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Abstract

Origami is the ancient Japanese art of folding paper and it has well
known algebraic and geometrical properties, but it also has unexpected
relations with partial differential equations. In this note we describe these
relations for a large audience, leaving the technical aspects to other spe-
cialized papers.

Introduction

Origami is the ancient Japanese art of folding paper. One of the most known
origami is the crane, represented on the right-hand side of Figure 1. Other than
their artistic interest, why and how to associate origami with mathematics?

A motivation comes from the properties of origami. Many mathematicians
interested in geometry or algebra (for example in group theory, Galois theory,
graph theory) studied origami constructions.

An important issue is the geometrical construction of numbers. In some
aspect origami turns out to be more powerful than the classical rule and compass
construction. In fact, in order to determine what can be constructed through
origami, it is important to formalize the rules. These are known as Huzita
axioms and have been proposed by Hatori, Huzita, Justin and Lang, see [1].

On the contrary, in this exposition we present an analytic approach to
origami, based on maps which satisfy a suitable system of partial differential
equations. We remain here to a non-technical level of exposition. The interested
reader might refer to the papers [5, 7] obtained by the authors in collaboration
with Bernard Dacorogna (École Polytechnique Fédérale de Lausanne). In these
papers fractal constructions of origami are shown to solve a special class of
Dirichlet problems arising in nonlinear elasticity (see [4]).
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1 Axiomatic construction of origami

As already said in the introduction, origami constructions can be considered
from an axiomatic point of view in a similar way as rule and compass construc-
tion. We give here few details about this geometric approach to origami (the
interested reader may refer to [1].

Here are the seven axioms.
- Axiom 1: given two points P1 and P2 , there is a unique fold passing through
both of them.
- Axiom 2: given two points P1 and P2 , there is a unique fold placing P1

onto P2 .
- Axiom 3: given two lines L1 and L2 , there is a fold placing L1 onto L2 .
- Axiom 4: given a point P and a line L, there is a unique fold perpendicular
to L passing through P.
- Axiom 5: given two points P1 and P2 and a line L, there is a fold placing P1

onto L and passing through P2 .
- Axiom 6: given two points P1 and P2 and two lines L1 and L2 , there is a fold
placing P1 onto L1 and P2 onto L2 .
- Axiom 7: given a point P and two lines L1 and L2 , there is a fold placing P
onto L1 and perpendicular to L2 .

However this is not the only possible mathematical motivation and in the
following we propose a different approach. We will present a mathematical
model of origami which has a double purpose. In one hand we give an analytical
approach which provides a new perspective to the existing algebraic and geo-
metrical models. In the other hand we use origami as a tool to exhibit explicit
solutions to some systems of partial differential equations.

2 A global definition of origami as a map

Instead of listing a set of properties, we identify an origami with a mathemat-
ical object, i.e., we give a mathematical model. We skip the overlapping and
interpenetration problems (see [5]).

If we denote by Ω ⊂ R2 a two dimensional domain (usually Ω is a rectan-
gle), then an origami is a suitable immersion of the sheet of paper in the three
dimensional space. Hence it can be identified with a map u

u : Ω ⊂ R2 → R3.

Since origami is a folded paper, the map u cannot be everywhere smooth; it is
only piecewise smooth. In fact folding creates discontinuities in the gradient:
we do not allow cutting the sheet of paper. Thus u is a continuous map.

The singular set Σ = Σu is the set of discontinuities of the gradient Du.
This set represents the union of curves where the paper is folded and hence it is
also called crease pattern in the origami context. Usually this set is composed
by straight segments.
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In the model – at the same time – we construct the origami and we unfold
it. We now explain in which sense.

Let’s consider the crane origami represented in Figure 1. If we unfold the
origami we see the crease pattern Σ impressed in the sheet of paper. Clearly
the singular set Σ is uniquely determined by the origami. In this case Σ is the
set of segments represented on the left in Figure 1. What we really consider
is a function, an application, a map u from the sheet of paper to the three-
dimensional space.

u→

Figure 1: On the right: the crane is the most famous origami. On the left: the
corresponding singular set

As we said, usually this set is composed by straight segments, but it is also
possible to make origami with curved folds: this happens for instance in the
representation of a map u : R2 → R3, which has as singular set Σu along a
circular curve, as in Figure 2.

Figure 2: A non-flat origami with a curved singular set.

A sheet of paper Ω (again recall that usually Ω is a rectangle) is rigid in
tangential directions. If a sheet of paper is constrained on a plane, it would
only be possible to achieve rigid motions, i.e., rotations and translations of the
whole sheet. On the other hand, in the normal direction it can be easily folded.
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This property can be expressed in analytic form either with local isometries or
with orthogonality.

That is, where the gradient of the map u exists (where the paper is not
folded) angles and distances must be respected, cannot change in the image of
the map. The map must be a local isometry and its gradient matrix must be
orthogonal.

In more details, the origami u =
(
uj (x1, x2)

)
j=1,2,3

is a vector-valued map

in two variables
u : R2 → R3.

That is, u is a map from R2 to R3 and its gradient Du =
(

∂uj

∂xi

)
is a 3×2 matrix

u =

 u1

u2

u3

 , Du =


∂u1

∂x1

∂u1

∂x2

∂u2

∂x1

∂u2

∂x2

∂u3

∂x1

∂u3

∂x2

 .

The gradient Du(x) has to be an orthogonal 3× 2 matrix, i.e.,

Dut ·Du = I.

This orthogonality condition is equivalent to the differential system

3∑
i=1

∂ui

∂xh
· ∂u

i

∂xk
= δhk , ∀ h, k = 1, 2,

which, in explicit form, means

(
∂u1

∂x1

)2
+
(

∂u2

∂x1

)2
+
(

∂u3

∂x1

)2
= 1

(
∂u1

∂x2

)2
+
(

∂u2

∂x2

)2
+
(

∂u3

∂x2

)2
= 1

∂u1

∂x1

∂u1

∂x2
+ ∂u2

∂x1

∂u2

∂x2
+ ∂u3

∂x1

∂u3

∂x2
= 0 .

As we already said, we do not allow cutting the sheet of paper u (Ω) . Thus
u : Ω ⊂ R2 → R3 is a continuous map, more precisely a Lipschitz-continuous
map. The singular set Σ = Σu, i.e., the set of discontinuities of the gradient
Du, may have a very complicated structure, even no-structure, for a general
Lipschitz-continuous map.

If we limit ourselves to piecewise smooth maps, precisely to piecewise C1

rigid maps, then we have a more readable situation. For instance, for the map
whose graph is represented in Figure 3 the singular set Σ = Σu is empty.

As we said the singular set Σ = Σu is uniquely determined by the map u,
but in general the reverse is not true; in fact many rigid maps u may have the
same singular set. On the contrary a special attention will be given to the so-
called flat origami. A flat origami is defined as a map whose image is contained
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Figure 3: This sheet of paper u (Ω) is bended but not folded. The corresponding
singular set Σu is empty (in correspondence to several (not folded) maps).

in a plane. It can be represented, up to a change of coordinates, as a map
u : Ω ⊂ R2 → R2. Let us consider a flat origami, i.e., instead of

u : Ω ⊂ R2 → u (Ω) ⊂ R3,

we consider an application of the form

u : Ω ⊂ R2 → u (Ω) ⊂ R2.

3 Analytic properties of flat origami

In the case of flat origami we have the possibility of reconstructing the map
u from its singular set Σu. That is, if u (Ω) ⊂ R2, it is possible to uniquely
reconstruct a map, with orthogonal gradient, from a given set of singularities;
i.e., from a given singular set. A fundamental ingredient in this reconstruction is
a necessary and sufficient compatibility condition on the geometry of the singular
set.

Following the terminology that can be found in the not numerous mathe-
matical literature on origami (see for instance [2]), we call it angle condition. It
was discovered by Kawasaki in the origami setting.

Let Σ ⊂ Ω ⊂ R2 be a locally finite union of segments. Then Σ is the singular
set of a piecewise C1 rigid map if and only if the following angle condition holds
at every internal vertex of Σ. If we let α1, . . . , αN be the amplitude of the
consecutive angles determined by the N edges of Σ meeting in the vertex, then
N is even and (see Figure 4)

α1 + α3 + . . .+ αN−1 = α2 + α4 + . . .+ αN = π.

We prove that every polyhedral pattern Σ which satisfies the angle condition
is the singular set Σu of some rigid map u. Precisely the following result holds
(the result is valid in the general n−dimensional setting, with Ω ⊂ Rn).
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Figure 4: the angle condition: at every internal vertex an even number of angles
meet. The alternating sum of angles is equal each other.

The following result has been proved in [5].

Theorem 1 (Recovery Theorem) Let Ω be a simply connected open subset
of R2. Let Σ ⊂ Ω be a locally finite polyhedral set satisfying the angle condition at
every vertex. Then there exists a map u with orthogonal gradient (flat origami)
such that Σ = Σu is the singular set of u. Moreover u is uniquely determined
once we fix the value y0 = u(x0) and the Jacobian gradient J0 = Du(x0) at a
point x0 ∈ Ω \ Σ.

For a flat origami u : Ω ⊂ R2 → u (Ω) ⊂ R2, with components (with a little
abuse of notation we identify R2 with a subset of R3)

u =

 u1

u2

0

 =

(
u1

u2

)
, Du =


∂u1

∂x1

∂u1

∂x2

∂u2

∂x1

∂u2

∂x2

0 0

 =

(
∂u1

∂x1

∂u1

∂x2

∂u2

∂x1

∂u2

∂x2

)
,

the orthogonality condition Dut ·Du = I is equivalent to the differential system

(
∂u1

∂x1

)2
+
(

∂u2

∂x1

)2
= 1(

∂u1

∂x2

)2
+
(

∂u2

∂x2

)2
= 1

∂u1

∂x1

∂u1

∂x2
+ ∂u2

∂x1

∂u2

∂x2
= 0

and this gives a representation for the determinant of the 2× 2 matrix Du. In
fact, by an algebraic computation, we also find

(detDu)
2

=

(
∂u1

∂x1

∂u2

∂x2
− ∂u2

∂x1

∂u1

∂x2

)2
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=

(
∂u1

∂x1

∂u2

∂x2

)2

+

(
∂u2

∂x1

∂u1

∂x2

)2

− 2
∂u1

∂x1

∂u2

∂x2

∂u2

∂x1

∂u1

∂x2
.

By multiplying side by side the first two equations of (3) we get(
∂u1

∂x1

∂u1

∂x2

)2

+

(
∂u1

∂x1

∂u2

∂x2

)2

+

(
∂u2

∂x1

∂u1

∂x2

)2

+

(
∂u2

∂x1

∂u2

∂x2

)2

= 1

and therefore

(detDu)2 = 1−
(
∂u1

∂x1

∂u1

∂x2

)2

−
(
∂u2

∂x1

∂u2

∂x2

)2

− 2
∂u1

∂x1

∂u2

∂x2

∂u2

∂x1

∂u1

∂x2

= 1−
(
∂u1

∂x1

∂u1

∂x2
+
∂u2

∂x1

∂u2

∂x2

)2

.

Then, by the third equation in (3), we finally get

detDu = ±1.

The sign of the determinant of the matrix Du gives a coloration of the domain
Ω, as in Figure 5.

Figure 5: The domain Ω colored by means of the sign of detDu = ±1.
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4 Boundary value problems and fractal construc-
tions

We have another condition to satisfy: it is a boundary condition. That is, we
look for maps u with a given value at the boundary ∂Ω of Ω:

u(x) = ϕ(x), x ∈ ∂Ω.

For instance u(x) = 0 for x ∈ ∂Ω. In order to achieve the boundary datum
we must arrive at the boundary with finer and finer subdivisions of the set Ω;
i.e., we must have a singular set Σu of fractal form. This is due to the fact
that detDu = ±1, in particular detDu 6= 0 and hence, by the implicit function
theorem, the map u is locally invertible if it is smooth. This is in contrast with
a constant boundary value.

We apply the recovery theorem to a singular set Σu of fractal form (at the
boundary, with the aim to satisfy a boundary condition), for which the angle
condition is satisfied. In fact the set Σu which we are going to consider has the
property that it divides Ω into two families of colored sets (see Figures 6):

– grey rectangles, where detDu = −1.

– white convex polygons, where detDu = +1.

Figure 6: Escher-type not-periodic picture satisfying the angle condition at ev-
ery vertex, with fractal structure at the boundary which allows to fix a boundary
value

Each vertex of the singular set Σu is shared by two rectangles, hence the angle
condition holds. We see the shape of the sets that we consider: it is an Escher-
type not-periodic picture.
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There exists a piecewise C1 rigid map u : Ω̄ → R2 (flat origami), with
singular set Σu as in Figure 6, such that u = ϕ on ∂Ω. Thus u satisfies the
Dirichlet problem {

Du ∈ O(2), a.e. x ∈ Ω
u(x) = ϕ(x), x ∈ ∂Ω

for some given boundary values ϕ (see [5]).
From the “scalar” picture (see Figure 6) we can also “read” the boundary

value of the vectorial map u.

We end by giving a picture with a 3−dimensional flat origami. It is a
mathematical origami, being a rigid application from R3 → R3.

Theorem 2 (3D Dirichlet Problem) On the cube Ω = [0, 1]3 it is possible
to define a piecewise C1 rigid map u : Ω→ R3 such that u = 0 on the boundary.
The singular set Σu is represented in Figure 7.

This result was first obtained by Cellina and Perrotta [3] and extended in [6]
to general n-dimensional origami.

Figure 7: The singular set which defines a 3-dimensional origami. The angle
condition is satisfied on every edge (the rings highlight the measures of the
alternating angles)
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