
A SURVEY ON DYNAMICAL TRANSPORT DISTANCES
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Abstract. In this paper we review some transport models based on the conti-
nuity equation, starting with the so-called Benamou-Brenier formula, which is

nothing but a fluid mechanics reformulation of the Monge-Kantorovich prob-

lem with cost c(x, y) = |x− y|2. We discuss some of its applications (gradient
flows, sharp functional inequalities...), as well as some variants and generaliza-

tions to dynamical transport problems, where interaction effects among mass
particles are considered.

1. Introduction

The increasing interest in Optimal Transport problems in the last years is un-
doubtedly due, among others, to the fact that they are suitable for applications to a
wide range of different areas of Mathematics. Nowadays, more than 200 years after
Monge first formulated such a kind of problem, an Optimal Transport problem is
usually set as follows: it is given an ambient space X (which could be RN as well
as a general metric space) and a cost function c : X × X → R ∪ {+∞}, so that
c(x, y) stands for the cost to move a mass particle from x to y. Then, given two
positive mass distributions ρ0 and ρ1 in X (i.e. positive measures on X having the
same mass), one is asked to minimize the total cost functional

(1.1) γ 7→
∫
X×X

c(x, y) dγ(x, y),

over the set of all plans Π(ρ0, ρ1) which transport ρ0 on ρ1 (see next section for the
definition): roughly speaking, the term dγ(x, y) has to be thought as the quantity of
mass located at x which is sent to y. We refer to this problem as Monge-Kantorovich
problem with cost c.

A powerful tool in Optimal Transport is that of having at our disposal equivalent
formulations: for example, as it is well-known the problem of minimizing (1.1) is
equivalent to the following dual problem, involving a maximization in place of a
minimization (here we are a little bit imprecise about this duality)

sup

{∫
X

u(x) dρ0(x) +

∫
X

v(y) dρ1(y) : u(x) + v(y) ≤ c(x, y)

}
.

The starting point of our presentation is one of these equivalent formulations, usu-
ally known under the name of Benamou-Brenier formula. When X = RN and the
cost c is given by c(x, y) = |x− y|2, Benamou and Brenier in [5] discovered that for
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every ρ0, ρ1 the corresponding optimal transport problem

w2(ρ0, ρ1)2 := min

{∫
RN×RN

|x− y|2 dγ(x, y) : γ ∈ Π(ρ0, ρ1)

}
,

is equivalent to the following one

min

∫ 1

0

∫
RN
|vt(x)|2 dµt(x) dt,

where the minimum in this case is taken among all pairs (µt, vt), with µt curve
of measures and vt time-dependent vector field such that they solve the continuity
equation

∂tµt + divx(vt µt) = 0,

and such that µi = ρi, i = 0, 1.
We will give more details on this equivalence in the next sections: for the moment,

observe that such a result could be a little bit surprising at a first glance. Indeed, the
first problem is static, that is a time-evolutionary description of the transportation
is absent and the whole process only depends on the optimal coupling γ: once you
know this, then it is implicitly understood that you move mass located at x to
y along the segment joining these points. On the contrary, the second problem
is dynamical and in principle many different trajectories of transportation, driven
by the velocity fields vt, are admissible. In particular, the second problem can
be regarded as an Eulerian point of view on Optimal Transport: we just remark
that one more equivalent dynamical formulation of the same problem, but now
Lagrangian in spirit, is given by

min

{∫
Lip([0,1];RN )

∫ 1

0

|σ′(t)|2 dt dQ(σ)

}
,

where the minimum is taken among all probability measures Q over Lip([0, 1];RN )
such that∫

ϕ(σ(i)) dQ(σ) =

∫
ϕ(x) dρi(x), for every ϕ ∈ C(RN ), i = 0, 1.

Here Lip([0, 1];RN ) stands for the set of Lipschitz curves in RN , parametrized over
the interval [0, 1].

With the Benamou-Brenier formula in mind, the aim of this survey is that of
reviewing some dynamical transport models appeared in the last years, whose com-
mon root is that they can all be formulated as the minimization of an action func-
tional under the constraint of the conservation of mass, the latter being expressed
through the continuity equation. The kind of problems we want to address are thus
of the following type: for every given ρ0, ρ1 positive measures on RN with the same
mass (that we can think to be 1, just for simplicity), we set

(1.2) T (ρ0, ρ1) := min

{∫ 1

0

A(µt, vt) dt :
∂tµt + div(vtµt) = 0,
µi = ρi, i = 0, 1

}
,

where the velocity vector field vt has to be thought as a sort of tangent vector to
the curve µt. Assuming that A(s, ·) is p−homogeneous (p ≥ 1), we then refer to the
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quantity T 1/p as a dynamical transport distance. The case considered by Benamou
and Brenier clearly fits in this framework, with the choice

A(µt, vt) =

∫
RN
|vt(x)|2 dµt(x) (kinetic energy).

Among these problems, we will also present some recent models introduced by Dol-
beault, Nazaret and Savaré in [21], still of the kind (1.2), but with the conservation
of mass now being expressed through a nonlinear mobility continuity equation, i.e.
an equation of the type

∂tµt + divx(vt θ(µt)) = 0,

with θ mobility function: the previous equation has to be considered as non dimen-
sionalized. Particularly interesting cases are

θ(s) = s(1− s)+ or θ(s) = sβ ,

with ( · )+ standing for the positive part and β ∈ (0, 1). As we will see, these prob-
lems will be considerably different from that corresponding to the case of Benamou
and Brenier, since in this case geodesics for T 1/p are no more strictly related to
geodesics of RN and actually an equivalent static formulation of these problems is
not known.

Recently, in the paper [13], the same kind of variational model (i.e. minimization
of an action under the constraint of the continuity equation) has been proposed in
the context of branched transport. With this name we refer to optimal transport
problems where the infinitesimal cost to move a mass m for a length ` is of the type
ϕ(m) `, with ϕ : [0,∞)→ [0,∞) being increasing and subadditive. The archetypical
choice is ϕ(m) = mα, with α ∈ (0, 1): due to concavity, in order to decrease the
total cost, which would be a quantity of the type∑

mα`,

it is better to gather the mass as much as possible during the transport. This
clearly gives rise to tree-shaped optimal structures of transportation: root systems
in a tree and blood vessels in a human body can be seen as concrete applications
of this energy-saving principle.

Observe that the extremal choices α = 0 and α = 1 would correspond to the
Steiner minimal connection problem1 and to the usual Monge problem (i.e. minimize
(1.1) with c(x, y) = |x− y|), respectively.

When equipped with a dynamical transport distance T 1/p, a space of measures
inherits a sort of Riemannian (or Finslerian) manifold structure: in the case cor-
responding to w2, this point of view has been first explored (independently by
Benamou and Brenier) by Otto in [37]. However, in these notes we will avoid to
explicitely refer to the so-called Otto’s calculus and we will simply present some
examples of how the formal differential calculus based on the dynamical formu-
lation can be exploited to highlight deep connections between Optimal Transport

1This is a little bit imprecise, since strictly speaking the case α = 0 corresponds to finding
a set of minimal length connecting the supports of the measures, with the requirement that this

Steiner connection has to transport the first measure on the second. This clearly introduces a

further constraint on the Steiner connection, namely on its orientation, which is absent from the
original formulation. We thank Emanuele Paolini for this observation.
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and functional analysis issues, like the characterization of evolution equations as
gradient flows in spaces of measures ([2, 25, 37, 38]) and the derivation of sharp
functional inequalities ([1, 18, 30, 31, 35, 39]).

The whole presentation in this survey will be quite a sketchy one, but as self-
contained as possible. We have tried to focus on ideas rather than on rigourous
proofs: for these, we provide quite a comprehensive bibliography and precise refer-
ences where needed. In any case, besides the original research papers, the reader
should always refer to the books [2, 42]. Moreover, many generalizations are possi-
ble for the results and the techniques that we will present: for the sake of simplicity
and readability, we have decided to avoid many of these.

The outline of the paper is the following: after recalling some basic facts about
Optimal Transport and Wasserstein spaces (Section 2), in Section 3 we come to
illustrate the result of Benamou and Brenier and its generalitazion due to Am-
brosio, Gigli and Savaré. Particular stress is posed on the fact that this can be
equivalently regarded as a convex optimization problem under linear constraints.
In the same section, we also show how this formulation can be employed to de-
rive evolution equations as gradient flows of suitable energy functionals and to
establish sharp functional inequalities. In Section 4 we describe some variants of
the Benamou-Brenier formulation: particularly interesting is the relativistic model
already introduced by Brenier himself in [11]. Section 5 is devoted to present the
models considered by Dolbeault, Nazaret and Savaré, based on the continuity equa-
tion ∂tµt + divx(vt θ(µt)) = 0. Finally, we give in Section 6 a brief account of the
Eulerian dynamical formulation for branched transport, as introduced in [13].

2. Notations and preliminaries on Optimal Transport and
Wasserstein spaces

In this section, we recall some well-known facts on Wasserstein spaces and their
geometry that we will use throughout the paper. With L k and H k we will always
denote the k−dimensional Lebesgue and Hausdroff measures respectively, while the
notation P(X) will indicate the space of Borel probability measures over a given
metric space X. Also, given a positive Borel measure ρ and a Borel measurable
map T , we will denote by (T )#ρ the push-forward of ρ through T , i.e. the measure
defined by

(T )#ρ(A) :=

∫
T−1(A)

dρ, for every Borel set A.

All the materials presented in this section are nowadays standard and can be found
in [2, 42].

2.1. Wasserstein distances. Let (X, d) be a metric space. Given ρ0, ρ1 ∈P(X),
we set Π(ρ0, ρ1) for the collection of all transport plans between ρ0 and ρ1, i.e.
γ ∈ Π(ρ0, ρ1) if γ ∈P(X ×X) and

(πx)#γ = ρ0 and (πy)#γ = ρ1,

with πx(x, y) = x and πy(x, y) = y. For every p ≥ 1, we define the following optimal
transport problem

Cp(ρ0, ρ1) = min

{∫
X×X

d(x, y)p dγ(x, y) : γ ∈ Π(ρ0, ρ1)

}
,
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then wp := C1/p
p is a distance on the space of probability measures ρ having finite

p−th momentum, i.e. such that∫
X

d(x, x0)p dρ(x) < +∞,

for a certain (and thus any) x0 ∈ X. We indicate with Wp(X) the space of these
measures endowed with the distance wp: this is called Wasserstein space of order
p or simply p−Wasserstein space. In the following, we will always take X = RN
or X = Ω compact convex subset of RN , equipped with d(x, y) = |x− y| the stan-
dard Euclidean distance. The topology induced by the distance wp is in general
stronger than that induced by the narrow convergence, defined by duality with con-
tinuous and bounded functions. Indeed, it is equivalent to the narrow convergence
plus convergence of the p−th moments: when we work on a compact set Ω, the
two topologies coincide and Wp(Ω) = P(Ω). Moreover, the distance wp is lower
semicontinuous w.r.t. the narrow convergence, i.e.

(2.1) wp(ρ0, ρ1) ≤ lim inf
n→∞

wp(ρ
n
0 , ρ

n
1 ),

for every sequence {ρni }n∈N narrowly converging to ρi, i = 0, 1.

2.2. Geodesics. Let I ⊂ R be a compact interval, then a curve µ : I → X is said
to be absolutely continuous with finite p−energy if there exists ψ ∈ Lp(I) such that

d(µt, µs) ≤
∫ t

s

ψ(r) dr, for every s < t.

The minimal ψ for which the previous holds coincides with the metric derivative of
µ w.r.t. the distance d, given by

|µ′t|d = lim
h→0

d(µt+h, µt)

h
.

The set of these curves is denoted with ACp(I;X): observe that AC∞(I;X) coin-
cides with the space of Lipschitz curves.

It is not difficult to see that Wp(RN ) is a geodesic space2, that is

wp(ρ0, ρ1) = min

{∫ 1

0

|µ′t|wp dt : µ ∈ AC([0, 1];Wp(RN )), µi = ρi, i = 0, 1

}
.

Equivalently, one can consider the minimization of the Lp norm of the metric de-
rivative: while the minimum value is still wp(ρ0, ρ1), now we are selecting a precise
minimizer, given by the constant speed geodesic, i.e. a curve µt connecting ρ0 to
ρ1 and such that

wp(µs, µt) = |s− t|wp(ρ0, ρ1) for every s, t ∈ [0, 1].

We have an explicit formula for these curves inWp(RN ): for every ρ0, ρ1 ∈ Wp(RN ),
the unique constant speed geodesic connecting them is given by

(2.2) µt = ((1− t)πx + tπy)#γ,

2More generally Wp(X) is a geodesic space each time the same holds true for X (see [27,

Proposition 1 and Theorem 6]
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with γ ∈ Π(ρ0, ρ1) optimal transport plan. When γ is given by a transport map T ,
i.e. γ = (Id× T )#ρ0, the previous can be rewritten as

(2.3) µt = ((1− t)Id + tT )#ρ0,

a formula which has been first introduced by McCann in [32] under the name of
displacement interpolation.

2.3. Convex energy functionals on Wasserstein spaces. The geometry in-
duced on P(RN ) by the Wasserstein distances implies that a new kind of convex-
ity has to be taken into account: since Wp(RN ) is a geodesic space, the natural
notion of convexity is that of convexity along geodesics. We say that a functional
F is displacement convex if for every ρ0, ρ1 ∈ Wp(RN ) there exists a constant speed
geodesic µt such that

F(µt) ≤ (1− t)F(ρ0) + tF(ρ1), for every t ∈ [0, 1].

More generally F is said to be Λ−displacement convex if

F(µt) + Λ
t(1− t)

2
w2(ρ0, ρ1)2 ≤ (1− t)F(ρ0) + tF(ρ1),

which, roughly speaking, corresponds to say that the second derivatives of F are
bounded below by Λ.

We have the following result, first proven in [32]: it characterizes an important
class of displacement convex functionals on Wp(RN ), the so called internal energy
functionals (see [2, Proposition 9.3.9] for the proof).

Theorem 2.1. Let U : [0,+∞)→ R be a proper and lower semicontinuous convex
functions, verifying U(0) = 0. We define the functional U :Wp(RN )→ R ∪ {+∞}
by

U(ρ) =

{ ∫
RN U(f(x)) dx, if ρ = f ·L N ,

+∞, otherwise

and we set U∗ for its lower semicontinuous envelope, i.e.

U∗(ρ) = inf
{

lim inf
n→∞

U(ρn) : ρn → ρ in Wp(RN )
}
.

If U satisfies the following condition

(2.4) λ 7→ λNU(λ−N ) is convex and non increasing,

then U and U∗ are displacement convex.

Important examples of functions U satisfying (2.4) are the following:

(i) U(s) = s log s and the corresponding functional (the Boltzmann entropy
functional) is given by

(2.5) U(ρ) =

∫
RN

f(x) log f(x) dx, if ρ = f ·L N ,

set to be +∞ on measures ρ such that ρ 6� L N . Due to the superlinearity
of the function s 7→ s log s, in this case we have that U∗ = U (see [15]);
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(ii) U(s) = sϑ/(ϑ − 1), for ϑ ∈ [1 − 1/N, 1) ∪ (1,∞). In particular, in the
superlinear case, we have that U = U∗, while in the sublinear case, i.e.
when ϑ < 1, we have that U 6= U∗ and

U∗(ρ) =
1

ϑ− 1

∫
RN

f(x)ϑ dx, if ρ = f ·L N + ρ⊥,

so that the U∗ can assume finite values also on measures having a singular
part w.r.t. the Lebesgue measure L N .

Remark 2.2. If U is smooth, one can easily see that condition (2.4) is equivalent
to require that

P ′(s)s ≥
(

1− 1

N

)
P (s),

where P (s) :=
∫ s

0
λU ′′(λ) dλ = sU ′(s)− U(s).

3. A Fluid Mechanics reformulation of Wasserstein distances

3.1. AC curves in Wasserstein spaces and the continuity equation. We
start with the following crucial result, giving an equivalent characterization of the
2−Wasserstein distance in terms of solutions of the continuity equation.

Benamou-Brenier formula ([5]). Given ρ0, ρ1 ∈P(RN ) having smooth densities
w.r.t. to L N and bounded supports, let us set

A(ρ0, ρ1) = {(µ, v) : ∂tµt + divx(vtµt) = 0 in I × RN , µ0 = ρ0, µ1 = ρ1}.

Then the 2−Wasserstein distance between ρ0 and ρ1 can be characterized as follows:

(3.1) w2(ρ0, ρ1)2 = min
(µ,v)∈A(ρ0,ρ1)

∫ 1

0

∫
RN
|vt(x)|2 dµt(x) dt.

The previous result has been considerably extended to cover much more general
situations: in this sense, we cite the following fundamental result (see [2, Theorem
8.3.1]), which at the same time generalizes the Benamou-Brenier formula and gives
a complete characterization of absolutely continuous curves in Wasserstein spaces.
In what follows, we take I = [0, 1] for simplicity.

Theorem 3.1 (Ambrosio-Gigli-Savaré). Let us fix an exponent p ∈ (1,∞). Let
µ : I →Wp(RN ) be a narrowly continuous curve satisfying the continuity equation

∂tµt + div (vtµt) = 0, in RN × I,

in the sense of distributions, for some Borel vector field v : I×RN → RN such that
‖vt‖Lp(RN,µt) is integrable in time. Then µt ∈ AC(I;Wp(RN )) and there holds

|µ′t|wp ≤ ‖vt‖Lp(RN,µt) for L 1−a.e. t ∈ I.

On the other hand, for every µ ∈ ACp(I;Wp(RN )), there exists a Borel vector field
v : I × RN → RN such that

‖vt‖Lp(RN, µt) ≤ |µ
′
t|wp , for L 1−a.e. t ∈ I,

and the continuity equation holds in the sense of distributions.
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Proof. Let us start from the first fact. One observes that, if regularity issues are
disregarded, the curve µt would be of the form (Xt)]µ0, with Xt flow map of vt,
i.e. {

X ′t(x) = vt(Xt(x))
X0(x) = x

This is the well-known method of characteristics for the continuity equation (see
[2, Chapter 8]). Then, fixing s, t ∈ [0, 1], we can estimate the Wasserstein distance
between µs and µt using the transport plan γs,t = (Xs ×Xt)#µ0, i.e.

wp(µs, µt)
p ≤

∫
RN
|Xs(x)−Xt(x)|p dµ0(x).

We then observe the following

Xt(x)−Xs(x) =

∫ t

s

X ′r(x) dr =

∫ t

s

vr(Xr(x)) dr,

so that using Cauchy-Schwarz and Jensen inequalities, one ends up with

wp(µt, µs)
p ≤ |t− s|p−1

∫
RN

∫ s

t

|vr(Xr(s))|p dr dµ0(x).

It is sufficient to exchange the order of integration and use the definition of push-
forward measure, so that the previous can be recast into

(3.2)
wp(µt, µs)

p

|t− s|p
≤ 1

|s− t|

∫ t

s

∫
RN
|vr(x)|p dµr(x) dr,

which gives the desired estimate on the metric derivative of µt, taking the limit as
s tends to t.

So far, this was the heuristic argument: to establish rigorously the result, one
has to simply go on through a smoothing argument, considering µεt := µt ∗ %ε and
φεt := (vt µt) ∗ %ε, with %ε smooth convolution kernel supported on the whole RN .
Then one can see that µεt solves the continuity equation with the smooth velocity
field vεt implicitly defined by φεt = vεt ·µεt : in this way, µεt = (Xε

t )#µ
ε
0, with Xε

t flow
map of vεt and the calculations above are justified. We then rewrite the right-hand
side in (3.2) as follows∫ t

s

∫
RN
|vεr(x)|p dµε(x) dr =

∫ t

s

∫
RN

∣∣∣∣φεr(x)

µεr(x)

∣∣∣∣p µεr(x) dx dr.

Observing that (µ, φ) 7→ |φ|pµ1−p is jointly convex and 1−homogeneous (see the
next subsection), by means of Jensen inequality we have that∫

RN

∣∣∣∣φεr(x)

µεr(x)

∣∣∣∣p µεr(x) dx ≤
∫
RN

∣∣∣∣dφrdµr
(x)

∣∣∣∣p dµr(x),

which then enables to conclude

wp(µ
ε
s, µ

ε
t )
p

|t− s|p
≤ 1

|t− s|

∫
[s,t]×RN

∣∣∣∣dφrdµr
(x)

∣∣∣∣p dµr(x) dr

=
1

|t− s|

∫ t

s

∫
RN
|vr(x)|p dµr(x) dr.

Passing to the limit as ε goes to 0 and using (2.1), one obtains again (3.2).
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The first part of the statement is a little bit more involved: here we just sketch the
main idea of the constructive argument which can be found in [27] and which differs
from the argument used in [2]. According to [27, Theorem 5], given a curve µ ∈
ACp(I;Wp(RN )), one can always find a probability measure Q ∈P(ACp(I;RN ))
such that µt = (et)#Q, where et is the evaluation at time t map, i.e. et(σ) = σ(t)
for every continuous curve σ. Intuitively, this means that one can always realize an
AC curve in the Wasserstein space Wp as a superposition of AC curves of the base
space RN . More important, these curves can be taken in such a way that we can
control their p−average velocities in terms of the wp−metric derivative of µ, i.e. Q
can be constructed so to satisfy

(3.3)

(∫
ACp(I;RN )

|σ′(t)|p dQ(σ)

)1/p

≤ |µ′t|wp , t ∈ I.

The proof of this fact is lengthy, but the underlying idea is very simple: one starts
considering a partition 0 = t0 < t1 < · · · < tk+1 = 1 of the time interval [0, 1].
Then we discretize the curve µt by considering the measures µt0 , . . . , µtk+1

and at
each time step ti we interpolate between µti and µti+1

using an optimal plan γi,i+1,
for the cost c(x, y) = |x−y|p. In this way, we can construct a measure concentrated
on linear curves (transport rays), parametrized over [ti, ti+1]. Gluing together this
measures, gives a Qk ∈ P(ACp(I;RN )), concentrated on piecewise linear curves
satisfying (3.3). Then one can show {Qk}k∈N to be equi-tight: choosing the par-
titions {t0, . . . , tk+1} to be dyadic and taking the limit as k goes to ∞, one can
conclude.

Once we made this construction, we can consider the disintegration of Q with
respect to the map et, obtaining Q =

∫
Qtx dµt, where Qtx is a Borel probability

measure concentrated on the fiber e−1
t ({x}) = {σ : σ(t) = x}. It is then nat-

ural to construct the desired vector field vt as the average velocity of the curves
corresponding to Q, that is

vt(x) :=

∫
{σ :σ(t)=x}

σ′(t) dQ(σ).

It is easy to verify that (µt, vt) solves the continuity equation; moreover, thanks to
estimate (3.3), we have that vt ∈ Lp(µt) and ‖vt‖Lp(µt) ≤ |µ′t|wp , thus concluding
the proof. �

The Benamou-Brenier formula in its general form (i.e. without smoothness as-
sumptions on ρ0, ρ1) is then a simple consequence of the previous result.

Corollary 3.2. For every ρ0, ρ1 ∈ Wp(RN ), there holds

(3.4) wp(ρ0, ρ1)p = min

{∫ 1

0

∫
RN
|vt(x)|p dµt(x) dt :

∂tµt + divx(vtµt) = 0,
µ0 = ρ0, µ1 = ρ1

}
.

Proof. Let us take a curve µ ∈ ACp(I;Wp(RN )) connecting ρ0 to ρ1 and a velocity
vector field vt such that ‖vt‖Lp(µt) = |µ′t|wp , then

wp(ρ0, ρ1)p ≤
∫ 1

0

|µ′t|pwp dt =

∫ 1

0

∫
RN
|vt(x)|p dµt(x) dt,
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so that the minimum value of the action is greater than or equal to wp(ρ0, ρ1)p.
Then taking µt to be a constant speed geodesic in Wp(RN ) we obtain

wp(ρ0, ρ1)p =

∫ 1

0

|µ′t|pwp dt =

∫ 1

0

∫
RN
|vt(x)|p dµt(x) dt,

thus concluding the proof. �

Remark 3.3. When p =∞, we can completely characterize Lipschitz curves (i.e.
AC∞ curves) in the Wasserstein space W∞(RN ) in terms of L∞ vector fields, with
‖vt‖L∞(µt) integrable in time and (µt, vt) solution of the continuity equation. The
result can be achieved by means of an easy limit argument. On the contrary, in
the case p = 1, the second part of Theorem 3.1 fails to be true. This is due to the
presence of the teleport phenomenon, typical of the non-strictly convex cost |x− y|:
for example, taken the curve

µt = (1− t)δx0 + tδx1 ,

this is absolutely continuous in W1(RN ), but there can not exist a vt such (µt, vt)
solve the continuity equation and ‖vt‖L1(µt) ≤ |µ′t|w1

. Observe that µt solves the
continuity equation

∂tµt + divxφt = 0,

with the vector measure φt = −→τ ·H 1xx1x0 for every t and φt 6� µt, the set x1x0

being the segment joining x0 to x1, oriented according to −→τ = (x1−x0)|x1−x0|−1.

We can substitute RN with a convex bounded set Ω ⊂ RN , provided that the con-
tinuity equation is interpreted with a homogeneous Neumann condition 〈v, ηΩ〉 = 0
at the boundary ∂Ω, with ηΩ standing for the outer normal versor. This has to be
intended in a weak sense, that is∫

Ω

ϕ(1, x) dρ1(x)−
∫

Ω

ϕ(0, x) dρ0(x) =

∫ 1

0

∫
Ω

∂tϕ(t, x) dµt(x) dt

+

∫ 1

0

∫
Ω

〈∇ϕ(t, x), vt(x)〉 dµt(x) dt,

for every ϕ ∈ C1([0, 1] × Ω). Note that from a physical point of view, the ho-
mogeneous Neumann boundary condition prevents the necessity of using boundary
conditions for µ and let the flow of v stay inside Ω.

Remark 3.4. In the case of a non convex set Ω ⊂ RN , we still obtain a dynamical
characterization of the p−Wasserstein distance, but with the Euclidean distance
replaced by the geodesic one in Ω. For this reason, in what follows we will mainly
confines ourselves to work with Ω either a convex subset of RN or the whole space.

3.2. Convex optimization reformulation. As pointed out by the proof of The-
orem 3.1, the problem (3.4) can be reformulated as a convex optimization problem
under linear constraints, simply introducing the flux variable φt = vt · µt. If we
do so, then the continuity equation now simply rewrites as a linear equation in the
variables (µ, φ), that is

∂tµt + divxφt = 0.
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Moreover thanks to the Disintegration Theorem (see [19, Chapter III]), we can
identify the curves of measures t 7→ µt and t 7→ φt with the measures on [0, 1]×RN
given by

(3.5) µ =

∫
µt dt and φ =

∫
φt dt.

In this way, it is then natural to enlarge the class of admissible pairs to (µ, φ) mea-
sures on [0, 1]×RN , not necessarily of the form (3.5). For these pairs of measures,
the continuity equation with a constraint on the endpoints has to be interpreted as
follows

∂tµ+ divxφ = ρ0 ⊗ δ0 − ρ1 ⊗ δ1,
still in distributional sense, i.e.∫

[0,1]×RN
∂tϕ(t, x) dµ(t, x) +

∫
[0,1]×RN

∇xϕ(t, x) · dφ(t, x)

=

∫
RN

ϕ(1, x) dρ1(x)−
∫
RN

ϕ(0, x) dρ0(x),

(3.6)

for every ϕ ∈ C1
0 ([0, 1] × RN ). As for the energy functional, we have already

observed that in the original formulation the function |vt|pµt = |φt|pµ1−p
t is jointly

convex and 1−homogeneous, in the variables (µ, φ): more precisely, we introduce

fp(x, y) =

 |y|
p x1−p, if x > 0, y ∈ RN ,
0, if x = 0, y = 0,

+∞, otherwise ,

which is also l.s.c. in addition to the properties recalled above. Then the cor-
responding functional defined on measures, which we call the Benamou-Brenier
functional

(3.7) Fp(µ, φ) =

∫
[0,1]×RN

fp

(
dµ

dm
,
dφ

dm

)
dm,

is local, lower semicontinuous and, thanks to the 1−homogeneity of fp, does not
depend on the choice of the reference measure m. Using this fact and the definition
of fp, the previous can be rephrased as

Fp(µ, φ) =


∫

[0,1]×RN

∣∣∣∣dφdµ (t, x)

∣∣∣∣p dµ(t, x), if φ� µ,

+∞, otherwise,

and we consider the problem

(3.8) min{Fp(µ, φ) : ∂tµ+ divxφ = ρ0 ⊗ δ0 − ρ1 ⊗ δ1},

where the admissible pairs (µ, φ) are now general Radon measures on [0, 1] × RN .
Observe that this is a convex optimization problem, under a linear constraint, with
the functional Fp being both lower semicontinuous and coercive: (3.8) is equivalent
to the original problem addressed by Benamou and Brenier.

The only non trivial fact is that in (3.8) we are allowing for general Radon
measures (µ, φ) on the space-time, which are not necessarily curves of measures:
however, this is the case for each admissible pair (µ, φ) having finite energy, thanks
to the continuity equation.
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Indeed, at first the latter implies that µ must be a probability measure, disinte-
grating as µ =

∫
µt dt, i.e. µ can be identified with a curve of probability measures.

To show this, we start disintegrating µ with respect to the time variable, then

µ =

∫
µt dλ,

with λ positive measure on [0, 1]. Inserting smooth test functions ψ depending only
on t into (3.6) and using

∫
RN dρ0 =

∫
RN dρ1 = 1, one obtains∫ 1

0

ψ′(t) dλ(t) = ψ(1)− ψ(0), for every ψ ∈ C1([0, 1]),

thus giving λ = L 1x[0, 1]. As for the measure φ, one observes that by the very
definition of the functional Fp, we have

Fp(µ, φ) < +∞ =⇒ φ� µ.

Hence we also get the disintegration φ =
∫
φt dt, with φt = vt · µt and and where

the vector field vt is the Radon-Nykodim derivative of φt w.r.t. µt. In conclusion,
for each admissible pair (µ, φ) having finite energy, we obtain

Fp(µ, φ) =

∫ 1

0

∫
RN

∣∣∣∣dφtdµt
(x)

∣∣∣∣p dµt(x) dt =

∫ 1

0

∫
RN
|vt(x)|p dµt(x) dt,

thus recovering the objective functional in the Benamou-Brenier formula.

3.3. Dual formulation. Once the problem is formulated as a convex optimiza-
tion with linear constraints, it is then very natural to investigate its dual formula-
tion. Introducing Lagrange multipliers, the previous optimization problem can be
rephrased as a saddle-point problem, i.e.

min
(µ,φ)

sup
ϕ

{∫ 1

0

∫
1

p

|φt|p

µp−1
t

−
∫ 1

0

∫
(∂tϕdµt +∇ϕ · φt)

+

∫
ϕ(1, x) dρ1(x)−

∫
ϕ(0, x) dρ0(x)

}
.

We then exchange the inf and the sup and use the Legendre-Fenchel conjugate f∗p
of 1/p fp, which is the indicator function of a closed convex set, precisely we have

f∗p (ξ1, ξ2) =


0, if ξ1 + 1

q |ξ2|
q ≤ 0,

+∞, otherwise,

where q = p/(p− 1). In this way, we have the following equivalence

1

p
wp(ρ0, ρ1)p = min

{∫ 1

0

∫
1

p

|φ|p

µp−1
: ∂tµt + divxφ = 0, µi = ρi, i = 0, 1

}
= sup
{ψ : ∂tψ+ 1

q |∇xψ|q≤0}

∫
ψ(1, x) dρ1(x)−

∫
ψ(0, x) dρ0(x).
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Observe that the formal primal-dual optimality conditions are given by

(3.9)


∂tµt + divx(|∇xψt|q−2∇xψt · µt) = 0,

∂tψt +
1

q
|∇xψt|q = 0,

which means that the velocity of an optimal curve µ (that is, a geodesic inWp(RN ))
is given by vt = |∇xψt|q−2∇xψt, with the time-dependent potential ψt solving an
Hamilton-Jacobi equation.

Remark 3.5. Clearly, the whole derivation of this duality is not rigorous: anyway,
the exchange between the inf and the sup can be justified by standard convex
duality arguments, while generally to properly give meaning to the primal-dual
optimality conditions, the ambient space of the dual problem has to be suitably
relaxed and the gradient operator has to be properly defined on this new space (see
[16] for more details).

3.4. Evolution equations as gradient flows in Wasserstein spaces. The
characterization of AC curves in Wp(RN ) in terms of the continuity equation
∂tµt + divxφt = 0, in addition to a physical meaning, gives a natural and por-
werful calculus in the Wasserstein space. In order to illustrate the basic idea, in
what follows for simplicity we confine ourselves to consider the case p = 2. We take
an internal energy functional

U(ρ) =

∫
U(f(x)) dx, if ρ = f ·L N ,

then using formally the continuity equation we can estimate the rate of dissipation of
U along a curve µt ∈ AC2(I;W2(RN )). Supposing µt = ft ·L N and φt = vtft ·L N ,
we obtain

d

dt
U(µt) =

d

dt

∫
U(ft(x)) dx =

∫
U ′(ft(x)) ∂tft(x) dx

=

∫
〈∇U ′(ft(x)), vt(x)〉ft(x) dx.

Observe that the previous can be estimated from below by means of Cauchy-
Schwarz and Young inequalities as follows

d

dt
U(µt) ≥ −

1

2

∫
|∇U ′(ft(x))|2ft(x) dx− 1

2

∫
|vt(x)|2ft(x) dx.

Thanks to Theorem 3.1, we can choose the vector field vt having minimal L2 norm,
i.e. such that ‖vt‖L2(µt) = |µ′t|w2

, thus the previous inequality rewrites as follows

(3.10)
d

dt
U(µt) ≥ −

1

2

∫
|∇U ′(ft(x))|2ft(x) dx− 1

2
|µ′t|2w2

.

Moreover, we can have equality in (3.10), i.e. we maximize the rate of dissipation
of the energy U along the curve µt, if and only if we take

(3.11) vt(x) = −∇U ′(ft(x)).

This means that with this choice, µt = ft ·L N is a curve of steepest descent for
the functional U and using the fact that µt and φt = vt · µt are linked through the
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continuity equation, we obtain that such a curve µt solves the following evolution
equation

(3.12) ∂tft = divx(∇U ′(ft) ft).
Observe that if one regards the vt of minimal L2(µt) norm as the tangent vector
to µt and ∇U ′(ft) as the gradient of U with respect to the Wasserstein structure,
then (3.11) is exactly a gradient flow equation in W2(RN ) (see also [37] for more
details).

Remark 3.6. It is useful to keep in mind that in a Hilbert space X, given a smooth
functional F : X → R, for every AC curve σ we have

d

dt
F(σ(t)) ≥ −1

2
|∇F(σ(t))|2 − 1

2
|σ′(t)|2, t ∈ I,

thanks to Cauchy-Schwarz and Young inequalities. Moreover, equality holds for
every t if and only if

σ′(t) = −∇F(σ(t)), t ∈ I,
i.e. the curve σ satisfies the gradient flow equation.

The first significative application of these formal computations is to the case of
the Boltzmann entropy functional,

U(ρ) =

{ ∫
f(x) log f(x) dx, if ρ = f ·L N ,

+∞, otherwise,

then observing that

∇U ′(ft) =
∇ft
ft

and inserting this into (3.12), we obtain that the gradient flow of U w.r.t. the
2−Wasserstein distance is given by the heat equation

∂tf = ∆f,

with homogeneous Neumann conditions if we replace RN with a bounded convex
set Ω. It is very remarkable that once the metric structure corresponding to w2 is
chosen, solutions of the heat equation can be obtained as curves of steepest descent
for the Boltzmann entropy. In the words of the authors of [25], “this formulation
allows us to attach a precise interpretation to the conventional notion that diffusion
arises from the tendency of the system to maximize the entropy”. In the very same
way, one can show that the gradient flow of an internal energy of the type

U(ρ) =
1

ϑ− 1

∫
f(x)ϑ dx, if ρ = f ·L N ,

leads to the evolution equation

∂tft = ∆fϑt ,

called porous media equation when ϑ > 1 and fast diffusion equation in the case
ϑ < 1.

Remark 3.7. More generally, one could consider a functional containing also a
potential energy and an interaction one, i.e.

F(ρ) =

∫
U(f(x)) dx+

∫
V (x) dρ(x) +

∫
W (x− y) dρ(x) dρ(y), ρ = f ·L N ,
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then obtaining that curves of w2−steepest descent are solutions of the following
evolution equation

∂tft = divx

(
∇U ′(ft)ft +∇V ft + (ft ∗ ∇W )ft

)
.

The previous heuristic considerations have been put on solid grounds in the last
years, especially with the work of Ambrosio, Gigli and Savarè, that in [2] have
developed a theory of gradient flows in general metric spaces. In this setting,
where no linear or differentiable structures are available, one can define various
concepts of gradient flow (in general not equivalent): among them, we just mention
the minimizing movement scheme and the evolution variational inequalities (EVI)
approach.

The former consists in fixing a time step τ and defining recursively ρn as follows

(3.13) ρn+1 ∈ argmin

{
1

2

d(ρ, ρn)2

τ
+ F(ρ)

}
,

starting from an initial datum ρ0. If these minimiziation problems admits solutions,
then one can interpolate this points, defining the piecewise constant curve

µτt =

∞∑
n=0

1(nτ,(n+1)τ ](t)ρn.

If one can show the convergence of this interpolating curves to a same limit curve µ,
then µ can be taken to be the gradient flow, starting from ρ0, of the functional F with
respect to the metric d. Observe that in a Hilbertian setting, d(x, y)2 = 〈x−y, x−y〉
and a minimizer of (3.13) thus satisfies

ρn+1 − ρn
τ

= −∇F(ρn+1),

which can be seen as a natural time discretization of the gradient flow equation.
In the (EVI) approach, which gives the strongest concept of gradient flow and

requires the functional to be convex along geodesics, an absolutely continuous curve
µ can be regarded as a curve of steepest descent for a functional F if it satisfies the
following differential inequality

(3.14)
1

2

d

dt
d2(µt, ρ0) ≤ F(µt)− F(ρ0), for every t and for every ρ0.

Observe that (3.14), roughly speaking, means that the time derivative of µt belongs
to −∂ F(µt), i.e. minus the subdifferential of F: once again, in the case of a Hilbert
space, this is exactly the meaning of (3.14).

Remark 3.8. The connection between diffusion equations and curves of steepest
descent with respect to the Wasserstein structure has been probably first iden-
tified by Otto in his paper [38]. There, the author shows how solutions to the
2−dimensional porous media equation

∂tft = ∆f2
t ,

can be obtained through a minimizing movement scheme, starting from the func-
tional

F(ρ) =

∫
f(x)2 dx, if ρ = f ·L N ,
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and taking as metric the 2−Wasserstein distance: observe that this functional is
displacement convex, according to Theorem 2.1. This approach has then been
exploited by Jordan, Kinderlehrer and Otto himself in [25], to give the first rigorous
justification of the fact that the linear Fokker-Planck equation

∂tft = ∆ft + divx(ft∇xV ),

can be obtained as the 2−Wasserstein gradient flow of the free energy

F(ρ) =

∫
f(x) log f(x) dx+

∫
V (x)f(x) dx, if f = ρ ·L N .

3.5. Sharp functional inequalities. We now illustrate, with a couple of signifi-
cant examples, how the formal calculus based on the Benamou-Brenier formula can
be exploited to derive sharp functional inequalities.

As in the previous subsection, our discussion, despite being quite an informal
one, has the valuable aspect that (in principle) can be generalized to any dynamical
transport distance. Also in this case, we confine for simplicity to the case p = 2,
with L N as reference measure: similar heuristic considerations can be found in [43,
Section V].

We start taking a Λ−displacement convex functional F over W2(RN ): this can
be rephrased by saying that for every ρ0, ρ1 ∈ W2(RN ) and every t ∈ [0, 1] we have

F(µt)− F(ρ0)

t
+ Λ

(1− t)
2

w2(ρ0, ρ1)2 ≤ F(ρ1)− F(ρ0),

with µt constant speed geodesic inW2(RN ) connecting ρ0 to ρ1. From the previous,
taking the limit as t→ 0+, we can obtain

d

dt
F(µt)

|t=0+
+

Λ

2
w2(ρ0, ρ1)2 ≤ F(ρ1)− F(ρ0).(3.15)

Suppose for example that F has the following form

F(ρ) =

∫
U(f(x)) dx+

1

2

∫
|x|2 dρ(x), for ρ = f ·L N ,

i.e. F is the sum of an internal energy and a potential one, the latter coinciding with
the 2nd moment of a measure. If U satisfies the displacement convexity condition of
Theorem 2.1, then F is 1−displacement convex, thanks to the second term. Using
again the continuity equation, with a velocity field vt such that ‖vt‖L2(µt) = |µ′t|w2

(see Theorem 3.1), we can compute the derivative of F along the curve µt = ft ·L N ,
thus obtaining

d

dt |t=0+

(∫
U(ft) dx+

1

2

∫
|x|2 dµt

)
≥ −1

2

∫
|∇U ′(ft) + x|2 ρ0 dx−

1

2
w2(ρ0, ρ1)2,

where we used that µt is a constant speed geodesic, so that

w2(ρ0, ρ1)2 = |µ′t|2w2
=

∫
|vt(x)|2 dµt(x).

Inserting this into (3.15), the term with w2(ρ0, ρ1)2 cancels out and we would obtain

F(ρ0)− F(ρ1) ≤ 1

2

∫
|∇U ′(ρ0) + x|2 ρ0 dx,
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which is valid for every pair ρ0, ρ1. In particular, if the functional F admits a
(unique, thanks to the 1−convexity) minimizer ρm = fm ·L N on the space {ρ ∈
W2(RN ) : ρ� L N}, then we have shown that for every ρ = f ·L N we have

(3.16) F(ρ)− F(ρm) ≤ 1

2

∫
|∇U ′(f(x)) + x|2 f(x) dx,

and the equality sign holds if and only if ρ = ρm. Indeed, observe that the Euler-
Lagrange equation of F is given by

∇U ′(fm(x)) + x ≡ 0.

The quantity F(ρ) − F(ρm) is also called relative energy of ρ with respect to ρm,
while the right-hand side in (3.16) is called relative entropy production of ρ with
respect to ρm (see [1]).

With suitable choices of the function U , we can derive interesting functional
inequalities from the energy–entropy production inequality (3.16): taking U(s) =
s log s, developing the calculations and substituting f with g2/(

∫
g2 dx), we would

obtain∫
RN

g(x)2 log g2(x) dx+ cN

∫
RN

g(x)2 dx ≤ 2

∫
RN
|∇g(x)|2 dx

+

(∫
RN

g(x)2 dx

)
log

(∫
RN

g(x)2 dx

)
,

where cN = N/2 log(2πe), i.e. the celebrated logarithmic Sobolev inequality of
Gross with respect to the Lebesgue measure, in sharp form (see [23]). In scaling
invariant form, this can also be rewritten as

(3.17)

∫
RN

(
g(x)

‖g‖L2

)2

log

(
g(x)

‖g‖L2

)
dx ≤ N

4
log

(
2

πeN

‖∇g‖2L2

‖g‖2L2

)
.

Remark 3.9. With this choice of U , it is not difficult to see that the unique
minimizer ρm = fm ·L N of the free energy F is given by

fm(x) = (2π)−N/2 exp(−|x|2/2),

that is ρm is the standard Gaussian measure on RN . Then inequality in (3.17)
holds if and only if g equals, up to translations, multiplications and dilations, the
function

ϕ(x) =
√
fm(x).

We point out a nice paper [4] by Beckner, where some interesting connections
between (3.17), Nash’s inequality(∫

RN
|f(x)|2 dx

)1+2/N

≤ cN
∫
RN
|∇f(x)|2 dx

(∫
RN
|f(x)| dx

)4/N

and the isoperimetric inequality are derived.

In the very same way, choosing U(s) = −Ns1−1/N in (3.16), we could obtain the
standard Sobolev inequality

‖g‖L2N/(N−2)(RN ) ≤ cN‖∇g‖L2(RN ),
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with sharp constant cN , where N ≥ 3 (see [41] for the classical proof based on
symmetrizations). Indeed, in this case the energy–entropy production inequality
(3.16) gives

−F(ρm) ≤ 2(N − 1)2

(N − 2)2

∫ ∣∣∣∇(f(x)(N−2)/2N )
∣∣∣2 dx,

then subsituting f with g2N/(N−2)/(
∫
g dx)2N/(N−2) we precisely end up with Sobolev

inequality. As in the previous case, the extremal functions for this inequality are
translates, multiples and dilations of the function

ϕ(x) = fm(x)(N−2)/2N ,

with ρm = fm ·L N unique minimizer of the relevant functional F. The existence
of such a minimizer, in this case, is not completely trivial: indeed the functional
−N

∫
f(x)1−1/N dx is not l.s.c. with respect to the weak convergence and its relax-

ation is given by

U∗(ρ) = −N
∫
f(x)1−1/N dx, if ρ = f ·L N + ρs,

with ρs⊥L N , due to the sub-linearity of the power s1−1/N (see [15]). The existence
of a minimizer ρm of the relaxed functional

F∗(ρ) = U∗(ρ) +
1

2

∫
|x|2 dρ(x),

in P(RN ) is straightforward, thanks to the presence of the 2nd moment: then one
can show that ρm can not be purely singular with respect to L N and that its
singular part has to be a Dirac delta concentrated in 0. Moreover, its absolutely
continuous part fm has to be supported on the whole RN and finally has to satisfy
the optimality condition

(1−N)fm(x)−1/N +
|x|2

2
≡ C.

Then one can finally show that the minimizer is of the form ρm = fm ·L N , with

(3.18) fm(x) =

(
C +

1

N − 1

|x|2

2

)−N
,

the constant C being chosen so that
∫
RN fm(x) dx = 1.

Remark 3.10. The functions (3.18) are usually called Barenblatt-Prattle profiles:
if on the one hand they are connected to extremals in the Sobolev inequality, on
the other hand they describe the long-time behaviour of the relevant gradient flow
equation (see the previous subsection), given by the following fast diffusion equation
with linear drift term

(3.19) ∂tft = ∆f
1−1/N
t + div(xf),

i.e. we have that ft → fm in L1(RN ) as t goes to ∞, if ft is a positive solution of
(3.19) with

∫
RN ft(x) dx = 1 (see [20, Section 4] for more details).



DYNAMICAL TRANSPORT DISTANCES 19

4. Some variants

4.1. Dynamical transport with finite speed of propagation. The first vari-
ant of (3.4) we want to take into account has been addressed by Brenier in the
lecture notes [11]. Let us fix a parameter c > 0, which can be thought as a maximal
admissible speed of propagation (for example, the speed of sound or the speed of
light in a given medium). If we set

h(z) =


(

1−
√

1− |z|
2

c2

)
c2, |z| ≤ c,

+∞, otherwise ,

it is very natural to consider the action functional∫ 1

0

A(µt, vt) dt :=

∫ 1

0

∫
h(vt(x)) dµt(x) dt,

with the pair (µ, v) still solving the continuity equation: observe that this is the
integral in time of a relativistic kinetic energy. More precisely, as in the case of w2,
we set

H(x, y) =

 h
(
y
x

)
x, if x > 0, y ∈ RN ,

0, if x = 0, y = 0,
+∞, otherwise,

and observe that this is still a 1−homogeneous and jointly convex function. In this
way, the functional

H(µ, φ) =

∫
[0,1]×RN

H

(
dµ

dm
,
dφ

dm

)
dm,

is l.s.c. with respect to the ∗−weak convergence on [0, 1] × RN and its integral
representation does not depend on the choice of the reference measure m. Then
again for every ρ0, ρ1 ∈P(RN ) the following minimization problem is well-posed

(4.1) W2,c(ρ0, ρ1)2 := min {H(µ, φ) : ∂tµ+ divxφ = ρ0 ⊗ δ0 − ρ1 ⊗ δ1} .
Indeed, observe that the problem has enough coercivity properties with respect to
the ∗−weak convergence: using the continuity equation as in the previous section,
we have that every admissible µ is a probability, disintegrating as µ =

∫
µt dt, while

using Jensen inequality, if φ� µ we get

H(µ, φ) =

∫
h

(∣∣∣∣dφdµ
∣∣∣∣) dµ ≥ h

(∫
d|φ|

)
≥ a

∫
d|φ| − b,

for suitable positive constants a, b, not depending on φ. In this way, we see that
taken a sequence of admissible pairs {(µn, φn)}n∈N having equi-bounded energies,

we obtain that µn
∗
⇀ µ and φn

∗
⇀ φ, up to subsequences. Moreover, these limit

measures (µ, φ) still solve the continuity equation

∂tµ+ divxφ = ρ0 ⊗ δ0 − ρ1 ⊗ δ1,
in the sense of distributions.

Remark 4.1. Clearly H(µ, φ) < +∞ not only gives that φ� µ, but it also implies
an upper bound on the velocity of µ, i.e. |dφt/dµt| ≤ c. Due to this bound on the
speed of propagation, now it could happen that for some measures ρ0 and ρ1 the
previous problem does not admit any configuration with finite energy: for example,



20 LORENZO BRASCO

taking ρ0 = δx0 and ρ1 = δx1 , with |x1 − x0| > c, and choosing the time interval
[0, 1], it is easy to see that H(µt, φt) = +∞ for every admissible pair (µ, φ).

Once again, it is interesting to investigate the dual formulation of (4.1): noting
that the Legendre-Fenchel transform of h is

h∗(ξ) = c2

(√
|ξ|2
c2

+ 1− 1

)
,

we get that the transform of H is given by

H∗(ξ1, ξ2) =

 0, if ξ1 + c2
[√

|ξ2|2
c2 + 1− 1

]
≤ 0,

+∞, otherwise.

Then, similarly to the previous case, we can obtain that (4.1) has the following dual
formulation

sup

{∫
ϕ(1, x), dρ1(x)−

∫
ϕ(0, x) dρ0(x) : ∂tϕ+ c2

[√
|∇ϕ|2
c2

+ 1− 1

]
≤ 0

}
.

In particular, the formal optimality conditions for the “geodesics” of W2,c are given
by 

∂tµt + divx

(
µt

c∇xψt√
c2 + |∇xψt|2

)
= 0,

∂tψt + c2

[√
|∇xψt|2
c2

+ 1− 1

]
= 0,

so that now a geodesic is driven by the velocity field vt = c∇xψt (
√
c2 + |∇xψt|2)−1,

with the potential ψt still solving a Hamilton-Jacobi equation.

Remark 4.2. When c→∞, we have

c2

[√
|∇ϕ|2
c2

+ 1− 1

]
' 1

2
|∇ϕ|2,

so that we are back to the case of the 2−Wasserstein distance.

Using the same formal calculus as in the Wasserstein case, we can guess which
kind of interesting evolution equations corresponds to gradient flows with respect to
the dynamical transport distance w̃2: for example, taking the Boltzmann entropy
functional (2.5), we get

d

dt
U(µt) =

∫
∂tft(log ft + 1) dx =

∫ 〈
∇ft
ft

, vt

〉
ft dx,

and then an application of Young inequality yields

d

dt
U(µt) ≥ −

∫
h∗
(
∇ft
ft

)
ft dx−

∫
h(vt)ft dx.

Assuming that a result analogous to Theorem 3.1 holds also in the case of W2,c,
with

∫
h(vt) dµt replacing the term

∫
|vt|p dµt, we can assume the existence of a

velocity field vt such that
∫
h(vt) ft dx = |µ′t|2W2,c

.
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Remembering the cases of equality in Young inequality, then µt = ft ·L N is a
curve of steepest descent if and only if

vt = −∇h∗
(
∇ft
ft

)
= − c∇ft√

|∇ft|2 + c2f2
t

.

In this way, we obtain that such a curve µt solves the relativistic heat equation

(4.2) ∂tft = divx

(
cft|∇ft|√

c2f2
t + |∇ft|2

)
.

The latter corresponds to a diffusion equation where the speed of propagation
is bounded and tends to saturate as the gradient of f becomes unbounded: the
classical heat equation can be recovered in the limit as c goes to ∞. The previous
interpretation of (4.2) as gradient flow of the entropy functional w.r.t. W2,c has
been rigorously proven by McCann and Puel, using a minimizing movement scheme
in the spirit of the work of Jordan, Kinderlehrer and Otto (see [33]).

Finally, the reader can consult [3] for a discussion of equation (4.2) and some
related regularity results.

4.2. Optimal Transport with penalization on high concentrations. In con-
nection with congestion effects and crowd motions, other variants of the Benamou-
Brenier functional including penalizations on high densities have been considered
in [16]. In this context, the two prototypical examples are the following:

(4.3) A(µ, φ) = Fp(µ, φ) + k

∫
[0,1]×RN

∣∣∣∣ dµdm (t, x)

∣∣∣∣2 dm(t, x),

with p ≥ 1 and k > 0, and

(4.4) B(µ, φ) =

 Fp(µ, φ), if

∣∣∣∣ dµdm
∣∣∣∣ ≤M,

+∞, otherwise,

with M > 0, where the reference measure is m = L 1 ⊗L N and both functionals
are set to be +∞ if µ is not of the form µ =

∫
µt dt, with µt � L N . Observe that

in (4.3), curves of diffused measures are favoured not only because the functional
has a finite value only on them, thanks to the choice of m, but also because the
function x 7→ x2 is super-additive, that is

x2
1 + x2

2 < (x1 + x2)2,

so that the masses have the interest to split as much as possible during the transport,
in order to lower the value of the energy functional. In (4.4) the penalization is
even stronger, because it imposes an L∞ bound on particle densities. Clearly, (4.3)
and (4.4) are no more independent on the choice of m, but they are still l.s.c. and
coercive with respect to the ∗−weak convergence, so that for both of them the
problem of finding a minimizer under the constraint of the continuity equation is
well-posed (see [16] for more details and some interesting numerical simulations).
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5. The case of a non linear mobility function

5.1. Some motivations. All the transport models considered so far were based
on the continuity equation ∂tµt + divx(φt) = 0, possibly with homogeneus Neu-
mann boundary condition, expressing conservation of mass. All of them contained
the physical assumption that the flux variable was of the form φt = vt · µt. This
assumption is typical in fluid mechanics, but when considering more general situa-
tions, usually this is not appropriate. For example, in mathematical biology, some
models for chemotaxis assume the flux φt to be of the form

(5.1) φt = vt · µt
(

1− µt
γ

)
,

where γ ≥ 1 denotes a maximal density for the particles distribution µt at time t
and 0 ≤ µt ≤ γ. Observe that setting

ṽt = vt

(
1− µt

γ

)
,

we have ∂tµt + divx(ṽtµt) = 0 and we recover the usual continuity equation, but
now with the mass-dependent velocity field ṽt which tends to 0 as the concentration
of the particles is near the critical threshold γ. In this way, assumption (5.1) is
pertinent to a model for chemotaxis where particles are supposed to move avoiding
overcrowding effects (see [24], model (M3a), for example).

More generally, in a number of mathematical models coming from biology, physics
and chemistry (see the Introduction of [17] and the references therein), the flux is
assumed to have the form φt = vt · θ(µt), the function θ being called mobility func-
tion. It is thus natural to consider the following generalization of problem (3.1),

min

{∫ 1

0

∫
|vt(x)|pθ(ft(x)) dx dt :

∂tft + divx(vt θ(ft)) = 0,
fi = gi, i = 0, 1

}
,

assuming for a moment that the admissible curves are of the form µt = ft ·L N .
This type of problems has been introduced in [21] by Dolbeault, Nazaret and Savaré:
further studies can be found also in [17], [28] (where the case of the mobility function
corresponding to (5.1) is considered) and [36].

5.2. Mathematical framework. From a mathematical point of view, these mod-
els consist in replacing the Benamou-Brenier function |φ|pµ1−p, by the more general
function

(µ, φ) 7→ |φ|pθ(µ)1−p,

with θ : [0,∞) → [0,∞) concave increasing function. The concavity of θ guar-
antees that the previous function is still jointly convex, but now it is no more
1−homogeneous, so that the corresponding action functional

(µ, φ) 7→
∫ 1

0

∫
|φt|p

θ(µt)p−1
,

will now also depend on the choice of the reference measure m. Particularly inter-
esting choices for θ are power functions, i.e.

θ(t) = tβ , with 0 < β < 1.
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In what follows, we will mainly confine to consider this case. Then we take as
reference measure m = ν⊗ (L 1x[0, 1]), with ν positive Radon measure on RN , and
the resulting action considered in [21] is given by

Sp,β;ν(µ, φ) =

∫ 1

0

∫
RN

sp,β

(
dµt
dν

(x),
dφt
dν

(x)

)
dν(x) dt,

set to be +∞ if φt 6� ν for t ∈ A with L 1(A) > 0. Here sp,β(x, y) = |y|p xβ(1−p)

or more precisely

sp,β(x, y) =

 |y|
p xβ(1−p), if x > 0, y ∈ RN ,

0, if x = 0, y = 0,
+∞, otherwise.

Observe in particular that

Sp,β;ν(µ, φ) < +∞ =⇒ φt � ν for L 1−a.e. t,

and the functional can assume finite values also if µt has a singular part with respect
to ν: this is crucial in order to obtain the l.s.c. of Sp,β . Indeed, observe that the
recession function (see [15]) of sp,β is given by

s∞p,β(x, y) = lim
t→+∞

sp,β(tx, ty)

t
=

{
0, if y = 0,

+∞, otherwise.

In this way, the problem of minimizing Sp,β under the constraint of the continuity
equation turns out to be convex as well and we have the following result.

Theorem 5.1. For every ρ0, ρ1 ∈P(RN ) the following problem

(5.2) Wp,β;ν(ρ0, ρ1)p := min{Sp,β;ν(µ, φ) : ∂tµ+ divxφ = δ0 ⊗ ρ0 − δ1 ⊗ ρ1},

admits at least a solution, provided there exists an admissible pair (µ̃, φ̃) having
finite energy.

Proof. Also in this case, the coercivity of the problem is guaranteed by the convexity
of the functional and by the continuity equation. Indeed, for every admissible pair
(µ, φ) having finite energy, using Jensen inequality and the fact that φt � ν, we
get

Sp,β;ν(µ, φ) =

∫ 1

0

∫
RN

[∣∣∣∣dφtdν (x)

∣∣∣∣ (dµtdν (x)

)−β]p(
dµt
dν

(x)

)β
dν(x) dt

≥

(∫ 1

0

∫
RN

(
dµt
dν

(x)

)β
dν(x) dt

)1−p(∫ 1

0

∫
RN

d|φt|(x) dt

)p
.

Let us suppose for simplicity that ν(RN ) < +∞ (this hypothesis can be easily
removed), then using once again Jensen inequality in the first term on the right-
hand side, the previous estimate implies

|φ|([0, 1]× RN ) ≤ Sp,β;ν(µ, φ)1/p

(∫ 1

0

ν
(
RN
)1−β

µt(RN )β dt

)(p−1)/p

.(5.3)

Finally, observe that µt(RN ) = 1 for every t, thanks to the continuity equation:
then (5.3) gives the desired coercivity on the variable φ, with respect to the ∗−weak
convergence on [0, 1]× RN .
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This implies that every sequence {(µn, φn)}n∈N such that Sp,β;ν(µn, φn) ≤ C is
∗−weak convergent and the limit measures (µ, φ) solve the continuity equation. It
remains to check that µ and φ are still of the form µ =

∫
µt dt and φ =

∫
φt dt,

because in the definition of Sp,β;ν we a priori restricted the class of competitors
to curves of measures, rather than general measures on [0, 1] × RN . However, the
disintegration µ =

∫
µt dt comes as always from the fact that µ solves the continuity

equation (see Section 3), while thanks to the semicontinuity of the energy we have

Sp,β;ν(µ, φ) ≤ lim inf
n→∞

Sp,β;ν(µn, φn) ≤ C,

thus giving the desired disintegration for φ, with φt � ν. �

The following result characterizes the basic topological properties of the dynam-
ical transport distance Wp,β;ν defined by (5.2): see [21, Theorems 5.5 and 5.7] for
the proofs.

Theorem 5.2. The application Wp,β;m : P(RN )×P(RN )→ [0,+∞] is a pseudo-
distance. Given η ∈P(RN ), if we define

Mp,β;ν(η) = {ρ ∈P(RN ) : Wp,β;ν(η, ρ) < +∞},
this is a complete metric space, when endowed with the distance Wp,β;ν . On the space
Mp,β;ν(η), the convergence with respect to Wp,β;ν is stronger than the ∗−weak one.

Remark 5.3. This new family of “distances” interpolate between the usual Wasser-
stein ones, corresponding to the choice β = 1 (so that Sp,1;ν = Fp), and the dual
Sobolev ones, corresponding to β = 0, for which Sp,0;ν takes the form (here we
choose ν = L N )

(5.4)

∫ 1

0

∫
RN

∣∣∣∣ dφtdL N
(x)

∣∣∣∣p dx dt,
set to be +∞ if φ is not of the form φ =

∫
φt dt with φt � L N . Observe that the

problem corresponding to (5.4) is equivalent to

min

{∫
RN
|Φ(x)|p dx : div Φ = ρ0 − ρ1

}
,

which is just the dual formulation of an elliptic problem involving the q−Laplace
operator, with q = p/(p− 1).

5.3. Geodesics. For the dynamical transport distance Wp,β;ν still holds a charac-
terization of AC curves, analogous to that of Theorem 3.1. Moreover, as one can
easily guess, the space of measures endowed with this metric is a geodesic one (see
[21, Corollary 5.18]).

Theorem 5.4. For every η ∈P(RN ), the spaceMp,β;ν(η) is a geodesic space, that
is for every ρ0, ρ1 ∈Mp,β;ν(η) there exists a constant speed geodesic µt connecting
them and such that

Wp,β;ν(µt, µs) = |t− s|Wp,β;ν(ρ0, ρ1), for every s, t ∈ [0, 1].

It is interesting to investigate, still at a formal level, the conditions for a curve µ
to be a geodesic in (Mp,β;ν(η),Wp,β;ν). One can proceed as in the previous sections,
rewriting the variational problem defining Wp,β;m as a saddle-point problem and
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exchanging the inf and the sup. When ν = L N , we obtain that (µt, φt) is a
geodesic if

µt = ft ·L N and φt = ∇xψt fβt ·L N ,

with the pair (ft, ψt) solving

(5.5)


∂tft + divx(fβt ∇xψt) = 0

∂tψt +
β

2
fβ−1
t |∇xψt|2 = 0

which is a kind of mean field games system (see [26]): the main difference with the
systems considered by Lasry and Lions in [26] is that (5.5) comes with a constraint
on f0 and f1, while usually in mean field games this system is forward in time with
respect to f (i.e. f0 is prescribed) and backward in time with respect to ψ (i.e. ψ1

is prescribed).
Observe that in both the equations of (5.5) the two variables are coupled: this is

in contrast with the Wasserstein case, corresponding to (3.9), where the Hamilton-
Jacobi equation can be solved independently of ft.

Some studies on this system are actually in progress: in [36] it is shown that
solving (in a suitable sense) system (5.5) with given endpoints f0 and f1, is a suf-
ficient condition for a pair (ft, ψt) to be a geodesic in (P(Ω),Wp,β;LN ) connecting

ρ0 = f0 ·L N to ρ1 = f1 ·L N .

5.4. Gradient flows issues. The distances Wp,β;ν have a lot of interesting features
and a wide collection of open questions are connected with them: first, we point
out that these distances are interesting in the study of diffusion equations of the
type

∂tµt + divx(θ(µt) |ξ|q−2ξ), ξ = −∇
(
∂F

∂µ

)
,

where ∂F/∂µ is the first variation of a given functional F and q = p/(p − 1).
Indeed, at least formally, these equations can be interpreted as gradient flows of
F with respect to Wp,β;ν . For example, taking ν = L N and the internal energy
functional

(5.6) U(ρ) =
1

(2− β)(1− β)

∫
f(x)2−β dx, if ρ = f ·L N ,

we see that the gradient flow with respect to the distance W2,β;LN is given by the
heat equation. The formal derivation of this fact can be done exactly in the same
way as in the previous section, i.e. differentiating the energy U along a curve µt,
using the continuity equation and observing that for a curve of steepest descent we

have precisely φt = ∇ft f−βt .

However, in this new context, the picture is undoubtedly less clear with respect
to the Wasserstein case. The main difficulty in establishing rigorously these results
is the lack of informations on the geodesics of the space of probabilities endowed
with the distance W2,β;LN : indeed, these are not directly related to geodesics of the

base space RN through a formula like (2.3). In particular, it is not easy to guess
the conditions for the displacement convexity in this context. This question has
started to be investigated in the recent paper [17]. There in particular the following
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sufficient conditions have been established for the geodesic convexity of an internal
energy functional, in the case of a convex bounded set Ω, with reference measure
ν = L NxΩ.

Theorem 5.5 (Generalized displacement convexity). Let us consider the internal
energy functional

U(ρ) =

∫
Ω

U(f(x)) dx, if ρ = f ·L N ,

with U : [0,+∞) → [0,+∞) smooth, convex and such that lims→+∞ U(s)s−1 =
+∞. We extend U to the whole space of probability measures P(Ω) by setting
U(ρ) = +∞ if ρ 6� L N . We then define

P (s) =

∫ s

0

U ′′(r)rβ dr and H(s) = β

∫ s

0

U ′′(r)r2β−1 dr.

Suppose that there results

(5.7) P ′(s)sβ ≥
(

1− 1

N

)
H(s) ≥ 0, for every s > 0.

Then for every ρ0, ρ1 ∈ P(Ω) such that Wp,β;LN (ρ0, ρ1) < +∞ and with finite
energy U , there exists a constant speed geodesic µt connecting ρ0 to ρ1 and such
that

U(µt) ≤ (1− t)U(ρ0) + tU(ρ1), for every t ∈ [0, 1].

Remark 5.6. Observe that in the case β = 1, corresponding to the usual Wasser-
stein distance, we have P (s) = H(s) and (5.7) coincides with the usual condition
for the displacement convexity (see Section 2, Remark 2.2). Also observe that
U(s) = s log s still verifies (5.7), while

U(s) =
1

ϑ− 1
sϑ,

verifies (5.7) if and only if ϑ ≥ 2−β(1+1/N), with ϑ 6= 1. In particular the internal
energy functional (5.6) is displacement convex in this generalized sense and one can
rigorously establish that the gradient flow of (5.6) with respect toW2,β;LN is given
by the heat equation (see [21, Theorem 5.29]).

6. Branched transport problems

As already recalled in the introduction, this kind of problems received a certain
interest in the last years and various variational formulations have been proposed.
First of all, we want to recall some of them: the presentation will be rather sketchy
and informal, for more details and results the reader should consult the monography
[8]. In what follows, Ω will always be a compact and convex subset of RN .

6.1. Some models. The first model to be proposed has been the one by Gilbert
([22]) in the ’60s, dealing with finitely discrete sources and destinations, i.e.

ρ0 =

k∑
i=1

aiδxi and ρ1 =

m∑
j=1

bjδyj ,
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such that
∑k
i=1 ai =

∑m
j=1 bj = 1. The admissible transportation structures are

represented by weighted oriented graphs g sastisfying Kirchhoff’s Law for circuits,
whose total cost is given by

(6.1) Mα(g) =
∑
eh∈g

mα
h H 1(eh),

where eh are the edges of the graph g and mh is the weight associated with the edge
eh. In what follows, we will refer to an energy of the type (6.1) as a Gilbert-Steiner
energy.

The model introduced by Xia in [44] is based on a relaxation procedure, starting
from the previous energy Mα defined for ρ0 and ρ1 finitely atomic probability
measures. This can be seen as a natural extension to general measures of Gilbert’s
model and the resulting energy has the following integral expression

M∗α(Φ) =

{ ∫
m(x)α dH 1(x), if Φ = m−→τ H 1xΣ,

+∞, otherwise.

defined over vector measures3 Φ ∈ M(Ω;RN ). Here Σ is a 1−rectifiable set and
the vector field −→τ is an orientation, belonging to the approximated tangent space
to Σ, while m is the multiplicity. In particular, this is still a Gilbert-Steiner energy.
Then in this framework the branched transport problem is formulated as

(6.2) dα(ρ0, ρ1) := min{M∗α(Φ) : div Φ = ρ0 − ρ1}.

Observe that this is quite close in spirit to the models presented so far, except for
the fact that the model is completely static and a dynamical description of the
branched transport is missing: in particular, we could say that this is a sort of
Eulerian model. We recall the following result.

Theorem 6.1 (Xia). Let α ∈ (1−1/N, 1] and ρ0, ρ1 ∈P(Ω), then the minimization
problem defining dα(ρ0, ρ1) does admit a solution with finite energy. Moreover
dα : P(Ω)×P(Ω)→ [0,∞) defines a distance on P(Ω) which metrizes the ∗−weak
convergence and such that (P(Ω), dα) is a geodesic space.

Remark 6.2. The condition on the exponent α is sharp: for example, when α ≤
1− 1/N , it is not possible to find a Φ with finite M∗α energy, transporting ρ0 = δx0

to ρ1 = |Ω|−1 L NxΩ.

On the other hand, some Lagrangian descriptions have been proposed by many
authors (Bernot, Caselles, Figalli, Maddalena, Morel, Solimini). Here we just recall
the one by Bernot, Caselles and Morel ([6, 7]), which is the more flexible: for the
others, one can consult [9, 29]. We consider the following transport cost

Eα(Q) =

∫
L

∫ 1

0

[σ(t)]α−1
Q |σ′(t)|dt dQ(σ), Q ∈P(L),

where L = Lip([0, 1]; Ω) and the multiplicity [ · ]Q is defined by

[x]Q = Q({σ : σ([0, 1]) 3 x}), x ∈ Ω,

3A related model based on 1−rectifiable currents, instead of vector measures, has been studied
by Paolini and Stepanov in [40].
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which represents the total cumulated transiting mass at the point x. In particular,
the term

σ 7→
∫ 1

0

[σ(t)]α−1
Q |σ′(t)| dt,

is a sort of weighted-length functional, with the weight depending on the mass
travelling on the curve (we have in particular that [σ(t)]α−1

Q ≥ 1). We remark
that, dimensionally, the energy Eα is a Gilbert-Steiner one. In such a setting, the
transport problem is formulated as

(6.3) Eα(ρ0, ρ1) := min{Eα(Q) : Q ∈P(L), (ei)#Q = ρi, i = 0, 1},
where et : L → Ω is given by et(σ) = σ(t), the evaluation at time t map.

Remark 6.3. Observe that the functional Eα is invariant under time reparametriza-
tions, thanks to the definition of the multiplicity.

The following important fact is proven in [8, Chapter 9].

Theorem 6.4 (Bernot-Caselles-Morel). The two models corresponding to (6.2) and
(6.3) are equivalent.

Here by equivalent we mean that that the two models describe the same kind of
energy and the same optimal structures of branched transport: the simple equality
of the minima is just a consequence of this more important fact.

6.2. A Benamou-Brenier formula in the branched setting. In [13] this trans-
port problem has been settled in the framework of dynamical transport distance.
Let us introduce the following local l.s.c. functional defined on measure by (see
[10])

gα(ρ) =

∫
Ω

ρ({x})α d#(x),

where # is the counting measure and gα is set to be +∞ if ρ is not a purely atomic
measure, i.e. the sum of countably many Dirac masses. Then we consider the
action functional

(6.4) Gα(µ, φ) :=

∫ 1

0

gα

(∣∣∣∣dφtdµt
(x)

∣∣∣∣1/αµt(x)

)
dt,

wih the convention Gα = +∞ if φt 6� µt for a non negligible set of times. About the
functional Gα, some words are in order: first, observe that this energy has exactly
the dimensions of a Gilbert-Steiner one, indeed considering the term dφt/dµt as a
velocity, we have

Gα(µ, φ) '
∑ d`

dt
mαdt =

∑
mαd`.

Second, the term inside the functional gα is exactly the integrand of the Benamou-
Brenier functional and the finiteness of the energy implies that φt (not in any case
µt) has to be purely atomic for each time t, that is

Gα(µ, φ) < +∞ =⇒ φt is atomic.

This implies that only the mass that is effectively moving has to be atomic.
Our model of branched transport is then given by

(6.5) Bα(ρ0, ρ1) = min

{
Gα(µ, φ) :

∂tµt + divxφt = 0,
µi = ρi, i = 0, 1

}
,
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and in [13], Theorem 2, we have proven the following existence result.

Theorem 6.5. Given ρ0, ρ1 ∈ P(Ω), the minimization problem (6.5) admits a
solution, provided there exist an admissible pair (µ, φ) with finite energy.

Proof. The proof uses the direct methods in the calculus of variations: we give
a sketch of it, referring the reader to [13] for more details. First of all, observe
that in (6.5) the functional to be minimized is not convex, but rather concave with
respect to µ: lower semicontinuity is then a non trivial fact (see Remark below). On
the other hand, convexity is hidden in the functional: indeed, with respect to the
velocity variable vt = dφt/dµt, Gα is convex and 1−homogeneous. This implies that
the functional Gα can be regarded as a sort of length functional and it is in particular
invariant under time reparametrizations. More precisely, given an admissible pair
(µ, φ) and a strictly increasing time reparametrization t : [0, 1] → [0, 1], we can
define the new pair

µ̃s = µt(s) and φ̃s = t′(s)φt(s),

and we have Gα(µ, φ) = Gα(µ̃, φ̃), with (µ̃, φ̃) still solving the continuity equation.
Moreover, the following basic inequality holds true: let (µ, φ) with Gα(µ, φ) < +∞
and such that ∂tµt + divxφt = 0, then using the subadditivity of the map s 7→ sα

and Theorem 3.1, we obtain

gα

(∣∣∣∣dφtdµt

∣∣∣∣1/αµt
)

=
∑
i(t)

|vt(xi(t))|µt(xi(t))α ≥

∑
i(t)

|vt(xi(t))|1/αµt(xi(t))

α

= ‖vt‖L1/α(µt) ≥ |µ
′
t|w1/α

,

(6.6)

where we indicated with xi(t) the atoms of φt. Also, using the simple inequality
‖vt‖L1/α(µt) ≥ ‖vt‖L1(µt), we obtain a bound on the total variation of φ, i.e.

(6.7) Gα(µ, φ) ≥
∫ 1

0

‖vt‖L1(µt) dt =

∫
[0,1]×Ω

d|φ|.

Taking an infimizing sequence {(µn, φn)}n∈N with equi-bounded energy Gα, we start
reparametrizing each pair in such a way that

gα

∣∣∣∣∣dφ̃tdµ̃t

∣∣∣∣∣
1/α

µ̃t

 ≡ Gα(µ̃n, φ̃n) = Gα(µn, φn),

that is we choose the reparametrizations tn : [0, 1]→ [0, 1] implicitely defined by

Gα(µn, φn) s =

∫ tn(s)

0

gα

(∣∣∣∣dφnrdµnr

∣∣∣∣1/αµnr
)
dr, s ∈ [0, 1].

In this way, (6.6) implies that {µ̃n}n∈N is equi-Lipschitz inW1/α(Ω), so that (up to
subsequences) µ̃nt ⇀ µt uniformly in time, for some Lipschitz curve µ. In the same

way, (6.7) implies that {φ̃n}n∈N is weakly converging to φ, as Radon measures on
[0, 1]×Ω. Moreover the pair (µ, φ) is still solving the continuity equation. We then
have to show that φ � µ, which implies that φ disintegrates as φ =

∫
φt dt, and

that Gα is l.s.c. along this (possibly reparametrized) infimizing sequence.
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The first fact is a simple consequence of the l.s.c. of the Benamou-Brenier func-
tional: indeed, we have∫

[0,1]×Ω

∣∣∣∣dφdµ
∣∣∣∣1/αdµ ≤ lim inf

n→∞

∫
[0,1]×Ω

∣∣∣∣∣dφ̃ndµ̃n

∣∣∣∣∣
1/α

dµ̃n

and the right-hand side is finite, again thanks to (6.6) and the reparametrization
we have chosen. But the finiteness of this functional then implies that φ� µ, thus
φ =

∫
φt dt with φt � µt.

The proof of the l.s.c. property is a litte bit more involved and we just give some
hints, referring the interested reader to [13] for more details: we start considering
the familiy of positive measures {mn}n∈N defined on the compact space [0, 1] × Ω
by

mn =

∫ 1

0

∑
|ṽnt (xi(t))| µ̃t({xi(t)})α δxi(t) dt,

whose mass coincide with our α−energy by definition, i.e.

mn([0, 1]× Ω) = Gα(µ̃n, φ̃n) = Gα(µn, φn).

Since we are assuming that these energies are equi-bounded, we then obtain that
mn ⇀ m, for a certain positive measure m on [0, 1]× Ω, so that

lim
n→∞

Gα(µn, φn) = lim
n→∞

Gα(µ̃n, φ̃n) = lim
n→∞

mn([0, 1]× Ω) = m([0, 1]× Ω).

Moreover, the measures mn are such that their time marginals are given by

gα

∣∣∣∣∣dφ̃ntdµ̃nt

∣∣∣∣∣
1/α

µ̃nt

 ·L 1x[0, 1],

that is they are absolutely continuous w.r.t. the 1−dimensional Lebesgue measure
and with equi-bounded, in L∞ again thanks to our reparametrization, densities.
This implies that the limit measure m admits the disintegration m =

∫
mt dt. To

conclude, it is then enough to show that

mt(Ω) ≥ gα

(∣∣∣∣dφtdµt

∣∣∣∣1/αµt
)
, for L 1−a.e. t ∈ [0, 1].

This is done showing that for every Borel set S ⊂ Ω we have mt(S) ≥ |φt|(S)µt(S)α−1

and that φt is atomic for L 1−a.e. t ∈ [0, 1]. In this way, on taking S = Ω and
using these two informations, one would conclude. �

Some words about the semicontinuity properties of the energy Gα are in order.

Remark 6.6. It is not difficult to see that the previous proof shows the l.s.c. of
the functional Gα with respect to the following kind of convergence (in [13] the
terminology τ−convergence is used):

(µn, φn)
τ
⇀ (µ, φ)⇐⇒



(τ1) (µn, φn) ⇀ (µ, φ) as measures on[0, 1]× Ω

(τ2) (µn, φn) solve the continuity equation

(τ3) t 7→ gα

(∣∣∣dφntdµnt

∣∣∣1/αµnt ) are equi-integrable
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On the other hand, we remark that the ∗−weak convergence only of the pairs (µ, φ)
as measures on [0, 1] × Ω does not directly imply the lower semicontinuity of Gα,
since the functional is not jointly convex. Finally, it is clear that, assuming the
following stronger convergence

(6.8) (µnt , φ
n
t ) ⇀ (µt, φt), for L 1−a.e. t ∈ [0, 1],

then the desired semicontinuity property of Gα would have resulted from a simple
application of Fatou’s Lemma: anyway, the problem has not enough coercivity
properties to guarantee such a strong convergence.

After the existence result of Theorem 6.5, one may be not content and ask
whether the dynamical Eulerian description (6.5) is equivalent to the ones already
existing or not: the answer is positive, as shown in [13, Theorem 4.2].

Theorem 6.7 (Equivalent descriptions). Let ρ0, ρ1 ∈P(Ω), then the minimization
problem (6.3) is equivalent to (6.5)

Proof. One fundamental tool in the proof is the superposition principle (see [2,
Theorem 8.2.1]), which enables to pass from curves of measures to measures on the
space of curves. This also permits to compare the transiting mass and the velocity
terms in our approach, i.e.

µt({x}) and vt(x),

with the corresponding quantities in the Lagrangian approach, given by

[σ(t)]Q and |σ′(t)|.
Indeed, if (µ, φ) is optimal for (6.5), then φ = v · µ and (µ, v) solve the continuity
equation ∂tµt+divx(µtvt) = 0. Thanks to the aforementioned superposition princi-
ple, the curve µ can be realized as a superposition of integral curves of the velocity
filed v, that is µt = (et)#Q with Q concentrated on the solutions of σ′(t) = vt(σ(t)).
In this way, we obtain the following estimate for the transiting mass

µt({x}) = Q({σ : σ(t) = x}) ≤ Q({σ : σ([0, 1]) 3 x}),
and exchanging the order of integration in the definition of Eα and using the defi-
nition of push-forward we arrive at∫

L

∫ 1

0

[σ(t)]α−1
Q |σ′(t)| dt dQ(σ) =

∫ 1

0

∫
L

[σ(t)]α−1
Q |vt(σ(t))| dQ(σ) dt

≤
∫ 1

0

∫
Ω

µt({x})α−1 |vt(x)| dµt(x) dt.

This enables to give the first estimate

Bα(ρ0, ρ1) ≥ Eα(ρ0, ρ1).

The inequality sign is due to the fact that the term µt({x}) is local in time, while
[σ(t)]Q is not: in particular, the functional Eα counts the mass passing from a cer-
tain point x at any time, a quantity which in principle could be strictly larger
than the mass transiting from x at a given time t. In general we then have
µt({x})α−1 ≥ |x|α−1

Q . The question of equivalence is then connected to the question
of existence of optimal traffic plans which are synchronized , i.e. such that

Q({σ̃ : σ̃([0, 1]) 3 σ(t)}) = Q({σ̃ : σ̃(t) = σ(t)}).
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One knows this to be true when the initial measure ρ0 is a finite sum of Dirac
masses, thanks to the results contained in [9]: in this case, taking such a traffic
plan Q, we construct a curve µ just setting µt := (et)#Q. Defining φt = vt ·µt with
the velocity field vt given by

vt(x) =

∫
{σ :σ(t)=x}

σ′(t) dQtx(σ),

where {Qtx}x∈Ω is the disintegration of Q with respect to the function et (we used
this argument in the proof of Theorem 3.1), one would obtain

Gα(µ, φ) ≤ Eα(Q) = Eα(ρ0, ρ1),

thus concluding the proof of the equivalence, at least when ρ0 is finitely atomic.
For the general case, one can use an approximation argument: indeed we have
Eα(ρ0, ρ1) = dα(ρ0, ρ1) and thanks to the relaxed formulation of Xia’s model, one
can always find sequences of finitely atomic measures ρni ⇀ ρi, i = 0, 1, such that
dα(ρn0 , ρ

n
1 )→ dα(ρ0, ρ1) (see [13] for more details). �

A joint application of Theorems 6.5, 6.7 and 6.4 easily implies the following.

Corollary 6.8. The distance dα is a dynamical transport distance, with

dα(ρ0, ρ1) = min

{∫ 1

0

gα

(∣∣∣∣dφtdµt

∣∣∣∣1/αµt
)
dt :

∂tµt + divxφt = 0,
µi = ρi, i = 0, 1

}
.

It is interesting to notice that, as enligthen by the previous formulation, dα shares
some aspects with the case of w1 (the 1−homogeneity with respect to the velocity,
for example), but also with the case of w1/α, which comes from the strictly convex

cost c(x, y) = |x− y|1/α. In particular, the teleport phenomenon (see Remark 3.3)
does not occur and moreover

dα '
∑

mα` and w1/α '
(∑

m`1/α
)α

,

that is the two quantities have the same scaling. Actually we can say even more
on the comparison between these two distances: indeed, they are topologically
equivalent.

Proposition 6.9. Let α ∈ (1− 1/N, 1), then

(6.9) w1/α(ρ0, ρ1) ≤ dα(ρ0, ρ1) ≤ C w1/α(ρ0, ρ1)N(α−1)+1, ρ0, ρ1 ∈P(Ω),

with C depending only on α, diam(Ω) and N .

Proof. The first inequality is just an easy consequence of (6.6), while the second one
can be proven by approximating the measures with Dirac masses centered on dyadic
cubes and then using the triangular inequality, together with the following basic
fact: given two discrete measures η0, η1 ∈P(Ω) having n and s atoms respectively,
then there exists an optimal transport plan γ ∈ Π(η0, η1) that does not move more
that n+ s− 1 atoms (see [13] for more details). �

The exponent N(α−1)+1 is strictly less than 1 and it is sharp. Indeed, one can
construct (see [34, Example 0.1]) two sequences of discrete probability measures
{ρn0}n∈N and {ρn1}n∈N such that

dα(ρn0 , ρ
n
1 ) =

c

nN(α−1)+1
and w1/α(ρn0 , ρ

n
1 ) =

c

n
.
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Remark 6.10. We remark that in the inequality

dα(ρ0, ρ1) ≤ C w1/α(ρ0, ρ1)N(α−1)+1,

we can replace the distance w1/α with w1, keeping the same exponent N(α−1)+1.
This latter (sharper) inequality, which implies the former thanks to the fact that
w1 ≤ w1/α, has been proven by Morel and Santambrogio (see [34]).

Remark 6.11. An alternative dynamical formulation of branched transport, still
based on curves of measures, can be found in [12]. Here the use of the continuity
equation is avoided and the problem is set as a kind of minimal length problem:
branched transport is described through a curve of measures minimizing a weighted-
length functional, the weight being given by the same functional gα as before, i.e.
one considers the problem

min

{∫ 1

0

gα(µt) |µ′t|wp dt : µ ∈ Lip([0, 1];Wp(Ω)), µi = ρi, i = 0, 1

}
.

Anyway, this model does not describe a Gilbert-Steiner energy and is not equivalent
to the others: in [14] it is shown how this weighted-length functional has to be
modified, in order to obtain the equivalence with the models presented in this
section.

Finally, we point out that it could be interesting to know if some connections with
evolution equations are possible also in the case of branched transort: this certainly
requires a better understanding of the geometry of the space (P(Ω), dα), especially
of its geodesics, which as in the case of the distances considered by Dolbealut,
Nazaret and Savaré, are not displacement interpolations.
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