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Abstract. We investigate under which assumptions the flow associated to autonomous planar vector
fields inherits the Sobolev or BV regularity of the vector field. We consider nearly incompressible and

divergence-free vector fields, taking advantage in both cases of the underlying Hamiltonian structure.
Finally we provide an example of an autonomous planar Sobolev divergence-free vector field, such that

the corresponding regular Lagrangian flow has no bounded variation.

1. Introduction

We consider bounded vector fields b ∈ L∞
(
(0, T ) × Rd;Rd

)
. Although the analysis of this paper is

limited to the case of autonomous vector fields with d = 2, we introduce the relevant notions and the
related results in the general setting. The following notion of regular Lagrangian flow is an appropriate
extension for merely locally integrable vector fields of the classical flow associated to Lipschitz vector
fields.

Definition 1.1. Given b ∈ L1
loc((0, T )×Rd;Rd), we say that X : [0, T )×Rd → Rd is a regular Lagrangian

flow of the vector field b if

(1) for L d- a.e. x ∈ Rd the map t 7→ X(t, x) is absolutely continuous, X(0, x) = x and for L 1-a.e.
t ∈ (0, T ) it holds ∂tX(t, x) = b(t,X(t, x));

(2) for every t ∈ [0, T ) it holds
X(t, ·)]L d ≤ LL d,

for some L > 0.

Regular Lagrangian flows have been introduced in a different form in [DL89], where the authors proved
their existence and uniqueness for vector fields b ∈ L1

tW
1,p
x with p ≥ 1 and bounded divergence. The

theory has been extended to vector fields b ∈ L1
t BVx with bounded divergence in [Amb04]. Uniqueness

of regular Lagrangian flows was finally achieved in the more general class of nearly incompressible vector
fields with bounded variation in [BB20], introduced in the study of the hyperbolic system of conservation
laws named after Keyfitz and Kranzer (see [DL07]).

Definition 1.2. A vector field b ∈ L1
loc((0, T ) × Rd;Rd) is called nearly incompressible if there exist

C > 0 and ρ ∈ C0([0, T );L∞w (Rd)) solving the continuity equation

∂tρ+ divx(ρb) = 0 (1.1)

with ρ(t, x) ∈ [C−1, C] for L d+1-a.e. (t, x) ∈ (0, T )× Rd.
Several results about the differentiability properties of regular Lagrangian flows are available now.

By the contributions in [LBL04, AM07], it follows that regular Lagrangian flows associated to vector
fields b ∈ L1

tW
1,1
x are differentiable in measure (see [AM07] for the definition of this notion). The same

regularity property has been obtained recently in [BDN20] for nearly incompressible vector fields with
bounded variation. The stronger property of approximate differentiability was obtained in [ALM05] for
regular Lagrangian flows associated to vector fields b ∈ L1

tW
1,p
x with p > 1. A quantitative version of

the same regularity property was provided in [CDL08], where the authors proved a quantitative Lusin-
Lipschitz regularity of the flow.

The optimality of the regularity estimates obtained in [CDL08] is discussed in [Jab16]. In particular the
author provided through a random construction an example of time dependent divergence-free Sobolev
vector field in R2 such that the regular Lagrangian flow has not bounded variation.
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2 E. MARCONI

1.1. 2d autonomous vector fields. The analysis in the setting of 2d autonomous vector fields is
facilitated by the following Hamiltonian structure: if b ∈ L∞(R2;R2) with div b = 0, then there exists a
Lipschitz Hamiltonian H : R2 → R such that

b = ∇⊥H = (−∂2H, ∂1H). (1.2)

At least formally the Hamiltonian is preserved by the flow, so that the trajectories of the flow are
contained in the level sets of H. In the series of papers [ABC14b, ABC13, ABC14a], the authors reduced
the uniqueness problem for the continuity equation to a family of one-dimensional problems on the level
sets of H. With this approach they were able to characterize the Hamiltonians for which the uniqueness
for (1.1) holds in the class of L∞ solutions, and therefore the uniqueness for the regular Lagrangian flow,
including in particular the case of BV vector fields.

It is worth to mention that, before the general result in [BB20] was available, the approach intro-
duced above allowed to obtain in [BBG16] a simpler and more direct proof of the uniqueness of regular
Lagrangian flow for nearly incompressible vector fields with bounded variation; see also [BG16] for the
intermediate step of steady nearly incompressible vector fields, namely vector fields satisfying Def. 1.2
with ρ constant in time.

The approximate differentiability of the flow has been obtained for autonomous divergence free vector
field b ∈ BV(R2;R2) in [BM19], as a consequence of a suitable Lusin-Lipschitz property.

In the present paper we investigate under which assumptions the regular Lagrangian flow inherits the
Sobolev or BV regularity of the vector field. The first result is a local estimate for nearly incompressible
vector fields.

Proposition 1.3. Let b ∈ BV(R2;R2) be a bounded nearly incompressible vector field and let Ω ⊂ R2 be
an open ball of radius R > 0 such that there exist δ > 0 and e ∈ S1 for which b · e > δ a.e. in Ω. Let
Ω′ ⊂ Ω be an open set and t̄ > 0 be such that dist(Ω′, ∂Ω) > ‖b‖L∞ t̄. Then

X(t̄) ∈ BV(Ω′).

Moreover, if b ∈W 1,p(R2;R2) for some p ≥ 1, then

X(t̄) ∈W 1,p(Ω′).

The following global result is stated for divergence-free vector fields and we additionally assume that
the vector field b ∈ BV(R2;R2) is continuous. Since we are going to consider bounded vector fields, by
finite speed of propagation, it is not restrictive to assume that b has compact support. In particular there
exists a unique Hamiltonian H ∈ C1

c (R2) satisfying (1.2) and it is straightforward to check that the set
of critical values

S := {h ∈ R : ∃x ∈ R2 (H(x) = h and b(x) = 0)}
is closed. Therefore the set of regular values R := H(R) \ S and Ω = H−1(R \ S) = H−1(R) are open.

Theorem 1.4. Let b ∈ BV(R2;R2) be a continuous divergence-free vector field with bounded support and
let Ω be defined as above. Then for every t > 0 the regular Lagrangian flow has a representative

X(t) ∈ C0(Ω) ∩ BV(Ω).

If moreover b ∈W 1,p(R2;R2), then X(t) ∈W 1,p(Ω).

The last result is an example that shows that the existence of δ > 0 as in Proposition 1.3 cannot be
dropped, as well as the restriction to Ω in Theorem 1.4.

Proposition 1.5. There exists a divergence-free vector field b : R2 → R2 such that b ∈W 1,p
loc (R2;R2) for

every p ∈ [1,∞), b(z) · e1 > 0 for L 2-a.e. z ∈ R2 and for every time t > 0 the regular Lagrangian flow

X(t) /∈ BVloc(R2;R2).

The construction of the Hamiltonian H associated to b in Proposition 1.5 is a suitable modification of
the construction in [ABC13] of a Lipschitz Hamiltonian for which the uniqueness of the corresponding
regular Lagrangian flow fails. As opposed to the already mentioned result in [Jab16], the proposed
construction is deterministic and disproves the Sobolev regularity of the regular Lagrangian flow also for
autonomous vector fields.

We finally mention that the question about the Sobolev or BV regularity of the regular Lagrangian
flow associated to autonomous planar vector fields was posed to the author by M. Colombo and R.
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Tione, motivated by the study of the commutativity property of the flows associated to vector fields with
vanishing Lie bracket [CT20].

2. Local estimate for nearly incompressible vector fields

In this section we prove Proposition 1.3. We begin with two preliminary lemmas about autonomous
nearly incompressible vector fields in Rd. In the first lemma we show that in the case of autonomous
nearly incompressible vector fields we can assume without loss of generality that the existence time T of
ρ in Definition 1.2 is arbitrarily large.

Lemma 2.1. Let b : Rd → Rd be an autonomous nearly incompressible vector field and let ρ : [0, T ]×Rd →
R, C > 0 be as in Definition 1.2. Then there exists ρ̃ ∈ C0([0,+∞);L∞w (Rd)) solving (1.1) such that for
L d+1-a.e. (t, x) ∈ R+ × Rd it holds

C̃−1 ≤ ρ̃(t, x) ≤ C̃, with C̃ = C̃(t) := C
2t
T +1. (2.1)

Proof. By Ambrosio’s superposition principle (see [AC08]), there exists a Radon measure η on ΓT :=
C([0, T ];Rd) such that for every t ∈ [0, T ] it holds

(et)]η = ρ(t, ·)L d,

where et(γ) := γ(t) denotes the evaluation map at time t defined on ΓT . We denote by {ηx}x∈Rd ⊂ P(ΓT )
its disintegration with respect to the evaluation map at time 0, so that

η =

ˆ
Rd
ρ(0, x)ηxdx

and we define

η′ =

ˆ
Rd
ρ(T, x)ηxdx.

Since ρ ∈ [C−1, C], it holds C−2ρ(0, x) ≤ ρ(T, x) ≤ C2ρ(0, x) for L d-a.e. x ∈ Rd. In particular
C−2(et)]η ≤ (et)]η

′ ≤ C2(et)]η for every t ∈ [0, T ], therefore

(et)]η
′ = ρ′(t, ·)L d, with C−2ρ(t, ·) ≤ ρ′(t, ·) ≤ C2ρ(t, ·). (2.2)

Let ρ̃ : (0, 2T )× Rd → R be defined by

ρ̃(t, z) =

{
ρ(t, z) if t ∈ (0, T ],

ρ′(t− T, z) if t ∈ (T, 2T ).

Since ρ̃ solves (1.1) in D′((0, T ) × Rd) and D′((T, 2T ) × Rd) separately and t 7→ ρ̃(t) is continuous with
respect to the weak* topology in L∞(R), then ρ̃ solves (1.1) in D′((0, 2T )×Rd). By (2.2) it follows that
for every t ∈ [T, 2T ] it holds

C−2ρ̃(t− T, ·)L d ≤ ρ̃(t, ·)L d ≤ C2ρ̃(t− T, ·)L d. (2.3)

Iterating the construction above we obtain a solution ρ̃ : R+ ×Rd → R of (1.1) such that (2.3) holds for
every t ≥ T . In particular for every N ∈ N and for every t ∈ [NT, (N + 1)T ] it holds

C−2Nρ(t−NT, ·)L d ≤ ρ̃(t, ·)L d ≤ C2Nρ(t−NT, ·)L d,

which immediately implies (2.1) since ρ ∈ [C−1, C]. �

The vector fields for which the function ρ in Definition 1.2 can be chosen independent of t are called
steady nearly incompressible. Although not every nearly incompressible autonomous vector field is steady
nearly incompressible, we can reduce to the latter case under the assumptions of Proposition 1.3. The
proof of the following lemma is an adaptation of the argument in [BBG16].

Lemma 2.2. Let b : Rd → Rd be an autonomous, bounded, nearly incompressible vector field and let
Ω ⊂ Rd be an open ball of radius R > 0. Assume that there exist δ > 0 and e ∈ Sd−1 for which for
L d-a.e. x ∈ Ω it holds b(x) · e ≥ δ. Then bxΩ is steady nearly incompressible, namely there exists

r : Ω→ R and C̃ > 0 such that

C̃−1 ≤ r ≤ C̃ and div(rb) = 0 in Ω.
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Proof. Let ρ : (0, T ) × Rd → R and C > 0 be as in Definition 1.2. Let η ∈ M(ΓT ) the Radon measure
provided by Ambrosio’s superposition principle. In particular if we denote by

ẽ : ΓT × [0, T ]→ [0, T ]× Rd

(γ, t) 7→ (t, γ(t))

it holds

ẽ](η ×L 1) = ρ
(
L 1 ×L d

)
.

For every γ ∈ Γ we set

Iγ := {t ∈ [0, T ] : γ(t) ∈ Ω}.
Let Iγ,0 = [0, t−γ ) be the (possibly empty) connected component of Iγ containing 0 and similarly let

Iγ,T = (t+γ , T ] be the connected component of Iγ containing T . We denote by

Ĩγ = [0, T ] \ (Iγ,0 ∪ Iγ,T )

and

Γ− := {γ ∈ ΓT : γ(0) ∈ Ω)}, Γ+ := {γ ∈ ΓT : γ(T ) ∈ Ω)}.
Moreover we consider

η̃ = η ⊗ (L 1xĨγ).

By definition η̃ ≤ η ×L 1 therefore there exists ρ̃ ∈ L∞((0, T )× Rd) such that

ẽ]η̃ = ρ̃(L 1 ×L d).

with 0 ≤ ρ̃ ≤ ρ. The following standard computation shows that the density ρ̃ satisfies the continuity
equation

∂tρ̃+ divx(ρ̃b) = µ in D′((0, T )× Rd),
where

µ =

ˆ
Γ−
δt−γ ,γ(t−γ )dη(γ)−

ˆ
Γ+

δt+γ ,γ(t+γ )dη(γ).

Given ϕ ∈ C∞c ((0, T )× Rd) it holds

〈∂tρ̃+ divx(ρ̃b), ϕ〉 = −
ˆ
ρ̃(t, x)(ϕt(t, x) + b(t, x) · ∇xb(t, x))dxdt

= −
ˆ

(ϕt(t, γ(t)) + b(t, γ(t)) · ∇xb(t, γ(t)))χĨγ (t)dtdη(γ)

= −
ˆ

(ϕt(t, γ(t)) + γ̇(t) · ∇xb(t, γ(t)))χĨγ (t)dtdη(γ)

= −
ˆ

d

dt
(ϕ(t, γ(t))χĨγ (t)dtdη(γ)

=

ˆ (
ϕ(t−γ , γ(t−γ ))− ϕ(t+γ , γ(t+γ ))

)
dη(γ)

=

ˆ
ϕdµ,

where in the last equality we used that ϕ(0, ·) = ϕ(T, ·) ≡ 0. In particular µ is concentrated on ∂Ω so
that

∂tρ̃+ divx(ρ̃b) = 0 in D′((0, T )× Ω). (2.4)

Since b · e > δ in Ω, every connected component of Iγ has length at most 2R/δ. Up to change the
constant C > 0, by Lemma 2.1 we can assume that

T ≥ 6R

δ
,

therefore it follows that ρ̃(t, z) = ρ(t, z) for L 1 ×L d-a.e. (t, z) ∈ [T/3, 2T/3]× Ω, in particular

ρ̃(t, z) ≥ C−1 in [T/3, 2T/3]× Ω. (2.5)
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Being ρ̃(0, x) = ρ̃(T, x) = 0 for L d-a.e. x ∈ Ω, by integrating (2.4) with respect to t, it follows that

r(x) :=
1

T

ˆ T

0

ρ̃(t, x)dx

satisfies div(rb) = 0 in D′(Ω). From (2.5) and the definition of r, it follows that for L d-a.e. x ∈ R2 it
holds

1

3C
≤ r(x) ≤ ‖ρ‖L∞ ≤ C

and this proves the claim with C̃ = 3C. �

In the following of this paper we restrict to the case d = 2 and in the remaining part of this section
we will always assume that the hypothesis in Proposition 1.3 are satisfied. In particular there exists a
Lipschitz Hamiltonian H : Ω→ R such that

rb = ∇⊥H L 2-a.e. in Ω. (2.6)

The generic point in R2 will be denoted by z = (x, y) and we assume without loss of generality that

e = e1. Being b · e1 > δ and r ∈ [C̃−1, C̃] for every h ∈ H(Ω) there exist an open set Oh ⊂ R and a
Lipschitz function fh : Oh → R such that

{z ∈ Ω : H(z) = h} = {(x, y) : x ∈ Oh, y = fh(x)}.

We will also denote by

f̃h(x) := (x, fh(x)) (2.7)

for every x ∈ Oh. The Lipschitz constant L of fh can be estimated by

L ≤ ‖rb‖L∞
infΩ(rb · e1)

≤ C2‖b‖L∞
δ

. (2.8)

In the following we consider vector fields b with bounded variation. As already mentioned in the
introduction, the uniqueness problem for the regular Lagrangian flow associated to rb was solved in
[BBG16], where in particular it is proven that the local Hamiltonian is preserved by the flow, namely

H(t,X(t, z)) = H(z) ∀z ∈ Ω and t < dist(∂Ω, z).

We will consider the representative of the regular Lagrangian flow defined as follows: for every z =
(x, y) ∈ Ω and t < dist(∂Ω, z), we set X(t, z) = (X1(t, z), fH(z)(X1(t, z))) where X1(t, z) is uniquely
determined by ˆ X1(t,z)

x

1

b̃1(s, fH(z)(s))
ds = t, (2.9)

and where b̃ denotes the precise representative of b, defined at H 1-a.e. z ∈ R2 (see for example [AFP00]).
In particular, if we denote by

R := {h ∈ H(Ω) : |Db|(H−1(h) ∩ Ω) = 0},

it holds that H 1-a.e. z ∈ H−1(h) ∩ Ω is a Lebesgue point of b with value b̃(z). In the following we will

still denote by b the precise representative b̃.

Proposition 2.3. Let b ∈ BV(R2;R2) be a bounded autonomous nearly incompressible vector field. Let
Ω ⊂ R2 be an open ball of radius R > 0 such that there exist δ > 0 and e ∈ S1 for which b · e > δ a.e.
in Ω. Then there exists g ∈ BVloc(R) and a constant C ′ = C ′(R, ‖b‖L∞ , δ, C) > 0 such that for every
z, z′ ∈ Ω with H(z), H(z′) ∈ R and every t̄ > 0 for which

dist(z, ∂Ω),dist(z′, ∂Ω) > ‖b‖L∞ t̄,

it holds

|X(t̄, z)−X(t̄, z′)| ≤ C ′
(
|z − z′|+ |g(H(z))− g(H(z′))|

)
, (2.10)

where C is the compressibility constant in Definition 1.2 and H is the Hamiltonian introduced in (2.6).

If moreover b ∈W 1,p(R2;R2) for some p ∈ [1,∞), then (2.10) holds with g ∈W 1,p
loc (R).
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Proof. We denote by h = H(z) and h′ = H(z′). By (2.9) it follows thatˆ X1(t̄,z)

x

1

b1(f̃h(s))
ds = t̄ =

ˆ X1(t̄,z′)

x′

1

b1(f̃h′(s))
ds, (2.11)

where f̃h and f̃h′ are defined in (2.7). Without loss of generality we assume x ≤ x′ and we also suppose
that X1(t̄, z) ≤ X1(t̄, z′), being the opposite case analogous. We first estimate the distance of the
horizontal components of the flows. We denote by

I1 = (x, x′), I2 = (x′, X1(t̄, z)), I3 = (X(t̄, z), X(t̄, z′)).

If I2 = ∅, since b · e1 > δ in Ω, then

|z′ − z| ≥ |x′ − x| ≥ |X1(t̄, z)− x| ≥ t̄δ,
therefore

|X1(t̄, z′)−X1(t̄, z)| ≤ |X1(t̄, z′)− x′|+ |x′ − x|+ |x−X1(t̄, z)|
≤ ‖b‖∞t̄+ |x′ − x|+ ‖b‖∞t̄

≤
(

2‖b‖∞
δ

+ 1

)
|x′ − x|.

If I2 6= ∅, it follows by (2.11) that

|X1(t̄, z′)−X1(t̄, z)| ≤ ‖b‖∞
ˆ
I3

1

b1(f̃h′(s))
ds

= ‖b‖∞
(ˆ

I1

1

b1(f̃h(s))
ds+

ˆ
I2

1

b1(f̃h(s))
ds−

ˆ
I2

1

b1(f̃h′(s))
ds

)
≤ ‖b‖∞

δ
|x′ − x|+ ‖b‖∞

ˆ
I2

∣∣∣∣ 1

b1(f̃h(s))
− 1

b1(f̃h′(s))

∣∣∣∣ ds
≤ ‖b‖∞

δ
|x′ − x|+ ‖b‖∞

δ2
|Db|(H−1(I(h, h′))),

where I(h, h′) denotes the closed interval with endpoints h and h′; in the last inequality we used that the
function v 7→ 1/v is δ−2-Lipschitz on (δ,+∞). Then we estimate the difference of the vertical components:

|X2(t̄, z′)−X2(t̄, z)| ≤ |X2(t̄, z′)− fh′(X1(t̄, z))|+ |fh′(X1(t̄, z))−X2(t̄, z)|. (2.12)

By definition of fh′ it holds

|X2(t̄, z′)− fh′(X1(t̄, z))| = |fh′(X1(t̄, z′))− fh′(X1(t̄, z))| ≤ L|X1(t̄, z′)−X1(t̄, z)|, (2.13)

where L denotes the Lipschitz constant of the function fh′ and is bounded by C2‖b‖L∞
δ as in (2.8). By

definition of fh we have that

|fh′(X1(t̄, z))−X2(t̄, z)| = |fh′(X1(t̄, z))− fh(X1(t̄, z))|

≤ |h′ − h|
infΩ |∂2H|

≤ C|h′ − h|
δ

≤ C2‖b‖L∞ |z′ − z|
δ

(2.14)

where we used b1 ≥ δ, ∂yH = rb1 and ‖∇H‖L∞ ≤ C‖b‖L∞ . Plugging (2.13) and (2.14) in (2.12), we
finally obtain

|X2(t̄, z′)−X2(t̄, z)| ≤ C2‖b‖L∞
δ

[(
1 +

2‖b‖L∞
δ

)
|z′ − z|+ ‖b‖L

∞

δ2
|Db|(H−1(I(h, h′)))

]
so that (2.10) holds with

C ′ =
C2‖b‖∞
δ2

(
1 +

2‖b‖L∞
δ

+
‖b‖L∞
δ2

)
, g(h) = |Db|({H ≤ h}).

Notice that g ∈ BVloc(R) by construction, since Dg = H]|Db| is a finite Radon measure.
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If b ∈W 1,p(R2;R2) the same computation leads to (2.10) with

g(h) =

ˆ
{H≤h}

|Db|(z)dz.

It only remains to check that g ∈W 1,p
loc (R). Denoting by Eh = {z ∈ Ω : H(z) = h}, by the coarea formula

we have that

|∇H|L 2xΩ =

ˆ
R

H 1xEhdh so that L 2 =

ˆ
R

1

|∇H|
H 1xEhdh

and therefore

g′(h) =

ˆ
Eh

|Db|
|∇H|

dH 1.

Being |∇H| = |rb| > δ/C, then by Jensen’s inequality and co-area formula we get

ˆ
|g′|p =

ˆ
R

∣∣∣∣ˆ
Eh

|Db|
|∇H|

dH 1

∣∣∣∣p dh
≤
ˆ
R

(CH 1(Eh))p−1

δp−1

ˆ
Eh

|Db|p

|∇H|
dH 1dh

≤

(
2C
√

1 + L2R

δ

)p−1 ˆ
Ω

|Db|p,

(2.15)

where L is as above. This concludes the proof of the proposition. �

In order to conclude the proof of Proposition 1.3, we deduce in the following two lemmas the BV and
Sobolev regularity of the flow from the pointwise estimate obtained in Proposition 2.3.

Corollary 2.4. In the same setting as in Proposition 2.3 let Ω′ ⊂ Ω be an open set and t̄ > 0 be such
that dist(Ω′, ∂Ω) > ‖b‖L∞ t̄. Then

X(t̄) ∈ BV(Ω′).

Proof. From Proposition 2.3 it is sufficient to check that g ◦H ∈ BV(Ω′). Let gn be a sequence of smooth
functions converging to g in L1(R) with Tot.Var.R(gn) ≤ Tot.Var.R(g). By coarea formula

H](L
2xΩ′) = ρL 1, with ρ(h) =

ˆ
Eh

1

|∇H|
dH 1.

In particular

ρ(h) ≤ CH 1(Eh)

δ
≤ 2RC

√
1 + L2

δ

is uniformly bounded. Hence gn ◦H converges in L1(Ω′) to g ◦H and

Tot.Var.Ω′(g ◦H) ≤ lim inf
n→∞

Tot.Var.Ω′(gn ◦H)

= lim inf
n→∞

ˆ
Ω′
|g′n(H(z))∇H(z)|dz

≤ lim inf
n→∞

‖∇H‖L∞
ˆ
|g′n(h)|ρ(h)dh

≤ ‖∇H‖L∞‖ρ‖L∞Tot.Var.R(g). �

Corollary 2.5. Let us consider the same setting as in Proposition 2.3 with b ∈W 1,p(R2;R2). Let Ω′ ⊂ Ω
be an open set and t̄ > 0 be such that dist(Ω′, ∂Ω) > ‖b‖L∞ t̄. Then

X(t̄) ∈W 1,p(Ω′).
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Proof. From Proposition 2.3 it is sufficient to check that g ◦ H ∈ W 1,p(Ω′). By chain rule and coarea
formula we have ˆ

Ω′
|D(g ◦H)|pdz ≤

ˆ
Ω′
|g′ ◦H|p|∇H|pdz

≤ (C‖b‖∞)p−1

ˆ
Ω′
|g′ ◦H|p|∇H|dz

≤ (C‖b‖∞)p−1

ˆ
R

ˆ
Eh

|g′ ◦H|pdH 1dh

= (C‖b‖∞)p−1

ˆ
R
|g′|p(h)H 1(Eh)dh

≤ 2
√

1 + L2R(C‖b‖∞)p−1

ˆ
R
|g′|p(h)dh. �

3. Global estimate for divergence free vector fields

In this section we prove Theorem 1.4. In the next lemma we show that we can cover Ω with countably
many open sets invariant for the flow and such that |b| is uniformly bounded from below far from 0.

Lemma 3.1. Let b and Ω as in Theorem 1.4 and let H ∈ C1
c (R2) be the Hamiltonian associated to b as

in (1.2). For every k ∈ N let Ωk := H−1({h : minH−1(h) |b| > 1/k}). Then Ωk is open,

Ωk ⊂ Ωk+1, and Ω =
⋃
k∈N

Ωk.

Proof. The last equality follows immediately from the definition of Ω and the continuity of b. In order
to complete the proof it is sufficient to check that the map

h 7→ min
H−1(h)

|b|

is continuous on the set R of regular values of H. Both the lower semicontinuity and the upper semi-
continuity are straightforward consequences of the continuity of b and the compactness of the level sets
H−1(h) with regular value h. �

The main estimate in the proof of Theorem 1.4 is proven in the following lemma.

Lemma 3.2. Let H ∈ C1
c (R2) be such that b := ∇⊥H ∈ BV(R2) and let k ∈ N and Ωk ⊂ R2 be as

above. Then there exist a representative of the regular Lagrangian flow X, g ∈ BVloc ∩C0(R) and r > 0
such that for every t > 0 the following holds: there exist c1 > 0 and c2 > 0 such that ∀z̄ ∈ Ωk and every
z ∈ Br(z̄) there exists s > 0 such that

(1) |X(t, z̄)−X(s, z)| ≤ c1|H(z̄)−H(z)|

(2) |t− s| ≤ c2 (|g(H(z̄))− g(H(z))|+ |z̄ − z|).

Proof. The proof is divided in several steps.
Step 1. By Lemma (3.1) Ωk is compactly contained in the open set Ωk+1. Since b is continuous and
uniformly bounded from below on Ωk+1, for every L > 0 there exist r̄ > 0 and a finite covering (Br̄(zi))

N
i=1

of Ωk such that

(1) for every i = 1, . . . , N it holds B4r̄(zi) ⊂ Ωk+1;
(2) for every i = 1, . . . , N there exists ei ∈ S1 such that

b(z) · ei ≥ |b(z)| cos(tan−1(L)) ∀z ∈ B4r̄(zi). (3.1)

We take L > 0 sufficiently small so that cos(tan−1(L)) > 1/2 and such that for every i = 1, . . . , N and
for every h ∈ H(B3r̄(zi)) there exist an open interval Ii,h ⊂ R and a L-Lipschitz function fi,h : Ii,h → R
such that

H−1(h) ∩B4r̄(zi) =
{
z ∈ R2 : z · ei ∈ Ii,h, z · e⊥i = fi,h(z · ei)

}
.

Step 2. We show that the function g : R→ R defined by

g(h) := |Db|({H ≤ h} ∩ Ωk+1)
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is continuous and with bounded variation.
Since Dg = H]|Db|xΩk+1 is a finite measure, the function g has bounded variation. In order to prove

that g is continuous it is sufficient to check that for every h ∈ R it holds

|Db|(H−1(h) ∩ Ωk+1) = 0.

By Step 1, the set H−1(h) ∩ Ωk+1 is the union of finitely many Lipschitz curve of finite length. Being b
continuous, the measure |Db| vanishes on all sets with finite H1 measure (see for example [AFP00]), and
this proves the continuity of g.
Step 3. Given T > 0 and z̄ ∈ Ωk, we denote by

Ñ :=

⌈
T‖b‖L∞

r̄

⌉
, and Ij :=

[
j − 1

Ñ
T,

j

Ñ
T

]
=: [tj−1, tj ] for j = 1, . . . , Ñ .

Moreover for every j ∈ 1, . . . , Ñ we consider i = i(j) ∈ 1, . . . , N such that

X(tj , z̄) ∈ Br̄(zi(j)).
We set

r := min

{
r̄,

r̄

2(k + 1)‖b‖L∞
,

T

2Ñ(k + 1)

}
. (3.2)

For every z ∈ R2 with |z − z̄| ≤ r we prove that for every j = 1, . . . , Ñ there exists sj > 0 such that

|X(tj , z̄)−X(sj , z)| ≤ 2(k + 1)|h̄− h|
and

|tj − sj | ≤ 2(k + 1)|z − z̄|+ j(k + 1)2|g(h̄)− g(h)|+ 2(j − 1)(k + 1)2|h̄− h|. (3.3)

By (3.2) and the definition of (zi)
N
i=1, for every j = 1, . . . , Ñ there exists a unique point z̃j ∈ Ωk+1 in

z ∈ B2r̄(zi(j)) such that

H(z̃j) = h and z̃j · ei = X(tj , z̄) · ei.
We immediately have

|X(tj , z̄)− z̃j | = |(X(tj , z̄)− z̃j) · e⊥i | ≤
|h̄− h|

minB2r̄(zi(j)) b · ej
≤ 2(k + 1)|h̄− h|.

Notice in particular that |X(tj , z̄)− z̃j | ≤ r̄ by (3.2). In order to prove the claim, it is sufficient to show

that for every j = 1, . . . , Ñ , there exists sj ≥ 0 satisfying (3.3) and such that X(sj) = z̃j . We prove this
by induction on j.
Case j = 1. First we observe that{

z̄ · ei(1), z · ei(1), X(t1, z̄) · ei(1)

}
⊂ Ii(1),h ∩ Ii(1),h̄.

In particular z and z̃1 belong to the same connected component of H−1(h). Since |z − z̄| < r it trivially
holds

z̄ · ei(1) − r < z · ei(1) < z̄ · ei(1) + r.

Moreover

X(t1, z̄) · ei(1) ≥ z̄ · ei(1) + t1 min
B4r̄(zi(1))

b · ei(1) ≥ z̄ · ei(1) +
t1

2(k + 1)
> z̄ · ei(1) + r.

We assume z ·ei(1) ≥ z̄ ·ei(1), being the opposite case analogous. We denote by t̃0 ≥ 0 the unique t ∈ [0, t1)
such that X(t, z̄) · ei(1) = z · ei(1). We have

t̃0 ≤
|z − z̄|

minB4r̄(zi(1)) b · ei(1)
≤ 2(k + 1)|z − z̄|.

Moreover

t1 − t̃0 =

ˆ z̃1·ei(1)

z·ei(1)

1

b · ei(1)
(f̄i,h̄(x))dx

and similarly

s1 =

ˆ z̃1·ei(1)

z·ei(1)

1

b · ei(1)
(f̄i,h(x))dx.
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We denote by

S := {z′ ∈ R2 : z′ · ei(1) ∈ (z · ei(1), z̃1 · ei(1)), z
′ · ei(1) ∈ (fi(1),h(z′ · ei(1)), fi(1),h̄(z′ · ei(1)))}.

Therefore

|t1 − s1| ≤ |t̃0|+ |t1 − t̃0 − s1|

≤ 2(k + 1)|z − z̄|+
ˆ z̃1·ei(1)

z·ei(1)

∣∣∣∣ 1

b · ei(1)
(f̄i,h̄(x))− 1

b · ei(1)
(f̄i,h(x))

∣∣∣∣ dx
≤ 2(k + 1)|z − z̄|+

(
1

infS b · ei(1)

)2

|Db|(S)

≤ 2(k + 1)|z − z̄|+ 4(k + 1)2|g(h̄)− g(h)|,

where, in the third inequality we used that the maps v 7→ 1/v is 1/δ2-Lipschitz on [δ,+∞) with δ =
infS b · ei(1). This proves (3.3) for j = 1.
Case j > 1. We assume

|tj−1 − sj−1| ≤ 2(k + 1)|z − z̄|+ (j − 1)(k + 1)2|g(h̄)− g(h)|+ 2(j − 2)(k + 1)2|h̄− h| (3.4)

and we prove (3.3). We observe that |X(tj , z̄) − X(tj−1, z̄)| ≤ r̄, therefore (3.1) implies that b · ei(j) >
1/(k + 1) in B2r̄(X(tj−1, z̄)). In particular we can define w̃j−1 as the unique z ∈ B2r̄(X(tj−1, z̄)) such
that

H(z) = h and z · ei(j) = X(tj−1, z̄) · ei(j).
We have

|w̃j−1 − z̃j−1| ≤ |w̃j−1 −X(tj−1, z̄)|+ |X(tj−1, z̄)− z̃j−1| ≤ 2(k + 1)|h− h̄|.
Since w̃j−1 · ei(j), z̃j−1 · ei(j) ∈ Ii(j−1),h, then there exists sj−1 > 0 such that w̃j−1 = X(s̃j−1, z) with

|s̃j−1 − sj−1| ≤
2(k + 1)

minB4r̄(zi(j−1))) b · ei(j−1)
|h̄− h| ≤ 2(k + 1)2|h̄− h|. (3.5)

By the triangular inequality

|tj − sj | ≤ |tj − tj−1 + tj−1 − sj−1 + sj−1 − s̃j−1 + s̃j−1 − sj |
≤ |tj−1 − sj−1|+ |tj − tj−1 − sj + s̃j−1|+ |s̃j−1 − sj−1|.

(3.6)

The same computation as in the case j = 1 gives

|tj − tj−1 − sj + s̃j−1| =

∣∣∣∣∣
ˆ X(tj ,z̄)·ei(j)

X(tj−1,z̄)·ei(j)

(
1

b · ei(j)
(f̄i,h̄(x))− 1

b · ei(j)
(f̄i,h(x))

)
dx

∣∣∣∣∣
≤ (k + 1)2|g(h̄)− g(h)|.

(3.7)

By plugging (3.4), (3.5) and (3.7) into (3.6), we finally get (3.3).

The statement is therefore proven with s = sÑ , c1 = 2(k+ 1) and c2 = Ñ(k+ 1)2(1 + 2‖b‖L∞) + 2(k+
1). �

Remark 3.3. If we additionally assume that b ∈W 1,p(R2) in Lemma 3.2, then the statement holds true
with

g(h) :=

ˆ
{H≤h}∩Ωk+1

|∇H|dz.

In particular we showed in the proof of Proposition 1.3 that g ∈W 1,p
loc (R).

Proof of Theorem 1.4. By Lemma 3.1, it is sufficient to prove that X(t) ∈ BV(Ωk) for every k ∈ N. In
the same setting as in Lemma 3.2, if z̄ ∈ Ωk and z ∈ Br(z̄), then

|X(t, z̄)−X(t, z)| ≤ |X(t, z̄)−X(s, z)|+ |X(s, z)−X(t, z)|
≤ c1|H(z̄)−H(z)|+ ‖b‖L∞ |t− s|
≤ c1|H(z̄)−H(z)|+ c2‖b‖L∞ (|g(H(z̄))− g(H(z))|+ |z̄ − z|)
≤ ‖b‖L∞(c1 + c2)|z̄ − z|+ c2‖b‖L∞ |g(H(z̄))− g(H(z))|.

(3.8)
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cn

2an + rn

cn+1

rn

cn/2

cn/2

an + rn

cn+1

an + rn

Cn+1

Cn+1

Dn

Dn

En

En

Fn

Fn

2an

an an

cn/2− 2an

Fn

Fn

Figure 1. Construction of the set Cn+1, Dn, En, Fn ⊂ Cn. The two pictures represent a
connected component of Cn.

.

The argument in the proof of Corollary 2.4 shows that g ◦ H ∈ BV(Ωk) therefore it follows from (3.8)
that X(t) ∈ BV(Ωk ∩ Br(z)) for every z ∈ Ωk. Being Ωk bounded this proves that X(t) ∈ BV(Ωk).
Finally the continuity of X(t) follows immediately from (3.8) and the continuity of g. If moreover we
assume that b ∈W 1,p(R2), then the same argument proves that X(t) ∈W 1,p(Ωk) thanks to Remark 3.3
and Corollary 2.5. �

Remark 3.4. By inspection in the argument used to prove Lemma 3.2, we observe that ‖X(t)‖BV(Ω)
(or ‖X(t)‖W 1,p(Ω)) is locally bounded for t ∈ [0,+∞) and it diverges at most linearly in t as t→∞.

4. Example

In this section we prove Proposition 1.5.

4.1. Construction of Cn, Dn, En and Fn. We consider the following parameters:

cn =
1

n22n
, an =

n− 1

2n

(cn
2
− cn+1

)
∼ 1

2n−1n3
, rn =

1

2n

(cn
2
− cn+1

)
∼ 1

2n−1n4
. (4.1)

We set C1 = [0, 1/2]2 ⊂ R2 and we inductively define Cn+1 for n ≥ 1 as follows: Cn+1 ⊂ Cn and every
connected component R′ of Cn contains two connected components of Cn+1, which are squares of side cn
as in Figure 1. For every n ∈ N we also consider the sets Dn, En, Fn ⊂ Cn as in Figure 1.

We observe that for every n ≥ 1 it holds

Cn+1 = {z ∈ Dn : dist(z, ∂Dn) ≥ rn}.

4.2. Construction of fn and hn. The function f0 : R2 → R is defined by f0(x, y) = y. The function
fn coincides with fn−1 on R2 \ Cn and its level lines in Cn are as in Figure 2. In particular fn coincides
with fn−1 on Fn.

Let R be a connected component of Dn, then fn is affine on R and depends only on y, therefore
∇fn = (0, vn). Let R′ be a connected component of Cn and denote by sn = Osc(fn, R

′).

vn =
Osc(fn, R)

height(R)
=

Osc(fn, R
′)

height(R′)
,

where height(R) = cn+1 + 2rn, height(R′) = cn+1, Osc(fn, R) = sn/4 and Osc(fn, R
′) = sn+1 so that

4sn+1 =
cn+1

cn+1 + 2rn
sn.
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Figure 2. Level sets of fn on a connected component R′ of Cn. The set Dn ∩ R′ is
colored in gray.

.

In particular

4nsn = 4c1

n∏
l=2

cl
cl + 2rl−1

↘ 4c1

∞∏
l=2

cl
cl + 2rl−1

.

From the choice (4.1) it follows that rl−1c
−1
l = O(l−2) therefore

log

(
cl

cl + 2rl−1

)
= O(l−2).

In particular the infinite product is strictly positive and we denote it by σ. We finally get

vn =
sn+1

cn+1
∼ c1σ

n2

2n
.

Similarly we compute the speed ∇fn = (0, v′n) in the region En as in the picture. Denoting by R′′ one
of its components, we have

v′n =
Osc(fn, R

′′)

height(R′′)
=

sn
8an
∼ c1σ

4

n3

2n
.

4.3. Estimates on the norms of ∇fn and ∇hn. We first estimate ‖∇fn‖L∞(Cn). From Figure 2 we

observe that ‖∂2fn‖L∞(Cn) = v′n and the maximal slope of the level sets of fn in Cn is cn−8an
4an

. Therefore

‖∇fn‖L∞(Cn) ≤ v′n
(
cn − 8an

4an
+ 1

)
∼ c1σ

16

n4

2n
.

Since fn and fn−1 coincide outside Cn, it holds

‖∇hn‖L∞ ≤ ‖∇fn‖L∞(Cn) + ‖∇fn−1‖L∞(Cn−1) = O

(
n4

2n

)
.
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This proves that

f = lim
n→∞

fn = f0 +

∞∑
l=1

hl

is a Lipschitz function.

4.4. Estimate on crossing time. Let T 1
n be the amount of time needed by an integral curve of the

vector field −∇⊥fn−1 to cross a connected component of Cn. Then

T 1
n =

cn
vn−1

∼ 1

2c1σn4
.

Let moreover T sn be the amount of time needed by an integral curve of the vector field −∇⊥fn intersecting
Dn to cross a connected component of Cn. Since an+rn = o(cn), then T sn is asymptotically equivalent at
the sum of the amounts of time needed to cross a connected component of Dn and a connected component
of Fn, namely

T sn ∼
1

2c1σn4
+

1

4c1σn4
.

Finally let T fn be the amount of time needed by an integral curve of the vector field −∇⊥fn intersecting
En to cross a connected component of Cn: similarly as above we have the T fn is asymptotically equivalent
to the amount of time needed to cross a connected component of Fn, namely

T fn ∼
1

4c1σn4
.

Let us denote by Xn the flow of −∇⊥fn and by X the flow of −∇⊥f . For every z = (x, y) ∈ R2 with
x < 0 we define t1(z) as the unique t > 0 such that X(t1(x)) · e1 = 0 and t2(z) as the unique t > 0
such that X(t1(x)) · e1 = 1. Since f(x, y) = y for every (x, y) ∈ R2 with x < 0, then the function
z 7→ t2(z)− t1(z) depends only on y. We therefore set

T (y) := t2(−1, y)− t1(−1, y)

and we observe that for every x < 0 it holds T (y) = t2(x, y)− t1(x, y). Let z = (x, y) ∈ R2 be such that
x < 0 and there exists t > 0 for which Xn(t, z) ∈ En. Then, by construction, X(t, z) = Xn(t, z) for every
t > 0 and therefore

T (y) = T1 +

n−1∑
l=2

(T sl − T 1
l ) + T fn − T 1

n =: Tn

By construction there exist 0 < y1 < y2 < . . . < y2n−1 < 1 such that for every x < 0 and every
k ∈ [1, 2n−1] ∩ N there exists t = t(k) > 0 for which

X(t,−1, yk) ∈ En if k is even and X(t,−1, y2k−1) ∈ En−1 if k is odd.

In particular

Tot.Var.(0,1)T ≥ 2n−1(Tn − Tn−1) = 2n−1(T fn − T 1
n + T sn−1 − T

f
n−1) ∼ 2n

8c1σn4
.

This shows that T has not bounded variation.

4.5. Regularity of the flow. We observe that the function T constructed in the previous section is
bounded: indeed

supT = sup
n
Tn ≤ T0 +

∞∑
n=2

|Tn − Tn−1| ≤ 1 + C

∞∑
n=1

1

4c1σn4
<∞

for some universal constant C > 0. Since f(x, y) = y for every (x, y) ∈ R2 \ [0, 1/2]2, for every t > supT
it holds

X(t, x, y) · e1 = x+ 1 + t− T (y) ∀(x, y) ∈ (supT − t, 0)× R.
Since T has not bounded variation, then X(t) /∈ BV((−ε, 0) × (0, 1/2)) for every ε > 0 and every
t > supT . If R = [a, b]× [c, d] denotes a connected component of Cn, the same argument as above shows
that X(t) /∈ BV((a − ε, a) × (c, d)) for every ε > 0 and every t > tn for some tn → 0 as n → ∞. In
particular X(t) /∈ BVloc(R2;R2) for every t > 0.
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4.6. More regular vector field. The example constructed above does not prove Proposition 1.5 since
the vector field b = −∇⊥f has no Sobolev regularity. In order to make the vector field more regular, we
consider

f̃ = f0 +

∞∑
l=1

hl ∗ ρl,

where

ρl(z) = r−2
l ρ(z/rl)

and ρ : R2 → R is a positive smooth function such that

(1) supp ρ ⊂ B1/2(0);

(2)
´
R2 ρ = 1 and

´
R2 zρ(z)dz = 0.

Let us first check that f̃ ∈W 1,p
loc (R2,R2) for every p ∈ [1,∞): indeed

‖∇2(hl ∗ ρl)‖Lp ≤ ‖∇hl ∗ ∇ρl‖Lp
≤ ‖∇hl‖Lp‖∇ρl‖L1

≤ ‖∇hl‖L∞
(
L 2(supp(∇hl))

)1/p ‖∇ρl‖L1

≤ O(l42−l)
(
L 2(Cl−1)

)1/p
O(r−1

l )

= O(l42−l)O(2−l/pl−4/p)O(2ll4)

= O(2−l/pl8−
4
p ).

Being ‖∇2(hl ∗ ρl)‖Lp summable, the sequence

f̃n := f0 +

n∑
l=1

hl ∗ ρl

converges to f̃ in W 2,p
loc (R2) for every p ∈ [1,+∞). We now prove that the same argument of Sections 4.4

and 4.5 for f can be applied to f̃ .
Being fn affine on each connected component of Dn, it follows from the properties of the convolution

kernel that hn ∗ ρn(z) = hn(z) for every z ∈ Dn such that dist(z, ∂Dn) > rn. We denote by

D̃n := {x ∈ Dn : dist(x, ∂Dn) > rn},

Ẽn := {x ∈ En : dist(x, ∂En) > rn},

F̃n := {x ∈ Dn : dist(x, ∂Fn) > rn}.

Observe that all the sets above are non-empty by the choice of the parameters (4.1). Since D̃n = Cn+1,

we have in particular that fn = f̃n on the set Cn+1. Similarly hn ∗ ρn = hn on Ẽn ∪ F̃n. As in Section

4.4, we denote by T̃ 1
n the total amount of time needed by an integral curve of the vector field −∇⊥f̃n−1

to cross a connected component of Cn. Since fn−1 = f̃n−1 on Cn, then T̃ 1
n = T 1

n . We moreover denote by

T̃ sn the amount of time needed by an integral curve of the vector field −∇⊥f̃n intersecting D̃n to cross

a connected component of Cn. Since f̃n = fn in D̃n ∪ F̃n it is straightforward to check that T̃ sn ∼ T sn.

Similarly, we denote T̃ fn the amount of time needed by an integral curve of the vector field −∇⊥f̃n
intersecting Ẽn to cross a connected component of Cn. Since f̃n = fn in Ẽn ∪ F̃n it is straightforward to
check that T̃ fn ∼ T fn .

We are now in position to repeat the argument in Sections 4.4 and 4.5 and this proves that for every
t > 0 the regular Lagrangian flow X̃ of the vector field −∇⊥f̃ satisfies

X̃(t) /∈ BVloc(R2,R2).

This concludes the proof of Proposition 1.5.
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