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METRICS OF CONSTANT NEGATIVE SCALAR-WEYL CURVATURE

GIOVANNI CATINO

ABsTrRACT. Extending Aubin’s construction of metrics with constant negative scalar curvature, we
prove that every n-dimensional closed manifold admits a Riemannian metric with constant negative
scalar-Weyl curvature, that is R + t|W|,¢t € R. In particular, there are no topological obstructions for
metrics with e-pinched Weyl curvature and negative scalar curvature.

1. Introduction

A natural problem in Riemannian geometry is to understand the relation between curvature
and topology of the underlying manifold. Given a smooth n-dimensional manifold M, n > 3, the
curvature tensor of a Riemannian metric g on M can be decomposed in its Weyl, Ricci and scalar
curvature part, that is

. . R,
Riemy =Wy + 25 iy O = 50—y =59 09

where (® is the Kulkarni-Nomizu product. It is common knowledge that weak positive curvature
conditions, such as positive scalar curvature Ry [17, 8|, or strong negative ones, such as negative
sectional curvature, are in general obstructed. On the other hand, Aubin in [1, 2] showed that,
on every smooth n-dimensional closed (compact with empty boundary) manifold, there exists a
smooth Riemannian metric with constant negative scalar curvature, R, = —1. This result was
extended to the complete, non-compact, case by Bland and Kalka in [3]. In particular, there are
no topological obstructions for negative scalar curvature metrics. Actually, a much stronger result
is known: Lohkamp in [15] proved that every smooth n-dimensional complete manifold admits
a complete smooth Riemannian metric with (strictly) negative Ricci curvature, Ricy < 0 (the
three-dimensional case was considered in [7, 4]).

By virtue of the Riemann components, in dimension n > 4, it is natural to ask if there are
unobstructed curvature conditions which involve the Weyl curvature. To the best of our knowledge,
the first result in this direction was proved by Aubin [2], who constructed a metric with nowhere
vanishing Weyl curvature on every closed n-dimensional manifold. As a consequence, in [6] the
authors proved the existence of a canonical metric (weak harmonic Weyl) whose Weyl tensor
satisfies a second order Euler-Lagrange PDE, on every given closed four-manifold.

In [9], Gursky studied a variant of the Yamabe problem related to a modified scalar curvature
given by

R, +t|Wyly, teR,
where |W,|, denotes the norm of the Weyl curvature of g. We will refer to this quantity as the
scalar-Weyl curvature (see Section 2). Constant scalar-Weyl curvature metrics naturally arise as
critical points in the conformal class of the modified Einstein-Hilbert functional

gr— VOlg(M)inT_Q /M (Rg + t{Wylg) V.

It is clear that positive scalar-Weyl curvature metrics are obstructed, at least for ¢ < 0, and
naturally we may ask what we can say concerning the negative regime. In this paper we prove the
following existence result:

Theorem 1.1. On every smooth n-dimensional closed manifold M, for every t € R, there exists
a smooth Riemannian metric g = g; with

Ry +t|Wylg=—1 on M.
In particular, there are no topological obstructions for negative scalar-Weyl curvature metrics.

Remark 1.2. In dimension four, Theorem 1.1 was proved also by Seshadri in [18]. We observe that
his proof cannot be trivially generalized to higher dimension, since it is based on the existence of
a hyperbolic metric on a knot complement of S3.
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It is well known that there are obstructions for the existence of metrics with zero Weyl curvature.
On the other hand, choosing t = 1/1/2, € > 0, in Theorem 1.1 we obtain the following existence
result for metrics with e-pinched Weyl curvature and negative scalar curvature:

Corollary 1.3. On every smooth n-dimensional closed manifold, for every e > 0, there exists a
smooth Riemannian metric g = g. with

R, <0 and |Wg|§<€R§ on M.

The interesting notion of isotropic curvature was introduced by Micallef and Moore in [16]:
(M, g) has positive (or negative) isotropic curvature if and only if the curvature tensor of g satisfies

Ri313 + Ria14 + Ro3o3 + Roaoa — 2R1234 >0 (or < 0)

for all orthonormal 4-frames {ej,e2,e3,€e4}. Using minimal surfaces, the author of [16] proved
that any closed simply connected manifold with positive isotropic curvature is homeomorphic to
the sphere S™. As already observed in [18, Theorem 1.1], in dimension four, metrics with negative
scalar-Weyl curvature for ¢ > 6 have negative isotropic curvature. In particular, Theorem 1.1
implies the following:

Corollary 1.4 (Seshadri [18]). On every smooth four-dimensional orientable closed manifold there
exists a smooth Riemannian metric with negative isotropic curvature.

We finally note that, in dimension n > 4, a characterization of negative isotropic curvature was
given in [13] in terms of an inequality involving the Weyl tensor and the (n — 4)-curvature, which
coincides with the scalar curvature if n = 4. It would be interesting to extend Corollary 1.4 to
n > 4, by following this path.

2. The scalar-Weyl curvature

In this section we briefly recall the variational and conformal aspects of the scalar-Weyl curva-
ture, first studied by Gursky in [9]. Let (M, g) be a n-dimensional closed (compact with empty
boundary) Riemannian manifold. First we recall that the conformal Laplacian is the operator

4(n -1
L, = —(”fQ)Ag + Ry,

which has the following well known conformal covariance property: if § = u*/("=2)g, then
Lih=u" "2 Ly(gu), Vo e CP(M).
Moreover, the scalar curvature of the conformally related metric g is given by
Ry =u "2 Lou.

Therefore, the operator £ plays a prominent role in the resolution of the Yamabe variational
problem. Given t € R, we define the scalar-Weyl curvature

(2.1) Fy:= Ry + t{Wyl,
and the associated modified conformal Laplacian
4(n—1)
t._
;Cg = —ﬁAg + Fg,

where |W,|, denotes the norm of the Weyl curvature of g. The key observation in [9] is that the
couples (Fy, E;) and (Ry, L) share the same conformal properties. In fact, if g = u* (=2 g then

n

_nt2 _n42
(2.2) Li¢=u" 2L (¢u), Vo€ C*(M), and Fy=u n2Lu.

In particular, a spectral argument shows the following [9, Proposition 3.2]:

Lemma 2.1. Let (M,g) be a n-dimensional closed Riemannian manifold. Then, there ezists a
C%* metric g € [g] with either F3 >0, F; <0, or F; = 0. Moreover, these three possibilities are
mutually exclusive.
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In analogy with the Yamabe problem, Gursky defined the functional

~ LtudV,
Y (u) == Jag Ly g(n72)/2
(Jag w2/ (=2 dvy)
and the conformal invariant
Y(M,[g]):= inf Y(u).

weH (M)

Using (2.2), it is easy to see that the functional u — ?(u) is equivalent to the modified Einstein-
Hilbert functional
1) m F5dV5

~_ 4/(n-2)
g=u gr— Voly(M)m-2)72

Following a classical subcritical regularization argument, Gursky showed that, if ?(M ,[g]) <0,
then the variational problem of finding a conformal metric § € [g] with constant scalar-Weyl
curvature F' can be solved. The proof (in dimension four) can be found in [9, Proposition 3.5] and
it can be trivially generalized to dimension n > 4. In particular, we have the following sufficient
condition to the existence of constant negative scalar-Weyl curvature:

Lemma 2.2. Let (M, g) be a n-dimensional closed Riemannian manifold. If there exists a metric
g’ € [g] such that

/ Fg/ dVg/ <0,
M

then, there exists a (unique) C*“ metric g € [g] such that F; = —1.

To conclude this section, we observe that the full modified Yamabe problem related to the
scalar-Weyl curvature and more generally modified scalar curvatures was treated in [12]. Moreover,
these techniques introduced by Gursky, have been used in various contexts, especially in the four-
dimensional case. For instance we want to highlight [10, 11, 14, 18].

3. Aubin’s metric deformation: two integral inequalities

In this section we first recall the variational formulas for some geometric quantities under the
deformation of the metric of the type

g =g+df @df, feC>®(M).

In [1, 2] Aubin, with a clever coupling of this deformation with a conformal one, proved local and
global existence results of metrics satisfying special curvature conditions. The proof of the first
three formulas can be found in [2]. The variation of the Weyl tensor can be found in [5, Chapter
2].

Lemma 3.1. Let (M, g) be a n-dimensional Riemannian manifold and consider the variation of
the metric g, in a given local coordinate system, defined by

9ij = gij + fifj, f e C®(M).
Then we have

dVy = w'/?dv,,

(o) =gi - L2
Ri= R 2 Rif 7 [(AF)? = fuf®| = (AN F iy = FiufF),

ikt = Wikt + Eg(f)ijne,
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with w =1+ |V f|* and

Ey(Piste = Gl = fielow) + 5 (Ray e = Ry e+ Ry fufic — Ry o)

- m(gikfjft = gitfifr + giefifv — ginfift)
+ w(J:J:qQ)[Ripkq(gjt + fift) — Riptq(9jk + [ fx) + Rjptq(Gir + fifr) — Riprq(9it + fift)]
N m[gikgﬁ — 9itGik + gk [ ft — g [ e + 95 fifre — gjn fi fi]
_ m{[(Af)fzk — [ipfP1(ge + Fife) = (AF) fie — fipfE) gk + [ fi)}
— g AN = L+ 15 = (AN e = Lo + 1)}
1
+ win—1)(n—2) {(A - |V2fﬂ (9ikgjt — 9it 9k + Gin fi fe — gt fifr + 9efife — g fife)
+ wzj(cpf )[(fzkqu Tipfra) (g5t + fife) = (fit fog — finfea) gk + fi fr)]
+ wQJ(I T )[(fjtqu fipfra)(gix + fife) — (Firfoq — Finfrg)(git + Fifo)l
2
B wQ(n _ 1)(n _ 2) [(Af)fpqupq - fpqufqrfr](gikgjt - gitgjk)
2

=) AN I o = P Foad " g3 = gufi i+ 9infii  giwfifo).

Moreover,
L fifI CSNFE — f ]
R Bl 2 g (AA P
w

w

R R e

We will denote by [g] the conformal class of the metric g. Using a conformal deformation, we
can show the following first integral sufficient condition for the existence of a constant negative
scalar-Weyl curvature:

and thus

Lemma 3.2. Let M be a n-dimensional closed manifold. If there exists a positive smooth function
u € C*(M) such that for a Riemannian metric g on M it holds

A(n—1
/FqudVngL)/ IVul2dV, < 0,
M n—2 Ju

then there exists a (unique) C*® metric g € [g] such that Fy = —1.

Proof. We consider the conformal metric g;; = u?/("=2)g. By (2.2) we have

4in—1) Au
Fy = By Wy =02 (B ), = S,

Therefore, since dV, = u?*/("=2)qV, using the assumption we obtain
4(n—1
/ FydVy = / Fyu®dVy + M/ [Vul?dV, < 0.
M M n—2 Ju
The conclusion follows now by Lemma 2.2. O

Using Aubin’s deformations, we prove the following second integral sufficient condition for the
existence of a constant negative scalar-Weyl curvature:
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Lemma 3.3. Let M be a n-dimensional closed manifold. Suppose that there exists a smooth
function ¢ € C°(M) such that for a Riemannian metric g on M and some t > 0 it holds

| R+ tWilo) v+t [ 1B av,
M M
Rijp' ! nfl/ {‘Pip@p%@iq@q izt |2
Y L) i SR |V - dv, <0,
/Ml+lv<p|2 T =2 [y LA+ [VeP)? (14[Ve2)3] 7

where | - |, denotes the norm with respect of g+ dp ® dp and Eq(p) is defined as in Lemma 3.1.
Then, there exists a (unique) C** metric g € [g+ dp ® dy] such that Fy = —1.

Proof. Let ¢ € C*°(M). Applying Lemma 3.2 to the metric ¢’ = g + dp ® dp with
w = (1 4 |v80|2)—1/4’

we know that there exists a conformal metric ¢” € [¢'] with Fyr = —1, if
Fy 4(n—1 —1/4|2
/ ’ v, + 2 )/ |V (1 el?) ) vy <o,
M (14 [Vel?) n=2 Ju ¢
From Lemma 3.1 we obtain the equivalent inequality

4(n—1)/ oy —1/4 9 —1/4( g 0ip; >
F,dV,+ ———= 0; (1 + |V 0; (1+1|V W T ) dV,
/]\/[g g n—2 Jy (L+1vel) s (L 1Vel) g 1+ |Ve|? I

n—1 PipPPPiq? izt |2
= [ F,dV, + / { P — J dv, < 0.
/M T =2 [y [+ ]Ve2)2 (14 (V23]

Using again Lemma 3.1, we get

Ry
[ rvavy= [ Ryl av, = [ @il av, - [ S22y,
M M M v 1+ [Vl

Using that

(Wyrle < [Wyle + [Eg(0)]
where E4(yp) is defined as in Lemma 3.1, we conclude the proof of this lemma. g

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1. The strategy of the proof takes strong inspiration from
the works of Aubin in [1, 2].

Step 1. From [1, 2] we know that, on a closed n-dimensional manifold, there exists a Riemannian
metric ¢’ with constant scalar curvature —1. In particular, if ¢t <0, F,y < 0. By Lemma 2.2, there
exists a metric g € [¢'] such that Fy = —1. Therefore, from now on we focus on the case

t>0.
First of all, we can choose a Riemannian metric g with
Fy=R,+t|Wylg >0 on M,

otherwise Theorem 1.1 would immediately follow from Lemma 2.1 and Lemma 2.2. Consider a
positive smooth function 1 € C*° (M) and a positive constant k > 0, and define

g =49, ¢" =g +dky)®dke).
If we fix t > 0 and apply Lemma 3.3 to the metric ¢’ with ¢ = ki, we obtain that if
joV’,z/JVf],w

Opri= | (Ry +tWyliy) dVy +t | By (ki) |y dVy — | —oL P dVy,
= [ Byt tWyleo) Vbt 1By Gy~ [ S av,
Ln-l / ViV eVIuVey VOV eV P
n=2Ju | (VR +[Vgy5)? (/R +[Vgyl3)?

then there exists a (unique) C** metric g € [¢”] such that Fj = —1. Therefore, to prove Theorem
1.1, it is sufficient to show that ®,; < 0 for some positive smooth function ) and positive constant
k (concerning the regularity of the metric, see the end of the proof). Let

f — w(n72)/2.

aVy <0,
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With respect to the metric g, by standard formulas for conformal transformations (see [5, Chapter
5]), we have

R, — 1 <R92(n1)Af+n1|Vf|2>’

P n—2 f n—2 f2
fij  n=1Fff; 1 Af
/ P e — p—
Rij*Rzg i +’I’L—2 IE D) fgzp
1
(4.1) ikt = EWijkh

Vg =" dVy = fdVy,
/ 1 1
Vi =1y — v <¢ﬂ/1j - 2V¢|2gzj) :
Moreover, since
g" =g +d(ky) © (k) = v [g -+ d(2k /D) ® d(2k/5)| =: ¥,

from the conformal invariance of the Weyl curvature and Lemma 3.1, we obtain

1 1
iwijkt = m

Therefore, the "error term" of Weyl tensor under Aubin’s deformation of the metric satisfies the
following conformal invariance:

ikt T By (k)ijre = Wi, = {Wijkt + Eg(%\/@)ijkt] = Wi+ = E (2k/9) st

(4.2) By (k) = LB, (2k/D).

In particular, we have the relations
1 1
(Wylky = Wl +atkp)0a(ew) = $|Wg'|§ = W\ng

and

1 1
‘Eg’(kl/’”kw = *|Eg’(k¢)|§ = W‘Eg@k\/%)b

(8

Following the computation in [2], putting all together we obtain

t Rij i,
o= [ (R Ll - W) favp+e [ g, er /B,

ol = g v wap ‘
o e s [, s e
S L e e
— . . oo |2
o L e e~ e e

1 6 _ 2(aly. .ah¥a)d
In-1 /M 11Vl V| (g2 ¢J)¢deg.

k2n—2 (/R + |V[?)?

Moreover, since

IVfI? |fiy'? _1n-=-2 fi?
/ Voo | T v vop) T 2 /M R

AFIVY? 1 GAf
/M Ve V=T ) ue g voe
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we finally get

_ oy Bty ! B
Dy —/M (Rg+ ¢|Wg|g w/k2j+|vj¢|2) deg—Ft/Mw\Eg(ij\/Eﬂg dv,

fij'pd
* A My el

1n-—1 flwz v 1 YAf

(43) e /Mw/kuwwdg_ﬁ o v W
n—1 VipPPig? |yt P ]
n 2 /M [(W CIVePR T ke vupe ] | Ve

1 6 _ 2 - ahtahd

k2n—2 (/R +[VY[2)?

Step 2. Let y = y(x) be a fixed smooth real function such that

y(—x) = y(x) VzeR

y(@) = 1 Vel > 1

y(z) >5>0 Ve eR

y'(x) >0 Vo<z<l1

y'(x)>1 V(1 /Y <o < (3/4)H 00,
Let p € M and consider a local, normal, geodesic polar coordinate system around p: p, ¢1, -+ , dn—1.}
We have g,, = 1, g,i = 0, gij = 0;j + p*aij, "7 = 1 (from now on, the indices i = 1,...,n —1

correspond to the coordinate ¢;). The coefficients a;; are of order 1. In particular, we have that
the Christoffel symbols of the metric g satisfy

p
(4.4) [0, =0, I5i=0. I =—3(aij + pdpaij).

Let B, = B,.(p) be the geodesic ball centered at p of radius 0 < r < rg, with rg such that B, C M.
For p’ € B,., we choose

fW') =y (g) , p=disty(p', p).
In particular, from (4.4), we have
1
(4.5) fo) =~y (g) , filp) =0,
1
(4.6) Too®) = 50" (B) 0 1) =0, £i50) = 2= (i + pdyaig) v’ (2).-

From now on, to simplify the expressions, we will omit arguments in the functions: it will be
clear that if f, f,, etc. are computed at p’ € B,, then y,vy’,y” will be computed at p/r with
p = disty(p’, p). Moreover, we will denote by C' = C(n, d,t,p) > 0 some universal positive constant
independent of r and k.

Since 0 < p < r, we have

/ 1

<

fp:?7 fizoa fpp:ﬁv fpi:Oa |f2]|§CTfp§Cy/SC
Thus, using that ¢ = f2/("=2) and 0 < § < f < 1, we get
y Y C
(47) C_l? S wp S C?; wz = Oa |1/Jpp| S ij 'l/)pi = 07 |¢z;| S CT’(/JP S Cy/ S C.

In particular

2 2
Cfl(y) < Vo2 = iﬁC(y)

r2 - r2
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Step 3. From now on, we consider indices a,b=p,1,...,n—1, while¢,7 =1,...,n—1. We will
estimate the terms in (4.3) not involving the Weyl curvature, restricted to the ball B,..
We have

Ry Ry 1 YR, 1 Cyr?
- = =Ryp— 575 . 3 Rt s ~70s
Y/k? + [Vi[? Y/k? + 42 k24 /k? + 42 k2 12 [k? 4+ Co(y')?
and thus
Rapaihy 1
4.8 — ———————fdV, < C|B,| + —=0©
( ) /;Tw/k2+vw|2f g = | ‘+k2

where |B,| denotes the volume of B, and © = O(p,1/k,r) > 0 will denote a continuous function
inl/kandr,for0<r<ropand 0<1/k < 1.
Also
fab’(/)awb fppwﬁ

YRR Ry - Al

and integrating over B,., we get

fab¢awb 1/ " 1
4. _— < = —0O.
(4.9) /Brw/k2+|w2dvg—r2 [ vrav,+ e

i Voo < y’ + i Gy
k2 ¢/k2+7/1§ =2 T2 2R o Cy(y)?

We have

fab® 1/’,2; YAf Ch
i vor S <O TUR T Vel S R Gy

and therefore

1n—1 e 1 A 1
(4.10) _n /B fob" oy /wifdvg< 0.

k22 Jp /R [VYR T k2 g /R [VYR T T k2
Moreover
LA A A GO 7 S 7 S WLV
(W/k2+ VY122 (W/k2+ VPR~ (W/k2+42)2  (b/k2+92)3 k2 (¢/k% +42)3
1 o
=R PR T Gy
and thus
n—1 Dap PP Pacth® |apth |2 1
(4.11) w2 /B [w/k? TIVeRE Wik vepe ) Ve s 2 ®

Finally, reasoning as before, one has

1 6 _ 2 a,b
(4.12) i”—l/ 1IVYI° — VY ($ap )¢ 1

k2n —2 (/K2 + |V|2)3 Vs < 320

Therefore, since

| Batav, < cip|

r

using (4.8),(4.9),(4.10) and (4.11) in (4.3), we obtain that
f 1 " 1
(4.13) o5 <t (1Wsls + |E,(2k\/0)I5) dVy +CIB,| + — [ yravy 4550,

where ®p_ denotes the quantity defined in (4.3) restricted to B,. Note that this intermediate
estimate, when ¢ = 0, coincides with the one of Aubin in [2].
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Step 4. We now estimate the remaining terms in (4.3) which involve the Weyl curvature. Since

g =g+ d(2k\/V) ® d(2k/1)),

from Lemma 3.1, we have

1 _ g g
PP — . g =0, g¥=gq".
7T T ! A
Therefore, for any Riemann-type 4-tensor, T, we obtain
n—1 4 n—1 4 n—1
(A1) Llg= > Tou+Tpmms 2 Tt 5 2 Tioner
i jkest=1 L+ 4R (VO); s [1+4k2(V)2]™ )

In particular (this follows immediately from g > g):
f
W,ly < [W,|, and t/B LW, fzav, < OB |
From (4.13), we obtain
f 1 " 1
(4.15) ep <t E|Eg(2k\/zf)|§dVg+C|Br| Tz ) vVt 56,
Concerning the first integral, we have the following key estimate:
Lemma 4.1. We have
1
¢ ey, < i+ e,

B, ¥ k

for some C'= C(n,0,t,p) >0 and © = O(p,1/k,r) > 0 as above.

Proof. We set ) = 2/ and E = E,(2k/¥) = E,(kn). From (4.7), since 0 < §%/("=2) < 4 < 1,

we have

Y Y c
(4.16) C 17 Snp <O M =0, |nppl < 5o 1 =0, |yl < Crmp < Cy' < C.

Firstly, from Lemma 3.1 and (4.16), we get

k2
Eijie = m(niknﬁ - 77it77jk)
P
k2n2
+ (1+ k:2r]2)p(n —92) (Ripkp9it — Riptpgit + Rjptp9ik — Rijpkpit)
P
2k2Rpp77§
- (1+ k2n§)(n “1(n-2) (9ikgit — 9itgjk)
k2
- 1+ k2n2)(n — 2) {((An)m’k — NipMp)git — ((An)nie — Mipt )ik
P
+ ((An)nse = njpn? ) gie — (Am)njk — nipml) gt
k2 9 9
+ (1 + k2n2)(n — 1)(n — 2) [(An) - ’V277| }(gikgjt - gitgjk)
P
k*non
+ (1+ kzn;)zp(; —2) (Nikgjt — NieGjk + NjeGik — NjrYit)
P
2K 12100

T AT k)2 —1)(n—2) (AN = 1pp)(9ik st — Gitgit)-
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Since An =n,, + nh, we can simplify the expression, obtaining

k’2
Eijre = m(mkmt — NitNjk)
P
k2772
+ T k:2n2)p(n —9) (Ripkpgjt — Riptp9ik + Riptpgin — RijpkpGit)
o
2k* R,
— T+ 122 (n—1)(n—2) (9ikgjt — 9itgjk)
o
]€2
SN R ErC) Y | (s = mif) gt = (e = mign) 950
p
+ (n5mze — npnt) gire — (MEmjk — njpni)git}
k2

+ [(Up)z + 2nppm5 — |7hj|2} (gikgjt - gitgjk)
I+ k22)(n— D)(n—2) b

k%n
- 1+ k;2772)p2p(n ) (Mikgjt — NiteGjx + NjeGir — NjrGit)
P

2k 2 n,0p11h
o (1 + k2n2)2(n — 1)(n — 2) (gikgjt - gitgjk)-
P

In particular, we have simplified the fourth block with the sixth one. Coupling the fifth block with
the last one, we obtain

1
Eijkt = m(niknﬁ - Uitnjk)
P

2
7
+ /T 77%)(" —5 (Ripkpgjt — Riptpgin + Rjptpgin — RjpkpGit)
- 2R o1 (9irgjt — GitGjk)
(1/K2 +52)(n — 1)(n — 2) 70— J0t5k

1
_ Pr.. —m nPNg., — (nPr.. — 1. 1P,
(1//€2 + ng)(n _ 2) [(Upmk nzpnk)gjt (npnzt NipTlt )g]k'

+ (5mje — ngpn?) gik — (Mhmjn — njpnﬁ)git]
1
+ () — (ni; 1] (9ikgjt — 9itgjk)
(1/k2+77§)(n—1)(n72)[ b il*](gixg; i

_ 1 llpr (Mikgje — MitGjk + Njegik — NjkGit)
R 77,2))2(n ) j j j j

1 202001
+ k2 (1/k2 + ng)z(n —1)(n-2) (gzkgjt - gztgjk)-

Using (4.16), since |mgnje] < C’nf,, it is easy to see that the first five blocks are bounded by
C = C(n,0,t,p) > 0 while the last two are controlled by

1
K2 [r2/k2 + Ca(y )22
Therefore
1 C
(4.17) |Eijre] < C + !

B 2R+ Coly P
Secondly, from Lemma 3.1 and (4.16), we get

(4.18) Eipr = 0.
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Lastly, using again Lemma 3.1 and (4.16), we obtain

B, — k2 1iT1p 4 szika) kQRgikng kQRz'pkai?‘) B 2k2Rﬂp9ik77§
Zpkp_l—i—ang n—2 (n—1)(n—2) n—2 (n—1)(n—2)
k? k2gan
_ ANk — nipnP] — ikTlpp An—
K gin 2 2
SR |(An)? — | V2 }
| A
K 20870 2k* gir 2100

1+En2)(n—2) (1+kEn2)(n—1)(n-2) (A = 1pp).

Since An = n,, +nb, we can simplify this expression, obtaining

E, _ k2nik"7pp k2R1k77,% k?QRgsz,% kQRipkpn,Q; _ 2k2Rppgzkng
PRIk T n—2 " (n-1)(n—2) n—2 (n—1)(n—2)
K2 k> ginTlpptll
- . Po.. _ m. P _ PP Ip
n— 2 [prnzk + 77p771k ’r}lpnk;] (1 + kzng)(n o 2)
kQQ'k
IR [(pP)2 49 P p |2
+ (n _ 1)(TL _ 2) [(np) + 77pp77p |nl_]| ]
N Knpninee 2k gir 2 pon?
(1+k2n2)(n—2) (1+kn2)(n—1)(n—2)
_ k277ik77pp kQRkug kQRgsz,% kQRipkpng _ QkQRppgikT]g
Cl4R22 T n—2  (n—1)(n—2) n—2 (n—1)(n—2)
k? k2 GikTppnt k2g;
_ Do . P pp'lp Jik PY2 _ [y (2
k277iknpp k2gik77pp77£

+ .
I+ k2 2)(n—2)  (1+k2n2)(n—1)(n—2)
Rearranging the terms, we get

k*Rign? k2 Ry}, K*Ripromy 2k Rppginm),

FEikp, =
ke = T =2 T (n—1)(n—2) n—2 (n—1)(n—2)
k? k*gix
Py m. P 2 P\2 _ | |2
n—2 [npmk nlpnk] + (n _ 1)(n — 2) [(ﬂp) |771J‘ ]
n—1 k277ik7]pp kQQikT/ppng

n—21+k%n2 (1+En2)(n—1)

Therefore, from (4.16), we deduce

o
E; <Ckn?4 ——
[ Eiptol < ot r2/k2 4+ Ca(y')?
and thus
1 1 Cy
4.19 ——|E; <C+ — .
( ) 1 + k2773| zpkp| — + k2 [TQ/kQ N Cg(y/)Q]Q

As a consequence, using (4.14) and (4.17), (4.18), (4.19), we obtain
PR
K2 [r2 /K2 + Ca(y)?)?

| By (2k\/ )5 < C +

which implies
1
¢ LiEervilsav, < i+ e,
B,

for some C = C(n,d,t,p) >0 and © = O(p,1/k,r) > 0.
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Step 5. Using Lemma 4.1 in (4.15), we obtain
1 1
(4.20) ®5, < CIB|+ 5 [ W+ 50

for some C' = C(n,d,t,p) > 0 and © = O(p, 1/k,r) > 0. Since, y'(1) = 0, integrating by parts, we
obtain

1 1 -1 !
—2/ y"dV, = —f/ y'9, log \/detyg;; dV, — L/ v v,
™ JB " JB, v Jp. P

n—1

/
<¢ L av,.
r P

T

Hence, from (4.20), we get

1 -1 ! 1
¢p <C|14 - - i y—dngL—G,
4 r r p k2

r

Using that, by assumption, y'(x) > 1 for all (1/4)/(=1) <z < (3/4)(=1 we obtain
(3 )1/(71 1)

<I>BT<c<1 )|B- |S”1|1nf\/M/ oo+ e

Y1/ (n—1)
<c(1+3)B- LB+ Lo
— r T 7"2 T kz i

where we used the fact that |B,| ~ ¢r™ as r — 0. In particular, there exist a continuous function
A(p) > 0 and, for p € M fixed, a continuous function ©,(r) > 0 in r, for 0 < r < rp, such that

O(p, 1/k,t) < ©p(r),

and
1 A 1
(4.21) ®p < {C’ (1 + r) — rz] |B,.| + ﬁ(ap(r).

Since, by assumption, F; = Ry+t|Wy|, > 0, given v > 0, there exists a positive radius 0 < r <79
such that

A 1 —
(4.22) — —C ( > -1>vF,,

7“1 1

where Fy := ([, FydVy) /Volg(M). Consider h disjoint geodesic balls BJ (p;) of radius r = r;
centered at p; € M, j =1,...,h; as well as corresponding functions f Ul and U as constructed
above. Moreover, for v sufficiently large we can assume that

1
Z 1B, (p)] > -, Vol, (M),

On every ball B7, we choose
(S}
k> ::max{l sup pj(rl)}
-h | B, (ps)|
From (4.21) and (4.22), for all j =1,..., h, we get

@y, < G B ) — 1B ()| + 150, (1) <~/ B2, )]

Now we define f (and ¢ accordingly) setting f = f[J] inside the ball B/ and f = 1 in the
complement of the union of all the balls B7, j = 1,...,h. Therefore, for all j =1, ..., h, we obtain

h
Dy g/MngVg—qungl(pj)\ <F, | Vol,( —VZ‘BTI pj) | <o.
j=1
This concludes the proof of Theorem 1.1. To be precise, we note that the proof above gives a
C?%* metric with negative constant scalar-Weyl curvature F. The density of smooth metrics in the
space of C%® metrics (with the C%® norm) will then give us a smooth metric with negative scalar-
Weyl curvature. From Lemma 2.2 we obtain a smooth metric with constant negative scalar-Weyl
curvature.
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