition 5.1. Let Σ0 and Σ1 be the images in R
3 of two smooth embeddings of M . We

say that Σ0 and Σ1 are isotopic if there exists an isotopy γ such that γ(M, 0) = Σ0 and
γ(M, 1) = Σ1.

In the sequel it is convenient to consider maps γ defined on a closed smooth manifold.
Therefore, we perform the following operations. We first reparametrize the map γ(x, ·) by
composing it with a strictly increasing C∞([0, 1], [0, 1]) function having vanishing derivatives
of all order at 0 and 1. We still denote by t the new variable, so that

∂kγ(x, t)

∂tk |t=0
=
∂kγ(x, t)

∂tk |t=1
= 0, k ∈ N, k ≥ 1. (5.1)

We next extend γ on the whole of M ×R by reflecting it about 0 and 1, resulting in a smooth
periodic function of period 2 in the variable t. If we identify R/[0, 2] with S

1 we obtain a
smooth function, still denoted by γ, defined on the closed smooth manifold M × S

1 with
values in R

3. In this way 0 and 1 are two distinct points in the oriented circle S
1.

From now on we set
X := M × S

1. (5.2)

Variables in X will be denoted by (x, t) with x ∈ M , x = (x1, x2) (locally) and t ∈ S
1.

Moreover, we shall denote by (y, z) a point of R
3 = R

2 × R where y = (y1, y2) ∈ R
2 and

z ∈ R.

5.1 The map Fγ

From now on we set
Y := R

2 × S
1. (5.3)
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Variables in Y will be denoted by (y, t) with y = (y1, y2) ∈ R
2 and t ∈ S

1.
We let π : R

3 = R
2 × R → R

2 denote the orthogonal projection defined by π(y, z) := y.

Definition 5.2. Let γ ∈ C∞(X ,R3). We define Fγ ∈ C∞(X ,Y ) as

Fγ(x, t) := (π(γ(x, t)), t), (x, t) ∈ X . (5.4)

The map γ ∈ C∞(X ,R3) → Fγ ∈ C∞(X ,Y ) is continuous.
It is immediately seen that the differential of Fγ has rank 2 at (x, t) ∈ X if and only if the
map

ϕt := π(γ(·, t)) : x ∈M → ϕt(x) := (γ1(x, t), γ2(x, t)) ∈ R
2 (5.5)

has differential with rank one at x ∈M . This in particular implies (1.1). Note that, defining
ft(y) as in (3.1) with ϕt in place of ϕ, we have ft(y) = #{Fγ

−1(y, t)} for any (y, t) ∈ Y .

5.2 Statement of the theorem and remarks

We denote by p : Y → S
1 the projection

p(y, t) := t, y ∈ R
2, t ∈ S

1, (5.6)

defined on the target manifold Y .
Let Σ0 and Σ1 be two isotopic embedded surfaces in R

3, and let γ be the isotopy. In order to
prove the completeness of the set of moves (Section 6) we need to have that Fγ ∈ Stab(X ,Y )
and, at the same time, that p : Y → S1 is a stratified Morse function on the stratification
(Y , {Yj}Fγ

) (the definition of stratified Morse function with values in S
1 is as in Definition

2.3 with obvious modifications). Corollary 5.7 below shows that it is possible to approximate
Fγ by stable maps of the special form Fγ for suitable γ. The stability of Fγ implies that
p|Y0

and p|Y1
have no critical points (Remark 5.3) but does not imply, in general, that p is a

stratified Morse function (Remark 5.4), namely it may happen that a curve in Y2 having an
endpoint in Y3 has there a tangent line contained in the plane {t = const}.

Remark 5.3. Let α ∈ C∞(X ,R3) be such that Fα ∈ Stab(X ,Y ), and let (Y , {Yj}Fα
) be

the stratification induced by Fα. Recalling definition (5.6) of p it is immediate to check that
p|Y0

does not have any critical point. Moreover:
- p|Y1

does not have any critical point, or equivalently the tangent plane to Y1 at a point is

never orthogonal to (0, 0, 1). Indeed, if the rank of the differential of Fα at (x, t) ∈ X is
two and Fα(x, t) ∈ Y1, necessarily the tangent space at Fα(x, t) contains a vector of the form
(c1, c2, 1) for some c1, c2 ∈ R. In particular the tangent plane to Y1 at Fα(x, t) is transversal
to {t = t}, and this holds uniformly with respect to the points in Y1.
- Let (y, t) ∈ Y2 ∪Y3 be a point which is limit of points (yk, tk) belonging to Y1. Assume that
the limit of the sequence of tangent planes to Y1 at (yk, tk) ∈ Y1 exists, and denote by T such
a limit. Then, by the previous item and by continuity, still (c1, c2, 1) is one of the two vectors
spanning T . Therefore T is transverse to {t = t} at (y, t).

Remark 5.4. Let as adopt the notation of Remark 5.3. Then the function p could not be a
stratified Morse function on (Y , {Yj}Feγ

), since the third condition of Definition 2.3 may fail,
when u = p and j = 3. For instance:
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- It is not difficult to find an example of a map α ∈ C∞(X ,R3) with Fα ∈ Stab(X ,Y ),
having a triple point at (y, t) = (0, 0) ∈ Y 3

3 with one of the double curves in Y 2
2 parallel to

{t = 0}. This is the case for instance of a map Fα ∈ Stab(X ,Y ) having, locally around
(0, 0), the fold surfaces of the form {y1 = ±t} and {y2 = 0}. These folds are obviously
mutually transverse, {y1 = t = 0} is locally one of the double curves and it is parallel to the
plane {t = 0}.
- Up to a change of variables in X and Y , a swallow tail singularity at (0, 0) has the local
description η1 = ξ1ξ2 + ξ21ξ3 + ξ41 , η2 = ξ2, η3 = ξ3. There are two cusp curves and one double
curve originating at the singularity with a common tangent vector (0, 0,−1); moreover all
the fold surfaces are locally tangent at the singularity to the plane {η1 = 0}. We can
provide two simple realizations in our context of the canonical representation above. The
choice x = (ξ1, ξ2), y = (η1, η2), t = ξ3 = η3 corresponds to the move S, whereas the choice
x = (ξ1, ξ3), y = (η1, η3), t = ξ2 = η2 (whence π(α(x, t)) = (tx1 + x2x

2
1 + x4

1, x2)) corresponds
to an evolution that is degenerate at t = 0: indeed the corresponding apparent contour has
a cusp with one of the two departing arcs that is (locally) completely contained in another
arc of the contour.

In Lemma 5.8 we perform a further perturbation of a stable map Fβ in order to get a new
map making the function p stratified. Eventually, stability of Fγ and stratifiability of p can
be achieved at the same time, and this is one of the by-products of the following theorem.

Theorem 5.5. Let π : R
3 = R

2 × R → R
2 be the orthogonal projection, and for j = 0, 1 let

ej ∈ Emb(M,R3) be such that Σ0 := e0(M) and Σ1 := e1(M) are in generic position with
respect to π. Assume that γ ∈ C∞(X ,R3) is an isotopy between Σ0 and Σ1. Then for any
neighbourhood Uej

⊂ C∞(M,R3) of ej , j = 0, 1, and for any neighbourhood Uγ ⊂ C∞(X ,R3)
of γ there exists a map γ̃ ∈ Uγ such that

(i) Σ̃0 := γ̃(M, 0) and Σ̃1 := γ̃(M, 1) are in generic position with respect to π, γ̃(·, 0) ∈ Ue0
,

γ̃(·, 1) ∈ Ue1
, and γ̃ is an isotopy betweeen Σ̃0 and Σ̃1;

(ii) Feγ ∈ Stab(X ,Y ), where Feγ(x, t) := (π ◦ γ̃(x, t), t) for any (x, t) ∈ X ;

(iii) p : Y → S
1 is a stratified Morse function on the stratification (Y , {Yj}Feγ

) of Y induced
by Feγ .

5.3 Proof of the theorem

We split the proof into various steps.

Lemma 5.6. Let α ∈ C∞(X ,R3). For any neighbourhood Nα of α in C∞(X ,R3) we can
find a neighbourhood VFα of Fα in C∞(X ,Y ) such that for any G ∈ VFα there exists α ∈ Nα

so that
Fα is equivalent to G.

Proof. LetNα be a neighbourhood of α. Let also VFα be a neighbourhood of Fα in C∞(X ,Y ).
We want to show that, reducing VFα , any G ∈ VFα is equivalent to a map having the third
component equal to t. Write G in components as G = (G1, G2, G3) : X → R

2 × S
1. Then,

provided VFα is sufficiently small, for any x ∈M the function t ∈ S
1 → Gx

3(t) := G3(x, t) ∈ S
1

11



is close to the identity in C∞(S1,S1), and therefore it is invertible. Let gx(·) : S
1 → S

1 be its
inverse; note that the map (x, t) ∈ X → gx(t) ∈ S

1 is smooth. Moreover gx(Gx
3(t)) = t and

Gx
3(gx(s)) = s. Setting α = (αx, αz) ∈ R

2 × R, we define α : X → R
3 (writing t in place of

s) as
α(x, t) := (G1(x, g

x(t)), G2(x, g
x(t)), αz(x, t)) , (x, t) ∈ X . (5.7)

Since α depends continuously on G, possibly restricting the neighbourhood VFα we can ensure
that α ∈ Nα. Then the map (x, t) ∈ X → Fα(x, t) := (π ◦ α(x, t), t) ∈ Y satisfies

Fα(x, t) = (G1(x, g
x(t)), G2(x, g

x(t)), t), (x, t) ∈ X .

The map φ : (x, t) ∈ X → φ(x, t) := (x, gx(t)) ∈ X is a diffeomorphism of X . Since
G ◦ φ = Fα = idY ◦ Fα, it follows that Fα is equivalent to G.

Corollary 5.7. Let α ∈ C∞(X ,R3). For any neighbourhood Nα of α in C∞(X ,R3) there
exists α ∈ Nα such that

Fα ∈ Stab(X ,Y ).

Proof. Let VFα and α be as in Lemma 5.6. Since Stab(X ,Y ) is dense in C∞(X ,Y ), there
exists H ∈ VFα ∩ Stab(X ,Y ). Therefore, choosing G = H in Lemma 5.6 we deduce that Fα

is equivalent to H ∈ Stab(X ,Y ). As a consequence, also Fα ∈ Stab(X ,Y ).

Lemma 5.8. Let β ∈ C∞(X ,R3) be such that Fβ ∈ Stab(X ,Y ). For any neighbourhood

Wβ of β in C∞(X ,R3) there exists a map β̂ ∈Wβ such that Fbβ
∈ Stab(X ,Y ) and

p : Y → S
1 is a stratified Morse function on (Y , {Yj}Fbβ

). (5.8)

Proof. Since Fβ ∈ Stab(X ,Y ), from Remark 5.3 it follows that p|Y0
and p|Y1

have no critical
points. The examples in Remark 5.4 show however that Fβ must be slightly perturbed in
order the function p to be a stratified Morse function. Let Wβ be a neighbourhood of β
in C∞(X ,Y ). Recalling Definition 2.3, in order to prove (5.8) it remains to show that
there exists β̂ ∈ Wβ such that the function p : (Y , {Yj}Fbβ

) → R satisfies the following three

properties:

(1) if (y, t) ∈ Y3 then all curves in Y2 having (y, t) as an end point cannot have a limit
tangent line at (y, t) contained in {t = t};

(2) all critical values of p|Y2
are distinct, and distinct from p(Y3), in turn consisting of

distinct points of S
1;

(3) the critical points of p|Y2
are nondegenerate.

Let us consider the stratification {Yj}Fβ
induced by Fβ , and let (y, t) ∈ Y3. Note that

if (y, t) ∈ Y 3
3 then only one of the three double curves concurring at (y, t) may have the

property of having a limit tangent line contained in {t = t}: indeed, if two of them share
this property, then there is a fold surface in Y1 having the tangent plane at (y, t) parallel
to {t = t}, which is in contradiction with Remark 5.3. Recall also that, if (y, t) ∈ Y 1

3 is a

12



swallow tail, then the two cusp curves and the double curve concurring at (y, t) have the
same tangent vector there.
Assume now that there is a curve c in Y2 ∪ {(y, t)} having (y, t) as an end point with a limit
tangent line at (y, t) contained in {t = t}. Let λ = (λ1, λ2, λ3) ∈ C∞([0, 1],Y ) be a regular
parameterization of c having (y, t) as an end point, so that λ(0) = (y, t) and λ′3(0) = 0. Pick
a smooth function a : Y → R satisfying

a(y, t) = 0,
d

dσ
a(λ(σ))|σ=0 6= 0. (5.9)

Let Ω ⊂ Y be a neighbourhood of (y, t) small enough so that all points in Y3 \{(y, t)} are not
contained in Ω; let also χ be a smooth nonnegative function on Y supported in Ω which is
constantly equal to one in a small neighbourhood of (y, t) and let ε ∈ R. Define the function
j : Y → R as

j(y, t) := t+ ǫχ(y, t) a(y, t), (y, t) ∈ Y .

Then, provided |ε| is sufficiently small, we have that for any y ∈ R
2 the function t ∈ S

1 →
j(y, t) ∈ S

1 is invertible. Therefore, the map ψ : Y → Y defined as ψ(y, t) := (y, j(y, t)) is a
diffeomorphism of Y . Define G : X → Y as

G := ψ ◦ Fβ . (5.10)

Then G is equivalent to Fβ , and therefore since by assumption Fβ ∈ Stab(X ,Y ), it follows
that also G ∈ Stab(X ,Y ). Moreover

G(x, t) = (π ◦ β(x, t), ix(t)) , (x, t) ∈ X ,

where
ix(t) := t+ ǫχ(Fβ(x, t)) a(Fβ(x, t)), (x, t) ∈ X .

Let VFβ
be the neighbourhood of Fβ given by Lemma 5.6 (take β = α and Wβ = Nα). If

|ǫ| << 1 we have G ∈ VFβ
. Let us now consider the stratification {Y G

0 , Y
G
1 , Y G

2 , Y
G
3 } induced

on Y by G: by equality (5.10) it follows that such a stratification is the image through
ψ of the stratification induced by Fβ . The first relation in (5.9) implies that (y, t) ∈ Y G

3 ;
moreover ψ(c) ⊂ Y G

2 ∪ {(y, t)} is regularly parameterized in a neighbourhood of (y, t) by
σ ∈ [0, 1] → ψ(λ(σ)) = (λ1(σ), λ2(σ), j(λ(σ))). Since

d

dσ
j(λ(σ))|σ=0 = λ′3(0) + ε

d

dσ
a(λ(σ))|σ=0 = ε

d

dσ
a(λ(σ))|σ=0, (5.11)

the second relation in (5.9) guarantees that the right hand side of (5.11) is nonzero. It follows
that assertion (1) is satisfied for the stratification induced by G.
Denote by φ : X → X the diffeomorphism of X defined by φ(x, t) := (x, (ix)−1(t)). From
the proof of Lemma 5.6, it follows that there exists β̂ ∈Wβ such that

G ◦ φ = Fbβ
. (5.12)

Since G ∈ Stab(X ,Y ) it follows that Fbβ
∈ Stab(X ,Y ). Moreover, (5.12) implies that the

stratification of X associated with G is the image through φ of the stratification associated
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with Fβ, and that the stratification of Y induced by G coincides with the the stratification
induced by Fbβ

. We conclude therefore that the stratification induced by Fbβ
satisfies condition

(1).
If we now replace the function a in the previous argument with the function a + b, where
b : Y → R is a smooth function satisfying b(y, t) 6= 0 and db(y,t)) = 0, we obtain that p(Y3)

consists of distinct points of S
1.

Considering the stratification of Y induced by Fbβ
, from condition (1) we deduce that p|Y2

has no critical points on the boundary points of Y2. Therefore, being all critical points of
p|Y2

interior to any arc of Y2 we can argue using one dimensional Morse theory, and obtain
assertion (3). Also assertion (2) follows in a standard way.

We are now in the position to conclude the proof of the theorem.

We apply Corollary 5.7 to α = γ and to Nα ⊆ Uγ , and we obtain a corresponding map
γ ∈ Nα satisfying Fγ ∈ Stab(X ,Y ). Possibly reducing Nα, we can assume that γ(·, 0) ∈ Ue0

and γ(·, 1) ∈ Ue1
. Since Fγ ∈ Stab(X ,Y ), we can now apply Lemma 5.8 to β = γ and to

Wβ a neighbourhood of γ satisfying Wβ ⊆ Nα: if we set

γ̃ := β̂,

it follows that γ̃ ∈ Wβ ⊆ Nα ⊆ Uγ , and γ̃ satisfies assertions (ii) and (iii). Moreover
γ̃(·, 0) ∈ Ue0

and γ̃(·, 1) ∈ Ue1
.

Since γ(·, t) ∈ Emb(M,R3) and Emb(M,R3) is open in C∞(M,R3) it follows (possibly re-
ducing Wβ) that γ̃(M, 0) and γ̃(M, 1) are isotopic. Since by assumption π|Σj

∈ Stab(Σj,R
2),

possibly reducing Wβ and recalling that Stab(Σj ,R
2) is open in C∞(Σj,R

2) it follows that
π|eγ(M,0) ∈ Stab(Σ0,R

2) and π|eγ(M,1) ∈ Stab(Σ1,R
2). This proves (i) and concludes the proof

of the theorem.

6 Completeness of moves

Let π, e0, e1, γ̃, (Y , {Yj}Feγ
) and p be as in Theorem 5.5. By compactness, the set crit(p|Y2

)
of critical points of p|Y2

is finite. Since also Y3 consists of isolated points, it follows that

p|Y2

(
crit(p|Y2

)
)
∪ p(Y3) is a finite set of points of S

1, that we call the set of critical times. If

t0 is not a critical time, the apparent contour (given by a normal slice, i.e. the transversal
intersection of Y1 ∪ Y2 ∪ Y3 with {t = t0}) varies smoothly, and its topology does not change.
Hence we can find a smooth path of diffeomorphisms of R

2 connecting the apparent contours
at times t1 and t2 whenever the interval [t1, t2] does not contain any critical time. Moreover,
in view of the classification results on singularities of stable mappings between 3-manifolds
(Section 2), we obtain the following corollary (compare with Figure 3).
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Corollary 6.1. A point (y, t) ∈ crit(p|Y2
) ∪ Y3 lies in one of the following classes, each

determining a move in the list of Section 4:

- (y, t) ∈ Y 2
2 is a local maximum (resp. a local minimum) of a double curve: moves of

type K (resp. of type K−1).

- (y, t) ∈ Y 1
2 is a local maximum (resp. local minimum) of a cusp curve that bounds folds

going downwards (resp. upwards): move L (resp. move L−1).

- (y, t) ∈ Y 1
2 is a local maximum (resp. local minimum) of a cusp curve that bounds folds

going upwards (resp. downwards): move B (resp. move B−1).

- (y, t) ∈ Y 1
3 : moves of type S.

- (y, t) ∈ Y 2
3 : moves of type C.

- (y, t) ∈ Y 3
3 : moves of type T.

Remark 6.2. A more precise classification of each move can be obtained by looking at the
orientation of the various folds involved and at the relative depth of the preimages in the
singular set X1 = S1(Feγ) with respect to the regular preimages. For example, a points in
Y 3

3 has three distinct preimages in X1 which can be ordered according to the z coordinate
(dropped by the projection π). Each of the three involved folds, which are transversal with
respect to “time” t, carries a natural orientation and hence contribute with a sign. The
relative depth of the three singular preimages with respect to the remaining regular preimages
provides for the three nonnegative integers parameters as explained in Section 4.1. Note that
a cusp curve forces the orientation of the two adjacent folds. In this way we have a precise
one-to-one correspondence between the list of moves of Section 4 and the list in Corollary
6.1.
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