
W 1,p REGULARITY ON THE SOLUTION OF THE BV LEAST GRADIENT
PROBLEM WITH DIRICHLET CONDITION ON A PART OF THE

BOUNDARY

SAMER DWEIK

Abstract. In this paper, we consider the BV least gradient problem with Dirichlet condition
imposed on a part Γ of the boundary ∂Ω. In 2D, we show that this problem is equivalent to
an optimal transport problem with Dirichlet region ∂Ω\Γ. Thanks to this equivalence, we show
existence and uniqueness of a solution u to this least gradient problem. Then, we prove W 1,p

regularity on this solution u by studying the Lp summability of the transport density in the
corresponding equivalent optimal transport formulation.

1. Introduction

The BV least gradient problem consists of minimizing the total variation of the vector measure
Du among all BV functions u on an open convex domain Ω such that the trace of u on the
boundary is u|∂Ω = g, where g is a given L1 function on ∂Ω (see [5, 12,13,23]):

(1.1) inf

{ˆ
Ω

|Du| : u ∈ BV (Ω), u|∂Ω = g

}
.

In [12], the author proves existence of a solution to Problem (1.1) in the case where the boundary
datum g is in BV (∂Ω). Moreover, the authors of [22] show by a counter-example that Problem
(1.1) may have no solutions if g is not a BV function. In [23], the authors prove existence and
uniqueness of a solution u to Problem (1.1) provided that g ∈ C(∂Ω). In all these works, the
domain Ω was assumed to be strictly convex. In fact, it is clear that a solution may not exist if Ω
is not strictly convex; assume that Ω = [0, 1]2 with g(x1, x2) = x1 on [0, 12 ]×{0}, g(x1, x2) = 1−x1
on [ 12 , 1]×{0} and g(x1, x2) = 0 otherwise, then we see that the level sets (which are line segments;
see [11, Chapter 10]) of a solution u to Problem (1.1) are contained in the segment [0, 1] × {0},
which means that u does not satisfy u|∂Ω = g and so, the problem (1.1) does not attain a minimum.
However, the authors of [18, 19] considered the problem (1.1) in the case where Ω is convex, but
not strictly convex. More precisely, they proved that under some admissibility conditions on the
behavior of the boundary datum on the flat parts of ∂Ω, Problem (1.1) reaches a minimum. In [8],
the authors also provide a set of admissibility conditions under which they proved existence and
uniqueness of solutions to Problem (1.1) in the case where Ω is an annulus.

On the other hand, the authors of [5, 13] proved that for g ∈ BV (∂Ω), the problem (1.1) is
equivalent to the Beckmann problem (see [1]):

(1.2) inf

{ ˆ
Ω̄

|v| : v ∈ M(Ω̄,R2), ∇ · v = 0 and v · n = f := ∂τg on ∂Ω

}
,

where ∂τg denotes the tangential derivative of g and the divergence condition ∇· v = 0 and v ·n =
f on ∂Ω should be understood in the weak form

´
Ω̄
∇ϕ ·dv =

´
∂Ω
ϕ df , for all ϕ ∈ C1(Ω̄). In fact,

there is a one-to-one correspondence between vector measures Du on Ω̄ (so we include the part
of the derivative of u which is on the boundary, i.e. the possible jump from u|∂Ω to g) and vector
measures v satisfying ∇ · v = 0 and v · n = f on ∂Ω. In particular, if v is an optimal flow for the
Beckmann problem (1.2) such that |v| gives zero mass to the boundary, then the function u such
that v = Rπ

2
Du turns out to be a solution for the BV least gradient problem (1.1). Moreover,

it is well known (see, for instance, [21]) that the Beckmann problem (1.2) is equivalent to the
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Monge-Kantorovich problem [15,17] with source and target measures located on the boundary ∂Ω:

(1.3) min

{ ˆ
Ω̄×Ω̄

|x− y|dγ : γ ∈ M+(Ω̄× Ω̄), (Πx)#γ = f+ and (Πy)#γ = f−
}
,

where f+ and f− are the positive and negative parts of f . We note that Problem (1.3) has also a
dual formulation, which is the following:

(1.4) sup

{ ˆ
Ω̄

ϕd(f+ − f−) : ϕ ∈ Lip1(Ω̄)

}
.

From this duality, one can prove that if ϕ is a maximizer of the dual problem (1.4) and if γ is an
optimal transport plan of the problem (1.3), then we have ϕ(x)− ϕ(y) = |x− y| for γ − a.e. (x, y)
and so, ∇ϕ(z) = x−y

|x−y| for all z ∈ ]x, y[. On the other hand, if γ is an optimal transport plan for
Problem (1.3) then the vector measure vγ defined as follows

< vγ , ξ >=

ˆ
Ω̄×Ω̄

ˆ 1

0

ξ((1− t)x+ ty) · (y − x) dtdγ(x, y), for all ξ ∈ C(Ω̄,R2),

is a minimizer for the Beckmann problem (1.2). In addition, one can prove that any minimizer v of
Problem (1.2) is of this form v = vγ , for some optimal transport plan γ of Problem (1.3) (see [21]).
If ϕ maximizes Problem (1.4), then we have vγ = −|vγ |∇ϕ, thanks to the fact that ∇ϕ(z) = x−y

|x−y|
for all z ∈]x, y[ and γ−a.e. (x, y). This means that the optimal flows vγ share the same directions
(called transport rays); these are the rays along which the optimal transport plans γ move the mass
f+ to f−. The measure σγ := |vγ | plays a special role in the optimal transport theory; it is called
transport density and it represents the amount of transport taking place in each region of Ω:

< σγ , φ >=

ˆ
Ω̄×Ω̄

ˆ 1

0

φ((1− t)x+ ty)|x− y|dtdγ(x, y), for all φ ∈ C(Ω̄),

or equivalently,

(1.5) σγ(A) =

ˆ
Ω̄×Ω̄

H1(A ∩ [x, y]) dγ(x, y), for every Borel set A ⊂ Ω̄.

Many authors have already studied the properties (in particular, the Lp summability) of σγ . In
[9, 20], the authors proved that the transport density σγ is unique (i.e., it does not depend on the
choice of the optimal transport plan γ) and it is in L1(Ω) as soon as f+ or f− is absolutely contin-
uous with respect to the Lebesgue measure. On the other hand, the authors of [2–4] proved that
the transport density σ belongs to Lp(Ω) as soon as f+ and f− are both in Lp(Ω), for all p ∈ [1,∞].

In order to prove existence of a solution u to the BV least gradient problem (1.1), we need
to show that the transport density σγ gives zero mass to the boundary since in this case, the
boundary part of the vector measure Du, where u is the BV function such that vγ = Rπ

2
Du, will

be zero which means that u|∂Ω = g and so, thanks to the equivalence between Problems (1.1) &
(1.2), we infer that u is a minimizer for Problem (1.1). If Ω is strictly convex, one can see that
σγ(∂Ω) = 0 and so, the least gradient problem (1.1) reaches a minimum. Moreover, one can show
that Problem (1.3) has a unique solution γ provided that f+ is atomless and so, Problem (1.2) has
a unique optimal flow v which is also equivalent to say that Problem (1.1) has a unique solution
u (see [5]). On the other hand, we see that the W 1,p regularity of the solution u of Problem (1.1)
follows immediately from the Lp summability of the transport density σ between f+ and f−; we
note that this Lp summability on σ does not follow directly from the Lp bounds on σ in [2–4] as
the source and target measures here are located on the boundary. But in [5], the authors have
already studied the Lp summability of the transport density σ between two singular measures f+
and f−. More precisely, they proved that under the assumption that Ω is uniformly convex, the
transport density σ between f+ ∈ Lp(∂Ω) with p < 2 and any f− ∈ M+(∂Ω) is in Lp(Ω), while
σ belongs to L2(Ω) as soon as both f+ and f− are in L2(∂Ω); this implies that the solution u of
the BV least gradient problem (1.1) is in W 1,p(Ω) as soon as the boundary datum g ∈W 1,p(∂Ω),
p ≤ 2 and Ω is uniformly convex. Moreover, they show by a counter-example that in general the
solution u of Problem (1.1) is not in W 1,p(Ω), for p > 2, even if g ∈ Lip(∂Ω). However, in order to
obtain W 1,p regularity on u (or equivalently, Lp summability on σ) for p > 2, we need to assume
that g ∈ C1,α(∂Ω), with α = 1− 2

p .
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In this paper, we consider the BV least gradient problem with Dirichlet condition imposed on
a relatively open connected part Γ of the boundary (see [14]):

(1.6) inf

{ˆ
Ω

|Du| : u ∈ BV (Ω), u|∂Ω ∈ BV (∂Ω), u|Γ = g

}
,

where g is a given BV function on Γ and u|Γ = g is in the sense that there is an (L1) extension
g̃ of g to ∂Ω such that u|∂Ω = g̃. We note that this is a constrained least gradient problem,
since we assume that the trace of u is a BV function on the boundary, which is not necessarily the
case for any BV function over Ω such that u|Γ = g. However, we will show in Section 5 that the
classical least gradient problem with Dirichlet condition on Γ (i.e. when we remove the condition
u|∂Ω ∈ BV (∂Ω)) is completely equivalent to this constrained least gradient problem (1.6). So, we
prove existence and uniqueness of a solution u to Problem (1.6) via an optimal transport approach
and, we study the W 1,p regularity of this solution u by proving Lp estimates on the transport
density in the transport problem with Dirichlet region ∂Ω\Γ. To be more precise, we will show
that Problem (1.6) is equivalent to the following variant of the Beckmann problem:

(1.7) min

{ ˆ
Ω̄

|v| : v ∈ M(Ω̄,R2), ∇ · v = 0 and v · n = f := ∂τg on Γ

}
,

where ∇ · v = 0 and v · n = f on Γ is equivalent to say that there is a measure χ ∈ M(∂Ω\Γ)
such that

´
Ω̄
∇ϕ · dv =

´
∂Ω
ϕ d[f + χ], for all ϕ ∈ C1(Ω̄). Moreover, one can show that Problem

(1.7) is equivalent to the following optimal transport problem with Dirichlet region ∂Ω\Γ:
(1.8)

min

{ ˆ
Ω̄×Ω̄

|x−y|dγ : γ ∈ M+(Ω̄×Ω̄), spt(γ) ⊂ ∂Ω×∂Ω, [(Πx)#γ]|Γ = f+ and [(Πy)#γ]|Γ = f−
}
.

In [7], the authors studied the transport problem to the boundary. More generally, the im-
port/export transport problem from/to the boundary has been considered in [6, 16]. Here, we
study a mass transportation problem between two masses f+ and f− (which do not have a priori
the same total mass) with the possibility of transporting some mass from/to the arc ∂Ω\Γ, paying
the transport cost |x− y| for each unit of mass that moves from a point x to another one y. This
means that we can use ∂Ω\Γ as an infinite reserve/repository, we can take as much mass as we
wish from ∂Ω\Γ, or send back as much mass as we want. On the other hand, it is not difficult to
show (see [6]) that Problem (1.8) has a dual formulation, which is the following:

(1.9) sup

{ ˆ
Ω̄

ϕ d(f+ − f−) : ϕ ∈ Lip1(Ω̄), ϕ = 0 on ∂Ω\Γ
}
.

Coming back to Problem (1.7), one can show that v is a solution for Problem (1.7) if and only if
v = vγ for some optimal transport plan γ of Problem (1.8). Now, let v be such a solution and let
u be the BV function such that v = Rπ

2
Du. If Ω is strictly convex, then we have by (1.5) that

|v|(∂Ω) = 0 and so, u solves Problem (1.6). However, we will refine this existence result by showing
that |v| gives zero mass to ∂Ω as soon as Γ is strictly convex. We note that this is not obvious as
|v| is the transport density between f+ + χ+ and f− + χ−, where χ± encode the import/export
masses on ∂Ω\Γ. By the way, it is easy to see that this flow v minimizes

(1.10) min

{ ˆ
Ω̄

|v| : v ∈ M(Ω̄,R2), ∇ · v = 0 and v · n = f + χ on ∂Ω

}
.

Let us denote by g̃ the trace of u on ∂Ω (so, we have ∂τ g̃ = f + χ on ∂Ω). Then, it is clear that
u minimizes the problem:

(1.11) min

{ˆ
Ω

|Du| : u ∈ BV (Ω), u|∂Ω = g̃

}
.

Yet, this boundary datum g̃ is a priori not continuous on ∂Ω and so, it is not clear if Problem
(1.11) has a unique solution or not, even if g ∈ C(Γ). Notice that even if Problem (1.11) has a
unique solution u, this does not imply that the solution of Problem (1.6) is unique, since Problem
(1.7) may have many different solutions. Yet, we will prove that Problem (1.8) has a unique optimal
transport plan γ provided that f± are atomless. This implies that Problem (1.7) has a unique
optimal flow v and so, the solution u of Problem (1.6) is unique as soon as g ∈ C(Γ). In addition,
it is not clear if this unique solution u of Problem (1.6) (or equivalently, Problem (1.11)) is in
W 1,p(Ω) or not, since the W 1,p regularity of u is equivalent to the Lp summability of σ = |v|, while
the transport density σ here is between f++χ+ and f−+χ− and so, we cannot use [5, Proposition
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3.3] to infer that σ ∈ Lp(Ω) as the source and target measures f+ + χ+ and f− + χ− are a priori
not in Lp(∂Ω); we recall that χ± are two unknown measures on ∂Ω\Γ which are a priori not in
Lp(∂Ω\Γ). Yet, we will prove that the transport density in Problem (1.8) is in Lp(Ω) as soon as
f± ∈ Lp(Γ), p < 2 and Γ is uniformly convex (we note that the uniform convexity of the whole
boundary ∂Ω is not required here to get Lp summability on σ). Moreover, it is possible to prove
Lp estimates on the transport density σ, for p ≥ 2, under the assumptions that Γ is uniformly
convex, dist(spt(f), ∂Ω\Γ) > 0, and the projection of a.e. point x ∈ spt(f) onto ∂Ω\Γ is not an
endpoint of ∂Ω\Γ. In terms of W 1,p regularity on the solution u of Problem (1.6), we infer that
under these geometric assumptions on Γ and spt(f), the following statements hold:

g ∈W 1,p(Γ) ⇒ u ∈W 1,p(Ω), for all p ≤ 2,

g ∈ C1,α(Γ) ⇒ u ∈W 1, 2
1−α (Ω), for all α ∈ (0, 1),

g ∈ C1,1(Γ) ⇒ u ∈ Lip(Ω).

The paper is organized as follows. In Section 2, we prove that Problems (1.6), (1.7) & (1.8) are
completely equivalent. In Section 3, we study in details the transport problem (1.8) and we prove
under the assumptions that f± are atomless and Γ is strictly convex, that Problem (1.8) has a
unique optimal transport plan γ and that the corresponding transport density σ gives zero mass
to ∂Ω. In Section 4, we prove Lp estimates on the transport density σ in Problem (1.8). More
precisely, we show that σ is in Lp(Ω) as soon as f± ∈ Lp(Γ), Γ is uniformly convex and p < 2.
Moreover, σ ∈ L2(Ω) provided that f± ∈ L2(Γ), Γ is uniformly convex, dist(spt(f), ∂Ω\Γ) > 0,
and the projection of a.e. x ∈ spt(f) onto ∂Ω\Γ is not an endpoint of ∂Ω\Γ (one can also obtain
Lp estimates on σ, for p > 2, provided that f± are smooth enough). Finally, Section 5 summarizes
the applications of these results to the BV least gradient problem with Dirichlet condition (1.6).

2. On the equivalence between the BV least gradient problem with Dirichlet
condition on a part of the boundary and the optimal transport problem with

Dirichlet region

In this Section, we prove that Problems (1.6), (1.7) and (1.8) are equivalent. Throughout the
paper, Ω ⊂ R2 is assumed to be an open convex set and Γ is an open connected subset of ∂Ω. Let
g be a BV function on Γ and set f = ∂τg (the tangential derivative of g). Let f+ and f− be the
positive and negative parts of f . Then, we consider the following problems:

(2.1) inf

{ˆ
Ω

|Du| : u ∈ BV (Ω), u|∂Ω ∈ BV (∂Ω), u|Γ = g

}
,

(2.2) min

{ˆ
Ω̄

|v| : v ∈ M(Ω,R2), ∇ · v = 0 and v · n = f on Γ

}
and
(2.3)

min

{ˆ
Ω̄×Ω̄

|x−y|dγ : γ ∈ M+(Ω̄×Ω̄), spt(γ) ⊂ ∂Ω×∂Ω, [(Πx)#γ]|Γ = f+ and [(Πy)#γ]|Γ = f−
}
.

Notice that as f is the tangential derivative of a BV function on an open set Γ, then the mass
balance condition is not necessarily satisfied, i.e. f+ and f− do not have a priori the same total
mass. First, we prove that Problems (2.1) & (2.2) share the same minimal value and, we also show
a relationship between the minimizers of these two problems (see also [13]):

Proposition 2.1. We have inf (2.1) = inf (2.2). Moreover, if u is a solution for Problem (2.1)
then v := Rπ

2
Du solves Problem (2.2). On the other hand, if v is an optimal flow for Problem

(2.2) with |v|(∂Ω) = 0 then there exists a BV function u such that v := Rπ
2
Du and u is a solution

for Problem (2.1).

Proof. For every h ∈ BV (∂Ω\Γ), we denote by g̃h a BV extension of g to ∂Ω such that g̃h = h on
∂Ω\Γ. Then, we have obviously

inf

{ˆ
Ω

|Du| : u ∈ BV (Ω), u|∂Ω ∈ BV (∂Ω), u|Γ = g

}
= inf

{
inf

{ˆ
Ω

|Du| : u ∈ BV (Ω), u|∂Ω = g̃h

}
: h ∈ BV (∂Ω\Γ)

}
.
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Thanks to [5, 13], we have

inf

{ˆ
Ω

|Du| : u ∈ BV (Ω), u|∂Ω = g̃h

}
= inf

{ˆ
Ω̄

|v| : v ∈ M(Ω,R2), ∇ · v = 0 and v · n = f̃h on ∂Ω

}
,

where f̃h := ∂τ g̃h is the tangential derivative of g̃h. Yet, it is clear that f̃h = f + χ, where χ is a
measure on ∂Ω\Γ. Then, we get that

inf (2.1)

= inf

{
inf

{ˆ
Ω̄

|v| : v ∈ M(Ω,R2), ∇ · v = 0 and v · n = f + χ on ∂Ω

}
: χ ∈ M(∂Ω\Γ)

}
= inf

{ˆ
Ω̄

|v| : v ∈ M(Ω,R2), ∇ · v = 0 and v · n = f on Γ

}
.

Now, assume that u is a minimizer of Problem (2.1) and set v := Rπ
2
Du. Let (uk)k ⊂ C∞(Ω̄) with

uk → u strictly in BV(Ω). As ∇ · [Rπ
2
∇uk] = 0, then we haveˆ

Ω

Rπ
2
∇uk · ∇ϕ dx =

ˆ
∂Ω

[Rπ
2
∇uk · n]ϕdH1 =

ˆ
∂Ω

∂τuk ϕ dH1 = −
ˆ
∂Ω

uk ∂τϕ dH1, ∀ ϕ ∈ C1(Ω̄).

Passing to the limit when k → ∞, we getˆ
Ω

∇ϕ · d[Rπ
2
Du] = −

ˆ
∂Ω

u ∂τϕdH1 =

ˆ
∂Ω

ϕd[∂τu], ∀ ϕ ∈ C1(Ω̄).

Yet, u|Γ = g which means that there is a measure χ on ∂Ω\Γ such that ∂τu = f + χ. Then, we
have ˆ

Ω

∇ϕ · d[Rπ
2
Du] =

ˆ
∂Ω

ϕ d[f + χ], for all ϕ ∈ C1(Ω̄).

This implies that v is admissible in Problem (2.2) (i.e., ∇ · v = 0 and v · n = f on Γ). On the
other hand, we have ˆ

Ω̄

|v| =
ˆ
Ω

|Du| = min (2.1) = min (2.2).

Then, v solves Problem (2.2). In the other direction, let v be a solution for Problem (2.2) with
|v|(∂Ω) = 0 (we extend v by 0 outside Ω). Let ρε be a sequence of mollifiers and set vε to be the
mollification of v, i.e. vε = v ∗ ρε := (vε1, v

ε
2). As ∇ · v = 0, we also have ∇ · vε = 0. We define a

sequence of mollified differential forms vε2dx1 − vε1dx2. It is clear that this differential 1−form is
closed and so, it is exact. Then, there is a smooth function uε such that ∇uε = R−π

2
vε. Up to

adding a constant, one can assume that the mean value of uε on Ω is 0 and so, we haveˆ
Ω

|uε|dx ≤ C

ˆ
Ω

|∇uε|dx = C

ˆ
Ω

|vε|dx.

Then, we get

∥uε∥W 1,1(Ω) ≤ (C + 1)∥vε∥L1(Ω) ≤ (C + 1)

ˆ
Ω

|v|.

Hence, up to a subsequence, (uε)ε converges weakly* in BV (Ω) to some function u (moreover,
uε → u strictly in BV since |vε| ⇀ |v|). This implies directly that Du = R−π

2
v. On the other

hand, we have ˆ
Ω̄

v · ∇ϕdx =

ˆ
∂Ω

ϕ d[f + χ], for all ϕ ∈ C1(Ω̄).

Yet,ˆ
Ω

∇ϕ · d[Rπ
2
Du] = lim

ε→0

ˆ
Ω

Rπ
2
∇uε · ∇ϕdx = lim

ε→0

ˆ
∂Ω

[Rπ
2
∇uε · n]ϕ dH1 = lim

ε→0

ˆ
∂Ω

∂τuε ϕ dH1

= − lim
ε→0

ˆ
∂Ω

uε ∂τϕ dH1 = −
ˆ
∂Ω

u ∂τϕ dH1 =

ˆ
∂Ω

ϕ d[∂τu], for all ϕ ∈ C1(Ω̄).

This implies that ∂τu = f + χ. Consequently, there is a BV function u such that v = Rπ
2
Du and

u|Γ = g. In addition, this function u solves Problem (2.1) thanks to the fact thatˆ
Ω

|Du| =
ˆ
Ω̄

|v| = min (2.2) = min (2.1). □
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On the other hand, one can show that the variant of the Beckmann problem (2.2) is equivalent
to the optimal transport problem with Dirichlet region (2.3) in the sense that these two problems
have the same minimal value and, every solution of Problem (2.2) comes from an optimal transport
plan of Problem (2.3).

Proposition 2.2. We have min (2.2) = min (2.3). Moreover, v is a solution for Problem (2.2) if
and only if v = vγ , for some optimal transport plan γ of Problem (2.3).

Proof. Thanks to the equivalence between the Beckmann problem (1.2) and the Monge-Kantorovich
problem (1.3) (see [21]), we have

min

{ˆ
Ω̄

|v| : v ∈ M(Ω,R2), ∇ · v = 0 and v · n = f on Γ

}
= min

{
min

{ˆ
Ω̄

|v| : v ∈ M(Ω,R2), ∇ · v = 0 and v · n = f + χ on ∂Ω

}
: χ ∈ M(∂Ω\Γ)

}
= min

χ∈M(∂Ω\Γ)

{
min

{ˆ
Ω̄×Ω̄

|x−y|dγ : γ ∈ M+(Ω̄×Ω̄), (Πx)#γ = f++χ+ and (Πy)#γ = f−+χ−
}}

= min

{ ˆ
Ω̄×Ω̄

|x−y|dγ : γ ∈ M+(Ω̄×Ω̄), spt(γ) ⊂ ∂Ω×∂Ω, [(Πx)#γ]|Γ = f+ and [(Πy)#γ]|Γ = f−
}
.

Let v be a solution of Problem (2.2) and let us denote by χ the measure on ∂Ω\Γ such that
v · n = f + χ on ∂Ω. So, it is clear that v solves

(2.4) min

{ˆ
Ω̄

|v| : v ∈ M(Ω̄,R2), ∇ · v = 0 and v · n = f + χ on ∂Ω

}
.

From [21, Theorem 4.13], there is a transport plan γ which minimizes the following Kantorovich
problem

min

{ˆ
Ω̄×Ω̄

|x− y|dγ : γ ∈ M+(Ω̄× Ω̄), (Πx)#γ = f+ + χ+ and (Πy)#γ = f− + χ−
}

such that v = vγ . Yet, we see obviously that this transport plan γ is admissible in Problem (2.3).
Moreover, we have the following equalities:ˆ

Ω̄×Ω̄

|x− y|dγ =

ˆ
Ω̄

|v| = min (2.2) = min (2.3).

This implies that γ is an optimal transport plan for Problem (2.3) as well. In the other direction,
let γ be an optimal transport plan for Problem (2.3). Then, we haveˆ

Ω̄

|vγ | = σγ(Ω̄) =

ˆ
Ω̄×Ω̄

|x− y|dγ = min (2.3) = min (2.2). □

3. Transport problem with Dirichlet region

In this section, we study the problem (2.3). More precisely, we will decompose Problem (2.3)
into three subproblems: the first transport problem is going from Γ to Γ, the second one (the export
transport problem) from Γ to ∂Ω\Γ and the third one (the import transport problem) from ∂Ω\Γ
to Γ. In this way, we can write the optimal transport plan γ of Problem (2.3) as a sum of three
transport plans γ(Γ,Γ) (which transports mass from Γ to Γ), γ(Γ, ∂Ω\Γ) (which transports mass
from Γ to ∂Ω\Γ) and γ(∂Ω\Γ,Γ) (which transports mass from ∂Ω\Γ to Γ). Let σ(Γ,Γ), σ(Γ, ∂Ω\Γ)
and σ(∂Ω\Γ,Γ) be the transport densities associated with γ(Γ,Γ), γ(Γ, ∂Ω\Γ) and γ(∂Ω\Γ,Γ),
respectively. Then, the transport density σ associated with γ is σ(Γ,Γ)+σ(Γ, ∂Ω\Γ)+σ(∂Ω\Γ,Γ).
We will prove that under the assumption that Γ is strictly convex, the transport densities σ(Γ,Γ),
σ(Γ, ∂Ω\Γ) and σ(∂Ω\Γ,Γ) give zero mass to ∂Ω and so, σ(∂Ω) = 0. On the other hand, thanks
to this decomposition, we will also show that Problem (2.3) has a unique optimal transport plan
γ. First, we have the following existence result:

Proposition 3.1. Problem (2.3) reaches a minimum.

Proof. Let (γk)k be a minimizing sequence in Problem (2.3). Then, it is not difficult to see that
one can assume that γk(∂Ω\Γ × ∂Ω\Γ) = 0, for every k. As γk ∈ M+(Ω̄ × Ω̄) with spt(γk) ⊂
∂Ω× ∂Ω, [(Πx)#γk]|Γ = f+ and [(Πy)#γk]|Γ = f−, then we have

γk(Ω̄× Ω̄) ≤ γk(Γ× Ω̄) + γk(Ω̄× Γ) = f+(Γ) + f−(Γ).
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Hence, there is a subsequence (γki
)ki

and a transport plan γ ∈ M+(Ω̄ × Ω̄), spt(γ) ⊂ ∂Ω × ∂Ω
with [(Πx)#γ]|Γ = f+ and [(Πy)#γ]|Γ = f− such that γki

⇀ γ. And so,
´
Ω̄×Ω̄

|x − y|dγki
→´

Ω̄×Ω̄
|x− y|dγ, which implies that γ minimizes Problem (2.3). □

Let γ be an optimal transport plan for Problem (2.3) (we recall that γ(∂Ω\Γ × ∂Ω\Γ) = 0)
and let us denote by χ+ and χ− the two nonnegative measures such that (Πx)#γ = f+ + χ+ and
(Πy)#γ = f− + χ−. In other words, χ+ is the mass to be imported from ∂Ω\Γ while χ− is the
mass to be exported to ∂Ω\Γ. So, we have clearly the following:

Proposition 3.2. γ is an optimal transport plan for the Kantorovich problem (1.3) between f+ +
χ+ and f− + χ−.

Proof. Let Λ be a transport plan between f+ + χ+ and f− + χ−. Then, we have obviously
[(Πx)#Λ]|Γ = f+ and [(Πy)#Λ]|Γ = f−. Yet, γ minimizes Problem (2.3). Then, we haveˆ

Ω̄×Ω̄

|x− y|dγ ≤
ˆ
Ω̄×Ω̄

|x− y|dΛ. □

Set
γ(Γ,Γ) = γ|Γ×Γ, γ(Γ, ∂Ω\Γ) = γ|Γ×∂Ω\Γ, γ(∂Ω\Γ,Γ) = γ|∂Ω\Γ×Γ,

and
ν+ = (Πx)#[γ(Γ, ∂Ω\Γ)], ν− = (Πy)#[γ(∂Ω\Γ,Γ)].

Then, we consider the following transport problems:

(3.1) min

{ ˆ
Ω̄×Ω̄

|x− y|dγ : γ ∈ M+(Ω̄× Ω̄), (Πx)#γ = f+ − ν+ and (Πy)#γ = f− − ν−
}
,

(3.2) min

{ ˆ
Ω̄×Ω̄

|x− y|dγ : γ ∈ M+(Ω̄× Ω̄), (Πx)#γ = ν+ and spt((Πy)#γ) ⊂ ∂Ω\Γ
}
,

(3.3) min

{ˆ
Ω̄×Ω̄

|x− y|dγ : γ ∈ M+(Ω̄× Ω̄), spt((Πx)#γ) ⊂ ∂Ω\Γ and (Πy)#γ = ν−
}
.

So, we have the following:

Proposition 3.3. γ(Γ,Γ), γ(Γ, ∂Ω\Γ) and γ(∂Ω\Γ,Γ) minimize Problems (3.1), (3.2) and (3.3),
respectively.

Proof. It is easy to see that γ(Γ,Γ), γ(Γ, ∂Ω\Γ) and γ(∂Ω\Γ,Γ) are admissible in Problems (3.1),
(3.2) and (3.3), respectively. Now, let γ1, γ2 and γ3 be the optimal transport plans for Problems
(3.1), (3.2) and (3.3), respectively. Then, the transport plan γ1+γ2+γ3 minimizes Problem (2.3),
since the functional to be minimized is linear in γ and γ(Γ,Γ)+γ(Γ, ∂Ω\Γ)+γ(∂Ω\Γ,Γ) is in fact
an optimal transport plan for Problem (2.3). This concludes the proof. □

Set
P̃ (x) = argmin{|x− y| : y ∈ ∂Ω\Γ}, for every x ∈ Γ.

Lemma 3.4. P̃ (x) is a singleton at every point x ∈ Γ, except possibly at a countable set A ⊂ Γ.

Proof. Let us denote by A ⊂ Γ the set of points x such that P̃ (x) is not a singleton. For each
x ∈ A, let P1(x) and P2(x) be two different points in P̃ (x). Let ∆x ⊂ Ω be the region delimited
by [x, P1(x)], [x, P2(x)] and ∂Ω\Γ. It is easy to check that these sets {∆x}x∈A are disjoint with
L2(∆x) > 0. Hence, the set A is at most countable. □

In the sequel, we will denote by P the Borel selector function of this projection map to the arc
∂Ω\Γ. Then, we have the following:

Proposition 3.5. The transport plans (Id, P )#ν
+ and (P, Id)#ν

− minimize Problems (3.2) &

(3.3), respectively. Moreover, for γ(Γ, ∂Ω\Γ)− a.e. (x, y), y ∈ P̃ (x) and for γ(∂Ω\Γ,Γ)− a.e.
(x, y), x ∈ P̃ (y). If f± are atomless (i.e., f±({x}) = 0, for every x ∈ Γ), then γ(Γ, ∂Ω\Γ) =
(Id, P )#ν

+ and γ(∂Ω\Γ,Γ) = (P, Id)#ν
−.
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Proof. Let us prove that for γ(Γ, ∂Ω\Γ)− a.e. (x, y), y ∈ P̃ (x) (in the same way, we prove that for
γ(∂Ω\Γ,Γ)− a.e. (x, y), x ∈ P̃ (y)). Assume that this statement does not hold, then we getˆ

Ω̄×Ω̄

|x− y|d[γ(Γ, ∂Ω\Γ)] >

ˆ
Ω̄×Ω̄

|x− P (x)|d[γ(Γ, ∂Ω\Γ)] =
ˆ
Γ

|x− P (x)|dν+(x)

=

ˆ
Ω̄×Ω̄

|x− y|d[(Id, P )#ν+].

This is a contradiction since γ(Γ, ∂Ω\Γ) minimizes Problem (3.4) while (Id, P )#ν
+ is admissible

in Problem (3.4). This shows at the same time that (Id, P )#ν
+ minimizes Problem (3.4). On the

other hand, it is clear that ν+ = (Πx)#[γ(Γ, ∂Ω\Γ)] ≤ [(Πx)#γ]Γ = f+. Now, assume that f+
is atomless. Then, by Lemma 3.4 and thanks to the fact that ν+ is atomless, we infer that for
γ(Γ, ∂Ω\Γ)− a.e. (x, y), we have y ∈ P̃ (x) = {P (x)}. Hence, γ(Γ, ∂Ω\Γ) = (Id, P )#ν

+. □

Corollary 3.6. Assume f± are atomless. Then, the transport plans γ(Γ, ∂Ω\Γ) and γ(∂Ω\Γ,Γ)
minimize the following problems, respectively

(3.4) min

{ˆ
Ω̄×Ω̄

|x− y|dγ : γ ∈ M+(Ω̄× Ω̄), (Πx)#γ = ν+ and (Πy)#γ = P#ν
+

}
and

(3.5) min

{ ˆ
Ω̄×Ω̄

|x− y|dγ : γ ∈ M+(Ω̄× Ω̄), (Πx)#γ = P#ν
− and (Πy)#γ = ν−

}
.

Let σ(Γ,Γ), σ(Γ, ∂Ω\Γ) and σ(∂Ω\Γ,Γ) be the transport densities associated with the transport
plans γ(Γ,Γ), γ(Γ, ∂Ω\Γ) and γ(∂Ω\Γ,Γ), respectively. From (1.5), for every Borel set A ⊂ Ω̄, we
have

(3.6) σ(Γ,Γ)[A] =

ˆ
Γ×Γ

H1(A ∩ [x, y]) d[γ(Γ,Γ)](x, y),

(3.7) σ(Γ, ∂Ω\Γ)[A] =
ˆ
Γ×∂Ω\Γ

H1(A ∩ [x, y]) d[γ(Γ, ∂Ω\Γ)](x, y),

and

(3.8) σ(∂Ω\Γ,Γ)[A] =
ˆ
∂Ω\Γ×Γ

H1(A ∩ [x, y]) d[γ(∂Ω\Γ,Γ)](x, y).

The aim now is to prove that under a geometric assumption on Γ, these transport densities
σ(Γ,Γ), σ(Γ, ∂Ω\Γ) and σ(∂Ω\Γ,Γ) give zero mass to the boundary ∂Ω. More precisely, we have
the following:

Proposition 3.7. Assume that Γ is strictly convex. Then, the transport density σ associated with
the optimal transport plan γ of Problem (2.3) gives zero mass to ∂Ω.

Proof. From (3.6), we have

σ(Γ,Γ)[∂Ω] =

ˆ
Γ×Γ

H1(∂Ω ∩ [x, y]) d[γ(Γ,Γ)](x, y).

Thanks to the fact that Γ is an open strictly convex part of ∂Ω, we have obviously ∂Ω∩ ]x, y[= ∅,
for all (x, y) ∈ Γ× Γ and so, σ(Γ,Γ)[∂Ω] = 0. On the other hand, one has

σ(Γ, ∂Ω\Γ)[∂Ω] =
ˆ
Γ×∂Ω\Γ

H1(∂Ω ∩ [x, y]) d[γ(Γ, ∂Ω\Γ)](x, y).

Yet,
H1(∂Ω ∩ [x, y]) = H1(Γ ∩ [x, y]) +H1(∂Ω\Γ ∩ [x, y]).

From the strict convexity of Γ, for all (x, y) ∈ Γ × ∂Ω\Γ, we have Γ ∩ [x, y] = {x} and so,
H1(Γ ∩ [x, y]) = 0. In addition, it is clear that H1(∂Ω\Γ ∩ [x, y]) = 0, for all (x, y) ∈ Γ × ∂Ω\Γ,
since, by Proposition 3.5, ∂Ω\Γ ∩ [x, y] = {y}, for γ(Γ, ∂Ω\Γ)− a.e. (x, y). This implies that
σ(Γ, ∂Ω\Γ)[∂Ω] = 0. In the same way, one can prove that σ(∂Ω\Γ,Γ)[∂Ω] = 0. This concludes the
proof as σ = σ(Γ,Γ) + σ(Γ, ∂Ω\Γ) + σ(∂Ω\Γ,Γ). □

Now, we will prove that the transport problem (2.3) has a unique optimal transport plan γ.
This will imply that the solution of the minimal flow problem (2.2) is unique as well and then,
Problem (2.1) has a unique solution. First, we introduce the following:
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Lemma 3.8. Assume f± are atomless. Let γ be an optimal transport plan for Problem (2.3) and
consider the transport plans γ(Γ,Γ), γ(Γ, ∂Ω\Γ) and γ(∂Ω\Γ,Γ). Let ν+ := (Πx)#[γ(Γ, ∂Ω\Γ)]
and ν− := (Πy)#[γ(∂Ω\Γ,Γ)]. Then, there exists two sets A± ⊂ Γ such that A± is a countable
union of connected arcs and, ν± = f± · 1A± .

Proof. Let us prove that there is a set A+ ⊂ Γ such that ν+ = f+ · 1A+ . Assume that this is
not the case, i.e. there is some set A such that 0 < ν+(A) < f+(A). This means that on A we
split the mass in two parts: one is going to Γ and the second one is exported to ∂Ω\Γ. For each
x ∈ A, let R+

x and R−
x be two transport rays from x to Γ and ∂Ω\Γ, respectively. Let ∆x ⊂ Ω be

the region delimited by R+
x , R

−
x and ∂Ω\Γ. Similarly to Lemma 3.4, one can see that these sets

{∆x}x∈A are disjoint with L2(∆x) > 0. Hence, A is at most countable and so, f+(A) = 0. Hence,
ν+ = f+ · 1A+ , for some A+ ⊂ Γ (one can see that A+ is a countable union of connected arcs). □

Proposition 3.9. Assume that f± are atomless. Then, Problem (2.3) has a unique optimal
transport plan γ.

Proof. First, we show that the transport plan γ(Γ,Γ) is induced by a map T (we note that this is
similar to [5, Proposition 2.5], but we will introduce the proof for the sake of completeness). Let Λ
be an optimal transport plan for Problem (3.1). We denote by D the set of points that belong to
different transport rays. We note that two different transport rays can only intersect at an endpoint
and so, D ⊂ Γ. Fix x ∈ spt(f+−ν+)∩D and let us denote by R±

x two different transport rays from
x to spt(f− − ν−). Let ∆x ⊂ Ω be the region delimited by R+

x , R−
x and Γ. Then, it is clear that

these sets {∆x}x are disjoint with L2(∆x) > 0. This implies that the set D is at most countable
and so, thanks to the fact that f+ is atomless, f+(D) = 0. For every x ∈ spt(f+ − ν+)\D,
there is a unique transport ray Rx starting at x and this ray intersects Γ at exactly one point
(say T (x)). This yields that γ(Γ,Γ) = (Id, T )#[f

+ − ν+]. On the other hand, by Proposition
3.5, we have γ(Γ, ∂Ω\Γ) = (Id, P )#ν

+ and γ(∂Ω\Γ,Γ) = (P, Id)#ν
−. Now, assume that γ1

and γ2 minimize Problem (2.3). Set ν+1 = (Πx)#[γ1(Γ, ∂Ω\Γ)], ν−1 = (Πy)#[γ1(∂Ω\Γ,Γ)], ν+2 =
(Πx)#[γ2(Γ, ∂Ω\Γ)] and ν−2 = (Πy)#[γ2(∂Ω\Γ,Γ)]. Let T1 and T2 be the two transport maps such
that γ1(Γ,Γ) and γ2(Γ,Γ) are induced by T1 and T2, respectively. Then, for all φ ∈ C(Ω̄× Ω̄), we
have

< γ1, φ >=

ˆ
Γ

φ(x, T1(x)) d[f
+ − ν+1 ](x) +

ˆ
Γ

φ(x, P (x)) dν+1 (x) +

ˆ
Γ

φ(P (y), y) dν−1 (y)

and

< γ2, φ >=

ˆ
Γ

φ(x, T2(x)) d[f
+ − ν+2 ](x) +

ˆ
Γ

φ(x, P (x)) dν+2 (x) +

ˆ
Γ

φ(P (y), y) dν−2 (y).

Yet, it is easy to see that γ := γ1+γ2

2 minimize Problem (2.3) as well. But, this is a contradiction
as, for all φ ∈ C(Ω̄× Ω̄), one has

< γ,φ >

=

ˆ
Γ

φ(x, T (x)) d[f+ − ν+](x) +

ˆ
Γ

φ(x, P (x)) dν+(x) +

ˆ
Γ

φ(P (y), y) dν−(y)

=
1

2

[ˆ
Γ

φ(x, T1(x)) d[f
+ − ν+1 ](x) +

ˆ
Γ

φ(x, P (x)) dν+1 (x) +

ˆ
Γ

φ(P (y), y) dν−1 (y)

]

+
1

2

[ˆ
Γ

φ(x, T2(x)) d[f
+ − ν+2 ](x) +

ˆ
Γ

φ(x, P (x)) dν+2 (x) +

ˆ
Γ

φ(P (y), y) dν−2 (y)

]
.

From Lemma 3.8, there are subsets A±, A±
1 and A±

2 of Γ such that ν± = f± · 1A± , ν±1 = f± · 1A±
1

and ν±2 = f± · 1A±
2
. Then, for all φ ∈ C(Ω̄× Ω̄) such that φ = 0 on ∂Ω\Γ× ∂Ω, we have

ˆ
Γ

φ(x, T+(x)) df+(x) =
1

2

[ˆ
Γ

φ(x, T+
1 (x)) df+(x) +

ˆ
Γ

φ(x, T+
2 (x)) df+(x)

]
,

where

T+(x) :=

{
P (x) if x ∈ A+,

T (x) if x ∈ spt(f+)\A+.
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Yet, it is clear that this equality holds if and only if T+
1 = T+

2 = T+, which is equivalent to say
that A+

1 = A+
2 = A+ and T1 = T2 = T . On the other hand, we infer that, for all φ ∈ C(Ω̄× Ω̄),

(3.9)
ˆ
A−

φ(P (y), y) df−(y) =
1

2

ˆ
A−

1

φ(P (y), y) df−(y) +
1

2

ˆ
A−

2

φ(P (y), y) df−(y).

If 1A− = 1
2 (1A−

1
+ 1A−

2
) does not hold f−-a.e., then there exists a function ψ ∈ C(Ω̄) such that´

Γ
ψ [1A− − 1

2 (1A−
1
+ 1A−

2
)] df− > 0. But, this contradicts (3.9) with φ(x, y) := ψ(y), for all

(x, y) ∈ Ω̄× Ω̄. This implies that A−
1 = A−

2 = A− as well (or equivalently, ν− = ν−1 = ν−2 ). □

4. Lp summability of the transport density between singular measures

In this section, we study the Lp summability of the transport density σ in Problem (1.8) or
equivalently, in the Kantorovich problem between f+ + χ+ and f− + χ−, where χ± represent the
import/export masses on ∂Ω\Γ. In [5], the authors have already studied the Lp summability of the
transport density σ between two singular measures f+ and f− on ∂Ω. In particular, they proved
that if Ω is uniformly convex, then σ is in Lp(Ω) provided that f+ or f− is in Lp(∂Ω) and p < 2.
But, the L2 summability of σ requires that both f+ and f− belong to L2(∂Ω) and, to go beyond
L2 summability we need extra regularity on f+ and f−. The problem is that here χ+ and χ− are
two unknown measures on ∂Ω\Γ and so, χ± are a priori not in Lp(∂Ω\Γ). Then, the idea will be
to study the Lp summability of each transport density σ(Γ,Γ), σ(Γ, ∂Ω\Γ) and σ(∂Ω\Γ,Γ) so that
we get the summability of σ. More precisely, we will show that under some geometric assumptions,
the following statements hold:

f± ∈ Lp(Γ) ⇒ σ ∈ Lp(Ω), for all p ≤ 2.

f± ∈ C0,α(Γ) ⇒ σ ∈ L
2

1−α (Ω), for all α ∈ (0, 1),

f± ∈ Lip(Γ) ⇒ σ ∈ L∞(Ω).

First, we need to introduce the following

Definition 4.1. Let Ω be an open bounded domain and Γ ⊂ ∂Ω. We say that Γ is uniformly
convex if there exists R < ∞ such that, for every x ∈ Γ and every unit vector −n in the exterior
normal cone to Ω at x, we have Γ ⊂ B(z,R) with z = x+Rn.

Remark 4.2. If Γ is smooth, then the notion of uniform convexity in Definition 4.1 is equivalent
to saying that the curvature of Γ is larger than 1

R .

Proposition 4.3. The transport density σ(Γ,Γ) belongs to Lp(Ω) provided that f± ∈ Lp(Γ), p ≤ 2
and Γ is uniformly convex.

Proof. σ(Γ,Γ) is the transport density between f+ − ν+ and f− − ν−. Yet, by Lemma 3.8,
f+ − ν+ = f+ · 1B+ and f− − ν− = f− · 1B− , for some sets B± ⊂ Γ. Hence, f+ − ν+ and f− − ν−

are in Lp(Γ). Yet, in [5, Proposition 3.3], the authors show that the transport density σ between
two Lp densities g+ and g− on ∂Ω is in Lp(Ω) as soon as ∂Ω is uniformly convex (see Definition
4.1 with Γ = ∂Ω). However, it is not difficult to check that the proof of [5, Proposition 3.3] also
works if we only have [spt(g+) ∪ spt(g−)] ⊂ Γ and Γ is uniformly convex. Hence, thanks to the
uniform convexity of Γ, we infer that σ(Γ,Γ) ∈ Lp(Ω). □

Proposition 4.4. Suppose that Γ is uniformly convex and f± ∈ C0,α(Γ) with 0 < α ≤ 1. Then,
the transport density σ(Γ,Γ) is in Lp(Ω) for p = 2

1−α (with p = ∞ for α = 1).

Proof. First, we recall that there exists two sets B± ⊂ Γ such that B± is a countable union of
connected arcs (B±

n )n ⊂ Γ, f+ − ν+ = f+ · 1B+ , f− − ν− = f− · 1B− and, f+ − ν+ on B+
n is

transported to f−−ν− on B−
n , for all n. Hence, we have f±−ν± ∈ C0,α(B±

n ). If dist(B+
n , B

−
n ) > 0,

then by [5, Remark 5.10], the transport density between [f+ − ν+] · 1B+
n

and [f− − ν−] · 1B−
n

is in

L∞(Ω). Now, assume that B+
n ∩ B−

n ̸= ∅. We have that f+ − ν+ and f− − ν− are C0,α on the
arc B+

n ∪B−
n . In [5, Proposition 3.5], the authors show that the transport density σ between two

C0,α densities g+ and g− on ∂Ω is in Lp(Ω) with p = 2
1−α as soon as ∂Ω is uniformly convex, and

we have the following estimate:

(4.1) ||σ||pLp ≤ CH1(spt(g+) ∪ spt(g−)),

where C = C( 1
R , ||g

±||C0,α) <∞. Again, it is not difficult to check that the proof of [5, Proposition
3.5] also works if g± ∈ C0,α(spt(g+)∪ spt(g−)), [spt(g+)∪ spt(g−)] ⊂ Γ and Γ is uniformly convex.
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Then, the transport density σ(Γ,Γ) between B+
n and B−

n is in L
2

1−α (Ω), for all n, and so thanks
to (4.1), we infer that σ(Γ,Γ) ∈ L

2
1−α (Ω). □

On the other hand, we have the following:

Proposition 4.5. The transport density σ(Γ, ∂Ω\Γ) (resp. σ(∂Ω\Γ,Γ)) belongs to Lp(Ω) provided
that f+ (resp. f−) is in Lp(Γ), p < 2 and Γ is uniformly convex.

Proof. σ(Γ, ∂Ω\Γ) is the transport density between ν+ and P#ν
+. So, we can decompose this

transport density into two parts σ1 and σ2, where σ1 is the transport density between a part
of ν+ and an endpoint of ∂Ω\Γ, while σ2 is the transport density between the other part of
ν+ (supported on a set Γ′ ⊂ Γ) and its projection P (Γ′) onto ∂Ω\Γ. It is easy to see that
dist(Γ′, P (Γ′)) > 0. Thanks to [5, Proposition 3.2], the transport density between g+ ∈ Lp(∂Ω)
and any g− ∈ M+(∂Ω) is in Lp(Ω) provided that p < 2 and ∂Ω is uniformly convex. But, as
we have already mentioned previously, one can prove the same result under the assumption that
[spt(g+) ∪ spt(g−)] ⊂ Γ and Γ is uniformly convex. Hence, σ1 ∈ Lp(Ω) provided that f+ ∈ Lp(Γ)
with p < 2 and Γ is uniformly convex. On the other hand, we recall that by [5, Remark 5.10],
the transport density between g+ and g− is in Lp(Ω), for all p < 2, as soon as g+ ∈ Lp(∂Ω) and
spt(g+) ∩ spt(g−) = ∅. Hence, as dist(Γ′, P (Γ′)) > 0, this yields that σ2 is in Lp(Ω) as soon as
f+ ∈ Lp(Γ). □

Consequently, we get the following Lp summability on the transport density σ for p < 2:

Proposition 4.6. The transport density σ belongs to Lp(Ω) as soon as f± ∈ Lp(Γ), p < 2 and Γ
is uniformly convex.

Proof. This follows immediately from Propositions 4.3 & 4.5 and the fact that σ = σ(Γ,Γ) +
σ(Γ, ∂Ω\Γ) + σ(∂Ω\Γ,Γ). □

The aim now is to extend this Lp summability result on the transport density σ to the case
p ≥ 2. We recall that, for p ≥ 2, the Lp summability of the transport density σ between two
measures f+ and f− on ∂Ω requires Lp summability of both f+ and f−. So, it is not clear if the
transport density σ(Γ, ∂Ω\Γ) is in Lp(Ω) or not, since the target measure is the projection of ν+
onto ∂Ω\Γ. However, we will show that under some geometric assumptions, it is possible to prove
Lp estimates on the transport density σ(Γ, ∂Ω\Γ), for p ≥ 2. In the sequel, we will say that the
assumption (A) holds if

(A) dist(spt(f), ∂Ω\Γ) > 0 and for a.e. x ∈ spt(f), P (x) is not an endpoint of ∂Ω\Γ.

Proposition 4.7. Assume that (A) holds and Γ is strictly convex. Then, the transport density
σ(Γ, ∂Ω\Γ) is in Lp(Ω) provided that f+ ∈ Lp(Γ), for all p ∈ [1,∞].

Proof. The transport density σ(Γ, ∂Ω\Γ) is between ν+ and its projection to ∂Ω\Γ, i.e. we have

< σ(Γ, ∂Ω\Γ), ϕ >=
ˆ
Γ

ˆ 1

0

ϕ((1− t)x+ tP (x))|x− P (x)|dtdν+(x), for all ϕ ∈ C(Ω̄).

Let us find an explicit formula for this transport density σ(Γ, ∂Ω\Γ). Assume that ∂Ω\Γ is C2. Fix
a point x0 on spt(ν+) and let Γ′ ⊂ Γ be a small arc around x0. Let α̃(s) := (s, α(s)), s ∈ (−ε, ε),
be a parametrization of the arc P (Γ′) and β(s) := (β1(s), β2(s)) be a parametrization of Γ′ (we
will show later that β(s) is Lipschitz) such that α(0) = α′(0) = 0 and P (β(s)) = α̃(s), for every
s ∈ [−ε, ε]. Let ∆ be the set of all transport rays [x, P (x)], x ∈ Γ′. We see that, for all y ∈ ∆,
there exists s ∈ [−ε, ε] and t ∈ [0, 1] such that

y = ((1− t)β1(s) + ts, (1− t)β2(s) + tα(s)).

Then, we have
< σ(Γ, ∂Ω\Γ), ϕ >:=ˆ ε

−ε

ˆ 1

0

ϕ((1− t)β1(s) + ts, (1− t)β2(s) + tα(s))τ(s)|β′(s)|ν+(β(s)) dtds, ∀ ϕ ∈ C(∆),

where
τ(s) := |β(s)− α̃(s)|, ∀ s ∈ [−ε, ε].

Hence,

< σ(Γ, ∂Ω\Γ), ϕ >=
ˆ
Ω

ϕ(y)
τ(s)|β′(s)|ν+(β(s))

J(s, t)
dy, for all ϕ ∈ C(∆),
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where

J(s, t) := |det(D(s,t)(y1, y2))| = (β1(s)− s, β2(s)− α(s)) · [(1− t)(−β′
2(s), β

′
1(s)) + t(−α′(s), 1)].

Then,

σ(Γ, ∂Ω\Γ)[y] = τ(s)|β′(s)|ν+(β(s))
J(s, t)

, for a.e. y ∈ ∆.

The aim now is to prove a uniform upper bound on |β′(s)|
J(s,t) . First, it is easy to see that the following

holds

(4.2) (β1(s)− s, β2(s)− α(s)) · (−α′(s), 1) ≥ dist(spt(f), ∂Ω\Γ).

Let β̃(r), r ∈ (−δ, δ), be a regular parametrization of the arc Γ′ such that |β̃
′
| = 1 and β̃

′
1 > 0.

For every s ∈ (−ε, ε), let r(s) ∈ (−δ, δ) be such that P (β̃(r(s))) = α̃(s) (we note that r(s) is
increasing). From the strict convexity of Γ and the fact that dist(spt(f), ∂Ω\Γ) > 0, we see that
there is a uniform constant c > 0 such that

(4.3) (β1(s)− s, β2(s)− α(s)) · (−β̃′
2(r(s)), β̃

′
1(r(s))) ≥ c.

In particular, one has
β̃
′
1(0) ≥ c.

On the other hand, we have

(4.4) (β̃(r(s))− α̃(s)) ·Rπ
2
Dd∂Ω\Γ(α̃(s)) = 0.

Yet,

Dd∂Ω\Γ(α̃(s)) = Dd∂Ω\Γ(α̃(0)) +D2d∂Ω\Γ(α̃(0))(α̃(s)− α̃(0)) + o(|α̃(s)− α̃(0)|).

Let us denote by κ(α̃(s)) the curvature of ∂Ω\Γ at the point α̃(s). Then, one has (see, for instance,
[10, Lemma 14.17])

D2d∂Ω\Γ(α̃(0)) = −κ(α̃(0))
[
1 0
0 0

]
.

Hence, we get that

Dd∂Ω\Γ(α̃(s)) =

[
−κ(α̃(0))s+ o(s)

1 + o(s)

]
.

Recalling (4.4), this yields that

s− β̃1(r(s))− κ(α̃(0))(β̃2(r(s))− α(s))s+ o(s) = 0.

But,
β̃(r) = β̃(0) + β̃

′
(0)r + o(r) = (0, τ(0)) + β̃

′
(0)r + o(r).

Therefore,
s− β̃

′
1(0)r(s)− κ(α̃(0))(τ(0) + β̃

′
2(0)r(s)− α(s))s+ o(s) + o(r(s))

= (1− κ(α̃(0))τ(0))s− (β̃
′
1(0) + κ(α̃(0))β̃

′
2(0)s)r(s) + o(s) + o(r(s)) = 0.

Consequently, the map s 7→ r(s) is Lipschitz on (−ε, ε) (and so, for β(s)) and, one has the following
approximation:

r(s) =
1− κ(α̃(0))τ(0)

β̃
′
1(0)

s+ o(s).

Combining (4.2) & (4.3), we infer that

J(s, t) ≥ c[(1− t)r′(s) + t].

Hence,
|β′(s)|
J(s, t)

≤ c−1 r′(s)

(1− t)r′(s) + t
≤ 2c−1 max{r′(s), 1} ≤ 2c−1

(
1− κ(α̃(0))τ(0)

β̃
′
1(0)

+ 1

)
.

This implies that there is a uniform constant C depending only on the geometry of Γ and the
distance between spt(f) and ∂Ω\Γ such that

|β′(s)|
J(s, t)

≤ C.
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Therefore, we get
||σ(Γ, ∂Ω\Γ)||pLp(∆)

=

ˆ ε

−ε

ˆ 1

0

τ(s)p|β′(s)|pν+(β(s))p

J(s, t)p−1
dtds

=

ˆ ε

−ε

ˆ 1

0

τ(s)p
(
|β′(s)|
J(s, t)

)p−1

ν+(β(s))
p|β′(s)|dtds

≤ Cp

ˆ ε

−ε

ν+(β(s))
p|β′(s)|ds

= Cp||f+||pLp(Γ′).

Hence,
||σ(Γ, ∂Ω\Γ)||Lp(Ω) ≤ C||f+||Lp(Γ).

Finally, we note that the constant C in the estimates above does not depend on the regularity
of ∂Ω\Γ and then, by an approximation argument, it is standard to remove the assumption that
∂Ω\Γ is C2. □

Then, we get the following:

Proposition 4.8. Suppose that (A) holds and Γ is uniformly convex. Then, the transport density
σ is in L2(Ω) as soon as f± ∈ L2(Γ). Moreover, σ is in Lp(Ω) for p = 2

1−α provided that
f± ∈ C0,α(Γ) with α ∈ (0, 1). In particular, σ belongs to L∞(Ω) if f± are Lipschitz on Γ.

Proof. This follows immediately from Propositions 4.3, 4.4 & 4.7 and the fact that σ = σ(Γ,Γ) +
σ(Γ, ∂Ω\Γ) + σ(∂Ω\Γ,Γ). □

We finish this section by the following:

Remark 4.9. In fact, one can prove that the projection of ν+ onto ∂Ω\Γ is a Lp density on ∂Ω\Γ
as soon as the assumption (A) is well satisfied, Γ is strictly convex and ν+ ∈ Lp(Γ). In this way,
we can use [5] to infer that σ(Γ, ∂Ω\Γ) is in Lp(Ω) provided that ν+ ∈ Lp(Γ). But anyway, the
Lp estimates on P#ν

+ will be too similar to those in the proof of Proposition 4.7 on the transport
density σ(Γ, ∂Ω\Γ) and so, we decided to introduce instead the Lp estimates on σ(Γ, ∂Ω\Γ).

5. Least gradient problem

In this section, we apply all the results of the previous sections to prove existence and uniqueness
of a solution u to the BV least gradient problem with Dirichlet condition (2.1) and to give W 1,p

estimates on this solution u.

Theorem 5.1. Let g be a BV function on Γ ⊂ ∂Ω. Then, the BV least gradient problem (2.1)
with Dirichlet condition on Γ has a solution as soon as Γ is strictly convex.

Proof. From Proposition 3.1, Problem (2.3) has an optimal transport plan γ. By Proposition 2.2,
the flow vγ minimizes Problem (2.2). Thanks to Proposition 3.7, |vγ |(∂Ω) = 0. So, thanks to
Proposition 2.1, there exists a BV function u such that vγ = Rπ

2
Du and this u turns out to be a

solution for Problem (2.1). □

In fact, the authors of [13] prove existence of a solution u to the classical least gradient problem
with Dirichlet condition on Γ (i.e. in the case where the Dirichlet condition u|Γ = g is in the sense
that there is an L1 extension g̃ of g such that u|∂Ω = g̃) under the assumptions that Ω is strictly
convex with Lipschitz boundary and g ∈ C(Γ). While in [14], the author proves existence of such
a solution u as soon as Γ is strictly convex and g ∈ BV (Γ). On the other hand, [13, Lemma
3.3] shows that if u is a solution to the classical least gradient problem and if γ is a connected
component of ∂{u ≥ t} in Ω intersecting the interior of ∂Ω\Γ, then γ is orthogonal to ∂Ω\Γ. But,
this implies that u|∂Ω\Γ changes monotonicity finitely many times. In particular, this means that
u|∂Ω ∈ BV (∂Ω) and so, u is a minimizer for the constrained Problem (2.1) as well. Consequently,
there is no difference between the classical least gradient problem and the constrained least gradient
problem (2.1) (where we additionally suppose that the trace of u is a BV function on the boundary).

Moreover, [13, Theorem 3.2] shows some results about the uniqueness of the solution u of
Problem (2.1) but under very restrictive assumptions on the boundary data. Here, we show that
the solution u of the least gradient problem (2.1) is unique as soon as g is continuous on Γ.
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Theorem 5.2. Assume that Γ is strictly convex and g ∈ BV (Γ). Then, the BV least gradient
problem (2.1) with Dirichlet condition on Γ has a unique solution provided that g ∈ C(Γ).

Proof. As g ∈ C(Γ), then its tangential derivative f := ∂τg has no atoms. Thanks to Proposition
3.9, we infer that Problem (2.3) has a unique optimal transport plan γ and then, by Proposition
2.2, the problem (2.2) has a unique optimal flow v as well. Finally, Proposition 2.1 yields that the
solution of Problem (2.1) is unique. □

On the other hand, we note that there are no results in the literature concerning the higher order
regularity of the solution u of Problem (2.1). Yet, thanks to the Lp estimates on the transport
densities in Section 4, we get the following W 1,p regularity on the solution u of the BV least
gradient problem (2.1):

Theorem 5.3. Assume that Γ is uniformly convex and g ∈ W 1,p(Γ) with p < 2. Then, the
solution u of Problem (2.1) is in W 1,p(Ω).

Proof. Set f = ∂τg. The condition g ∈ W 1,p(Γ) implies that f ∈ Lp(Γ) and so, by Proposition
4.6, the transport density σ belongs to Lp(Ω). Thanks to Proposition 2.1, this implies that ∇u ∈
Lp(Ω,R2). □

We recall that assumption (A) holds if there is an arc Γ′ ⊂ Γ such that g is constant on Γ\Γ′,
dist(Γ′, ∂Ω\Γ) > 0 and, for a.e. x ∈ Γ′, the projection of x onto ∂Ω\Γ is not an endpoint of ∂Ω\Γ.
Then, we have the following:

Theorem 5.4. Assume that (A) holds, Γ is uniformly convex and g ∈ H1(Γ). Then, the solution
u of Problem (2.1) is in H1(Ω).

Proof. g ∈ H1(Γ) implies that f ∈ L2(Γ) and so, thanks to Proposition 4.8, the transport density
σ belongs to L2(Ω). From Proposition 2.1, we infer that ∇u ∈ L2(Ω,R2). □

Theorem 5.5. Assume that (A) holds, Γ is uniformly convex and g ∈ C1,α(Γ) with 0 < α < 1.
Then, the solution u of Problem (2.1) belongs to W 1,p(Ω) with p = 2

1−α . Moreover, the solution u
of Problem (2.1) is Lipschitz as soon as g ∈ C1,1(Γ).

Proof. This follows immediately from Propositions 4.8 & 2.1. □

We finish this paper by the following

Remark 5.6. In fact, one can prove Lp estimates, for all p, on the transport density σ without
assuming that f± are smooth but instead under the assumption that spt(f+) and spt(f−) are
disjoint. More precisely, assume that (A) holds, Γ is strictly convex and spt(f+) ∩ spt(f−) = ∅,
then the transport density σ is in Lp(Ω) provided that f ∈ Lp(Γ), for all p ∈ [1,∞]; this follows
from the fact that σ(Γ,Γ) ∈ Lp(Ω) (see [5, Remark 5.10]), while Proposition 4.7 implies that
σ(Γ, ∂Ω\Γ) and σ(∂Ω\Γ,Γ) are in Lp(Ω). In terms of W 1,p regularity on the solution u of Problem
(2.1), this means that if the boundary datum g has flat parts separating those where g is increasing
or decreasing, then u is in W 1,p(Ω) as soon as g ∈W 1,p(Γ), for all p ∈ [1,∞].
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