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Abstract. Consider a nonlocal conservation law where the flux function depends on the convolution of the
solution with a given kernel. In the singular local limit obtained by letting the convolution kernel converge
to the Dirac delta one formally recovers a conservation law. However, recent counter-examples show that in
general the solutions of the nonlocal equations do not converge to a solution of the conservation law. In this
work we focus on nonlocal conservation laws modeling vehicular traffic: in this case, the convolution kernel
is anisotropic. We show that, under fairly general assumptions on the (anisotropic) convolution kernel, the
nonlocal-to-local limit can be rigorously justified provided the initial datum satisfies a one-sided Lipschitz
condition and is bounded away from 0. We also exhibit a counter-example showing that, if the initial datum
attains the value 0, then there are severe obstructions to a convergence proof.
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1. Introduction

We deal with the nonlocal conservation law (or nonlocal continuity equation)

(1) ∂tu+ ∂x

[
uV (u ∗ η)

]
= 0,

where u : R+ × R → R is the unknown, V : R → R is a given Lipschitz continuous function and in
the nonlocal term the symbol ∗ denotes the convolution with respect to the space variable only. The
convolution kernel η ∈ L1(R) is compactly supported, nonnegative, and has unit integral. Conserva-
tion laws involving nonlocal terms appear in models for sedimentation [3], pedestrian crowds [9, 10],
vehicular traffic [4, 13], and others.

In the present work we are concerned with the nonlocal-to-local limit. More precisely, consider a
parameter ε > 0, define ηε by setting ηε(x) := η(x/ε)/ε, and consider the family of nonlocal equations

(2) ∂tuε + ∂x

[
uεV (uε ∗ ηε)

]
= 0

which are obtained from (1) by replacing η with ηε. When ε→ 0+, the kernel ηε converges weakly−∗
in the sense of measures to the Dirac delta, and hence one formally recovers the (local) conservation
law

(3) ∂tu+ ∂x

[
uV (u)

]
= 0.

In [1] Amorim, R. Colombo and Teixeira posed the following question: can we rigorously justify this
formal limit? In other words, can we show that when ε → 0+ the solution uε of (2) converges to the
entropy admissible solution of (3)? In a previous work [8], counter-examples were exhibited showing
that the answer to this question is, in general, negative. See also [7] for the role of numerical viscosity.

However, the results in [8] do not rule out the possibility that, in some more specific case, convergence
indeed holds. In particular, several recent works (see for instance Blandin and Goatin [4] and Chiarello
and Goatin [6]) have been devoted to the analysis of the case when V is monotone nonincreasing, the
initial datum is nonnegative, and the convolution kernel is anisotropic, in particular it is supported
on the negative axis ] −∞, 0]. This case is very relevant in the modelling of vehicular traffic, where
the unknown u represents the density of cars and V their speed. Assuming that V is monotone
nonincreasing is standard in local and nonlocal traffic models: the higher the density of cars on a road,
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the lower their speed. The assumption that the convolution kernel is supported on the negative axis
expresses the fact that one expects the drivers to decide their speed based only on the downstream
traffic density, i.e. they only look forward, not backward.

Remarkably, when V is monotone nonincreasing and the convolution kernel is supported and non-
decreasing on the negative axis ]−∞, 0], stronger analytic results are available. More precisely:

• The nonlocal equation (1) satisfies a maximum principle, see [4, Theorem 1] (see also Proposi-
tion 8 below).
• The nonlocal equation (1) is monotonicity preserving, that is if the initial datum is bounded

and monotone, so is u(t, ·) for every t > 0, see [4, Proposition 2]. This allows to show that,
if the initial datum is monotone and bounded, the nonlocal-to-local limit can be rigorously
justified under suitable assumptions on the function V , see [15].
• Very recently, Bressan and Shen [5] proved that, if the convolution kernel is η(x) = 1]−∞,0]e

x

and the initial datum is bounded away from 0 and has bounded total variation, then the
solutions of uε of (2) converge to a weak solution of (3). Under the further assumption that
the function V is affine, they also show that that the limit is the unique entropy admissible
solution. The analysis in [5] relies on a change of variable which allows to rewrite (2) as a
2 × 2 system of conservation laws with relaxation, provided the convolution kernel is exactly
η(x) = 1]−∞,0]e

x.
• To conclude, we point out that the numerical experiments in [1, 4] suggest that in the case

of anisotropic kernels the behavior of the solutions uε in the local limit ε → 0+ is more
stable than in the case of general convolution kernels. In particular, they suggest that, if V is
monotone nonincreasing and the convolution kernel is supported on ]−∞, 0], the total variation
TotVaruε(t, ·) is a monotone nonincreasing function of time.

Our main positive results establishes the nonlocal-to-local limit from (2) to the entropy admissible
solution of (3) under fairly general assumptions on V and on the (anisotropic) convolution kernel,
provided that the initial datum has bounded total variation, is bounded away from 0 and satisfies a
one-sided Lipschitz condition. Note that our assumptions on η and V are much weaker than those
in [5], but on the other hand we impose stronger assumptions on the initial datum, more precisely we
have to assume that it satisfies a one-sided Lipschitz condition that is defined in the following.

To rigorously state our result we have to introduce some notation. First, we introduce the assump-
tions we impose on V and η.

Assumption 1. The function V is of class C2 and satisfies V ′′ ≤ 0. Also, there are δ, umax > 0 such
that

(4) V (umax) = 0 and V ′(v) ≤ −δ for every v ∈ [0, umax].

The concavity assumption on V is technical, while (4) is fairly common in traffic models: umax

represents the maximum possible car density, which occurs when cars are completely packed and
cannot move.

Assumption 2. The convolution kernel η satisfies

(5) η(x) ≥ 0 for every x ∈ R, η(x) = 0 for every x ∈]0,+∞],

ˆ
R
η(x)dx = 1.

Also, η is Lipschitz continuous on ]−∞, 0] and there is a constant D > 0 such that

(6) η(y) ≤ Dη′(y), for a.e. y ∈]−∞, 0[.

While the conditions in (5) are standard in this context, the one in (6) is purely technical and it
excludes for example the case of piecewise constant kernels. Note that by combining (5) and (6) we
conclude that η is nondecreasing on ] − ∞, 0[. From the modeling point of view, this last property
encodes the fact that the drivers pay more attention to the cars which are closer. In the following we
focus on the Cauchy problem, so we impose the initial condition

(7) u(0, ·) = u0.
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We assume that the initial datum belongs to the set (the same as in [5])

(8) D :=
{
u0 ∈ L∞(R) : TotVar(u0) <∞, u0(x) ∈ [0, umax] for a.e. x ∈ R

}
.

Note that the assumption u0(x) ∈ [0, umax] models the fact that the initial density u0 should be positive
and not exceed the maximum possible density. To conclude, for every f : R→ R, we define the quantity
Lip−f by setting

Lip−f := − inf
x<y

f(y)− f(x)

y − x
.

The quantity above bounds the negative part of the difference quotients. In particular Lip−f < ∞
implies that f has no jumps with negative sign, while positive jumps are allowed. Our main result of
this section is Theorem 3, which establishes a new uniform decay on the negative part of the space
derivative of uε, that is on Lip−uε(t).

Theorem 3. Let V and η satisfy Assumptions 1 and 2, respectively. Assume moreover that u0 ∈ D
satisfies inf u0 > 0 and Lip−u0 ≤ L for some L > 0 . Let uε(t) be the solution of the Cauchy problem
(2),(7). If

(9) ε <
inf u0
2DL

,

where D > 0 is the same as in Assumption 1, then

(10) Lip−uε(t, ·) ≤
L

2δLt+ 1
<

1

2δt
, for every t ≥ 0.

Some remarks are here in order: first, owing to Assumption 1 the flux function u 7→ uV (u) sat-
isfies (uV (u))′′ ≤ −2δ and hence the decay estimate (10) is consistent with the celebrated Olĕınik
estimate [17] for (local) conservation laws (3). Second, as a consequence of the decay estimate (10)
we rigorously establish the nonlocal-to-local limit, more precisely we show that the solutions of the
nonlocal Cauchy problems (2),(7) converge to the entropy admissible solution of (3),(7) strongly in
L1
loc(R+ × R) as ε→ 0. Here is the precise statement.

Corollary 4. Assume that V and η satisfy Assumptions 1 and 2, respectively, and that u0 ∈ D satisfies
Lip−u0 <∞ and infx∈R u0 > 0. Let uε be the solution of the Cauchy problem (2), (7). Then, for every
t ≥ 0, the family uε(t, ·) strongly converges in L1

loc(R) as ε→ 0+ to the entropy admissible solution of
the Cauchy problem (3), (7) u(t, ·).

Remark 5. The assumptions on u0 imposed in the statement of Corollary 4, namely Lip−u0 <∞ and
infx∈R u0 > 0, can be relaxed to 0 ≤ u0 ≤ umax if one allows for an ε-dependence of the initial datum
of the Cauchy problem (2),(7), that is if one replaces the condition uε(0, ·) = u0 with the condition
uε(0, ·) = u0,ε for a suitably chosen sequence u0,ε → u0. For instance, under the sole assumption

0 ≤ u0 ≤ umax, one can consider u0,ε = max{u0 ∗ ρε2/3 , c0ε1/3}, where ρν(x) := ρ(x/ν)/ν, ρ : R→ R+

is a fixed smooth convolution kernel and c0 > 0 is a suitable constant. In this case we can rigorously
establish the same nonlocal-to-local limit as in the statement of Corollary 4. The proof relies again on
Theorem 3, which also in this case provides a uniform bound on Lip−uε(t, ·) as ε→ 0.

We now discuss our main negative result concerning the nonlocal-to-local limit from (2) to (3). First,
we point out that the proof of Corollary 4 relies on the Helly-Kolmogorov Compactness Theorem. More
precisely, we show that the one-sided Lipschitz estimate (10) implies a uniform local bound on the total
variation, i.e. it implies that TotVar{uε(t, ·); ]− R,R[} is uniformly bounded with respect to t and ε,
for every R > 0, see (28). As a matter of fact, to the best of our knowledge all the known convergence
results on the nonlocal-to-local limit (that is, Corollary 4 and the results in [5, 15]) are based on the
Helly-Kolmogorov Compactness Theorem and require a uniform control on the total variation. The
only exception is the convergence result due to Zumbrun [18], which however only applies to time
intervals where the solution of the conservation law (3),(7) is very regular (of class C4). We point out
in passing that the maximum principle implies weak-∗ compactness of the family {uε}, but weak-∗
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convergence alone does not allow to pass to the limit in the equation (2). Note furthermore that the
semigroup of entropy admissible solutions of scalar conservation laws (3) is total variation decreasing,
and hence uniform bounds on the total variation of (2) are somehow natural in view of a convergence
result. Also, numerical experiments in [1, 4] suggest that, in the case of anisotropic convolution kernels,
the total variation of (2) is uniformly bounded.

Our main negative result states that, if V , η and u0 satisfy all the hypotheses of Corollary 4 but
the condition inf u0 > 0, then the total variation of (2),(7) can blow up in ε for every positive time.
Although strictly speaking this does not rule out convergence in the nonlocal-to-local limit, it provides
a severe obstruction to a convergence proof, as it prevents the application of the argument used in the
proof of basically all the known convergence results.

Theorem 6. Assume that V (u) = 1− u and that either η(x) := 1[−1,0](x) or η satisfies the following
assumption: η satisfies (5), it is Lipschitz continuous on ]−∞, 0] and η′(x) ≥ 0 for a.e. x ∈]−∞, 0].
Then there is u0 ∈ L∞(R) such that 0 ≤ u0(x) ≤ 1 for a.e. x ∈ R, TotVar u0 < +∞, Lip−u0 < +∞
and the solution of the Cauchy problem (2),(7) satisfies

(11) sup
ε>0

TotVar uε(τ, ·) = +∞, for every τ > 0.

Some remarks are here in order. First, V (u) = 1−u satisfies Assumption 1 and the requirements on
the convolution kernel η in Theorem 6 are weaker than Assumption 2. In particular, kernels satisfying
condition (6) satisfy the statement of Theorem 6, but in Theorem 6 a much more general class of
kernels can be considered.

Second, our counter-example is completely explicit and in §4 we provide the precise formula for an
initial datum u0 satisfying the statement of the theorem, see (41) and (56). Third, if the initial datum
u0 were monotone one could apply the results in [4, 15] and establish uniform bounds on the total
variation, and indeed the initial datum we exhibit in the proof of Theorem 6 is not monotone. Fourth,
it is natural to compare Corollary 4 and Theorem 6 and wonder what are the sharp conditions that
prevent the total variation blow up. Our guess is that the conditions Lip−u0 < +∞ is just a technical
hypothesis, and that the key condition to obtain a uniform bound on the total variation is inf u0 > 0.
More precisely, we propose the following conjecture.

Conjecture 7. Assume that V and η satisfy Assumptions 1 and 2, respectively, and that u0 ∈ D
satisfies infx∈R u0 > 0. Let uε be the solution of the Cauchy problem (2), (7). Then for every T,R > 0
there is a constant C > 0, possibly depending on T , R and u0, such that

(12) TotVar{uε(t, ·); ]−R,R[} ≤ C, for every t ∈ [0, T ] and every ε > 0.

We remark that as mentioned above Conjecture 7 has been proved in [5] under the assumption that
η(x) = 1]−∞,0]e

x. The exposition is organized as follows: in §2 we establish the well-posedness of the
Cauchy problem (2),(7) by slightly extending previous results in [4, 5, 6, 14]. In §3 we establish the
proof of Theorem 3 and Corollary 4 and in §4 we establish the proof of Theorem 6.

2. Well-posedness of the Cauchy problem for fixed ε > 0

In the case of anisotropic kernels, well-posedness of the Cauchy problem (1),(7) is discussed in
several works, see for instance [2, 4, 5, 6, 14]. The following proposition slightly extends previous
well-posedness results.

Proposition 8. Let Assumptions 1 and 2 hold true and fix ε > 0. Then there is a unique semigroup
Sε : [0,+∞[×D → D, continuous in L1

loc, such that each trajectory t 7→ Sεt u0 provides a distributional
solution of the Cauchy problem (2), (7).

Moreover, the semigroup Sε satisfies the following properties.

i) Assume u0(x) ∈ [a, b] for a.e. x ∈ R and for some 0 ≤ a < b ≤ umax. Then

(13) a ≤ Sεt u0(x) ≤ b for every t > 0 and for a.e. x ∈ R.
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ii) For every k ∈ N and every T,A ≥ 0 there is a constant C = C(k, T, η, ε, A) such that if
‖u0‖Ck ≤ A, then ‖Sεt u0‖Ck ≤ C for every t ∈ [0, T ].

iii) Assume that ‖u0‖C1 < ∞, then the map t 7→ Lip−(Sεt u0) is a locally Lipschitz continuous
function from [0,+∞[ to [0,+∞[.

Proof. The maximum principle (13) is established in [4]. The proof of property ii) is provided in [5,
§2]. We are left with establishing property iii): we fix ε > 0 and by combining property ii) with the
equation (2), we establish C0 bounds on ∂tuε. We conclude that uε is of class C1 with respect to both
space and time and it is a classical solution of (2). Next, we set vε := ∂xuε and we point out that

(14) Lip−(Sεt u0) = − inf
x∈R

∂xuε(t, x) = − inf
x∈R

vε(t, x).

We use the characteristic lines of (2) and we denote by Xε(·, t̄, x̄) the solution of the Cauchy problem

(15)


dXε

dt
= V (uε ∗ ηε)(t,Xε)

Xε(t = t̄) = x̄.

By differentiating (2) with respect to x we infer that the material derivative of vε is given by

(16) ∂tvε +V (uε ∗ ηε)∂xvε = −2vεV
′(uε ∗ ηε)vε ∗ ηε−uεV ′′(uε ∗ ηε)(vε ∗ ηε)2−uεV ′(uε ∗ ηε)(∂xvε ∗ ηε).

Since ‖uε(t)‖C1 is bounded on [0, T ], then the source at the right hand side of (16) is uniformly
bounded on [0, T ] × R. To conclude, we fix t1, t2 ∈ [0, T ] and just to fix the ideas we assume that
Lip−(Sεt1u0) ≥ Lip−(Sεt2u0). We fix an arbitrarily small constant h > 0 and a point x1 such that

(17) vε(t1, x1) ≤ inf
x∈R

vε(t1, x) + h.

By recalling (14) we get

|Lip−(Sεt1u0)− Lip−(Sεt2u0)| = Lip−(Sεt1u0)− Lip−(Sεt2u0)
(14)
= − inf

x∈R
vε(t1, x)− Lip−(Sεt2u0)

(17)

≤ −vε(t1, x1) + h− Lip−(Sεt2u0)
(14)

≤ −vε(t1, x1) + h+ vε(t1, Xε(t2, t1, x1)).

By using the fact the material derivative (16) is uniformly bounded and the arbitrariness of the constant
h we conclude that the map t 7→ Lip−(Sεt u0) is a Lipschitz continuous function on [0, T ]. �

Remark 9 (Preservation of the monotonicity). For sake of completeness, we sketch here a formal proof
of the preservation of the monotonicity of the initial datum rigorously shown in [4, Proposition 2]
and [15, §4]. Let us assume to fix the ideas that the initial datum uε(0, ·) is nondecreasing, that is
(using the same notation as in the proof of Proposition 8) vε(0, ·) ≥ 0. We evaluate (16) at a minimum
point x̄ of vε(t, ·) at which vε(t, x̄) = 0: we have ∂xvε(t, x̄) = 0. By using Assumption 2 and integrating
by parts we get

∂xvε ∗ ηε(t, x̄) =

ˆ ∞
0

ηε(y)∂xvε(t, x̄− y)dy = −ηε(0)∂xvε(t, x̄)︸ ︷︷ ︸
=0

+

ˆ ∞
0

η′ε(y)vε(t, x̄− y)dy ≥ 0.

We conclude that ∂tvε(t, x̄) ≥ 0 and this yields the preservation of the monotonicity of uε.

3. Proof of Theorem 3 and of Corollary 4

3.1. Proof of Theorem 3. First, we point out that it suffices to establish the statement of Theorem 3
under the additional assumption that u0 ∈ D satisfies ‖u0‖C2 <∞. Indeed, estimate (10) in the general
case u0 ∈ D follows by the L1

loc-continuity of the semigroup Sεt defined in the statement of Proposition 8
and by the lower semicontinuity of the map u 7→ Lip−u.

We fix u0 ∈ D such that ‖u0‖C2 < ∞. By arguing as in the proof of Proposition 8 we infer that
Sεt u0 is C2 with respect to space and time and it is a classical solution of (2),(7). Next, we fix T > 0
and we separately consider the following two cases:
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1. for every t ∈ [0, T ] there is x ∈ R such that ∂xuε(t, x) ≤ 0;
2. there is t ∈ [0, T ] such that ∂xuε(t, x) > 0 for every x ∈ R.

Case 1. Fix t ∈ [0, T ]: by using the fact that there is x ∈ R such that ∂xuε(t, x) ≤ 0 and recalling that
TotVar(uε(t)) and ‖uε(t)‖C1 are both finite owing to Proposition 8, we conclude that there is x̄ ∈ R
such that

(18) ∂xuε(t, x̄) = min
x∈R

∂xuε(t, x) = min
x∈R

vε(t, x) := −c(t) ≤ 0,

where we have used the notation vε = ∂xuε and to simplify the exposition we write c(t) instead of
cε(t). Next, we evaluate (16) at (t, x̄) and recall that V is concave and that uε ≥ 0. We obtain

(19) ∂tvε(t, x̄) ≥ V ′(uε ∗ ηε(t, x̄)) [2c(t)vε ∗ ηε(t, x̄)− uε(t, x̄)(∂xvε ∗ ηε(t, x̄))] .

Integrating by parts we get

∂xvε ∗ ηε(t, x̄) =

ˆ ∞
0

∂xvε(t, x̄+ y)ηε(−y)dy

= c(t)ηε(0) +

ˆ ∞
0

vε(t, x̄+ y)η′ε(−y)dy.

(20)

Plugging (20) into (19) we get

∂tvε(t, x̄) ≥ V ′(uε ∗ ηε(t, x̄))

(
−uε(t, x̄)c(t)ηε(0) +

ˆ ∞
0

vε(t, x̄+ y)
[
2c(t)ηε(−y)− uε(t, x̄)η′ε(−y)

]
dy

)
= −V ′(uε ∗ ηε(t, x̄))

(
uε(t, x̄)c(t)ηε(0) +

ˆ ∞
0

vε(t, x̄+ y)
[
uε(t, x̄)η′ε(−y)− 2c(t)ηε(−y)

]
dy

)
.

(21)

Next, we combine (6) with (9) and recall that c(0) ≤ L and that ηε(y) = η(y/ε)/ε. We obtain

(22) uε(t, x̄)η′ε(−y)− 2c(t)ηε(−y) ≥ 0 for a.e. y ∈ [0,+∞[ at t = 0.

We now introduce the value τ ∈ [0, T ] by setting
(23)
τ := sup

{
t ∈ [0, T ] : uε(s, x̄)η′ε(−y)− 2c(s)ηε(−y) ≥ 0 for a.e. y ∈ [0,+∞[ and every s ∈ [0, t]

}
.

Owing to (18), vε(t, x̄ + y) ≥ −c(t) for every y ≥ 0. By using (21) and (23) we get that for every
t ∈ [0, τ ]

∂tvε(t, x̄) ≥ −V ′(uε ∗ ηε(t, x̄))

(
uε(t, x̄)c(t)ηε(0)− c(t)

ˆ ∞
0

(
uε(t, x̄)η′ε(−y)− 2c(t)ηε(−y)

)
dy

)
´
η(y)dy=1

= −V ′(uε ∗ ηε(t, x̄))(2c(t)2)

(4)

≥ 2δc(t)2.

(24)

We now point out that c(t) = Lip−(Sεt u0) and hence, by property iii) in the statement of Theorem 8, it
is a.e. differentiable. By combining (18) and (24) we get ċ(t) ≤ −2δc(t)2 and by a classical comparison
argument for ODEs we arrive at

c(t) ≤ L

2δLt+ 1
on [0, τ ].

To conclude, we are left to show that τ = T . Assume by contradiction that τ < T , then by the
continuity of c we get that

c(τ) = uε(τ, x̄) inf
y∈supp ηε

η′ε(y)

2ηε(y)

(6),(13)

≥ inf u0D

2ε

(9)
> L ≥ c(0).
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On the other hand, the inequality ċ(t) ≤ −2δc(t)2 on [0, τ [ implies that c(τ) ≤ c(0), which contradicts
the previous chain of inequalities, shows that τ = T and hence establishes (10) in Case 1.
Case 2. We define t̄ ∈ [0, T ] by setting

(25) t̄ := inf{t ∈ [0, T ] : ∂xuε(t, x) > 0 for every x ∈ R}.
Assume t̄ > 0: on the interval [0, t̄[ we can apply the same argument as in Case 1 and, by using the
continuity of the function t 7→ Lip−uε(t) (see property iii) in the statement of Theorem 8), establish (10)
on [0, t̄]. Next, we use the fact that (1) preserves the monotonicity of the initial datum, see [4, 15]
and Remark 9. This implies that, for every t ∈]t̄, T ], uε(t, ·) is a monotone increasing function, that is
Lip−uε(t) ≤ 0. If t̄ = 0, then we can directly apply the preservation of monotonicity argument. This
concludes the proof of Theorem 3. �

Remark 10. In the proof of Proposition 3 we have used an approximation argument on the initial
datum, because the computations require that uε(t) ∈ C2(R), that is u0 ∈ C2(R). Another possibility
is to apply an approximation argument on the equation. More precisely, one could consider the viscous
equation

(26) ∂tu
ν
ε + ∂x(uνεV (uνε ∗ ηε)) = ν∂xxu

ν
ε , ν > 0,

which has a regularizing effect. The same proof as in Proposition 3 establishes the main estimate (24)
for uνε . Next, one could argue as in the proof of Corollary 4 and show that uνε strongly convergence
in L1

loc to uε as ν → 0+. By the L1-lower semicontinuity of the map uε 7→ Lip−(uε) this eventually
yields (24).

Remark 11. Note that the one-sided Lipschitz estimate (10) does not depend on L, that is on Lip−u0.
However, we have only established (10) for ε satisfying (9), and hence the range of ε > 0 such that
(10) holds true does depends on Lip−u0. This is the reason why Theorem 3 does not apply to general
BV initial data.

3.2. Proof of Corollary 4. We proceed according to the following steps.
Step 1: uniform BV bounds. Theorem 3 implies that for every ε > 0 sufficiently small and for every
t > 0 we have

(27) Lip−uε(t) ≤
L

2δtL+ 1
≤ L.

We now want to establish uniform bounds in BVloc, that is we want to show that, for any R > 0, the
quantity TotVar{uε(t); ]−R,R[} is uniformly bounded with respect to ε and t. We recall that

(28) TotVar{uε(t); [−R,R]} = sup
−R≤x1≤···≤xN≤R

N−1∑
i=1

|uε(t, xi+1)− uε(t, xi)|.

We consider separately the positive and the negative parts of the total variation of uε(t), defined
respectively by

TotVar+{uε(t); [−R,R]} = sup
−R≤x1≤···≤xN≤R

N−1∑
i=1

(uε(t, xi+1)− uε(t, xi))+,

TotVar−{uε(t); [−R,R]} = sup
−R≤x1≤···≤xN≤R

N−1∑
i=1

(uε(t, xi+1)− uε(t, xi))−.

(29)

From (27) it follows that

(30) TotVar−{uε(t); [−R,R]} ≤ 2LR,

therefore, since uε takes values in [0, umax],

TotVar+{uε(t); [−R,R]} = TotVar−{uε(t); [−R,R]}+ uε(t, R)− uε(t,−R)

≤ 2LR+ umax.
(31)
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It follows from (30) and (31) that

TotVar{uε(t); [−R,R]} = TotVar+{uε(t); [−R,R]}+ TotVar−{uε(t); [−R,R]}
≤ 4LR+ umax

(32)

and this concludes Step 1.
Step 2: ε→ 0+ limit. First, we point out that, by the properties of convolution, from (32) we deduce
that uε ∗ ηε satisfies the same estimate. By using equation (2) we conclude that uε ∈ Lip(R+, L

1
loc(R))

and that the Lipschitz constant is uniform in ε, provided ε > 0 is sufficiently small. We apply the
Helly-Kolmogorov Compactness Theorem and conclude that for every sequence εn → 0 there exists a
subsequence εnk

such that uεnk
converges to some function ũ in L1

loc(R+ × R). Note that ũ is a weak

solution of the Cauchy problem (3),(7). To conclude the proof we are left to show that ũ is actually the
entropy admissible solution of (3),(7). First, we point out that the flux function u 7→ uV (u) satisfies
(uV )′′ ≤ −2δ. Next, we use (10) and conclude that ũ satisfies the Olĕınik estimate

(33) Lip−ũ(t) ≤ 1

2δt

and, owing to Chapter 8.5 in [12], this implies that ũ is the entropy admissible solution. �

4. Proof of Theorem 6

The proof of Theorem 6 is based on the explicit construction of an initial datum u0 satisfying the
statement. To highlight the basic ideas of the construction and avoid some technicalities, we first
provide in §4.1 the proof of Proposition 12 below. Proposition 12 is basically a weaker version of The-
orem 6 as it establishes the total variation blow-up (11) in the case where η(x) = 1[−1,0](x). Also, the
initial datum u0 constructed in the proof of Proposition 12 satisfies 0 ≤ u0 ≤ 1 and TotVaru0 < +∞,
but does not satisfy the one-sided Lipschitz condition Lip−u0 < +∞. Next, in §4.2 we complete the
proof of Theorem 6 by extending the construction to more general kernels and to initial data satisfying
the one-sided Lipschitz condition.

Proposition 12. Assume that V (u) = 1−u and η(x) = 1[−1,0](x), then there is u0 ∈ L1(R) such that
0 ≤ u0 ≤ 1, TotVaru0 < +∞ and the solution of the Cauchy problem (2),(7) satisfies (11).

4.1. Proof of Proposition 12. Note that, under the assumptions of Proposition 12, equation (1)
boils down to

(34) ∂tuε + ∂x

[
uε

(
1− 1

ε

ˆ x+ε

x
uε(t, z) dz

)]
= 0.

The proof of Proposition 12 is organized as follows: in §4.1.1 we use the same approach as in [11, 14, 16]
and we discuss the characteristic lines of (34), in §4.1.2 we describe the basic idea underpinning the
construction of u0, in §4.1.3 we provide the actual construction of u0, in §4.1.4 we establish some
preliminary results and in §4.1.5 we eventually conclude the proof.

4.1.1. Characteristic lines. We refer to the analysis in Crippa and Lécureux-Mercier [11] and Keimer
and Pflug [14] and we recall that the solution of (34) given by Proposition 8 can be obtained via a
fixed point argument by considering the continuity equation

(35) ∂tuε + ∂x[uε(1− wε)] = 0

requiring that the field wε be given by

(36) wε(t, x) =
1

ε

ˆ x+ε

x
uε(t, z) dz =⇒ −∂x

[
1− wε(t, x)

]
=
uε(t, x+ ε)− uε(t, x)

ε
.
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−h −h/2

1/2

1
ū

x

Figure 1. The initial datum ū triggering the total variation increase.

The solution of (35) can be expressed by relying on the method of characteristics. In the following we
term Xε(·, y) the characteristic line starting at the point y, i.e. the solution of the Cauchy problem

(37)


d

dt
Xε(t, y) = 1− wε(t,Xε(t, y))

Xε(0, y) = y.

By (36) we get that, if the initial datum is bounded (and hence the solution is bounded at all times,
by the analysis in [11, 14]), then for any fixed ε > 0 the vector field 1 − wε is locally Lipschitz
continuous with respect to the variable x and continuous with respect to the variable t. This implies
that the Cauchy problem (37) is well posed and that the characteristic lines are well defined. Also, by
combining (35) with (36) we get that the material derivative satisfies

(38)
d

dt
uε(t,Xε) = −uε(t,Xε)∂x

[
1− wε(t,Xε)

]
= uε(t,Xε)

uε(t,Xε + ε)− uε(t,Xε)

ε
.

We point out in passing that formula (38) formally shows that, at a maximum point of uε(t, ·), the
material derivative is negative, which yields (13).

4.1.2. The mechanism for the increase of the total variation. Before entering into the technical details
of the construction of the initial datum u0 that triggers the blow-up of the total variation, we make
some heuristic considerations to describe the basic ideas underpinning the construction of u0. In
particular, we describe the very basic mechanism that leads to the total variation increase.

Fix h > 0 and consider the function (sketched in Figure 1)

(39) ū(x) =

 1/2 x ∈ [−h,−h/2]
1 x ≥ 0
0 otherwise.

Consider now the solution of the Cauchy problem obtained by coupling (34) with the initial condi-
tion uε(0, x) = ū(x) in (39). We observe that:

(a) uε(t, x) ≡ 1 if x ≥ 0 and t ≥ 0. Loosely speaking, this can can be seen by combining two
facts: (i) the nonlocal term evaluated at the point (t, x) is only affected by the values of uε(t, z)
at z ≥ x and (ii) the characteristic line starting at x = 0 has zero speed and hence information
cannot cross the vertical axis. This implies that the values of the solution uε on R+ × R+ are
only affected by the values of the initial datum ū on R+. Since ū ≡ 1 on R+, then uε ≡ 1
on R+ × R+.

(b) Assume that ε > h and consider the characteristic lines starting at y ∈ [−h,−h/2]. Since
ū(y + ε) = 1, owing to (38), the material derivative at t = 0 satisfies

d

dt
uε(t,Xε(t, y))

∣∣∣∣
t=0

= uε(0, y)
1− uε(0, y)

ε
=

1

4ε
> 0,

which means that, at least for a small time, uε increases along the characteristic line Xε(t, y).
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x

u0

Figure 2. The initial datum u0 triggering the total variation blow-up.

(c) By using again (38), we see that, if ū(y) = 0, then uε is identically 0 along the characteristic
line Xε(·, y).

As a consequence we have that, for ε > h, the solution uε is identically equal to 1 on R+×R+, increases
(locally in time) along the characteristic lines Xε(·, y) if y ∈ [−h,−h/2], and vanishes identically
elsewhere. We can infer that

TotVaruε(τ, ·) > TotVar ū = 2, for every τ > 0 sufficiently small.

4.1.3. Construction of the initial datum u0. There are two main issues we have to address in order
to construct an initial datum as in the statement of Proposition 12: (i) in §4.1.2 the total variation
increases only if ε > h, and (ii) we claim that the total variation not only increases but actually blows
up. To tackle these issues, we introduce the building block a : R→ R by setting

(40) a(x) := 1[−1,−3/4](x)

and we define u0 as

(41) u0(x) := 1[0,+∞[(x) +
∞∑
k=0

2−ka(2kx).

See Figure 2 for a representation. Note that due to the chosen scaling the building blocks of u0 do not
overlap and are separated by intervals where u0 = 0. This implies that

(42) 0 ≤ u0(x) ≤ 1 for a.e. x ∈ R, TotVar u0 = 1 + 2
∞∑
k=0

2−k = 5 < +∞.

Note furthermore that, very loosely speaking, u0 is made by a sequence of building blocks that ap-
proaches the “big jump” located at t = 0. In this way, for every ε > 0 there are infinitely many building
blocks that behave as the initial datum ū in the example of §4.1.2. Each of them contributes to the
total variation increase and this is the basic mechanism that leads to the total variation blow-up.

4.1.4. Preliminary results. In this paragraph we establish some qualitative properties of the solution
of the Cauchy problem obtained by coupling (34) with the initial datum u0 in (41).

By combining the first inequality in (42) with the maximum principle (13) we get that

(43) 0 ≤ uε(t, x) ≤ 1, for a.e. (t, x) ∈ R+ × R

and by recalling (36) we arrive at

(44) 0 ≤ 1− wε(t, x) ≤ 1, for a.e. (t, x) ∈ R+ × R.

Lemma 13. Let uε be the solution of (34) with initial datum (41), then

(45) uε(t, x) = 1, for a.e. (t, x) such that x ≥ 0 and t ≥ 0.
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Lemma 13 can be shown arguing as in item (a) in §4.1.2 and its proof exploits the fact that, owing
to the particular expression of the velocity field (36), the values of uε on R+×R+ are only affected by
the values of the initial datum on R+ and hence on R+ ×R+ the solution uε behaves “as if the initial
datum is the constant 1”. This formal argument can be turned in a rigorous proof by a fixed-point
argument as in [11, 14]. As a consequence of Lemma 13, we get the following fact.

Lemma 14. Let uε be the solution of (34) with initial datum (41), then

(46) y ≤ Xε(t, y) ≤ 0, for every t ≥ 0, y ≤ 0 and ε > 0.

Proof. By combining (37) with the fact that wε(t, x) = 1 for every x ≥ 0 and t ≥ 0 we get that

(47) Xε(t, 0) = 0, for every ε > 0 and t ≥ 0.

Since the characteristic lines cannot intersect, this implies the inequality Xε(t, y) ≤ 0 in (46). The
inequality y ≤ Xε(t, y) follows from the the first inequality in (44). �

4.1.5. Total variation blow-up. We can now conclude the proof of Proposition 12. Fix ε ∈]0, 1[. By
combining (46) and (45) we get that

(48) uε
(
t,Xε(t, y) + ε

)
= 1, for every y ∈ [−ε, 0] and t ≥ 0.

Owing to (38), the material derivative satisfies

(49)
d

dt
uε(t,Xε) = uε(t,Xε)

1− uε(t,Xε)

ε
, for every y ∈ [−ε, 0] and t ≥ 0.

By explicitly computing the solution of the ODE (49) we arrive at

(50) uε(t,Xε(t, y)) =
u0(y)

[1− u0(y)]e−t/ε + u0(y)
, for every y ∈ [−ε, 0] and t ≥ 0.

We recall (41) and notice that

(51) u0(y) =


2−k if y ∈ [−2−k,−2−k · 3/4] for some k ∈ N

0 if y ∈ [−2−k · 3/4,−2−(k+1)] for some k ∈ N.

Using the fact that characteristic lines cannot intersect we conclude that

(52) TotVaruε(τ, ·) ≥ 2
∑

k≥− log2 ε

2−k

[1− 2−k]e−τ/ε + 2−k
,

where we have used (51) and the restriction k ≥ − log2 ε in the sum is due to the fact that (50) is valid
for y ∈ [−ε, 0].

To establish (11) it now suffices to show that, for every τ > 0, the right hand side in (52) is not
bounded as ε→ 0+. To this end, we first point out that

(53)
2−k

[1− 2−k]e−τ/ε + 2−k
≥ 1

2
⇔ k ≤ − log2

(
e−τ/ε

1 + e−τ/ε

)
,

which owing to (52) yields

(54) TotVaruε(τ, ·) ≥ ]

{
k ∈ N : − log2 ε ≤ k ≤ − log2

(
e−τ/ε

1 + e−τ/ε

)}
.

In the previous expression, the symbol ] denotes the cardinality of a set. By plugging the elementary
inequality

− log2

(
e−τ/ε

1 + e−τ/ε

)
≥ − log2

(
e−τ/ε

)
=
τ

ε
log2 e



12 M. COLOMBO, G. CRIPPA, E. MARCONI, AND L. V. SPINOLO

into (54) and choosing ε = 2−j , we get that

(55) TotVaru2−j (τ, ·) ≥ ]
{
k ∈ N : j ≤ k ≤ 2jτ log2 e

}
.

For any given τ > 0, the right hand side of (55) blows up as j → +∞, yielding (11). This concludes
the proof of Proposition 12. �

4.2. Conclusion of the proof of Theorem 6. To complete the proof of Theorem 6 we are left
to show that i) we can modify the construction of u0 in such a way that it satisfies the condition
Lip−u0 <∞, and ii) we can extend the blow-up proof to the case of more general convolution kernels.

To tackle issue i), it suffices to replace the building block a in (40) with

(56) ã(x) :=

 0 x < −1
−4x− 3 −1 ≤ x < −3/4
0 x ≥ −3/4.

We define u0 by plugging the above expression into (41) and obtain that u0 satisfies 0 ≤ u0 ≤ 1,
TotVaru0 ≤ 5 and Lip−u0 = 4. One can then study the evolution of uε along the characteristic lines
Xε(·, y) with y = 2−k, k ∈ N and conclude that the key estimate (52) is still valid. The rest of the
proof of Proposition 12 extends with no need of modifications.

To tackle issue ii) (extension of the proof to the case of more general kernels) we fix a Lipschitz
continuous kernel η as in the statement of Theorem 6. We go back to the discussion about characteristic
lines in §4.1.1 and we point out that we have to replace (36) with

(57) wε(t, x) =

ˆ +∞

x
uε(y)ηε(x−y)dy =⇒ −∂x[1−wε(t, x)] = −uε(x)ηε(0)+

ˆ +∞

x
uε(y)η′ε(x−y)dy.

Note that, since ηε has unit integral and 0 ≤ uε ≤ 1, then (44) is still valid and the rest of the analysis
in §4.1.4 extends with no modifications. We now discuss how we can modify (38). Let us fix x∗ < 0
such that

(58) M :=
η(x∗)

η(0)
≥ 3

4
.

Next, we fix y such that εx∗ ≤ y < 0, which owing to (46) yields εx∗ ≤ Xε(t, y) < 0 for every t ≥ 0.
We have the following chain of inequalities:

d

dt
uε(t,Xε)

(57)
= uε(t,Xε)

(
−uε(t,Xε)ηε(0) +

ˆ +∞

Xε

uε(y)η′ε(Xε − y)dy

)
uε,η′ε≥0
≥ uε(t,Xε)

−uε(t,Xε)ηε(0) +

ˆ +∞

0
uε(y)︸ ︷︷ ︸

=1by (45)

η′ε(Xε − y)dy


= uε(t,Xε)

(
−uε(t,Xε)ηε(0) +

ˆ +∞

0
η′ε(Xε − y)dy

)
= uε(t,Xε)

(
− uε(t,Xε)ηε(0) + ηε(Xε)

) η′ε≥0
≥ uε(t,Xε)

(
− uε(t,Xε)ηε(0) + ηε(x

∗ε)
)
.

(59)

We recall that the constant M is defined in (58). Since ηε(x) = η(x/ε)/ε, then M = ηε(x
∗ε)/ηε(0) and

by using (59) we get

d

dt
uε(t,Xε) ≥ uε(t,Xε)ηε(0) (−uε(t,Xε) +M) = η(0)

uε(t,Xε) (−uε(t,Xε) +M)

ε
.

We compute the explicit solution of the ODE u̇ = η(0)u(M − u)/ε and by a classical comparison
argument for ODEs we conclude that

(60) uε(t,Xε(t, y)) ≥ Mu0(y)

(M − u0(y))e−Mη(0)t/ε + u0(y)
for every y ≥ εx∗.
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This implies that we can replace (52) with

(61) TotVaruε(τ, ·) ≥ 2
∑

k≥− log2(−εx∗)

M2−k

(M − 2−k)e−Mη(0)t/ε + 2−k
.

By using (58), the rest of the analysis in §4.1.5 straightforwardly extends and this yields (11). �
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