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Abstract

We refer to the common low-dimensional description of shells and thin films: surfaces
endowed with directors satisfying a non-degeneracy condition under large strain.
We consider in addition through-the-thickness material microstructure described
by elements of a complete and intrinsic Riemannian manifold. We look at brit-
tle materials. Among all possible cracked and uncracked admissible configurations,
the one reached under Dirichlet-type boundary conditions realizes the minimum of
a regularized Griffith’s energy that includes curvature terms. For it we prove exis-
tence of minimizers for different constitutive functional choices and geometric struc-
tures with or without active through-the-thickness microstructure. Deformations are
taken as SBV maps with jump set included in the support of a curvature varifold
with boundary. Through-the-thickness descriptors of the material microstructure
are taken first as manifold-valued Sobolev maps. Then, we consider pertinent SBV
versions.

Key words: Fracture, Varifolds, Ground States, Shells, Microstructures, Calculus
of Variations

1 Introduction

Three topics in continuum mechanics interact in the analysis that we propose
here:

• the representation of films such as thin shells modeled as surfaces with
directors,



• the variational description of crack nucleation,
• the multi-field (at times called phase-field to adopt a terminology more

common in solid-state physics, although with more restricted meaning) de-
piction of microstructural effects on macroscopic motion.

Pertinent geometric and functional elements enter the energy. A requirement
of minimality selects equilibrium configurations among those with all possible
crack paths, depicted as rectifiable subsets of a domain Ω containing the shell
middle surface. Fields describing macroscopic and microstructural through-
the-thickness morphology and crack path are pertinent unknowns under large
strain regime and Dirichlet or Dirichlet-type (so called strong anchoring) con-
ditions, assuming a local strong non-degeneracy requirement.

The energy considered is surface polyconvex with respect to the shell mid-
dle surface deformation gradient, and convex with respect to the derivative
of thickness and microstructure descriptor field. It also incorporates surface
energy depending on crack area and a generalized curvature tensor. This last
term has a regularizing nature: it accounts for surface non-local interactions
(precisely of second-neighbor-type, thus of curvature-type) and bending effects
in material bonds (for the latter ones see [53]). A term taking into account
possible tip energy (it appears prominently in cohesive schemes) completes
the energy. Deformations and microstructural fields are only constrained to
have their jump set contained in the crack path but not coinciding necessarily
with it.

Our analyses apply to several circumstances ranging from shells considered
as structural elements to thin films, to the description of biological tissues in
which one dimension is definitely smaller than the other two and a through-
the-thickness microstructure implies actions hardly representable in terms of
standard stresses.

1.1 Structural shells and thin films as surfaces with directors

In 1958, J. L. Ericksen and C. A. Truesdell adopted E. and F. Cosserat’s 1909
scheme (which rests on a 1893 proposal by P. Duhem) to model structural
elements as rods or shells as one-dimensional or two-dimensional bodies en-
dowed, respectively, with an out-of-line or out-of-middle-surface vector field,
with values, so-called directors, selected in the unit sphere [17]. They describe
the behavior of cross-sections, considered as rigid bodies. An additional scalar
factor may be used to represent variable thickness.

A massive body of pertinent work followed (see, for example, [6], [50], [51],
[52], [43], [44], and references therein; this is an incomplete list limited just by
the need to make a choice).
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We may look just at bending – a curvature effect, indeed – when we constrain
the director to be coincident with the normal of the shell middle surface. G. R.
Kirchhoff’s, T. von Karman’s, P. Naghdi, W. Koiter’s, and P. Ciarlet’s plate
and shell theories are based, in fact, on different curvature-dependent energies
[13], [56] (see also [55], [54]).

These models imply the question of their justification in terms of dimensional
reduction from 3D space. A natural way to tackle the problem is via E. De
Giorgi’s Γ-convergence. In this view, in 1999 K. Bhattacharya and R. D. James
argued that if one considers a portion of an elastic cylinder between two cross
sections at reciprocal finite distance, and compute the Γ-limit of the energy
(and related minimizers) as the thickness goes to zero, one may obtain the
energy pertinent to a membrane or to a Cosserat’s surface, depending on
whether the cylinder is made of a simple elastic material or a second-grade
one, i.e., one including in the list of energy entries the second gradient of
deformation. In the latter case, the limit generates a vector field over the
surface on which we shrink the cylinder portion (see [49], [21], [22]).

Roughly speaking, membrane energy of different plate models emerges from
separate scaling assumptions for the energy with respect to the plate thickness.
This result comes from a top-to-bottom approach. On the other hand, if we
reverse the view [20] and construct a film by superposing an atomic layer over
the other, we get at continuum level a surface endowed at each point with as
many directors as the number of atomic layers considered. When we consider
films constituted by a mixture of atomic layers, the sequence of vectors at each
point is known to within a permutation [40].

1.2 Crack paths as rectifiable sets supporting varifolds

A variational approach to the elastic-brittle behavior has been suggested in
1998 [19], based on minimality required for A. A. Griffith’s energy [29]. Crack
evolution is then considered by partitioning the time interval and presuming
that minimality governs transitions between subsequent minimizers at discrete
times. This scheme has its roots in De Giorgi’s idea of minimizing movements
[16].

At first there is distinction between deformations and crack path, although
they are connected because the deformation jumps when crack margins detach.
In two dimensions we can control sequences of curves so that we can maintain
the previous distinction. To allow jumps across the crack path, deformations
can be naturally considered as special bounded variation maps (SBV ). Their
distributional derivative is a finite measure with H n−1-measurable jump set,
where n is the ambient space dimension and H n−1 the (n − 1)-dimensional
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Hausdorff measure (see the treatise [5]). In addition, considering a cracking
process in the time-step sense above mentioned, in 2D environment we can
describe steps in which the crack margins come back at least partially in a
contact without shear with respect to the original uncracked configuration.
Material bonds are however not restored and a crack persists. The approach
requires to keep track of the previous steps (see [15] and subsequent work of
the same authors).

However, in general, in 3D space we cannot always control sequences of sur-
faces. A way to overcome such a difficulty is to look for minimizing SBV
deformations and to consider the crack to be coincident with the deformation
jump set (see once again [15] and subsequent works of the same authors). Also,
progressively onward in the course of cracking, appropriate choices in looking
at a crack as coinciding with the jump set of a SBV deformation might allow
us to describe steps in which the crack margins come back at least partially
in a contact without shear with respect to the original uncracked configu-
ration. The material bonds are however not restored, so the crack persists.
In so doing, we should look at a time-step-process such that if at a time ti
the crack margins restore the original contact they were detached at time tj
with j < i, according to the SBV setting. However, there are cases in which
material bonds break to allow the matter to reach a lower energy level but
the margins of pertinent cracks do not detach as it occurs in some cracking
events in windscreens of cars. Besides these specific cases, if we do not look
at processes and consider a unique minimizing step – as we do here – we do
not have at disposal a “previous step” in which crack margins are detached
before coming back in contact.

To maintain the distinctions between deformations and crack paths in 3D
environment, we could consider sequences of surfaces with bounded curvature.
They can be described by means of rectifiable varifolds, i.e., Radon measures on
the Grassmannian constructed by using the tangent planes to H 2-rectifiable
sets (see for a general treatment [1], [2], [3], [36]). They admit a generalized
notion of curvature related to their support. The approach (proposed first in
references [27], [38], [25]) implies the introduction of an energy which is a
regularization of Griffith’s one, as already mentioned above.

Here we apply to shells the varifold-based description of crack paths. The
underlying two-dimensional setting notwithstanding (at least in terms of the
reference domain where fields are defined) allows us to consider in a unique
step cases in which crack margins remain or even “come back” at least partially
in contact.
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1.3 Through-the-thickness microstructures

Thin films show microstructures emerging from their thinness. Tents and
tunnels appear in film deposition [30] on a substrate as a consequence of
martensite-austenite transitions [9], [34], [35], [32]. In polycristalline thin films,
there may be grain growth larger than the film thickness in a way that grains
traverse the film. In this case film surface and grain boundary energies become
comparable. Their interplay may pin the boundaries against further migration,
or may enhance them [23]. However, the presence of further active material
microstructure may influence drastically the film behavior, as in the presence
of magnetization [8]. Besides thin films, in general shells may be made of ma-
terials with active microstructure determining effects hardly representable in
terms of standard stresses. To account directly for them, in representing the
body morphology we exploit not only a fit region in the physical point space
but also introduce descriptors of the low-spatial-scale texture of the matter
and consider them to be observable. With the aim of having a general model-
building framework, we take such descriptors (say phase-fields) as elements of
a finite-dimensional complete Riemannian manifold M not embedded into a
linear space (see [11], [37], [48], [39]). The picture of shells as surfaces with
directors not necessarily coinciding with the normal vector field falls within
the above mentioned general scheme. When we consider structural shells and
thin films endowed with active microstructures in the sense above specified,
we have at least a pertinent descriptor, say ν, which complements the vector
representing the cross-section behavior. This is the scheme that we investigate
here accounting for the energy dependence on ν and its gradient. Such an
approach is also a way to approximately describe fractures. In fact, we can
choose ν to be as a scalar damage indicator, which localizes in a small neigh-
borhood of the crack path [42], [10]. Phenomena of localization, in fact, appear
also for vector choices of ν and even in linear elasticity setting, as harbingers
(or precursors) of fracture [41].

1.4 The main energy under investigation

With progressive extensions, in this paper we end up to the following energy
functional:

F (u, ζ, V, ν) :=
∫

Ω
(ẽ(x, u, ζ, ν,∇u) + β1|∇ζ|q + f(x, ν,∇ν)) dx

+ γ‖V ‖+
∫

G1(Ω)
‖A‖p dV + α‖∂V ‖ ,

with Ω a domain in the plane, ζ an out-of-plane vector field describing the
shell cross-section (cf. equation (3.1)), ν the morphological descriptor of a
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through-the-thickness (active) material microstructure (cf. Sec. 6), ẽ a surface
polyconvex function with respect to ∇u (cf. equation (6.3)), f a non-negative,
continuous, and quasiconvex W 1,s(Ω,M ) function (namely, f is bounded and
such that f(x, ν,N), with N a linear map from R2 onto the tangent space of M
at ν ∈M , is lesser or equal to the integral over unit square of f(x, ν,N+dϕ),
with ϕ a compactly supported smooth function; for a precise general defini-
tion see Definition 6.1), V a one-dimensional varifold with mass ‖V ‖ (the term
including ‖V ‖ corresponds to the area term in Griffith’s energy) and general-
ized curvature tensor A := A(V ). The boundary mass term ‖∂V ‖ accounts for
possible tip energy (cf. Sec. 2.3 for the notation concerning curvature varifolds
with boundary). We prove existence of minimizers in terms of deformations
u, vector fields ζ, descriptors ν, varifolds V .

Specifically, we take u in the space of weak diffeomorphisms constructed on
SBV maps – a space defined in [25] – which satisfy a local strong non-
degeneracy condition. Also, ν is taken as a Sobolev map valued on an intrinsic,
finite-dimensional, complete, differentiable Riemannian manifold. When ν is
itself in SBV with values in the same intrinsic manifold, in the list of energy
entries, we replace the distributional derivative of ν with its total variation
(or semi-norm).

2 Background material

2.1 Special functions of bounded variation

A summable function u ∈ L1(Ω), defined on a bounded domain Ω ⊂ R2, is said
to be of bounded variation if the distributional derivativeDu is a finite measure
in Ω. In this case, the function u is approximately differentiable L 2-a.e. in Ω,
and the approximate gradient∇u agrees with the density of Radon-Nikodym’s
derivative of Du with respect to the Lebesgue measure L 2. Therefore, the de-
composition Du = ∇uL 2 + Dsu holds true, where the component Dsu is
singular with respect to L 2. Also, denoting by H k the k-dimensional Haus-
dorff measure, the jump set S(u) of u is a countably 1-rectifiable subset of
Ω that agrees H 1-essentially with the complement of u Lebesgue’s set. If, in
addition, the singular component Dsu is concentrated on the jump set S(u),
we say that u is a special function of bounded variation, and write in short
u ∈ SBV (Ω).

A vector valued function u : Ω → R3 belongs to the class SBV (Ω,R3) if its
components uj are in SBV (Ω). In that case, we get

|Du|(B) =
∫
B
|∇u| dx+

∫
B∩S(u)

|u+ − u−| dH 1
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for each Borel set B ⊂ Ω, where the approximate gradient ∇u ∈ L1(Ω,M3×2),
the jump set S(u) is defined as in the scalar case, or componentwise, and u±

are the one sided limits at H 1-a.e. point x ∈ S(u) [5].

2.2 Currents carried by approximately differentiable maps

Let Ω be a bounded domain in R2. For u : Ω → R3 an a.e. approximately
differentiable map, we denote by ∇u its approximate gradient. The map u
has a Lusin representative on the subset Ω̃ of Lebesgue points pertaining
to both u and ∇u. Also, we have L 2(Ω \ Ω̃) = 0. We shall thus denote
M(F ) := (F, adj2F ) ∈ M3×2 × R3, where adj2F is the 3-vector given by
the 2 × 2 minors of the matrix F ∈ M3×2. We say that u ∈ A 1(Ω,R3) if
∇u ∈ L1(Ω,M3×2) and the adjoint vector adj2∇u ∈ L1(Ω,R3).

The graph of a map u ∈ A 1(Ω,R3) is defined by

Gu :=
{

(x, y) ∈ Ω× R3 | x ∈ Ω̃, y = ũ(x)
}
,

where ũ(x) is the Lebesgue value of u. It turns out that Gu is a countably
2-rectifiable set of Ω × R3, with H 2(Gu) < ∞. The approximate tangent
plane at (x, u(x)) is generated by the vectors t1(x) = (1, 0, ∂1u(x)) and t2 =
(0, 1, ∂2u(x)) in R5, where the partial derivatives are the column vectors of
the gradient ∇u, and we take ∇u(x) as the Lebesgue value of ∇u at x ∈ Ω̃.
Therefore, the 2-vector

ξ(x) :=
t1(x) ∧ t2(x)

|t1(x) ∧ t2(x)|

provides an orientation to the graph Gu.

The current Gu carried by the graph of u is a functional taking values

Gu(ω) = 〈Gu, ω〉 :=
∫

Gu

〈ω, ξ〉 dH 2

where ω belongs to the space D2(Ω×R3) of compactly supported 2-forms on
Gu. It turns out that Gu is an integer multiplicity (in short i.m.) rectifiable
current with finite mass M(Gu) equal to the area H 2(Gu) of Gu; we then
write Gu ∈ R2(Ω × R3). Since the Jacobian of x 7→ (x, u(x)), which is the
graph map, is equal to |t1(x) ∧ t2(x)|, by the area formula we get

M(Gu) = H 2(Gu) =
∫

Ω

√
1 + |∇u|2 + |adj2∇u|2 dx <∞

(compare Thm. 4 at p. 225 in [28, Vol. I, Sec. 3.1.5]).
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By duality the boundary of Gu is the 1-current ∂Gu acting on D1(Ω×R3), the
space of compactly supported smooth 1-forms η in Ω× R3, as

〈∂Gu, η〉 := 〈Gu, dη〉, η ∈ D1(Ω× R3) ,

where dη is the differential of η. By Stokes theorem we get ∂Gu = 0 on
D1(Ω × R3) if u is of class C2. Such a relation holds true also for Sobolev
maps u ∈ W 1,2(Ω,R3), by approximation. However, in general, the boundary
∂Gu does not vanish and may not have finite mass in Ω × R3. On the other
hand, if ∂Gu has finite mass, the boundary rectifiability theorem states that
∂Gu is an i.m. rectifiable current in R1(Ω × R3). In particular, it turns out
that u is special function of bounded variation, u ∈ SBV (Ω,R3). Actually, u
belongs to the class SBV0 discussed in reference [5].

An extended treatment of currents is in the two-volume treatise [28].

2.3 Curvature varifolds with boundary

A 1-varifold over Ω, a domain in R2, is a non-negative Radon measure on the
trivial bundle G1(Ω) := Ω× G1,2, where G1,2 is the Grassmannian manifold of
1-planes Π (straight lines) through the origin in R2.

If b is a 1-rectifiable subset of Ω ⊂ R2, for H 1 b a.e. x ∈ Ω there exists the
approximate tangent 1-space Txb to b at x. We thus denote by Π(x) the 2× 2
matrix that identifies the orthogonal projection of R2 onto Txb.

We define

Vb,θ(ϕ) :=
∫

G1(Ω)
ϕ(x,Π) dVb,θ(x,Π) :=

∫
b
θ(x)ϕ(x,Π(x)) dH 1(x) (2.1)

for any ϕ ∈ C0
c (G1(Ω)), where θ ∈ L1(b,H 1) is a nonnegative density function.

If θ is integer valued, V = Vb,θ is said to be the integer rectifiable varifold
associated with (b, θ,H 1).

The weight measure of V is the Radon measure in Ω given by µV := π#V ,
where π : G1(Ω) → Ω is the canonical projection. Therefore, we find µV =
θH 1 b, and the mass of V is

‖V ‖ := V (G1(Ω)) = µV (Ω) =
∫
b
θ dH 1 .

Definition 2.1 An integer rectifiable 1-varifold V = Vb,θ is called a curvature
1-varifold with boundary if there exist a function A ∈ L1(G1(Ω),R2∗ ⊗ R2 ⊗
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R2∗), A = (A`ij ), and a vector valued Radon measure ∂V with finite mass
‖∂V ‖, such that∫

G1(Ω)
(ΠDxϕ+ ADΠϕ+ ϕ ttr (AI)) dV (x,Π) = −

∫
G1(Ω)

ϕd∂V (x,Π)

for every ϕ ∈ C∞c (G1(Ω)). We write in short ∂V ∈M (G1(Ω),R2). Moreover,
for p ≥ 1 the subclass of curvature 1-varifolds with boundary such that |A| ∈
Lp(G1(Ω)) is indicated by CV p

1 (Ω) (see [27, Ex. 1,2] for specific examples).

With respect to Allard’s approach (see [1], [2]), with definition (2.1) we gain
more information. For example, if Ω is the unit disk centered at the origin
and we take a 1D varifold given by three half-lines from 0, which form three
angles of 120◦, by using Allard’s definition we find zero mean curvature and
zero boundary. At variance (compare with the results in [36]), with the view
adopted here the boundary measure is the sum of three Dirac deltas supported
at the points (0, Pi) in the Grassmannian G1(Ω), where Pi is the 1D space
determined by the i− th half-line, with i = 1, 2, 3.

Varifolds in CV p
1 (Ω) have generalized curvature in Lp [36]. Therefore, Allard’s

compactness theorem applies (see [1], [2], [3]):

Theorem 2.1 For 1 < p < ∞, let {V (h)} ⊂ CV p
1 (Ω) be a sequence of cur-

vature 1-varifolds V (h) = Vbh,θh with boundary. Corresponding curvatures and
boundaries are indicated by A(h) and ∂V (h), respectively. Assume that there
exists a constant c > 0 such that for every h

µV (h)(Ω) + ‖∂V (h)‖+
∫

G1(Ω)
|A(h)|p dV (h) ≤ c .

Then, there exists a (not relabeled) subsequence of {V (h)} and a 1-varifold
V = Vb,θ ∈ CV p

1 (Ω), with curvature A and boundary ∂V , such that

V (h) ⇀ V, A(h) dV (h) ⇀ AdV, ∂V (h) ⇀ ∂V,

in the sense of measures. Moreover, for any convex and l.s.c. function f :
R2∗ ⊗ R2 ⊗ R2∗ → [0,+∞], we get∫

G1(Ω)
f(A) dV ≤ lim inf

h→∞

∫
G1(Ω)

f(A(h)) dV (h).

3 A skeletal model

We look first to the shell middle surface and take for it a planar reference
configuration that is a two-dimensional smooth domain Ω in R2, where Carte-
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sian coordinates x = (x1, x2) are fixed. A map u : Ω→ R3, say u = (u1, u2, u3),
represents a deformation.

When smoothness and non-singularity are assured, the map u determines an
immersion of Ω into R3; the tangent plane to the deformed film middle plane
does not degenerate. Formally, it is tantamount to impose |adj2∇u(x)| > 0
for any x ∈ Ω. In other words, if ∂iu denotes a column vectors of the gradient
matrix ∇u, we are imposing that the vector product ∂1u×∂2u does not vanish
at every point. Therefore, the normal to u(Ω), the deformed middle surface,
is the unit vector

n(x) =
∂1u(x)× ∂2u(x)

|∂1u(x)× ∂2u(x)|
. (3.1)

It can be considered as a descriptor of out-of-middle-surface film behavior.
However, such an information can be carried out by an S2-valued vector field
x 7→ ζ(x) defined over Ω and constrained to be at every x ∈ Ω such that

(∂1u(x)× ∂2u(x)) • ζ(x) > 0 (3.2)

where • is the scalar product in R3; in the absence of out-of-middle-surface
shear, we get ζ(x) = n(x) (the scheme is standard, see [17], [50], [52], [51], [6]
and references therein).

Given q > 2 and r > 1, consider the energy

G (u, ζ) :=
∫

Ω

(
|∇u|q + |∇ζ|r + Φ(∇u, ζ)

)
dx

acting on couples of Sobolev functions (u, ζ) in [W 1,1(Ω,R3)]2, with |ζ| = 1
L 2-a.e. in Ω. Impose also the uniform bound ‖u‖L∞(Ω) ≤ K. Eventually, we
may consider Dirichlet-type conditions for u and ζ over ∂Ω in the sense of
traces.

As a matter of notation, according to reference [14], we define the set

Ỹ := {(F, ζ) ∈M3×2 × R3 | det(F |ζ) > 0}

where (F |ζ) ∈M3×3. Therefore, according to (3.2), if F = ∇u one has

det(∇u|ζ) = (∂1u× ∂2u) • ζ .

Definition 3.1 We shall denote by F̃ the class of non-negative functions
Φ : Ỹ → [0,+∞) such that

(1) Φ(F, ·) is continuous in R3 for all F ∈M3×2;
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(2) Φ(·, ζ) is polyconvex (precisely, Φ(·, ζ) is the restriction to {F ∈ M3×2 |
det(F |ζ) > 0} of a polyconvex function g : M3×2 → R, i.e., a convex
functions of all the minors of F), for all ζ ∈ R3;

(3) Φ(F, ζ)→ +∞ if det(F |ζ)→ 0+ .

We assume that the integrand Φ in G (u, ζ) be in the class F̃ . An example is
given by Φ(F, ζ) = − log(det(F |ζ)) ∨ 0 if det(F |ζ) > 0, and Φ(F, ζ) = +∞
otherwise in M3×2 × R3. We also fix q > 2 and r > 1 ∨ 2q/(3q − 4).

Theorem 3.1 With the previous assumptions, minima of G (u, ζ) exist among
couples in W 1,q(Ω,R3) ×W 1,r(Ω,R3), with ‖u‖∞ ≤ K and |ζ| = 1. They are
such that (3.2) holds true L 2-a.e. on Ω.

Proof. By using compactness arguments, we shall repeatedly pass to not re-
labeled subsequences. Taking a minimizing sequence {(uh, ζh)}, we infer that
uh ⇀ u∞ weakly in W 1,q(Ω,R3) and ζh ⇀ ζ∞ weakly W 1,r(Ω,R3) for some
functions (u∞, ζ∞) ∈ W 1,q(Ω,R3) × W 1,r(Ω,R3). Moreover, the a.e. conver-
gences uh → u∞ and ζh → ζ∞ imply that ‖u∞‖L∞(Ω) ≤ K and |ζ∞| = 1 a.e.
in Ω, whereas by lower semicontinuity∫

Ω
(|∇u∞|q + |∇ζ∞|r) dx ≤ lim inf

h→∞

∫
Ω

(|∇uh|q + |∇ζh|r) dx .

The bound suph
∫

Ω Φ(∇uh, ζh) dx <∞ implies that

(∂1uh(x)× ∂2uh(x)) • ζh(x) > 0 (3.3)

holds true for each h ∈ N and L 2-a.e. in Ω. We claim that condition (3.3) is
preserved (with possibly the equality sign instead of >) when passing to the
limit. In fact, by the parallelogram inequality we get for every h and for a.e.
x ∈ Ω the bound

|∂1uh × ∂2uh|q/2 ≤ C · |∇uh|q , q > 2 (3.4)

for some absolute constant C. Moreover, if 1 ∨ 2q/(3q − 4) < r ≤ 2 we also
have strong convergence ζh → ζ∞ in Lp(Ω) for p = 2r/(2 − r), where p is
greater than the conjugate exponent to q/2. Therefore, we infer the existence
of a function H ∈ L1(Ω) such that (∂1uh × ∂2uh) • ζh ⇀ H weakly in L1(Ω).
On the other hand, by (3.4) and a standard density argument it turns out
that in the distributional sense we have, e.g.,

Div(u1
h ∂2u

2
h,−u1

h ∂1u
2
h) = (∂1u

1
h ∂2u

2
h − ∂2u

1
h ∂1u

2
h) L 2 Ω ∀h ∈ N̄

where N̄ := N ∪ {∞}, i.e., for each test function ϕ ∈ C∞c (Ω)∫
Ω

(∂1u
1
h ∂2u

2
h − ∂2u

1
h ∂1u

2
h)ϕdx =

∫
Ω
u1
h (∂1u

2
h ∂2ϕ− ∂2u

2
h ∂1ϕ) dx .
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We thus infer the weak convergence

(∂1u
1
h ∂2u

h
2 − ∂2u

1
h ∂1u

2
h) ⇀ (∂1u

1
∞ ∂2u

2
∞ − ∂2u

1
∞ ∂1u

2
∞)

in Lq/2(Ω), and hence a.e. in Ω. This implies H = (∂1u∞ × ∂2u∞) • ζ∞ and
also the pointwise convergence a.e. in Ω

(∂1uh × ∂2uh) • ζh → (∂1u∞ × ∂2u∞) • ζ∞ .

Therefore, the lower semicontinuity∫
Ω

Φ(∇u∞, ζ∞) dx ≤ lim inf
h→∞

∫
Ω

Φ(∇uh, ζh) dx <∞

holds, whence the couple of functions (u∞, ζ∞) satisfies the strict inequality
in (3.2) for L 2-a.e. x ∈ Ω, as required.

It may happen that the deformed surface u(Ω) has a crease. This is described,
e.g., when the unit normal n(x) is smooth outside a 1-rectifiable set J of Ω. In
this case, ζ satisfies the condition ζ(x) •m > 0 at x ∈ J, for some unit vector
m that lies in the cone between the one-sided limits of n at x ∈ J.

Therefore, a second order theory (yielding e.g. to a regularity of the unit
normal n(x)) should be applied in order to describe in a precise way the
above mentioned angle condition along creases over the deformed surface.

4 Cracks and jump sets

We assume here that the components uj of u are L∞-functions in the class
SBV (Ω). Again, we assume a uniform bound ‖u‖L∞(Ω) ≤ K.

We then choose the descriptor ζ : Ω → S2 ⊂ R3 of the out-of-middle-surface
film behavior as a special function of bounded variation in SBV (Ω,R3), with
|ζ| = 1 almost everywhere, in such a way that the constraint (3.2) holds true
L 2-a.e. in Ω \ S(u). Since ζ describes the behavior of shell cross-sections, the
continuity of matter allows us to consider the discontinuity set of ζ as included
in the one of u, namely

S(ζ) ⊆ S(u) .

The strict inclusion occurs when the crack margins are in contact across the
whole shell thickness; in this case we would have no deformation jump along
the crack portion where the margins remain in contact. If one thinks of a
cracking process, there could be circumstances already above mentioned in
which margins remain, at least in part, always in contact, although the en-
ergetic content of the material bond is such that they become unstable and
prefer, energetically, to break. Accounting for this aspect – i.e., a permanent
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contact in a portion of a crack – is a peculiarity of the present model. For
analytical reasons, we replace the above set inclusion by the inequality:

H 1 S(ζh) ≤H 1 S(uh) ∀h, (4.1)

along minimizing sequences {(uh, ζh)}.

In principle, the limit maps (u, ζ) may not satisfy condition (4.1). In fact,
it may happen that the jump of uh on S(uh) goes to zero somewhere, when
passing to the limit through the compactness theorem. In order to preserve
inequality (4.1), we shall introduce a condition ensuring that the jump u+

h −u−h
on S(uh) cannot “decrease” or “disappear”, so that one has H 1(S(uh)) →
H 1(S(u)).

Over the reference domain Ω we consider a curvature 1-varifold with boundary
V = Vb ,θ such that the discontinuity set S(u) of the deformation map u is
contained in the 1-rectifiable set b . A crack in which the margins remain at
least partially in contact is characterized by H 1(b \ S(u)) > 0.

4.1 Membranes with cracks

At a first glance we do not consider the out-of-middle-surface descriptor ζ.

Definition 4.1 A macroscopic configuration of a cracked membrane is a pair
composed by the bounded connected open set Ω ⊂ R2 with Lipschitz boundary
and a curvature 1-varifold with boundary, namely V = Vb ,θ ∈ CV p

1 (Ω) for
some p > 1.

We consider bounded deformation maps u in A 1(Ω,R3), i.e., a.e. approxi-
mately differentiable maps u with ∇u ∈ L1(Ω,M3×2) and |adj2∇u| ∈ L1(Ω),
so that the current Gu carried by the rectifiable graph of u is i.m. rectifiable
in R2(Ω× R3) and with finite mass, M(Gu) <∞.

In general, the boundary current ∂Gu ∈ D1(Ω × R3) is non zero and it may
also have unbounded mass. Therefore, we assume furthermore that fractures
and holes in the graph of u are controlled by the crack V , namely

π#|∂Gu| ≤ µV (4.2)

where µV is the weight measure in Ω of the varifold V , π : Ω × R3 → Ω the
projection onto the first two coordinates, and | · | the total variation of the
vector-valued measure ∂Gu, so that π#|∂Gu|(B) = |∂Gu|(B × R3) for each
Borel set B ⊂ Ω.

If µV (Ω) < ∞ and the bound (4.2) holds true, |∂Gu| is a finite measure, and

13



actually M(∂Gu) < ∞. Therefore, the boundary rectifiability theorem yields
that ∂Gu is an i.m. rectifiable current – in short ∂Gu ∈ R1(Ω × R3) – and
hence u is a special function of bounded variation, namely u ∈ SBV (Ω,R3).

More precisely, since |Dju| ≤ ‖u‖∞ π#|∂Gu|, recalling that µV = θH 1 b ,
by the assumption (4.2) it turns out that the jump set of u is contained in the
support b of V where the positive multiplicity function θ is integer-valued,
and we actually have

H 1 S(u) ≤H 1 b . (4.3)

Example 1 Recalling that µV = θH 1 b , the validity of inequality (4.2)
relies on the presence of the positive integer θ, that actually accounts for the
multiplicity of the projection of ∂Gu. Taking, e.g., Ω = B2, the unit open disk
centered at the origin, and u : B2 → R3 given by

u(x1, x2) :=

 (x1, x2, 0) if x1 < 0

(1 + x1, x2, 0) if x1 > 0

we get ∂Gu = γ0#[[ I ]] − γ1#[[ I ]] on D1(B2 × R3), where I = (−1, 1) and
γα : I → R5 is defined by γα(t) := (0, t, α, t, 0), for α = 0, 1. Therefore,
u ∈ SBV (B2,R3), with jump set S(u) = {0} × I, so that inequality (4.2)
holds true with, e.g., θ = 2 and b = S(u).

We have already defined M(F ) = (F, adj2F ) ∈ M3×2 × R3. Here we assume
that a sequence {uh}h ⊂ A 1(Ω,R3) is such that

sup
h
‖uh‖L∞(Ω) ≤ K , sup

h
‖M(∇uh)‖L1(Ω) <∞ ,

where the sequence {|M(∇uh)|} is equi-integrable on Ω. In addition, we as-
sume that π#|∂Guh| ≤ µVh for each h. If we have suph µVh(Ω) < ∞, by com-
pactness, possibly passing to a (not relabeled) subsequence, we have Vh ⇀ V
weakly as measures, and we find a deformation map u as above, such that
Gu is i.m. rectifiable and with finite mass, Guh ⇀ Gu weakly as currents,
π#|∂Gu| ≤ µV <∞, whence ∂Gu is i.m. rectifiable, too.

In order to recover the weak L1 convergence ofM(∇uh) toM(∇u), the starting
point is the following special case of the closure theorem proven in reference
[24]. On account of the compactness theorem in SBV , it extends a classical
result proved in reference [7] for Sobolev maps, where the divergence form of
gradient minors is exploited.

Theorem 4.1 Let Ω ⊂ R2 be a bounded domain and {uh} a sequence of
functions from SBV (Ω,R3) converging in L1(Ω,R3) to a summable function
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u : Ω→ R3. Assume that for some real exponents q > 2 and r > 1

sup
h

{
‖uh‖∞ +

∫
Ω

(
|∇uh|q + |adj2∇uh|r

)
dx+ H 1(S(uh))

}
<∞ .

Then, u ∈ SBV (Ω,R3), and the sequence H 1 S(uh) weakly converges in Ω
to a measure µ greater than H 1 S(u). Moreover, ∇uh weakly converges to
∇u in Lq(Ω,M3×2), and adj2∇uh weakly converges to adj2∇u in Lr(Ω,R3).

4.2 Accounting for the thickness

We fix q > 2, r, p > 1, K > 0, and introduce the class Aq,r,p,K of triplets
(u, ζ, V ) where

(i) u : Ω→ R3 is a special function of bounded variation, u ∈ SBV (Ω,R3),
with H 1(S(u)) < ∞, such that ‖u‖L∞(Ω) ≤ K, ∂1u × ∂2u 6= 0 L 2-a.e.
on Ω, ∇u ∈ Lq(Ω,M3×2), and |adj2∇u| ∈ Lr(Ω);

(ii) ζ : Ω→ R3 is a special function of bounded variation, with H 1(S(ζ)) <
∞, such that |ζ| = 1 L 2-a.e. on Ω, and ∇ζ ∈ Lq(Ω,M3×2);

(iii) V ∈ CV p
1 (Ω), i.e. V is a integer rectifiable curvature 1-varifold with

boundary and second fundamental form A ∈ Lp(G1(Ω),R2∗ ⊗ R2 ⊗ R2∗),
with µV = θH 1 b ;

(iv) π#|∂Gu| ≤ µV ;
(v) H 1 S(ζ) ≤ π#|∂Gu|;

(vi) (∂1u(x)× ∂2u(x)) • ζ(x) > 0 for L 2-a.e. x ∈ Ω \ b .

Then, we consider on the class of triplets (u, ζ, V ) ∈ Aq,r,p,K the energy

F (u, ζ, V ) :=
∫

Ω
e(x, u, ζ,∇u,∇ζ) dx+ ‖V ‖+

∫
G1(Ω)

‖A‖p dV + ‖∂V ‖ , (4.4)

where e : Ω× R3 × R3 ×M3×2 ×M3×2 → R ∪ {+∞} is the sum

e(x, u, ζ, F,G) = ẽ(x, u, ζ, F ) + β1 |G|q

for every (x, u, ζ, F,G) ∈ Ω × R3 × R3 ×M3×2 ×M3×2, with β1 > 0 and the
first addendum a non-negative Carathéodory function satisfying the following
properties:

(a) ẽ(x, u, ζ, F ) is polyconvex with respect to F , namely

ẽ(x, u, ζ, F ) = g(x, u, ζ,M(F )) ∀F ∈M3×2,

where g : Ω×R3×R3×(M3×2×R3)→ [0,+∞] is a Carathéodory function,
with g(x, u, ζ, ·) convex for L 2-a.e. x ∈ Ω, and for all (u, ζ) ∈ R3 × R3;
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(b) for L 2-a.e. x ∈ Ω and every (u, ζ, F ) such that det(F |ζ) > 0,

ẽ(x, u, ζ, F ) ≥ β2 (|F |q + |adj2F |r) + Φ(F, ζ),

where β2 > 0 and Φ ∈ F̃ , see Definition 3.1.

Theorem 4.2 The energy minimum of F (u, V, ζ) is attained in the class
Aq,r,p,K.

Proof. As before, we repeatedly pass to not relabeled subsequences. Choose
a minimizing sequence {(uh, ζh, V (h))} ⊂ Aq,r,p,K . On account of assumptions
(iv) and (v), by the energy lower bounds we infer that Ambrosio’s compact-
ness theorem in SBV [5, Thm. 4.8] applies to both sequences {uh} and {ζh}.
Therefore, uh → u in L1(Ω,R3) to some function u ∈ SBV (Ω,R3) with
‖u‖L∞(Ω) ≤ K, whereas ∇uh weakly converges to ∇u in Lq(Ω,M3×2) and
H 1 S(uh) weakly converges in Ω to a measure greater than H 1 S(u). In
a similar way, we prove existence of a function ζ ∈ SBV (Ω,R3) satisfying
|ζ| = 1 a.e. in Ω, such that ζh → ζ in L1(Ω,R3), ∇ζh weakly converges to ∇ζ
in Lq(Ω,M3×2), and H 1 S(ζh) weakly converges in Ω to a measure greater
than H 1 S(ζ). Furthermore, Allard’s compactness theorem 2.1 applies to the
sequence {V (h)} in CV p(Ω). Also, Federer-Fleming’s closure theorem applies
to the sequence Guh (see [28]).

On account of Theorem 4.1, we obtain a triplet (u, ζ, V ) satisfying properties
(i)–(v). In fact, using (a), the lower-semicontinuity result in reference [24]
yields ∫

Ω
ẽ(x, u,∇u, ζ) dx ≤ lim inf

h→∞

∫
Ω
ẽ(x, uh,∇uh, ζh) dx

and ∫
Ω
|∇ζ|q dx ≤ lim inf

h→∞

∫
Ω
|∇ζh|q dx

whereas

‖V ‖+
∫

G1(Ω)
‖A‖p dV +‖∂V ‖ ≤ lim inf

h→∞

(
‖V (h)‖+

∫
G1(Ω)

‖A(h)‖p dV (h)+‖∂V (h)‖
)

so that by equation (4.4) we get

F (u, ζ, V ) ≤ lim inf
h→∞

F (uh, ζh, V
(h)) .

Also, by the weak convergence adj2∇uh ⇀ adj2∇u in L1(Ω,R3), using the
bound suph |∇ζh|q dx < ∞ for q > 2 and the embedding theorem, we obtain
the weak convergence (∂1uh × ∂2uh) • ζh ⇀ (∂1u × ∂2u) • ζ in L1(Ω). As a
consequence, the lower semicontinuity inequality∫

Ω
Φ(∇u, ζ) dx ≤ lim inf

h→∞

∫
Ω

Φ(∇uh, ζh) dx
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holds true. Hence, by the lower bound (b), property (vi) is satisfied by the
triplet (u, ζ, V ), whence (u, ζ, V ) ∈ Aq,r,p,K , as required.

In fact, we could follow the view suggested in reference [14], considering energy

functionals F̃ (u, ζ, V ) in which we mix together the gradients of u and ζ.
Namely, in (4.4) we could assume that e(x, u, ζ, F,G) = ẽ(x, h,H), where
h := (u, ζ), H ∈ M6×2 is the matrix with rows (F,G), while ẽ(x, h,H) is a
non negative Carathéodory function, which is polyconvex with respect to H
and such that for L 2-a.e. x ∈ Ω and every (h,H), with det(F |ζ) > 0

ẽ(x, h,H) ≥ β2 (|H|q + |adj2H|r) + Φ(F, ζ)

where β2 > 0 and Φ ∈ F̃ .

Since the closure and semicontinuity properties continue to hold, the minimum
of F̃ (u, ζ, V ) is attained in the class Ãq,r,p,K of triplets (u, ζ, V ) in Aq,r,p,K ,
which satisfy the additional condition |adj2∇(u, ζ)| ∈ Lr(Ω), so that we should
presume in this case what follows:

(1) u ∈ SBV (Ω,R3), with H 1(S(u)) < ∞, ‖u‖L∞(Ω) ≤ K, ∂1u × ∂2u 6= 0
L 2-a.e. on Ω, ∇u ∈ Lq(Ω,M3×2);

(2) ζ ∈ SBV (Ω,R3), with H 1(S(ζ)) <∞, |ζ| = 1 L 2-a.e. on Ω, and ∇ζ ∈
Lq(Ω,M3×2);

(3) |adj2∇(u, ζ)| ∈ Lr(Ω);
(4) V ∈ CV p

1 (Ω), with µV = θH 1 b ;
(5) π#|∂Gu| ≤ µV ;
(6) H 1 S(ζ) ≤ π#|∂Gu|;
(7) (∂1u(x)× ∂2u(x)) • ζ(x) > 0 for L 2-a.e. x ∈ Ω \ b .

However, we prefer to maintain separate membrane and out-of-middle-surface
behavior, so that we refer to surface polyconvexity as considered in reference
[40].

5 Boundary conditions

We consider two types of boundary conditions. As a first choice we prescribe
Dirichlet-type data, namely

u = u0 , ζ =
∂1u0 × ∂2u0

|∂1u0 × ∂2u0|
on ∂Ω (5.1)

in the sense of traces, respectively, for some given a.e. injective function u0 ∈
W 1,q(Ω,R3) with ‖u0‖∞ ≤ K and |adj2∇u0| ∈ Lr(Ω,R+).
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Then, we consider those that we call strong anchoring conditions, determined
by assigning the boundary current, i.e., in terms of smooth and bounded 1-
forms in Ω× R3,

∂Gu (∂Ω× R3) = ∂Gu0 (∂Ω× R3)

a condition that clearly implies the trace equality u = u0. As already men-
tioned, from a physical viewpoint such a condition means that we are assigning
the work performed in all possible strain modes, all considered at first to be
independent and then reconciled in the limit to be compatible (see [26]). This
boundary condition is generally not preserved in the minimization process
because along the boundary open cracks may have optimal placement.

A confinement condition prescribing the existence of a compact set C con-
tained in the open set Ω and such that

sptµV ⊂ C ∀ (u, ζ, V ) ∈ Aq,r,p,K (5.2)

avoids the problem.

The chain of inequalities H 1 S(ζ) ≤ π#|∂Gu| ≤ µV implies that the restric-
tion to Ω \C of both u and ζ belongs to the Sobolev class W 1,q(Ω \C ,M3×2).
Therefore, the prescribed Dirichlet or strong anchoring conditions are pre-
served in the limit process, due to the weak convergence in W 1,q(Ω \C ,M3×2)
of both {uh} and {ζh}.

Corollary 5.1 Let C and u0 as above. Assume that competitors (u, V, ζ)
in Aq,r,p,K have finite energy F (u, V, ζ) and satisfy the prescribed boundary,
clamping, and confinement conditions, with C is a non-empty set. Then, the
energy minimum of F (u, V, ζ) is attained in the same class.

Remark 5.1 Condition (5.2) excludes circumstances in which a crack path
may go to the boundary, breaking part of a link with the environment.

6 Shells made of complex materials

To account for active microstructures (e.g., polarization in ferroelectric films)
we introduce over Ω another map ν taking values on a connected, complete,
n-dimensional Riemannian differentiable manifold M of class C2. At every
x ∈ Ω, the map ν summarizes at gross scale geometric information on mate-
rial microstructure in the film thickness. For this reason, we call M = (M n, g)
as the manifold of microstructural shapes. The generality adopted in choos-
ing M is a way to furnish unified results, which are independent of specific
microstructural features.
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First we assume the layer-descriptor map ν : Ω→M to be an intrinsic Sobolev
map in W 1,s(Ω,M ) for some real exponent s > 1. Then, we’ll discuss the case
in which ν can be considered as a special function of bounded variation.

The essential point is that we do not use any embedding of M in some Eu-
clidean space. Even choosing it to be isometric, it would not be unique (as
Nash’s theorems indicate). Thus, its choice would become part of the model,
while the common effort is to offer a description of the phenomenological world
as much as possible free of non intrinsic elements.

6.1 The Sobolev case

Under previous assumptions, with dM the geodesic distance in M , by the
Hopf-Rinow theorem (M , dM ) is a complete metric space. Consequently, we
keep referring to results in such spaces, summarizing those aspects that we
need for the analysis developed here from essential references [4], [45], [46],
[47] on this topic.

Let Ω ⊂ Rm be a bounded domain and s ≥ 1. A Borel map ν : Ω→M is said
to be an intrinsic Sobolev map in W 1,s(Ω,M ), if there exists a non-negative
function φ ∈ Ls(Ω) such that for every ν0 ∈M

(1) x 7→ dM (ν(x), ν0) is in Ls(Ω), i.e., ν ∈ Ls(Ω,M );
(2) the distributional gradient map x 7→ DdM (ν(x), ν0) satisfies the inequal-

ity |DdM (ν(x), ν0)| ≤ φ(x) for L m-a.e. x ∈ Ω.

In this setting, the “norm” |Dν|(x), which is, in essence, the optimal function
φ ∈ Ls(Ω) satisfying the inequality |DdM (ν(x), ν0)| ≤ φ(x), is well-defined for
L m-a.e. x ∈ Ω by

|Dν|(x) := sup
k∈N
|D(dM (ν(x), νk))|

where {νk}k∈N forms a dense and enumerable set in M .

Weak convergence in W 1,s of a sequence {νh} ⊂ W 1,s(Ω,M ) to some map ν ∈
W 1,s(Ω,M ), when s > 1, is defined by requiring that ‖dM (νh, ν)‖Ls(Ω) → 0
as h→∞ and suph ‖ |Dνh| ‖Ls(Ω) <∞. When s = 1, one assumes in addition
that the sequence {|Dνh|} is equi-integrable.

Also, the trace operator Tr : W 1,s(Ω,M )→ Ls(∂Ω,M ) is well-defined in such
a way that for continuous maps ν ∈ W 1,s(Ω,M ) ∩ C0(Ω,M ) it agrees with
the restriction ν|∂Ω. Moreover, if {νh} ⊂ W 1,s(Ω,M ) weakly converges to some
map ν ∈ W 1,s(Ω,M ), then Tr(νh) converges to Tr(ν) strongly in Ls(∂Ω,M ).
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Finally, traces of maps in W 1,s(Ω,M ) have a W 1−1/s,s-regularity, when s > 1
(see [33] and [12]).

We endow the tangent bundle TM with the metric dTM induced by dM and
consider the vector bundle with base space M and typical fiber the space
of linear homomorphisms Hom(Rm, TM ). Points of such a bundle are cou-
ples (ν,N), where ν ∈ M and N : Rm → TνM is a linear map. For
any fixed ν ∈ M , we can identify N ∈ Hom(Rm, TνM ) with the m-tuple
(v1, . . . , vm) ∈ (TνM )m, where vi = Nei and (e1, . . . , em) is the canonical ba-
sis in Rm. Therefore, a metric structure on the vector bundle Hom(Rm, TM )
is defined through the distance

D((ν,N), (ν̃, Ñ)) :=
{ m∑
i=1

dTM

(
(ν, vi), (ν̃, wi)

)2
}1/2

if Ñ ∈ Hom(Rm, Tν̃M ) and wi = Ñei for each i.

A non-negative and continuous integrand f : Ω× Hom(Rm, TM )→ [0,+∞)
is said to be admissible in W 1,s(Ω,M ) if for some fixed point ν0 ∈ M and
some positive constant C the bounds

0 ≤ f(x, ν,N) ≤ C
(

1 + dM (ν, ν0)s + ‖N‖sg(ν)

)
hold true for all (x, ν,N) ∈ Ω×Hom(Rm, TνM ), where ‖·‖g(ν) is the operatorial
norm.

A functional
ν 7→

∫
Ω
f(x, ν(x), dνx) dx (6.1)

with an admissible integrand f is well-defined on maps ν ∈ W 1,s(Ω,M ),
where dνx is the approximate differential. Precisely, if ν : Ω →M is a Borel
map, and x ∈ M is a point of approximate continuity of ν, a linear map
N ∈ Hom(Rm, Tν(x)M ) is said to be an approximate differential of ν at x if,
for all ε > 0,

lim
ρ→0+

1

ρm
L m

({
y ∈ Bm

ρ (x) | dM

(
ν(y), expν(x)(N(y − x))

)
≥ ε |y − x|

})
= 0 .

When it exists, the approximate differential of ν at x is unique. For smooth
maps, it agrees with the classical differential (in geometric sense). For this
reason, the notation dνx is used for it. A Sobolev map ν in W 1,s(Ω,M ) is
approximately differentiable at L m-a.e. x ∈M , whence the functional (6.1)
makes sense.

We ask for sequential lower semicontinuity. Thus, we need a suitable notion
of quasiconvexity.
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Definition 6.1 A locally bounded function f : Ω × Hom(Rm, TM ) → R is
said to be quasiconvex if for every (x, ν,N) ∈ Ω×Hom(Rm, TνM ) and every
test function ϕ ∈ C∞c (Q1, TνM ), where Q1 := [−1/2, 1/2]m, by looking at dϕy
as an element of Hom(Rm, TνM ), the following inequality holds true:

f(x, ν,N) ≤
∫
Q1

f(x, ν,N + dϕy) dy .

Theorem 6.1 ([18]) Take s ≥ 1. Let f : Ω × Hom(Rm, TM ) → [0,+∞) be
a non-negative and continuous admissible integrand in W 1,s(Ω,M ). Then, the
functional (6.1) is sequentially weakly lower semicontinuous in W 1,s(Ω,M ) if
and only if f is quasiconvex.

Coming back to the physical dimension m = 2, a membrane with out-of-
middle-surface vector field ζ, a crack represented by a 1-varifold V , a de-
scriptor ν of the through-the-thickness material morphology, subjected to a
deformation u, is modeled by a quadruplet (u, ζ, V, ν) belonging to the class
Aq,r,p,K,s(M ) constructed as follows: for q > 2, r, p, s > 1, K > 0, we assume
that the triplet (u, ζ, V ) belongs to the class Aq,r,p,K introduced above, while
we let ν ∈ W 1,s(Ω,M ), where M = (M n, g) is as above.

On the class Aq,r,p,K,s(M ) we consider the energy functional

F (u, ζ, V, ν) :=
∫

Ω
e(x, u, ζ, ν,∇u,∇ζ, dν) dx+ ‖V ‖+

∫
G1(Ω)

‖A‖p dV + ‖∂V ‖ .

(6.2)
The energy density e : Ω×R3 ×R3 ×M ×M3×2 ×M3×2 ×Hom(R2, TM )→
R ∪ {+∞} is presumed to be

e(x, u, ζ, ν, F,G,N) = ẽ(x, u, ζ, ν, F ) + β1|G|q + f(x, ν,N)

for every (x, u, ζ, ν, F,G,N) ∈ Ω×R3×R3×M×M3×2×M3×2×Hom(R2, TM ),
where β1 > 0, and the first addendum is a non-negative Carathéodory function
with the following properties:

(a’) ẽ(x, u, ζ, ν, F ) is polyconvex with respect to F , namely

ẽ(x, u, ζ, ν, F ) = g(x, u, ζ, ν,M(F )) ∀F ∈M3×2 (6.3)

where g : Ω × R3 × R3 ×M × (M3×2 × R3) → [0,+∞] is a Carathéo-
dory function, with g(x, u, ζ, ν, ·) convex for L 2-a.e. x ∈ Ω and for all
(u, ζ, ν) ∈ R3 × R3 ×M ;

(b’) for L 2-a.e. x ∈ Ω and every (u, ζ, ν, F ) such that det(F |ζ) > 0

ẽ(x, u, ζ, ν, F ) ≥ β2 (|F |q + |adj2F |r) + Φ(F, ζ)

where β2 > 0 and Φ ∈ F̃ , a function class specified in Definition 3.1.
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Moreover, the third addendum f : Ω × Hom(R2, TM ) → [0,+∞) is a non-
negative, continuous, and quasiconvex admissible integrand in W 1,s(Ω,M ).
We presume it is such that for positive constants C1, C2 > 0 the inequality

C1 · ‖N‖sg(ν) ≤ f(x, ν,N) ≤ C2 · ‖N‖sg(ν)

holds true for every (x, ν,N) ∈ Ω× Hom(R2, TM ).

Theorem 6.2 Under the previous assumptions, the minimum of the energy
functional F (u, V, ζ, ν) is attained in the class Aq,r,p,K,s(M )

Proof. Choose a minimizing sequence {(uh, ζh, V (h), νh)} ⊂ Aq,r,p,K,s(M ).
The growth assumptions on f imply

sup
h

∫
Ω
‖d(νh)x‖sg(νh(x)) dx <∞ .

Therefore, by compactness (see [33]), possibly passing to a (not relabeled)
subsequence, {νh} weakly converges in W 1,s to some ν ∈ W 1,s(Ω,M ), which
satisfies dM (νh(x), ν(x)) → 0 for L 2-a.e. x ∈ Ω. Moreover, by exploiting
Theorem 6.1, we get∫

Ω
f(x, ν(x), dνx) dx ≤ lim inf

h→∞

∫
Ω
f(x, νh(x), d(νh)x) dx .

The proof then follows the same path as that of Theorem 4.2. We omit further
details.

As to the boundary conditions on the quadruplets (u, ζ, V, ν) in Aq,r,p,K,s(M ),
we first assume

u = u0 , ζ =
∂1u0 × ∂2u0

|∂1u0 × ∂2u0|
, ν = ν0 on ∂Ω

in the sense of traces, for given maps ν0 ∈ W 1,s(Ω,M ) and u0 ∈ W 1,q(Ω,R3),
with ‖u0‖∞ ≤ K and |adj2∇u0| ∈ Lr(Ω).

Then, we also prescribe a compact set C contained in Ω such that

sptµV ⊂ C ∀ (u, ζ, V, ν) ∈ Aq,r,p,K,s(M ) .

In this case, strong anchoring conditions are correspondingly defined in terms
of the graph boundary current ∂Gu as in the previous section.

Corollary 6.3 Let C , u0, and ν0 as above. Assume that competitors (u, V, ζ, ν)
in Aq,r,p,K,s(M ) have finite energy F (u, V, ζ, ν) and satisfy prescribed bound-
ary, clamping, and confinement conditions, with C a non-empty set. Then,
the energy minimum of F (u, V, ζ, ν) is attained in the same class.
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6.2 The SBV case

The through-the-thickness descriptor of the material microstructure ν might
jump across the crack margins. So it could be natural to consider ν : Ω→M
as a special function of bounded variation. However, in this case we do not have
at disposal a lower semicontinuity result for manifold-valued BV -maps. Then,
we restrict ourselves to consider just the total variation of ν distributional
derivative among the energy entries and base the pertinent analyses on the
closure-compactness theorem proven in reference [4].

The class of Sobolev maps ν ∈ W 1,s(Ω,M ) can be equivalently defined in
terms of post-composition with Lipschitz functions ϕ : M → R. By letting

F̂ := {ϕ ∈ Lip(M ,R) | Lip(ϕ) ≤ 1}

one requires ν ∈ Ls(Ω,M ) and the existence of a non-negative function
φ ∈ Ls(Ω) such that ϕ ◦ ν ∈ W 1,s(Ω) and ‖∇(ϕ ◦ ν)‖Ls(Ω) ≤ ‖φ‖Ls(Ω) for

every ϕ ∈ F̂ . The optimal function φ ∈ Ls(Ω), which satisfies the previous

inequality independently of ϕ ∈ F̂ , agrees L m-essentially with the function
|Dν| previously considered.

A summable map ν ∈ L1(Ω,M ) is said to be a function of bounded variation
in BV (Ω,M ) if there exists a finite Borel measure µ in Ω such that the
total variation of the distributional derivative D(ϕ ◦ ν) is bounded by µ, i.e.,

|D(ϕ ◦ ν)|(B) ≤ µ(B) for every Borel set B ⊂ Ω and every ϕ ∈ F̂ . The least
measure µ satisfying such a property is denoted by |Dν| (see reference [4] for
further details).

If ν ∈ BV (Ω,M ), the countably (m−1)-rectifiable jump set S(ν) is defined in
terms of the jump sets of the BV functions ϕ ◦ ν, for a suitable countable set
of functions ϕ ∈ F̂ . The one-sided limits ν±(x) are correspondingly defined
at H m−1-a.e. x ∈ S(ν), once the H m−1-measurable unit normal nν(x) to
S(ν) is fixed, as the manifold elements z± ∈ M such that the set {y ∈ Ω |
dM (ν(y), z±) > ε , 〈y − x,±nν(x)〉 > 0} has 0-density at x for any ε > 0.

In a similar way, we define a non-negative function |∇ν| ∈ L1(Ω) in terms
of sup |∇(ϕ ◦ ν)|, where ∇(ϕ ◦ ν) denotes the approximate gradient of the
BV function ϕ ◦ ν. Then, |∇ν| agrees with the Radon-Nikodym derivative
of |Dν| with respect to L m Ω so that for L m-a.e. x ∈ Ω we compute the
approximate limit

ap lim
y→x

dM (ν(y), ν(x))

|y − x|
= |∇ν|(x) .

A function ν ∈ BV (Ω,M ) is said to be a special function of bounded variation
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if ϕ ◦ ν ∈ SBV (Ω) for every ϕ ∈ F̂ . If ν ∈ SBV (Ω,M ), for every Borel set
B ⊂ Ω we get the decomposition formula

|Dν|(B) =
∫
B
|∇ν| dx+

∫
B∩S(ν)

dM (ν+, ν−) dH m−1 .

Theorem 6.4 ([4]) For K ⊂M a compact set, consider {νh} ⊂ SBV (Ω,M )
such that νh(Ω) ⊂ K for every h. If for some exponent s > 1

sup
h

(∫
Ω
|∇νh|s dx+

∫
S(νh)

(
1 + dM (ν+

h , ν
−
h )
)
dH m−1

)
<∞, (6.4)

there exists a (not relabeled) subsequence of {νh} converging L m-a.e. in Ω to
some ν ∈ SBV (Ω,M ), and such that∫

Ω
|∇ν|s dx ≤ lim inf

h→∞

∫
Ω
|∇νh|s dx∫

S(ν)
dM (ν+, ν−) dH m−1 ≤ lim inf

h→∞

∫
S(νh)

dM (ν+
h , ν

−
h ) dH m−1 .

In the case considered here, we take first q > 2, r, p, s > 1, K > 0. Then,
we consider a compact set K in M , where M = (M n, g) is given as above.

We say that (u, ζ, V, ν) ∈ Ãq,r,p,K,s,K (M ) if the triplet (u, ζ, V ) belongs to the
class Aq,r,p,K previously introduced and ν ∈ SBV (Ω,M ) satisfies the following
relations:

(1) ν(Ω) ⊂ K with |∇ν| ∈ Ls(Ω), and
(2) H 1 S(ν) ≤ µV .

Assumption (1) is of technical nature, whereas (2) means that ν jumps only
over the fracture.

Thus, we consider the energy to be

F̃ (u, ζ, V, ν) :=
∫
Ω

e(x, u, ζ, ν,∇u,∇ζ, |∇ν|) dx+‖V ‖+
∫

G1(Ω)

‖A‖p dV +‖∂V ‖ .

(6.5)
The density e : Ω× R3 × R3 ×M ×M3×2 ×M3×2 × R→ R ∪ {+∞} is such
that

e(x, u, ζ, ν, F,G,N) = ẽ(x, u, ζ, ν, F ) + β1|G|q + β3|N |s (6.6)

for every (x, u, ζ, ν, F,G,N) ∈ Ω×R3×R3×M×M3×2×M3×2×R, where β1 >
0, β3 > 0, and the first addendum is a non-negative Carathéodory function
satisfying the properties (a’) and (b’) above introduced when ν ∈ W 1,s(Ω,M ).

Theorem 6.5 The minimum of the energy functional F̃ (u, ζ, V, ν) given by

(6.5) is attained in the class Ãq,r,p,K,s,K (M ).
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Proof. Take a minimizing sequence {(uh, ζh, V (h), νh)} ⊂ Ãq,r,p,K,s,K (M ).
Since H 1 S(νh) ≤ µV (h) and νh(Ω) ⊂ K for each h, we have dM (ν+

h , ν
−
h ) ≤

c(K ) < ∞ for H 1-a.e. x ∈ S(νh) and for each h, where c(K ) is a real
constant. Therefore, since β3 > 0 in formula (6.6), the uniform bound (6.4)
holds and we can apply Theorem 6.2. The proof then goes along the same
path followed in Theorem 4.2. Also, the limit point ν ∈ SBV (Ω,M ) satisfies
conditions (1)-(2). We omit further details.

Under prescribed Dirichlet or strong anchoring conditions for the triplets
(u, V, ζ) as given in previous section, if the corresponding class of competi-

tors (u, V, ζ, ν) in Ãq,r,p,K,s,K (M ) with finite energy (6.5) is non-empty, the
energy attains its minimum in the same class. Notice that a Dirichlet condi-
tion on the through-the-thickness descriptor ν is not preserved by the weak
convergence in Theorem 6.2.

Remark 6.1 In order to consider cohesive effects instead of looking at brittle
fracture, as we have done here so far, we could add to the energy F̃ (u, ζ, V, ν),
with density (6.6), a term of the type

ν 7→ β4

∫
S(ν)

δM (ν+, ν−) dH 1 , β4 ≥ 0 .

On the other hand, a term of the type∫
S(ν)

g(ν+, ν−,nν) dH
m−1 ,

with g : Rn × Rn × Sm−1 → [0,+∞) a suitable “jointly-convex” function is
presently hard to be treated when we consider M as intrinsic manifold not
necessarily coinciding with a linear space.

Remark 6.2 Finally, a lower semicontinuity result necessary to analyze the
SBV case when Dν enters the energy density instead of its total variation
could perhaps be reached by adopting techniques presented in reference [31].
However, we do not tackle the problem here, leaving it open.

Remark 6.3 Our analysis does not prevent interpenetration between distant
portions of the shell. Avoiding it would require to account for the shell thickness
and to prescribe a pertinent bound involving it. We leave the analysis to a
further ongoing work.
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