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Abstract This paper deals with the isoperimetric problem for clusters in a Euclidean space with double density.
In particular, we show that a limit of an isoperimetric minimizing sequence of clusters with volumes V is always
isoperimetric for its own volumes (which may be smaller than V). In particular, if it is strictly smaller, we provide
an explicit formula.

1 Introduction

In this paper, we examine some aspects of the isoperimetric problem with density for clusters; this arises as
a fusion of two well known problems which we are going to briefly recall, both readable as generalizations of
the classical Euclidean isoperimetric problem.

The first one is the minimal partitioning problem. Given a positive integer N , we call N -cluster every
family of N mutually disjoint (measure theoretically) sets of finite perimeter E = {E(h)}h=1,...,N and we look
for a N -clusters satisfying the volume constraints |E(h)| = V (h) for every h = 1, . . . , N which minimizes the
perimeter

P (E) = Hn−1
(

N⋃
h=1

∂∗E(h)

)
.

There is a huge literature on properties of minimal clusters, starting from the founding work of Almgren
and Taylor ([1, 19]), where existence and regularity, among the many other results, have been proved. For
what concerns the classification of minimal clusters, much is known about minimal 2-clusters [7, 8, 17],
planar 3-clusters [20], and planar 4-clusters with chambers with equal area [13, 14], while there are still open
problems regarding the structure of minima for more than three chambers, though symmetry properties are
known, under restrictions on dimension and number of chambers.

The other well studied generalization of the Euclidean isoperimetric problem is the so called isoperimetric
problem with (double) density : given two lower semi-continuous and locally summable functions f : Rn → R+

and g : Rn × Sn−1 → R+, which we will call the density functions, we measure the f -volume and the g-
perimeter of a Borel subset E ⊆ Rn as

|E|f =

∫
E

f(x)dx, Pg(E) =

∫
∂∗E

g(x, νE(x))dHn−1(x), (1.1)

and we ask if there exists a set E which minimizes the g-perimeter among all sets of fixed f -volume V .
In the previous definitions of perimeter, we consider ∂∗E the reduced boundary of E and νE(x) the outer
unit normal at x ∈ ∂∗E; for sufficient regular subsets of Rn, the reduced boundary precisely corresponds to
the usual topological boundary. Along with the problem of existence (or the non-existence) of isoperimetric
sets, usual properties which are examined are boundedness and regularity of the boundary; in particular,
information about boundedness of isoperimetric sets may be decisive in order to prove existence.

The isoperimetric problem with density may be seen as a generalization of the isoperimetric problem on
Riemannian manifolds, since the density functions which weight volume and perimeter may be more general
than the ones given by those related to the Riemannian metric ([10, 11]). Moreover, we underline that the
generalization is consistent as long as we allow the density for the perimeter to be different from the one
on the volume and to depend on the normal on ∂∗E. As one expects, the existence of isoperimetric sets
and their geometric properties are intimately related to the densities f and g; a partial list of results is
[3, 4, 5, 12, 18] in case f = g (single density), [15, 16] for the general case (double density).

As anticipated, the isoperimetric problem with density for clusters is a combination of the two: we
look for a N -cluster which minimizes the g-perimeter among those having chambers of fixed f -volumes
{V (h)}h=1,...,N , that is, if we define respectively the g-perimeter of a cluster and the (f, g)-isoperimetric
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profile function by

Pg(E) :=
1

2

( N∑
h=1

Pg(E(h)) + Pg

( N⋃
h=1

E(h)
))

, (1.2)

V = {V (h)}Nh=1 ∈ RN+ 7→ I(f,g)(V) := inf {Pg(E) : E N -cluster, |E(h)| = V (h), h = 1, . . . , N} , (1.3)

we ask if the infimum is reached.
This question inherits the difficulties of both problems it generalizes, in particular the existence of isoperi-

metric clusters is strictly related to the density; nevertheless, we can take advantage of strategies already
working for the case of single sets. The basic idea, as customary in the Calculus of Variations, is to consider
a minimizing sequence {Ej}j∈N, that is |Ej(h)|f = V (h) for each h ∈ {1, . . . , N} and Pg(Ej) → I(f,g)(V),
and apply a standard compactness–semi-continuity argument: by compactness properties of BV func-
tions, up to subsequences we can assume Ej

j→∞−→ E , and by semi-continuity of the perimeter we have
Pg(E) ≤ lim infj→∞ Pg(Ej). Actually, the limit cluster may not have the right f -volume, since there may
be loss of mass at infinity for one or more than one of the chambers. This cannot happen if f ∈ L1(Rn),
since obviously |E|f = limj→∞ |Ej |f ; this means that E is a competitor for the isoperimetric problem, and by
lower semi-continuity Pg(E) ≤ lim infj→∞ Pg(Ej) = I(f,g)(V), thus we have that isoperimetric clusters exist
for every volume V. For general f ∈ L1

loc \ L1, we only have the inequality |E(h)|f ≤ V (h).
Let us focus for a moment on the single-set case (i.e. N = 1). As already shown in [5, 15], even in the

case of loss of volume at infinity, limits of minimizing sequences are isoperimetric sets for their own volumes.
Moreover, if the density f and g converge at infinity both to a finite positive value a, the following formula
holds:

I(f,g)(V ) := inf{Pg(F ) : |F |f = V } = Pg(E) + n (aωn)
1
n

(
V − |E|f

)n−1
n

,

that is, the optimal profile is obtained as the union of E and a ball at infinity of volume V −|E|f , where the
density is constantly equal to a.

As we are going to prove in the article, limit points of minimizing sequences of clusters behave in a similar
fashion; moreover, we can notice some extra structure if the densities f and g are converging to positive
limits at infinity.

Theorem A. Let f and g be L1
loc and lower semicontinuous functions and assume them to be bounded from

above and below (away from 0) away from the origin. Define

g+(x) := sup
ν∈Sn−1

g(x, ν) (1.4)

and assume it is locally integrable in Rn. Let also {Ej}j∈N be an isoperimetric sequence of clusters with
volume V which converges to a cluster E in the L1

loc sense. Then:

i) E is a cluster of minimal g-perimeter for its own volume;

ii) If in addition lim|x|→∞ f(x) = a ∈ (0,∞) and lim|x|→∞ g(x, ν) = b ∈ (0,∞) uniformly in ν, then

I(f,g)(V) = Pg(E) + ba−
n−1
n Ieucl

(
V − |E|f

)
. (1.5)

For converging densities, as in [5, 15] for single sets, formula (1.5) suggests that an isoperimetric cluster
for volumes V is given by the union of the limit E and a "cluster at infinity" which has precisely the missing
f -volume.

The article is structured in the following way. In Section 2 we introduce the main definitions and we
recall the basic properties of finite perimeter sets we will need. Section 3 covers the proof of Theorem A.

The author is grateful to his supervisor professor Aldo Pratelli for his precious advices during the prepa-
ration of this paper.

2 Definitions and basic properties of finite perimeter sets

In this section, we introduce the definitions, the notation and the basic results on finite perimeter sets we
will need in the proof of Theorem A; for more information on definitions and results, the reader should refer
to [2], [6], [9].
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Let E ⊆ Rn be a set of (locally) finite measure; we say this is a (locally) finite perimeter set if its
characteristic function χE is a BV function (resp. BVloc function), i.e. it is summable (resp. locally
summable) and its distributional derivative DχE is a Radon measure, and we will put µE := −DχE . For
any Borel subset A ⊆ Rn, we define the relative perimeter of E in A by

P (E;A) := |µE | (A),

and we define the perimeter of E by P (E) = P (E;Rn).
For a locally finite perimeter set E, the reduced boundary is

∂∗E :=

{
x ∈ spt(µE)

∣∣∣∣∃ lim
r→0+

µE(B(x, r))

|µE | (B(x, r))
=: νE(x), |νE(x)| = 1

}
,

and we define νE(x) the exterior normal to ∂∗E at x.
We recall a fundamental result on finite perimeter sets.

Theorem (Blow-Up, Structure). Assume E is a set of locally finite perimeter. Then:

• For any x ∈ ∂∗E, define Ex,r := (E − x)/r; then, we have the L1
loc convergence

Ex,r
r→0+−→ HνE(x) = {y ∈ Rn : y · νE(x) ≤ 0} ,

and if we put πνE(x) = ∂HνE(x), we have

µEx,r

∗
⇀ νE(x)Hn−1xπνE(x),

∣∣µEx,r

∣∣ ∗⇀ Hn−1xπνE(x).

• The reduced boundary ∂∗E is a (n− 1)-dimensional rectifiable set, and the measure µE satisfies

µE = νEHn−1x∂∗E, |µE | = Hn−1x∂∗E. (2.1)

In particular, this allows to rewrite the perimeter of E in the equivalent form P (E) = Hn−1(∂∗E).

We say that a point x ∈ Rn is of density d ∈ [0, 1] for the set E if

lim
r→0+

|E ∩B(x, r)|
ωnrn

= d, (2.2)

where |·| := Ln is the Lebesgue measure on Rn; we define the essential boundary of E

∂eE := Rn \
(
E(0) ∪ E(1)

)
.

By Federer’s Theorem, we have that
∂∗E = E(1/2) = ∂eE, (2.3)

up to Hn−1-negligible sets.
Given a positive integer N , a N -cluster is a family of finite perimeter sets {E(h)}Nh=1, called chambers,

such that

|E(h)| ∈ (0,∞), h = 1, . . . , N, (2.4)

|E(h) ∩ E(k)| = 0 h, k = 1, . . . , N, h 6= k. (2.5)

If we put ∂∗E :=
⋃N
h=1 ∂

∗E(h), the Euclidean perimeter of the cluster is defined as

P (E) := Hn−1(∂∗E). (2.6)

We can think to the perimeter of a cluster as given by the sum of the perimeter of each chamber, counting only
once each interface, meaning the non-empty intersection of two chambers. If we define E(0) := Rn\

⋃N
h=1 E(h)

the exterior chamber of E , we can equivalently define the perimeter of the cluster as

P (E) :=
∑

0≤h<k≤N

Hn−1(∂∗E(h) ∩ ∂∗E(k)) =
1

2

N∑
h=0

P (E(h)), (2.7)

where the second equality is a consequence of Federer’s Theorem.
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We define the g-perimeter of a cluster as in (1.2). In the following, we will use |·|eucl and Peucl to define
the Euclidean volume and perimeter, while we will use |·|f and Pg for the weighted volume and perimeter.

For every cluster E and every Borel set B, we define the relative g-perimeter of E in B by

Pg(E ;B) :=
1

2

(
N∑
h=1

∫
∂∗E(h)∩B

g(x, νE(h)(x))dHn−1(x) +

∫
∂∗(∪E)∩B

g(x, ν∪E(x))dHn−1(x)

)
,

where we put ∪E :=
⋃N
h=1 E(h).

3 Proof of Theorem A

3.1 Proof of statement (i)

Let us consider a minimizing sequence of clusters {Ej}j∈N for I(f,g)(V), that is

I(f,g)(V) = lim
j→∞

Pg(Ej).

By assumption, we consider E such that Ej
L1

loc−→ E .
If |E|f = V, there is nothing to prove; the cluster is isoperimetric for its own volume, thanks to the lower

semicontinuity of perimeter.
Therefore, from now on we assume |E|f < V, meaning that there exists h ∈ {1, . . . , N} such that

|E(h)|f < V (h). Without loss of generality, we may assume that |E(h)|f > 0 for every h = 1, . . . , N ; if E
does not verify this, we simply consider it as a cluster with a smaller number of chambers.

We assume by contradiction that there exists a cluster F such that

|F|f = |E|f ,
Pg(E)− Pg(F)

6
=: η > 0. (3.1)

We can find points x1, . . . , xN of density 1 respectively for F(1), . . . ,F(N) and which are Lebesgue
points for f and g+ so that f(xh) > 0 for every h = 1, . . . , N ; hence, there exists r̄ > 0 such that for every
h = 1, . . . , N :

1

2
ωnf(xh)rn ≤ |B(xh, r) ∩ F(h)|f ≤ |B(xh, r)|f ≤ 2ωnf(xh)rn, (3.2)

Pg(Rn \B(xh, r)) ≤ 2nωng
+(xh)rn−1, (3.3)

where (3.2) holds true for every 0 < r < r̄, (3.3) holds true for arbitrarily many r smaller than r̄.
Since f /∈ L1 (otherwise we would have had |E|f = V), we can find points y1, . . . , yN of density 0 for

∪F := ∪Nh=1F(h) which are Lebesgue points for f and g+ and verifying f(yh) > 0 for every h = 1, . . . , N ,
far enough from the origin to assume 1/M ≤ f, g ≤M as by assumptions on f and g; hence, we obtain the
estimates

|B(yh, ρ) \ (∪F)|f ≥
f(yh)

2
ωnρ

n, (3.4)

Pg(B(yh, ρ)) ≤Mnωnρ
n−1, (3.5)

both inequalities being true for every ρ ∈ (0, ρ̄).
Let us define a constant δ > 0 and ρ̄ so small that

M2δ < η, Mnωnρ̄
n−1 <

η

N
,

f(yh)

2
ωnρ̄

n > δ for each h = 1, . . . , N. (3.6)

We claim that there exists a N -cluster F ′ and R > 0 big enough such that F ′ ⊆ BR and

Pg(F ′) < Pg(E)− 5η, (3.7)

0 < δ′h := |E(h)|f − |F
′(h)|f <

δ

2
, (3.8)

for every h = 1, . . . , N .
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Case 1: the cluster F is bounded.
For every h = 1, . . . , N , choose rh < r̄ so small that all balls Bh := B(xh, rh) are mutually disjoint and
transversally intersect all the chambers of F (i.e., Hn−1 (∂∗F ∩ ∂Bh) = 0 ). Define the new cluster

F ′ := F \
( N⋃
h=1

Bh

)
=

(
F(h) \

( N⋃
j=1

Bj

))
h=1,...,N

,

which is obviously bounded.
We easily notice that, for a given open locally finite perimeter set B ⊆ Rn transversal to each chamber:

Pg(F \B) = Pg(F ; B̄c) +

N∑
h=1

∫
∂∗B∩F(h)(1)

g(x,−νB(x))dHn−1(x) (3.9)

By the previous relations (3.2) and (3.3), up to possibly decreasing the r′hs, we have that

Pg(F ′) ≤ Pg(F) +

N∑
h=1

Pg(Rn \Bh) < Pg(E)− 5η.

and (3.8) holds as well.
Case 2: the cluster F is unbounded.

Without loss of generality, let us assume that the chambers F(1), . . . ,F(L) are unbounded, for a certain
1 ≤ L ≤ N .

We choose R0 > 0 big enough so that F(h) ⊂ BR0
, for all h = L + 1, . . . , N , 1/M ≤ f, g ≤ M with

M > 0, and

|F(h) \BR0
|f <

δ

2
(3.10)

for all h = 1, . . . , L.
We define the new cluster

F ′ := F ∩BR = (F(h) ∩BR)h=1,...,N

and we notice that for every open locally finite perimeter set B transversal to each chamber:

Pg(F ∩B) = Pg(F ;B) +

N∑
h=1

∫
∂B∩F(h)(1)

g(x, νB(x))dHn−1(x). (3.11)

We need to find a R > R0 such that

Pg(F ′) < Pg(E)−
(

5 +
1

2

)
η (3.12)

By contradiction, let us assume that for every R > R0 the inequality (3.12) does not hold. By (3.1) and
(3.11), we obtain

L∑
h=1

∫
∂B∩E(h)(1)

g(x, νB(x))dHn−1(x) ≥ η

2
.

and so

+∞ >

L∑
h=1

|F(h) \BR|f ≥
∫ +∞

R0

L∑
h=1

∫
∂BR∩F(h)(1)

f(x)dHn−1(x)dR

≥
∫ +∞

R0

1

M2

L∑
h=1

∫
∂B∩E(h)(1)

g(x, νB(x))dHn−1(x) ≥
∫ +∞

R0

η

2M2
dR = +∞,

contradiction. Thus, there exists R > R0 for which (3.12) holds.
Now, we want to reduce the volume of the bounded chambers and obtain the complete estimate (3.7).

We apply the same strategy of case 1 to F ′; we call F ′′ the new cluster and we require that

Pg(F ′′) < Pg(F ′) +
1

2
η,

0 < δ′h := |E(h)|f − |F
′′(h)|f <

δ

2
, h = L+ 1, . . . , N.
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Putting together the estimates and renaming F ′′ in F ′, we obtain (3.7) and (3.8) also in this case.
The leading idea in the proof is to construct a new sequence of competitors

{
E ′j
}
j∈N with the right

volumes V, but converging to the "wrong" perimeter, that is a little smaller than the minimum.
For every R′ > R large enough (say, more than max |yh|+ ρ̄), we have that

|E(h) \BR′ |f <
δ′h
2
, h = 1, ..., N, (3.13)

Pg(E ;BR′) > Pg(E)− η. (3.14)

By the L1
loc convergence of Ej to E , for j big enough and by lower semicontinuity of Pg:

|E(h)|f −
δ′h
N

< |Ej(h) ∩BR′ |f ≤ |Ej(h) ∩BR′+1|f < |E(h)|f +
δ′h
N

(3.15)

Pg(E ;BR′) ≤ Pg(Ej ;BR′) + η. (3.16)

Combining (3.15), (3.13) and (3.6), we notice that∫ R′+1

R′

N∑
h=1

∫
∂B∩E(h)(1)

g(x,−νB(x))dHn−1(x) ≤
∫ R′+1

R′
M2

N∑
h=1

Hn−1f (Ej(h) ∩ ∂BR) dR

= M2
N∑
h=1

|Ej(h) ∩ (BR′+1 \BR′)|f < 2M2 max
h=1,...,N

δ′h < M2δ < η,

and so for each j big enough there exists Rj ∈ (R′, R′ + 1) such that

N∑
h=1

∫
∂B∩E(h)(1)

g(x,−νBRj
(x))dHn−1(x) < η; (3.17)

moreover, for each chamber we have the estimate on the volume

V (h)− |E(h)|f − δ
′
h <

∣∣Ej(h) \BRj

∣∣
f
< V (h)− |E(h)|f + δ′h. (3.18)

We define the new sequence of clusters Gj :=
(
F ′(h) ∪

(
Ej(h) \BRj

))
h=1,...,N

. By (3.18) and since
|Ej(h)|f = V (h) for every h = 1, . . . , N , we notice that

|Gj(h)|f ∈
(
V (h)− δ, V (h)

)
, (3.19)

and by (3.7), (3.17), (3.14), (3.16), we have the estimate on the perimeter

Pg (Gj) ≤ Pg (F ′) + Pg(Ej \BRj )

< Pg(E)− 5η + Pg(Ej ; B̄cRj
) +

N∑
h=1

∫
∂BRj

∩E(h)(1)
g(x,−νBRj

(x))dHn−1(x)

< Pg(E ;BR′)− 3η + Pg(Ej , B̄cRj
) ≤ Pg(Ej ;BR′)− 2η + Pg(Ej , B̄cRj

)

≤ Pg(Ej)− 2η.

Finally, we define the new sequence

Ẽj := (Gj(h) ∪ (B(yh, ρh) \ ∪G))h=1,...,N ,

where we choose each ρh ∈ (0, ρ̄) so that
∣∣∣Ẽj(h)

∣∣∣
f

= V (h) for each h = 1, . . . , N (we can have this, because

of (3.4), (3.19) and the condition R′ > max |yh| + ρ̄ implies that B(yh, ρ) \ ∪G = B(yh, ρ) \ ∪F for each
h = 1, . . . , N ). Each Ẽj is a N -cluster of volume V; putting together the preceding estimates and (3.5), we
have

Pg(Ẽj) < Pg (Ej)− η,

that is, we have built a sequence of competitors for the problem having perimeters strictly smaller than the
infimum if j is large enough. the contradiction concludes the proof of statement (i). �
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3.2 Proof of statement (ii)

From now on, we assume that the densities f and g are converging to finite positive limits a and b at infinity.
Our goal is to prove that

I(f,g)(V) = Pg(E) + ba−
n−1
n Ieucl

(
V − |E|f

)
, (3.20)

being E limit of a minimizing sequence {Ej}j∈N with |E(h)|f = V (h) for each h = 1, . . . , N .
As already seen in statement (i), we can choose N points y1, . . . , yN far away from the origin which

are Lebesgue points for f and 0-density points of ∪E . It follows that there exist ρ̄ > 0 such that for each
ρ ∈ (0, ρ̄) we have

ωn
f(yh)

2
ρn ≤ |B(yh, ρ) \ E|f ≤ |B(yh, ρ)|f ≤ ωnρ

n2a, (3.21)

Pg (B(yh, ρ)) ≤ nωnρn−12b

We choose ε > 0 so small that for each h = 1, . . . , N

ωn
f(yh)

2
(ρ̄)n >

(
2V (h)

a
+ 1

)
ε; (3.22)

we define F := E ∩BR, with R� 1, R > maxh=1,...,N yh + ρ̄ such that

|(E ∩BR)(h)|f ≥ |E(h)|f − ε,

Pg(E ∩BR) ≤ Pg(E) + ε.

We choose an Euclidean minimal N -cluster B, with Euclidean volumes
(
V (h)−|E(h)|f

a+ε

)
h=1,...,N

, so far from

the origin that it does not intersect BR and a− ε < f < a+ ε, b− ε < g < b+ ε. Clearly, we notice that

(a− ε) |B(h)|eucl ≤ |B(h)|f ≤ V (h)− |E(h)|f

for each h = 1, . . . , N . We define the cluster G := (F(h) ∪ B(h))h=1,...,N and we notice that

Pg(G) ≤ Pg(E) + ε+ Pg(B)

≤ Pg(E) + ε+ (b+ ε)Ieucl
(
V − |E|f
a+ ε

)
= Pg(E) + ε+ (b+ ε)(a+ ε)

1
n−1Ieucl(V − |E|f ).

This is not yet a competitor for the minimization problem with volumes V; indeed, we have that

V (h)−
(

2V (h)

a
+ 1

)
ε ≤ |E(h)|f − ε+

a− ε
a+ ε

(
V (h)− |E(h)|f

)
≤ |G(h)|f ≤ V (h). (3.23)

We define the new cluster E ′ chamber by chamber by

E ′(h) := G(h) ∪B(yh, ρh),

with 0 < ρh < ρ̄ so that |E ′(h)|f = V (h) for each h = 1, . . . , N , taking (3.21), (3.22) and (3.23) into account.
Finally, we have that

I(f,g)(V) ≤ Pg(E ′) = Pg(G) +

N∑
h=1

Pg(B(yh, ρh))

≤ Pg(E) + ε+ (b+ ε)(a+ ε)
1
n−1Ieucl(V − |E|f ) +Nnωn(ρ̄)n−12b

and since ρ̄� 1 and ε� ρ̄, by sending ε, ρ→ 0 we have one side of (3.20).
To get the reverse inequality, we need to act on a minimizing sequence converging to E .
By the continuity of the Euclidean isoperimetric function, for a fixed ε′ > 0 there exists δ > 0 such that∣∣∣Ieucl(V′)− Ieucl(V − |E|f )

∣∣∣ ≤ ε′, (3.24)

if
∣∣∣V′ − (V − |E|f )

∣∣∣ ≤ δ. Choose ε such that 0 < ε

(
N +

|V−|E|f |+ε
a−ε

)
< δ.
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By means of formulae (3.9) and (3.11), we find R big enough so that a− ε < f < a+ ε, b− ε < g < b+ ε

out of BR, and for every h = 1, . . . , N

|E(h)|f − ε < |E(h) ∩BR|f ,

Pg(E \BR) ≤ ε. (3.25)

We claim that, for every j big enough there exists Rj ∈ (R,R+ 1) so that

|E(h)|f − ε ≤
∣∣Ej(h) ∩BRj

∣∣
f
≤ |E(h)|f + ε, for every h = 1, . . . , N (3.26)

N∑
h=1

∫
∂BRj

∩E(h)(1)
g(x, νBRj

(x)) + g(x,−νBRj
(x))dHn−1(x) ≤ 2ε, (3.27)

Pg (E) ≤ Pg
(
Ej ∩BRj

)
+ 2ε. (3.28)

Indeed, estimates (3.26) and (3.27) are perfectly analogous to what already seen in statement (i); by
(3.11), (3.9), (3.25) and the lower semicontinuity of Pf , for j � 1 we get

Pg(E) = Pg(E ;BR) + Pg(E ; B̄R
c
) ≤ Pg(E ;BR) + Pg(E \BR)

< Pg(E ;BR) + ε < Pg(Ej ;BR) + 2ε ≤ Pg(Ej ;BRj ) + 2ε.

By (3.26), we notice that

∣∣∣V − |E|f − a ∣∣Ej \BRj

∣∣
eucl

∣∣∣ ≤ ε (N +
∣∣∣∣Ej \BRj

∣∣
eucl

∣∣) ≤ ε
N +

∣∣∣∣∣Ej \BRj

∣∣
f

∣∣∣
a− ε


≤ ε

N +

∣∣∣V − |E|f ∣∣∣+ ε

a− ε

 < δ,

by our choice of ε. Thanks to these estimates and by (3.24), we obtain

Pg
(
Ej \BRj

)
≥ (b− ε)Peucl

(
Ej \BRj

)
≥ b− ε
a

n−1
n

Ieucl
(
a
∣∣Ej \BRj

∣∣
eucl

)
≥ b− ε
a

n−1
n

[
Ieucl

(
V − |E|f

)
− ε′

]
.

Finally, by (3.27) and (3.28) we can conclude

Pg(Ej) = Pg(Ej ∩BRj
) + Pg(Ej \BRj

)−
N∑
h=1

∫
∂BRj

∩Ej(h)
g(x, νBRj

(x)) + g(x,−νBRj
(x))dHn−1(x)

≥ Pg(E) +
b− ε
a

n−1
n

[
Ieucl

(
V − |E|f

)
− ε′

]
− 6ε.

Sending first j →∞ and then ε′ → 0 (hence ε→ 0 as well), we have that

I(f,g)(V) ≥ Pg(E) + ba−
n−1
n Ieucl

(
V − |E|f

)
,

thus concluding formula (3.20). �
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