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Abstract

A variational lattice model is proposed to define an evolution of sets from a single point
(nucleation) following a criterion of “maximization” of the perimeter. At a discrete level,
the evolution has a “checkerboard” structure and its shape is affected by the choice of the
norm defining the dissipation term. For every choice of the scales, the convergence of the
discrete scheme to a family of expanding sets with constant velocity is proved.
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1 Introduction

In this paper we propose a variational model for nucleation and growth of a set by maximization
of its perimeter through an energy-dissipation balance at fixed time step. We follow an implicit
Euler scheme used by Almgren, Taylor and Wang to prove existence of sets moving by mean
curvature by minimization of the perimeter (see [4]). In that case, fixed a time step τ > 0, one
can define iteratively the discrete orbits Eτk at fixed τ from an initial set E0 as Eτ0 = E0 and Eτk
as a solution of

min
{
P (E) +

1

τ
Dp(E,Eτk−1)

}
, Dp(E,F ) =

∫
E4F

distp(x, ∂F ) dx, (1.1)

where distp(x, ∂E) = min{‖x − y‖p : y ∈ ∂E}, p ∈ [1,∞]. The term Dp is interpreted as a
dissipation, and (1.1) can be seen as a minimization of P subject to a constraint due to the
dissipation, which forces Eτk to be close to Eτk−1 for τ small. In [4] it is proved (in the case p = 2)
that the piecewise-constant interpolations Eτ (t) = Eτbt/τc converge to a decreasing family of sets

E(t) which move by mean curvature.
Such a scheme cannot be directly followed taking maximization of the perimeter as a driving

mechanism, which would correspond to replacing P with −P . Indeed, we may have sets E
such that E4E0 has small measure (and hence with small dissipation) but with arbitrarily large
perimeter, so that the minimum value for k = 1 in (1.1) is −∞ and the scheme arrests at the first
step. In order to overcome this issue, we discretize our problem by introducing a spatial length
scale ε. For technical reasons explained below, we will examine only a two-dimensional setting,
and for simplicity parameterize our problem on the lattices εZ2. We then restrict to sets that
can be written as the union of squares of side length ε and centers in εZ2. Within this class we
shall consider the problem of nucleation; i.e., of motion from a minimal set, a single ε-square Eε0
(which we may suppose to be centered in 0). With fixed ε and τ , the discrete orbits are defined
as Eε,τ0 = Eε0 and Eε,τk as a solution of

min
{
−Pε(E) +

1

τ
Dp
ε(E,Eε,τk−1) : Eε,τk−1 ⊆ E

}
, (1.2)
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where Pε is the restriction of the perimeter functional to unions of ε-squares, and Dp
ε is a

discretization of the dissipation Dp which, for every E ⊇ F , reduces to

Dp
ε(E,F ) = ε2

∑
i∈E∩εZ2

distp(i, (εZ2 \ F )) .

Note that we consider a growing family of sets with respect to inclusion. With fixed τ = τε we
will characterize the cluster points E(t) as ε → 0 of the interpolated functions Eε(t) = Eε,τbεt/τc,

which are the generalization to varying energies of the Almgren-Taylor-Wang scheme scaled in
the time variable. Note the different scaling of the time variable, which is the one that better
describes the evolution. The form of E will depend on the interplay between ε and τ ; more
precisely, on the limit ratio α of ε2/τ as ε → 0. We remark that the chosen time scaling can
be directly interpreted as giving the minimizing movements along the sequence −εPε at scale τ ,
which are defined in [7]. This scaling is also justified by the fact that the energies −εPε have a
non-trivial Γ-limit.

We describe the case 0 < α < +∞, which is the most relevant. It is not restrictive to suppose
that ατ = ε2. By the homogeneity properties of the perimeter and the dissipation, we note that
Eε,τk = εAαk , where Aα0 = q (the unit square centered in 0), and we solve iteratively

min
{
−P1(A) + αDp

1(A,Aαk−1) : Aαk−1 ⊆ A
}
. (1.3)

The first step is particularly meaningful, and consists in solving the minimum problem

min
{
−P1(A) + αDp

1(A, q) : q ⊆ A
}
. (1.4)

We have
• the first set Aα1 is a part of the checkerboard of unit squares in R2 containing 0 (which we

call the even checkerboard). While this fact is clear ‘locally’, the proof that the whole set is a
single checkerboard requires a non-trivial covering argument, in which R2 is covered by sets in
which the minimal set A is (part of) the correct checkerboard. This argument can be avoided in
the case p =∞, which has been treated directly in [12];
• since every square of the (even) checkerboard gives an independent contribution of energy

and dissipation, a point i ∈ Z2 may belong toAα1 if and only if (i1+i2 ∈ 2Z and) the corresponding
contribution is non positive; i.e.,

−4 + α‖i‖p ≤ 0; (1.5)

• if α 6∈ {4/‖i‖p : i ∈ Z2, i1 + i2 ∈ 2Z} then Aα1 is uniquely determined by (1.5), and it is the
union of all squares in the even checkerboard with centers in the set

Np
α = {i ∈ Z2 ∩Bp4/α : i1 + i2 ∈ 2Z},

where Bpr = {x ∈ R2 : ‖x‖p < r}. Note that Np
α = {0} if α > 4;

We consider only α with such a unique minimizer. The subset Np
α of Z2 will be called

the nucleus of the process. Correspondingly, we have the continuum set P pα obtained as the
convexification of Np

α. Note that P 1
α and P∞α are always squares, but for the other p the form of

P pα does depend on α.
The most delicate argument in the study of the discrete scheme is the characterization of

the sets Aαk for k > 1. Similarly to the case k = 1 this is done by covering R2 with a family
of small sets, mainly squares and rectangles, in each of which we prove that the minimal set is
again the even checkerboard. In order to construct this covering we have to define the ‘edges’ of
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the nucleus Np
α, and consider separately the regions of R2 that project on those edges according

to the p-distance. At this point we have a technical hypothesis to add; namely, that all such
regions are infinite (which is satisfied if these edges enclose a convex shape but may not be the
case for some exceptional values of α). The complex construction of this covering is the reason
why we limit our analysis to a two-dimensional setting.

With this characterization, using (1.5) we immediately have that the centers of the squares
in Aαk are exactly the points i ∈ Z2 with i1 + i2 ∈ 2Z and distance not greater than 4/α from
Aαk−1, so that

Aαk ∩ Z2 = (Aαk−1 ∩ Z2) + (Aα1 ∩ Z2).

In a sense, every square in Aαk−1 acts as the ‘center’ of a nucleus. Note in this step that if Aα1
were not unique, then we would have an ‘increasing non-uniqueness’ of Aαk , which in particular
may even not be the intersection of the square checkerboard with a convex region.

Since the centers of the squares in Aαk are obtained as sums of k elements in Np
α, a result on

Minkowsky sums of sets shows then that the convex envelope of Aαk ∩ Z2 is the convex envelope
of kNp

α, which is an interesting and not a trivial fact. At this point we can go back to the original
problem and describe the discrete orbits.

Eε,τk = εAαk = εkP pα, Eε(t) = Eε,τbεt/τc = ε
⌊α
ε

⌋
P pα.

Letting ε→ 0 we then conclude that the desired evolution is a linear evolution of sets

E(t) = αtP pα.

Note that P pα = {0} and hence the evolution is pinned if α > 4. Moreover, remarking that
αP pα ∼ B

p
4 for α small, we also recover the case α = 0, corresponding to the regime ε2 << τ , for

which E(t) = 4tBp1 .

We note that in [10] the same discretization approach had been followed for the (positive)
perimeter and non-trivial initial data. The resulting evolution therein is a discretized motion by
square-crystalline curvature (see [3]), which highlights the anisotropy of the lattice intervening
in the perimeter part, while the effect of the dissipation is confined in the form of the mobility.
In the present analysis the effect of the dissipation and of the perimeter parts are combined
in the determination of the shape of the nucleus, but the perimeter term actually acts as an
approximation of an area and is less relevant for small values of α. Note that our discretiza-
tion approach can be regarded as a ‘backward’ version of [10] if the index k is considered as
parameterizing negative time (see [7, Section 10.2]). Other analyses of minimizing movements
on lattices related to the perimeter can be found in [11, 27, 26, 28]. We note that checkerboard,
stripes and other structures arise in antiferromagnetic systems related to maximization of the
perimeter (see [8] for a variational analysis in terms of Γ-convergence, and the wide literature in
Statistical Mechanics, e.g. [19, 16]). Some cases in which microstructures on lattices are involved
and produce interesting variants of motion by crystalline curvature are studied in [9, 13]. For an
overview on geometric motion on planar lattices see the recent lecture notes [14].

Even though our interest is mainly in the analytical issues of this nucleation process, it is
suggestive and interesting to connect this work with the process of biomineralization, where
nucleation occurs via the formation of a small nucleus of a new phase inside the large volume of
the old phase (see, e.g., [17]). At very small size, adding even one more molecule increases the
free energy of the system and this produces, on average, the dissolution of the nucleus. Above
a threshold, when the contribution of the surface free energy becomes negligible, every addition
of a molecule to the lattice lowers the free energy and allows for the growth of the nucleus. In
this direction, lattice systems have been widely used as a simple model in simulations of complex
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phenomena, as the vapor-liquid nucleation (see, e.g., [20, Section 8.9]). From a completely
different point of view, our structure results can be related to the investigation of the influences of
environmental heterogeneities on the spatial self-organization of microbial communities (see, e.g.,
[15, 23]); in particular, how interactions of different type (mutualism/commensalism) between
competing neighboring genotypes and their mutual distance can produce spatial patterns of
varying complexity and intermixing, as a random distribution, a spatial segregation or even a
checkerboard, and how they may affect the collective behaviour and the rate of growth of the
colony.

Outline of the paper. In Section 2 we fix some notation and recall some preliminaries in
Discrete Geometry. We introduce the class of admissible sets that we will consider throughout
the paper, and the notions of effective boundary and discrete edge of a set. In Section 3 we define
perimeter energies Pε and, for a general norm ϕ, dissipations Dϕ

ε we will deal with, together
with the main functional Fϕε,τ . Correspondingly, we introduce the time-discrete minimization
scheme for a suitably scaled version of the energies Fϕε,τ (Section 3.1).

The convergence analysis of this scheme at the regime ε << τ is carried out in Section 4.
In Section 5 we address the problem of determining the solutions of scheme (1.4) at the critical
regime ε = ατ , under a monotonicity constraint on the discrete trajectories. We introduce here
also a first restriction on the dissipations Dϕ

ε , by requiring that ϕ be an absolute norm; i.e.,
ϕ(x) = ϕ(|x1|, |x2|). The explicit characterization of the first step A1

α of the discrete evolution,
provided with Proposition 27, is based on a local analysis by means of the 2 × 2-square tilings
introduced in Section 5.1 and the key submodularity-type norm-inequality (5.8). In order to
prove that an analogous structure result can be obtained for each step Akα, k ≥ 2; i.e., for
minimizers of the energy Fϕα(·, Ak−1

α ), we will assume that ϕ is a symmetric absolute normalized
norm (see Section 5.2), complying with a technical assumption (H3), and that the competitors
fulfill suitable geometric assumptions (see (5.13)). The proof of this stability result, given with
Propositon 30, is the content of Section 5.5 and relies on a localization argument only reminiscent
of that used in the proof of Proposition 27, as we are forced to define a new covering outside
every discrete edge contained in the effective discrete boundary of the current step Ak−1

α . In
Section 5.6, with Theorem 38 we characterize the time-discrete flow {Akα}k≥0 as a geometric
iterative process, based on properties of Minkowski sums.

In Section 6 we describe the resulting limit evolutions and we prove the existence of a pinning
threshold (see Definition 40). We conclude our analysis by exhibiting, in Section 6.1, some
examples where both the microscopic and the limit evolutions can be explicitly characterized. The
closing Section 6.2 contains some conjectures on evolutions without the monotonicity constraint.

2 Notation and preliminaries

The generic point of R2 will be denoted by x = (x1, x2), the Euclidean norm by | · | in any
dimension. The space of subsets of R2 with finite perimeter endowed with the Hausdorff distance
dH is denoted by X, and the 1-dimensional Hausdorff measure by H1 (see for instance [2]).

The function ϕ : R2 → [0,+∞) denotes any norm in the plane. We use the standard notation
for the `p-norm, for every 1 ≤ p ≤ ∞; that is,

‖x‖p =
(
|x1|p + |x2|p

) 1
p if 1 ≤ p <∞, ‖x‖∞ = max{|x1|, |x2|} if p =∞,

for every x ∈ R2. For every r > 0, Bϕr (x) = {y ∈ R2 : ϕ(x−y) < r} is the open ball of radius r
and center x corresponding to the norm ϕ, while qr(x) = x+ [−r/2, r/2]2 is the r-square of side-
length r centered at x; when x = (0, 0), we will use the shorthand Bϕr and qr in place of Bϕr (x) and
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qr(x), respectively. For every x ∈ R2, E ⊆ R2 we set dϕ(x, E) = infy∈E ϕ(x− y). The segment
connecting x1,x2 ∈ R2 is denoted by [x1,x2] :=

{
y ∈ R2 : y = sx1 + (1− s)x2, s ∈ [0, 1]

}
.

Definition 1. Given two unit vectors v1,v2 ∈ S1, θ(v2,v1) ∈ [−π, π] denotes the signed angle
between v1 and v2, defined as

θ(v2,v1) =
(
θ2 − θ1 + π (mod. 2π)

)
− π,

where θ1 and θ2 are the angles corresponding to the exponential representations of v1 and v2,
respectively.

Let Z2 be the standard square lattice. We consider the partition of Z2 given by Z2 = Z2
e∪Z2

o,
where Z2

e =
{
i ∈ Z2 : i1 + i2 ∈ 2Z

}
and Z2

o = (1, 0) + Z2
e.

We will call a lattice set any subset I ⊆ Z2, and #I denotes its cardinality. We also recall
that the boundary of a lattice set I is the set

∂I =
{
i ∈ I | there exists j ∈ Z2 \ I : |i− j| = 1

}
.

Given a lattice set I, the convex hull of I is the smallest convex subset of R2 containing I, which
is denoted by conv(I). A polygon whose vertices are points of the lattice is said a lattice polygon.
The set conv(I) is an example of a (convex) lattice polygon, for every I ⊂ Z2.

Let ε > 0 be a fixed parameter and consider the lattice εZ2. All the notation given above for
subsets of Z2 extends also to subsets of εZ2. We identify any lattice set I ⊂ εZ2 with the subset
E(I) of R2 given by the union of ε-squares centered at points of I; namely,

E(I) :=
⋃
i∈I

qε(i).

Accordingly, we define the class of admissible sets as

Dε :=
{
E ⊂ R2 : E = E(I) for some lattice set I ⊆ εZ2

}
, (2.1)

and to each set E ∈ Dε we associate the lattice set Zε(E) := E ∩ εZ2, the set of centers of E.
When ε = 1 we will simply write D and Z(E) in place of D1 and Z1(E), respectively.

Definition 2 (the classes of checkerboard sets). We introduce the classes of even and odd ε-
checkerboard sets

Aeε =
{
E ∈ Dε : Zε(E) ⊆ εZ2

e

}
, (2.2)

and analogously the class Aoε by requiring that I ⊆ εZ2
o. We refer to E(εZ2

e) and E(εZ2
o) as the

even and odd ε-checkerboard, respectively. In the following we will write D, Ae, Ao in place of
D1, Ae1, Ao1, and we will use the shorthand checkerboard set (in place of “1-checkerboard set”)
to denote any set in Ae and Ao.

2.1 Preliminaries on lattice geometry

For our purposes we fix some notation and introduce some basic definitions in lattice geometry
that will be useful for the analysis performed in Subsection 5.4.

Definition 3. A lattice set I ⊆ Z2
e is said to be Z2

e-convex if conv(I) ∩ Z2
e = I. Analogously,

I ⊆ Z2
o is Z2

o-convex if conv(I) ∩ Z2
o = I. Accordingly, we define the subclass Aeconv ⊂ D as

Aeconv = {E ∈ D : Z(E) is Z2
e-convex},

and, analogously, the subclass Aoconv by requiring Z(E) to be Z2
o-convex. We also set the class

Aconv := Aeconv ∪Aoconv.
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The notion of convex lattice set has already been given for I ⊂ Z2 (see for instance [18]).
Note that I is Z2

e-convex if and only if there exists a convex set K ⊂ R2 such that I = K ∩ Z2
e,

and the same holds for Z2
o-convex sets.

For every lattice set I ⊆ Z2
e (or Z2

o) there holds ∂I = I, since I consists of isolated points
of Z2. Since in the following we will deal with checkerboard sets we need a finer definition of
boundary for such lattice sets.

j−

j

j+

Figure 1: The (discrete) effective boundary of E (in blue).

Definition 4. Let I ⊂ Z2
e be a lattice set. We define the effective (discrete) boundary of I as

∂effI =
{
j ∈ I : there exists j0 ∈ Z2

e \ I such that |j− j0| =
√

2
}
.

The same definition is given for lattice sets I ⊂ Z2
o. Let E ∈ Ae ∪ Ao, we will write ∂effE =

∂effZ(E), see Figure 1.

Figure 2: The black dots are lattice points of I. The first two figures are different examples of “degen-
erate” i. On the right an example of a non-degenerate i and corresponding i− and i+; in gray polygon
P.

Given E ∈ Ae ∪Ao, and consider i ∈ ∂effE. We set I = {j ∈ Z(E) : ‖j− i‖1 ≤ 2}. Then i is
said to be non-degenerate if the set ⋃

j1,j2∈I
|j1−j2|≤2

[j1, j2]

is the boundary of a triangulation of a simple polygon P. Then, we can define two boundary
points i−, i+ ∈ ∂effE as the vertices of P, respectively, preceding and following i in the clockwise
orientation of ∂P, as depicted in Figure 2. We will say that i− precedes i and that i+ follows i.
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In the sequel, we will often consider the following non-degeneracy condition on sets E ∈ Aconv;

every i ∈ ∂effE is non-degenerate. (2.3)

Condition (2.3) allows to define an orientation of ∂effE, since for every i ∈ ∂effE we can define
i− and i+ as above. The following definitions are therefore well-posed.

Definition 5 (Discrete convex vertices). Let E ∈ Aconv satisfy (2.3). Given j ∈ ∂effE, let j+

(resp., j−) follow (resp., precede) j in ∂effE in the clockwise orientation. We define the right and
left outward unit normal vector at j as

ν+(j) :=
(j2 − j+

2 , j
+
1 − j1)√

(j+
2 − j2)2 + (j+

1 − j1)2

, ν−(j) :=
(j−2 − j2, j1 − j

−
1 )√

(j2 − j−2 )2 + (j1 − j−1 )2

,

respectively. Then we say that j is a discrete convex vertex (or discrete vertex ) if

θ(ν+(j),ν−(j)) < 0

where θ is introduced in Definition 1.

𝜈+(j3)

𝜈−(j3)

𝜈−(j1)

𝜈+(j1)

Figure 3: A discrete vertex of E may be a boundary point (not a vertex) of conv(Z(E)).

Remark 6 (Vertices and discrete vertices). The definition of discrete vertex given above is mo-
tivated by the fact that the vertices of conv(Z(E)) are discrete (convex) vertices of E. Whereas,
points j ∈ ∂effE such that

θ(ν+(j),ν−(j)) > 0

are always contained in the interior of conv(Z(E)) (Figure 3). This choice will also facilitate the
definition of discrete edge (see Definition 7 below).

Figure 4: An example of a discrete vertex of E contained in the interior of conv(Z(E)).

Note that we may have discrete vertices of E lying on the boundary of conv(Z(E)) which are
not vertices of conv(Z(E)) (see Fig. 3), and discrete vertices of E in the interior of conv(Z(E)),
as well (see Fig. 4).
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Definition 7 (Discrete edges). Let E ∈ Aconv satisfy (2.3). We define a discrete edge as a set
of consecutive points of ∂effE, say ` = {jl}Ll=0 where L ≥ 2 and j0 and jL are discrete vertices.
We define the outward unit normal vector of the discrete edge ` as

ν(`) :=
(j0

2 − jL2 , jL1 − j0
1)√

(jL2 − j0
2)2 + (jL1 − j0

1)2
.

We denote by E(E) the set of all discrete edges ` ⊂ ∂effE.

Let E ∈ Aconv satisfy (2.3). For every ` ∈ ∂effE we define the slope of ` as

s(`) :=
ν(`)1

ν(`)2
∈ [−∞,+∞] , (2.4)

where ν(`)k, k = 1, 2 indicate the components of ν(`), with the convention that ±1
0 = ±∞.

(a)
(b)

(c) (d)

Figure 5: Some examples of discrete edges.

Remark 8. We list all the possible cases of discrete edges of sets E ∈ Aconv satisfying (2.3) that
are symmetric with respect to the axes and the bisectors x2 = ±x1. Such symmetric sets will play
a central role in the sequel of the paper. Up to rotations of angle kπ and reflections we can restrict
this characterization to discrete edges ` ∈ E(E) such that ` = {jl}Ll=0 ⊂ {x ∈ R2 : x2 > 0}
having s(`) ∈ [0, 1]. We have the following characterization:

(i) if s(`) = 0 then jl = jl−1 + (2, 0) for every 1 ≤ l ≤ L;
(ii) if s(`) ∈ (0, 1

3 ] then jl = jl−1 + (2, 0) for every 1 < l ≤ L and j1 = j0 + (1,−1);
(iii) if s(`) ∈ ( 1

3 , 1) then jl = jl−1 + (1,−1) for every 1 ≤ l < L and jL = jL−1 + (2, 0);
(iv) if s(`) = 1 then jl = jl−1 + (1,−1) for every 1 ≤ l ≤ L.
These four types of discrete edge are pictured in Fig. 5(a), (b), (c) and (d), respectively.

Definition 9. For every norm ϕ and every E ∈ D, we introduce the projection map of integer
points on E; that is, the set-valued map πϕE : Z2 → P(Z2) defined as

πϕE(j) := argmin
j′∈Z(E)

ϕ(j− j′) . (2.5)
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2.2 Minkowski sum of sets

We recall that the Minkowski sum of sets A and B is defined as A+B = {a+ b | a ∈ A, b ∈ B},
and A + ∅ = ∅. If m ∈ N, we denote by mA the set {ma | a ∈ A} and, if A is non-empty, we
will often write A[m] to indicate the sum A+A+ · · ·+A m-times. Among the many properties
of Minkowski sum, we recall the commutability of Minkowski sum and the compatibility to the
operation of taking the convex hull; that is,

conv(A+B) = conv(A) + conv(B) . (2.6)

We recall without proof a result about the Minkowski sum of two convex polygons (see, e.g., [5]).

Proposition 10. Let A and B be convex polygons in R2. Let LA := {li,A}i=1,...,n and LB :=
{lj,B}j=1,...,m be the sets of the edges of A and B, respectively. Let VA := {νi,A}i=1,...,n and
VB := {νj,B}j=1,...,m be the sets of the outer normal vectors of A and B, respectively. Then,

(i) if VA ∩ VB = ∅, then LA+B = LA ∪ LB and VA+B = VA ∪ VB;

(ii) if |VA ∩ VB | = p, 1 ≤ p ≤ min{n,m}, then |LA+B | = n + m − p. More precisely,
if νi,A = νj,B for some i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, then li,A + lj,B ∈ LA+B,
li,A 6∈ LA+B, lj,B 6∈ LA+B and νi,A = νj,B ∈ VA+B. If, instead, νi,A 6= νj,B, then
li,A ∈ LA+B, lj,B ∈ LA+B, νi,A ∈ VA+B and νj,B ∈ VA+B.

In particular, if A = B, then LA+A = {li,A + li,A}i=1,...,n and VA+A = VA.

2.3 The lattice point-counting problem: m-fold Minkowski sums

Let B = {w1,w2} be a basis of R2. The set

Λ = Λ(B) := {z1w1 + z2w2 : z1, z2 ∈ Z}

is called a lattice of R2 with basis B. The corresponding fundamental cell is defined as

{µ1w1 + µ2w2 : µ1, µ2 ∈ [0, 1)}

whose area is |det(B)|. It can be checked that the area of the fundamental cell is independent
of the choice of the basis and is referred to as the determinant of Λ, det(Λ). Lattices are
additive subgroups of R2 and they are discrete sets. Examples of lattices are the standard lattice
Z2, with basis {(1, 0), (0, 1)} and |det(Z2)| = 1, and the “checkerboard lattice” Z2

e, with basis
{(−1, 1), (1, 1)} and |det(Z2

e)| = 2. Z2
o is not a lattice, since (1, 0) + (0, 1) = (1, 1) 6∈ Z2

o.
It will be useful in the sequel to obtain an estimate on the number of the lattice points

contained in mQ, m ∈ N for Q lattice convex polygon. For this, we first recall a fundamental
result for counting the lattice points in Q.

Theorem 11 (Pick’s Theorem, [25]). Let Λ be any lattice in R2, let I ⊂ Λ be a finite set and
Q = conv(I). Then

#(Q ∩ Λ) =
1

|det(Λ)|
|Q|+ 1

2
#(∂Q ∩ Λ) + 1, (2.7)

where |Q| is the area of Q and ∂Q its topological boundary.

A non-trivial problem in discrete geometry is the comparison between the set of the lattice
points contained in the homothetic copy mQ of a convex lattice polyhedron Q with the m-fold
Minkowski sum (Q ∩ Zn)[m], n ≥ 2 (see, e.g., [21]). It will be sufficient for our purposes here to
mention that in the two dimensional setting the two lattice sets coincide (see [21, Corollary 2.4]).
Moreover, an inspection of the proof reveals that the result still holds if we replace Z2 with any
two-dimensional lattice Λ.
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Proposition 12. Let Λ be any lattice in R2, let I ⊂ Λ be a finite set and Q = conv(I) be
two-dimensional. Then the equality

(Q ∩ Λ)[m] = (mQ) ∩ Λ (2.8)

holds for every m ∈ N.

Now, in view of Proposition 12 and by iterating formula (2.7), Pick’s Theorem generalizes to
mQ, m ≥ 1, as

#((mQ) ∩ Λ) =
1

|det(Λ)|
|Q|m2 +

1

2
#(∂Q ∩ Λ)m+ 1 . (2.9)

2.4 Submodularity and absolute norms

We briefly recall the concept of submodularity which is well known in discrete convex analysis
(see, e.g., [24, Ch. 2, eq. (2.17)]). Setting R2

+ := {x = (x1, x2) ∈ R2 |x1, x2 ≥ 0}, for every
x,y ∈ R2 we define

x ∨ y := (max{x1, y1},max{x2, y2}) and x ∧ y := (min{x1, y1},min{x2, y2}) .

A function f : R2
+ → R is said to be submodular if it satisfies the following inequality

f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y), for every x,y ∈ R2
+ . (2.10)

It is known (see [22, Proposition 5]) that every positively homogeneous function defined in the
cone R2

+ is subadditive if and only if it is submodular. In particular, this yields that every
absolute norm ϕ (i.e., ϕ(x) depends only on |x1| and |x2|) complies with (2.10). We recall that
an absolute norm is monotonic:

|x1| ≤ |y1| and |x2| ≤ |y2| imply ϕ(x) ≤ ϕ(y) . (2.11)

3 Setting of the problem

We will deal with negative discrete perimeters; that is, the Euclidean perimeter functional (with
negative sign) restricted to Dε relaxed to the space X. Namely, we define the functionals Fε :
X→ (−∞,+∞] as

Fε(E) =

{
−H1(∂E) E ∈ Dε

+∞ otherwise.
(3.1)

Note that these energies are related to the corresponding interaction energies defined on lattice
sets

F lat
ε (I) = − ε#

{
(i, j) ∈ εZ2 × εZ2 | i ∈ I, j 6∈ I, |i− j| = ε

}
,

where I ⊂ εZ2, and F lat
ε (Zε(E)) = Fε(E). The functionals Fε, in turn, may be seen as nearest-

neighbor (NN) antiferromagnetic interaction energies associated to a lattice spin-system; i.e.,
given u : εZ2 → {−1, 1} one defines

Eε(u) = −ε
4

∑
i,j∈εZ2

|i−j|=ε

(u(i)− u(j))2,

whence Fε(E({u = 1})) = Eε(u). The asymptotic behavior as ε→ 0 of energies like Fε has been
studied, e.g., in [1].
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Let ϕ : R2 → [0,+∞) be a norm. For every pair of lattice sets E,E′ ∈ Dε, we define the
dissipations

Dϕ
ε (E,E′) = ε2

∑
i∈Zε(E)4Zε(E′)

dϕε (i, ∂Zε(E
′)), (3.2)

where, given I ⊂ εZ2, dϕε denotes the discrete distance of any lattice point i ∈ εZ2 to ∂I defined
as

dϕε (i, ∂I) =

{
inf{ϕ(i− j) | j ∈ I} if i 6∈ I

inf{ϕ(i− j) | j ∈ εZ2 \ I} if i ∈ I.

Remark 13. In the sequel, the following integral formulation of the dissipation (3.2) will be
useful. Indeed, for every E′ ∈ X we set dϕε (i, ∂E′) = dϕε

(
i, ∂(E′ ∩ εZ2)

)
. Furthermore, we

can extend dϕε (·, ∂E′) to R2 by setting dϕε (x, ∂E′) := dϕε (i, ∂E′) for x ∈ qε(i). Thus, for every
E,E′ ∈ X, let Eε, E

′
ε ∈ Dε be the corresponding discretizations; i.e., Zε(Eε) = E ∩ εZ2 and the

same for E′ε, we may write∫
E4E′

dϕε (x, ∂E′) dx = ε2
∑

i∈Zε(Eε)4Zε(E′ε)

dϕε (i, ∂E′ε) = Dϕ
ε (Eε, E

′
ε).

We will consider the dissipation in (3.2) as defined on every pair of sets of finite perimeter; i.e.,
Dϕ
ε : X× X→ [0 +∞].

3.1 The time-discrete minimization scheme with a monotonicity con-
straint

For any ε > 0 and τ > 0, let Fε and Dϕ
ε be defined as in (3.1) and (3.2), respectively. We

introduce a discrete motion with underlying time step τ obtained by successive minimization.
At each time step we will minimize an energy Fϕε,τ : X× X→ (−∞,+∞] defined as

Fϕε,τ (E,F ) = εFε(E) +
1

τ
Dϕ
ε (E,F ) , (3.3)

with a monotonicity constraint on the discrete trajectories. Namely, we recursively define an
increasing (with respect to inclusion) sequence Ekε,τ in Dε by requiring the following:E

0
ε,τ = qε,

Ek+1
ε,τ ∈ argmin

E∈Dε, E⊃Ekε,τ
Fϕε,τ (E,Ekε,τ ), k ≥ 0. (3.4)

In some cases we will also analyze solutions of the corresponding unconstrained scheme; that is,E
0
ε,τ = qε,

Ek+1
ε,τ ∈ argmin

E∈Dε

Fϕε,τ (E,Ekε,τ ), k ≥ 0, (3.5)

in which the minimization problems are performed over the whole class Dε. The discrete orbits
associated to functionals Fϕε,τ are thus defined by

Eε,τ (t) := Ebt/τcε,τ , t > 0. (3.6)

We say that a curve E : [0,+∞) → X is a minimizing movement for the problem (3.4) or
(3.5) at regime τ -ε if it is pointwise limit (in the Hausdorff topology) of discrete orbits Eε,τ , as
ε, τ → 0 up to subsequences.
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Remark 14 (choice of scaling). The scale ε in the energies εFε above is suggested by energetic
considerations (see [12, (6)-(7)]) and leads to a non-trivial limit of the discrete solutions defined
in (3.6). This choice is motivated by the fact that εFε has a nontrivial Γ-limit, as we will show in
Section 4.1. The energy scaling may also be seen as a time scaling of the discrete flow generated
by taking the relaxation on Dε of the energy functional −H1 (see [7, Section 10.2]).

4 Fast convergences and the emergence of a critical regime

As remarked in [7, Ch. 8], minimizing movements along families of functionals will depend
in general on the regime τ -ε; in our case, on the ratio between the two parameters τ and ε
that characterizes the motion. We first provide the following result that ensures a compactness
property of the minimizers of the energies Fϕε,τ . In this section ϕ denotes a general norm, without
any restriction.

Lemma 15. Let Fε and Dϕ
ε be defined as in (3.1) and (3.2), respectively, and Fϕε,τ be as in

(3.3). Let E′ ∈ Dε be an admissible set. For every fixed τ > 0 consider

Eε,τ ∈ argmin
E∈X

Fϕε,τ (E,E′) .

Then, Zε(Eε,τ ) ⊂ E′ +Bϕ4τ and dH
(
Eε,τ , E

′ +Bϕ4τ
)
< 3
√

2ε for ε small enough.

Proof. For any E ∈ Dε, the variation of the energy Fϕε,τ when removing a square of center i ∈ εZ2

is

Fϕε,τ (E,E′)− Fϕε,τ (E \ qε(i), E′) ≤ 4ε2 − ε2

τ
dϕε (i, ∂E′)

which is strictly negative when dϕε (i, ∂E′) > 4τ , thus implying that Zε(Eε,τ ) ⊂ E′ + Bϕ4τ .
Furthermore, since it is always convenient to add an isolated square qε(j) if j ∈ Zε(E′+Bϕ4τ ) then,
for every j ∈ 3εZ2∩E′+Bϕ4τ we must have Eε,τ∩q3ε(j) 6= ∅, Since otherwise Fϕε,τ (Eε,τ∪qε(j), E′) <
Fϕε,τ (Eε,τ , E

′).

Remark 16. The regime τ/ε → 0 is completely characterized by the previous lemma. Indeed,
in this case, when τ and ε are small enough, B4τ ∩ εZ2 = {(0, 0)} and the minimizing movement
is trivially E(t) ≡ {(0, 0)}. This degenerate evolution is called a pinned motion. We will focus
on such motions in Section 6, where we will also introduce a “pinning threshold”.

4.1 Γ-convergence of interaction energies

This section is devoted to the study of the asymptotic behavior of energies εFε. To this end, we
associate to any admissible set E ∈ Dε the corresponding characteristic function χE ∈ L∞(R2)
and compute the Γ-limit with respect to the local weak∗-topology. We then generalize energies
in (3.1) by considering Fε : L∞(R2)→ (−∞,+∞] as

Fε(u) =

{
Fε(E) u = χE , E ∈ Dε

+∞ otherwise,
(4.1)

with a slight abuse of notation.

Theorem 17. Let Fε be defined as in (4.1), and set Gε := εFε. Then Gε Γ-converge as ε→ 0
to the energy

G(u) =

4

∫
R2

(∣∣∣u(x)− 1

2

∣∣∣− 1

2

)
dx u ∈ L∞(R2; [0, 1])

+∞ otherwise,
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with respect to the local weak∗-topology.

Proof. It will suffice to prove the result for u ∈ L∞(R2; [0, 1]), otherwise the assertion is trivial.
We can assume, without loss of generality, that u has compact support, and let Eε ∈ Dε be a
sequence of sets such that χEε locally weakly-∗ converge to u.

δε

Figure 6: On the left the set Eε, on the right we exhibit a set Eδε satisfying (i) and (ii).

We now provide a rearrangement of the centers of Eε which is energy decreasing. Let δ > 0 be
fixed. We consider the lattice δZ2 and sets Eδε ∈ Dε satisfying #(Zε(E

δ
ε ) ∩ qδ(i)) = #(Zε(Eε) ∩

qδ(i)) and with the following properties:
(i) if ε2#(Zε(Eε) ∩ qδ(i)) ≤ δ2/2 then Zε(E

δ
ε ∩ qδ(i)) ⊂ εZ2

e,
(ii) if ε2#(Zε(Eε) ∩ qδ(i)) > δ2/2 then Zε(E

δ
ε ∩ qδ(i)) ⊃ εZ2

e ∩ qδ(i),
for every i ∈ δZ2 (see Figure 6).

Now, for every E ∈ Dε and F ∈ X we define

Fε(E;F ) = Fε(E ∩ E(εZ2 ∩ F )) ,

and analogously Gε(E;F ). In both cases (i) and (ii) we have Fε(Eε; qδ(i)) ≥ Fε(Eδε ; qδ(i)). Since
the contribution of the interaction between two adjacent δ-squares qδ(i) and qδ(j) is less than
2δε and the number of δ-squares whose intersection with supp(u) 6= ∅ is proportional to 1/δ2,
we get

Gε(Eε) ≥ Gε(Eδε )− C ε
δ

for some positive constant C. Now, from the convergence of χEε to u, for every i ∈ δZ2 we get

Gε(E
δ
ε ; qδ(i)) +O(ε) = −4|Eε ∩ qδ(i)|+O(ε) = −4

∫
qδ(i)

u(x) dx := uδ(i) , (4.2)

Gε(E
δ
ε ; qδ(i)) +O(ε) = −4|qδ(i) \ Eε|+O(ε) = −4

∫
qδ(i)

(1− u(x)) dx := uδ(i) (4.3)

in cases (i) and (ii), respectively. After identifying uδ with its piecewise-constant interpolation,
taking the limit as ε→ 0 first, we get

lim inf
ε→0

Gε(Eε) ≥
∫
R2

uδ(x) dx ,

and then taking the limit as δ → 0 we obtain the liminf inequality.
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The construction of a recovery sequence follows an analogous argument. Let u ∈ L∞(R2; [0, 1])
have a compact support. Consider the lattice

√
εZ2 and define

uε(i) =
1

ε

∫
q√ε(i)

u(x) dx , for every i ∈
√
εZ2.

As a recovery sequence we will choose Eε having the same mean (unless a small error) of u in
every

√
ε-square with maximal perimeter term. Indeed, we can take a set Eε ∈ Dε satisfying

#
(
Zε(Eε) ∩ q√ε(i)

)
= duε(i)/εe and such that:

(i) if uε(i) ≤ 1/2, then Zε(Eε) ∩ q√ε(i) ⊂ εZ2
e;

(ii) if uε(i) > 1/2, then Zε(Eε) ∩ q√ε(i) ⊃ εZ2
e ∩ q√ε(i).

Then, χEε weakly-∗ converge to u and

Gε(Eε; q√ε(i)) +O(ε) =


−4

∫
q√ε(i)

u(x)dx if uε(i) ≤ 1
2

−4

∫
q√ε(i)

(1− u(x))dx if uε(i) >
1
2

for every i ∈
√
εZ2, which proves that χEε is a recovery sequence and concludes the proof.

Remark 18. Note that, in the proof of Theorem 17 we have exhibited a recovery sequence
whose supports Eε also converges to E = supp(u) in the Hausdorff sense. This remark allows
us to reduce the computation of the Γ-limit of Gε to functions weakly-∗ converging to u having
supports in Dε converging to E with respect to the Hausdorff distance.

Remark 19 (Γ-limit on characteristic functions). An immediate consequence of Theorem 17 is
that, among all the functions having the same support E, the ground state of the energy G is
achieved by the simple function 1/2χE . In particular, since any family of sets {Eε} converging
in the Hausdorff sense to E are such that χEε is weakly-∗ compact, from Theorem 17 we infer
that

Γ(dH)- lim
ε→0

Gε(E) = −2|E|,

once noted that the recovery sequences are ε-checkerboard sets.

4.2 Convergence of the minimizing-movement scheme

We prove that when ε/τ → 0 every minimizing movement of scheme (3.5) may be seen as the
solution of a continuum problem having a gradient-flow structure with respect to the limit energy.
In this regime the monotonicity constraint is not needed to obtain a completely characterized
limit motion. A straightforward consequence is that the solution of the unconstrained problem
corresponds to that of the monotone scheme (3.4).

Theorem 20. Let Fε, D
ϕ
ε and Fϕε,τ be as in (3.1), (3.2) and (3.3), respectively. Then there

exists a unique minimizing movement of the unconstrained scheme (3.5) at regime ε/τ → 0 and
it satisfies

E(t) = Bϕ4t, t ≥ 0.

Moreover, for every discrete solution Eε,τ of (3.5) we have χEε,τ (t)
∗
⇀ 1

2χBϕ4t for all t ≥ 0 as
ε→ 0.
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Proof. The first claim is a direct consequence of Lemma 15. Indeed, dH(Eε,τ (t), B4bt/τc) <
Cbt/τcε, which goes to zero locally uniformly at regimes ε/τ → 0. In an analogous way as for
(4.1), we further generalize the dissipations in Remark 13 as functionals Dϕ

ε : L∞(R2) × X →
[0,+∞] defined by

Dϕ
ε (u,E′) =

{
Dϕ
ε (E,E′) u = χE , E ∈ Dε

+∞ otherwise.

Accordingly, we write Fϕε,τ (u,E′) = εFε(u) + 1
τ D

ϕ
ε (u,E′) for every u ∈ L∞(R2) with Fε as in

(4.1). Since for every sequence {Eε} ⊂ Dε such that χEε weakly-∗ converge to u we have

Dϕ
ε (Eε, qε)→

∫
R2

u(x)ϕ(x) dx,

then Theorem 17 yields that Fϕε,τ Γ-converge, as ε→ 0, to the functional Fϕτ given by

Fϕτ (u) :=

∫
R2

(
|4u(x)− 2| − 2 +

1

τ
u(x)ϕ(x)

)
dx, (4.4)

with respect to the weak-∗ topology. Energy Fϕ has a unique minimizer in L∞(R2; [0, 1]), given
by u = 1/2χBϕ4τ . Indeed∫

R2

(
|4u(x)− 2| − 2 +

1

τ
u(x)ϕ(x)

)
dx =

∫
{u≤1/2}

(ϕ(x)

τ
− 4
)
u(x) dx

+

∫
{u>1/2}

(
4u(x)− 4 +

ϕ(x)

τ
u(x)

)
dx.

Both integrands are positive for almost every ϕ(x) > 4τ and are minimized when u ≡ 1/2.
Then, since Γ-convergence implies the convergence of minimum problems (see for instance [6,
Theorem 1.21]) and the minimum is unique, we get that χE1

ε,τ
weakly-∗ converges to u1

τ =

1/2χBϕ4τ as ε → 0. Note also that, by virtue of Lemma 15, E1
ε,τ → Bϕ4τ in the Hausdorff sense

and moreover by the minimality of E1
ε,τ and Remark 13 follows that

εFε(E
1
ε,τ ) ≤ εFε(Eε) +

1

τ

(
Dϕ
ε (Eε, qε)−Dϕ

ε (E1
ε,τ , qε)

)
≤ εFε(Eε) +

1

τ

∫
R2

(
χEε(x)− χE1

ε,τ
(x)
)(
ϕ(x) + ε

)
dx ≤ εFε(Eε) + o(1),

(4.5)

for every χEε weakly∗ converging to u1
τ .

Now we show the Γ-convergence of Fε,τ (·, E1
ε,τ ), which will allow us to deduce the convergence

of the whole scheme by an inductive procedure. Consider Eε ∈ Dε such that χEε are converging
weakly-∗ to some u ∈ L∞(R2). Mimicking the arguments of the proof of Theorem 17, we consider
E′ε ∈ Dε satisfying #(Zε(E

′
ε) ∩ q√ε(i)) = #(Zε(Eε) ∩ q√ε(i)) and such that:

(i) if #(Zε(Eε) ∩ q√ε(i)) ≤ #
(
Zε(E

1
ε,τ ) ∩ q√ε(i)

)
then Zε(E

′
ε ∩ q√ε(i)) ⊂ Zε(E1

ε,τ ),

(ii) if #(Zε(Eε) ∩ q√ε(i)) > #
(
Zε(E

1
ε,τ ) ∩ q√ε(i)

)
then Zε(E

′
ε ∩ q√ε(i)) ⊃ Zε(E1

ε,τ ) ∩ q√ε(i),
for every i ∈

√
εZ2∩Bϕ4τ , and Zε(E

′
ε)\B

ϕ
4τ = Zε(Eε)\Bϕ4τ . Reasoning as in the proof of Theorem

17 and from (4.5), χE′ε still weakly-∗ converges to u and εFε(Eε) + o(1) ≥ εFε(E′ε). Then we get

Fϕε,τ (Eε, E
1
ε,τ ) + o(1) ≥ Fϕε,τ (E′ε, E

1
ε,τ )

= εFε(E
′
ε) +

1

τ
Dϕ
ε (Eε \Bϕ4τ , E1

ε,τ ) +
1

τ

∑
i∈
√
εZ2∩Bϕ4τ

Dϕ
ε (E′ε ∩ q√ε(i), E1

ε,τ ).
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Since Dϕ
ε (E′ε ∩ q√ε(i), E1

ε,τ ) = Cε3|#Zε(Eε) − #Zε(E
1
ε,τ )| + O(ε2) and dϕε (x, ∂E1

ε,τ ) converge

uniformly to dϕ(x, Bϕ4τ ) for every x 6∈ E1
τ , we get that

Γ- lim
ε→0

Fϕε,τ (u,E1
ε,τ ) =

∫
R2

(
|4u(x)− 2| − 2 +

1

τ
u(x)dϕ(x, Bϕ4τ )

)
dx, (4.6)

since the same argument applies to every recovery sequence Eε. By arguing as above, we get
χE2

ε,τ
converge to 1/2χBϕ8τ and by induction the result follows.

Arguing as in the proof of Theorem 20 we obtain the following result.

Corollary 21. Let Fε, D
ϕ
ε and Fϕε,τ be defined as in (3.1)–(3.3). Then there exists a unique

minimizing movement of scheme (3.4) at regime ε/τ → 0 and it satisfies E(t) = Bϕ4t for t ≥ 0.

Moreover, for every discrete solution Eε,τ of (3.4) we have χEε,τ (t)
∗
⇀ 1

2χBϕ4t for t ≥ 0 as ε→ 0.

Remark 22. Arguing as in Remark 19, for any E′ ∈ X and every E′ε converging to E′ in dH
such that εF (E′ε)→ −2|E′| we get, from (4.6), that

Γ(dH)- lim
ε→0

Fϕε,τ (E,E′ε) = Fϕτ (E,E′) := −2|E|+ 1

2τ

∫
E4E′

dϕ(x,E′)dx.

Note that the minima of Fϕτ (·, E′) are solutions of(
− 2 +

1

2τ
dϕ(x,E′)

)
νE(x)H1 ∂E = 0;

that is, E ∈ X such that dϕ(x,E′) ≡ 4τ for H1-almost every x ∈ ∂E. This gives that the limit
scheme E

0
τ = {(0, 0)},

Ek+1
τ ∈ argmin

E∈X
Fϕτ (E,Ekτ ). (4.7)

is solved by Ekτ = Bϕ4kτ . Hence, by Theorem 20 and Corollary 21 the minimizing movements of
schemes (3.4) and (3.5) at regimes ε/τ → 0 are solutions of limit scheme (4.7).

5 The critical regime: a microscopic checkerboard struc-
ture

So far, we have shown that scheme (3.4) is completely characterized in the regimes τ/ε → 0
(Remark 16) and ε/τ → 0 (Remark 22). Throughout this section we will study the regimes
where ε/τ has a non-zero finite limit, which turn out to be richer of features than the others.

Without loss of generality we consider only the case ε = ατ , where α > 0 is a positive constant.
The main goal is to determine any solution to the iterative variational scheme (3.4). Within this
regime, instead of solving a family of schemes depending on ε, by a rescaling argument we can
solve one minimization scheme in the unique environment Z2. Indeed, for every E,F ∈ Dε, the
energies defined in (3.3) can be rewritten as

Fϕε,τ (E,F ) = −εH1(∂E) +
1

τ
Dϕ
ε (E,F ) = −εH1(E) +

ε2

τ

∑
i∈Zε(E)4Zε(F )

dϕε (i, ∂F )

= ε
(
−H1(∂E) + α

∑
i∈Zε(E)4Zε(F )

dϕε (i, ∂F )
)

= ε2Fϕα

(1

ε
E,

1

ε
F
)
,
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where we have defined Fϕα : D×D→ R as

Fϕα(E′, F ′) = −H1(∂E′) + α
∑

i∈Z(E′)4Z(F ′)

dϕ(i, ∂F ′). (5.1)

Thus, the solutions of (3.4) are Ekε,τ = εEkα for every ε > 0, k ∈ N, where {Ekα} solves the scaled
scheme E

0
α = q,

Ek+1
α ∈ argmin

E∈D, E⊃Ekα
Fα(E,Ekα), k ≥ 0. (5.2)

We will prove that scheme (5.2) has a unique solution {Ekα} whenever α is outside a countable
set (see Remark 24 below). If α is greater than a threshold value α̃ > 0, the corresponding
solution is trivially Ekα ≡ q, and we will say that the motion is pinned. If instead α is below the
pinning threshold (see Definition 40) the solutions {Ekα} have a checkerboard structure; that is,
Ekα ∈ Ae for every k ∈ N, and they are obtained by the iterative formula

Z(Ek+1
α ) = Z(Ekα) + Z(E1

α), for every k ∈ N, k ≥ 1.

We call this process nucleation from the origin, and the lattice set Z(E1
α), which we call the

nucleus of the process, completely characterizes the motion. The limit evolution will be a motion
of expanding polygons with constant velocity; both the velocity and the shape of the limit sets
will be a discretization (depending on α) of those of the minimizing movement of (3.4) at regime
ε/τ → 0 studied in Section 4. This result will be proven under a technical assumption on the
“convexity” of the nucleus Z(E1

α) (cf. (5.13)) which will allow us to use a localization method
to solve any minimization problem of the scheme (5.2).

The following result is a rereading of Lemma 15 in the scaled setting. We note that, as for
Lemma 15, the following result holds for every norm.

Lemma 23. Let Fϕα : D × D → R be as in (5.1), where D is defined as in (2.1) with ε = 1.
Then, for any given E′ ∈ D it holds that

Fϕα
(
E(I), E′

)
≤ Fϕα(E,E′), where I =

{
i ∈ Z(E) : dϕ(i, ∂E′) ≤ 4

α

}
for every E ∈ D. In particular, for every {Ekα} discrete solution of the scheme (5.2), there holds

Z(Ek+1
α ) ⊂

{
i ∈ Z2 : dϕ(i, ∂Ekα) ≤ 4

α

}
, for every k ∈ N. (5.3)

Proof. The result immediately follows from the fact that for every E′ ∈ D the variation of adding
an isolated square to any E ∈ D is Fϕα(E ∪ q(i), E′)− Fϕα(E,E′) = −4 + αdϕ(i, ∂E′).

Remark 24 (non-uniqueness). Note that for every i ∈ Z2 such that dϕ(i, ∂Ekα) = 4
α (if any),

the energy contribution of the square q(i) is zero; that is,

Fϕα(Ek+1
α ∪ q(i), Ekα) = Fϕα(Ek+1

α \ q(i), Ekα).

Therefore, in this case, there is non-uniqueness of solutions for the problem (5.2). Note that, if
ϕ(x) = 4

α has no integer solutions then, by the periodicity of Z2, the same holds true for equation
dϕ(x, ∂E) = 4

α for every E ∈ D. This in particular implies that the k-th minimization problem
of the scheme (5.2) has non-unique solution if and only if the first minimization problem has
non-unique solution.
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With the previous remark in mind, we define the singular set Λϕ as

Λϕ :=
{ 4

ϕ(i)
: i ∈ Z2

e \ {(0, 0)}
}
. (5.4)

Note that the set Λϕ is countable and has a unique accumulation point in 0.

Example 25. We take ϕ as the `∞-norm and choose α = 4, so that α ∈ Λϕ as defined in (5.4).
In this case, the set of lattice points having zero energy is {i ∈ Z2 : ‖i‖∞ = 1}. This yields that
Fϕα(q, q) = Fϕα(E, q) = −4 for every admissible set E ⊂ q ∪ {q(i) : |i1| = |i2| = 1} which implies
that the minimum of the first step of (5.2) is not unique. As already noted in Remark 24, the
same situation arises at each minimization step of the scheme (5.2).

Without entering into the details, we may check that every parametrized family E : [0,+∞)→
X of connected sets satisfying

E(0) = {(0, 0)}, E(t) ⊂ E(s) for every t < s, ‖v⊥(t)‖∞ ≤ 4 for every t ≥ 0, (5.5)

is a minimizing movement, where v⊥ denotes the normal velocity of ∂E(t). Indeed, for every
fixed t > 0, from (5.5) we have E(t) ⊆ [−4t, 4t]2, since E(t) is connected. Then, for any τ > 0
define

Ekε,τ := E(E(kτ) ∩ εZ2
e).

Since E(kτ) ⊆ [−4kτ, 4kτ ]2 = [−kε, kε]2, Ekτ,ε can be obtained by solving the first k steps of
(3.4). The corresponding discrete solutions Eε,τ (t) converge to E(t) as ε, τ → 0 in the Hausdorff
sense for every t > 0, whence E(t) is a minimizing movement.

Figure 7: Examples of 2× 2 squares of the covering. On the left the case j1, j2 > 0, on the right j1 > 0,
j2 < 0.

5.1 A localization argument: the 2× 2-square tiling

In order to determine the optimal structure of a minimizer, we will argue locally by defining the
following covering of admissible sets.

Definition 26 (2 × 2-square coverings). For every j = (j1, j2) ∈ Z2, we define the vectors
e1
j = (sgn(j1), 0), e2

j = (0, sgn(j2)), e3
j = e1

j + e2
j and, correspondingly, the 2 × 2 square (see

Fig. 7)

Q(j) := q(j) ∪
3⋃
k=1

q(j + ekj ) . (5.6)

Let E ∈ D be an admissible set. Then, we define the family of sets

Se(E) :=
{
Q(j) : j ∈ Z2

e with j1, j2 odd, Q(j) ∩ E 6= ∅
}
, (5.7)
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Figure 8: The picture clarifies the 2 × 2-square covering for a set E, whose boundary is marked by a
bold black line. The darker 2× 2 squares are in Sce(E), the lighter ones in Sbe(E). The areas in white are
those left uncovered.

which is a covering of non-overlapping squares of E \ C0, where C0 :=
⋃
{q(i) | i1i2 = 0} (see

Fig. 8). We can subdivide the squares of Se(E) in those contained in E and those that are not,
defining the partition Se(E) = Sbe(E) ∪ Sce(E) where Sce(E) = {Q(j) ∈ Se(E) |Q(j) ⊆ E} and
Sbe(E) = {Q(j) ∈ Se(E) |Q(j) ∩ Ec 6= ∅}.

5.2 Choice of the dissipation term

We restrict our analysis to dissipations (3.2) induced by an absolute norm ϕ; i.e., ϕ(x) depends
only on |x1| and |x2|, with the additional assumptions

(H1) ϕ is symmetric (or permutation invariant); that is, ϕ(x1, x2) = ϕ(x2, x1) for every x ∈ R2;

(H2) ϕ complies with the normalization condition ϕ(1, 0) = ϕ(0, 1) = 1.

We refer to an absolute norm with these properties as a symmetric absolute normalized norm.
The `p-norms, 1 ≤ p ≤ ∞, are examples of such norms. This choice is of course motivated
by the symmetry properties of the corresponding unit balls, which simplify the computations
and the arguments of the proofs. Moreover, as remarked in Section 2.4 an absolute norm is a
submodular function on R2, a property that will be crucial in the sequel as it will allow to reduce
the main minimization problem to a finite number of local minimization problems, taking into
account four-point interactions. Indeed, we can infer from (2.10) a submodularity-type inequality
involving only the norms of the four lattice points contained in any of the 2 × 2 squares of the
coverings defined above. Namely,

ϕ(i) + ϕ(i + e3
i ) ≤ ϕ(i + e1

i ) + ϕ(i + e2
i ), (5.8)

for every i ∈ Z2.

5.3 The first step of the evolution: checkerboards nucleating from a
point

With the covering argument of Section 5.1 and the key norm inequality (5.8) at hand, we are
now in position to give the explicit characterization of the first step E1

α of the discrete evolution,
showing that it is an even checkerboard. A local analysis by means of the 2×2-square tilings will
allow us to prove, with the following Proposition 27, that the set of centers of E1

α coincides with
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the discretization of the ball B 4
α

on the even lattice Z2
e. We stress the generality of the following

result, which only requires ϕ to be an absolute norm without any additional assumption, in
particular we do not assume (H1) and (H2).

Proposition 27. Let ϕ be an absolute norm, let α > 0 be such that α 6∈ Λϕ and let Fϕα be as in
(5.1). Then the first minimization problem of scheme (5.2) has a unique solution

E1
α = argmin

E∈D, E⊃q
Fϕα(E, q)

and it satisfies
E1
α = E(Z2

e ∩B
ϕ
4
α

) . (5.9)

In particular, E1
α ∈ Aeconv.

Proof. The argument does not require the normalization assumption (H2); we then set

ϕmax := max{ϕ(1, 0), ϕ(0, 1)}, ϕmin := min{ϕ(1, 0), ϕ(0, 1)},

and we assume, without loss of generality, that ϕmax = ϕ(1, 0). Note that 4
ϕmin

, 4
ϕmax

∈ Λϕ.

If α > 4
ϕmin

we get E1
α = q since Fϕα(q(i), q) > 0 for every i ∈ Z2 \ {(0, 0)} and (5.9) trivially

holds. If 4
ϕmax

< α < 4
ϕmin

, we get that for any i = (i1, i2) with i1 6= 0 there holds Fϕα(q(i), q) > 0,

thus Z(E1
α) ⊂ {0} × Z.

Figure 9: Clusters of two or three lattice points are “locally” not energetically convenient.

Let E ∈ D be a competitor such that Z(E) ⊂ {0} × Z. If i ∈ Z(E) \ {(0, 0)} has two nearest-
neighbors, removing q(i) leaves the total perimeter unchanged but decreases the dissipation (see
Figure 9). If instead i has only one nearest-neighbor i′ 6= (0, 0), if |i2| < |i′2| then shifting
q(i) towards the origin does not decrease the perimeter but reduces the dissipation; if instead
|i2| > |i′2| the same holds shifting q(i′) (see Figure 9). Hence, we may restrict our analysis to
the two configurations E

(
Z2
e ∩B

ϕ
4
α

)
and E

(
Z2
o ∩B

ϕ
4
α

)
∪ q. A comparison between the two energy

contributions yields that the variation from the odd checkerboard to the even one is less then 0,
thus E1

α = E
(
Z2
e ∩B

ϕ
4
α

)
.

Now let α < 4
ϕmax

. We consider the covering described in Definition 26. First, we note that
the energy of every admissible set E complies with the estimate

Fϕα(E, q) ≥
∑

Q(j)∈Se(R2)

Fϕα(E ∩Q(j), q) + Fϕα(E ∩ C0, q) , (5.10)

the equality holding if and only if {E ∩Q(j)} and E ∩ C0 are non-overlapping; this is the case of
sets E having a checkerboard structure. Inequality (5.10) corresponds to localizing the energy,
neglecting interactions between neighboring squares.

From Lemma 23, we can reduce our analysis to admissible sets contained in Eα,ϕ := Z2∩Bϕ4
α

and inequality (5.10) holds restricting the sum to every Q(j) ∈ Se(Eα,ϕ) since Fϕα(q(j), q) > 0 for
every ϕ(j) > 4

α . We will prove that

min
E∈D, E⊃q

Fϕα(E ∩Q(j), q) = Fϕα(E(Z2
e ∩B

ϕ
4
α

)) ∩Q(j), q)

min
E∈D, E⊃q

Fϕα(E ∩ C0, q) = Fϕα(E(Z2
e ∩B

ϕ
4
α

) ∩ C0, q)
(5.11)
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for every Q(j) ∈ Se(Eα,ϕ); that is, the optimal structure is an even checkerboard set in each of
the following cases: (a) inside Q(j) ∈ Sce(Eα,ϕ); (b) inside Q(j) ∈ Sbe(Eα,ϕ); (c) on Eα,ϕ ∩ C0. In
the sequel, E will denote a general competitor E ∈ D, E ⊂ Eαϕ.

Figure 10: It is convenient to remove q(i) if i has two nearest-neighbors.

(a) Consider Q(j) ∈ Sce(Eα,ϕ) and let q(i) ⊂ Q(j)∩E. Note that the class Sce(E) is not empty
if and only if α < ϕmax

2 . Moreover, since adding an isolated square in Q(j) is always energetically
convenient, we can restrict to configurations of Q(j) ∩ E consisting of exactly two squares q(i′)
and q(i′′) (see Fig. 10). Now, if q(i′) ∪ q(i′′) has no checkerboard structure; that is, i′ and i′′ are
nearest-neighbors, both the checkerboard configurations E′ and E′′, containing q(i′) and q(i′′)
respectively, decrease the energy. Indeed, the corresponding variation of the energy is given by

Fϕα(E′, q)− Fϕα(q(i′) ∪ q(i′′), q) ≤ −2 + αϕmax, Fϕα(E′′, q)− Fϕα(q(i′) ∪ q(i′′), q) ≤ −2 + αϕmax.

This variation is never positive, since when α > 2
ϕmax

the class Se(Eα,ϕ) is empty. Thus, any

Figure 11: Any checkerboard configuration inside Q(j) is a competitor with less energy.

checkerboard configuration inside Q(j) is a competitor with less energy then E (see Fig. 11).
Now we should compare the energies of the two possible checkerboard configurations inside Q(j).
For this, we note that the variation of the energy in order to pass from the odd checkerboard
configuration q(j + e1

j ) ∪ q(j + e2
j ) to the even one q(j) ∪ q(j + e3

j ) is

Fϕα(q(j) ∪ q(j + e3
j ), q)− Fϕα(q(j + e1

j ) ∪ q(j + e2
j ), q)

= α
(
ϕ(j) + ϕ(j + e3

j )− ϕ(j + e1
j )− ϕ(j + e2

j )
)
,

which is non-positive by (5.8).

A B C D

Figure 12: The possible cases of Q(j) ∩ Eα,ϕ.

(b) Now, let Q(j) ∈ Sbe(Eα,ϕ). Without loss of generality, we may assume that j1, j2 > 0, the
situation being completely symmetric in the other cases. Inside such a 2 × 2 square, we have
four possible cases for Q(j) ∩Eα,ϕ, as pictured in Fig. 12. We claim that the configuration with
minimal energy inside Q(j) is a checkerboard set. Consider first α > 2

ϕmax
, then i ∈ Bϕ4

α

if and
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only if |i1| ≤ 1, thus the only possible cases for Q(j) ∩ Eα,ϕ are those labeled by B and D in
Fig. 12. Since

Fϕα(q(j), q) < Fϕα(e2
j , q), Fϕα(q(j), q)− Fϕα(q(j) ∪ q(j + e2

j ), q) = 2− αϕmax < 0

in both cases the optimal configuration is q(j). Consider now α < 2
ϕmax

. Reasoning as before we

can assume Q(j) ∩ E = q(i′) ∪ q(i′′). In cases B, C and D, if i′ and i′′ were nearest neighbors,
with, e.g., ϕ(i′) > ϕ(i′′), then removing q(i′) would produce a negative variation; that is,

Fϕα(q(i′′), q)− Fϕα(q(i′) ∪ q(i′′), q) ≤ 2− αϕ(i′) < 2− α
( 4

α
− ϕmax

)
≤ −2 + αϕmax.

Thus the minimal configuration is the even checkerboard. For what concerns the case A, since
ϕ(j + e3

j ) > 4
α and by (5.8) we have that

Fϕα(q(j), q) < Fϕα(q(j) ∪ q(j + e3
j ), q) ≤ Fϕα(q(j + e1

j ) ∪ q(j + e2
j ), q)

which again leads to the result.

Figure 13: Optimal configuration for Eα,ϕ ∩ C0.

(c) Finally, we consider Eα,ϕ ∩C0. Reasoning as in the case 4
ϕmax

< α < 4
ϕmin

, we can restrict
our analysis to competitors having a checkerboard structure union q on the coordinate axes. A
comparison between the two energy contributions on each axis yields that the variation from
the odd checkerboard to the even one is less then 0, and equals 0 if and only if α ∈ Λ. Thus,
the minimal configuration is the even checkerboard (see Figure 13). With (5.10) and the finite
superadditivity of the infimum, this implies that

min
E∈D, E⊃q

Fϕα(E, q) ≥ min
E∈D, E⊃q

( ∑
Q(j)∈Se(Eα,ϕ)

Fϕα(E ∩Q(j), q) + Fϕα(E ∩ C0, q)
)

≥
∑

Q(j)∈Se(Eα,ϕ)

min
E∈D, E⊃q

Fϕα(E ∩Q(j), q) + min
E∈D, E⊃q

Fϕα(E ∩ C0, q)

=
∑

Q(j)∈Se(Eα,ϕ)

Fϕα(E(Z2
e ∩B

ϕ
4
α

) ∩Q(j), q) + Fϕα(E(Z2
e ∩B

ϕ
4
α

) ∩ C0, q)

= Fϕα(E(Z2
e ∩B

ϕ
4
α

), q) ,

(5.12)

whence the equality follows, thus concluding the proof. Uniqueness comes from step (c).

Note that the local minimum problems studied in points (a) and (b) in the proof above might
be satisfied also by the odd checkerboard if (5.8) reduces to an equality (e.g. when ϕ = ‖ · ‖1).
Nevertheless, for odd checkerboards the equality in (5.12) no longer holds and this implies that
Eα,ϕ is the unique minimum.
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Definition 28. For every α > 0, α 6∈ Λϕ, we define the nucleus of the motion given by the
scheme (5.2) as the lattice set

Nϕ
α := Z(E1

α)

where E1
α = argmin

E∈D, E⊃q
Fϕα(E, q), which is well defined by Proposition 27.

We stress that the assumption on ϕ to be an absolute norm is crucial in order to obtain the
previous structure result of Proposition 27. Indeed, if not fulfilled, the set E1

α may not be a
checkerboard as shown by the following simple example.

Figure 14: The black dots represent the lattice set Z2 ∩Bϕ4
α

, while the set E1
α is pictured in gray.

Example 29 (non-checkerboard minimizers). We consider the norm

ϕ(x) = max
{ |3x1 + 2x2|

10
, |3x2 − 2x1|

}
,

and we assume that α ∈ ( 20
13 ,

40
21 ). In this case, for every such α, the set Bϕ4

α

is a rectangle and

Iϕ,α := Bϕ4
α

∩ Z2 = {(0, 0),±(1, 1),±(2, 1),±(3, 2),±(4, 3),±(5, 3)}

(see Fig. 14). We show that the first step of (5.2) E1
α is not a checkerboard set. First note that

the points (0, 0) and ±(3, 2) are isolated in Iϕ,α so their contribution is −4 + αϕ(i) which is
always negative, thus Z(E1

α) contains these points. Hence, we are reduced to study the minimal
configurations of the pairs of nearest-neighbours {(1, 1), (2, 1)} and {(4, 3), (5, 3)}:

Fϕα
(
q(1, 1) ∪ q(2, 1), q

)
= −6 + 2α < −4 + α = Fϕα

(
q(1, 1), q

)
= Fϕα

(
q(2, 1), q

)
and

Fϕα
(
q(4, 3), q

)
= −4 +

9

5
α < −6 + α

(9

5
+

21

10

)
= Fϕα

(
q(4, 3) ∪ q(5, 3), q

)
< −4 + α

21

10
= Fϕα

(
q(5, 3), q

)
.

The same holds for {(−1,−1), (−2,−1)} and {(−4,−3), (−5,−3)}, and this gives that

E1
α = E(Iϕ,α\{±(5, 3)})

which is not a checkerboard (see Fig. 14).
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We conclude noting that, if we renounce to the monotonicity constraint E ⊃ q, the mini-
mization problem above may admit, for suitable values of α, also a checkerboard solution E1

α of
odd parity. In order not to distract the reader’s attention from the monotone case, we prefer to
postpone this generalization of Proposition 27 to Subsection 6.2 (see Proposition 48).

5.4 The structure result for non-trivial initial datum

Proposition 27 shows that the first step E1
α of discrete scheme (5.2) is a checkerboard set and that

Z(E1
α) is a Z2

e-convex set (see Definition 3). Our aim now is to prove that an analogous structure
result can be obtained for minimizers of the energy Fϕα(·, E), where ϕ is a symmetric absolute
normalized norm (see Section 5.2), also for a general E ∈ Aconv fulfilling suitable assumptions
(see (5.13) below), and then to iteratively apply it to E = Ek−1

α for k ≥ 1. The proof of this
stability result will rely on a localization argument only reminiscent of that used in the proof of
Proposition 27. Indeed, we have to face a technical issue: since the dissipation term Dϕ(·, E)
does not satisfy a submodularity inequality analogous to (5.8), the 2×2-square covering no longer
works. We will then define suitable coverings “outside” every discrete edge (see Definition 7) of
E which mimick the 2× 2-square covering, and then match them altogether. For this, we need
the following “convexity” conditions:

(i) on the norm, we assume that

(H3) ϕ(h, h+ 1)− ϕ(h, h) ≥ 1
2 , for every h ∈ N;

(ii) on the structure of ∂effE, we require that

θ(ν(`′),ν(`)) < 0 for every `, `′ ∈ E(E) such that ` precedes (clockwise) `′ , (5.13)

where θ is introduced in Definition 1.
The `p-norms, 1 ≤ p ≤ ∞, are a class of norms complying with (H1)–(H3). We also note

that assumption (H3) will play a role only in Step 5 of the proof of Proposition 30.
In order to avoid some (interesting) pathological phenomena (as a one-dimensional motion,

see Example 37), we assume non-degeneracy conditions on the sets E and on the minimizer of
Fϕα(·, E); namely, (H2) and (2.3). Finally, to simplify the exposition, we assume that

E is symmetric with respect to the axes and the lines x2 = ±x1. (5.14)

We now state the main result of this section.

Proposition 30. Let ϕ be a symmetric absolute normalized norm complying with (H3) and let
α > 0 be such that α 6∈ Λϕ. Let E ∈ Aeconv be a set satisfying (2.3), (5.13) and (5.14). Then
there exists a unique solution of the minimization problem

Eα = argmin
E′⊃EE′∈D

Fϕα(E′, E) (5.15)

and it satisfies

Z(Eα) =
{

i ∈ Z2
e : dϕ(i, E) <

4

α

}
. (5.16)

In particular, Eα ∈ Aeconv.

Before entering in the details of the proof, we premise some remarks.
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j0

j1 jL

i

Figure 15: In red an example of A(`) for ` as in (ii) of Remark 8. On the left, lighter dots are outside
A(`). On the right, the projection of the centers of a 2× 2-square on a common point of `.

Remark 31 (Projection of a 2× 2 square). Let E be given as in the statement of Proposition
30. We partition the lattice points of the region of the plane “outside” E into sets A(`) according
to the discrete edge ` ∈ E(E) they project onto. We follow the classification of discrete edges
given in Remark 8, and we start with case (ii); that is, ` ⊂ {x ∈ R2 : x2 > 0} and s(`) ∈ (0, 1

3 ].
For such edges we define the set

A(`) :=
{
i ∈ Z2 : i1 ≥ j1

1 , i2 ≥ j1
2 , π

ϕ
E(i) ⊂ {jl}Ll=1 or πϕE(i) 3 jL

}
, (5.17)

consisting of all the lattice points that project on ` \ {j0} (Fig. 15). The choice of excluding the
points projecting also on j0, although arbitrary, will simplify the definition of the covering in the
proof of Proposition 30; moreover, thanks to this choice, if ` and `′ are two consecutive edges
then A(`) and A(`′) are disjoint.

We can assume, up to translations and for the sake of simplicity, that ` := {jl}Ll=0 = {(1, 1)}∪
{(2l, 0)}Ll=1. From the fact that ϕ is monotonic, for every i ∈ A(`) it holds that

πϕE(i) 3

{
jl 2l − 1 ≤ i1 ≤ 2l + 1 with 0 < l < L

jL i1 ≥ 2L− 1.

This yields that for every i ∈ A(`) such that Z
(
Q(i)

)
⊂ A(`) there holds( ⋂

j∈Z(Q(i))

πϕE(j)
)
∩
(
` \ {j0}

)
6= ∅ . (5.18)

This means that the four lattice points inside Q(i) project onto a common point of `, see Fig. 15.
An analogous result holds in case (i) of Remark 8, when s(`) = 0.

Now consider ` ∈ E(E) complying with case (iii) of Remark 8; that is, ` ⊂ {x ∈ R2 : x2 > 0}
and s(`) ∈ ( 1

3 , 1). In this case the sets of lattice points that project on ` \ {jL} is defined as

A(`) :=
{
i ∈ Z2 : ‖i− (j0

1 , j
L−1
2 )‖1 ≥ |j0

2 − jL−1
2 |, i2 ≥ jL−1

2 , πϕE(i) ⊂ {jl}L−1
l=0 or πϕE(i) 3 jL−1

}
,

(5.19)
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j0

jL−1 jL

i

Figure 16: In red an example of A(`) for ` as in (iii) of Remark 8. On the left, lighter dots are outside
A(`). On the right, the projection of the centers of a 2× 2-square on a common point of `.

see Fig. 16. For simplicity we can assume, up to translations, that ` = {jl}Ll=0 = {(l,−l)}L−1
l=0 ∪

{(L+ 1,−L+ 1)}. From the symmetry assumption (H1) there holds

πϕE(i) 3

{
j0 i1 − i2 ≤ 1

jl 2l − 1 ≤ i1 − i2 ≤ 2l + 1 with 0 < l < L.

This can be seen by characterizing the projection of points i ∈ A(`) of coordinates i = (h, h)
and (h + 1, h) with h ∈ N, since the other cases reduce to this situation from the translation
invariance of the distance. Thus, assume by contradiction that there exist h and 0 < l < L such
that ϕ(i− jl) = ϕ(h− l, h+ l) < ϕ(h, h) = ϕ(i− j0). We reduce to l ≤ h from the fact that ϕ is
monotonic. Then, by (H1) and convexity we get

ϕ(h, h) ≤ 1

2
ϕ(h+ l, h− l) +

1

2
ϕ(h− l, h+ l) = ϕ(h− l, h+ l),

leading to a contradiction. As for the case i = (h + 1, h), assuming that ϕ(i − jl) < ϕ(i − j0)
again by (H1) and convexity we get

ϕ(h+ 1, h) ≤ h+ 1

2h+ 1
ϕ(h+ 1− l, h+ l) +

h

2h+ 1
ϕ(h+ l, h+ 1− l) = ϕ(h+ 1− l, h+ l)

and we obtain a contradiction. Hence, for every i ∈ A(`) such that Z
(
Q(i)

)
⊂ A(`) there holds( ⋂

j∈Z(Q(i))

πϕE(j)
)
∩
(
` \ {jL}

)
6= ∅ ; (5.20)

again, as for (5.18), (5.20) means that the lattice points inside Q(i) project onto a common point
of `, see Fig. 16. An analog of (5.20) holds in the case (iv) of Remark 8.
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i

i + (1, 1)

i + (2, 0)

i + (0, 1)

i + (1, 0)

i + (2, 1)

Figure 17: The triples of points involved in (5.21).

Remark 32. In order to compare the energies of checkerboard configurations with different
parities inside certain rectangular tiles, it will be useful to establish some inequalities involving
the dissipation term.

Consider E as in the statement of Proposition 30 and ` ∈ E(E) such that ` ⊂ {x ∈ R2 :
x2 > 0} and s(`) ∈ [0, 1]. For the sake of simplicity we can assume (up to a translation) that
jL = (0, 0) where ` = {jl}Ll=0. If s(`) ∈ [0, 1

3 ], for every i ∈ A(`) with i1 ∈ 2Z such that (5.18)
holds, from (5.8) and the properties of ϕ one can infer (see Fig. 17) the inequality

dϕ(i, E) + dϕ(i + (1, 1), E) + dϕ(i + (2, 0), E)

≤ dϕ(i + (0, 1), E) + dϕ(i + (1, 0), E) + dϕ(i + (2, 1), E). (5.21)

The same inequality holds if s(`) ∈ ( 1
3 , 1], for every i ∈ A(`) with i ∈ Z2

e such that (5.20) holds.
Indeed, (5.18) and (5.20) ensure the existence of some j′ ∈ ` such that dϕ(j, E) = ϕ(j − j′)

for every j ∈ Z
(
Q(i)

)
. Hence (5.8) reads

dϕ(i, E) + dϕ(i + (1, 1), E) ≤ dϕ(i + (0, 1), E) + dϕ(i + (1, 0), E) . (5.22)

Now, from the fact that i2 ≥ j′2 (see Remark 31) and the monotonicity of the norm ϕ, we have
ϕ(i + (2, 0)− j′) ≤ ϕ(i + (2, 1)− j′), whence we get

dϕ(i + (2, 0), E) ≤ dϕ(i + (2, 1), E) . (5.23)

Inequality (5.21) then follows by adding term by term (5.22) and (5.23).

Remark 33. As a last preparatory remark to the proof of Proposition 30, we analyze and mo-
tivate assumption (5.13) on the sets that intervene in minimization problem (5.15). Assumption
(5.13) ensures that for every discrete edge there are infinitely many 2× 2-squares whose centers
project onto it. This property is crucial to define a well-posed covering argument (see Section
5.5). Specifically, let E be as in the statement of Proposition 30 and ` ∈ E(E) be such that
` ⊂ {x ∈ R2 : x2 > 0} and

s(`) ∈ [0, 1] . (5.24)

We claim that, for every such ` the following property holds:

for every h ∈ N there exists i ∈ A(`) ∩
(
Z× {h}

)
∩ Z2

e : Z(Q(i)) ⊂ A(`), (5.25)

where we have set ` = {jl}Ll=0 and jL = (0, 0) for simplicity. This claim is proved inductively
(on parameter labeling clockwise consecutive discrete edges) by showing that for any triple of
consecutive edges of E, say `−, `, `+ with `− satisfying (5.25), we can find a point i ∈ (Z×{h}

)
∩Z2

e

for which, thanks to (5.13) and the translation invariance of the distance, there holds dϕ(j, `) ≤
dϕ(j, `− ∪ `+) for every j ∈ Z

(
Q(i)

)
and every h ≥ 0.
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ih

j0

jL

i

Figure 18: An example of the situation described in Remark 33 in the case s(`) ≤ 1
3
. The lighter dots

represent the points of Z2
e inside A(`−), A(`) and A(`+).

Let `0 = {jl0}
L0

l=0 be the first (clockwise-ordered) edge such that s(`) ≥ 0 and set

`′0 :=

{
`0 if ν(`0) = (0, 1)

{j00} otherwise.

It is straightforward that (5.25) is satisfied for ` = `′0 (reasoning as in Remark 31) where we have
set

A(j00) =
{
i ∈ Z2 : πϕE(i) 3 j00

}
. (5.26)

Consider `, `−, `+ ∈ E(E) satisfying (5.24), with `− preceding `, ` preceding `+. Write `− =

{j−,l}L−l=0 and `+ = {j+,l}L+

l=0. We point out that if `− coincide with `0 = {j00} then ` = `0.
Assume that `− satisfies (5.25). Consider first the case s(`) ≤ 1

3 (see Fig. 18). For any fixed
h ∈ N, we set ih = argmax {i1 : i ∈ Z2

e, Z
(
Q(i)

)
⊂ A(`−), i2 = h + 1}, which is well defined

since we have assumed that `− satisfies (5.25). By Remark 31 and by definition of A(`−) (5.17),
there holds

dϕ(j, E) = ϕ(j− j0) < dϕ(j, `) for every j ∈ Z
(
Q(ih)

)
. (5.27)

Set i := ih + (2L − 1,−1) and note that i ∈ Z2
e and i2 = h. Note also that the definition of ih

yields Z
(
Q(i)

)
∩A(`−) = ∅. Then, by (5.27) and the translation invariance of the distance, since

j0 + (2L− 1,−1) = jL we get

dϕ(j, `) = ϕ(j− jL) < dϕ(j, `+ (2L− 1,−1)), for every j ∈ Z
(
Q(i)

)
.

Now, (5.13) yields dϕ(j, ` + (2L − 1,−1)) ≤ dϕ(j, `+). Indeed, if s(`+) ≤ 1
3 then L+ ≤ L by

(5.13), thus `+ ⊂ ` + (2L − 1,−1). If instead s(`+) > 1
3 then by the monotonicity of ϕ we get

dϕ(j, `+) ≥ ϕ(j− jL).
Now consider the case s(`) > 1

3 (Fig. 19). For any fixed h ∈ N, we set

ih = argmax {i1 : i ∈ Z2
e, Z

(
Q(i)

)
⊂ A(`−), i2 = h+ L− 1},

which is well defined as above. By Remark 31 and by definition of A(`−) (5.19) there holds

dϕ(j, E) = ϕ(j− j′) ≤ ϕ(j− j0) = dϕ(j, `) for every j ∈ Z
(
Q(ih)

)
, (5.28)
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ih

i
j'

j''

j0

jL

Figure 19: An example of the situation described in Remark 33 in the case s(`) < 1
3
. The lighter dots

represent those points of Z2
e lying inside A(`−), A(`) and A(`+).

for some j′ ∈ {j−,l}L
−−1

l=0 . Again, set i := ih + (L− 1,−L+ 1) and note that i ∈ Z2
e and i2 = h.

Reasoning as above we have Z
(
Q(i)

)
∩ A(`−) = ∅. By (5.28), the translation invariance of the

distance and since j′′ := j′ + (L− + 1,−L− + 1) ∈ {jl}L
−−1

l=0 ⊂ ` we get

dϕ(j, `) = ϕ(j− j′′) ≤ ϕ
(
j− jL), for every j ∈ Z

(
Q(i)

)
.

From (5.13) we have s(`) > 1
3 and L+ ≥ L, thus ϕ

(
j− jL) = dϕ(j, `+), arguing as in Remark 31.

5.5 Proof of Proposition 30

We are now ready to prove the main result on the structure of the minimizer of Fϕα(·, E). For
the covering argument that we will introduce, the 2× 2-squares are not sufficient. Therefore, we
define a new class of tiles for the covering.

Rhor(i)
Rver(i) R+(i) R−(i)

Figure 20: The different tiles of the covering.

Definition 34. For every i ∈ Z2 we set

Rhor(i) := Q(i) ∪ q(i + (2, 0)) ∪ q(i + (2, 1)) , R+(i) := Rver(i) ∪Rhor(i) ,

Rver(i) := Q(i) ∪ q(i + (0, 2)) ∪ q(i + (1, 2)) , R−(i) := Rver(i + (1,−1)) ∪Rhor(i) ,
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where Q(i) is defined as in (5.6) (see Fig. 20).

For every discrete edge ` ∈ E(E), we will define a covering of the region outside E projecting
onto `. We warn the reader that the choice of the tiles will depend both on the slope s(`) and the
neighboring edges. Heuristically, where the discrete projection πϕE behaves as in the case of the
distance from a point, we will still use the tiles Q(i), as in the proof of Proposition 27. In order
to match the coverings of the regions projecting onto adjacent edges, we will need tiles Rhor(i)
and Rver(i) (see Steps 2 and 3 of the proof), in which the even checkerboard is the minimizer by
virtue of Remark 32. Moreover, we will take into account that the effective boundary ∂effE may
present some irregularities due to the discrete nature of the problem (see Steps 4 and 5). In that
case, where needed, we will use the “siding tiles” R+(i) and R−(i) which are compatible with
the rest of the covering and still favor the even configurations in the local minimum problems
therein.

Proof of Proposition 30. According to the discussion in Remark 8, we reduce the description of
the covering corresponding to the discrete edges of E contained in {x ∈ R2 : x2 ≥ 0} complying
with

0 ≤ s(`) ≤ 1 , (5.29)

as the covering for the remaining edges can be obtained symmetrically. We divide the proof into
several steps.

Step 1: ordering of the discrete edges. We label in clockwise order the set of discrete
edges of E; namely, {`m}m1

m=1 ⊂ E(E). For our convenience, writing `1 = {jl}Ll=0, with a slight
abuse of notation, in the case that s(`1) = 0 we write (without relabelling) `1 = {jl1}Ll=bL2 c. If

s(`1) > 0 we set `0 := {j01}. Now we set

m0 := max
{

0 ≤ m ≤M : s(`m) ≤ 1

3

}
.

jL

2h
bhah

Figure 21: The point (ah, 2h + 1) ∈ A(`) (black circle on the left). The point (bh + 1, 2h) ∈ A(`m+1)
(black circle on the right). The gray points represent Z× {2h}.

Step 2: covering of the region outside E projecting onto `m with 0 < m < m0. We
set `m := {jl}Ll=0 assuming, without loss of generality, that jL = (0, 0). We also define

ah := min{h′ ∈ 2Z : (h′, 2h+ 1) ∈ A(`m)} ,
bh := max{h′ ∈ 2Z : (h′ + 1, 2h) ∈ A(`m)} ,

(5.30)

for every h ∈ N, where A(`) is defined in (5.17) (see Fig. 21). In the case m = 1 and s(`1) = 0,
the set A(`1) is still as in (5.17) with {jl}L

l=bL2 c
in place of {jl}Ll=1. Note that, by Remark 33,
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assumption (5.13) yields that ah and bh are well-defined for every h ∈ N. We then introduce the
set

I(`m) :=
⋃
h≥0

{(h′, 2h) : h′ ∈ 2Z, ah ≤ h′ ≤ bh} . (5.31)

ah+1 bh+1

ah

jL

ah+1=bh+1

ah

jL

Figure 22: Examples of coverings defined in (5.32). The black circle represents the point (ah−1, 2h+ 3).

Correspondingly, for every h ∈ N we define the following covering (see Fig. 22):

C(i) :=


Rver(i) i = (ah, 2h) and (ah, 2h+ 3) 6∈ A(`m)

Q(i) i = (ah, 2h) and (ah, 2h+ 3) ∈ A(`m)

Q(i) i1 ∈ 2Z, ah < i1 < bh

Rhor(i) i = (bh, 2h)

, if ah < bh ,

C(i) :=

{
R+(i), i = (ah, 2h) and (ah, 2h+ 3) 6∈ A(`m)

Rhor(i), i = (ah, 2h) and (ah, 2h+ 3) ∈ A(`m)
, if ah = bh ,

(5.32)

(see Fig. 23 for an example of {C(i) : i ∈ I(`m)}).

Figure 23: Examples of whole coverings defined in formula (5.32). The black dots represent the points
of I(`m).

Step 3: covering of the region outside E projecting onto `m with m0 ≤ m ≤ m1−1.
As before, we label clockwise the set of points {jr}r≥0 =

⋃m1

m=m0+1 `m \{`0}. For every m0 +1 ≤
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2h
ah bh

j

j r1

r0

Figure 24: The point (ah, 2h + 1) ∈ A(`m) (black circle on the left). The point (bh + 1, 2h) ∈ A(`m)
(black circle on the right).

m ≤ m1 − 1, writing `m = {jl}Ll=0 we define

r0 := min{r ∈ 2Z : jr ∈ `m} and r1 := max{r ∈ 2Z : jr ∈ `m \ {jL}} . (5.33)

ah bh

j

j r1

r0
ah bh

j

j r1

r0

Figure 25: Examples of coverings of the two possible parities defined in formula (5.32). The black circle
represents the point (ah, 2h+ 3).

Fix first `m with m0+1 < m ≤ m1−1 and assume, without loss of generality, that jr1 = (0, 0).
Now, for every h ∈ N we determine the integers ah and bh as in (5.30) (see Fig. 24), which are
well defined by Remark 33, where A(`) is as in (5.19). Correspondingly, we define the sets I(`m)
as in (5.31) and C(i) for every i ∈ I(`m) as in (5.32), respectively (see Figg. 25 and 26).

The covering outside the discrete edges `m0
and `m0+1 must be treated separately. Let r0, r1

be as in (5.33) with m = m0 +1. Again, we assume that jr1 = (0, 0), define ah, bh as in (5.30) for
every h ∈ N with A(`m0

) ∪ A(`m0+1) in place of A(`m) and the set I(`m0
∪ `m0+1) as in (5.31).

The sets C(i) are defined, for every i ∈ I(`m0
∪ `m0+1), as in (5.32) with A(`m0

) ∪ A(`m0+1) in
place of A(`m) (see Fig. 27). Note that, in this case ah 6= bh for every h ∈ N.
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Figure 26: Examples of whole coverings defined in formula (5.32) of two different parities. The black
dots represent the points of I(`m).

jr1

ah bh

Figure 27: On the left, an example of ah and bh, and the black circle represents the point (ah, 2h+ 3).
On the right the corresponding covering, where the black dots represent the points of I(`m0−1 ∪ `m0).

33



jL

ah bh

Figure 28: Example of covering outside `m1 in the case (i).

Step 4: covering of the region outside E projecting onto `m1
. We set `m1

= {jl}Ll=0

with jL = (0, 0). There are different possible cases depending on ν(`m1
):

(i) let m0 = m1; i.e., s(`m) ≤ 1
3 for every m. We set, for every h ∈ N, ah as in (5.30), bh = 2h

and I(`m1) as in (5.31). Then, C(i) is defined as in (5.32) for every i ∈ I(`m1) \ {(bh, 2h)}h∈N
and C((bh, 2h)) = Q((bh, 2h)) for every h ∈ N (Fig. 28);

(ii) let 1
3 < s(`m1

) < 1 and let r1 be defined as in (5.33) with m = m1. Then ah and bh are as
in (5.30) for every h ∈ N with A(`m1

) or A(`m1
)∪A(`m1−1) in place of A(`m) whetherm1−1 > m0

or m1 − 1 = m0, respectively. We define I(`m1) as in (5.31). If jr1 = jL−2, C(i) is defined as in
(5.32). Whereas, if jr1 = jL−1, C(i) is defined as in (5.32) for every i ∈ I(`m1) \ {jr1 , jr1 + (0, 2)}
and

C(jr1) = ∅, C(jr1 + (0, 2)) = R−(jr1 + (0, 2)).

Then, setting A(jL) = {i ∈ Z2 : i1, i2 > 0, πϕE(i) = jL}, we introduce the integers

a′h =

{
min{h′ ∈ 2Z : (h′, 2h+ 1) ∈ A(jL)} if jr1 = jL−2

min{h′ ∈ 2Z + 1 : (h′, 2h+ 2) ∈ A(jL)} if jr1 = jL−1

b′h =

{
2h if jr1 = jL−2

2h+ 1 if jr1 = jL−1.

Now, we define I(`′m1
) as in (5.31) with a′h, b

′
h in place of ah and bh, and the tile C(i) as in (5.32)

for every i ∈ I(jL) \ {(b′h, b′h)}h∈N, and C((b′h, b
′
h)) = Q((b′h, b

′
h)) (see Fig. 29);

(iii) consider now the case s(`m1) = 1. Let r0 be defined as in (5.33) with m = m1. Without

relabeling, we set `m1
:= {jl}b

L
2 c

l=0 and assume jb
L
2 c = (0, 0). Here the covering depends on the

parity of L. If L is even, ah is defined as in (5.30) with m = m1 and bh = 2h for every h ∈ N.
I(`m1

) is defined as in (5.31). Then C(i) is defined as in (5.32) for every i ∈ I(`m1
)\{(bh, 2h)}h∈N

and C((bh, 2h)) = Q((bh, 2h)) (Figure 30). If L is odd, analogously to what done in case (ii), for
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j

b'h

r1

bh

a'h

j +(0,2)

b'h

r1

bh

a'h

Figure 29: The covering in the cases jr1 = jL−1 (on the left) and jr1 = jL (on the right).

every h ∈ N we define

ah =

{
min{h′ ∈ 2Z : (h′, 2h+ 1) ∈ A(`m1)} if jr0 6= jL

min{h′ ∈ 2Z + 1 : (h′, 2h+ 2) ∈ A(jL)} if jr0 = jL

b′h =

{
2h if jr0 6= jL

2h+ 1 if jr1 = jL.

Then I(`m1) is defined as in (5.31) and C(i) is defined as in (5.32) for every i ∈ I(`m1) \
{(bh, 2h)}h∈N and

Ch((bh, bh)) =

{
R−((bh, bh)) if h = 0

R((bh, bh)) if h > 0,

see Fig. 31.
Step 5: covering of the region outside E projecting onto `0. We define the set

S0 =


E({i ∈ Z2 : i1 = j

dL2 e
1 − 1, i2 ≥ 1}) if s(`1) = 0 ,

∅ if 0 < s(`1) <
1

3
,

E({i ∈ Z2 : i1 = j0
1 , i2 ≥ 0}) if

1

3
< s(`1) ≤ 1 .

(5.34)

(see Fig. 32).
If ` is such that 0 < s(`) < 1

3 , we define I(`0) = {(0, 2h)}h∈N and for every h ∈ N

bh = max{h′ ∈ 2Z | (h′ + 1, 2h) ∈ A(j0)},

where A(`0) is as in (5.26). Then, for every i ∈ I(`0) we choose the tile

C(i) =
⋃{

q((k, 2h)) ∪ q((k, 2h+ 1)) : k ∈ Z , −bh − 2 ≤ k ≤ bh + 2 , i2 = 2h
}
, (5.35)
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r0j

j
⌊ ⌋L

2
 

ah bh

Figure 30: The covering considered in (iii) in the case L even.

r0j

j
⌊ ⌋L2

ah bh
ah bh

r0j

j
⌊ ⌋2
L

Figure 31: The coverings defined in (iii), in the case L odd, for jr0 6= jL (on the left) and jr0 = jL (on
the right).

L
2⌈  ⌉j L

2⌈  ⌉j

Figure 32: The covering S0 in the cases listed in (5.34).
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Figure 33: Example of C(i), i ∈ I(`0). The black dots represent the lattice points (±bh, 2h).

see Fig. 33.
Step 6: compatibility between different coverings. Here, we note that the family of sets

{C(i) : i ∈ I(`m), 0 ≤ m ≤ m1, i ∈ I(`′m1
)} is a covering of E({i ∈ Z2 : infj∈Z(E) ‖i− j‖1, i2 ≥

i1}), which is the region of plane “outside” the edges as in Step 1. We point out that, if case (ii)
of Step 4 does not hold, then I(`′m1

) = A(`′m1
) = ∅. Indeed, for every pair `, `′ ∈ E(E) with `′

preceding `, the sets ⋃
i∈I(`′)

C(i) and
⋃

i∈I(`)

C(i)

are non-overlapping and their union does not leave uncovered regions.

a1

a3

a2

a4

b'0

b'1

b'2

b'3

b'4

a0

Figure 34: Matching of the coverings outside a pair of adjacent discrete edges.

We denote by ah, bh and a′h, b
′
h the values defined in (5.30) corresponding to ` and `′, respec-
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tively. We assume, for simplicity, that jL = (0, 0). Hence, every i ∈ I(`) and i′ ∈ I(`′) are such
that i2 = 2h and i′2 = 2h + 1 + 2h0, where h0 = 0 if 0 ≤ s(`) ≤ 1

3 and 2h0 = r1 − r0 otherwise,
where r0 and r1 are defined in Step 3. Therefore, in this coordinate system, the definition of
b′h−h0

reads
b′h−h0

= max{h′ ∈ 2Z + 1 : (h′ + 1, 2h+ 1) ∈ A(`′)} .

Now, it is sufficient to note that, if Q((ah, 2h)) = Rver((ah, 2h)) then ah+1 = ah + 2, while if
Q((ah, 2h)) = Q((ah, 2h)) then ah+1 = ah, as it immediately follows from (5.32) (see Fig. 34).

The covering of the regions projecting onto discrete edges ` ∈ E(E) not fulfilling (5.29)
can be obtained symmetrically; we use the notation I(`) and C(i) to denote the sets obtained
symmetrically as in (5.31) and (5.32) respectively. With C0 we denote the union of the set S0

defined in (5.34) and its symmetric analogs.

Rhor(i)

i

Figure 35: The checkerboard configurations are energetically favorable inside each Rhor(i).

Step 7: local minimum problems on C(i). As a next step, we prove that the configuration
with minimal energy inside each tile C(i) is the even checkerboard, for any i ∈ I(`), ` ∈ E(E);
i.e.,

Fϕα(E(Z2
e) ∩ C(i), E) ≤ Fϕα(F ∩ C(i), E) (5.36)

for every F ∈ D, and the same for C0; i.e.,

Fϕα(E(Z2
e) ∩ C0, E) ≤ Fϕα(F ∩ C0, E). (5.37)

Indeed, if C(i) = Q(i) from Remark 31 either (5.18) or (5.20) holds. Hence, by arguing as in
the proof of Proposition 27, from (5.8) we get (5.36).

If Ch(i) = Rhor(i), we can restrict the minimization in (5.36) to the checkerboard configura-
tions. Indeed, if j ∈ Z(Rhor(i)) has a nearest neighbor j′ then by suitably shifting one of them
towards an “empty” location the corresponding variation of the energy is at most −2 + α < 0
(see Fig. 35); the case α > 2 is trivial. Moreover, by the definition of bh we have that either
(5.18) or (5.20) is satisfied, thence from Remark 32, (5.21) holds yielding (5.36). The cases of
C(i) = Rver(i), C(i) = R+(i) and C(i) = R−(i) can be treated analogously.

bh

Figure 36: The lattice points involved in (5.38). The black dots are points of Z2
e, circles are points of

Z2
o. The energy contribution of the even checkerboard in the white regions is negative.

Now consider the case C(i) as in (5.35) with i ∈ I(`0). Reasoning as above, we can reduce
minimum problem (5.36) to a comparison between the energies of the two checkerboards. Then,
for every h ∈ N, k ∈ 2Z with 0 < |k| ≤ bh, the even checkerboard has minimum energy in
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Q((k, 2h)), as above. Hence (5.36) is proved if

ϕ(0, 2h) + 2ϕ(1, 2h+ 1) + 2dϕ((bh + 2, 2h), E)

≤ ϕ(0, 2h+ 1) + 2ϕ(1, 2h) + 2dϕ((bh + 2, 2h+ 1), E) ;

that is,

ϕ(1, 2h+ 1) + dϕ((bh + 2, 2h), E) ≤ 1

2
+ ϕ(1, 2h) + dϕ((bh + 2, 2h+ 1), E), (5.38)

see Fig. 36. If (bh + 2, 2h+ 1) 6∈ A(`0) the inequality above is trivial, since dϕ((bh + 2, 2h), E) ≤
ϕ(1, 2h) and dϕ((bh+2, 2h), E) ≤ ϕ(1, 2h+1). If, instead, (bh+2, 2h+1) ∈ A(`0) (5.38) reduces
to

ϕ(1, 2h+ 1) + ϕ(bh + 2, 2h) ≤ 1

2
+ ϕ(1, 2h) + ϕ(bh + 2, 2h+ 1),

which holds from (5.8) and (H3).
Reasoning as in point (c) of the proof of Proposition 27 there holds

Fϕα(E(Z2
e) ∩ C0, E) ≤ Fϕα(F ∩ C0, E) .

As a final remark, we note that for every i ∈ E(Z2
e) such that dϕ(i, E) > 4

α the variation of
removing q(i) is negative, hence

argmin
E′⊃E

Fϕα(E′, E) ⊂ E
({

i ∈ Z2 : dϕ(i, E) <
4

α

})
.

Step 8: conclusion. Set

I :=
( ⋃
`∈E(E)

I(`)
)
∩
{

i ∈ Z2 : dϕ(i, E) <
4

α

}
.

An analogous argument as that in the proof of Proposition 27 (see (5.12)) shows that

Fϕα(E′, E) ≥
∑
i∈I

Fϕα(E′ ∩ C(i), E) + Fϕα(E′ ∩ C0, E)

for every E′ ⊃ E, E′ ∈ D. By virtue of Step 7 we get

min
E′⊃E

Fϕα(E′, E) ≥
∑
i∈I

Fϕα(E(Z2
e) ∩ C(i), E) + Fϕα(E(Z2

e) ∩ C0, E) = Fϕα(E(I ∪ Z(E)), E)

which implies that the ground state of the energy is achieved by the even checkerboard configu-
ration. Lastly, the monotonicity constraint yields the uniqueness of the solution.

We will apply Proposition 30 iteratively to each E = Ekα, k ≥ 1 in order to characterize the
solutions of the recursive scheme (5.2) (see Theorem 38). Indeed, as shown with Proposition 27,
the first step E1

α coincides with E(Bϕ4
α

∩Z2
e) which satisfies the symmetry conditions (5.14) and,

thanks to the following Lemma, the non-degeneracy condition (2.3).

Lemma 35. If ϕ satisfies (H1) and (H2), then for every r > 2 the set E = Bϕr ∩ Z2
e satisfies

(2.3).
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Figure 37: From the left, the set E1
α and the polygon conv(Z(E1

α)), the lattice sets A(`), ` ∈ E(E) and,
lastly, the corresponding covering.

Proof. By the symmetric assumption (H1) we can restrict our analysis to points i ∈ ∂effE with
i2 ≥ i1 ≥ 0. We subdivide the proof into two cases. If i1 = 0, then i2 > 0 from (H2) and
the condition r > 2. Since (0, 0) ∈ Z(E) we have that (0, i2 − 2) ∈ Z(E). By (H1) the point
(±i2, 0) ∈ Z(E) then, by the Z2

e-convexity of E we get that (±1, i2−1) ∈ Z(E). Since for every i′

with i′2 > i2, i′ 6∈ Z(E) thus i is non-degenerate. If, instead, i1 > 0, for every j ∈ Z(E) such that
‖j − i‖1 ≤ 2, by the symmetry with respect to the coordinate axes of ϕ we get that (−j1, j2),
(j1,−j2) ∈ Z(E). The Z2

e-convexity and the fact that (0, 0) ∈ Z(E) yield that (j1 − 2, j2),
(j1, j2 − 2), (j1 + 1, j2 − 2) ∈ Z(E). This implies that i is non-degenerate.

We conclude this section with some examples clarifying the role of compatibility assumption
(5.13) and non-degeneracy condition (H2).

Example 36. Consider ϕ the Euclidean norm and set α = 0.7. Then the resulting E1
α complies

with (5.13) and the lattice sets A(`) fulfill (5.25), as it can be noted in Fig. 37.
If we choose instead ϕ = ‖ · ‖3 and α = 0.71, the compatibility condition (5.13) is violated

for E1
α as shown in Fig. 38. This also provides an example in which (5.25) is not satisfied, hence

the indices ah and bh introduced in Step 2 of Proposition 30 are not well defined.

Example 37 (one-dimensional motion). We consider an absolute norm which does not satisfy
the normalization assumption ϕ(1, 0) = ϕ(0, 1) = 1; that is,

ϕ(x) = |x1|+ 2|x2|, for every x ∈ R2,

and take 4
3 < α < 2. Then Proposition 27 applies in this case and gives

E1
α = q((−2, 0)) ∪ q((0, 0)) ∪ q((2, 0)) .

Even though Proposition 30 cannot be applied on such set, it is straightforward to see in a direct
way that the solution of 5.2 {Ekα} is given by

Ekα =

k⋃
h=0

(
q((−2h, 0)) ∪ q((2h, 0))

)
, k ≥ 0 ,

see Fig. 39. The resulting minimizing movement will be the family of horizontal line segments

E(t) = lim
ε→0

Eε,τ (t) = lim
ε→0

εE
b tτ c
α = [−2αt, 2αt]× {0} , t ≥ 0 .
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Figure 38: The discrete edge ` represented with black dots does not satisfy the compatibility condition
(5.13). The red dots denote the points of A(`) which does not comply with (5.25).

5.6 Nucleation and growth of a set

By virtue of Proposition 30, we can characterize the time-discrete flow {Ekα}k≥0 solution of (5.2).
This evolution admits an alternative interpretation, based on a geometric iterative process that
we will call nucleation of the initial set. Indeed, the set of centers of the k-th step of the discrete
evolution Z(Ekα) can be obtained from that of the previous step Z(Ek−1

α ) by adding (in the
Minkowski sense) the nucleus Nϕ

α (see Definition 28); i.e., a lattice set that characterizes the
motion.

Theorem 38. Let ϕ be a symmetric absolute normalized norm satisfying (H3), and let α > 0
be such that α 6∈ Λϕ. If E(Nϕ

α) satisfies assumption (5.13) then there exists a unique discrete
solution {Ekα} of (5.2) which is given, for any k ≥ 1, by

Z(Ekα) = Nϕ
α + · · ·+ Nϕ

α︸ ︷︷ ︸
k-times

. (5.39)

In particular, Ekα ∈ Aeconv for every k ≥ 1.

Proof. We first note that, for a lattice set I such that E(I) belongs to Aeconv and satisfies (5.13)

E(I + I + · · ·+ I︸ ︷︷ ︸
m-times

) ∈ Aeconv still satisfies (5.13), for every m ∈ N. (5.40)

It will suffice to show (5.40) for m = 2, as the claim for m ≥ 3 will follow by an induction
argument on the number m of the summands. Setting Q := conv(I), property (2.8) with Λ = Z2

e

and m = 2 reads as (Q ∩ Z2
e) + (Q ∩ Z2

e) = 2Q ∩ Z2
e, yielding that E(I + I) ∈ Aeconv. Moreover, a

property equivalent to (5.13) is that all the discrete vertices of E(I) belongs to ∂Q. This implies
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Figure 39: On the left the set E1
α and the boundary of Bϕ4

α

in red. On the right the discrete solution Ekα

after two steps.

that the set of outward unit normal vectors of Q coincide with the set of (discrete) outward unit
normal vectors of E(I). In particular, every edge l of Q identifies a finite chain of discrete edges
of E(I) having the same unit normal vector ν(l). This fact depends only on ν(l) and not on the
length of l. Proposition 10 with A = B = Q implies that the set of outward unit normal vectors
of 2Q coincide with that of Q. Hence, the edge l + l of 2Q corresponds to a chain of a finite
number of discrete edges of E(I+ I) having the same unit normal vector ν(l). The Z2

e-convexity
of E(I + I) implies (5.13).

Going back to the proof of (5.39), we argue by induction on the step k. By Proposition 27
and Lemma 35 Z(E1

α) = Nϕ
α complies with all the assumptions on E of Proposition 30. Now, let

k ≥ 2 and assume that
Z(Ek−1

α ) = Nϕ
α + · · ·+ Nϕ

α︸ ︷︷ ︸
(k−1)-times

.

For what remarked in (5.40), all the hypotheses of Proposition 30 are satisfied. Then, taking
into account (5.16) with E = Ek−1

α , we have that

Z(Ekα) = Z(Ek−1
α ) + Nϕ

α . (5.41)

Indeed, setting Ik := Z(Ek−1
α ) + Nϕ

α, we have

max{dϕ(i, j) : i ∈ Ik, j ∈ Z(Ek−1
α )} ≤ max

i∈Nϕα
ϕ(i) <

4

α
,

and this shows that Ik ⊆ Z(Ekα). On the other hand, if i ∈ Z(Ekα), there exist i′ ∈ Z(Ek−1
α ) and

i′′ ∈ Nϕ
α such that i = i′+ i′′. This comes by noting that by (5.16) there exists i′ ∈ Z(Ek−1

α ) such
that ϕ(i − i′) = dϕ(i, Ek−1

α ) < 4
α , thus i′′ = i − i′ ∈ Nϕ

α. This yields (5.39). Moreover, again by
(5.40) we get that the Minkowski sum in (5.41) preserves assumption (5.13), so Ekα still satisfies
(5.13) and the thesis is proved.

6 The limit motion

In this section we characterize the minimizing movements of scheme (3.4) as τ, ε → 0 in the
critical regime ε = ατ for any positive value of the parameter α outside the singular set Λϕ,
under the assumption that E(Nϕ

α) complies with (5.13).
As already explained at the beginning of Section 5, we also prove the existence of a value

for α depending only on the chosen norm ϕ, above which every minimizing movement is trivial.
For every α below the pinning threshold, instead, the limit motion is a family of expanding sets,
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nucleating from the origin with constant velocity, as the limit set E(t) turns out to be a dilation
of the (renormalized) polygon

Pϕα :=


(

max
i∈Nϕα

i1

)−1

conv(Nϕ
α) if Nϕ

α 6= {(0, 0)}

{(0, 0)} if Nϕ
α = {(0, 0)}

(6.1)

Note that maxi∈Nϕα i1 ∈ {2b
2
αc, b

4
αc}, from the definition of Nϕ

α and the fact that ϕ(i1, 0) = i1,
i1 ∈ N.

Theorem 39. Let ϕ be a symmetric absolute normalized norm satisfying (H3), let α > 0 be given
such that α 6∈ Λϕ and let Fϕε,τ be defined by (3.3). Let Nϕ

α be as in Definition 28. If the set E(Nϕ
α)

satisfies assumption (5.13), then there exists a unique minimizing movement E : [0,+∞) → X

for the scheme (3.4) at regime ε = ατ defined by

E(t) = vϕα t P
ϕ
α for every t ≥ 0 , (6.2)

where Pϕα is defined in (6.1) and vϕα = αmaxi∈Nϕα i1. Moreover, there exists a unique discrete
solution Eε,τ (t) of scheme (3.4) at regime ε = ατ and there holds

χEε,τ (t)
∗
⇀

1

2
χE(t), for every t ≥ 0 as ε→ 0. (6.3)

Proof. By a scaling argument, for every discrete solution Ekε,τ of (3.4) in the regime ε = ατ

we have Ekε,τ = εEkα for every k ≥ 0, where Ekα denotes a discrete solution of (5.2). Then, by
Theorem 38 there exists a unique minimizing movement of scheme (3.4) at regime ε = ατ . Since,
by Proposition 12 and (6.1),

Nϕ
α + · · ·+ Nϕ

α︸ ︷︷ ︸
k-times

=
(
k
vϕα
α
Pϕα

)
∩ Z2

e,

we get that conv(Zε(Eε,τ (t))) = ε
vϕα
α b

αt
ε cP

ϕ
α . Moreover, noting that dH(F, conv(Zε(F ))) < ε for

any F ∈ Aε, we get

dH

(
Eε,τ (t), vϕα t P

ϕ
α

)
< ε+ vϕα

(
t− ε

α

⌊αt
ε

⌋)
which tends to zero as ε→ 0, for any t ≥ 0, whence (6.2) follows. Eventually, from the fact that
|Eε,τ (t) ∩A| → 1

2 |A| as ε→ 0 for any open set A ⊂ E(t), we get (6.3).

Definition 40 (pinning threshold). We define the pinning threshold of the motion obtained by
solving scheme (3.4) as

αϕ := inf
{
α > 0 : Eα(t) ≡ {(0, 0)} for every Eα minimizing movement of (3.4)

}
. (6.4)

It turns out that αϕ is related to the singular set Λϕ defined in (5.4) as follows.

Proposition 41. The pinning threshold is given by αϕ =
4

ϕ(1, 1)
= max Λϕ.

Proof. We note that Bϕ4
α

∩ Z2
e = {(0, 0)} if and only if α > 4

ϕ(1,1) , thus Proposition 27 yields the

result.
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Remark 42. The results of Theorems 38 and 39 can be extended to solutions of a minimizing-
movements scheme with a more general initial datum E0. Indeed, let E0

disc ∈ Aeconv be a set
satisfying (2.3), (5.13) and (5.14). We can apply Proposition 30 with E′ = E0

disc obtaining the
first step of the discrete solution corresponding to scheme (5.2) with E0

α = E0
disc. Then, if E(Nϕ

α)
satisfies assumption (5.13), from the same arguments of the proof of Theorem 38 there exists a
unique discrete solution of the schemeE

0
α = E0

disc

Ek+1
α ∈ argmax

E′∈D, E′⊃E
Fϕα(E′, Ekα) k ≥ 1,

which is given, for any k ≥ 1, by Z(Ekα) = Z(E0
disc) + Nϕ

α + · · ·+ Nϕ
α︸ ︷︷ ︸

k-times

.

We therefore obtain a limit result analogous to that of Theorem 39, provided the initial
datum E0 can be approximated by a sequence of admissible sets E0

εj ∈ Aεj whose rescaled sets
1
εj
E0
εj ∈ Aeconv satisfy (2.3), (5.13) and (5.14). This implies, in particular, that E0 must be a

convex symmetric set with respect to coordinated axes and bisectors x1 = ±x2. Then there
exists (up to subsequences) a minimizing movement E : [0,+∞)→ X for the schemeE

0
ε,τ = E0

ε

Ek+1
ε,τ ∈ argmin

E′∈Dε, E′⊃Ekε,τ
Fϕε,τ (E′, E) k ≥ 1 (6.5)

at regime ε = ατ defined by

E(t) = E0 + vϕα t P
ϕ
α for every t ≥ 0. (6.6)

Moreover, there exists a unique discrete flat flow Eεj ,τj (t) of the scheme (6.5) along the sequence

εj = ατj and there holds χEεj,τj (t)
∗
⇀ 1

2 χE(t) for every t ≥ 0 as j → +∞.

6.1 Examples of explicit evolutions

We continue our analysis by providing several examples of minimizing movements that can
be completely characterized, which exhibit interesting phenomena that may appear due to the
discrete nature of our problem.

E0
ε,τ E1

ε,τ E2
ε,τ

Figure 40: Some steps of the discrete evolution.

Example 43 (the `∞-norm). The solutions of the unconstrained scheme (3.5) have already been
analyzed in any dimension in the case ϕ = ‖·‖∞ in [12], where it has been proved that every step
of the discrete evolution is an even ε-checkerboard (see Fig. 40). Thus, solutions of (3.4) and
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(3.5) coincide. The singular set (5.4) corresponds to Λϕ = { 4
n}n∈N and the pinning threshold

is αϕ = 4. Here, since Nϕ
α =

[
− 4

α ,
4
α

]2
∩ Z2

e for every α 6∈ Λϕ, E(Nϕ
α) always fulfills (5.13).

Therefore, from Theorem 39, for every α 6∈ Λϕ the minimizing movement is

E(t) =
[
− α

⌊ 4

α

⌋
t, α
⌊ 4

α

⌋
t
]2
, for every t ≥ 0.

We note that, for this choice of the norm ϕ, the polygon Pϕα = [−1, 1]2 does not depend on α.

Figure 41: For different choices of α the polygon Pϕα may have different shapes.

Example 44 (α-depending shape of Pϕα ). Contrarily to the previous example, in the case of the
Euclidean norm the polygon Pϕα may change wih α (see, for instance, Fig. 41 corresponding to
α = 0.85 on the left and α = 0.7 on the right). Therefore, the limit motions corresponding to the
two different values of α are not homothetic. This phenomenon may happen for those norms ϕ
whose balls are not polygons or are polygons having a unit normal vectors different from (0,±1),
(±1, 0) or (± 1√

2
,± 1√

2
).

Figure 42: The picture clarifies the 2× 2-square covering So(E) for a set E, whose boundary is marked
by a bold black line. The darker 2× 2-squares are respectively in Sco(E), the lighter ones in Sbo(E). The
areas in white are those left uncovered.

Example 45 (the `1-norm). We consider now ϕ = ‖ · ‖1. Also in this case, as for the ∞-norm,
the structure of ϕ facilitates the analysis of the unconstrained scheme (3.5). We then study the
rescaled problem E

0 = q

Ek+1
α ∈ argmin

E′∈D
Fϕα(E′, E) k ≥ 1 , (6.7)
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where we separately examine the cases in which the minimizer of the first step contains q or not.
For this, in addition to Se(E) of Definition 26 we introduce the family

So(E) := {Q(j) : Q(j) ∩ E 6= ∅ and j1 even, j2 odd} (6.8)

which is a covering of E \ q (see Fig. 42) and, accordingly, we consider the partition So(E) =
Sbo(E) ∪ Sco(E).

Figure 43: An example of Eeα (on the left) and Eoα (on the right).

Now, in the case of scheme (6.7) with the monotonicity constraint, Proposition 27 and (5.4)
ensure that, if α 6∈ { 2

n : n ∈ N} then argmin
E⊃q

Fϕα(E, q) = E(Z2
e∩B

ϕ
4
α

) =: Eeα. In the unconstrained

case, an analogous argument as in the proof of Proposition 27, with So in place of Se, shows that
if α 6∈ { 4

2n−1 : n ∈ N} then argmin
E 6⊃q

Fϕα(E, q) = E(Z2
o ∩B

ϕ
4
α

) =: Eoα. This proves that E1
α is either

an even or an odd checkerboard. We remark that Bϕr is a regular rhombus (of radius r) and so
are the convex hulls of Z(Eeα) and Z(Eoα). The checkerboard sets Eeα and Eoα are pictured in
Fig. 43.

Figure 44: On the left the covering Se(E(Ie)) and the set Eeα. On the right the covering So(E(Io)) and
the set Eoα. The darker dots represent Ie and Io respectively.

The relevant point of this example is that, for this choice of the norm, the shape of the
minimizers is very simple and the 2× 2-square covering argument of Section 5.1 directly applies
to the kth-step Ekα, k ≥ 1, without any further adjustment. Moreover, it provides a covering
of R2 (in the even case) or R2 \ q (in the odd case) and not only of R2 \ E(conv(Z(Ek−1

α ))),
see Figure 44. Thus, the corresponding localization argument allows to study the unconstrained
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problem. Indeed, if E1
α = Eeα then for every Q(j) ∈ Se(E(Ie)) we get

Fϕα(Q(j) ∩ E(Z2
e), E

1
α) = min

E∈D
Fϕα(Q(j) ∩ E,E1

α), Fϕα(C0 ∩ E(Z2
e), E

1
α) ≤ min

E∈D
Fϕα(C0 ∩ E,E1

α)

whereas if E1
α = Eoα then for every Q(j) ∈ So(E(Io)) we get

Fϕα(Q(j) ∩ E(Z2
o), E

1
α) ≤ min

E∈D
Fϕα(Q(j) ∩ E,E1

α),

where

Ie =
{

i ∈ Z2
e : dϕ(i, E1

α) <
4

α

}
, Io =

{
i ∈ Z2

o : dϕ(i, E1
α) <

4

α

}
which gives that Z(E2

α) ∈ {Ie, Io}. This yields, after an inductive argument, that Ekα is either
an even or an odd checkerboard. The parity of Ekα will be determined by a comparison between
the two possible (checkerboard) configurations. Nevertheless, a change of parity is eventually
not energetically favorable. Indeed, assume Ekα to be e.g. an even checkerboard and set I = {i ∈
Z2
o : dϕ(i, Ekα) < 4

α}, we then get

Fϕα(E(I), Ekα)− Fϕα(Ekα, E
k
α) ≥ −4#Z(E(I)) + 2α#Z(Ekα) + 4#Z(Ekα) + c

≥ −8
(4(k + 1)

α

)2

+ 2α
(4(k + 1)

α

)2

+−8
(4k

α

)2

+ c

= −c′k + c′′k2 + c,

for some positive constants c, c′, c′′. Since for k large enough the contribution above is positive,
for every fixed α 6∈ { 4

n}n∈N there exists an index kα ∈ N such that

Z(Ekα) = Z(Ekαα ) + Nϕ
α + · · ·+ Nϕ

α︸ ︷︷ ︸
(k−kα)-times

, for every k ≥ kα.

Figure 45: Some steps of the even evolution.

We can characterize the limit motion as follows. For every α > 0 such that α 6∈ { 4
n}n∈N there

exists a unique minimizing movement of unconstrained scheme (3.5) E : [0,+∞) → X and it
satisfies

E(t) = 2α
⌊ 2

α

⌋
tR, for every t ≥ 0, (6.9)

where R is the regular rhombus of radius 1. Note that, by Theorem 39, this coincides with the
minimizing movement of the constrained scheme (3.4).

At least for the first step, the comparison between the energies of the two possible minimizers;
i.e., Eeα and Eoα, can be performed by a straightforward computation. This induces a partition
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into subintervals of the set (0,+∞) \ { 4
n : n ∈ N}, wherein one configuration is energetically

more favourable than the other one. Setting R := b 4
αc, we get

Fϕα(Eeα, q) = −4
(

2
⌊R

2

⌋
+ 1
)2

+ 4α

bR2 c∑
j=1

(2j)2 , (6.10)

Fϕα(Eoα, q) = −4
(

2
⌊R+ 1

2

⌋)2

+ 4α

bR+1
2 c∑
j=1

(2j − 1)2 + α . (6.11)

After comparing the values in (6.10) and (6.11) we get that when R is even

Fϕα(Eeα, q) < Fϕα(Eoα, q) if and only if α <
4(2R+ 1)

2R(R+ 1)− 1
,

while when R is odd

Fϕα(Eeα, q) < Fϕα(Eoα, q) if and only if α >
4(2R+ 1)

2R(R+ 1) + 1
.

Thus, for the following values of α

αC(R) :=


4(2R+ 1)

2R(R+ 1) + 1
if R is odd,

4(2R+ 1)

2R(R+ 1)− 1
if R is even,

the energies of the two checkerboards coincide and we also obtain that

E1
α =


Eeα if α ∈

⋃
h≥1

(αC(2h+ 1), αC(2h)) ∪ (αC(1),+∞),

Eoα if α ∈
⋃
h≥0

(αC(2h+ 2), αC(2h+ 1)).
(6.12)

In particular, (6.12) provides an example of a discrete solution having an oscillating behavior;
that is, a change of parity from a step to another, at least from E0

α = q to E1
α = Eoα.

In this case, the pinning threshold of unconstrained problem (3.5) is αp = 2, as can be seen
in formula (6.9). This is the same as that of the constrained problem (3.4), given by Proposition
41. In the constrained problem, for every α > 2, since Nϕ

α = {(0, 0)}, Ekα = q for every k ≥ 1.
Whereas, in the unconstrained problem, by (6.12) we get that if 2 < α < 12

5 the discrete motion
is not trivial; that is, Ekα =

⋃
‖i‖1=1 q(i) for every k ≥ 1, even though the limit motion is pinned.

Example 46 (a strongly anisotropic norm). We now give, along the lines of Example 37, another
example where the discrete minimizers are (degenerate) checkerboard sets and the limit set is
one-dimensional; i.e., a linearly growing segment. For this, we construct ad hoc a strongly
anisotropic non-absolute norm ϕ such that ϕ(1, 1) < ϕ(1, 0) = ϕ(0, 1). Namely, we consider the
symmetric positive definite matrix A = (aij) such that a11 = a22 > 1, a12 < 0 and

1

8
< a11 + a12 <

1

2
, 2 < a11 − a12 . (6.13)

Correspondingly, we define the elliptic norm

ϕ(x) :=
√

xtAx =
√
a11(x2

1 + x2
2) + 2a12x1x2 , (6.14)
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O

Figure 46: The unit ball of ϕ for a11 = 2 and a12 = − 5
3
.

whose unit ball is pictured in Fig. 46.
Assumption (6.13) ensures that ϕ(1, 1) =

√
2(a11 + a12) <

√
a11 = ϕ(1, 0) = ϕ(0, 1). In

addition, we assume that
4
√
a11

< α ≤ 2
√

2√
a11 + a12

. (6.15)

In this case, if we let E0
α = q, the set of centers of the first step is

Nϕ
α = Z(E1

α) =

{
i ∈ Z2 : ϕ(i) ≤ 4

α

}
= {(−1,−1), (0, 0), (1, 1)}, (6.16)

whence, arguing by induction on the step k, we infer that

Z(Ekα) = {(j, j) : |j| = 0, 1, . . . , k} , k ≥ 1 . (6.17)

A similar computation as for the proof of Theorem 38 shows that an analogous characterization

E0
ε E1

ε E2
ε

Figure 47: Some steps of the evolution.

for Z(Ekα) by means of the Minkowski sum as in (5.39) holds. The polygon Pϕα here reduces to
the line segment L of length 2

√
2 centered at 0 with slope 1. In Fig. 47 some steps of the discrete

evolution are represented. Note that the proof of (6.16)-(6.17) does not require any covering
argument in the fashion of Section 5.3 or any monotonicity assumption (5.13). The following
characterization of the limit evolution immediately follows from the proof of Theorem 39.

Proposition 47. Let α be such that (6.15) holds. Then there exists a unique minimizing move-
ment of (3.4) Eα(t) = αLt where L is the line segment above.
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6.2 Further results and conjectures

In this section we focus on the non-trivial issue of addressing our problem without the monotonic-
ity constraint. If on the one hand in the case of the `∞-norm (Example 43), the monotonicity
constraint did not play any role, on the other hand in Example 45 we proved that the first step
of the unconstrained scheme (6.7) for the `1-norm can be either an even or an odd checkerboard
set. The idea of the proof was to follow the argument of Proposition 27, replacing, when using
the 2 × 2-square coverings, the family Se(E) with So(E) defined in (6.8) in the case E 6⊃ q.
This approach works for every absolute norm ϕ. Therefore, when removing the monotonicity
constraint in the minimization scheme, we find the following generalization of Proposition 27.

Proposition 48. Let ϕ be an absolute norm, let α > 0 be such that α 6∈ Λϕ and let Fϕα be as in
(5.1). Then the first minimization problem of scheme (6.7) admits the only solutions

E1
α = argmin

E∈D
Fϕα(E, q) =

{
E(Z2

e ∩B
ϕ
4
α

) ∈ Ae , if q ⊂ E1
α ,

E(Z2
o ∩B

ϕ
4
α

) ∈ Ao , if q 6⊂ E1
α .

At this point, we are forced to depart from Example 45 for the determination of the sets Ekα,
k ≥ 2, as the delicate construction of a covering needed in the proof of Proposition 30 strongly
relies on the monotonicity constraint on the discrete evolution and thence is no longer enough to
infer an analogous result for the subsequent steps of the evolution. The investigation of this issue
has therefore to be deferred to further contributions. Anyway, motivated by the previous “posi-
tive” examples, we do believe that under suitable assumptions on the norm ϕ and the geometry
of the competitors in the minimization problem one can still infer a (checkerboard) structure
result as in Proposition 30 and a characterization by means of Minkowski sums, analogous to
that of Theorem 38. Within this scenario, oscillations of the minimizers between checkerboards
of different parity, in principle, cannot be excluded. However, energetic considerations suggest
that these may occur only for a finite number of steps, depending on α: heuristically, a change
of parity at step k involves a variation of the perimeter term of order k which cannot match, for
k large, the corresponding increasing of the bulk term of order k2. In order to see this we may
assume, without loss of generality, that Z(Ek+1

α ) = (k + 1)Nϕ
α ⊂ Z2

o and Z(Ekα) = kNϕ
α ⊂ Z2

e for
some k ≥ 1, as an interchanging of the parity of the sets would provide an analogous estimate.
Then, by virtue of (2.7)–(2.9), the variation of the energy Fϕα from an even checkerboard Ekα to
the odd one Ek+1

α is bounded from below by

− 4
(
#Z(Ek+1

α )−#Z(Ekα)
)

+ αmin{ϕ(1, 0), ϕ(0, 1)}
(
#Z(Ekα) + #Z(Ek+1

α )
)

= −4#((k + 1)Nϕ
α ∩ Z2

o) + 4#(kNϕ
α ∩ Z2

e) + α
(
#(kNϕ

α ∩ Z2
e) + #((k + 1)Nϕ

α ∩ Z2
o)
)

≥ −4#((k + 1)Nϕ
α ∩ Z2

o) + 4#(kNϕ
α ∩ Z2

e) + α#(kNϕ
α ∩ Z2)

= α|conv(Nϕ
α)|k2 + C ′αk + C ′′α .

(6.18)

Thus, there exists kα := k(α) such that the right-hand side in (6.18) is positive for k ≥ kα. As a
consequence, the change of parity is not energetically favorable (definitely in k), and we expect
either Ekα ∈ Aeconv or Ekα ∈ Aoconv for every k ≥ kα to hold as a result of iterated Minkowski sums
with the even nucleus Nϕ

α of (3.5). In conclusion, since a finite number of oscillations is neglected
in the limit, an analogous characterization of the limit evolution as in Theorem 39 holds.

We summarize our conjecture as follows.

Conjecture. Under suitable assumptions on ϕ and for suitable values of α, the discrete solutions
{Ek} of scheme (3.5) satisfy

either Z(Ekα) =
{

i ∈ Z2
e : dϕ(i, Ek−1

α ) <
4

α

}
or Z(Ekα) =

{
i ∈ Z2

o : dϕ(i, Ek−1
α ) <

4

α

}
.
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Moreover, there exists an index kα ∈ N such that

Z(Ekα) = Z(Ekαα ) + Nϕ
α + · · ·+ Nϕ

α︸ ︷︷ ︸
(k−kα)-times

, for every k ≥ kα .

As for the limit evolution, there exists a unique minimizing movement E : [0,+∞) → X for
scheme (3.5) defined by E(t) = vϕα t P

ϕ
α for every t ≥ 0, where Pϕα and vϕα are as in the statement

of Theorem 39.
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