
RECONSTRUCTION OF MANIFOLD EMBEDDINGS INTO

EUCLIDEAN SPACES VIA INTRINSIC DISTANCES

NIKITA PUCHKIN, VLADIMIR SPOKOINY, EUGENE STEPANOV,
AND DARIO TREVISAN

Abstract. We consider the problem of reconstructing an embedding of a com-
pact connected Riemannian manifold in a Euclidean space up to an almost

isometry, given the information on intrinsic distances between points from its

“sufficiently large” subset. This is one of the classical manifold learning prob-
lems. It happens that the most popular methods to deal with such a problem,

with long history in data science, namely, the classical Multidimensional scal-

ing (MDS) and the Maximum variance unfolding (MVU) actually miss the
point and may provide results very far from an isometry; moreover, they even

may give no bi-Lipshitz embedding. We will provide an easy variational formu-

lation of this problem which leads to an algorithm always providing an almost
isometric embedding with the distortion of original distances as small as de-

sired (the parameter regulating the upper bound for the desired distortion is
an input parameter of this algorithm).

1. Introduction

Let M be a smooth connected compact Riemannian manifold endowed with its
intrinsic (geodesic) distance dM . We will further always considerM to be embedded
in some Euclidean space Rn. Assume that we are given a sample {dij} of pairwise
distances between points of some point cloud {yi} ⊂ M , i.e. dij := dM (yi, yj). Our
goal is to reconstruct an almost isometric embedding of M , or just of its subset
{yi}, into Rn, based on the observed sample. In other words, we are interested
in an algorithm, which, based on the input {dij}, produces a set {xi} ⊂ Σ, with
Σ ⊂ Rn some other embedded manifold endowed with its intrinsic distance dΣ, so
that dΣ(xi, xj) ≈ dij , where the approximate inequality means that the distortion
does not exceed a desired level. Note that in data science applications the set
{yi} ⊂ M is of course finite, its cardinality N ∈ N being usually quite large.

Existing results and methods. There is a vast literature both in statistics
and computational geometry on manifold reconstruction. The majority of exist-
ing methods are based directly on the finite point cloud {yi}Ni=1 which is assumed
to be known up to some errors. In particular, in [15, 7, 20, 1, 12, 13, 25, 22], the au-
thors consider the problem of C2 manifold reconstruction based on the finite sample
possibly corrupted with small zero-mean additive noise. In applications one usu-
ally employs the respective methods to dimensionality reduction of the known high
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dimensional data. Note that this setup is much simpler than the one we consider
where instead of the point cloud itself we have only information on the respective
distance matrix. The access to the point cloud allows to construct estimates of
projectors onto tangent spaces to the manifold and then use them to reconstruct
the manifold itself. For instance, [7] and [1] used tangential Delaunay complexes.
The approach of [20, 25] relied on local PCA estimates. In [22] one iteratively uses
a PCA-like procedure to successively improve projector estimates. In [12, 13], the
so-called putative manifold is used, that is a set of points solving a nonlinear system
of equations. Another class of manifold reconstruction methods from a point cloud,
is based on random projections similarly to the classical Johnson-Lindenstrauss
lemma (see, e.g., [5, 16, 10]). Finally, in [2, 23] one studies the case when M is a
Cm submanifold of Rn: the authors used minimizers of a weighed sum of square
errors to estimate not only the projectors but also higher order tensors up to order
m. As a result, the Hausdorff distance estimate between M and the constructed
manifold are much stronger in this case than those for the methods using only the
first order expansions.

The problem we are considering, when only pairwise distances {dij}Ni,j=1 are
given, is somewhat less studied. It is worth mentioning though, that the two prob-
lems of manifold reconstruction, the one directly from the point cloud, and the
other from just a distance matrix, are inherently related. In fact, many methods to
solve the former, actually contain as a core part, some method to solve the latter.
As an example, the Isomap manifold embedding algorithm [24] often used in appli-
cations for the purpose of data dimension reduction, contain as a core the classical
multidimensional scaling (MDS) algorithm that deals only with distance matrices.

Note that we are interested in reconstructing the embedding of the original
manifold M into an Euclidean space (e.g., for the purpose of data visualization), as
opposed to the problem of reconstructing an abstract manifold M (e.g., determined
by its metric tensor). The latter is solved in [14], but its solution does not provide
any explicit finite dimensional embedding. Of course, once the metric tensor is
reconstructed, one might also reconstruct an embedding by, say, some computa-
tional version of the Nash embedding theorem, but such a double step procedure
is unreasonably complicated. It is prompting therefore to search a direct algorithm
to solve the posed problem. Such algorithms have been already proposed and are
quite widely used in applications. We will show however that two basic and widely
used algorithms, multidimensional scaling (MDS) and maximum variance unfold-
ing (MVU), may infinitely distort the original distances even in simple situations.
As a consequence, for instance, the methods relying on the classical MDS (e.g.,
Isomap [24]) may inherit such an undesired property. Note that some newer heuris-
tic methods of dimension reduction with steadily growing popularity like SNE or
t-SNE [17, 26] also contain as core parts the reconstruction of data points just from
the distances. Up to now however they do not have any proven estimates on the
distortion of pairwise distances (and anyhow it is clear one might expect at most
some bounds on distance distortion “in average”, but not uniform). An attempt
for understanding t-SNE was made in a recent work [4], but the authors only man-
aged to show that t-SNE is able to keep the cluster structure in data. Finally, the
method proposed in [6] also may work just with distance matrices on input, and
reconstructs the manifold homeomorphic to the original one, but no upper bounds
on the distortion of distances provided by this or similar methods are available.
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Our contribution. On the contrary, in the present paper we suggest a quite simple
direct algorithm performing a manifold embedding in polynomial time, and provide
non-asymptotic upper bounds on the relative distortion of pairwise distances which
are as small as desired (the requirement for the smallness of distortion is itself an
input datum). It is also worth mentioning that in fact, the algorithm we provide
works not only with smooth Riemannian manifolds, but rather with a far more
general class of compact subsets of a Euclidean space connected by rectifiable arcs
and satisfying some curvature estimate (e.g. having positive reach); this estimate
(or the lower bound for the reach) and the intrinsic diameter of the set have to be
a priori known as they are also input parameters of the algorithm.

Plan of the paper. The rest of the paper is organized as follows. Section 3 is
dedicated to the analysis of MDS and MVU. In particular, relying on the result
from [3], we show that MDS, applied to a unit circumference, produces a snowflake-
like closed curve which is just Hölder continuous, and hence, infinitely distorts the
original distances. Our algorithm will be provided in Section 5. It is based on a
semidefinite programming problem, and, consequently, runs in a polynomial time.
The analysis of our approach is based on a variational setting proposed in Sec-
tion 4 and on a simple Γ-convergence result (Theorem 4.1). As an application
in Section 6, we show that this method can be used also for topological data re-
construction, i.e. for computing Čech cohomologies, and provide explicit estimates
on the input parameters for this purpose. Finally, in Section 7 we provide some
numerical experiments to illustrate the performance of the proposed algorithm.

2. Notation and preliminaries

For a metric space E equipped with distance d and a curve θ : [0, 1] → E we

denote by |θ̇| its metric derivative and by

ℓ(θ) :=

� 1

0

|θ̇|(t) dt

its parametric length. The notation Br(x) ⊂ E stands for the open ball of radius
r > 0 with center x ∈ E. The Euclidean norm is denoted by | · |.

For a set M ⊂ Rn and ε > 0 let (M)ε ⊂ Rn to be its open ε-neighborhood, i.e.
(M)ε := ∪x∈NBε(x). We recall the notion of reach of M introduced by Federer
in [11] and defined by

Reach (M) := sup {ε > 0: every point of (M)ε has a unique projection on M} .

We further assume that the function space C(M ;Rn) of continuous functions
on M with values in Rn is equipped with the usual unifom norm. For a set S ⊂
C(M ;Rn) we denote

χS(f) :=

{
0, f ∈ S,

+∞, f ̸∈ S.

For an m × n matrix X we denote as usual by XT its transpose. Vectors are
silently identified with columns. The notation diag (α1, . . . , αr) stands for the di-
agonal matrix with entries (α1, . . . , αr) over the diagonal. By x · y we denote the
usual scalar product of vectors x ∈ Rn and y ∈ Rn. For any real numbers a and b
the notation a ∧ b stands for min{a, b}.
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For the general theory of Γ-convergence we refer the reader to [9], wherefrom we
borrow also the respective notation.

3. Main existing methods

The existing algorithms in manifold learning aimed at manifold reconstruction
from intrinsic distances are quite numerous, but many of them are very closely
related to just two basic ones, multidimensional scaling (MDS) and maximum vari-
ance unfolding (MVU), which are aimed at reconstructing the locations of points yj
up to an isometric (or almost isometric) embedding. This would be the case if the
algorithm with input {dij}Ni,j=1, would produce the set of points {xN

i }Ni=1 ⊂ Rn, and

setting fN (yi) := xN
i , when N → ∞, the functions fN tend to some f : M → Rn

with Σ := f(M) (almost) isometric to M . Unfortunately, as we show below, the
existing methods in general miss this point.

3.1. Multidimensional scaling (MDS). The classical multidimensional scaling
(MDS) introduced by Torgerson and further developed by many authors (see chap-
ter 6 of [27] and references therein), has been formulated for the situation when
the distance dM is Euclidean (which happens e.g. when M is a convex subset of
Rm). In practice however MDS method is quite frequently applied when the dis-
tance dM is not necessarily Euclidean. This however in general does not allow to
reconstruct the embedding of the original manifold M up to an (almost) isometry,
as the following example shows.

Example 3.1. We follow the calculations from [3] of the MDS embedding of the finite
uniform samples of the unit circumference M . Namely, if {yi}Ni=1 is a set of equally
spaced points in M , then proposition 7.2.6 of [3] shows that the MDS embedding
of {yi}Ni=1 in Rn lies, up to a rigid motion, on the closed curve γN : [0, 2π] → Rn

defined by

γN (t) :=

(aN1 cos(t), aN1 sin(t), . . . , aN2k+1 cos((2k + 1)t), aN2k+1 sin((2k + 1)t), . . .) ∈ Rn,

where limN aNj = aj :=
√
2/j (with j odd). Clearly, in the limit N → ∞ and

n → ∞ this gives a closed snowflake-like curve γ homeomorphic but not isometric
(nor even bilipschitz) to M ; in fact,

(3.1) |γ(t)− γ(s)| = 2
√
π|t− s|1/2.

To prove (3.1), we calculate

(3.2)

|γ(t)− γ(s)|2 =

∞∑
k=0

4

(2k + 1)2
(sin(2k + 1)t− sin(2k + 1)s)

2

+

∞∑
k=0

4

(2k + 1)2
(cos(2k + 1)t− cos(2k + 1)s)

2

= 16

∞∑
k=0

1

(2k + 1)2
− 16

∞∑
k=0

cos ((2k + 1)(t− s))

(2k + 1)2

= 2π2 − 16

∞∑
k=0

cos ((2k + 1)(t− s))

(2k + 1)2
.
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But from the Fourier expansion

|x| = π

2
− 4

π

∞∑
k=0

cos(2k + 1)x

(2k + 1)2

for x ∈ [−π, π], we get
∞∑
k=0

cos(2k + 1)(t− s)

(2k + 1)2
=

π2

8
− π|t− s|

4
,

which plugged in (3.2) gives (3.1) as claimed.

Deeper results on what is in fact reconstructed by applying the MDS to a generic
metric measure space, together with further examples like MDS on a multidimen-
sional sphere and on a flat torus, can be found in [18] and also in [19].

3.2. Maximum variance unfolding (MVU). The method of maximum vari-
ance unfolding (MVU) (alternatively called also semidefinite embedding (SDE)),
has been introduced by Weinberger and Saul, see chapter 9.1 of [27], and amounts
to finding the points xN

i ∈ Rn, i = 1, . . . , N given the distance matrix {dij}Ni,j=1,
by maximizing the total variance functional

var(x1, x2, ..., xN ) :=

N∑
i,j=1

|xi − xj |2

subject to the set of constraints

(3.3) |xi − xj |2 = d2ij whenever yi is close to yj .

The condition of “yi close to yj” is understood differently in different versions of
MVU, but most commonly as dij ≤ ε for some fixed ε > 0, so that (3.3) becomes

(3.4) |xi − xj |2 = d2ij whenever dij ≤ ε.

The constraints (3.3) (or in particular (3.4)) are reformulated in an equivalent way
in terms of the Gram matrix K with entries Kij := xi · xj so that the above
maximization becomes semidefinite programming problem.

Similarly to Example 3.1 it is easy to show that MVU, and even more, any
method trying to preserve locally the distances as Euclidean ones, in general not
only does not allow to reconstruct the embedding of the original manifold M up
to an (almost) isometry, but even worse, the constraints (3.4) may not allow to
reconstruct even something vaguely similar to M , as the example below shows.

Example 3.2. Taking again M to be a unit circumference S1, and {yi}Ni=1 to be a
set of equally spaced points in M , suppose that {xN

i }Ni=1 ⊂ Rn satisfy (3.4), i.e

|xN
i − xN

j |2 = d2ij whenever dij ≤ ε

for some fixed ε > 0, and that continuous functions fN : M → Rn satisfying
fN (yj) = xN

j for all j = 1, . . . , N converge as N → ∞ to some continuous function
f : M → Rn. Then one has

|f(u)− f(v)| = dM (u, v) whenever dM (u, v) < ε.

Parameterizing M in a natural way over [0, 2π] by a curve θ : [0, 2π] → M , θ(t) :=
(cos t, sin t), for the curve γ : [0, 2π] → Rn defined by γ(t) := f(θ(t)) we have
therefore that

|γ(t)− γ(s)| = |t− s|
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whenever |t − s| < ε. Thus γ(I) is a line segment for every interval I ⊂ [0, 2π] of
length ℓ(I) < 2π, which implies that γ([0, 2π)) is a nondegenerate line segment.
But on the other hand one must have γ(0) = γ(2π), which is a contradiction.

4. Variational setting

From now on we assume M ⊂ Rn to be a compact set connected by rectifiable
arcs and equipped with the geodesic distance

dM (u, v) := inf {ℓ(θ) : θ : [0, 1] → M, θ(0) = u, θ(1) = v} ,

where ℓ(θ) denotes the Euclidean length of θ. Let Σk ⊂ M be a sequence of closed
sets.

Given an ε > 0 and a k ∈ N, we define the functionals

Fε,k : C(M ;Rn) → R, Fε : C(M ;Rn) → R,

by the formulae

(4.1)

Fε,k(f) := sup

{∣∣∣∣ |f(x)− f(y)|2

d2M (x, y)
− 1

∣∣∣∣ : {x, y} ⊂ Σk, 0 < dM (x, y) ≤ ε

}
.

Fε(f) := sup

{∣∣∣∣ |f(x)− f(y)|2

d2M (x, y)
− 1

∣∣∣∣ : {x, y} ⊂ M, 0 < dM (x, y) ≤ ε

}
.

The scope of this section is to prove the following easy result.

Theorem 4.1. Let M ⊂ Rn be compact and connected by rectifiable arcs, and there
exist ε0 > 0, C1 > 0 such that

(4.2) dM (x, y) ≤ |x− y|+ C1|x− y|2

for all (x, y) ∈ M ×M satisfying dM (x, y) ≤ ε0. Denote

(4.3) C̄2 := inf

{
|x− y|
dM (x, y)

: (x, y) ∈ M ×M,x ̸= y

}
.

For an x0 ∈ M , Σk ⊂ M a sequence of closed sets satisfying Σk → M as k → ∞
in the sense of the Hausdorff distance, and a C2 ∈ (0, C̄2] set

Ck := {f ∈ C(M ;Rn), f(x0) = 0, |f(x)− f(y)| ≥ C2dM (x, y) for all {x, y} ⊂ Σk} ,
C := {f ∈ C(M ;Rn), f(x0) = 0, |f(x)− f(y)| ≥ C2dM (x, y) for all {x, y} ⊂ M} .

Then the following asertions hold true.

(i) The variational problems

min {Fε,k(f) : f ∈ Ck} (Pk)

have solutions for all k ≥ k̄, where k̄ ∈ N depends only on ε,
(ii) If fk is a solution to (Pk), then there is a subsequence of {fk} (not relabeled)

such that limk fk = f in the sense of uniform convergence, where f solves

min {Fε(f) : f ∈ C} . (P )

Note that if f = limk fk, then fk(M) → Σ, where Σ := f(M), in the sense
of Hausdorff distance as k → +∞.
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(iii) Moreover, every f solving (P ) with ε < ε0 satisfies

(4.4) dM (x, y)(1− 2C1ε) ≤ |f(x)− f(y)| ≤ dM (x, y)(1 + 2C1ε),

if dM (x, y) ≤ ε, and

(4.5) dM (x, y)(1− 2C1ε) ≤ dΣ(f(x), f(y)) ≤ dM (x, y)(1 + 2C1ε)

for all (x, y) ∈ M ×M , where dΣ stands for the geodesic distance in Σ, i.e.

dΣ(u, v) := inf {ℓ(θ) : θ : [0, 1] → Σ, θ(0) = u, θ(1) = v} .

Before proving the above theorem, we make a series of remarks.

Remark 4.2. Under conditions of the above Theorem 4.1 one has necessarily

C̄2 ≥ 1

1 + C1ε0
∧ ε0

D
> 0,

where D stands for the intrinsic diameter of M . In fact, since |x − y| ≤ dM (x, y),
the estimate (4.2) ensures

dM (x, y) ≤ (1 + C1ε0)|x− y|,
hence

|x− y|
dM (x, y)

≥ 1

1 + C1ε0
for all (x, y) ∈ M ×M such that dM (x, y) < ε0, and

|x− y|
dM (x, y)

≥ ε0
D

for all (x, y) ∈ M ×M such that dM (x, y) ≥ ε0.

Remark 4.3. The conditions on M of the above Theorem 4.1 are automatically
satisfied if M ⊂ Rn is a C1,1 smooth compact Riemannian submanifold. The
condition (4.2) can be seen then as a bound on curvatures of M . In particular, in
this case α := ReachM > 0, and therefore (4.2) is satisfied according to Lemma A.1
for ε0 := α, with C1 as in this Lemma. Moreover, in this case the constant C̄2 may
be estimated in terms of α and the intrinsic diameter ofM according to Lemma A.2.

Remark 4.4. Clearly, problem (P ) as well as approximating problems (Pk) have
many solutions. This is in the very nature of the problem statement: the given
data are just intrinsic distances (which themselves do not contain any information
on the embedding) and only very weak structural information on the embedding
given by the constants C1 and C2 (and also by ε9), so that if M is, say, a unit line
segment, among solutions to (P ) there are infinitely many other embeddings of M
in a given Euclidean space as curves of unit length. However, they must be “not
too much twisted”, since any map f solving (P ) is required to satisfy

(4.6) |f(x)− f(y)| ≥ C2dM (x, y)

for all (x, y) ⊂ M ×M . This, in particular, yields that the Euclidean diameter of
Σ := f(M) cannot be arbitrarily small and thus excludes “pathological” embed-
dings like those provided by Nash-Kuiper theorem.

The fact that one requests the information on the structural constant C2 to be
retained by the embedding f solving (P ) via the requirement (4.6) besides avoiding
such pathologies, is also used to force the injectivity of f which is in a certain sense
unavoidable (see Remark 4.10). On the other hand we do not force the embedding



8 NIKITA PUCHKIN, VLADIMIR SPOKOINY, EUGENE STEPANOV, AND DARIO TREVISAN

f to satisfy the curvature type estimate (4.2). The reason is that in this way
we are able to obtain a particularly simple algorithm to solve the approximating
problems (Pk) (and hence to approximate embeddings solving (P )) based on solving
a semidefinite programming problem. One might of course request more from the
embedding a priori, but this would result in introducing more constraints in the
optimization problems, and hence to substantially more complicated algorithms.

Proof of Theorem 4.1. The proof will be divided into several steps.
Step 1. We first show that the sublevels of functionals Fε,k are equicompact,

that is, there is some k̄ ∈ N depending only on ε such that the set

DKε :=
⋃
k≥k̄

{f ∈ C : Fε,k(f) ≤ K} ⊂ C(M ;Rn)

is compact for every K > 0. In fact, by Lemma 4.6 for every ε > 0 there is a
k̄ ∈ N depending only on ε such that for every k ≥ k̄ all f ∈ C(M ;Rn) satisfying
Fε,k(f) ≤ K have equibounded Lipschitz constants over Σk. Hence, up to redefining
each f over M \Σk as an extension from Σk to M with minimum Lipschitz constant,
one has that the Lipschitz constants Lip f over M are equibounded for all such f .
Therefore, the set DK,ε is compact by Ascoli-Arzelà theorem1 as claimed.

Step 2. Note that the classes C ⊂ Ck ⊂ C(M ;Rn) are closed. Since each
functional Fε,k is lower semicontinuous (as a supremum of a family of continuous
functionals), the claim (i) of the theorem being proven (i.e. existence of solutions
to problems (Pk) follows from compactnesss of sublevels of each Fε,k with k ∈ N
sufficiently large (depending only on ε).

Step 3. Denote now

F̂ε,k(f) :=

{
Fε,k(f), f ∈ Ck,

+∞, otherwise,
F̂ε(f) :=

{
Fε(f), f ∈ C,
+∞, otherwise.

Since the classes C ⊂ C(M ;Rn) and Ck ⊃ C are closed, then the functionals F̂ε,k

also have equicompact sublevels.
Observe that the equality f = limk fk, where fk ∈ Ck, yields that f ∈ C. In fact,

for every {x, y} ⊂ M there are {xk, yk} ⊂ Σk such that limk xk = x, limk yk = y.
Thus,

|f(x)− f(y)| = lim
k

|fk(xk)− fk(yk)| ≥ C2 lim
k

dM (xk, yk) = C2dM (x, y),

showing that f ∈ C. Thus by Lemma 4.5 one has that Γ − limk F̂ε,k = F̂ε. Let
now for each sufficiently large k ∈ N the function fk ∈ Ck stand for a minimizer
of Fε,k over Ck, i.e. a solution to (Pk). Clearly, fk is also a minimizer of F̂ε,k over
the whole space C(M ;Rn). Hence by the main property of Γ-convergence (Theo-
rem 2.10 from [9]) one has that fk converge, up to a subsequence (not relabeled)

to a minimizer f of F̂ε, hence a solution to (P ). Note that when limk xk = x in
M , then limk fk(xk) = f(x) in view of the uniform convergence of fk, which im-
plies that fk(M) → Σ in the sense of Hausdorff distance as k → +∞. This proves
claim (ii) of the theorem.

Step 4. Finally, let f be any solution to (P ) with ε < ε0. The class C ⊂ C(M ;Rn)
contains the translation map x 7→ x−x0, and therefore we may invoke Lemma 4.7 to

1We retain the Italian tradition of ordering the manes of the authors of this famous theorem.
In fact, it seems that it was discovered first by G. Ascoli and later generalized in a separate work

by C. Arzelà.
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get (4.4) for dM (x, y) < ε, and then Lemma 4.9 (with C := 1+2C1ε, c := 1−2C1ε)
to get (4.5). □

The following technical assertions have been used in the above proof.

Lemma 4.5. Let C ⊂ Ck ⊂ C(M ;Rn) be closed sets of maps, such that if fk ∈ Ck
and f = limk fk, then f ∈ C. One has then

Γ− lim
k
(Fε,k + χCk

) = Fε + χC ,

where Fε,k, Fε : C(M ;Rn) → [0,+∞] are defined by (4.1).

Proof. One has

(4.7)

lim inf
k

Fε,k(fk)

= lim inf
k

sup

{∣∣∣∣ |fk(x)− fk(y)|2

d2M (x, y)
− 1

∣∣∣∣ : {x, y} ⊂ Σk, 0 < dM (x, y) ≤ ε

}
≥ lim inf

k
sup

{∣∣∣∣ |fk(x)− fk(y)|2

d2M (x, y)
− 1

∣∣∣∣ : {x, y} ⊂ Σk, ρ ≤ dM (x, y) ≤ ε

}
for every ρ > 0, the latter inequality being due to the fact that{

{x, y} ⊂ Σk, ρ < dM (x, y) ≤ ε
}
⊂

{
{x, y} ⊂ Σk, 0 < dM (x, y) ≤ ε

}
.

Consider arbitrary ε̄ ∈ (ρ, ε), ρ̄ ∈ (ρ, ε̄), and let {x̃, ỹ} ∈ M be such that ρ < ρ̄ ≤
dM (x̃, ỹ) ≤ ε̄ < ε and
(4.8)∣∣∣∣ |f(x̃)− f(ỹ)|2

d2M (x̃, ỹ)
− 1

∣∣∣∣ = sup

{∣∣∣∣ |f(x)− f(y)|2

d2M (x, y)
− 1

∣∣∣∣ : {x, y} ⊂ M, ρ̄ ≤ dM (x, y) ≤ ε̄

}
.

Let {xk, yk} ∈ Σk be such that limk xk = x̃, limk yk = ỹ. Then
(4.9)

lim inf
k

sup

{∣∣∣∣ |fk(x)− fk(y)|2

d2M (x, y)
− 1

∣∣∣∣ : {x, y} ⊂ Σk, ρ ≤ dM (x, y) ≤ ε

}
≥ lim inf

k

∣∣∣∣ |fk(xk)− fk(yk)|2

d2M (xk, yk)
− 1

∣∣∣∣ since dM (xk, yk) ∈ [ρ, ε] for large k

=

∣∣∣∣ |f(x̃)− f(ỹ)|2

d2M (x̃, ỹ)
− 1

∣∣∣∣
= sup

{∣∣∣∣ |f(x)− f(y)|2

d2M (x, y)
− 1

∣∣∣∣ : {x, y} ⊂ M, ρ̄ ≤ dM (x, y) ≤ ε̄

}
by (4.8),

Thus, combining (4.7) and (4.9), we get

lim inf
k

Fε,k(fk) ≥ sup

{∣∣∣∣ |f(x)− f(y)|2

d2M (x, y)
− 1

∣∣∣∣ : {x, y} ⊂ M, ρ̄ ≤ dM (x, y) ≤ ε̄

}
for every ρ > 0. Taking in the above estimate the supremum with respect to ρ̄, ε̄,
such that 0 < ρ̄ < ε̄ < ε, we obtain that

lim inf
k

Fε,k(fk) ≥ sup

{∣∣∣∣ |f(x)− f(y)|2

d2M (x, y)
− 1

∣∣∣∣ : {x, y} ⊂ M, 0 < dM (x, y) < ε

}
= Fε(f),
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which means

Γ− lim inf
k

Fε,k ≥ Fε.

The last inequality, together with the fact that Ck ⊃ C, yields that
Γ− lim inf

k
(Fε,k + χCk

) ≥ Fε + χC .

The inequality

Γ− lim sup
k

(Fε,k + χCk
) ≤ Fε + χC

is immediate since Fε,k(f) ≤ Fε(f) for every f ∈ C(M ;Rn), and C ⊂ Ck. This
concludes the proof. □

Lemma 4.6. If M ⊂ Rn is compact and connected by rectifiable arcs, then for
every ε > 0 there is a k̄ ∈ N (depending only on ε) such that for every k ≥ k̄ and
for every f ∈ C(M ;Rn) satisfying Fε,k(f) ≤ K one has

(4.10) |f(x)− f(y)| ≤ CdM (x, y)

for all {x, y} ∈ Σk, x ̸= y, where C > 0 depends only on K.

Proof. Since the functionals Fε,k are nonnegative, we may assume K > 0. If f ∈
C(M ;Rn) satisfies Fε,k(f) ≤ K, then

(4.11)
|f(x)− f(y)|
dM (x, y)

≤ C

for all {x, y} ∈ Σk, 0 < dM (x, y) < ε (with C :=
√
K + 1). This proves (4.10) for

such couples {x, y}.
To prove (4.10) for the remaining couples {x, y} ∈ Σk, consider a finite ε-net

{xj}Nj=1 of M . For each pair of indices (i, j) ∈ {1, . . . , N}2, let us do the following.

• Let us fix a geodesic θij in M , connecting xi to xj (i.e. ℓ(θij) = dM (xi, xj))
and parameterized for convenience over [0, 1].

• Let 0 = t0 < t1 < . . . < tm(i,j) = 1 be such a partition of [0, 1] that

dM
(
θij(tm−1), θij(tm)

)
≤ ε

2
for all m ∈ {1, . . . ,m(i, j)}.

• Finally, let

Vij = {vm = θij(tm) : 1 ≤ m ≤ m(i, j)}
stand for the set of corresponding points on θij (including 0 and 1, so that
Vij contains both xi and xj). Note that there is a natural order of points in
Vij . Namely, for {θij(s), θij(t)} ⊂ Vij we may write θij(s) ≤ θij(t), if s ≤ t.
We will say further that u ∈ Vij and v ∈ Vij are two consecutive points, if
there are no points between u and v in the sense of the introduced order.

Choose a k̄ ∈ N such that for every k ≥ k̄ and for pair of indices i, j = 1, . . . , N
and every l = 1, . . .m(i, j) there exists a vlk ∈ Σk with

dM (vlk, v
l) <

ε

2
,

dM (vlk, v
l+1
k ) < 2dM (vl, vl+1), when l < m(i, j).

The latter inequality implies, in particular, that dM (vlk, v
l+1
k ) < ε. Connecting each

vlk with vl+1
k by a geodesic segment, we get a “polygonal line” σij made of geodesic
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segments with vertices at most ε/2 close (in dM ) to the respective points of Vij ,
geodesic distance between consecutive vertices at most ε, and, finally,

ℓ(σij) < 2ℓ(θij) = 2dM (xi, xj).

We have then

(4.12)

|f(σij(0))− f(σij(1))| = |f(v0k)− f(vmk )| ≤
m−1∑
l=0

|f(vlk)− f(vl+1
k )|

≤ C

m−1∑
l=0

dM (vl, vl+1) = Cℓ(σij) < 2CdM (xi, xj).

Finally, for arbitrary {x, y} ∈ Σk, dM (x, y) ≥ ε, we find a couple {xi, xj} such that

dM (xi, x) < ε, dM (xj , y) < ε,

and estimate
(4.13)
|f(x)− f(y)| ≤ |f(x)− f(σij(0))|+ |f(σij(0))− f(σij(1))|+ |f(σij(1))− f(y)|

< CdM (x, σij(0)) + 2CdM (xi, xj) + CdM (σij(1), y)

in view of (4.12). But

(4.14) dM (x, σij(0)) ≤ dM (x, xi) + dM (xi, σij(0)) ≤ 3ε/2,

and analogously

(4.15) dM (y, σij(1)) ≤ 3ε/2,

while

(4.16) dM (xi, xj) ≤ dM (xi, x) + dM (x, y) + dM (y, xj) ≤ 2ε+ dM (x, y).

Plugging (4.14), (4.15) and (4.16) into (4.13), we get

(4.17) |f(x)− f(y)| < C(11ε+ 2dM (x, y)) ≤ 13CdM (x, y),

because dM (x, y) ≥ ε. Together with (4.11) the estimate (4.17) proves the claim.
□

Lemma 4.7. Let M be as in Theorem 4.1. If f ∈ C(M ;Rn) is a minimizer of Fε

with ε ≤ ε0 over some class containing some rigid translation, then

dM (x, y)(1− 2C1ε) ≤ |f(x)− f(y)| ≤ dM (x, y)(1 + 2C1ε),

if dM (x, y) < ε. The same holds for {x, y} ⊂ Σk when f ∈ C(M ;Rn) is a minimizer
of Fε,k.

Remark 4.8. In view of Remark 4.3 the conditions on M are automatically satisfied
if M ⊂ Rn is a C1,1 smooth compact submanifold, with ε0 and C1 in this case being
as in Lemma A.1.

Proof of Lemma 4.7. Note that Fε(f) is invariant with respect to the compositions
of f with rigid translations, and in particular the value of Fε over any rigid trans-
lation is equal to that over the identity map id. The relationship (4.2) implies

1

(1 + C1ε)2
≤ |x− y|2

d2M (x, y)
≤ 1
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whenever dM (x, y) < ε. One has therefore for such couples (x, y) ∈ M × M the
estimate

Fε(f) ≤ Fε(id) ≤ 1− 1

(1 + C1ε)2
≤ 2C1ε,

showing the statement for Fε. The proof for Fε,k is identical. □

Lemma 4.9. Suppose that for some C > 0 and f ∈ C(M ;Rn) one has

(4.18) |f(x)− f(y)| ≤ CdM (x, y),

if dM (x, y) < ε. Then

(4.19) dΣ(f(x), f(y)) ≤ CdM (x, y),

where Σ := f(M). If, moreover, f is injective function with a continuous inverse
f−1 : Σ → M (which is the case, e.g., when f is proper), and

(4.20) cdM (x, y) ≤ |f(x)− f(y)|

for some c > 0, if dM (x, y) < ε, then also

(4.21) cdM (x, y) ≤ dΣ(f(x), f(y)).

Remark 4.10. The estimate (4.21) cannot hold for f just satisfying (4.18) and (4.20)
only for dM (x, y) < ε, unless f is injective, as can be seen from the example of M
a line segment of length 2π (identified with [0, 2π]) and f : [0, 2π] → R2 defined by
f(t) := (cos t, sin t).

Proof. If θ : [0, 1] → M is a Lipschitz curve, then (4.18) implies that so is σ :=
f ◦ θ : [0, 1] → Rn and its metric derivative |σ̇| satisfies

(4.22) |σ̇|(t) ≤ C|θ̇|(t)

for a.e. t ∈ [0, 1]. Then (4.22) gives (4.19). In fact, if θ is a geodesic curve connecting
x = θ(0) to x = θ(0), then

dΣ(f(x), f(y)) ≤
� 1

0

|σ̇|(t) dt ≤ C

� 1

0

|θ̇|(t) dt = CdM (x, y).

If f is injective, then take an arbitrary δ > 0, and consider a rectifiable curve
σ : [0, 1] → f(M) ⊂ Rn such that σ(0) = f(x), σ(1) = f(y) with

� 1

0

|σ̇|(t) dt ≤ dΣ(f(x), f(y)) + δ.

Denote θ(t) := f−1(σ(t)) for every t ∈ [0, 1]. If f−1 is continuous, then so is θ, and
hence for every t ∈ [0, 1] one has dM (θ(t), θ(t+ s)) < ε once s is sufficiently small.
Thus from (4.19) we get

(4.23) c|θ̇|(t) ≤ |σ̇|(t)

for a.e. t ∈ [0, 1]. Therefore,

cdM (x, y) ≤ c

� 1

0

|θ̇|(t) dt ≤ dΣ(f(x), f(y)) + δ,

and taking the limit in the above inequality as δ → 0+, we arrive at (4.21). □
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5. Discrete variational setting and algorithm

Let {yi} ⊂ M be a dense set in M , and denote for the sake of brevity

dij := dM (yi, yj).

Given an ε > 0 and a k ∈ N, we define the functional Fε,k : (Rn)k → R by the
formula

Fε,k(x1, . . . , xk) := max

{∣∣∣∣∣ |xi − xj |2

d2ij
− 1

∣∣∣∣∣ : i, j = 1, . . . , k, i ̸= j, dij < ε

}
.

The following statement is just a direct application of Theorem 4.1 to the se-
quence Σk := {yj}kj=1 ⊂ M , once we denote xj := f(yj) for all j ∈ N, where f is
an embedding provided by Theorem 4.1(ii).

Proposition 5.1. Let M , C1, C2 and ε0 be as in Theorem 4.1. Assume that
(xk

i )
k
i=1 ∈ (Rn)k be a minimizer of Fε,k with ε < ε0 over the set Xk ⊂ (Rn)k

defined by

Xk :=
{
((xi)

k
i=1 ∈ (Rn)k : |xi − xj | ≥ C2dij , i, j = 1, . . . , k

}
.

Then up to a subsequence one has xk
i → xi as k → ∞, and

(5.1) dij(1− 2C1ε) ≤ |xi − xj | ≤ dij(1 + 2C1ε),

whenever dij < ε. Further,

(5.2) dij(1− 2C1ε) ≤ dΣ(xi, xj) ≤ dij(1 + 2C1ε)

for all {i, j} ⊂ N. In particular the statement is valid when M is a C1,1 smooth
compact Riemannian submanifold of Rn with ε0 := ReachM , C1 and C2 are as in
Lemmata A.1, A.2.

Reduction to semidefinite programming problem. The problem of minimiz-
ing Fε,k over the set Xk ⊂ (Rn)k is written as minimizing the convex function Gε,k

of a matrix defined by

Gε,k(x1, . . . , xk) := max

{∣∣∣∣∣Kii +Kjj − 2Kij

d2ij
− 1

∣∣∣∣∣ : i, j = 1, . . . , k, i ̸= j, dij < ε

}
.

over the set of positive semidefinite matrices K satisying the set of convex con-
straints

Kii +Kjj − 2Kij ≥ C2
2d

2
ij , i, j = 1, . . . , k.

The solution K of the latter problem is the Gram matrix of a set of vectors {xi},
i.e. Kij = xi · xj , i, j = 1, . . . , k, which minimize Fε,k over Xk.

Adding a new scalar variable t ∈ R one reduces the above problem to the follow-
ing semidefinite programming problem (i.e. a problem of minimization of a linear
function with linear constraints over the cone of positive semidefinite matrices),
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namely

(5.3)

minimize t over the pairs (t,K) subject to

− td2ij ≤ Kii +Kjj − 2Kij − d2ij ≤ td2ij ,

for all i, j = 1, . . . , k, i ̸= j, dij < ε,

Kii +Kjj − 2Kij ≥ C2
2d

2
ij ,

for all i, j = 1, . . . , k, i ̸= j,

K positive semidefinite k × k matrix.

6. How to compute Čech cohomologies

Since M and Σ := f(M) are homeomorphic (even bilipschitz equivalent) by
Theorem 4.1, they have the same homologies and cohomologies for every reasonable
(co)homology theory. In topological data analysis it is quite usual to consider Čech
cohomologies of M . Computing them when M is not observed directly, but is just
determined by distance matrices, one has to construct its embedding into Rn and
build Čech complexes built on Euclidean balls centered at samples from the image
of such an embedding. We show here that for the embeddings f : M → Rn provided
by Theorem 4.1(iii) one can give explicit estimates on such complexes (how small
should be the radii of the balls and how well fitted should be the set of their centers)
so as to get the cohomologies of M . Throughout this section we always denote by
Br(x) ⊂ Rn the open Euclidean ball of radius r > 0 with center x ∈ Rn.

Lemma 6.1. Assume that the conditions of Theorem 4.1 be satisfied. If x ∈
Σ ∩Bσ(x̄), x̄ ∈ Σ, and x = f(y), y ∈ M , σ ≤ C2ε0, then

y ∈ Bσ′(ȳ), where x̄ = f(ȳ) and σ′ :=

(
1 + C1

σ

C2

)
σ

C2
.

Vice versa, if y ∈ M ∩Bσ′′(ȳ), ȳ ∈ M , where σ′′ > 0 is defined by the equation

(6.1)

(
1 + C1

σ′′

C2

)
σ′′

C2
= σ,

and σ′′ ≤ C2ε, then for x = f(y), x̄ = f(ȳ) one has x ∈ Σ ∩Bσ(x̄).

Remark 6.2. It is worth noting that σ′′ < σ < σ′.

Proof. If |x− x̄| < σ, then

dM (y, ȳ) ≤ σ

C2

in view of (4.6), so that the the first claim follows from (4.2).
To prove the second claim, note that the inequality 0 < C2 ≤ C̄2 and the

definition (4.3) of C̄2 implies the bound

dM (y, ȳ) ≤ σ′′

C2
for all |y − ȳ| < σ′′.

Hence, it suffices to apply (4.4) and recall the definition of σ′′ (see (6.1)). □

Let Λ ⊂ N be a finite set of indices, such that for all y ∈ M there is a λ ∈ Λ and
an ȳλ ∈ M , satisfying

dM (y, ȳλ) ≤ δ

for some δ > 0. In other words, {ȳλ} is a finite δ-net of of M (equipped with dM ).
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Denote now by CΣ(r) the Čech complex built on the Euclidean balls Br(x̄λ),
where x̄λ := f(ȳλ), and by CM (r) the Čech complex built on the Euclidean balls
Br(ȳλ). We note that the vertices of all these complexes may be considered the
same (namely, the set of vertices of all them may be identified with the index set
Λ).

Lemma 6.3. Under the conditions of Theorem 4.1 one has

CM (σ′′) ⊂ CΣ(σ) ⊂ CM (σ′)

when 0 < σ ≤ C2ε0 and σ′′ is defined by (6.1) with 0 < σ′′ ≤ C2ε0.

Proof. Follows immediately from Lemma 6.1. □

We now consider the particular case when M ⊂ Rn is a C1,1 smooth compact
Riemannian submanifold.

Proposition 6.4. Let M ⊂ Rn is a C1,1 smooth compact Riemannian submanifold,
so that α := ReachM > 0, the constants C1 be as in Lemma A.1 and C̄2 be as in
Lemma A.2. Assume C2 ∈ (0, C̄2] and 0 < σ ≤ C2α to be so small that

σ′ :=

(
1 + C1

σ

C2

)
σ

C2
<

1

2

√
3

5
α,

σ′′ defined by (6.1) satisfy

0 < σ′′ < C2α

and let δ ∈ (0, α) be such that

ρ(δ) := (1 + C1δ)δ ≤ σ′.

Then H∗(CΣ(σ);R) ≃ H∗(M ;R), where H∗ stands for the Čech cohomology.

Remark 6.5. One may take ȳλ to be drawn by sampling M in i.i.d. way according
to the volume measure on M . In fact by proposition 3.2 of [21] one has then that
if #Λ > n(M,ρ, p), then

M ⊂
⋃
λ

Bρ(ȳλ)

with probability at least 1−p and the number n(M,ρ, p) depends explicitly, besides
ρ and p, also on the total volume and the dimension of M .

Proof of Proposition 6.4. Lemma A.1 implies (4.2), so that one has

M ⊂
⋃
λ

Bρ(δ)(ȳλ),

since δ < ε0. Therefore,

M ⊂
⋃
λ

Bσ′(ȳλ),

since σ′ > ρ(δ). But

2σ′′ < 2σ′ <

√
3

5
λ

implies H∗(CM (σ′);R) ≃ H∗((M)σ′ ;R) and H∗(CM (σ′′);R) ≃ H∗((M)σ′′ ;R) by
proposition 3.1 of [21]. Since (M)σ′′ ⊂ (M)σ′ ⊂ (M)α, then both (M)σ′′ and (M)σ′

are clearly retractible to M , so that

H∗((M)σ′′ ;R) ≃ H∗(M ;R) and H∗((M)σ′ ;R) ≃ H∗(M ;R).
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Therefore,
H∗(CM (σ′);R) ≃ H∗(M ;R) ≃ H∗(CM (σ′′);R),

and it suffices now to apply Lemma 6.3 with ε0 := α to get the claim. □

7. Numerical experiments

In this section we present numerical experiments illustrating the performance of
our procedure for four sample datasets: a line segment, a two-dimensional sphere,
the Swiss Roll, and the flat torus embedded in R4 as the Clifford torus. In all the
experiments, except for the last one, the constant C2 from (5.3) is set to 2/π. To
reconstruct Clifford torus, we chose C2 = 0.2/π. For quantitative measure of the
performance, we compute the error

(7.1) Err =
1

k

√√√√√ k∑
i,j=1

(
d̂ij − dij

)2

d2ij
,

which reflects the average relative error in pairwise distances. Here d̂ij , 1 ≤ i, j ≤ k,
stands for the pairwise distance between the recovered i-th and j-th elements of the
sample.

We start with the example of a line segment. We took k = 100 equidistant
points on the unit interval [0, 1] and embedded them into R2 using our algorithm
with n = 2 and ε = 0.2. The result is shown in Figure 7.1. Though the recovered
points do not lie on a segment, the error (7.1) is equal to Err = 9 · 10−4, which is
quite small.

Figure 7.1. Reconstruction of a line segment from pairwise dis-
tances. The average distance error is 9 · 10−4.

In the example of a two-dimensional sphere we have two different setups. In the
first one, we took k = 100 points on a grid on unit sphere S2, computed exact
geodesic distances and applied the procedure with parameters n = 3 and ε = 0.6.
After that, we computed approximate pairwise geodesic distances over the resulting
point cloud as it is done is Isomap. As a result, we obtained Err = 0.13. In the
second setup, we had k = 100 points drawn independently from uniform distribution
on the sphere and computed exact geodesic distances between them. After that,
we performed the embedding into R3 using our procedure with parameters n =
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3 and ε = 0.6, and computed approximate pairwise geodesic distances between
the embedded points again using the same method as in Isomap. As a result,
we obtained Err = 0.16. The results of the sphere embedding are displayed in
Figure 7.2.

Figure 7.2. Reconstruction of a unit sphere from pairwise dis-
tances. Top line, columns 1 and 2: points on a grid on the sphere.
Top line, columns 3 and 4: the recovered points of the unit sphere.
Bottom line, columns 1 and 2: points drawn from the uniform
distribution on unit sphere. Bottom line, columns 3 and 4: the
recovered points from approximate geodesic distances.

Next, we carried out experiments on the widely known synthetic Swiss Roll
dataset from the Scikit-learn library in Python. Here we also have two different
setups. In the first one, we generated k = 100 points, computed pairwise Euclidean
distances and applied the procedure with parameters n = 3 and ε = 3. The results
are shown in Figure 7.3. After that we computed pairwise Euclidean distances
between the recovered points. The resulting average relative error (7.1) was equal
to Err = 0.4. In the second setup, we computed exact geodesic distances between
points and applied the procedure with parameters n = 2 and ε = 3. After that,
we computed the Euclidean distances between the embedded points. The resulting
average relative error (7.1) was equal to Err = 0.28.

Finally, we provide the results of embedding Clifford torus into R4. Let us
remind to a reader that Clifford torus is just the product of two circumferences
(1/

√
2S1)× (1/

√
2S1), that is, the set of points{

1√
2
(cosφ, sinφ, cos θ, sin θ) : 0 ≤ φ < 2π, 0 ≤ θ < 2π

}
.

We took
√
k = 15 equally spaced points on each circumference, so the total number

of samples was equal to k = 225. After that, we applied the embedding procedure
with parameters d = 4, ε = 1.4, and C2 = 0.2/π. The projections of the initial
points and of the embedding into R4 are displayed in Figure 7.4. The average
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Figure 7.3. Reconstruction of the Swiss Roll from pairwise dis-
tances. Top line: sample points in R3 (left), sample points, projec-
tion on the XOZ plane (center), reconstructed Swiss Roll (right).
Bottom line: sample points in R3 (left), sample points, projection
on the XOZ plane (center), embedding into R2 (right).

relative distortion was equal to Err = 0.21. The distances between the embedded
points were estimated in the same way as in Isomap.

Appendix A. Auxiliary lemmata on sets of positive reach

Throughout this section, M ⊂ Rn is a compact set, connected by rectifiable
arcs, equipped with its intrinsic (geodesic) distance on M denoted by dM , and with
Reach (M) = α > 0. In particular, this is true when M is a C1,1 smooth connected
compact Riemannian submanifold of Rn.

Lemma A.1. Let M be as above and let u, v be any two points on M , such that
dM (u, v) < α. Then

0 ≤ dM (u, v)

|u− v|
− 1 ≤ C1|u− v|

for all {u, v} ⊂ M with C1 :=
(
3α

√
3
)−1

.

Proof. Since |u− v| ≤ dM (u, v) < α, then by theorem 1 of [8] we have

dM (u, v)

2α
≤ arcsin

|u− v|
2α

.

Let f(t) := arcsin t, t < 0.5. Since f(0) = 0, f ′(0) = 1 and

f ′′(t) =
x

(1− x2)3/2
≤ 4

3
√
3
,
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Figure 7.4. Reconstruction of Clifford torus from pairwise dis-
tances. Top line: projections of the original point cloud. Bottom
line: projections of the points after embedding.

we have

f(t) ≤ t+
2t2

3
√
3
.

Thus,

dM (u, v)− |u− v|
2α

≤ |u− v|2

6α2
√
3
,

which yields
dM (u, v)

|u− v|
− 1 ≤ |u− v|

3α
√
3

as claimed. □

Lemma A.2. Let M be as above. Then

|u− v|
dM (u, v)

≥ C̄2

for all {u, v} ⊂ M and for some C̄2 > 0. In particular, one can take C̄2 :=
(2/π) ∧ (2α/D), where D stands for the intrinsic diameter of M .

Proof. If |u− v| < 2α, then by theorem 1 from [8], one has

dM (u, v) ≤ 2α arcsin
|u− v|
2α

,

or, equivalently,

|u− v|
dM (u, v)

≥ sin t

t
, where t := arcsin

|u− v|
2α

.

Since 0 ≤ t < π/2, then
|u− v|
dM (u, v)

≥ 2

π
.
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In the remaining case |u− v| ≥ 2α, one has

|u− v|
dM (u, v)

≥ 2α

D
,

since dM (u, v) ≤ D.
□
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