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Abstract. We provide an abstract framework for a symmetry result arising in a conjecture
of G. W. Gibbons and we apply it to the fractional Laplace operator, to the elliptic oper-
ators with constant coefficients, to the quasilinear operators and to elliptic fully nonlinear
operators with possible gradient dependence.

1. Introduction

Let u : Rn → R be a solution of the problem

(1)

{
Lu(x) = f(u(x)) for any x ∈ Rn,

lim
xn→±∞

u(x′, xn) = ±1, uniformly in x′ ∈ Rn−1.

Here, L is an operator (not necessarily linear) acting on a space X of smooth (say, Cr

with r > 1) functions and commuting with the translations, i.e.,

(2) L(u(x + y)) = (Lu)(x + y) for any y ∈ Rn,

whose precise assumptions will be listed below.
The space X is supposed to contain functions from Rn to R and to be translation invariant1

(with respect to the translations in Rn), that is

(3) if u ∈ X, then the functions x 7→ u(x + y) lies in X too, for any y ∈ Rn.

As for the nonlinearity, we suppose that f ∈ C1(R), with

(4) inf
r∈(−∞,−1]∪[1,+∞)

f ′(r) > 0.

A paradigmatic example of nonlinearity satisfying the above assumptions is the function f(r) =
r3 − r.
The goal of this paper is to prove that u possesses one-dimensional symmetry, that is that
there exists uo : R → R such that

(5) u(x′, xn) = uo(xn) for any (x′, xn) ∈ Rn−1 × R.

For this, the following hypotheses are taken on L:
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1We remark that we need that the space X is translation invariant, as in (3), because we want to study the
operator on both the function and on its translation. On the other hand, we do not need that the operator
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will allow us to deal with nonlinear operators too.
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H1. (Linearization): If ϕ ∈ X satisfies Lϕ = f(ϕ) in Rn, then there exists an op-
erator L̃ acting on some space of functions X̃, with X̃ translation invariant in the
sense of (3), such that ∂ωϕ ∈ X̃ for any ω ∈ Sn−1 (where, as usual, ∂ω denotes the
directional derivative) and

L̃(∂ωϕ) = f ′(ϕ)∂ωϕ in Rn.

H2. (Compactness): If ϕ ∈ X satisfies (1), x(k) ∈ Rn and ϕ(k)(x) := ϕ(x + x(k)), we
have that there exists a function ϕ(∞) ∈ X such that, up to subsequence,

lim
k→+∞

ϕ(k)(x) = ϕ(∞)(x), lim
k→+∞

∇ϕ(k)(x) = ∇ϕ(∞)(x)

and lim
k→+∞

Lϕ(k) = Lϕ(∞) for any x ∈ Rn.

H3. (Maximum Principle for the linearized operator): If w ∈ X̃ satisfies L̃w =
c(x)w in Rn, with

w(x) > 0 if |xn| 6 M and c(x) > κ if |xn| > M ,

for some κ > 0 and M > 0, then

w(x) > 0 for any x ∈ Rn.

H4. (Strong Maximum Principle for the linearized equation): If v ∈ X̃ satis-
fies L̃v = f ′(ϕ)v, for some ϕ ∈ X, and v > 0 in Rn with v(0) = 0, then v vanishes
identically.

H5. (Maximum Principle for the difference operator): Given ϕ ∈ X, let

Lϕw(x) := L(ϕ + w)(x)− Lϕ(x).

Let U be an open set contained in {xn 6 µ−} ∪ {xn > µ+}, for some µ+ > µ− ∈ R.
If w ∈ X satisfies Lϕw = c(x)w in Rn, with

w(x) > 0 in Rn \ U and c(x) > κ if x ∈ U ,

for some κ > 0, then
w(x) > 0 for any x ∈ Rn.

H6. (Strong Maximum Principle for the difference equation): If v ∈ X satis-
fies Lϕv = f(ϕ + v) − f(ϕ) for some ϕ ∈ X, and v > 0 in Rn with v(0) = 0, then v
vanishes identically.

We remark that assumption H1 is almost harmless (it boils down to the standard linearization
procedure if the operator L is differentiable). Similarly, H2 is a very weak condition and it does
not even require, in principle, a regularity theory for (1) (for instance one can suitably choose
the space X in order to control enough derivatives of u to obtain the required compactness).
Under the above assumptions, we may state our general result as follows:

Theorem 1. Let u ∈ X be a solution of (1), with ‖u‖C1,β(Rn) finite, for some β ∈ (0, 1).
Let L satisfy H1–H6 and f satisfy (4).
Then u possesses one-dimensional symmetry, that is (5) holds.

Theorem 1 is motivated by a famous conjecture of Gibbons when L is the Laplace operator
(see [Car95, GT99]), which was motivated by the cosmological problem of detecting the shape
of the interfaces which “separate” the different regions of the universe which possibly arose
from the big-bang. Such conjecture was proved independently and with different methods
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by [Far99, BBG00, BHM00]. See [Far00, Far01] for the case of discontinuous nonlinearities.
In [FV] it is also shown that the uniform control of only one limit in (1) is enough to obtain
that u is one-dimensional under the additional assumption that u is a minimal solution.
In this sense, Theorem 1 may be seen as a generalization of the results of [Far99, BBG00,
BHM00] to a more general class of operators.
Such generalization is performed in order to apply Theorem 1 to concrete cases of interest.
As an application, we consider the case in which L is a fractional power of the Laplacian:

Theorem 2. Let L = −(−∆)s, with s ∈ (0, 1). Let f satisfy (4).
If u ∈ W 3,∞(Rn) is a solution of (1), then u possesses one-dimensional symmetry.

We refer to [Lan72, Ste70, Sil05] for the basics of fractional Laplacian theory.
We would like to recall that the fractional Laplacian is a very important operator, since it
naturally surfaces in many different areas, such as: the thin obstacle problem [Caf79], opti-
mization [DL76], finance [CT04], phase transitions [AB98, ABS98, CSM05, SV09b], stratified
materials [SV09a], anomalous diffusion [MK00], crystal dislocation [Nab52, Tol97], soft thin
films [Kur06], some models of semipermeable membranes and flame propagation [CRS09],
conservation laws [BKW01], the ultrarelativistic limit of quantum mechanics [FdlL86], quasi-
geostrophic flows [MT96, Cor98], multiple scattering [DG75, CK98, GK04], minimal sur-
faces [CRS, CV], materials science [Bat06], probability [Ito84, Ber96, BG99, JMW05, Val09]
and water waves [Sto57, Zak68, Whi74, CSS92, CG94, NS94, CW95, dlLP96, CSS97, CN00,
GG03, HN05, NT08, dlLV09].
When s = 1/2, Theorem 2 was proven, by different methods, in [CSM05] and an extension
of that proof to any s ∈ (0, 1) is given in [CS10].
Also, we recall that in dimension n = 2 the uniform limit assumption may be dropped in (1)
and Theorem 2 still holds true for monotone solutions, as proved in [SV09b, CS10]. The case
n = 3 has also been recently treated for some values of s, see [CC10], but many fundamental
questions are still open.
Now, as another consequence of Theorem 1, we give a very general result on (possibly nonlin-
ear) elliptic operators. For this, we denote by Symn the space of (n×n)-symmetric matrices.

Theorem 3. Let F = F (M,p) ∈ C1(Symn × Rn). Assume that there exists λ ∈ C
(
Symn ×

Rn, (0,+∞)
)

such that

(6) F (M + N, p)− F (M,p) > λ(M,p) ‖N‖
for any nonnegative definite (n× n)-symmetric matrix N .
Let Lu = F (D2u,∇u). Let f satisfy (4) and β ∈ (0, 1).
If u ∈ C3,β(Rn) is a solution of (1), then u possesses one-dimensional symmetry.

We remark that condition (6) is an ellipticity assumption: compare, for instance, with Def-
inition 2.1 on page 12 of [CC95] – we remark, in fact, that, by (6), F is uniformly elliptic
when restricted to any compact subset of Symn × Rn and, since u is assumed to be smooth,
then F is evaluated in a bounded set of parameters where it is uniformly elliptic.
The application of Theorem 3 is very wide, since it comprises, for instance:

• the Laplace operator, with the choice

F (M,p) = TrM,

• elliptic operators with constant coefficients, take

F (M,p) = aijMij + b · p,
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• quasilinear operators, such as

F (M,p) = (a + |p|2)(m−2)/2 TrM + (m− 2)(a + |p|2)(m−4)/2Mijpipj ,

with a > 0 and m > 1,
• the mean curvature operator

F (M,p) = (1 + |p|2)−1/2 TrM − (1 + |p|2)−3/2Mijpipj ,

• the elliptic fully nonlinear operators.
We point out that the assumption that u is smooth in Theorem 3 is not very restrictive, since
it may be obtained in many cases via elliptic regularity theory once u ∈ C1,β(Rn), see [CC95]
and references therein (in fact, a stronger regularity theory holds if n = 2, see [Nir53]).
We recall that a result similar to Theorem 3 for the uniformly elliptic fully nonlinear operators
of the form F (M,p) = F (M) has also been obtained in [Sav08] by using the theory of viscosity
solutions under the additional assumption on the existence of a suitable one-dimensional
profile2. Thus, the viscosity setting of [Sav08] and the classical one that we deal with here
are related but different in spirit (though, under additional assumptions on the operator,
viscosity solutions do become classical, see Chapters 8 and 9 in [CC95]).
It would be interesting to treat also the case of assumptions even more general than H1–H6.
For instance, it would be interesting to deal with operators in which elliptic singularities and
degeneracies occur (see e.g. [FV] and also [DG02, VSS06, FSV08] for some results in this
direction and [FV09a] for related problems and further references). Other cases of interest
that one would like to deal with are the subelliptic operators and the operators arising in
hyperbolic geometry (see, e.g., [BL02, BL03, FV09b, FV09c, BM09, BFV10] for results in
these frameworks, and also Section 2.8 of [FV09a] for further details).
Moreover, after this work was completed, we have received the interesting paper [BD] in which
related symmetry results have been obtained for viscosity solutions of some fully nonlinear
PDEs of a special form.
The proof of Theorem 1 that we give makes use of the technique of [Far99, Far03], suitably
modified in order to comprise our general case.
For this, in Section 2, we give an intermediate result based on monotonicity cones. In Section
3, we complete the proof of Theorem 1, while Theorems 2 and 3 are proven in Sections 4 and 5
respectively, by showing that the operators under consideration fulfill assumptions H1–H6.

2. A first symmetry result via monotonicity cones

The proof of Theorem 1 makes use of a first provisional statement, which goes as follows:

Lemma 4. Let u ∈ X be a bounded and uniformly Lipschitz solution of (1), with L satisfying
H1–H4 and f satisfying (4).
Assume also that there exists a ∈ (0, 1) such that

(7) ∂νu(x) > 0 for any x ∈ Rn and any ν = (ν1, . . . , νn) ∈ Sn−1 with νn > a.

Then u possesses one-dimensional symmetry.

2It may be worth to remark that we do not need to assume that any one-dimensional profile exists. In fact,
if no one-dimensional profile exists, our result may be seen as a non-existence result: namely, if we prove that
the solution must be one-dimensional and no one-dimensional solution exists, then we have that there are no
solutions at all.



RIGIDITY FOR ELLIPTIC PDES 5

Of course, Lemma 4 is just Theorem 1 with the additional hypothesis on the monotonicity
cone in (7): in Section 3 we will show that such additional assumption is, in fact, not needed
and so we will be able to derive Theorem 1 from Lemma 4.
In order to prove Lemma 4, we show that

(8) ∂νu(x) > 0 for any x ∈ Rn and any ν = (ν1, . . . , νn) ∈ Sn−1 with νn > 0.

To prove (8), we take

(9) a := inf{a > 0 for which (7) holds}.

If a = 0, then (8) is proved, so we assume, by contradiction, that

(10) a > 0.

Given S > 0, we define
iS := inf

x′∈Rn−1

|xn|6S
νn>a

∂νu(x′, xn).

By construction,

(11) iS > 0;

we claim that, in fact, that

(12) iS > 0.

To prove (12), we argue by contradiction and we suppose that there exists a sequence of ν(k) ∈
Sn−1 and x(k) ∈ Rn with

(13) |x(k)
n | 6 S,

ν(k) > a and

(14) lim
k→+∞

∂ν(k)u(x(k)) = 0.

From (11),

(15) ∂ν(k)u(x) > 0 for any x ∈ Rn.

We define

(16) u(k)(x) := u(x + x(k)).

Then, (14) becomes

(17) lim
k→+∞

∇u(k)(0) · ν(k) = 0.

Analogously, (15) writes

(18) ∇u(k)(x) · ν(k) > 0 for any x ∈ Rn.

Notice also that
|Lu(k)| = |f(u(k))| 6 sup

r∈[−‖u‖L∞(Rn)],‖u‖L∞(Rn)]
|f(r)|,

where (2) has been used. Thus, from (17), (18) and H2, there exist u(∞) ∈ X and ν∞ ∈ Sn−1,
with

(19) ν(∞) > a,
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such that

(20) lim
k→+∞

u(k)(x) = u(∞)(x) for any x ∈ Rn,

and

(21) Lu(∞) = f(u(∞)), ∇u(∞) · ν(∞) > 0 in Rn, with ∇u(∞)(0) · ν(∞) = 0.

Therefore, by H1, the function v := ∂ν(∞)u(∞) ∈ X̃ satisfies

L̃v = f ′(u)v, v(x) > 0 = v(0) for any x ∈ Rn.

As a consequence, from H4, v vanishes identically.
Accordingly,

(22) u(∞)(ν(∞)t)− u(∞)(−ν(∞)t) =
∫ t

−t
v(ν(∞)s) ds = 0 for any t > 0.

Recalling the uniform limit assumption in (1), we now take M > 0 in such a way that

u(x) > 1/2 if xn > M and u(x) 6 −1/2 if xn 6 −M .

Then, recalling (13) and (16),

u(k)(x) > 1/2 if xn > M + S and u(k)(x) 6 −1/2 if xn 6 −M − S.

Hence, from (20),

(23) u(∞)(x) > 1/2 if xn > M + S and u(∞)(x) 6 −1/2 if xn 6 −M − S.

We recall that, from (10) and (19), ν
(∞)
n > a > 0, so (23) implies that

u(∞)(ν(∞)t) > 1/2 and u(∞)(−ν(∞)t) 6 −1/2 if t > (M + S)/a.

This and (22) give that

0 = u(∞)(ν(∞)t)− u(∞)(−ν(∞)t) > 1.

This contradiction proves (12).
Now, we use (4), to see that f ′(r) > κ, for a suitable κ > 0, if |r− 1| 6 η?, for a suitable η? ∈
(0, 1/4). Also, the uniform limit assumption in (1) enable us to take M? > 0 such that u(x) >
1 − η? if xn > M? and u(x) 6 −1 + η? if xn 6 −M?. We also define c(x) := f ′(u(x)).
Hence, c(x) > κ when |xN | > M?.
Let also

ε :=
iM?

2(1 + ‖∇u‖L∞(Rn))
.

Notice that ε > 0, thanks to (12).
Then, if |xn| 6 M? and ν ∈ Sn−1 with νn ∈ [a− ε, a], then

∂νu(x) = ∇u(x) · ν > ∇u(x) · (ν ′, a)− |∇u(x) · (0, a− νn)|

> iM? − ‖∇u‖L∞(Rn)ε >
iM?

2
> 0.

Therefore, by H3, ∂νu(x) > 0 for any x ∈ Rn and any ν ∈ Sn−1 with νn ∈ [a− ε, a].
In fact, by H4, we see that ∂νu(x) > 0 for any x ∈ Rn and any ν ∈ Sn−1 with νn ∈ [a− ε, a].
This is in contradiction with (9), and so it proves (8).
Then, from (8), by taking µ = −ν, we obtain that

(24) ∂µu(x) < 0 for any x ∈ Rn and any µ = (µ1, . . . , µn) ∈ Sn−1 with µn < 0.
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By taking limits of νn and µn to 0 in (8) and (24), we deduce that

∂ωu(x) = 0 for any x ∈ Rn and any ω = (ω1, . . . , ωn) ∈ Sn−1 with ωn = 0.

Hence, ∂x1u(x) = · · · = ∂xn−1u(x) = 0 for any x ∈ Rn, which ends the proof of Lemma 4.

3. Proof of Theorem 1

Some of the arguments needed to proof Theorem 1 will be appropriate modifications of the
ones used in the proof of Lemma 4, by taking into account the difference operator Lu instead
of the linearized operator L̃. In order to prove Theorem 1, first of all, we show that

(25) ∂nu(x) > 0 for any x ∈ Rn.

To prove (25), we take h > 0, we let

Thu(x) := u(x + hen)− u(x)

and we observe that

(26) f(u(x + hen))− f(u(x)) = ch(x)Thu(x),

where

(27) ch(x) :=
∫ 1

0
f ′

(
tu(x) + (1− t)u(x + hen)

)
dt.

Now, recalling (4), we take δ ∈ (0, 1/2) such that

(28) f ′ > κ in (−∞,−1 + δ] ∪ [1− δ,+∞), for some κ > 0.

Then, by the uniform limit assumption in (1), we take M > 0 such that

(29) u(x) > 1− δ if xn > M and u(x) 6 −1 + δ if xn 6 −M .

Now, we observe the following useful property:

(30) if x ∈ {Thu < 0} ∩ {|xn| > M}, then ch(x) > κ.

Indeed, on the one hand, if x ∈ {Thu < 0} ∩ {xn 6 −M},
u(x + hen) < u(x) 6 −1 + δ

and therefore

(31) tu(x) + (1− t)u(x + hen) 6 −1 + δ

for any x ∈ {Thu < 0} ∩ {xn 6 −M} and t ∈ [0, 1].
On the other hand, if x ∈ {Thu < 0} ∩ {xn > M}, then u(x) > u(x + hen) > 1 − δ, and
therefore

(32) tu(x) + (1− t)u(x + hen) > 1− δ

for any x ∈ {Thu < 0} ∩ {xn > M} and t ∈ [0, 1].
From (27), (28), (31) and (32), we obtain that (30) holds true.
We claim that

(33) if h > 2M , then Thu(x) > 0 for any x ∈ Rn.

To prove (33), fix h > 2M and let U := {Thu < 0}. Then,

(34) if xn = −M , Thu(x) > inf
xn>M

u(x)− sup
xn6−M

u(x) > (1− δ)− (−1 + δ) > 0,
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and so

(35) U = U+ ∪ U−,

where U+ (resp., U−) is an open set contained in the half-space {xn > −M} (resp.,{xn 6
−M}). Then, (26), (35) and (30), together with H5, imply that: if h > 2M , then Thu(x) > 0
for any x ∈ Rn. Hence, (33) follows from H6.
Now, we define

ho := inf
{

h > 0 s.t. Thu(x) > 0 for any x ∈ Rn with |xn| 6 M
}

.

Note that this definition is well-posed, due to (33).
We prove that

(36) ho = 0.

The proof of (36) is by contradiction. Suppose ho > 0. We have that

u(x + (ho + ε)en)− u(x) > 0 for any x ∈ {|xn| 6 M} and any ε > 0

and u(x(k) + (ho − ε(k))en)− u(x(k)) 6 0 for some x(k) ∈ {|xn| 6 M},
(37)

where ε(k) > 0 is an infinitesimal sequence.
As a consequence,

Thou(x) = lim
ε→0+

u(x + (ho + ε)en)− u(x) > 0 for any x ∈ {|xn| 6 M}.

Therefore, recalling (30) and H5,

(38) Thou(x) > 0 for any x ∈ Rn.

Now, we define u(k)(x) := u(x + x(k)) and we deduce from H2 that, up to subsequence, u(k)

approaches some u(∞), with Lu(Thou
(∞)) = f(Thou

(∞) + u)− f(u).
By (38), we see that Thou

(∞)(x) > 0 for any x ∈ Rn. Also,

Thou
(∞)(0) = lim

k→+∞
u(x(k) + hoen)− u(x(k))

6 lim
k→+∞

u(x(k) + (ho − ε(k))en)− u(x(k)) + ε(k)‖u‖C1,β(Rn)

6 0,

hence Thou
(∞)(0) = 0.

Consequently, by H6, we get that Thou
(∞) vanishes identically. Therefore, u(∞)(x + hoen) =

u(∞)(x) for any x ∈ Rn and so, by iterating,

(39) u(∞)(x + jhoen) = u(∞)(x) for any x ∈ Rn and any j ∈ Z.

Now, if j ∈ N ∩ [2M/ho,+∞), we have that jho + x
(k)
n > M and −jho + x

(k)
n 6 −M ,

so u(jhoen + x(k)) > 1− δ and u(−jhoen + x(k)) 6 −1 + δ.
Then, for a such j,

2(1− δ) > lim
k→+∞

u(jhoen + x(k))− u(−jhoen + x(k))

= u(∞)(jhoen)− u(∞)(−jhoen).

Since this is in contradiction with (39), we have proved (36).
That is, Thu(x) > 0 for any x with {|xn| 6 M} and any h > 0. Consequently, by (30) and H5,
we deduce that Thu(x) > 0 for any x ∈ Rn.
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Accordingly, ∂nu(x) > 0 for any x ∈ Rn, and then (25) follows from H4.
Now, we show that for any S > 0 there exists a(S) ∈ (0, 1) such that

∂νu(x) > 0 for any x ∈ Rn ∩ {|xn| 6 S}
and any ν = (ν1, . . . , νn) ∈ Sn−1 with νn > a(S).

(40)

The proof of (40) is by contradiction. Suppose that, for a fixed S, there exist sequences x(k) ∈
{|xn| 6 S} and ν(k) ∈ Sn−1 such that ν

(k)
n > 1− (1/k) and

(41) ∂ν(k)u(x(k)) 6 0.

Let u(k)(x) := u(x + x(k)). Notice that ν(k) approaches en for large k, therefore, by H2,
we obtain that, up to subsequence, u(k) approaches some u(∞) together with its derivative,
with Lu(∞) = f(u(∞)) and L̃(∂nu(∞)) = f ′(u(∞))∂nu(∞).
We remark that, by (25),

∂nu(∞) > 0,

while, by (41),

∂nu(∞)(0) 6 0.

Accordingly, H4 says that ∂nu(∞) vanishes identically.
Thus, if t − S is large enough (hence ten − |x(k)

n | is large enough), the uniform limit in (1)
gives that

9
10

6 lim
k→+∞

u(ten + x(k)) = u(∞)(ten) = u(∞)(−ten) = lim
k→+∞

u(−ten + x(k)) 6 − 9
10

.

This contradiction proves (40).
Now, recalling the definition of M given in (28) and (29), in the notation of (40), we define

a := a(M).

Then, as a consequence of (40), H3 and (28), we have that ∂νu(x) > 0 for any x ∈ Rn,
if νn > a. Then, by (40) and H4, we conclude that ∂νu(x) > 0 for any x ∈ Rn, if νn > a.
That is, condition (7) holds true. Therefore, the proof of Theorem 1 is completed thanks to
Lemma 4.

4. Proof of Theorem 2

We will deduce Theorem 2 from Theorem 1, in which L = L̃ = Lϕ := −(−∆)s, X :=
W 3,∞(Rn) and X̃ := W 2,∞(Rn). For this, we need to check hypotheses H1–H6.
First, we claim that, if u ∈ W 3,∞(Rn), then

(42) ∂ω

(
− (−∆)su

)
= −(−∆)s(∂ωu).

Indeed, (42) is obvious if u belongs to the Schwartz class of rapidly decreasing functions, since,
in this case, one can represent (−∆)s via a Fourier transform (see, for instance, [Lan72, Ste70,
Sil05, Val09]) and check (42).
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If, on the other hand, u ∈ W 3,∞(Rn), we have that for any h > 0,

u(hω + y) + u(hω − y)− 2u(hω)
|y|n+2s

− u(y) + u(−y)− 2u(0)
|y|n+2s

=
u(hω + y)− u(y) + u(hω − y)− u(−y)− 2u(hω) + 2u(0)

|y|n+2s

6 5‖u‖W 3,∞(Rn)h
[
|y|−(n+2s)χRn\B1

(y) + |y|2−(n+2s)χB1(y)
]
∈ L1(Rn).

Thus, the Dominated Convergence Theorem gives that

∂ω

(∫
Rn

u(x + y) + u(x− y)− 2u(x)
|y|n+2s

dy

)
x=0

= lim
h→0+

∫
Rn

u(hω + y) + u(hω − y)− 2u(hω)
h|y|n+2s

dy

−
∫

Rn

u(y) + u(−y)− 2u(0)
h|y|n+2s

dy

= lim
h→0+

∫
Rn

u(hω + y)− u(y) + u(hω − y)− u(−y)− 2u(hω) + 2u(0)
h|y|n+2s

dy

=
∫

Rn

∂ωu(y) + ∂ωu(−y)− 2∂ωu(0)
|y|n+2s

dy.

This, via the integral representation of the fractional Laplacian (see [Lan72, Ste70, Sil05,
Val09]), the above identity reads

∂ω

(
− (−∆)su(x)

)
x=0

= −
(
(−∆)s(∂ωu)

)
(0),

which proves (42) at x = 0 (and analogously at any point).
Then, hypothesis H1 follows from (42).
Hypothesis H2 follows from the fact that X = W 3,∞, using the Theorem of Ascoli and the
integral representation of the fractional Laplacian.
We now prove H3, by arguing by contradiction. We suppose that

i := inf
Rn

w < 0

and we take x(k) ∈ Rn such that

lim
k→+∞

w(x(k)) = i < 0.

In particular, we may suppose that w(x(k)) 6 i/2 < 0, and therefore x(k) ∈ {|xn| > M}, and
so c(x(k)) > κ > 0.
Thus, if we set w(k)(x) := w(x + x(k)), we see that

−(−∆)sw(k)(x) = −(−∆)sw(x + x(k)) = c(x + x(k))w(x + x(k)).

In particular,

(43) C(n, s)
∫

Rn

w(k)(y)− w(k)(0)
|y|n+2s

= −(−∆)sw(k)(0) = c(x(k))w(x(k)) 6
κi

2
,

for a suitable C(n, s) > 0. In the first equality in (43), we have used one of the classical
representations of the fractional Laplacian, see, e.g., [Lan72, Ste70, Sil05, Val09] for details.
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Since w ∈ X̃ := W 2,∞(Rn), we have that w(k) converges locally uniformly to some w(∞), up
to subsequence, due to Theorem of Ascoli, and so, by taking the limit in (43), we have

(44) C(n, s)
∫

Rn

w(∞)(y)− w(∞)(0)
|y|n+2s

6
κi

2
.

On the other hand,

w(∞)(0) = lim
k→+∞

w(k)(0)

= lim
k→+∞

w(x(k)) = inf
Rn

w 6 w(y + x(k)) = w(k)(y),
(45)

for any y ∈ Rn, and so

w(∞)(0) 6 w(∞)(y)

for any y ∈ Rn.
As a consequence, (44) gives that

0 6 C(n, s)
∫

Rn

w(∞)(y)− w(∞)(0)
|y|n+2s

6
κi

2
< 0.

This contradiction proves H3.
Take now v as requested in H4: then, the integral representation of the fractional Laplacian
gives that, for a suitable C(n, s) > 0,

0 = f ′(u(0))v(0) = −(−∆)sv(0) = C(n, s)
∫

Rn

v(y)− v(0)
|y|n+2s

dy = C(n, s)
∫

Rn

v(y)
|y|n+2s

dy,(46)

with the integral taken in the Cauchy principal value sense.
Since v > 0, (46) implies that v is identically zero, thus checking H4.
The proof of H5 (resp., H6) is analogous to the one of H3 (resp., H4): just take U instead
of {|xn| > M} (resp. f(u + v)− f(u) instead of f ′(u)v).
The proof of Theorem 2 is thus complete.

5. Proof of Theorem 3

We take X := C3,β(Rn) and X̃ := C2,β(Rn). Notice that, for any v ∈ X̃,

f(u + v)− f(u) = cv, with c(x) :=
∫ 1

0
f ′(u(x) + tv(x)) dt.(47)
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Also,

L̃v =
n∑

i,j=1

ãij∂
2
ijv + b̃ · ∇v,

Luv =F (D2u + D2v,∇u +∇v)− F (D2u,∇u +∇v)

+ F (D2u,∇u +∇v)− F (D2u,∇u)

=
n∑

i,j=1

aij∂
2
ijv + b · ∇v,

with ãij(x) :=
∂F

∂Mij
(D2u(x),∇u(x)), b̃(x) :=

∂F

∂p
(D2u(x),∇u(x)),

aij(x) :=
∫ 1

0

∂F

∂Mij
(D2u(x) + tD2v(x),∇u(x)) dt,

and b(x) :=
∫ 1

0

∂F

∂p
(D2u(x),∇u(x) + t∇v(x)) dt.

(48)

In this way, H1 is obviously satisfied and H2 is a consequence of the Theorem of Ascoli. We
observe that, by construction

(49) ãij , aij , b̃, b, c ∈ C0,β(Rn) ⊂ L∞loc(Rn).

Moreover, from (6)
n∑

i,j=1

∂F

∂Mij
(M,p)Nij = lim

s→0+

F (M + sN, p)− F (M,p)
s

> λ(M,p) ‖N‖,

for any nonnegative definite matrix N .
In particular, given any ξ ∈ Rn, taking Nij := ξiξj ,

n∑
i,j=1

∂F

∂Mij
(M,p)ξiξj > λ(M,p)

√√√√ n∑
i,j=1

(ξiξj)2 > λ(M,p)

√√√√ n∑
i=1

(ξiξi)2 >
λ(M,p)

n2
‖ξ‖2.

Therefore, given any R > 0, there exists λ?
R,u,v > 0 such that

inf
x∈BR

τ,σ∈[0,1]

∑
i,j

∂F

∂Mij

(
D2u(x) + τD2v(x),∇u(x) + σ∇v(x)

)
ξiξj > λ?

R,u,v‖ξ‖2.

As a consequence, for any ξ ∈ Rn,

(50) inf
x∈BR

n∑
i,j=1

ãijξiξj > λ?
R,u,v‖ξ‖2 and inf

x∈BR

n∑
i,j=1

aijξiξj > λ?
R,u,v‖ξ‖2.

In particular,

(51)
n∑

i,j=1

ãijξiξj > 0 and
n∑

i,j=1

aijξiξj > 0.

Then, H4 and H6 are a consequence of (47), (48), (49), (50) and Hopf Strong Maximum
Principle (see, for instance, [GT01] or Theorem 2.1.2 of [PS07]).
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Therefore, in order to complete the proof of Theorem 3, it remains to prove H3 and H5 (and
then invoke Theorem 1).
We prove H5 (the proof of H3 is completely analogous). Suppose, by contradiction, that the
conditions on w in H5 hold, but

i := inf
Rn

w < 0.

We take x(k) ∈ Rn such that

lim
k→+∞

w(x(k)) = i < 0.

In particular, we may suppose that w(x(k)) 6 i/2 < 0, and therefore x(k) ∈ U , and so
c(x(k)) > κ > 0.
We set w(k)(x) := w(x + x(k)) and we use the definition of X̃ and the Theorem of Ascoli to
obtain, up to subsequence, that w(k) approaches some w(∞) locally uniformly together with
two derivatives. This also gives the convergence of the coefficients aij = a

(k)
ij and b = b(k)

obtained for w(k) via (48) to suitable a
(∞)
ij and b(∞). Notice that, from (51), we have

(52)
n∑

i,j=1

a
(∞)
ij ξiξj > 0 for any ξ ∈ Rn.

Also, 0 is a minimum for w(∞) (see the computation in (45)), and so ∇w(∞)(0) = 0 and
D2w(∞)(0) is nonnegative definite.
As a consequence, recalling (52)

κi

2
> lim

k→+∞
c(x(k))w(x(k))

= lim
k→+∞

Luw(x(k))

= lim
k→+∞

n∑
i,j=1

a
(k)
ij ∂2

ijw(x(k)) + b(k) · ∇w(x(k))

= lim
k→+∞

n∑
i,j=1

a
(k)
ij ∂2

ijw
(k)(0) + b(k) · ∇w(k)(0)

=
n∑

i,j=1

a
(∞)
ij ∂2

ijw
(∞)(0) + b(∞) · ∇w(∞)(0)

> 0.

Since i < 0, this is a contradiction and it proves H5.
The proof of Theorem 3 is thus completed.
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tions and their Applications, 73, Birkhäuser Verlag, Basel, 2007. MR MR2356201

[Sav08] Ovidiu Savin, Entire solutions to a class of fully nonlinear elliptic equations, Ann. Sc. Norm. Super.
Pisa Cl. Sci. (5) 7 (2008), no. 3, 369–405. MR MR2466434

[Sil05] Luis Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,
Ph.D. thesis, University of Texas at Austin, 2005.

[Ste70] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton University
Press, Princeton, N.J., 1970, Princeton Mathematical Series, No. 30. MR 44 7280

[Sto57] J. J. Stoker, Water waves: The mathematical theory with applications, Pure and Applied Mathe-
matics, Vol. IV, Interscience Publishers, Inc., New York, 1957. MR MR0103672 (21 #2438)

[SV09a] Ovidiu Savin and Enrico Valdinoci, Elliptic PDEs with fibered nonlinearities, J. Geom. Anal. 19
(2009), no. 2, 420–432. MR MR2481968 (2009m:35165)

[SV09b] Yannick Sire and Enrico Valdinoci, Fractional Laplacian phase transitions and boundary reac-
tions: a geometric inequality and a symmetry result, J. Funct. Anal. 256 (2009), no. 6, 1842–1864.
MR MR2498561

[Tol97] J. F. Toland, The Peierls-Nabarro and Benjamin-Ono equations, J. Funct. Anal. 145 (1997), no. 1,
136–150. MR MR1442163 (97m:35235)

[Val09] Enrico Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat.
Apl. S~eMA (2009), no. 49, 33–44. MR 2584076



RIGIDITY FOR ELLIPTIC PDES 17

[VSS06] Enrico Valdinoci, Berardino Sciunzi, and Vasile Ovidiu Savin, Flat level set regularity of p-
Laplace phase transitions, Mem. Amer. Math. Soc. 182 (2006), no. 858, vi+144. MR MR2228294
(2007a:35050)

[Whi74] G. B. Whitham, Linear and nonlinear waves, Wiley-Interscience [John Wiley & Sons], New York,
1974, Pure and Applied Mathematics. MR MR0483954 (58 #3905)

[Zak68] V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, Zh.
Prikl. Mekh. Tekh. Fiz. 9 (1968), 86–94.


