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Abstract

The paper studies a dynamic blocking problem, motivated by a model of optimal fire
confinement. While the fire can expand with unit speed in all directions, barriers are
constructed in real time. An optimal strategy is sought, minimizing the total value of
the burned region, plus a construction cost. It is well known that optimal barriers exists.
In general, they are a countable union of compact, connected, rectifiable sets. The main
result of the present paper shows that optimal barriers are nowhere dense. The proof relies
on new estimates on the reachable sets and on optimal trajectories for the fire, solving a
minimum time problem in the presence of obstacles.
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1 Introduction

We consider the dynamic blocking problem introduced in [3], for a model of wildfire propaga-
tion [17]. To restrict the spreading of the fire, it is assumed that a barrier can be constructed,
in real time. This could be a thin strip of land which is either soaked with water poured
down from a helicopter, or cleared from all vegetation using a bulldozer, or sprayed with fire
extinguisher by a team of firemen. In all cases, the fire will not cross that particular strip of
land. Here the key point is that the barrier is being constructed at the same time as the fire
front is advancing.

In this setting, a natural problem is to find the best possible strategy. In other words, we seek
the optimal location of the barriers, in order to minimize:

[total value of the burned area] + [total cost for constructing the barriers] (1.1)

among all barriers that can be constructed in real time.
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We consider here the simplest situation where the fire initially burns on an open set R0, and
propagates with unit speed in all directions. We assume

(A1) The initial set R0 ⊂ R2 is open, bounded, nonempty, connected, with Lipschitz boundary
∂R0.

If barriers are not present, for each t ≥ 0 the set R(t) reached by the fire is defined as

R(t)
.
=
{
x(t) ; x(·) is 1-Lipschitz , x(0) ∈ R0

}
=
{
x ∈ R2 ; d(x,R0) < t

}
.

(1.2)

Here and in the sequel, by 1-Lipschitz we mean a function with Lipschitz constant 1. Moreover,
d(x,Ω) denotes the distance of a point x to the set Ω ⊂ R2, while 〈·, ·〉 is the Euclidean inner
product in R2. The closure and the boundary of Ω are denoted by Ω and ∂Ω respectively.
By B(x, r) we denote the open ball centered at x with radius r. More generally, for Ω ⊂ R2,
B(Ω, r) = {x ; d(x,Ω) < r} denotes the open neighborhood of radius r around Ω. Finally,
m1,m2 denote the 1-dimensional and 2-dimensional Hausdorff measure, respectively.

Next, we assume that the spreading of the fire can be controlled by constructing a barrier.

Definition 1.1. A barrier Γ ⊂ R2 is a disjoint union of countably many compact connected,
rectifiable sets, with finite total length.

Throughout the following, we write

Γ =
⋃
i≥1

Γi (1.3)

to denote a barrier, as a union of its compact, rectifiable, connected components.

Intuitively, we think of a barrier as a family of curves in the plane, which the fire cannot cross.
When a barrier Γ is in place, the set reached by the fire is reduced. This leads to the definition
of the new reachable set

RΓ(t)
.
=
{
x(t) ; x(·) is 1-Lipschitz , x(0) ∈ R0 , x(τ) /∈ Γ for all τ ∈ [0, t]

}
. (1.4)

Clearly, in this case the burned set will be somewhat smaller: RΓ(t) ⊆ R(t) for every t ≥ 0.
Since in our model the barrier is constructed at the same time as the fire propagates, a
restriction on its length must be imposed.

Definition 1.2. Given a construction speed σ > 1, we say that the barrier Γ is admissible
if

m1

(
Γ ∩RΓ(t)

)
≤ σt for all t ≥ 0. (1.5)

Remark 1.3. For each t ≥ 0, the set

γ(t)
.
= Γ ∩RΓ(t)

appearing in (1.5) is the part of the barrier Γ touched by the fire at time t. This is the portion
that actually needs to be put in place within time t, in order to restrain the fire. The remaining
portion Γ \ γ(t) can be constructed at a later time. This motivates the above definition. The
equivalence between different formulations of the dynamic blocking problem was proved in [8].

2



Fire propagation can equivalently be described in terms of the minimum time function

TΓ(x)
.
= inf

{
t ≥ 0 ; x ∈ RΓ(t)

}
. (1.6)

From the definition, it follows that TΓ is lower semicontinuous. We think of TΓ(x) as the
minimum time needed for the fire to reach the point x, starting from R0 and without crossing
the barrier. Notice that TΓ(x) = +∞ if the fire never reaches a neighborhood of x. In general,
the minimal time function TΓ can be computed by solving a Hamilton-Jacobi equation with
obstacles, namely

|∇T (x)| = 1 x /∈ Γ , (1.7)

T (x) = 0 if x ∈ R0 . (1.8)

For a precise definition and properties of this solution, see [13]. We recall that TΓ is locally
an SBV function [1]. The set where it has jumps is contained inside Γ. If the function TΓ is
known, we can then recover the region RΓ(t) burned within time t as

RΓ(t) =
{
x ∈ R2 ; TΓ(x) ≤ t

}
.

Two mathematical problems can now be formulated.

(BP) Blocking Problem. Given a bounded open set R0, decide whether there exists an
admissible barrier Γ such that the entire region burned by the fire

RΓ
∞

.
=

⋃
t>0

RΓ(t) (1.9)

is bounded.

(OP) Optimization Problem. Given an initial set R0 and a constant c0 ≥ 0, find an
admissible barrier Γ which minimizes the total cost

J (Γ)
.
= m2

(
RΓ
∞
)

+ c0m1(Γ). (1.10)

Remark 1.4. For a given initial domain R0, the set RΓ
∞ in (1.9) burned by the fire can be

characterized as the union of all connected components of R2 \ Γ which intersect R0. For any
bounded open set R0, it is known [3, 4, 5, 9] that a blocking strategy exists if the construction
speed is σ > 2, while it does not exist if σ ≤ 1. The existence of a blocking strategy for σ ∈ ]1, 2]
is a challenging open problem. See the review [4] for a more comprehensive discussion.

In a very general setting, the existence of an optimal barrier was proved in [6, 13]. Under
the assumption that this optimal barrier is the union of finitely many Lipschitz arcs, various
necessary conditions were derived in [3, 10, 18]. Indeed, assuming Lipschitz regularity, one
can reformulate the problem in the classical setting of the Calculus of Variations, or within
the theory of optimal control [7, 12, 15]. Necessary conditions for optimality are thus obtained
in terms of the Euler-Lagrange equations, or by applying the Pontryagin Maximum Principle.
For example, when the initial set R0 is a circle and the construction speed is σ > 2, among all
simple closed curves, it is known that the admissible barrier that encloses the smallest burned
area is the union of an arc of circumference and two logarithmic spirals [11].
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Unfortunately, the results in [6, 13] only provide the existence of an optimal barrier Γ∗ with
the minimal regularity properties stated in Definition 1.1. Namely, we only know that Γ∗ is the
union of countably many compact, connected, rectifiable sets. It remains an outstanding open
problem to close this gap, establishing further regularity properties of the optimal barrier, so
that necessary conditions for optimality can then be applied. In the present paper we take a
step in this direction. Our main goal is to prove

Theorem 1.5. For the optimization problem (OP), any optimal barrier Γ is nowhere dense.

This result is motivated by the following considerations. As shown in Fig. 1, left, the optimal
barrier can be split as

Γ = Γblock ∪ Γdelay.

Here Γblock = ∂RΓ
∞ is the portion which actually separates the burned region from the un-

burned one. On the other hand, Γdelay accounts for the walls whose only purpose is to delay
the advancement of the fire front. Eventually, these walls are encircled by the fire on both
sides.

We recall that the fire propagates with speed 1, while the barrier is constructed at speed σ > 1.
Building a connected component Γ1 of the barrier, with length `1, thus requires an amount
of time τ1 = `1/σ. On the other hand, the fire needs up to time `1 in order to completely
surround Γ1. In some cases, it can thus be an advantage to construct some barriers with the
sole purpose of slowing down the propagation of the fire.

At an intuitive level, however, building a barrier which contains a large number of very small
connected components should be ineffective, because the fire can quickly get around each
connected portion. To prove Theorem 1.5, we need to show that a collection of walls which
is dense on an open set cannot be optimal. Indeed, some of these walls should be removed,
because the time needed to build them is longer than the amount by which they delay the
advancement of the fire front.

The heart of the matter is to understand which portions of the barrier can be removed. As
shown in Fig. 1, left, the connected component Γ1 delays the advancement of the fire front.
If we remove Γ1, then we do not have enough time to construct Γ2. Hence, to achieve an
admissible barrier Γ′ ⊆ Γ \ Γ1 satisfying (1.5), we should also remove the component Γ2. In
turn, this may force us to remove further components Γ3,Γ4, . . . If at the end of this process
we need to remove the outer component Γblock as well, then the entire construction fails.

Toward a proof of Theorem 1.5, we shall construct a “flow box” ∆, as shown in Fig. 1, right.
Here the lower boundary coincides with the location of the fire front at some time t0 > 0. The
two sides are straight lines, consisting of optimal trajectories for the fire which do not intersect
any of the barriers. The upper boundary is a curve γ∗, consisting of points having a fixed
distance h > 0 from γ0. These are the points that the fire would reach at time t∗ = t0 + h,
if no barriers were present. A careful analysis will show that, by removing all the barriers
contained inside ∆, the remaining portion Γ♦ = Γ \ ∆ is still admissible, and achieves a
lower total cost (1.10).

The remainder of the paper is organized as follows. Section 2 is concerned with the minimum
time problem for the fire, in the presence of barriers. The first main result, Lemma 2.2,
considers a path ξ that crosses some of the connected components Γi of the barrier. By
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Figure 1: Left: if the connected component Γ1 of the barrier is removed, then there is not enough
time to construct Γ2, before the fire reaches it. Right: by removing all barriers inside a carefully chosen
“flow box” ∆, the remaining portion Γ♦ = Γ \ ∆ still form an admissible barrier, blocking the fire
within the same region as before and yielding a smaller total cost.

inserting additional loops, we prove the existence of a modified path ξ̃ which starts and ends
at almost the same points as ξ, and does not touch the barrier. Moreover, the difference
between the lengths of the two paths is no greater than the total length

∑
im1(Γi) of the

components which were crossed. The second main result of this section, Lemma 2.4, shows
that the set of times where the fire front touches a component Γi is contained in an interval
[ai, bi] of length bi − ai ≤ m1(Γi). Moreover, when no barrier is touched, the set reached by
the fire expands with unit speed in all directions. All these results are intuitively obvious
when Γ contains finitely many compact, connected components. However, if Γ is the union of
countably many components, possibly everywhere dense, a more careful proof is needed.

In Section 3 we prove some lemmas describing how the minimum time function TΓ in (1.6)
changes when the barrier Γ is perturbed. This analysis is useful, because it allows us to
approximate an arbitrary barrier with a polygonal one.

Section 4 continues the study of optimal trajectories for the fire, reaching points x ∈ R2 in
minimum time without crossing the barrier Γ. The key result in this section (Lemma 4.1)
shows that, if the total length of all barriers is small, most of these optimal trajectories for the
fire contain long straight segments. This fact can be rigorously stated in terms of an integral
inequality. The proof is first achieved in the case of polygonal barriers. The general case
follows by an approximation argument.

Section 5 contains another key estimate. Roughly speaking, Lemma 5.5 shows that, if a barrier
Γ is “ε-sparse”, then the additional time needed by the fire to go around it is bounded by
9εm1(Γ). We observe that the time needed to construct this barrier is σ−1m1(Γ), where σ is
the construction speed. If ε > 0 is sufficiently small, the time needed to construct this portion
of barrier is not compensated by its effectiveness in delaying the advance of the fire front. One
can thus conclude that the barrier is not optimal.

The proof of Theorem 1.5 is then completed in Section 6. It consists of two main steps. First,
we use Lemma 4.1 to construct a “flow box” ∆, as shown in Fig. 1, whose sides are segments
contained in optimal trajectories for the fire which do not cross the barrier Γ. We then use
Lemma 5.5 and show that, by removing all the portions of the barrier contained inside ∆, one
obtains a new admissible barrier Γ♦ = Γ \∆, which yields a smaller total cost.
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2 Optimal trajectories for the fire

In this section we focus on the optimization problem for the fire. Let R0 ⊂ R2 be a bounded,
connected open set, and let Γ = ∪iΓi be a barrier, consisting of countably many compact,
rectifiable, connected components, with finite total length. We seek trajectories that, starting
from the closure R0, reach points x ∈ R2 in minimum time, without crossing Γ. To achieve
the existence of these optimal trajectories, referring to Fig. 2 we introduce

Definition 2.1. A trajectory for the fire t 7→ x(t), t ∈ [0, T ], is admissible if there exists a
sequence of 1-Lipschitz trajectories t 7→ xn(t) such that

xn(0) ∈ R0 , xn(t) /∈ Γ for all t ∈ [0, T ], (2.1)

and moreover xn(t)→ x(t) uniformly on [0, T ], as n→∞.

We say that a trajectory t 7→ x(t) does not touch the barrier Γ if x(t) /∈ Γ for all times
t ≥ 0. If x(·) is the uniform limit of trajectories xn(·) that do not touch Γ, we say that x(·)
does not cross the barrier Γ.

(t)

(t)x~

(t)x x
n

Γ

R0

Figure 2: The trajectory t 7→ x(t) touches the barrier Γ, but does not cross it. Indeed, it can
be obtained as a uniform limit of trajectories xn(·) that do not touch Γ. On the other hand, the
trajectory x̃(·) is not admissible: it goes right across the barrier.

Given a point x̄ ∈ R2, we seek an admissible trajectory t 7→ x(t) which starts from a point
in the closure R0 and reaches x̄ in minimum time without crossing Γ. If x̄ can be reached in
finite time, the existence of such an optimal trajectory is straightforward. Indeed, define

Tinf
.
= lim

ε→0

[
infimum time needed to reach a point in the ball B(x̄, ε),

starting from R0 and without touching the barrier Γ
]
.

Let xn : [0, Tn] 7→ R2 be a minimizing sequence of 1-Lipschitz trajectories, satisfying (2.1)
together with

xn(Tn) → x̄, Tn → Tinf as n→∞.
By taking a subsequence we can assume the uniform convergence xn → x, for some limit
function x : [0, Tinf ] 7→ R2. According to Definition 2.1, this limit trajectory is admissible.
Hence it provides an optimal solution.

Given a trajectory ξ : [0, τ ] 7→ R2 that crosses part of the barrier, the next lemma provides
the key tool for constructing trajectories that “loop around” each connected component, and
reach almost the same endpoint without touching Γ.
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Lemma 2.2. Consider a barrier Γ = ∪i≥1Γi, written as the union of its connected components.
Assume that R2 \ Γ is connected. Let ξ : [0, τ ] 7→ R2 be a Lipschitz path, parameterized by arc
length, such that

ξ(t) /∈ Γi for all t ∈ [0, τ ], i ≤ ν. (2.2)

Then, for any ε > 0, there exists a path ξ̃ : [0, τ̃ ] 7→ R2, also parameterized by arc length, such
that ∣∣ξ̃(0)− ξ(0)

∣∣ ≤ ε,
∣∣ξ̃(τ̃)− ξ(τ)

∣∣ ≤ ε, (2.3)

ξ̃(t) /∈ Γ for all t ∈ [0, τ̃ ], (2.4)

and with length

τ̃ ≤ τ +
∑
i>ν

m1(Γi) . (2.5)

x

R
0

ξ
j−1

j

Γj

+

P
_

Γ

γ

k

P

Figure 3: The construction used in the proof of Lemma 3.4. If the trajectory ξj−1(·) crosses the set Γj ,
we construct a detour γj of radius rj around Γj . At a subsequent step, we may be forced to construct
a second detour to avoid hitting the component Γk. Hence the new path may get closer to Γj . In the
inductive construction, it is essential to show that all paths keep a uniformly positive distance from Γj .

Proof. Let ε > 0 be given. The new path ξ̃ will be obtained as limit of a sequence of paths
ξj : [0, τj ] 7→ R2, j ≥ 0, by an inductive procedure. Each inductive step will also determine
two auxiliary constants rj , δj > 0.

1. The induction starts by setting τ0 = τ , and defining ξ0(t) = ξ(t) for all t ≥ 0. Moreover,
we choose δ0 > 0 so that

δ0 <
ε

4
, δ0 < d(ξ(t), Γi) for all t ∈ [0, τ ], i = 1, . . . , ν. (2.6)

For every j ≥ 1, the constants rj , δj > 0 and the path ξj : [0, τj ] 7→ R2 will satisfy the following
properties.

(i) For every i ≤ j and t ∈ [0, τj ] one has

d
(
ξj(t),Γi

)
≥ (2− 2i−j)δi . (2.7)

(ii) For j ≤ ν we simply take ξj = ξ0. For j > ν, the length of the path ξj satisfies

τj < τj−1 + (1 + ε)m1(Γj). (2.8)
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(iii) The endpoints satisfy

|ξj(0)− ξ(0)| ≤ (1− 2−j)ε, |ξj(τj)− ξ(τ)| ≤ (1− 2−j)ε. (2.9)

(iv) The constant rj is chosen so that rj < δj−1/4. Moreover, every component Γk which
intersects B(Γj , 2rj) has length m1(Γk) < δj−1/4.

(v) The constant δj ∈ ]0, rj/4] is chosen so that, for every k ≥ 1 such that

Γk ∩
(
B(Γj , 2rj) \B(Γj , rj/2)

)
6= ∅, (2.10)

one has
4δj ≤ d(Γk,Γj)

.
= min

{
|x− y| ; x ∈ Γj , y ∈ Γk

}
. (2.11)

Note that, even if we choose ξj = ξ0 for j = 1, . . . , ν, it is not possible to start the induction
procedure at j = ν. Indeed, the initial steps must be performed in order to define suitable
constants rj , δj , j = 1, . . . , ν.

2. Assuming that the induction has been completed up to step j − 1, we describe how to
accomplish step j.

Consider the path ξj−1 : [0, τj−1], and the connected component Γj . For a given radius r > 0,
define

γj
.
= [boundary of the unbounded connected component of R2 \B(Γj , r)].

This is a simple closed curve, that winds around Γj , and has length ≈ 2m1(Γj). We choose
r = rj > 0 small enough, so that the following holds:

m1(γj) < (2 + ε)m1(Γj), (2.12)

rj <
δj−1

2
, rj <

1

4
min

1≤i<j
d(Γi,Γj), (2.13)

and moreover

(Pj) Every connected component Γk, k 6= j, that intersects B(Γj , 2rj) has length < δj−1/4.

(P′j) Every disc of radius δj−1 intersects the unbounded connected component of R2\B(Γj , rj).

Note that all the above can certainly be achieved, because there are only finitely many com-
ponents Γk whose length is > δj−1/4. Choosing rj > 0 small enough, γj will not intersect any
of them. Moreover, the inequality (2.12) follows by well known results in geometric measure
theory [1, 14]. Indeed, since Γj is rectifiable, the neighborhoods of radius r around Γj satisfy

lim
r→0

m2

(
B(Γj , r)

2r

)
= m1(Γj).

Hence the co-area formula yields

lim inf
r→0

m1

(
∂B(Γj , r)

)
≤ 2m1(Γ). (2.14)
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We then choose a constant δj according to (v) above.

Finally, the new path ξj : [0, τj ] 7→ R2 is defined as follows. If ξj−1(t) /∈ B(Γj , rj) for all
t ∈ [0, τj−1], then there is no need to modify the previous path, and we can simply set

τj = τj−1 , ξj(t) = ξj−1(t).

Otherwise, we add a detour so that the new path will remain bounded away from the compo-
nent Γj of the barrier. For this purpose, define the times

t−
.
= inf

{
t ∈ [0, τj−1] ; ξj−1(t) ∈ B(Γj , rj)

}
,

t+
.
= sup

{
t ∈ [0, τj−1] ; ξj−1(t) ∈ B(Γj , rj)

}
,

and the points
P− = ξj−1(t−), P+ = ξi(t

+).

Various cases need to be considered (see Fig. 4).

C
C

0

γ
j

C
1

0

Γ γ

_

+

ξ
j−1

jΓ

ξ
j−1

γ
_

PP
+P

_
_

_
γ

P
_

P
+

P
+

ξ
j−1

γ

j

Figure 4: If the path ξj−1 intersects the component Γj of the barrier, a detour must be constructed.
The figures on the left, center, and right illustrate Cases 1, 2, and 4, respectively.

CASE 1: 0 < t− ≤ t+ < τj−1, shown in Fig. 4, left.

In this basic case we observe that the two points P−, P+ divide the simple closed curve γj
into two parts, say γ−j , γ+

j . To fix the ideas, assume

sj
.
= m1(γ−j ) ≤ m1(γ+

j ). (2.15)

Let s 7→ γ−j (s) be an arc-length parameterization of γ−j , with

γ−j (0) = P−, γ−j (sj) = P+.

We then define the new path ξj by adding a detour around Γj as follows:

ξj(t) =


ξj−1(t) if t ∈ [0, t−],

γ−j (t− t−) if t ∈ [t−, t− + sj ],

ξj−1(t− sj + t+ − t−) if t ∈ [t− + sj , τj ].

(2.16)

Here
τj = τj−1 + sj − (t+ − t−).

CASE 2: 0 = t− ≤ t+ < τj−1, shown in Fig. 4, center.
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Call P+ = ξj−1(t+). Observe that, by (2.13) and (P′j), the curve γj has non-empty intersection
with the circumference

C0
.
= {y ∈ R2 ; |y − ξj−1(0)| = δj−1}. (2.17)

Therefore, starting at P+ and moving along the simple closed curve γj , we can reach some
point P− on C0 in two different ways: clockwise and counterclockwise. We choose γ− ⊂ γj
to be the shortest among these two paths.

As shown in Fig. 4, center, we parameterize γ− by arc length, so that

γ−(0) = P−, γ−(sj) = P+

for some sj > 0. Choosing t− so that P− = ξj−1(t−), we define the new path ξj(·) by setting
τj = τj−1 − t− + sj and

ξj(t) =

{
γ−(t) if t ∈ [0, sj ],

ξj−1(t+ t− − sj) if t ∈ [sj , τj−1 − t− + sj ].
(2.18)

CASE 3: 0 < t− ≤ t+ = τj−1.

In this case, the new path ξj(·) will connect ξj−1(0) with a point on the circumference

C1
.
=
{
y ∈ R2 ; |y − ξj−1(τj−1)| = δj−1

}
. (2.19)

Since this is entirely similar to Case 2, we omit the details.

CASE 4: 0 = t− < t+ = τj−1, shown in Fig. 4, right.

In this case, the simple closed curve γj intersects both circumferences C0 and C1 in (2.17),
(2.19). We then choose a point P− ∈ C0 and a point P+ ∈ C1 so that the portion γ− ⊂ γj
connecting P− with P+ is as short as possible.

We now parameterize γ− by arc length, so that

γ−(0) = P−, γ−(sj) = P+

for some sj > 0. The new path ξj(·) is defined simply by setting τj = sj and

ξj(t) = γ−(t) for all t ∈ [0, sj ]. (2.20)

3. Having constructed a sequence of paths ξj : [0, τj ] 7→ R2, j ≥ 0, by taking the limit as

j →∞ we will obtain a path ξ̃(·) which satisfies the properties (2.3)-(2.4), together with

τ̃ ≤ τ + (1 + ε)
∑
i>ν

m1(Γi) . (2.21)

For convenience, we extend the definition of each path ξj to all of R+ by setting

ξj(t) = ξj(τj) for all t ≥ τj .
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Toward a proof of (2.3), we observe that our construction implies

|ξj(0)− ξj−1(0)
∣∣ ≤ δj−1 < 2−jε .

|ξj(τj)− ξj−1(τj−1)
∣∣ ≤ δj−1 < 2−jε .

Recalling that ξ0 = ξ and summing these inequalities from 1 to j, we obtain (2.9).

4. Our construction guarantees that, for every j ≥ 1, the length τj of the new curve ξj(·)
satisfies (2.8). Notice that, if Case 4 occurs, we have the even sharper bound

τj ≤ (1 + ε)m1(Γj).

In addition, since we are assuming that the initial path ξ(·) does not intersect any of the
components Γ1, . . . ,Γν , our choice of δ0 > 0 in (2.6) guarantees that no modification need to
be done in the first ν steps of the algorithm. Hence ξj(·) = ξj−1(·) for all j = 1, . . . , ν. In
particular, this implies

τj = τ for all j = 1, . . . , ν. (2.22)

If one of the Cases 1-2-3 occurs, then our construction yields∣∣ξj(t)− ξj−1(t)| ≤ (1 + ε)m1(Γj) for all t ≥ 0. (2.23)

In Case 4 the above estimate can fail. However, by (2.9), Case 4 in the above construction can
occur only finitely many times. Indeed, there are at most finitely many connected components
Γj of length

m1(Γj) ≥ |ξ(τ)− ξ(0)| − 4ε.

We thus conclude that the sequence ξj(·) is Cauchy. As j → ∞, we have the convergence
ξj(t)→ ξ∞(t), uniformly for t ≥ 0.

5. Since all paths ξj are Lipschitz continuous with constant 1, the limit path ξ∞ is 1-Lipschitz

as well. We can now parameterize ξ∞ by arc-length, and obtain a path ξ̃ : [0, τ̃ ] 7→ R2, with

τ̃ ≤ lim inf
j→∞

τj ≤ τ + (1 + ε)
∑
j>ν

m1(Γj).

Notice that the above estimates follow from (2.22) and (2.8). This proves (2.21).

The bounds (2.3) are an immediate consequence of (2.9).

6. In this step we show that (2.4) holds. Namely, the path ξ̃ does not touch any of the
components Γi, i ≥ 1 of the barrier.

This claim will be proved by showing that, for a fixed j ≥ 1 and every k ≥ j one has

d(ξk(t),Γj)
.
= min

{
|ξk(t)− y| ; y ∈ Γj

}
≥ δj for all t ∈ [0, τk] . (2.24)

By construction, it immediately follows that

d(ξj(t),Γj) ≥ rj ≥ 4δj for all t ∈ [0, τj ].
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We now observe that, for any k > j, the path ξk(·) is obtained from ξj(·) by replacing some
of its sections by detours γ−i (·), i = j + 1, . . . , k, where

d(γi(s),Γi)
.
= min

{∣∣γ(s)− y
∣∣ ; y ∈ Γi

}
= ri for all s.

Three cases must be considered.

CASE 1: (2.10) holds, and hence by construction (2.11) holds as well. In this case we have

d(γk(s),Γj) ≥ d(Γk,Γj)− d(γk(s),Γk) ≥ 4δj − rk ≥ 3δj .

CASE 2: d(Γk,Γi) > 2rj . In this case, for every s we trivially have

d(γk(s),Γj) ≥ d(Γk,Γj)− d(γk(s),Γk) ≥ 2rj − rk > rj ≥ 4δj .

CASE 3: Γk ⊆ B(Γj , rj/2). If ξk(·) = ξk−1(·), the conclusion (2.24) follows by induction on
k. It thus suffices to consider the case where ξk(·) is obtained from ξk−1(·) by inserting some
nontrivial portion of a curve γk ⊆ {x ; d(x,Γk) = rk}.

In this case, our algorithm implies that there exists a finite sequence

j = i(0) < i(1) < · · · < i(N) = k

such that every curve γi(`)
.
= {x ; d(x,Γk) = rk} intersects the previous one:

γi(`) ∩ γi(`−1) 6= ∅ for all ` = 1, . . . , N.

Considering the diameters of the sets γi(`), we thus have the bound

min
s
d
(
ξk(s),Γj

)
≥ min

s
d
(
γi(1)(s),Γj

)
−

N∑
`=2

diam(γi(`))

≥
(
d(Γi(1),Γj)− ri(1)

)
−

N∑
`=2

(
2ri(`) +m1(Γi(`))

)
.

≥
(

4δj −
δj
2

)
−

N∑
`=2

(
2 · 2j−i(`) δj

4
+ 2j−i(`)

δj
4

)
> δj .

(2.25)

Indeed, the condition (2.10) applies to Γi(1), hence (2.11) holds. Moreover, using the property
(Pj) with j replaced by i(1), . . . , i(N), we obtain

m1(Γi(`)) ≤
δi(`)−1

4
≤ 2j−i(`)

δj
4
.

Combining the above three cases, we conclude that (2.24) holds. Taking the limit as k →∞,
we conclude that d(ξ̃(t),Γj) ≥ δj for all t ≥ 0 and j ≥ 1. This establishes (2.4),

7. To obtain the bound (2.5) on the length of the new path, define

τ̂
.
= min

{
τ̃ , τ +

∑
i>ν

m1(Γi)

}
.

12



By (2.21), we trivially have

|τ̃ − τ̂ | ≤ ε
∑
i>ν

m1(Γi).

Therefore, if we replace the path ξ̃ by its restriction to the subinterval [0, τ̂ ], the conditions
(2.4)-(2.5) are satisfied, while the second inequality in (2.3) will be replaced by∣∣ξ̃(τ̂)− ξ(τ)

∣∣ ≤ ε+ ε
∑
i>ν

m1(Γi) ≤ ε(1 +m1(Γ)).

Since ε > 0 can be chosen arbitrarily small, this completes the proof.

The next result is concerned with the length of the portion of the barrier which is touched by
the fire at a given time t. We recall that, if Γ is admissible, the linear bound (1.5) must hold.

Lemma 2.3. Given an admissible barrier Γ, consider the function

ϕ(t) = m1

(
RΓ(t) ∩ Γ

)
. (2.26)

Then

(i) ϕ is nondecreasing and right continuous.

(ii) The set of times where the constraint is not saturated

U .
=
{
t > 0 ; m1

(
RΓ(t) ∩ Γ

)
< σt

}
(2.27)

is open.

(iii) The set of times where the constraint is saturated

S .
=
{
t ≥ 0 ; m1

(
RΓ(t) ∩ Γ

)
= σt

}
(2.28)

is closed.

Proof. 1. For any 0 < t1 <2 we have RΓ(t1) ⊆ RΓ(t2). Hence ϕ is nondecreasing.

2. Next, we claim that ϕ it is right continuous. Indeed, consider a decreasing sequence of
times tn ↓ t0. Since the fire propagates with unit speed, we have

RΓ(tn) ⊆ B
(
RΓ(t0), tn − t0

)
hence

RΓ(t0) ∩ Γ =
⋂
n≥1

(
RΓ(tn) ∩ Γ

)
.

The right continuity of ϕ now follows from the dominated convergence theorem.

3. By the previous two steps it follows that ϕ is upper semicontinuous. Hence the function
t 7→ ϕ(t) − σt is upper semicontinuous as well. We thus conclude that the set U where
ϕ(t)− σt < 0 is open. The closure of S = R+ \ U follows immediately.

13



The next lemma will play a key role in the sequel. The intuitive idea is simple: let t = ai be the
first time when the fire front touches the connected component Γi. Immediately afterwards,
the fire starts going around Γi, clockwise as well as counterclockwise, until this connected
component is completely surrounded. This will happen at some time bi with bi−ai ≤ m1(Γi).
On the other hand, when the fire front does not touch any of the barriers Γj , it expands
freely with unit speed in all directions. Therefore, the distance between level sets of the time
function TΓ increases at unit rate.

Lemma 2.4. Consider a barrier Γ = ∪i≥1Γi, written as the union of its compact connected
components. Assume that R2 \ Γ is connected.

(i) For each i ≥ 1, the set of times when the fire front touches Γi

Ji
.
=
{
t ≥ 0 ; ∂ RΓ(t) ∩ Γi 6= ∅

}
(2.29)

is contained within an interval [ai, bi] of length bi − ai ≤ m1(Γi).

(ii) For any 0 ≤ τ < τ ′, one has

B
(
RΓ(τ), r

)
⊆ RΓ(τ ′), with r = m1

[τ, τ ′] \
⋃
i≥1

[ai, bi]

 . (2.30)

Proof. 1. By the assumptions, each Γi is simply connected. Let

ai
.
= inf

{
t ≥ 0 ; RΓ(t) ∩ Γi 6= ∅

}
= min

x∈Γi
TΓ(x) (2.31)

be the first time when the fire touches Γi. By the lower semicontinuity of TΓ and the com-
pactness of Γi, it is clear that ai is actually a minimum. We will prove part (i) of the lemma
by showing that, at any time τ > ai +m1(Γi), the component Γi is entirely contained in the
interior of the set RΓ(τ).

2. Toward our goal, we first choose ε > 0 such that

4ε < τ − ai −m1(Γi), (2.32)

then we choose an integer ν > i so large that∑
k>ν

m1(Γk) < ε . (2.33)

Finally, we choose a radius 0 < ρ < ε small enough so that

B(Γi, ρ) ∩ Γj = ∅ for all j = 1, . . . , ν, j 6= i. (2.34)

With the above choices, we will show that

B(Γi, ρ) ⊂ RΓ(τ). (2.35)

3. To prove (2.35), fix any point x ∈ B(Γi, ρ) \ Γi. For 0 < r < ρ, consider the open
neighborhood B(Γi, r) of radius r around Γi. By a suitable choice of r > 0, we claim that the
following properties can be achieved.

14



(i) Calling γ the boundary of the unbounded connected component of R2\B(Γi, r), we have

m1(γ) < 2m1(Γi) + ε . (2.36)

(ii) The point x lies in the unbounded connected component of R2 \B(Γi, r).

Indeed, the property (i) follows by the same argument used in (2.14). The property (ii) follows
from the fact that Γi is compact and simply connected, while x /∈ Γi.

x

z

x
y

Γi

1

2

’

0
R

γ

γ γ

Figure 5: The construction used in the proof of part (i) of Lemma 2.4.

4. As shown in Fig. 5, let x′ ∈ Γi be one of the points closest to x, so that |x − x′| < ρ. By
construction, the segment with endpoints x′, x intersects the simple closed curve γ at least at
one point, say y ∈ γ. This implies

|x− y| < |x− x′| < ρ ≤ ε. (2.37)

Next, since RΓ(ai) ∩ Γ 6= ∅, there exists a trajectory for the fire that starts inside R0 and
crosses the curve γ at some point z before time t = ai.

We now consider the path ξ : [0, `] 7→ R2 obtained by concatenating the following three paths:

• A path γ1, starting inside R0 and reaching z ∈ γ without crossing the barrier Γ. This
path has length `1 < ai.

• A path γ2 contained within γ, starting at z and ending at y. Since we can move along
γ both clockwise or counterclockwise, by choosing the shorter path we can assume that
γ2 has length

`2 ≤
1

2
m1(γ) < m1(Γi) + ε.

• A path γ3 consisting of the segment with endpoints y, x. By (2.37), its length is `3 < ε.

The total length of this path ξ(·) is thus

` = `1 + `2 + `3 < ai +
(
m1(Γi) + ε

)
+ ε < τ − 2ε.

Notice that, by construction, the path ξ does not cross any of the components Γ1, . . . ,Γν .
Applying Lemma 2.2, for any ε′ > 0 we can find a new path ξ̃ : [0, ˜̀] 7→ R2 \ Γ such that

ξ̃(0) ∈ R0 ,
∣∣ξ̃(˜̀)− x∣∣ < ε′,
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and moreover ˜̀ ≤ ai +m1(Γi) + 2ε+
∑
k>ν

m1(Γk) < τ.

This implies x ∈ RΓ(τ), as claimed. Hence part (i) of the lemma is proved.

5. It now remains to prove (ii). Without loss of generality, we can assume that the intervals
[ai, bi] are labelled according to decreasing length, so that

b1 − a1 ≥ b2 − a2 ≥ · · · (2.38)

Let 0 < τ < τ ′ and ε > 0 be given. Choose ν > 1 large enough so that (2.33) holds. We now
express the open set

]τ, τ ′[ \

 ⋃
1≤i≤ν

[ai, bi]

 =

m⋃
k=1

]τk, τ
′
k[

as the union of finitely many disjoint open intervals.

Next, we choose an integer ν ′ > ν such that∑
i>ν′

m1(Γi) < ε′
.
=

ε

m
, (2.39)

and define the times
tk

.
= τk + ε′, t′k

.
= τ ′k − ε′.

Finally, for k = 1, . . . ,m, we define the sets of integers

Ik
.
=
{
i ; ν + 1 ≤ i ≤ ν ′ , [ai, bi]∩ ]τk, τ

′
k[ 6= ∅

}
.

Notice that, by (2.38), these sets are mutually disjoint.

6. Toward a proof of (2.30) we will show that, for every k = 1, . . . ,m, one has

B
(
RΓ(tk), rk

)
⊆ RΓ(τ ′k), with rk = (τ ′k − τk)− 3ε′ −

∑
i∈Ik

m1(Γi). (2.40)

Notice that (2.40) implies
B
(
RΓ(τ), r

)
⊆ RΓ(τ ′), (2.41)

with

r =
m∑
k=1

rk =
m∑
k=1

(τ ′k − τk − ε′)− 3mε′ −
m∑
k=1

∑
i∈Ik

m1(Γi)

≥ m1

(
[τ, τ ′] \

ν⋃
i=1

[ai, bi]

)
− 3mε′ −

∑
ν<i≤ν′

m1(Γi)

≥ m1

(
[τ, τ ′] \

+∞⋃
i=1

[ai, bi]

)
− ε− 3mε′ − ε

= m1

(
[τ, τ ′] \

+∞⋃
i=1

[ai, bi]

)
− 5ε.

(2.42)
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Since here ε > 0 can be taken arbitrarily small, this yields (2.30).

7. It thus remains to prove (2.40), for each k ∈ {1, . . . ,m}.

Consider any point y ∈ B(RΓ(tk, rk)) with y /∈ RΓ(tk), and choose a point x0 ∈ RΓ(tk) which
minimizes the distance from y. For any given ρ > 0, we can then choose a point y0 ∈ RΓ(tk)
with |y0 − x0| < ρ. Notice that we can also assume

lim
h→0+

1

h2
m1

(
Γ ∩B(y0, h)

)
= 0, (2.43)

because this property holds at a.e. point x ∈ R2, w.r.t. Lebesgue measure.

Call γ the segment with endpoints y0, y, and let ξ : [0, `] 7→ R2 be an arc-length parameteri-
zation of this segment, oriented from y0 to y. Notice that this implies ` < rk.

In order to use Lemma 2.2, we claim that, among all the connected components Γi, 1 ≤ i ≤ ν ′
the only ones that can have a non-empty intersection with γ are the components Γi, with
i ∈ Ik. Indeed, consider the set of indices

I−
.
=
{
i ≤ ν ; [ai, bi] ⊆ [0, τk]

}
∪ I1 ∪ · · · ∪ Ik−1 (2.44)

For every i ∈ I− we have bi ≤ τk < tk. Hence RΓ(tk) contains a neighborhood of Γi. Therefore,
since y lies outside RΓ(tk), a segment of minimum length joining y with a point x0 ∈ RΓ(tk)
cannot intersect Γi. The same holds if we choose y0 sufficiently close to x0.

Summarizing the previous discussion, given y ∈ B
(
RΓ(tk), rk

)
\RΓ(tk), we can find y0 ∈ RΓ(tk)

and a radius ρ > 0 small enough such that

(i) `
.
= |y0 − y| < rk.

(ii) The segment γ with endpoints y0, y does not intersect any of the compact connected
components Γi with i ∈ I−.

(iii) The circumference Σ centered at y0 with radius ρ satisfies

Σ
.
= {x ∈ R2 ; |x− y0| = ρ} ⊂ RΓ(tk) \ Γ. (2.45)

Notice that the (2.45) is made possible thanks to (2.43).

Next, consider the set of indices

I+ .
=
{
i ≤ ν ; ai ≥ τ ′k

}
∪ Ik+1 ∪ · · · ∪ Im .

Arguing by contradiction, we show that none of the components Γi with i ∈ I+ can intersect
the segment γ. Indeed, if the intersection is nonempty, define

s̄
.
= min

{
s ∈ [0, `], ; ξ(s) ∈ Γi for some i ∈ I+

}
.

For every s < s̄, an application of Lemma 5.1 would imply the existence of a sequence of paths
ξj : [0, `j ] 7→ R2 \ Γ such that

ξj(0)→ y0, ξj(`j)→ ξ(s), as j →∞,
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and whose length satisfies

lim sup
j→∞

`j ≤ s+
∑
i∈Ik

m1(Γi) +
∑
i>ν′

m1(Γi) < rk +
∑
i∈Ik

m1(Γi) + ε′ . (2.46)

We now observe that, for all j large enough, the path ξj(·) crosses the circumference Σ at some
point ξj(sj). By taking the restriction of ξj to the subinterval [sj , `j ], we obtain a sequence

of paths ξ̃j , of length ≤ `j , where the initial point lies on Σ ⊂ RΓ(tk) and the terminal points
converge to y. This implies

TΓ(ξ(s)) ≤ tk + lim inf
j→∞

`j ≤ tk + rk +
∑
i∈Ik

m1(Γi) + ε′.

Since s can be taken arbitrarily close to s̄, recalling (2.40) we conclude that the point ξ(s̄) ∈ Γi∗

lies inside the set RΓ(T ), with

T = tk + rk +
∑
i∈Ik

m1(Γi) + ε′

= (τk + ε′) +

(τ ′k − ε′ − τk)− 3ε′ −
∑
i∈Ik

m1(Γi)

+
∑
i∈Ik

m1(Γi) + ε′

< τ ′k .

Since i∗ ∈ I+, by definition this implies ai∗ ≥ τ ′k, reaching a contradiction.

8. In view of the previous step, we can now apply Lemma 5.1 to each segment with endpoints
y0, γ(s), for 0 < s < ` = |y − y0|. This yields a sequence of paths ξ̃j : [0, `j ] 7→ R2, joining a
point xj ∈ Σ ⊂ RΓ(tk) with a point yj which becomes arbitrarily close to ξ(s) as j →∞. All

these paths ξ̃j do not cross Γ. Their lengths `j satisfy the uniform bound

`j ≤ s+
∑
i∈I+k

m1(Γi) + ε′ ≤ rk +
∑
i∈I+k

m1(Γi) + ε′ ≤ (τ ′k − tk)− ε′.

For every 0 ≤ s < `, this implies

γ(s) ∈ RΓ(τ ′k − ε′) ⊆ RΓ(τ ′k).

Letting s → `, we obtain γ(s) → y, and hence y ∈ RΓ(τ ′k). This establishes the inclusion
(2.40) for every k = 1, . . . ,m, thus completing the proof.

3 Properties of the minimum time function with obstacles

Assume that the initial set R0 where the fire is burning at t = 0 has finite perimeter. Consider
a barrier Γ = ∪iΓi, written as the union of its connected components. For every fixed time
T > 0, the truncated function

x 7→ min
{
T , TΓ(x)

}
has bounded variation. Indeed, as shown in [13], it is an SBV function. By the co-area formula
it thus follows ∫ T

0
m1

(
∂RΓ(t)

)
dt < ∞. (3.1)
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As a consequence, for a.e. time t ∈ [0, T ], the boundary ∂RΓ(t) is a curve with finite length.

We now consider a sequence of barriers Γ(n), n ≥ 1, converging to a barrier Γ, and study the
behavior of the corresponding minimum time functions TΓ(n)

. Two cases will be studied. The
first lemma deals with the case where each barrier has a finite number of connected compo-
nents. The second lemma is concerned with barriers having countably many components. For
the definition and properties of the Hausdorff distance between compact sets we refer to [2, 7].

Lemma 3.1. Let a bounded open set R0 ⊂ R2 be given. Consider a barrier Γ = ∪Ni=1Γi which
is the union of finitely many compact, simply connected, rectifiable components. Let Γ(n) =

∪Ni=1Γ
(n)
i , with n ≥ 1, be an approximating sequence of barriers. Assume the convergence

w.r.t. the Hausdorff distance:

lim
n→∞

dH(Γ
(n)
i ,Γi) = 0 for each i = 1, . . . , N. (3.2)

(i) For every x ∈ R2 \ Γ, one has

TΓ(x) = lim
n→∞

TΓ(n)
(x). (3.3)

(ii) For each n ≥ 1, let ξn : [0, τn] 7→ R2 be an optimal trajectory reaching a point x ∈ R2 \Γ
in minimum time without crossing Γ(n). If τn → τ and ξn(·)→ ξ(·) uniformly on every
compact subset of [0, τ [ , then ξ(·) is an optimal trajectory reaching x in minimum time
without crossing Γ.

Proof. 1. Toward a proof of (i), consider a minimizing sequence of 1-Lipschitz paths ξν :
[0, τν ] 7→ R2 , satisfying

ξν(0) ∈ R0, ξν(t) /∈ Γ for all t ∈ [0, τν ],

|ξ(τν)− x| < 1

ν
, τν → TΓ(x) as ν →∞.

Since Γ is compact and by assumption x /∈ Γ, we conclude that, for all ν large enough, the
segment joining ξ(τν) with x will not touch Γ. By adding this segment to the path ξν we
obtain another sequence of 1-Lipschitz paths ξ̃ν : [0, T̃ν ] 7→ R2 \ Γ, with

ξ̃ν(T̃ν) = x for all ν , lim
ν→∞

T̃ν = TΓ(x). (3.4)

By the compactness of the barriers Γ(n), for each ν ≥ 1 there exist an integer nν large enough
such that ξ̃ν(t) /∈ Γ(n) for all n ≥ nν and all t ∈ [0, T̃ν ]. This immediately implies

T̃ν ≥ lim sup
n→∞

TΓ(n)
(x).

Together with (3.4), this yields

TΓ(x) ≥ lim sup
n→∞

TΓ(n)
(x). (3.5)
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2. To prove (ii) we observe that, by (3.5), τ ≤ TΓ(x). It thus only remains to prove that the
limit path ξ(·) is admissible. Since x /∈ Γ, there exists ρ > 0 such that B(x, ρ)∩ Γ = ∅. In the
following, to simplify notation, we still denote by ξ the set of points {ξ(t) ; t ∈ [0, τ ]} ⊂ R2.
For a given 0 < r << ρ sufficiently small, consider the neighborhood B(ξ, r), and let Σ be
the boundary of the unbounded connected component of R2 \B(ξ, r). This is a simple closed
curve, which we can parameterize by arc-length, oriented counterclockwise.

As shown in Fig. 6, within Σ we distinguish an arc Σ1 connecting a point in P1 ∈ R0 with
a point Q1 ∈ B(x, ρ), and an arc Σ2 connecting a point Q2 ∈ B(x, ρ) with a point P2 ∈ R0,
moving counterclockwise. we call Ω̂ the open set bounded by Σ. Moreover, we consider the
open subset

Ω
.
= Ω̂ \ (R0 ∪B(x, ρ))

with its open subsets Ω1 ⊂ Ω, bounded between Σ1 and ξ, and Ω2 ⊂ Ω bounded between ξ
and Σ2.

3. In the following, for simplicity we consider the case where N = 1, so that Γ and all the
approximating barriers Γ(n) contain only one component. Since all components are compact
and have a positive distance from each other, the general case follows by the same arguments.

Fix a point z ∈ Γ, outside the region enclosed by Σ. We claim that, for every y ∈ Ω1 ∩ Γ,
there exists a path γy ⊆ Γ connecting y with z, and touching Σ1 without entering Ω2. More
precisely, we claim that there is a map γy : [0, s̄] 7→ Γ such that

γy(0) = y, γy(s̄) = z,

γy(s∗) ∈ Σ1, where s∗
.
= inf

{
s ∈ [0, s̄] ; γy(s) /∈ Ω

}
.

To prove this claim, we observe that there exist sequences yn, zn ∈ Γ(n), with yn → y and
zn → z. Since Γ(n) is connected, for each n ≥ 1 there is a path γn joining yn with zn, and
remaining inside Γ(n). By possibly selecting a subsequence and relabeling, we obtain a limit
path γ : [0, s̄] 7→ Γ, joining y with z. If γ(s) ∈ Ω2 for some 0 < s < s∗, then γ crosses the
path ξ. By uniform convergence γn → γ and ξn → ξ, this would imply that every ξn, with n
suitably large, crosses Γ(n), a contradiction.

We observe that, after reaching the boundary Σ1, for s ∈ [s∗, s̄] the path γy can re-enter
inside Ω. However, it cannot cross ξ. Namely, if it enters through Σ1, it must eventually
leave through Σ1. If it enters through Σ2, it must leave through Σ2. Otherwise, being a
limit of paths γn contained in the approximating barriers Γ(n), these paths would cross the
corresponding paths ξn.

4. Within the compact curve ξ, for k = 1, 2 we define the subset

Vk
.
=
{
y ∈ ξ ∩ Γ ; there is a path inside Γ joining y with z, exiting through Σk

}
. (3.6)

Since Γ is rectifiable and compact, it follows that V1, V2 are both compact. We claim that
they are disjoint. Indeed, assume that y = ξ(s) ∈ V1 ∩ V2. Then, inside Ω ∩ Γ, we can find
a path joining y with a point y1 ∈ Ω1, and another path joining y with a point y2 ∈ Ω2. In
turn, by the previous step, there is a path γy1 joining y1 to z, and a path γy2 joining y2 with
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Figure 6: Showing that the limit path ξ is admissible.

z. The union of these paths is a multiply connected rectifiable subset of Γ. This yields a
contradiction.

5. By the previous step, we can cover the disjoint compact sets V1, V2 ⊂ [0, τ ] with finitely
many disjoint intervals, say [aj , bj ] and [cj , dj ], so that

V1 ⊆
m⋃
j=1

[aj , bj ], V2 ⊆
m⋃
j=1

[cj , dj ].

Define the corresponding portions of curve

γ
(j)
1

.
=
{
γ(s) ; s ∈ [aj , bj ]

}
, γ

(j)
2

.
=
{
γ(s) ; s ∈ [cj , dj ]

}
.

We claim that, by choosing a radius δ > 0 small enough, for every j = 1, . . . ,m one has

Γ ∩B
(
γ

(j)
1 , δ

)
∩ Ω2 = ∅, Γ ∩B

(
γ

(j)
2 , δ

)
∩ Ω1 = ∅. (3.7)

Indeed, if no such radius δ > 0 exists, we could find a point y ∈ V1 and a sequence of points
yn → y with yn ∈ Γ ∩ Ω2 for all n ≥ 1. By step 3, for each yn there exists a path joining yn
to z, remaining inside Γ \Ω1. By taking a limit, we obtain a path joining y with z, remaining
inside Γ \ Ω1. This would yield y ∈ V2, reaching a contradiction because in step 2 we proved
that V1 ∩ V2 = ∅.

6. We now describe how to make a small modification of the path ξ, so that it does not touch
the barrier Γ. Fix ε > 0 and consider the finitely many circumferences with radius ε, centered
at the points

Aj = ξ(aj), Bj = ξ(bj), Cj = ξ(cj), Dj = ξ(dj).

In addition, for 0 < ε′ << ε, call Σ′ the simple closed curve obtained by taking the boundary
of the unbounded connected component of R2 \ B(ξ, ε′). As in step 2, we distinguish a lower
and an upper portion of this boundary, which we call Σ′1,Σ

′
2, respectively.

As shown in Fig. 7, for each j = 1, . . . ,m, the portion of the path {ξ(s) ; s ∈ [aj , bj ]} between
Aj and Bj , is replaced by two arcs of circumferences centered at Aj , Bj together with a portion
of the curve Σ′2. Similarly, the portion of the path {ξ(s) ; s ∈ [cj , dj ]} between Cj and Dj ,
is replaced by two arcs of circumferences centered at Cj , Dj together with a portion of the
curve Σ′1. By the previous analysis, for all ε, ε′ > 0 sufficiently small, this new curve does
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Figure 7: By modifying the trajectory ξ(·) along the arcs where it touches the barrier Γ, one can show
that ξ is admissible.

not intersect Γ. Moreover, letting ε, ε′ → 0, we recover the original path ξ in the limit. This
shows that ξ(·) is admissible, proving (ii).

8. By (ii) it now follows

TΓ(x) ≤ lim inf
n→∞

TΓ(n)
(x).

Together with (3.5), this yields (3.3), completing the proof.

Remark 3.2. In the above lemma, the assumptions that each Γi is simply connected and
that x /∈ Γ play an essential role. In Figure 8 shows two cases where these assumptions are
not satisfied, and the conclusions fail.

Remark 3.3. In (3.6), one can think of V1 is the set of points where the barrier Γ touches
the optimal trajectory ξ on the right, while V2 is the set of points where Γ touches ξ on the
left. Calling ξ̇(t) = (cos θ, sin θ) ∈ R2 the tangent vector, by construction the map t 7→ θ(t)
is non-increasing along each interval [aj , bj ], non-decreasing along each interval [cj , dj ], and
constant everywhere else.

ξ
n

ξ

Γ
(n)

Γ

x
x

0
R

Γ Γ
(n) R

0

Figure 8: Left: an example showing that (3.3) can fail, if the barrier Γ is not simply connected. For
each n ≥ 1, the barrier Γ(n) is the union of three segments, and R2 \ Γ(n) is connected. However, the
limit barrier Γ is the boundary of a triangle, which is not simply connected. None of the points x in
the interior of this triangle can be reached from R0, without crossing Γ. Right: an example showing

that, if x ∈ Γ, the inequality (3.3) can fail. Indeed, here TΓ(x) < limn→∞ TΓ(n)

(x).
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Lemma 3.4. Let a bounded open set R0 ⊂ R2 be given. Consider a barrier Γ = ∪∞i=1Γi and
assume that R2 \ Γ is connected. For each ν ≥ 1, consider the finite union Γν = ∪νi=1Γi. Call
TΓ, TΓν the corresponding minimum time functions.

(i) For every x ∈ R2 one has
TΓ(x) = lim

ν→∞
TΓν (x). (3.8)

(ii) For each ν ≥ 1, let ξν : [0, τν ] 7→ R2 be an optimal trajectory reaching x in minimum time
without crossing Γν . If τν → τ and ξν(·) → ξ(·) uniformly on every compact subset of
[0, τ [ , then ξ(·) is an optimal trajectory reaching x in minimum time without crossing Γ.

Proof. 1. To prove (3.8), fix x ∈ R2 and, for every ν ≥ 1, call τν
.
= TΓν (x). Denote by

ζν : [0, τν ] → R2 an optimal trajectory reaching the point x without crossing Γν . According
to Definition 2.1, there exists a second path ξν : [0, τν ]→ R2 \ Γν such that

ξν(0) ∈ R0 , |ξ(t)− ζ(t)
∣∣ < 1

ν
for all t ∈ [0, τν ].

Applying Lemma 2.2, we obtain a further path ξ̃ν : [0, τ̃ν ] → R2, also parameterized by arc
length, such that

ξ̃(0) ∈ R0 ,
∣∣ξ̃ν(τ̃ν)− x

∣∣ ≤ 2

ν
,

ξ̃ν(t) /∈ Γ for all t ∈ [0, τ̃ν ],

and with length

τ̃ν < τν +
∑
i>ν

m1(Γi) .

Therefore (3.8) follows from

lim sup
ν→∞

τν ≤ TΓ(x) ≤ lim inf
ν→∞

τ̃ν = lim inf
ν→∞

[
τν +

∑
i>ν

m1(Γi)

]
= lim inf

ν→∞
τν .

2. To prove part (ii), as usual we assume that all the optimal trajectories ξν are parameterized
by arc length. By the previous step one has

TΓ(x) = lim
ν→∞

TΓν (x) = lim
ν→∞

τn = τ .

To achieve the proof it thus suffices to check that the limit trajectory ξ(·) is admissible.

Toward this goal, the key tool is again provided by Lemma 2.2. For each ν ≥ 1, using the
lemma we obtain a path ξ̃ν : [0, τ̃ν ]→ R2 such that

ξ̃ν(0) ∈ R0 , ξ̃ν(t) /∈ Γ for all t ∈ [0, τ̃ν ],∣∣ξ̃ν(τ̃ν)− ξν(τν)
∣∣ ≤ 1

ν
,

and with length

τ̃ν ≤ τν +
∑
i>ν

m1(Γi) .
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Recalling (2.23) in the proof of Lemma 2.2, w.l.o.g. we can assume that

∣∣ξ̃ν(t)− ξν(t)
∣∣ ≤ (

1 +
1

ν

)∑
i>ν

m1(Γi), (3.9)

for all t ≥ 0. It is understood that here ξν and ξ̃ν are extended as constant functions, for
t ≥ τν and t ≥ τ̃ν , respectively.

By (3.9), as ν → ∞ the sequence of paths ξ̃ν(·) converges uniformly to ξ(·). Hence ξ is
admissible.

4 A regularity property of optimal trajectories

Aim of this section is to study a property of the optimal trajectories for the fire, in the presence
of barriers. We begin with a few observations.

• If no barriers are present, all optimal trajectories are straight lines, and the minimum
time function is trivially T (x) = d(x,R0).

• Next, assume that R0 has a C2 boundary. For each point x /∈ R0, consider the shortest
segment connecting x with a point y ∈ R0. If the total length of all barriers m1(Γ) =∑

im1(Γi) < ε is sufficiently small, then most of these segments will not cross Γ. Hence,
as shown in Fig. 9, center, they will yield optimal trajectories for the fire also when
barriers are present. Notice that this remains true even if the set Γ of all barriers is
dense in R2.

• For a general set R0, however, even if the total length of all barriers is very small, it
can happen that most of the optimal trajectories touch one of the barriers. As shown
in Fig. 9, this is the case when R0 has cusps, and some of the barriers are placed very
close to these cusps.

R
0

R
0

R
0

x

Figure 9: Left: if no barriers are present, all optimal trajectories are straight lines. Center: if the
initial set R0 has smooth boundary and the total length of all barriers is small, then most of the
optimal trajectories do not hit the barrier, and hence are still straight lines. Right: for a general set
R0 whose boundary contains cusps, even if the total length of the barriers is small, most of the optimal
trajectories may touch one of the barriers.

Since in general it is not true that most optimal trajectories are straight lines, in this section we
prove a somewhat weaker property. Namely: most optimal trajectories contain long straight
segments. This property will play a key role in the proof of Theorem 1.5.
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Consider again the optimization problem for the fire, in the presence of a barrier Γ. Given an
initial set R0, let

R1
.
= {x ∈ R2 ; d(x,R0) < 1} (4.1)

be the neighborhood of radius 1 around R0. For any x ∈ R2, call TΓ(x) the minimum time
needed to reach x from R0 without crossing Γ. Moreover, given an admissible trajectory
t 7→ ξx(t) reaching x in minimum time, we denote by ρ(x) the length of the last portion of
this trajectory which is a straight line. More precisely,

ρ(x)
.
= sup

{
τ ≥ 0 ; there exists a trajectory t 7→ ξx(t) reaching x in minimum time

without crossing Γ, and the velocity ξ̇x is constant on [TΓ(x)− τ, TΓ(x)]
}
.

(4.2)

Lemma 4.1. Let R0 be a bounded, open set, and call R1 the set in (4.1). Then, for any
barrier Γ one has ∫

R1

ρ(x) dx ≥
∫
R1

d(x,R0) dx− T̂ 2 + T̂

2
·m1(Γ), (4.3)

where
T̂

.
= sup

x∈R1

TΓ(x).

Remark 4.2. In the case where no barriers are present, one has ρ(x) = d(x,R0) and the
bound (4.3) is obvious. We observe that a lower bound on the left hand side of (4.3) cannot
be achieved by the trivial estimate

ρ(x) ≥ inf
y∈Γ
|y − x|, (4.4)

because the set Γ = ∪iΓi can be everywhere dense. In this case the right hand side of (4.4) is
identically zero.

Remark 4.3. Assuming that R2 \ Γ is connected, so that all barriers are only delaying the
fire, by Lemma 2.2 it follows that

T̂ ≤ 1 +m1(Γ). (4.5)

4.1 Polygonal barriers.

We shall give a proof of Lemma 4.1 first in a special case where explicit computations can
be performed. The general case will then be handled by an approximation argument. In this
section, we tassume

(A2) The initial set R0 is the union of finitely many open discs, while the barrier Γ is the
union of finitely many (not necessarily disjoint) closed segments.

Notice that this special setting implies
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(i) Every optimal trajectory for the fire, reaching a point x ∈ R2 in minimum time without
crossing the barriers, is a polygonal, say with vertices P0, P1, . . . PN . Here P0 ∈ R0,
PN = x, while Pi ∈ Γ for all i ∈ {1, . . . , N − 1}. Indeed, each Pi will be an edge of one
of the segments forming the barrier Γ.

(ii) For every t > 0, the boundary of the reachable set ∂RΓ(t) is the union of finitely many
arcs of circumferences.

(iii) The set of points which can be reached in minimum time by two distinct trajectories is
the union of finitely many segments, or arcs of hyperbolas.

To prove the estimate (4.3) we shall study a family of problems, parameterized by time. Call

Γ(t) = Γ ∩RΓ(t)

the portion of the walls which are touched by the fire within time t. We obviously have

Γ(s) ⊆ Γ(t) for s < t.

For every t ≥ 0, call ρ(t, x) the function defined at (4.2), but with Γ replaced by the smaller
set Γ(t).

j

γ

j

(t)

i
Γ

i
p (t)

q

x

iΓ

q

p (t)
Γi
i

x

p (t)i

Γ
Γ

x

i

δi,+C
S

Figure 10: Left: as the segment Γi becomes longer, the value ρ(x) can decrease at all points x in the
shaded region. Center: at time increases, the value ρ(x) jumps downward from |x − q| to |x − pi(t)|.
Right: the curve γ(t) denotes the set of points x reached in minimum time by two distinct trajectories.
As time increases, this curve changes in time. At points x on this curve, the value of ρ jumps upward
from |x− pi(t)| to |x− q|.

The estimate (4.3) will be achieved by showing that, for a.e. t ∈ [0, 1],

− d

dt

∫
R1

ρ(t, x) dx ≤ T̂ 2 + T̂

2
· d
dt
m1(Γ(t)). (4.6)

To fix the ideas, let Γi(t) ⊆ Γ(t) be one of the segments of the barrier, with an endpoint
pi(t) ∈ ∂RΓ(t) moving along the edge of the advancing fire. For a fixed time t, referring to
the optimization problem with barrier Γ(t), three cases must be considered.

1. Points x reached in minimum time by a trajectory which touches the point pi(t).
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The set of all these points, that we shall call Ωi, is contained within a half disc Ci, with center
at pi(t) and radius T̂ − t. As time increases, for all x ∈ Ωi we have

d

dt
ρ(t, x) =

d

dt
|pi(t)− x| =

〈
ṗi(t),

pi(t)− x
|pi(t)− x|

〉
≥ −

∣∣ṗi(t)∣∣. (4.7)

Observe that the quantity in (4.7) can be negative only on the quarter disc

C+
i

.
=
{
x ∈ Ci ; 〈ṗi(t), pi(t)− x〉 < 0

}
,

corresponding to the shaded region in Fig. 10, left. Using (4.7) we compute

d

dt

∫
Ωi

ρ(t, x) dx ≥
∫
C+
i

〈
ṗi(t),

pi(t)− x
|pi(t)− x|

〉
dx

≥ −
∣∣ṗi(t)∣∣ · ∫ T̂−t

0

∫ π/2

0
cos θ dθ r dr ≥ − T̂ 2

2

∣∣ṗi(t)∣∣ . (4.8)

2. Next, we consider points x reached in minimum time by a trajectory whose last portion
is a segment with endpoints q and x, and such that pi(t) is a point inside this segment (see
Fig. 10, center).

The set of all these points, which we will call Di, is contained on a half line starting at q and
passing through pi(t), so that

|x− pi(t)| ≤ |x− q| < 1 for all x ∈ Di .

As time increases, the value of ρ along Di jumps downward from |x − q| to |x − pi(t)|. To
compute the rate of decrease in the integral

∫
ρ(t, x) dx due to such points, fix δ > 0 small

and consider the region Di,δ of all points x such that

ρ(t, x) = |x− q| , ρ(t+ δ, x) = |x− pi(t+ δ)|.

By the triangle inequality one obtains∫
Di,δ

(
ρ(t, x)− ρ(t+ δ, x)

)
dx ≤ m2(Di,δ) ·

∣∣pi(t+ δ)− q
∣∣. (4.9)

Observe that Di,δ is contained in a circular sector Si,δ with radius T̂ (as the one shaded in
Fig. 10, center) whose area can be computed using the vector product

m2(Si,δ) =
T̂

2

∣∣∣(pi(t+ δ)− pi(t)
)
×
(
pi(t)− q

)∣∣∣∣∣pi(t)− q∣∣ + o(δ). (4.10)

Combining (4.9) with (4.10), we conclude

lim
δ→0+

1

δ

∫
Di,δ

(
ρ(t, x)− ρ(t+ δ, x)

)
dx ≤ lim

δ→0+

1

δ
m2(Si,δ) · |pi(t+ δ)− q| ≤ T̂

2

∣∣ṗi(t)∣∣.
(4.11)
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3. Points x on a curve γ(t) reached in minimum time by two distinct optimal trajectories.

As shown in Fig. 10, right, we can assume that one of these touches pi(t) ∈ Γi, while the other
touches some other point q ∈ Γj . These two trajectories have the same length, therefore

|x− q|+ TΓ(q) = |x− pi(t)|+ TΓ(pi(t)) = |x− pi(t)|+ t. (4.12)

Since TΓ(q) ≤ t, this implies |x− q| ≥ |x− pi(t)| for all x ∈ γ(t).

Notice that γ(t) is a branch of hyperbola. For a.e. y ∈ γ(t) we can choose a neighborhood V
of y such that, for every x ∈ V , one has

TΓ(t)(x) = min
{
|x− q|+ TΓ(q), |x− pi(t)|+ t

}
. (4.13)

Assume that, when the barrier is Γ(t), a point x ∈ V is reached in minimum time by a
trajectory passing through q, namely

|x− q|+ TΓ(q) < |x− pi(t)|+ t.

As time increases from t to t+ δ and the point pi(t) is replaced by pi(t+ δ), by (4.13) we have∣∣x− pi(t+ δ)
∣∣+ TΓ(t+δ)(pi(t+ δ)) ≥

∣∣x− pi(t+ δ)
∣∣+ TΓ(t)(pi(t+ δ))

≥ |x− pi(t)|+ t > |x− q|+ TΓ(q).
(4.14)

According to (4.14), when the barrier increases from Γ(t) to Γ(t+δ), the point x is still reached
in minimum time by a trajectory passing through q. We conclude that, for x ∈ V ,

ρ(t, x) = |x− q| =⇒ ρ(t+ δ, x) = |x− q|.

In other words, the function ρ(·, x) cannot have a downward jump. However, it may well jump
upward, from |x− pi(t)| to |x− q|.

4. Combining the previous steps 1-2-3, for a.e. time t > 0 we obtain

d

dt

∫
R1

ρ(t, x) dx ≥ − T̂ 2 + T̂

2
·
∑
i

∣∣ṗi(t)∣∣ = − T̂ 2 + T̂

2
· d
dt
m1(Γ(t)).

This proves (4.6).

To achieve the estimate (4.3), we now observe that the integral in (4.6) depends continuously
on time, except at finitely many times τk where the topology of Γ(t) changes. To understand
what happens at these exceptional times, as shown in Fig. 11, left, assume that the barrier
Γ(t) contains two segments Γ1 and Γ2 with moving endpoints p1(t), p2(t). Assume that, at
time t = τ , the two segments join together: p1(τ) = p2(τ) as in Fig. 11, right.

Let x ∈ R1 and assume that, for t = τ − δ with δ > 0 small enough, the point x is reached in
minimum time by a trajectory passing through p1(t). On the other hand, for t = τ , assume
that ρ(τ, x) = |x− q|, for some point q along a different optimal trajectory which reaches x
without crossing Γ(τ). For t < τ we now have

ρ(t, x) = |x− p1(t)| = TΓ(t)(x)− t, (4.15)

28



while at time τ
ρ(τ, x) = |x− q| = TΓ(τ)(x)− TΓ(q). (4.16)

Observing that
TΓ(τ)(x) ≥ lim

t→τ−
TΓ(t)(x), TΓ(q) ≤ τ,

by (4.15)-(4.16) we conclude
ρ(τ, x) ≥ lim

t→τ−
ρ(t, x). (4.17)

This shows that, at a time τ where the topology of the barrier Γ(·) changes, the function ρ
can only have upward jumps.

It remains to observe that, when t = 0, one trivially has Γ(0) = ∅ and∫
R1

ρ(0, x) dx =

∫
R1

d(x,R0) dx.

Hence from (4.6) we conclude (4.3).

qq

x x

Γ(τ)
Γ

1
p p

2

Γ
1 2

R
0R0

Figure 11: As time t reaches a critical value τ when two portions of the barrier join together, the
topology of Γ(t) changes. Both the minimum time TΓ(t)(x) and the value ρ(t, x) jump upward.

5. The previous analysis has established the estimate (4.3) in the case where the boundary of
R0 is a finite union of circular arcs, and the barrier Γ is the union of finitely many segments.
By an approximation argument, we shall extend the result to a general initial domain R0 and
a general barrier Γ.

As an intermediate step, we show that the estimate (4.3) holds for a general initial set R0,
assuming that Γ has finitely many connected components: Γ = Γ1 ∪ Γ2 ∪ · · · ∪ ΓN .

Indeed, consider a sequence of open sets (R0,n)n≥1 such that:

(i) The boundary of each R0,n is a finite union of circular arcs.

(ii) As n → ∞ the closures of these sets converge in the Hausdorff distance [2], namely
dH(R0,n, R0)→ 0

Moreover, for each k = 1, . . . , N , let (Γk,n)n≥1 be a sequence of compact connected sets such
that:
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(iii) Each Γk,n is the union of finitely many segments.

(iv) m1(Γk,n) ≤ m1(Γk).

(v) As n→∞ we have the convergence in the Hausdorff distance: dH(Γk,n,Γk)→ 0.

For x ∈ R1, let γx,n be a polygonal line reaching x in minimum time. More precisely, γx,n
minimizes m1(γx,n) among all polygonal lines connecting x to some point y ∈ ∂R0 without
crossing the barrier Γn = ∪Nk=1Γk,n.

We now observe that, for a.e. point x ∈ R1, the function ρ defined at (4.2) satisfies

ρ(x) ≥ lim sup
n→∞

ρn(x). (4.18)

Indeed, we can parameterize every curve γx,n by arc-length, say s 7→ γx,n(s), with

γx,n(0) = x, γx,n(m1(γx,n)) ∈ ∂R0,n.

By taking a subsequence, we can assume the uniform convergence γx,n → γx on every subin-
terval [0, `] with ` < m1(γx). If now the derivatives γ̇x,n are constant over some initial interval
[0, s̄], the same is true of the derivative γ̇x of the limit function γx. This proves (4.18).

From the inequality (3.3) in Lemma 3.1 it follows

T̂
.
= sup

x∈R1

TΓ(x) ≥ lim sup
n→∞

T̂ (n) .
= lim sup

n→∞
sup
x∈R1

TΓ(n)
(x).

In turn, since all functions ρn are uniformly bounded, we have∫
R1

ρ(x) dx ≥ lim sup
n→∞

∫
R1

ρn(x) dx ≥ lim sup
n→∞

∫
R1

d(x,R0,n) dx− T̂n + T̂ 2
n

2
m1(Γn)

≥
∫
R1

d(x,R0) dx− T̂ + T̂ 2

2
m1(Γ).

(4.19)

6. Finally, we consider the general case where Γ = ∪k≥1Γk is the union of countably many
compact, connected components. We call ρν(·) the map in (4.2), replacing Γ with a finite
union Γν

.
= ∪νk=1Γk.

Thanks to Lemma 3.4, the same argument used to prove (4.18) now yields

ρ(x) ≥ lim sup
ν→∞

ρν(x) for a.e. x ∈ R1 . (4.20)

Moreover, since Γν ⊂ Γ for every ν ≥ 1, we trivially have

T̂
.
= sup

x∈R1

TΓ(x) ≥ sup
x∈R1

TΓν (x)
.
= T̂ν .

By the previous steps, we already know that the estimate (4.3) holds for every ρν . Taking the
limit as ν →∞ and using Lemma 3.4 we conclude∫

R1

ρ(x) dx ≥ lim sup
ν→∞

∫
R1

ρν(x) dx ≥
∫
R1

d(x,R0) dx− lim
ν→∞

T̂ 2
ν + T̂ν

2
m1(Γ)

≥
∫
R1

d(x,R0) dx− lim
ν→∞

T̂ 2 + T̂

2
m1(Γ).
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This completes the proof of Lemma 4.1.

5 Avoiding barriers more efficiently

As before, we assume that R2 \ Γ is connected. By the analysis in Lemma 2.2, if p, q /∈ Γ,
then for any ε > 0 we can connect these two points with a path that does not cross Γ and
has length ≤ |p − q| + (1 + ε)m1(Γ). Indeed, one can start with the segment having p, q as
endpoints, and then insert detours to avoid crossing each connected component of Γ.

In this section we prove a sharper result. Namely, if the barrier is sufficiently sparse, we
can connect the two points p, q with a path that avoids Γ and has length just slightly larger
than |p − q|. We begin by studying the case where Γ is the union of finitely many (possibly
intersecting) closed segments, then generalize.

Lemma 5.1. In the t-x plane, consider a barrier Γ consisting of finitely many (possibly
intersecting) segments, none of which is parallel to the x-axis. Assume that, for every t > 0,
the total length of the portion of Γ contained in the strip [0, t]× R satisfies

ψ(t)
.
= m1

(
Γ ∩ ([0, t]× R)

)
≤
√

2 εt , t ∈ [0, T ], (5.1)

for some 0 < ε < 1. Then there exists a continuous map ξ : [0, T ] 7→ R with Lipschitz constant
ε, which satisfies ξ(0) = 0 and whose graph does not cross Γ.

2

2
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1
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Γ

a

b

Γ

0 t
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A(t) x
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yζ
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Γ

y

Figure 12: Left: for each t > 0, the set A(t) in (5.2) is the union of finitely many segments [ak(t), bk(t)].
Right: the functions ζ and ζy constructed in the proof of Lemma 5.3.

Proof. 1. For every t > 0, consider the set A(t) ⊂ R of all values that can be attained by
ε-Lipschitz functions, which are zero at the origin and whose graph does not cross Γ. Namely,
as shown in Fig. 12), left,

A(t)
.
=
{
ξ(t) ; ξ is absolutely continuous, ξ(0) = 0,

‖ξ̇‖L∞ ≤ ε, (s, ξ(s)) /∈ Γ for all s ∈ [0, t]
}
.

(5.2)

Since Γ is the union of finitely many segment, we observe that each A(t) is the union of finitely
many intervals, say

A(t) =
⋃
k

]ak(t), bk(t)[ .
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At any given time t, we denote by B(t) the set of the endpoints ak, bk which lie along the
barrier Γ, and by F(t) the set of the endpoints which are free, i.e. they do not lie on Γ. The
total length of the attainable set A(t) changes at the rate

d

dt

(
meas(A(t))

)
=
∑
k

(ḃk(t)− ȧk(t))

≥
∑

bk(t)∈F(t)

ḃk(t)−
∑

ak(t)∈F(t)

ȧk(t)−
∑

bk(t)∈B(t)

|ḃk(t)| −
∑

ak(t)∈B(t)

|ȧk(t)| .

(5.3)
On the other hand, from the definition of ψ at (5.1), it follows

ψ̇(t) ≥
∑

ak(t)∈B(t)

√
1 + ȧ2

k(t) +
∑

bk(t)∈B(t)

√
1 + ḃ2k(t)

≥
∑

ak(t)∈B(t)

1 + |ȧk(t)|√
2

+
∑

bk(t)∈B(t)

1 + |ḃk(t)|√
2

.
(5.4)

2. To estimate the right hand side of (5.3), consider the function

f(t)
.
= meas(A(t))−

√
2(εt− ψ(t)). (5.5)

By (5.1) it follows
meas(A(t)) = f(t) +

√
2(εt− ψ(t)) ≥ f(t).

Therefore, as long as f(t) > 0, we have A(t) 6= ∅. In the remainder of the proof we will show
that f is positive and nondecreasing.

To begin, we observe that, for t > 0 small, no barriers are present. Hence

f(t) = meas(A(t))−
√

2 εt = 2εt−
√

2 εt > 0.

Next, using (5.3) and (5.4), from (5.5) we obtain

d

dt
f(t) =

d

dt
meas(A(t))−

√
2 ε+

√
2 · ψ̇(t)

≥

#F(t) · ε−
∑

bk(t)∈B(t)

|ḃk(t)| −
∑

ak(t)∈B(t)

|ȧk(t)|

−√2 ε

+
√

2 ·

 ∑
ak(t)∈B(t)

1 + |ȧk(t)|√
2

+
∑

bk(t)∈B(t)

1 + |ḃk(t)|√
2


≥
(
#F(t) + #B(t)

)
· ε−

√
2 ε ≥ 2ε−

√
2 ε > 0.

(5.6)

Here #F and #B denote the cardinality of the sets of free and constrained endpoints, respec-
tively. We observe that, as long as A(t) does not vanish, its boundary contains at least two
points. This yields the last inequality in (5.6).
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Next, instead of (5.2), we consider the sets

Ã(t)
.
=
{
ξ(t) ; ξ is absolutely continuous, ξ̇(s) ∈ [ε, 3ε] for a.e. s ∈ [0, t] ,

ξ(0) = 0, (s, ξ(s)) /∈ Γ for all s ∈ [0, t]
}
.

(5.7)

The same argument used to prove Lemma 5.1 yields

Corollary 5.2. In the same setting as Lemma 5.1, let (5.1) be replaced by

ψ(t)
.
= m1

(
Γ ∩ ([0, t]× R)

)
≤
√

2 ε

1 + 2ε
t , t ∈ [0, T ]. (5.8)

Then, for every t ∈ [0, T ] the set Ã(t) in (5.7) is non-empty.

Proof. Given a barrier Γ ⊂ R2 satisfying (5.8), consider the shifted barrier

Γ2ε = {(t, x) ; (t, x+ 2εt) ∈ Γ}.

In view of (5.8), this set satisfies the inequality

ψ(t)
.
= m1

(
Γ2ε ∩ ([0, t]×R)

)
≤ (1 + 2ε)m1

(
Γ ∩ ([0, t]×R)

)
≤
√

2 εt , t ∈ [0, T ].

(5.9)
Applying Lemma 5.1 we obtain an ε-Lipschitz function t 7→ ξ(t) such that ξ(0) = 0 and
(t, ξ̃(t)) /∈ Γ2ε for all t ∈ [0, T ].

Introducing the function ξ̃(t)
.
= ξ(t) + 2εt, we obtain ξ̃(t) ∈ Ã(t) for all t ∈ [0, T ]. Hence

Ã(t) is nonempty.

In the next lemma, instead of (5.2), for t ∈ [0, T ] we consider the attainable sets

A3(t)
.
=
{
ξ(t) ; ξ is absolutely continuous, ‖ξ̇(s)‖L∞ ≤ 3ε ,

ξ(0) = 0, (s, ξ(s)) /∈ Γ for all s ∈ [0, t]
}
.

(5.10)

Lemma 5.3. In the t-x plane, consider a barrier Γ consisting of finitely many (possibly
intersecting) segments, none of which is parallel to the x-axis. Assume that, for some 0 < ε <
1,

ψ(t)
.
= m1

(
Γ ∩ ([0, t]× R)

)
≤ ε

2
t , for all t ∈ [0, T ]. (5.11)

Moreover assume that the total length of the barrier satisfies

h
.
= m1(Γ) ≤ ε T

3
. (5.12)

Then
m1(A3(T ) ∩ [0, 3h]) ≥ 2h . (5.13)

Proof. 1. Applying Corollary 5.2, we obtain an absolutely continuous map t 7→ ζ(t), with
ζ(0) = 0, ζ̇(t) ∈ [ε, 3ε], and whose graph does not intersect Γ.
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2. Call
V

.
=
{
x ∈ R ; (t, x) ∈ Γ for some t ∈ [0, T ]

}
the perpendicular projection of Γ on the x-axis. By (5.12) it follows m1(V ) ≤ h. Hence

m1([0, 3h] \ V ) ≥ 2h . (5.14)

3. Since ζ̇(t) ≥ ε, by (5.12) for every y ∈ [0, 3h] \ V , there exists a unique time ty ∈ [0, T ]
such that ζ(ty) = y. As shown in Fig. 12, right, consider the map

t 7→ ζy(t) =

{
ζ(t) if t ∈ [0, ty],

y if t ∈ [ty, T ].
(5.15)

Our construction implies (t, ζy(t)) /∈ Γ for all t ∈ [0, T ]. Hence ζy(T ) = y ∈ A3(T ). We thus
conclude

m1(A3(T ) ∩ [0, 3h]) ≥ m1([0, 3h] \ V ) ≥ 2h .

Remark 5.4. Let z = ζy(·) be one of the functions considered at (5.15). The length of its
graph is computed by

` =

∫ T

0

√
1 + ż2(t) dt ≤

∫ T

0

√
1 + 3ε ż(t) dt ≤

∫ T

0

(
1 +

3ε

2
ż(t)

)
dt

≤ T +
3ε

2
z(T ) ≤ T +

3ε

2
· 3h = T +

9ε

2
·m1(Γ).

(5.16)

This is a crucial bound, because it shows that the presence of a very sparse barrier can
lengthen the trajectories of the fire only by an amount O(ε) ·m1(Γ). As a consequence, the
time σ−1 ·m1(Γ) spent for constructing these walls is not compensated by the additional time
needed for the fire to go around them.

The final result proved in this section extends the previous lemmas to a general barrier Γ =
∪i≥1Γi, which is the union of countably many compact, connected, rectifiable sets. As in
Definition 2.1, we say that a path t 7→ γ(t) ∈ R2, t ∈ [0, `], is admissible if there exists
a sequence of 1-Lipschitz paths t 7→ γn(t) such that γn(t) /∈ Γ for all t ≥ 0, and moreover
limn→∞ γn(t) = γ(t), uniformly for t ∈ [0, `].

Lemma 5.5. In the t-x plane, consider the points P = (−κ, 0), Q = (κ, 0). Let Γ ⊂ R2 be a
barrier such that, for every r > 0,

m1

(
Γ ∩

(
[−κ,−κ+ r]× R

)
<

ε

3
r, m1

(
Γ ∩

(
[κ− r, κ]× R

)
<

ε

3
r. (5.17)

Moreover, assume

h
.
= m1(Γ) <

2κ ε

3
. (5.18)

Then there exists an admissible path γ : [0, `] 7→ R2 such that

γ(0) = P, γ(`) = Q, (5.19)

and with length
` ≤ 2κ+ 9εm1(Γ). (5.20)
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Proof. 1. We begin by studying the case where Γ = ∪νi=1Γi is the union of finitely many
compact, connected component. Then we will extend the result to the general case.

For any δ > 0, we can approximate each component Γi with another connected set Γ′i, which
is the union of finitely many closed segments, so that their Hausdorff distance satisfies

dH(Γi,Γ
′
i) < δ for all i = 1, . . . , ν. (5.21)

Moreover, we can assume that (5.17) still holds, with Γ replaced by Γ′ = ∪νi=1Γ′i.

An application of Lemma 5.3, with [0, T ] replaced by [−κ, 0] yields the existence of a set
A− ⊆ [0, 3h] with the following properties.

m1(A−) ≥ 2h, (5.22)

For every y ∈ A−, there exists a Lipschitz function t 7→ ζy(y) ∈ [0, y] such that

ζ̇y(t) ∈ [0, 3ε] for a.e. t ∈ [−κ, 0],

ζy(−κ) = 0, ζy(0) = y, (t, ζy(t)) /∈ Γ′ for all t ∈ [−κ, 0].

Repeating the same argument on the interval [0, κ], we obtain the existence of a set A+ ⊆
[0, 3h] such that

m1(A+) ≥ 2h, (5.23)

For every y ∈ A+, there exists a Lipschitz function t 7→ ζy(y) ∈ [0, y] such that

ζ̇y(t) ∈ [−3ε, 0] for a.e. t ∈ [0, κ],

ζy(0) = y, ζy(κ) = 0, (t, ζy(t)) /∈ Γ′ for all t ∈ [0, κ].

By (5.22) and (5.23), we can choose y ∈ A− ∩A+. Combining the two previous constructions
on [−κ, 0] and on [0, κ], we obtain a Lipschitz function ζ : [−κ, κ] 7→ [0, 3h] such that |ζ̇(t)| ≤ 3ε
for a.e. t, and moreover

ζ(0) = y, ζ(−κ) = ζ(κ) = 0, (t, ζ(t)) /∈ Γ′ for all t ∈ [−κ, κ]. (5.24)

By the same argument used in Remark 5.4, the length of the graph of ζ is bounded by

` =

∫ κ

−κ

√
1 + ζ̇2(t) dt ≤ 2κ+ 9ε ·m1(Γ). (5.25)

Q

t0

ζ(t)

Γ

Γ
1

2Γ

3

x

ζ+η

κ−κ

P

Figure 13: Replacing the function ζ with ζ+η, we obtain a new function whose graph which does not
intersect any of the connected components Γ1, . . . ,Γν . In this figure we have 1, 3 ∈ I− while 2 ∈ I+.
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2. The graph of the function ζ constructed in the previous step does not touch the components
Γ′i, 1 ≤ i ≤ ν of the approximated barrier. However, it may well cross some components Γi of
the original barrier. In this step (see Fig. 13) we perform a small modification and construct
a new map z : [−κ, κ] 7→ R whose graph will not cross Γ1 ∪ · · · ∪ Γν .

We begin by splitting
{1, . . . , ν} = I+ ∪ I−,

where I+ labels the components Γ′i lying above the graph of ζ, while I− labels the components
Γ′i lying below the graph of ζ. We then set

Γ = Γ− ∪ Γ+, Γ−
.
=

⋃
i∈I−

Γi , Γ+ .
=

⋃
i∈I+

Γi .

Consider the functions

ζ+(t)
.
= ζ(t) + 2δ, ζ−(t)

.
= ζ(t)− 2δ.

For any δ > 0 sufficiently small compared with ε, by (5.21) the graph of z+ does not intersect
Γ−, while the graph of z− does not intersect Γ+. Call

δν
.
= min

{
|p− q| ; p ∈ Γi, q ∈ Γj , 1 ≤ i < j ≤ ν

}
> 0, (5.26)

and notice that
min

{
|p− q| ; p ∈ Γ−, q ∈ Γ+

}
≥ δν . (5.27)

Consider the sets of times

T − .
= {t ∈ [−κ, κ] ; (t, x) ∈ Γ+ for some x < ζ(t)

}
,

T + .
= {t ∈ [−κ, κ] ; (t, x) ∈ Γ− for some x > ζ(t)

}
.

By (5.27), there exists δ∗ν > 0 independent of δ, such that

inf
{
|t− t′| ; t ∈ T +, t′ ∈ T −

}
≥ δ∗ν . (5.28)

We now construct a Lipschitz function

η : [−κ, κ] 7→ [−2δ, 2δ]

such that

η(−κ) = η(κ) = 0, η(t) =

{
2δ if t ∈ T +,
−2δ if t ∈ T −.

By choosing δ > 0 sufficiently small, the Lipschitz constant of η can be rendered as small as
we like. In particular, we can assume

‖η̇‖L∞ ≤ 2−ν .

The new function
z(t)

.
= ζ(t) + η(t), t ∈ [−κ, κ],
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has Lipschitz constant Lip(z) ≤ 3ε + 2−ν . Moreover, its graph does not intersect any of the
components Γ1, . . . ,Γν . Recalling (5.25), the length of the graph can be bounded as

` =

∫ κ

−κ

√
1 + (ζ̇(t) + η̇(t))2 dt ≤

∫ κ

−κ

√
1 + ζ̇2(t) dt+

∫ κ

−κ
(ζ̇(t) + η̇(t))η̇(t) dt

≤ 2κ+ 9εm1(Γ) + 2κ(3ε+ 2−ν)2−ν ≤ 2κ+ 9εm1(Γ) + 8κ 2−ν .

(5.29)

3. Next, consider the path s 7→ γ(s), s ∈ [0, `], obtained by parameterizing the graph of
z by arc-length. This is a 1-Lipschitz path that connects P with Q, without touching any
of the connected components Γ1, . . . ,Γν . However, it may well cross many of the remaining
components Γi, for i > ν.

To cope with this issue, we now use Lemma 2.2 choosing ε = 2−ν , and obtain a new path

γ̃ : [0, ˜̀] 7→ R2,

such that
|γ̃(0)− P | ≤ 2−ν , |γ̃(˜̀)−Q| ≤ 2−ν ,

γ̃(s) /∈ Γ for all s ∈ [0, ˜̀] .
The length of this new path is bounded by

˜̀ ≤ `+
∑
i>ν

m1(Γi) ≤ 2κ+ 9εm1(Γ) + 8κ 2−ν +
∑
i>ν

m1(Γi).

4. By the previous steps, for every ν ≥ 1 there exists a 1-Lipschitz path

γν : [0, `ν ] 7→ R2 \ Γ

such that
|γ̃ν(0)− P | ≤ 2−ν , |γ̃ν(˜̀)−Q| ≤ 2−ν .

Moreover, its length satisfies

`ν ≤ 2κ+ 9εm1(Γ) + 8κ 2−ν +
∑
i>ν

m1(Γi).

By Ascoli’s compactness theorem, taking a subsequence we achieve the convergence γν → γ,
where γ : [0, `] 7→ R2 is a 1-Lipschitz path joining P with Q, with length

` ≤ 2κ+ 9εm1(Γ).

By construction, this is an admissible path, satisfying the conclusion of the lemma.
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Remark 5.6. By the above construction, it follows that each path γν differs by an amount
O(1) ·

∑
i>νm1(Γi) from the graph of a continuous function with Lipschitz constant 3ε+ 2−ν .

Taking the limit, we thus obtain an admissible path γ : [0, `] 7→ R2 which is the graph of a
Lipschitz function x = z(t), t ∈ [−κ, κ] with Lipschitz constant 3ε.

Remark 5.7. For simplicity, in the statements of Lemmas 5.1 and 5.3 we assumed a bound
on the intersection of Γ with the vertical strip [0, T ]×R. Looking at the proofs, it is clear that
we only needed a bound on the intersection of Γ with the cone {(t, x) ; t ∈ [0, T ], |x| ≤ 3εt}.
In particular, the conclusion of Lemma 5.3 remains valid if (5.11) is replaced by

m1

(
Γ ∩ {(t, x) ; t ∈ [0, T ], |x| ≤ 3εt}

)
≤ ε

2
t , for all t ∈ [0, T ]. (5.30)

The same remark applies to Lemma 5.5. Namely, all steps in the proof remain valid if, for
−κ < t < κ, the assumption (5.17) is replaced by

m1

(
Γ ∩

{
(t, x) ; |x| ≤ 4ε(t+ κ)

})
<

ε

3
(t+ κ),

m1

(
Γ ∩

{
(t, x) ; |x| ≤ 4ε(κ− t)

})
<

ε

3
(κ− t).

(5.31)

Thanks to the previous remarks, from Lemma 5.5 we deduce

Corollary 5.8. Given θ0, ε0 > 0, there exists ε > 0 small enough so that the following holds.
Consider a triangle ∆0 with vertices

P = (−κ, 0), Q = (κ, 0), Z = (0, θ0κ).

Let Γ ⊂ R2 be a barrier such that, for every r > 0,

m1

(
Γ ∩∆0 ∩B(P, r)

)
≤ εr, m1

(
Γ ∩∆0 ∩B(Q, r)

)
≤ εr. (5.32)

Then there exists a path ξ : [0, `] 7→ ∆0, joining P with Q without crossing the barrier Γ, with
length bounded by

` ≤ |P −Q|+ ε0m1(Γ ∩∆0). (5.33)

6 Proof of Theorem 1.5

Let Γ be an optimal barrier for the optimization problem (OP), and let Ω ⊂ R2 be any open
set. We need to prove that the closure Γ does not contain all of Ω.

Without loss of generality, we can assume Ω ⊂ RΓ
∞. Otherwise, we can remove all barriers

contained in the set Ω \RΓ
∞, i.e., all portions of the wall which are never touched by the fire,

and get a strictly smaller barrier. This yields a blocking strategy with a strictly lower cost.

As shown in Fig. 1, right, the proof will be achieved by constructing a quadrilateral domain
∆ ⊂ Ω with the following properties:

(i) The lower boundary γ0 is the portion of a level set {x ∈ R2 ; TΓ(x) = t0}, between the
two points A and B.
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(ii) For a suitable h > 0, the upper boundary γ∗ is the portion of the curve{
x ∈ R2 ; d(x, γ0) = h

}
(6.1)

between the points C and D.

(iii) The two sides AC and BD are segments which do not cross Γ, and are part of optimal
trajectories for the fire. Their lengths satisfy

|C −A| = |D −B| = d(C, γ0) = d(D, γ0) = h . (6.2)

(iv) The total amount of barriers contained in ∆ is small. Namely, for some ε > 0 suitably
small, one has

m1(Γ ∩∆) ≤ ε , (6.3)

where σ is the construction speed. Moreover, for every s > 0 one has

m1

({
y ∈ Γ ∩∆ ; d(y, γ0) < s

})
≤ 6εs ,

m1

({
y ∈ Γ ∩∆ ; d(y, γ∗) < s

})
≤ 12εs .

(6.4)

The first part of the proof, based on Lemma 4.1, works out a construction of the “flow box”
∆. In the second part of the proof, using Lemma 5.5, we show that the reduced barrier

Γ♦ = Γ \∆ (6.5)

is still admissible, and yields a strictly lower cost. We split the argument in several steps.

1. Let ε > 0 be given. Since the minimum time function TΓ is in SBV, it is differentiable at
a.e. point x̄. Moreover, the limit

lim
r→0+

m1(B(x̄, r) ∩ Γ)

r2
= 0 (6.6)

also holds at a.e. point x̄ ∈ Ω. We thus choose such a point x̄, and consider a system of
coordinates with orthonormal basis {e1, e2}, where e2 = ∇TΓ(x̄). Call t̄ = TΓ(x̄).

We now perform an affine transformation of time and space coordinates, so that (t̄, x̄) becomes
the new origin of coordinates:

Λ(t′, s1, s2) = (t̄+ rt′, x̄+ s1re1 + s2re2). (6.7)

Since we are only interested in the local behavior of optimal trajectories for the fire in a
neighborhood of x̄, we consider a new problem where the initial open set burned by the fire is

R0
.
= int

(
RΓ(t̄)

)
.

Working in the (t′, s1, s2) coordinates, after renaming the variables and choosing a rescaling
factor r > 0 sufficiently small, we are led to study the following situation.

• The total length of all barriers contained in the square Q2 = [−2, 2]× [−2, 2] satisfies

m1(Γ ∩Q2) ≤ ε. (6.8)
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• The initial set R0 satisfies{
(x1, x2) ∈ Q2 ; x2 < −ε|x1|

}
⊆ R0 ∩Q2 ⊆

{
(x1, x2) ∈ Q2 ; x2 < ε|x1|

}
. (6.9)

2. Call
Γ1/3

.
= Γ ∩Q2 ∩RΓ(1/3) (6.10)

the portion of the barrier contained in the square Q2 and touched by the fire within time
t = 1/3. By (6.8) we trivially have m1(Γ1/3) ≤ ε.

Our next goal is to apply Lemma 4.1 in this particular situation. As in (4.1), let R1 be the
neighborhood of radius 1 around R0. For x ∈ R1, define ρ(x) as in (4.2), with Γ replaced by
Γ1/3. By (4.4) and (4.5) it now follows∫

R1

ρ(x) dx ≥
∫
R1

d(x,R0) dx− T̂ 2 + T̂

2
·m1(Γ1/3)

≥
∫
R1

d(x,R0) dx− (1 + ε)2 + (1 + ε)

2
ε ≥

∫
R1

d(x,R0) dx− 2ε,

(6.11)

provided that ε > 0 is small enough.

From (6.11) we wish to conclude that, within the square Q1 = [−1, 1] × [−1, 1], most of the
optimal trajectories for the fire contain long straight segments. Since Γ1/3 ⊂ B(0, 3), by the
triangle inequality we have

ρ(x) = d(x,R0) for all x ∈ R1 \B(0, 4). (6.12)

By Lemma 2.2 it follows
ρ(x) ≤ TΓ1/3(x) ≤ d(x,R0) + ε,

and hence∫
R1∩(B(0,4)\Q1)

ρ(x) dx ≤
∫
R1∩(B(0,4)\Q1)

d(x,R0) dx+ εm2

(
R1 ∩ (B(0, 4) \Q1)

)
. (6.13)

From (6.11), using (6.12) and then (6.13) we deduce(∫
R1∩Q1

+

∫
R1∩(B(0,4)\Q1)

)
ρ(x) dx ≥

(∫
R1∩Q1

+

∫
R1∩(B(0,4)\Q1)

)
d(x,R0) dx− 2ε,

∫
R1∩Q1

ρ(x) dx ≥
∫
R1∩Q1

d(x,R0) dx− εm2

(
B(0, 4) \Q1

)
− 2ε

≥
∫
R1∩Q1

d(x,R0) dx− (16π + 2)ε.

(6.14)

3. As shown in Fig. 14, consider in Q1 the four rectangles

Ω1 = [−1, −1/2]× [1, 1/6], Ω2 = [1/2, 1]× [1, 1/6],

Ω3 = [−1, −1/2]× [5/6, 1], Ω4 = [1/2, 1]× [5/6, 1].
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Consider the lower side of Ω3. This is the horizontal segment U with endpoints P = (−1, 5/6)
and P ′ = (−1/2, 5/6). By (6.14), if ε > 0 is small enough, there exists a 1-dimensional subset
Ũ ⊆ U such that ρ(x) > 3/4 for all x ∈ Ũ . By choosing ε > 0 small, we can make the size of
Ũ as close to 1/2 as we like. Say,

m1(Ũ) > 1/3.

Given two distinct points x, x′ ∈ Ũ , let y, y′ be the points where the optimal trajectories
reaching x, x′ cross the boundary ∂RΓ(1/3) = {z ∈ R2 ; TΓ(z) = 1/3}. Call S, S′ the segments
with endpoints x, y and x′, y′, respectively. Since these optimal trajectories are straight lines
and cannot cross each other within their last segment of length 3/4, we can find a constant
λ > 0 independent of ε such that

B
(
S, λ|x− x′|

)
∩B

(
S′, λ|x− x′|

)
= ∅. (6.15)

In other words, optimal trajectories reaching distinct points x ∈ Ũ remain bounded away from
each other. A measure-theoretic argument now implies that, if m(Γ ∩ Q1) ≤ ε with ε > 0
small enough, we can find at least one segment S with endpoints x, y as above, which does
not intersect Γ.

P

0
R

’P

0−1 1/2 1

R (1/3)Γ

1/6

5/6

−1/2

1

Ω1 2Ω

Ω
43

y

Γ

x’

Ω

x

y’

Figure 14: Since the total length of all barriers is O(1) · ε, by Lemma 4.1 there exists many optimal
trajectories that contain long straight segments, with one endpoint in Ω1 and the other in Ω3. Since
optimal trajectories do not cross each other, a barrier Γ′ ⊂ [−1, 1] × [1/4, 5/6], whose total length is
sufficiently small, cannot cross all of these segments.

4. We are now ready to construct the quadrilateral domain ∆ satisfying the conditions (i)–(iv),
as shown in Fig. 15.

By the previous step, we can find four points

A′ ∈ Ω1 , B′ ∈ Ω2 , C ′ ∈ Ω3 , D′ ∈ Ω4 ,

with the following properties:

(i) When the barrier is taken to be Γ1/3
.
= Γ∩RΓ(1/3), the segment A′C ′ is the last portion

of a trajectory reaching C ′ in minimum time. Similarly, the segment B′D′ is the last
portion of a trajectory reaching D′ in minimum time.
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(ii) The segments A′C ′ and B′D′ do not cross Γ.

As a consequence, for any τ ∈ [1/3, 3/4], the segments A′C ′ and B′D′ are still part of an
optimal trajectory for the fire, in case the barrier Γ is replaced by Γτ

.
= Γ ∩RΓ(τ).

At this stage, it would be tempting to choose ∆ as the quadrilateral having ∂RΓ(1/3) as lower
boundary, the segments A′C ′ and B′D′ as sides, and the curve

γ∗ =
{
x ∈ R2 ; d(x,RΓ(1/3)) = 1/3

}
as upper boundary. However, with this choice there is no guarantee that the bounds (6.4) will
be satisfied.

To cope with this difficulty, the lower boundary will be chosen to be γ0 = ∂RΓ(t0), for some
t0 ∈ [1/3, 1/2], while the upper boundary γ∗ will be the set of points having distance h from
the lower boundary, for some h ∈ [1/4, 1/3]. The values of t0, h must be carefully chosen, in
order to satisfy (6.4).

Consider the nondecreasing function

ϕ(t) = m1

(
Γ ∩Q2 ∩RΓ(t) \R0

)
.

By (6.8),
ϕ(0) ≥ 0, ϕ(1) ≤ ε.

Using Riesz’ sunrise lemma (see for example [16], p.319) we can find t0 ∈ [1/3, 1/2] such that

ϕ(t0 + s)− ϕ(t0) ≤ 6εs ≤ s

2
for all s ∈ [t0, 1] . (6.16)

As in Lemma 2.4, call [ai, bi] the intervals during which the fire front touches the components
Γi. By (2.30) we have

RΓ(t0 + s) ⊇ B
(
RΓ(t0), m1

(
[t0, t0 + s] \

⋃
i≥1[ai, bi]

))
⊇ B

(
RΓ(t0), s− ϕ(t0 + s) + ϕ(t0)

)
⊇ B

(
RΓ(t0), s/2

)
.

In turn, by (6.16) this yields

m1

({
y ∈ Γ ∩∆ ; d(y, γ0) < s

})
≤ m1

(
Γ ∩Q1 ∩RΓ(t0 + 2s) \ RΓ(t0)

)
≤ ϕ(t0 + 2s)− ϕ(t0) ≤ 12ε s.

Choosing ε > 0 small enough, this yields the first inequality in (6.4).

In a similar way, we now choose h so that the second inequality in (6.4) is satisfied as well.
Consider the nondecreasing function

ψ(t)
.
= m1

(
Γ ∩Q1 ∩

{
x ; d

(
x,RΓ(t0)

)
≤ t− t0

})
By (6.8),

ψ(t0) ≥ 0, ψ(1) ≤ ε.

Using Riesz’ sunrise lemma we can find h ∈ [1/4, 1/3] such that

ψ(t0 + h)− ψ(t) ≤ 12ε(t0 + h− t) for all t ∈ [t0, t0 + h] . (6.17)

42



Define the set
γ∗

.
=
{
x ∈ Q1 ; d(x,RΓ(t0)) = h

}
.

By (6.17) it now follows

m1

(
Γ ∩Q1 ∩

{
x ; d(x, γ∗) ≤ s

}
∩
{
x ; d

(
x,RΓ(t0)

)
≤ h

})
≤ m1

(
Γ ∩Q1 ∩

{
x ; d

(
x,RΓ(t0)

)
∈ [h− s, h]

})
≤ ψ(t0 + h)− ψ(t0 + h− s) ≤ 12ε s.

Choosing ε > 0 small enough, we thus obtain the second inequality in (6.4).

As shown in Fig. 15, the quadrilateral domain ∆ is now defined to be the set of all points
x ∈ Q1 such that

0 < d
(
x, RΓ(t0)

)
< h,

bounded between the two segments A′C ′ and B′D′.
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∆

’
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A ’
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’

0−1
1
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Γ
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ξ
y

P

Q

x

x
ξ

Figure 15: If the domain ∆ satisfies all properties (i)–(iv), optimal trajectories for the fire cannot exit
from ∆ through the lateral boundaries A′C ′ or B′D′. In particular, ξy is not optimal.

5. Having constructed the domain ∆, we now define the reduced barrier Γ♦ as in (6.5), by
removing all portions inside ∆. Using the fact that Γ is admissible, we will show that Γ♦ is
admissible as well. By (1.5), this means

m1

(
Γ♦ ∩RΓ♦(t)

)
≤ σt for all t ≥ 0. (6.18)

For t ≤ t0 we trivially have

m1

(
Γ♦ ∩RΓ♦(t)

)
= m1

(
Γ ∩RΓ(t)

)
≤ σt.

For t0 < t < t0 + h, we claim that

m1

(
Γ♦ ∩RΓ♦(t)

)
≤ m1

(
Γ ∩RΓ(t)

)
≤ σt. (6.19)

To prove (6.19) we show that, for every y /∈ ∆, one has the implication

TΓ(y) < t0 + h =⇒ TΓ♦(y) = TΓ(y). (6.20)
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Indeed, let t 7→ ξy(t) be an optimal trajectory for the fire, reaching y in minimum time without

crossing the barrier Γ♦. If TΓ♦(y) < TΓ(y), then ξy must cross some barrier contained in
Γ∩∆. As shown in Fig. 15, this trajectory must be partly inside ∆, then exit through one of
the sides, either A′C ′ or B′D′. But this is impossible, because our construction implies that
both of these segments are part of optimal trajectories for the fire, and two optimal trajectories
cannot cross each other. For t < t0 + h, the inequality (6.19) is an immediate consequence of
(6.20).

To achieve a bound valid for t ≥ t0 + h, we claim that

sup
x∈γ∗

TΓ(x) ≤ t0 + h+
1

2σ
m1(Γ ∩∆). (6.21)

Indeed, consider any point Q ∈ γ∗, and let P ∈ γ be a point such that d(P,Q) = d(P, γ) = h.
Using Corollary 5.8, if ε > 0 was chosen sufficiently small, we can find a path ξ : [0, `] 7→ ∆,
joining P with Q without crossing the original barrier Γ, whose length satisfies

` ≤ h+
1

2σ
m1(Γ ∩∆).

This yields (6.21). In turn, for every x ∈ RΓ
∞ with TΓ(x) ≥ t0 +h, the inequality (6.21) implies

TΓ(x) ≤ TΓ♦(x) +
1

2σ
m1(Γ ∩∆). (6.22)

Therefore

RΓ♦(t) ⊆ RΓ

(
t+

1

2σ
m1(Γ ∩∆)

)
.

For any t ≥ t0 + h, the admissibility of Γ now implies

m1

(
Γ♦ ∩RΓ♦(t)

)
≤ m1

(
Γ ∩RΓ

(
t+

1

2σ
m1(Γ ∩∆)

))
−m1(Γ ∩∆)

≤ σ ·
(
t+

1

2σ
m1(Γ ∩∆)

)
−m1(Γ ∩∆) ≤ σt− 1

2
m1(Γ ∩∆),

(6.23)

showing that the reduced barrier Γ♦ is admissible as well.

6. Since RΓ♦
∞ = RΓ

∞, but m1(Γ♦) < m1(Γ), if c0 > 0 we immediately conclude that the total
cost of the strategy Γ♦ is strictly smaller:

m2(RΓ♦
∞ ) + c0m1(Γ♦) < m2(RΓ

∞) + c0m1(Γ).

This contradicts the optimality of Γ.

In the case c0 = 0 we observe that, by (6.23), having removed all barriers contained inside
∆, we are left with a little extra time: (2σ)−1m1(Γ ∩∆). We can use this time to construct
a circumference that forever shields a small disc from the fire. More precisely, let D0 be an
open disc with radius r0, so that the length of its boundary Γ0 = ∂D0 satisfies

m1(Γ0) = 2πr0 ≤
1

2
m1(Γ ∩∆).
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We choose D0 ⊂ RΓ
∞ so that

D0 ∩RΓ♦(t0 + h) = ∅.

In this way, the barrier Γ∗ = Γ♦∪Γ0 is still admissible. The corresponding burned set satisfies

RΓ∗
∞ ⊆ RΓ

∞ \D0 ,

which has a strictly smaller area. Again, this yields a contradiction with the optimality of Γ,
proving the theorem.
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