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METRICS OF CONSTANT NEGATIVE SCALAR-WEYL CURVATURE

Giovanni Catino

Abstract. Extending Aubin’s construction of metrics with constant negative scalar curvature, we
prove that every n-dimensional closed manifold admits a Riemannian metric with constant negative
scalar-Weyl curvature, that is R + t|W |, t ∈ R. In particular, there are no topological obstructions for
metrics with ε-pinched Weyl curvature and negative scalar curvature.

1. Introduction

A natural problem in Riemannian geometry is to understand the relation between curvature
and topology of the underlying manifold. Given a smooth n-dimensional manifold M , n ≥ 3, the
curvature tensor of a Riemannian metric g on M can be decomposed in its Weyl, Ricci and scalar
curvature part, that is

Riemg = Wg +
1

n− 2
Ricg©∧ g −

Rg
2(n− 1)(n− 2)

g©∧ g,

where ©∧ is the Kulkarni-Nomizu product. It is common knowledge that weak positive curvature
conditions, such as positive scalar curvature Rg [17, 8], or strong negative ones, such as negative
sectional curvature, are in general obstructed. On the other hand, Aubin in [1, 2] showed that,
on every smooth n-dimensional closed (compact with empty boundary) manifold, there exists a
smooth Riemannian metric with constant negative scalar curvature, Rg ≡ −1. This result was
extended to the complete, non-compact, case by Bland and Kalka in [3]. In particular, there are
no topological obstructions for negative scalar curvature metrics. Actually, a much stronger result
is known: Lohkamp in [15] proved that every smooth n-dimensional complete manifold admits
a complete smooth Riemannian metric with (strictly) negative Ricci curvature, Ricg < 0 (the
three-dimensional case was considered in [7, 4]).

By virtue of the Riemann components, in dimension n ≥ 4, it is natural to ask if there are
unobstructed curvature conditions which involve the Weyl curvature. To the best of our knowledge,
the first result in this direction was proved by Aubin [2], who constructed a metric with nowhere
vanishing Weyl curvature on every closed n-dimensional manifold. As a consequence, in [6] the
authors proved the existence of a canonical metric (weak harmonic Weyl) whose Weyl tensor
satisfies a second order Euler-Lagrange PDE, on every given closed four-manifold.

In [9], Gursky studied a variant of the Yamabe problem related to a modified scalar curvature
given by

Rg + t|Wg|g, t ∈ R,
where |Wg|g denotes the norm of the Weyl curvature of g. We will refer to this quantity as the
scalar-Weyl curvature (see Section 2). Constant scalar-Weyl curvature metrics naturally arise as
critical points in the conformal class of the modified Einstein-Hilbert functional

g 7−→ Volg(M)−
n−2
2

∫
M

(Rg + t|Wg|g) dVg.

It is clear that positive scalar-Weyl curvature metrics are obstructed, at least for t ≤ 0, and
naturally we may ask what we can say concerning the negative regime. In this paper we prove the
following existence result:

Theorem 1.1. On every smooth n-dimensional closed manifold M , for every t ∈ R, there exists
a smooth Riemannian metric g = gt with

Rg + t|Wg|g ≡ −1 on M.

In particular, there are no topological obstructions for negative scalar-Weyl curvature metrics.

Remark 1.2. In dimension four, Theorem 1.1 was proved also by Seshadri in [18]. We observe that
his proof cannot be trivially generalized to higher dimension, since it is based on the existence of
a hyperbolic metric on a knot complement of S3.
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It is well known that there are obstructions for the existence of metrics with zero Weyl curvature.
On the other hand, choosing t = 1/

√
ε, ε > 0, in Theorem 1.1 we obtain the following existence

result for metrics with ε-pinched Weyl curvature and negative scalar curvature:

Corollary 1.3. On every smooth n-dimensional closed manifold, for every ε > 0, there exists a
smooth Riemannian metric g = gε with

Rg < 0 and |Wg|2g < εR2
g on M.

The interesting notion of isotropic curvature was introduced by Micallef and Moore in [16]:
(M, g) has positive (or negative) isotropic curvature if and only if the curvature tensor of g satisfies

R1313 +R1414 +R2323 +R2424 − 2R1234 > 0 (or < 0)

for all orthonormal 4-frames {e1, e2, e3, e4}. Using minimal surfaces, the author of [16] proved
that any closed simply connected manifold with positive isotropic curvature is homeomorphic to
the sphere Sn. As already observed in [18, Theorem 1.1], in dimension four, metrics with negative
scalar-Weyl curvature for t ≥ 6 have negative isotropic curvature. In particular, Theorem 1.1
implies the following:

Corollary 1.4 (Seshadri [18]). On every smooth four-dimensional orientable closed manifold there
exists a smooth Riemannian metric with negative isotropic curvature.

We finally note that, in dimension n > 4, a characterization of negative isotropic curvature was
given in [13] in terms of an inequality involving the Weyl tensor and the (n− 4)-curvature, which
coincides with the scalar curvature if n = 4. It would be interesting to extend Corollary 1.4 to
n > 4, by following this path.

2. The scalar-Weyl curvature

In this section we briefly recall the variational and conformal aspects of the scalar-Weyl curva-
ture, first studied by Gursky in [9]. Let (M, g) be a n-dimensional closed (compact with empty
boundary) Riemannian manifold. First we recall that the conformal Laplacian is the operator

Lg := −4(n− 1)

n− 2
∆g +Rg,

which has the following well known conformal covariance property: if g̃ = u4/(n−2)g, then

Lg̃φ = u−
n+2
n−2Lg(φu), ∀φ ∈ C2(M).

Moreover, the scalar curvature of the conformally related metric g̃ is given by

Rg̃ = u−
n+2
n−2Lgu.

Therefore, the operator L plays a prominent role in the resolution of the Yamabe variational
problem. Given t ∈ R, we define the scalar-Weyl curvature

(2.1) Fg := Rg + t|Wg|g

and the associated modified conformal Laplacian

Ltg := −4(n− 1)

n− 2
∆g + Fg,

where |Wg|g denotes the norm of the Weyl curvature of g. The key observation in [9] is that the
couples (Fg,Ltg) and (Rg,Lg) share the same conformal properties. In fact, if g̃ = u4/(n−2)g, then

(2.2) Ltg̃φ = u−
n+2
n−2Ltg(φu), ∀φ ∈ C2(M), and Fg̃ = u−

n+2
n−2Ltgu.

In particular, a spectral argument shows the following [9, Proposition 3.2]:

Lemma 2.1. Let (M, g) be a n-dimensional closed Riemannian manifold. Then, there exists a
C2,α metric g̃ ∈ [g] with either Fg̃ > 0, Fg̃ < 0, or Fg̃ ≡ 0. Moreover, these three possibilities are
mutually exclusive.



METRICS OF CONSTANT NEGATIVE SCALAR-WEYL CURVATURE 10003

In analogy with the Yamabe problem, Gursky defined the functional

Ŷ (u) :=

∫
M
uLtgu dVg(∫

M
u2n/(n−2) dVg

)(n−2)/2
and the conformal invariant

Ŷ (M, [g]) := inf
u∈H1(M)

Ŷ (u).

Using (2.2), it is easy to see that the functional u 7→ Ŷ (u) is equivalent to the modified Einstein-
Hilbert functional

g̃ = u4/(n−2)g 7−→
∫
M
Fg̃ dVg̃

Volg̃(M)(n−2)/2
.

Following a classical subcritical regularization argument, Gursky showed that, if Ŷ (M, [g]) ≤ 0,
then the variational problem of finding a conformal metric g̃ ∈ [g] with constant scalar-Weyl
curvature F can be solved. The proof (in dimension four) can be found in [9, Proposition 3.5] and
it can be trivially generalized to dimension n ≥ 4. In particular, we have the following sufficient
condition to the existence of constant negative scalar-Weyl curvature:

Lemma 2.2. Let (M, g) be a n-dimensional closed Riemannian manifold. If there exists a metric
g′ ∈ [g] such that ∫

M

Fg′ dVg′ < 0,

then, there exists a (unique) C2,α metric g̃ ∈ [g] such that Fg̃ ≡ −1.

To conclude this section, we observe that the full modified Yamabe problem related to the
scalar-Weyl curvature and more generally modified scalar curvatures was treated in [12]. Moreover,
these techniques introduced by Gursky, have been used in various contexts, especially in the four-
dimensional case. For instance we want to highlight [10, 11, 14, 18].

3. Aubin’s metric deformation: two integral inequalities

In this section we first recall the variational formulas for some geometric quantities under the
deformation of the metric of the type

g′ = g + df ⊗ df, f ∈ C∞(M).

In [1, 2] Aubin, with a clever coupling of this deformation with a conformal one, proved local and
global existence results of metrics satisfying special curvature conditions. The proof of the first
three formulas can be found in [2]. The variation of the Weyl tensor can be found in [5, Chapter
2].

Lemma 3.1. Let (M, g) be a n-dimensional Riemannian manifold and consider the variation of
the metric g, in a given local coordinate system, defined by

g′ij := gij + fifj , f ∈ C∞(M).

Then we have

dVg′ = w1/2dVg,

(g′)ij = gij − f if j

w
,

R′ = R− 2

w
Rijf

if j +
1

w

[
(∆f)

2 − fitf it
]
− 2

w2

[
(∆f)f if jfij − f ifijf jpfp

]
,

W ′ijkt = Wijkt + Eg(f)ijkt,



10004 Giovanni Catino

with w := 1 + |∇f |2 and

Eg(f)ijkt :=
1

w
(fikfjt − fitfjk) +

1

n− 2
(Rikfjft −Ritfjfk +Rjtfifk −Rjkfift)

+
R

(n− 1)(n− 2)
(gikfjft − gitfjfk + gjtfifk − gjkfift)

+
fpfq

w(n− 2)
[Ripkq(gjt + fjft)−Riptq(gjk + fjfk) +Rjptq(gik + fifk)−Rjpkq(git + fift)]

− 2Rpqf
pfq

w(n− 1)(n− 2)
[gikgjt − gitgjk + gikfjft − gitfjfk + gjtfifk − gjkfift]

− 1

w(n− 2)
{[(∆f)fik − fipfpk ](gjt + fjft)− [(∆f)fit − fipfpt ](gjk + fjfk)}

− 1

w(n− 2)
{[(∆f)fjt − fjpfpt ](gik + fifk)− [(∆f)fjk − fjpfpk ](git + fift)}

+
1

w(n− 1)(n− 2)

[
(∆f)

2 −
∣∣∇2f

∣∣2](gikgjt − gitgjk + gikfjft − gitfjfk + gjtfifk − gjkfift)

+
fpfq

w2(n− 2)
[(fikfpq − fipfkq)(gjt + fjft)− (fitfpq − fipftq)(gjk + fjfk)]

+
fpfq

w2(n− 2)
[(fjtfpq − fjpftq)(gik + fifk)− (fjkfpq − fjpfkq)(git + fift)]

− 2

w2(n− 1)(n− 2)
[(∆f)fpfqfpq − fpfpqfqrfr](gikgjt − gitgjk)

− 2

w2(n− 1)(n− 2)
[(∆f)fpfqfpq − fpfpqfqrfr](gikfjft − gitfjfk + gjtfifk − gjkfift).

Moreover,

R′ = R− Rijf
if j

w
+∇i

(
∆ffi − fijf j

w

)
and thus ∫

M

R′ dVg =

∫
M

RdVg −
∫
M

Rijf
if j

1 + |∇f |2
dVg.

We will denote by [g] the conformal class of the metric g. Using a conformal deformation, we
can show the following first integral sufficient condition for the existence of a constant negative
scalar-Weyl curvature:

Lemma 3.2. Let M be a n-dimensional closed manifold. If there exists a positive smooth function
u ∈ C∞(M) such that for a Riemannian metric g on M it holds∫

M

Fg u
2 dVg +

4(n− 1)

n− 2

∫
M

|∇u|2 dVg < 0,

then there exists a (unique) C2,α metric g̃ ∈ [g] such that Fg̃ ≡ −1.

Proof. We consider the conformal metric g′ij = u4/(n−2)g. By (2.2) we have

Fg′ = Rg′ + t|Wg′ |g′ = u−4/(n−2)
(
Rg + t|Wg|g −

4(n− 1)

n− 2

∆u

u

)
.

Therefore, since dVg′ = u2n/(n−2)dVg, using the assumption we obtain∫
M

Fg′ dVg′ =

∫
M

Fg u
2 dVg +

4(n− 1)

n− 2

∫
M

|∇u|2 dVg < 0.

The conclusion follows now by Lemma 2.2. �

Using Aubin’s deformations, we prove the following second integral sufficient condition for the
existence of a constant negative scalar-Weyl curvature:
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Lemma 3.3. Let M be a n-dimensional closed manifold. Suppose that there exists a smooth
function ϕ ∈ C∞(M) such that for a Riemannian metric g on M and some t > 0 it holds∫

M

(Rg + t|Wg|ϕ) dVg + t

∫
M

|Eg(ϕ)|ϕ dVg

−
∫
M

Rijϕ
iϕj

1 + |∇ϕ|2
dVg +

n− 1

n− 2

∫
M

[
ϕipϕ

pϕiqϕ
q

(1 + |∇ϕ|2)2
− |ϕijϕiϕj |2

(1 + |∇ϕ|2)3

]
dVg < 0,

where | · |ϕ denotes the norm with respect of g + dϕ⊗ dϕ and Eg(ϕ) is defined as in Lemma 3.1.
Then, there exists a (unique) C2,α metric g̃ ∈ [g + dϕ⊗ dϕ] such that Fg̃ ≡ −1.

Proof. Let ϕ ∈ C∞(M). Applying Lemma 3.2 to the metric g′ = g + dϕ⊗ dϕ with

u :=
(
1 + |∇ϕ|2

)−1/4
,

we know that there exists a conformal metric g′′ ∈ [g′] with Fg′′ ≡ −1, if∫
M

Fg′

(1 + |∇ϕ|2)
1/2

dVg′ +
4(n− 1)

n− 2

∫
M

∣∣∣∇ (1 + |∇ϕ|2
)−1/4∣∣∣2

ϕ
dVg′ < 0.

From Lemma 3.1 we obtain the equivalent inequality∫
M

Fg′ dVg +
4(n− 1)

n− 2

∫
M

∂i
(
1 + |∇ϕ|2

)−1/4
∂j
(
1 + |∇ϕ|2

)−1/4(
gij − ϕiϕj

1 + |∇ϕ|2

)
dVg′

=

∫
M

Fg′ dVg +
n− 1

n− 2

∫
M

[
ϕipϕ

pϕiqϕ
q

(1 + |∇ϕ|2)2
− |ϕijϕiϕj |2

(1 + |∇ϕ|2)3

]
dVg < 0.

Using again Lemma 3.1, we get∫
M

Fg′ dVg =

∫
M

(Rg′ + t|Wg′ |ϕ) dVg =

∫
M

(Rg + t|Wg′ |ϕ) dVg −
∫
M

Rijϕ
iϕj

1 + |∇ϕ|2
dVg.

Using that
|Wg′ |ϕ ≤ |Wg|ϕ + |Eg(ϕ)|ϕ

where Eg(ϕ) is defined as in Lemma 3.1, we conclude the proof of this lemma. �

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1. The strategy of the proof takes strong inspiration from
the works of Aubin in [1, 2].

Step 1. From [1, 2] we know that, on a closed n-dimensional manifold, there exists a Riemannian
metric g′ with constant scalar curvature −1. In particular, if t ≤ 0, Fg′ < 0. By Lemma 2.2, there
exists a metric g̃ ∈ [g′] such that Fg̃ ≡ −1. Therefore, from now on we focus on the case

t > 0.

First of all, we can choose a Riemannian metric g with

Fg = Rg + t|Wg|g ≥ 0 on M,

otherwise Theorem 1.1 would immediately follow from Lemma 2.1 and Lemma 2.2. Consider a
positive smooth function ψ ∈ C∞(M) and a positive constant k > 0, and define

g′ := ψg, g′′ := g′ + d(kψ)⊗ d(kψ).

If we fix t > 0 and apply Lemma 3.3 to the metric g′ with ϕ = kψ, we obtain that if

ΦM :=

∫
M

(Rg′ + t|Wg′ |kψ) dVg′ + t

∫
M

|Eg′(kψ)|kψ dVg′ −
∫
M

R′ij∇ig′ψ∇
j
g′ψ

1/k2 + |∇g′ψ|2g′
dVg′

+
n− 1

n− 2

∫
M

[
∇g
′

ipψ∇
p
g′ψ∇

g′

iqψ∇
q
g′ψ

(1/k2 + |∇g′ψ|2g′)2
−
|∇g

′

ijψ∇ig′ψ∇
j
g′ψ|2

(1/k2 + |∇g′ψ|2g′)3

]
dVg′ < 0,

then there exists a (unique) C2,α metric g̃ ∈ [g′′] such that Fg̃ ≡ −1. Therefore, to prove Theorem
1.1, it is sufficient to show that ΦM < 0 for some positive smooth function ψ and positive constant
k (concerning the regularity of the metric, see the end of the proof). Let

f := ψ(n−2)/2.
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With respect to the metric g, by standard formulas for conformal transformations (see [5, Chapter
5]), we have

Rg′ =
1

ψ

(
Rg −

2(n− 1)

n− 2

∆f

f
+
n− 1

n− 2

|∇f |2

f2

)
,

R′ij = Rij −
fij
f

+
n− 1

n− 2

fifj
f2
− 1

n− 2

∆f

f
gij ,

W ′ijkt =
1

ψ
Wijkt,(4.1)

dVg′ = ψn/2 dVg = fψ dVg,

∇g
′

ijψ = ψij −
1

ψ

(
ψiψj −

1

2
|∇ψ|2gij

)
.

Moreover, since

g′′ = g′ + d(kψ)⊗ d(kψ) = ψ
[
g + d(2k

√
ψ)⊗ d(2k

√
ψ)
]

=: ψg,

from the conformal invariance of the Weyl curvature and Lemma 3.1, we obtain

W ′ijkt +Eg′(kψ)ijkt = W ′′ijkt =
1

ψ
W ijkt =

1

ψ

[
Wijkt + Eg(2k

√
ψ)ijkt

]
= W ′ijkt +

1

ψ
Eg(2k

√
ψ)ijkt.

Therefore, the "error term" of Weyl tensor under Aubin’s deformation of the metric satisfies the
following conformal invariance:

(4.2) Eg′(kψ) =
1

ψ
Eg(2k

√
ψ).

In particular, we have the relations

|Wg′ |kψ = |Wg′ |g′+d(kψ)⊗d(kψ) =
1

ψ
|Wg′ |g =

1

ψ2
|Wg|g

and

|Eg′(kψ)|kψ =
1

ψ
|Eg′(kψ)|g =

1

ψ2
|Eg(2k

√
ψ)|g.

Following the computation in [2], putting all together we obtain

ΦM =

∫
M

(
Rg +

t

ψ
|Wg|g −

Rijψiψj
ψ/k2 + |∇ψ|2

)
f dVg + t

∫
M

f

ψ
|Eg(2k

√
ψ)|g dVg

+

∫
M

fijψ
iψj

ψ/k2 + |∇ψ|2
dVg +

n− 1

n− 2

∫
M

|∇f |2

f
dVg −

n− 1

n− 2

∫
M

|fiψi|2

f(ψ/k2 + |∇ψ|2)
dVg

+
1

n− 2

∫
M

∆f |∇ψ|2

ψ/k2 + |∇ψ|2
dVg

+
n− 1

n− 2

∫
M

[
ψipψ

pψiqψ
q

(ψ/k2 + |∇ψ|2)2
− |ψijψiψj |2

(ψ/k2 + |∇ψ|2)3

]
f dVg

+
1

k2
n− 1

n− 2

∫
M

1
4 |∇ψ|

6 − |∇ψ|2(ψijψ
iψj)ψ

(ψ/k2 + |∇ψ|2)3
f dVg.

Moreover, since∫
M

|∇f |2

f
dVg −

∫
M

|fiψi|2

f(ψ/k2 + |∇ψ|2)
dVg =

1

k2
n− 2

2

∫
M

fiψ
i

ψ/k2 + |∇ψ|2
dVg,

∫
M

∆f |∇ψ|2

ψ/k2 + |∇ψ|2
dVg = − 1

k2

∫
M

ψ∆f

ψ/k2 + |∇ψ|2
dVg,
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we finally get

ΦM =

∫
M

(
Rg +

t

ψ
|Wg|g −

Rijψiψj
ψ/k2 + |∇ψ|2

)
f dVg + t

∫
M

f

ψ
|Eg(2k

√
ψ)|g dVg

+

∫
M

fijψ
iψj

ψ/k2 + |∇ψ|2
dVg

+
1

k2
n− 1

2

∫
M

fiψ
i

ψ/k2 + |∇ψ|2
dVg −

1

k2

∫
M

ψ∆f

ψ/k2 + |∇ψ|2
dVg(4.3)

+
n− 1

n− 2

∫
M

[
ψipψ

pψiqψ
q

(ψ/k2 + |∇ψ|2)2
− |ψijψiψj |2

(ψ/k2 + |∇ψ|2)3

]
f dVg

+
1

k2
n− 1

n− 2

∫
M

1
4 |∇ψ|

6 − |∇ψ|2(ψijψ
iψj)ψ

(ψ/k2 + |∇ψ|2)3
f dVg.

Step 2. Let y = y(x) be a fixed smooth real function such that

y(−x) = y(x) ∀x ∈ R
y(x) = 1 ∀ |x| ≥ 1

y(x) ≥ δ > 0 ∀x ∈ R
y′(x) > 0 ∀ 0 < x < 1

y′(x) ≥ 1 ∀ (1/4)1/(n−1) ≤ x ≤ (3/4)1/(n−1).

Let p ∈M and consider a local, normal, geodesic polar coordinate system around p: ρ, φ1, · · · , φn−1.
We have gρρ = 1, gρi = 0, gij = δij + ρ2aij , gρρ = 1 (from now on, the indices i = 1, . . . , n − 1
correspond to the coordinate φi). The coefficients aij are of order 1. In particular, we have that
the Christoffel symbols of the metric g satisfy

(4.4) Γρρρ = 0, Γρρi = 0, Γρij = −ρ
2

(aij + ρ∂ρaij) .

Let Br = Br(p) be the geodesic ball centered at p of radius 0 < r < r0, with r0 such that Br ⊂M .
For p′ ∈ Br, we choose

f(p′) := y
(ρ
r

)
, ρ = distg(p′, p).

In particular, from (4.4), we have

(4.5) fρ(p
′) =

1

r
y′
(ρ
r

)
, fi(p

′) = 0,

(4.6) fρρ(p
′) =

1

r2
y′′
(ρ
r

)
, fρi(p

′) = 0, fij(p
′) =

ρ

2r
(aij + ρ∂ρaij) y

′
(ρ
r

)
.

From now on, to simplify the expressions, we will omit arguments in the functions: it will be
clear that if f , fρ, etc. are computed at p′ ∈ Br, then y, y′, y′′ will be computed at ρ/r with
ρ = distg(p′, p). Moreover, we will denote by C = C(n, δ, t, p) > 0 some universal positive constant
independent of r and k.

Since 0 ≤ ρ < r, we have

fρ =
y′

r
, fi = 0, fρρ =

y′′

r2
, fρi = 0, |fij | ≤ Crfρ ≤ Cy′ ≤ C.

Thus, using that ψ = f2/(n−2) and 0 < δ ≤ f ≤ 1, we get

(4.7) C−1
y′

r
≤ ψρ ≤ C

y′

r
, ψi = 0, |ψρρ| ≤

C

r2
, ψρi = 0, |ψij | ≤ Crψρ ≤ Cy′ ≤ C.

In particular

C−1
(y′)2

r2
≤ |∇ψ|2 = ψ2

ρ ≤ C
(y′)2

r2
.
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Step 3. From now on, we consider indices a, b = ρ, 1, . . . , n− 1, while i, j = 1, . . . , n− 1. We will
estimate the terms in (4.3) not involving the Weyl curvature, restricted to the ball Br.

We have

− Rabψ
aψb

ψ/k2 + |∇ψ|2
= −

Rρρψ
2
ρ

ψ/k2 + ψ2
ρ

= −Rρρ −
1

k2
ψRρρ

ψ/k2 + ψ2
ρ

≤ −Rρρ +
1

k2
C1r

2

r2/k2 + C2(y′)2

and thus

(4.8) −
∫
Br

Rabψaψb
ψ/k2 + |∇ψ|2

f dVg ≤ C|Br|+
1

k2
Θ

where |Br| denotes the volume of Br and Θ = Θ(p, 1/k, r) > 0 will denote a continuous function
in 1/k and r, for 0 < r < r0 and 0 ≤ 1/k < 1.

Also

fabψ
aψb

ψ/k2 + |∇ψ|2
=

fρρψ
2
ρ

ψ/k2 + ψ2
ρ

= fρρ −
1

k2
ψfρρ

ψ/k2 + ψ2
ρ

≤ y′′

r2
+

1

k2
C1

r2/k2 + C2(y′)2

and integrating over Br, we get

(4.9)
∫
Br

fabψ
aψb

ψ/k2 + |∇ψ|2
dVg ≤

1

r2

∫
Br

y′′ dVg +
1

k2
Θ.

We have

faψ
a

ψ/k2 + |∇ψ|2
≤ C

ψ2
ρ

ψ/k2 + ψ2
ρ

≤ C, − ψ∆f

ψ/k2 + |∇ψ|2
≤ C1

r2/k2 + C2(y′)2

and therefore

(4.10)
1

k2
n− 1

2

∫
Br

faψ
a

ψ/k2 + |∇ψ|2
dVg −

1

k2

∫
Br

ψ∆f

ψ/k2 + |∇ψ|2
dVg ≤

1

k2
Θ.

Moreover

ψabψ
bψacψ

c

(ψ/k2 + |∇ψ|2)2
− |ψabψaψb|2

(ψ/k2 + |∇ψ|2)3
=

ψ2
ρρψ

2
ρ

(ψ/k2 + ψ2
ρ)2
−

ψ2
ρρψ

4
ρ

(ψ/k2 + ψ2
ρ)3

=
1

k2
ψψ2

ρρψ
2
ρ

(ψ/k2 + ψ2
ρ)3

≤ 1

k2
C1

(r2/k2 + C2(y′)2)3

and thus

(4.11)
n− 1

n− 2

∫
Br

[
ψabψ

bψacψ
c

(ψ/k2 + |∇ψ|2)2
− |ψabψaψb|2

(ψ/k2 + |∇ψ|2)3

]
f dVg ≤

1

k2
Θ.

Finally, reasoning as before, one has

(4.12)
1

k2
n− 1

n− 2

∫
Br

1
4 |∇ψ|

6 − |∇ψ|2(ψabψ
aψb)ψ

(ψ/k2 + |∇ψ|2)3
f dVg ≤

1

k2
Θ.

Therefore, since ∫
Br

Rgf dVg ≤ C|Br|,

using (4.8),(4.9),(4.10) and (4.11) in (4.3), we obtain that

ΦBr
≤ t
∫
Br

f

ψ

(
|Wg|g + |Eg(2k

√
ψ)|g

)
dVg + C|Br|+

1

r2

∫
Br

y′′ dVg +
1

k2
Θ,(4.13)

where ΦBr denotes the quantity defined in (4.3) restricted to Br. Note that this intermediate
estimate, when t = 0, coincides with the one of Aubin in [2].
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Step 4. We now estimate the remaining terms in (4.3) which involve the Weyl curvature. Since

g = g + d(2k
√
ψ)⊗ d(2k

√
ψ),

from Lemma 3.1, we have

gρρ =
1

1 + 4k2(
√
ψ)2ρ

, gρi = 0, gij = gij .

Therefore, for any Riemann-type 4-tensor, T , we obtain

(4.14) |Tg|2g =

n−1∑
i,j,k,t=1

T 2
ijkt +

4

1 + 4k2(
√
ψ)2ρ

n−1∑
i,k,t=1

T 2
iρkt +

4[
1 + 4k2(

√
ψ)2ρ
]2 n−1∑

i,k=1

T 2
iρkρ.

In particular (this follows immediately from g ≥ g):

|Wg|g ≤ |Wg|g and t

∫
Br

f

ψ
|Wg|g dVg ≤ C|Br|.

From (4.13), we obtain

(4.15) ΦBr ≤ t
∫
Br

f

ψ
|Eg(2k

√
ψ)|g dVg + C|Br|+

1

r2

∫
Br

y′′ dVg +
1

k2
Θ.

Concerning the first integral, we have the following key estimate:

Lemma 4.1. We have

t

∫
Br

f

ψ
|Eg(2k

√
ψ)|g dVg ≤ C|Br|+

1

k2
Θ,

for some C = C(n, δ, t, p) > 0 and Θ = Θ(p, 1/k, r) > 0 as above.

Proof. We set η = 2
√
ψ and E = Eg(2k

√
ψ) = Eg(kη). From (4.7), since 0 < δ2/(n−2) ≤ ψ ≤ 1,

we have

(4.16) C−1
y′

r
≤ ηρ ≤ C

y′

r
, ηi = 0, |ηρρ| ≤

C

r2
, ηρi = 0, |ηij | ≤ Crηρ ≤ Cy′ ≤ C.

Firstly, from Lemma 3.1 and (4.16), we get

Eijkt =
k2

1 + k2η2ρ
(ηikηjt − ηitηjk)

+
k2η2ρ

(1 + k2η2ρ)(n− 2)
(Riρkρgjt −Riρtρgjk +Rjρtρgik −Rjρkρgit)

−
2k2Rρρη

2
ρ

(1 + k2η2ρ)(n− 1)(n− 2)
(gikgjt − gitgjk)

− k2

(1 + k2η2ρ)(n− 2)

[
((∆η)ηik − ηipηpk)gjt − ((∆η)ηit − ηipηpt )gjk

+ ((∆η)ηjt − ηjpηpt )gik − ((∆η)ηjk − ηjpηpk)git

]
+

k2

(1 + k2η2ρ)(n− 1)(n− 2)

[
(∆η)

2 −
∣∣∇2η

∣∣2](gikgjt − gitgjk)

+
k4η2ρηρρ

(1 + k2η2ρ)2(n− 2)
(ηikgjt − ηitgjk + ηjtgik − ηjkgit)

−
2k4η2ρηρρ

(1 + k2η2ρ)2(n− 1)(n− 2)
(∆η − ηρρ)(gikgjt − gitgjk).
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Since ∆η = ηρρ + ηpp , we can simplify the expression, obtaining

Eijkt =
k2

1 + k2η2ρ
(ηikηjt − ηitηjk)

+
k2η2ρ

(1 + k2η2ρ)(n− 2)
(Riρkρgjt −Riρtρgjk +Rjρtρgik −Rjρkρgit)

−
2k2Rρρη

2
ρ

(1 + k2η2ρ)(n− 1)(n− 2)
(gikgjt − gitgjk)

− k2

(1 + k2η2ρ)(n− 2)

[(
ηppηik − ηipη

p
k

)
gjt −

(
ηppηit − ηipη

p
t

)
gjk

+
(
ηppηjt − ηjpη

p
t

)
gik −

(
ηppηjk − ηjpη

p
k

)
git

]
+

k2

(1 + k2η2ρ)(n− 1)(n− 2)

[
(ηpp)2 + 2ηρρη

p
p − |ηij |2

]
(gikgjt − gitgjk)

− k2ηρρ
(1 + k2η2ρ)2(n− 2)

(ηikgjt − ηitgjk + ηjtgik − ηjkgit)

−
2k4η2ρηρρη

p
p

(1 + k2η2ρ)2(n− 1)(n− 2)
(gikgjt − gitgjk).

In particular, we have simplified the fourth block with the sixth one. Coupling the fifth block with
the last one, we obtain

Eijkt =
1

1/k2 + η2ρ
(ηikηjt − ηitηjk)

+
η2ρ

(1/k2 + η2ρ)(n− 2)
(Riρkρgjt −Riρtρgjk +Rjρtρgik −Rjρkρgit)

−
2Rρρη

2
ρ

(1/k2 + η2ρ)(n− 1)(n− 2)
(gikgjt − gitgjk)

− 1

(1/k2 + η2ρ)(n− 2)

[(
ηppηik − ηipη

p
k

)
gjt −

(
ηppηit − ηipη

p
t

)
gjk

+
(
ηppηjt − ηjpη

p
t

)
gik −

(
ηppηjk − ηjpη

p
k

)
git

]
+

1

(1/k2 + η2ρ)(n− 1)(n− 2)

[
(ηpp)2 − |ηij |2

]
(gikgjt − gitgjk)

− 1

k2
ηρρ

(1/k2 + η2ρ)2(n− 2)
(ηikgjt − ηitgjk + ηjtgik − ηjkgit)

+
1

k2
2η2ρηρρη

p
p

(1/k2 + η2ρ)2(n− 1)(n− 2)
(gikgjt − gitgjk).

Using (4.16), since |ηikηjt| ≤ Cη2ρ, it is easy to see that the first five blocks are bounded by
C = C(n, δ, t, p) > 0 while the last two are controlled by

1

k2
C1

[r2/k2 + C2(y′)2]2
.

Therefore

(4.17) |Eijkt| ≤ C +
1

k2
C1

[r2/k2 + C2(y′)2]2
.

Secondly, from Lemma 3.1 and (4.16), we get

(4.18) Eiρkt = 0.



METRICS OF CONSTANT NEGATIVE SCALAR-WEYL CURVATURE 10011

Lastly, using again Lemma 3.1 and (4.16), we obtain

Eiρkρ =
k2ηikηρρ
1 + k2η2ρ

+
k2Rikη

2
ρ

n− 2
+

k2Rgikη
2
ρ

(n− 1)(n− 2)
+
k2Riρkρη

2
ρ

n− 2
−

2k2Rρρgikη
2
ρ

(n− 1)(n− 2)

− k2

n− 2
[(∆η)ηik − ηipηpk]− k2gikηρρ

(1 + k2η2ρ)(n− 2)
(∆η − ηρρ)

+
k2gik

(n− 1)(n− 2)

[
(∆η)

2 −
∣∣∇2η

∣∣2]
+

k4η2ρηikηρρ

(1 + k2η2ρ)(n− 2)
−

2k4gikη
2
ρηρρ

(1 + k2η2ρ)(n− 1)(n− 2)
(∆η − ηρρ).

Since ∆η = ηρρ + ηpp , we can simplify this expression, obtaining

Eiρkρ =
k2ηikηρρ
1 + k2η2ρ

+
k2Rikη

2
ρ

n− 2
+

k2Rgikη
2
ρ

(n− 1)(n− 2)
+
k2Riρkρη

2
ρ

n− 2
−

2k2Rρρgikη
2
ρ

(n− 1)(n− 2)

− k2

n− 2

[
ηρρηik + ηppηik − ηipη

p
k

]
−

k2gikηρρη
p
p

(1 + k2η2ρ)(n− 2)

+
k2gik

(n− 1)(n− 2)

[
(ηpp)2 + 2ηρρη

p
p − |ηij |2

]
+

k4η2ρηikηρρ

(1 + k2η2ρ)(n− 2)
−

2k4gikη
2
ρηρρη

p
p

(1 + k2η2ρ)(n− 1)(n− 2)

=
k2ηikηρρ
1 + k2η2ρ

+
k2Rikη

2
ρ

n− 2
+

k2Rgikη
2
ρ

(n− 1)(n− 2)
+
k2Riρkρη

2
ρ

n− 2
−

2k2Rρρgikη
2
ρ

(n− 1)(n− 2)

− k2

n− 2

[
ηppηik − ηipη

p
k

]
−

k2gikηρρη
p
p

(1 + k2η2ρ)(n− 2)
+

k2gik
(n− 1)(n− 2)

[
(ηpp)2 − |ηij |2

]
+

k2ηikηρρ
(1 + k2η2ρ)(n− 2)

+
k2gikηρρη

p
p

(1 + k2η2ρ)(n− 1)(n− 2)
.

Rearranging the terms, we get

Eiρkρ =
k2Rikη

2
ρ

n− 2
+

k2Rgikη
2
ρ

(n− 1)(n− 2)
+
k2Riρkρη

2
ρ

n− 2
−

2k2Rρρgikη
2
ρ

(n− 1)(n− 2)

− k2

n− 2

[
ηppηik − ηipη

p
k

]
+

k2gik
(n− 1)(n− 2)

[
(ηpp)2 − |ηij |2

]
+
n− 1

n− 2

k2ηikηρρ
1 + k2η2ρ

−
k2gikηρρη

p
p

(1 + k2η2ρ)(n− 1)
.

Therefore, from (4.16), we deduce

|Eiρkρ| ≤ Ck2η2ρ +
C1

r2/k2 + C2(y′)2
,

and thus

(4.19)
1

1 + k2η2ρ
|Eiρkρ| ≤ C +

1

k2
C1

[r2/k2 + C2(y′)2]
2 .

As a consequence, using (4.14) and (4.17), (4.18), (4.19), we obtain

|Eg(2k
√
ψ)|g ≤ C +

1

k2
C1

[r2/k2 + C2(y′)2]
2

which implies

t

∫
Br

f

ψ
|Eg(2k

√
ψ)|g dVg ≤ C|Br|+

1

k2
Θ,

for some C = C(n, δ, t, p) > 0 and Θ = Θ(p, 1/k, r) > 0. �
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Step 5. Using Lemma 4.1 in (4.15), we obtain

(4.20) ΦBr ≤ C|Br|+
1

r2

∫
Br

y′′ dVg +
1

k2
Θ

for some C = C(n, δ, t, p) > 0 and Θ = Θ(p, 1/k, r) > 0. Since, y′(1) = 0, integrating by parts, we
obtain

1

r2

∫
Br

y′′ dVg = −1

r

∫
Br

y′∂ρ log
√

detgij dVg −
n− 1

r

∫
Br

y′

ρ
dVg

≤ C

r
|Br| −

n− 1

r

∫
Br

y′

ρ
dVg.

Hence, from (4.20), we get

ΦBr
≤ C

(
1 +

1

r

)
|Br| −

n− 1

r

∫
Br

y′

ρ
dVg +

1

k2
Θ.

Using that, by assumption, y′(x) ≥ 1 for all (1/4)1/(n−1) ≤ x ≤ (3/4)1/(n−1), we obtain

ΦBr ≤ C

(
1 +

1

r

)
|Br| −

n− 1

r
|Sn−1| inf

M

√
detgij

∫ r(
3
4 )

1/(n−1)

r(
1
4 )

1/(n−1)

ρn−2 dρ+
1

k2
Θ

≤ C
(

1 +
1

r

)
|Br| −

C2

r2
|Br|+

1

k2
Θ,

where we used the fact that |Br| ∼ crn as r → 0. In particular, there exist a continuous function
λ(p) > 0 and, for p ∈M fixed, a continuous function Θp(r) > 0 in r, for 0 < r < r0, such that

Θ(p, 1/k, t) ≤ Θp(r),

and

(4.21) ΦBr ≤
[
C

(
1 +

1

r

)
− λ

r2

]
|Br|+

1

k2
Θp(r).

Since, by assumption, Fg = Rg+t|Wg|g ≥ 0, given ν > 0, there exists a positive radius 0 < r1 < r0
such that

(4.22)
λ

r21
− C

(
1 +

1

r1

)
− 1 ≥ νF g,

where F g :=
(∫
M
Fg dVg

)
/Volg(M). Consider h disjoint geodesic balls Bjr1(pj) of radius r = r1

centered at pj ∈ M , j = 1, . . . , h; as well as corresponding functions f [j] and ψ[j], as constructed
above. Moreover, for ν sufficiently large, we can assume that

h∑
j=1

|Bjr1(pj)| >
1

ν
Volg(M).

On every ball Bj , we choose

k2 := max

{
1, sup
j=1,...,h

Θpj (r1)

|Bjr1(pj)|

}
.

From (4.21) and (4.22), for all j = 1, . . . , h, we get

ΦBj
r1
≤ −νF g|Bjr1(pj)| − |Bjr1(pj)|+

1

k2
Θpj (r1) ≤ −νF g|Bjr1(pj)|.

Now we define f (and ψ accordingly) setting f ≡ f [j] inside the ball Bj and f ≡ 1 in the
complement of the union of all the balls Bj , j = 1, . . . , h. Therefore, for all j = 1, . . . , h, we obtain

ΦM ≤
∫
M

Fg dVg − νF g
h∑
j=1

|Bjr1(pj)| < F g

Volg(M)− ν
h∑
j=1

|Bjr1(pj)|

 ≤ 0.

This concludes the proof of Theorem 1.1. To be precise, we note that the proof above gives a
C2,α metric with negative constant scalar-Weyl curvature F . The density of smooth metrics in the
space of C2,α metrics (with the C2,α norm) will then give us a smooth metric with negative scalar-
Weyl curvature. From Lemma 2.2 we obtain a smooth metric with constant negative scalar-Weyl
curvature.
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