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Abstract. We consider the evolution of sets by nonlocal mean curvature and we discuss
the preservation along the flow of two geometric properties, which are the mean convexity
and the outward minimality. The main tools in our analysis are the level set formulation
and the minimizing movement scheme for the nonlocal flow. When the initial set is outward
minimizing, we also show the convergence of the (time integrated) nonlocal perimeters of the
discrete evolutions to the nonlocal perimeter of the limit flow.
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1. Introduction

Given an initial set E ⊂ Rn, we consider its evolution Et for t > 0 according to the nonlocal
curvature flow

(1.1) ∂tx · ν = −HK
Et(x)

where ν is the outer normal at x ∈ ∂Et. The quantity HK
E (x) is the K-curvature of E at x,

which is defined in (1.3) below. More precisely, we take a kernel K : Rn \{0} → [0,+∞) such
that

(1.2) min{1, |x|}K(x) ∈ L1(Rn) and K(x) = K(−x)
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and we define the K-curvature of a set E of class C1,1, at x ∈ ∂E, as

(1.3) HK
E (x) := lim

ε↘0

∫
Rn\B(x,ε)

(
χRn\E(y)− χE(y)

)
K(x− y) dy,

where as usual

χE(y) :=

{
1 if y ∈ E,
0 if y 6∈ E.

For more general sets the K-curvature will be understood in the viscosity sense (see Definition
2.1 below) and may be also infinite.

We point out that (1.2) is a very mild integrability assumption, which fits the requirements
in [9, 25] in order to have existence and uniqueness for the level set flow associated to (1.1).
Furthermore, when K(x) = 1

|x|n+s for some s ∈ (0, 1), we will denote the K-curvature of a

set E at a point x as Hs
E(x), and we indicate it as the fractional mean curvature of E at x. We

also observe that the K-curvature is the the first variation of the following nonlocal perimeter
functional, see [9],

(1.4) PerK(E) :=

∫
E

∫
Rn\E

K(x− y) dx dy,

and the geometric evolution law (1.1) can be interpreted as the L2 gradient flow of this
perimeter functional, as shown in [9].

The K-curvature flow has been recently studied from different perspectives, mainly in
the case of the fractional mean curvature, taking into account several geometric features. In
particular we recall the results about small time existence of a classical solutions [26], existence
and uniqueness of level set solutions [9, 25], preservation of convexity [11, 14], formation of
singularities [13], classification of symmetric self-shrinkers [5], fattening phenomena [6] and
stability results for nonlocal curvature flows [7, 8].

In this paper we are interested in the analysis of the flows starting from K-mean convex
sets, that is, sets with positive K-curvature, and from sets which are one-side minimizers
of the nonlocal perimeter functional, the so called K-outward minimizing set. This second
property can be interpreted as the variational analogue of the K-mean convexity, as we will
see in Theorem 2.10. In the case of the fractional curvature, the preservation of the K-mean
convexity for smooth sets has been studied in [29]. Here we consider more general flows, and
also nonsmooth initial data. We show that K-mean convexity is a too weak condition to
be conserved during the evolution, as a consequence we introduce the notions of regular K-
mean convexity and strong K-mean convexity (see Definition 2.2). We introduce the notion
of K-outward minimality and strong K-outward minimality (see Definition 2.7). The main
results are contained in Theorem 4.5, about the preservation of regular K-mean convexity
and strong K-mean convexity, and Theorem 6.3 about preservation of K-outward minimality.
Our main tools are the level set approach for geometric nonlocal curvature flows, developed in
[9,25], that we review in Section 3, and the variational scheme, called minimizing movements
or Almgren-Taylor-Wang scheme, introduced in [1, 27] for the classical mean curvature flow,
and extended to the nonlocal setting in [9].

We conclude by recalling that, in the local case, there is a vast literature on the analysis of
the mean curvature flow starting from convex sets (see [2,18–20,30]) and more generally from
mean-convex sets (see [10, 16, 31, 32] and reference therein). In particular, these geometric
properties are preserved by the flow, both in the isotropic and in the anisotropic case, and
the singularity formation is well understood (see for instance [21–24]).
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The paper is organized as follows: Section 2 contains the definition of K-mean convexity
and K-outward minimality, some examples, and the analysis of the relation between the two
notions. Section 3 is essentially a review of the level set formulation of nonlocal curvature
flows, and contains the comparison results between level set flows and classical strict subflows
and superflows. Section 4 is devoted to the analysis of the flows starting from K-mean convex
sets. Section 5 provides a review of the minimizing movement scheme in the nonlocal setting.
Finally, Section 6 contains the analysis of the flows starting from K-outward minimizing sets.

Acknowledgments: The authors are members of the Gruppo Nazionale per l’Analisi Matem-
atica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta
Matematica (INdAM). M.N. acknowledges partial support by the PRIN 2017 Project Varia-
tional methods for stationary and evolution problems with singularities and interfaces.

2. Main definitions and properties

In this section we introduce the notions of K-mean convexity and K-outward minimality,
we give some examples and characterizations of these properties, and we analyze their relation.

We now recall the definition of constant K-mean curvature in the viscosity sense, for more
details we refer to [9, 25] and to [3, Section 5].

Definition 2.1. Let E ⊆ Rn and x ∈ ∂E. Then

(1) HK
E (x) 6 c if for all sets F with compact boundary of class C1,1 such that E ⊆ F and

x ∈ ∂F , there holds HK
F (x) 6 c;

(2) HK
E (x) > c if for all sets F with compact boundary of class C1,1 such that E ⊇ F and

x ∈ ∂F , there holds HK
F (x) > c;

(3) HK
E (x) = c if both HK

E (x) > c and HK
E (x) 6 c.

From (1.3) it follows that the K-mean curvature satisfies the following monotonicity prop-
erty: if E ⊆ F and x ∈ ∂E ∩ ∂F is a point where both HK

E (x) and HK
F (x) are defined, then

HK
E (x) > HK

F (x). As a consequence, the inequalities in Definition 2.1 are consistent with the
definition of HK

E in (1.3).
We observe that the viscosity inequality HK

E (x) 6 c can be checked only at points x ∈ ∂E
where E satisfies an exterior ball condition, that is, there exists y0, r0 such that B(y0, r0) ⊆
Rn \E, x ∈ ∂B(x0, r0). Analogously the viscosity inequality HK

E (x) > c can be checked only
at points x ∈ ∂E where E satisfies an interior ball condition, that is, there exists y0, r0 such
that B(y0, r0) ⊆ E, x ∈ ∂B(x0, r0). In particular, if E is a closed set with empty interior,
then the viscosity inequality HK

E (x) > k is always verified for every k ∈ R.
We will denote as usual the distance between a point x and a set E as d(x,E) = infy∈E |y−

x|, and we define the signed distance from E as follows

dE(x) = d(x,Rn \ E)− d(x,E).

We define for λ > 0,

(2.1) Eλ := {x ∈ Rn s.t. dE(x) > −λ} = {x ∈ Rn s.t. d(x,E) 6 λ}.
Observe that if E is a closed set then E = ∩λ>0E

λ.
Finally, we define the distance between two sets A,B ⊆ Rn, as follows

d(A,B) = inf
a∈∂A,b∈∂B

|a− b|.

Definition 2.2 (K-mean convexity, regular K-mean convexity, strong K-mean convexity).
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(1) A closed set E ⊆ Rn is K-mean convex if HK
E (x) > 0 for all x ∈ ∂E.

(2) A closed set E ⊆ Rn is regularly K-mean convex if there exists ηE > 0 and cE > 0
such that for all λ ∈ [0, ηE ]

HK
Eλ(x) > −cEλ for any x ∈ ∂Eλ.

where E0 = E.
(3) A closed set E ⊆ Rn is strongly K-mean convex if there exists δ > 0 and ξE > 0

such that
HK
Eλ(x) > δ for any x ∈ ∂Eλ

for every λ ∈ [0, ξE ].
To keep track of the constant δ we will say in the following that E ⊆ Rn is strongly

K-mean convex set with associated constant δ.

Remark 2.3. Note that if E is strongly K-mean convex, then E is also regularly K-mean
convex.

Remark 2.4 (Sets with C1,1 boundary). Let E be a compact set with C1,1 boundary.
If HK

E (x) > δ ∀x ∈ ∂E, then for all δ′ < δ, there exists ξE(δ′) such that

HK
Eη(x) > δ′ for all η ∈ [0, ξE(δ′)] and x ∈ ∂Eη

due to the continuity of HK with respect to C1,1 convergence of sets, see [9], and therefore
E is strongly K-mean convex with constant δ′.

If HK
E (x) > 0 ∀x ∈ ∂E, and K(x) = 1

|x|n+s , then

E is regularly K-mean convex,

due to the result about the variation of fractional curvature with respect to C1,1 diffeomor-
phisms of sets proved in [15].

Remark 2.5 (Convex sets). Let C be a convex closed set. Then

C is strongly K-mean convex with associated constant 0

since it is easy to show that HK
C (x) > 0 for every x ∈ ∂C in the viscosity sense, and moreover

Cλ are convex sets. Moreover, if C is compact and supp K is not compact, then there exists
δC > 0 depending on K and C such that

C is strongly K-mean convex with associated constant δC .

Indeed, it is easy to check that if C ⊆ Rn is a convex set of diameter R, then

HK
C (x) >

∫
Rn\B(0,R)

K(y)dy := δC for every x ∈ ∂C.

Remark 2.6 (Set with positive curvature which is not regularly K-mean convex). We point
out that if E is a set such that HK

E (x) > δ > 0 for x ∈ ∂E, but ∂E 6∈ C1,1, then in general it
is not true that E is regularly K-mean convex.

We recall the following example studied in [6]. We consider the fractional kernel in dimen-
sion 2, that is K(x) = 1

|x|2+s . We define the set E as follows

E := G+ ∪ G− ⊆ R2,

where G+ is the convex hull ofB((−1, 1), 1) with the origin, and G− the convex hull ofB((1,−1), 1)
with the origin.
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Note that ∂E \(0, 0) is C1,1 and in (0, 0) the viscosity supersolution condition HK
E (0, 0) > δ

is true for every δ since there is no interior ball in E containing (0, 0), that is, there are no
regular sets F such that F ⊆ E and (0, 0) ∈ ∂F . It is an easy computation to check, using
the radial symmetry of K, that for all x 6= 0, x ∈ ∂E there holds

Hs
E(x) >

∫
R2\B(0,1+

√
2)

1

|y|2+s
dy =

2π

(1 +
√

2)s
.

Let Qr = {(x1, x2) ∈ R2 s.t. x2 ∈ [−r, r], −|x2| 6 x1 6 |x2|}. It has been proven in
[6, Lemma 7.1] that there exists a constant c > 0 depending on s such that for all r < c there
holds

Hs
E∪Qr(t, r), H

s
E∪Qr(t,−r) 6 −

c

rs
for all t ∈ (−r, r).

Note that for every point (t,−r), (t, r) with t ∈ (−r, r) there exists a neighborhood where
∂(E ∪ Qr) is C1,1, therefore the previous inequality holds in classical sense. Consider now
Er = {x ∈ Rn s.t. d(x,E) 6 r} and note that (0, r) ∈ ∂Er. Let F be a set with boundary C1,1

such that F ⊆ Er, (0, r) ∈ ∂F and such that there exists δ << r for which ∂F ∩B((0, r), δ) =
∂(E ∪ qr) ∩B((0, r), δ). Then Hs

F (0, r) 6 − c
rs .

If E were regularly K-mean convex, there would exist cE > 0 such that Hs
F (0, r) > −cEr

for every r ∈ [0, ηE ]. Therefore we would get − c
rs > −ηEr for every r ∈ [0, ηE ], which is not

possible. We conclude that E is not regularly K-mean convex.

Given a measurable set E ⊆ Rn and an open set Ω ⊆ Rn we let

PerK(E,Ω) :=

∫
E

∫
Ω\E

K(x− y) dx dy +

∫
E∩Ω

∫
Rn\(Ω∪E)

K(x− y) dx dy .

Notice that, if E ⊂ Ω then PerK(E,Ω) = PerK(E), in particular PerK(E,Rn) = PerK(E) for
all sets E.

Definition 2.7 (K-outward minimizing set and strongly K-outward minimizing set).
Let Ω ⊆ Rn be an open set. E ⊆ Rn is a K-outward minimizing set in Ω if for every
F ⊆ Rn such that E ⊆ F and F \ E ⊂⊂ Ω there holds

PerK(E,Ω) 6 PerK(F,Ω).

E ⊆ Rn is strongly K-outward minimizing set in Ω if there exists δ > 0 for which for
every F ⊆ Rn such that E ⊆ F and F \ E ⊂⊂ Ω there holds

PerK(E,Ω) 6 PerK(F,Ω)− δ|F \ E|.
To keep track of the constant δ we will say in the following that E ⊆ Rn is strongly

K-outward minimizing set with associated constant δ.

We now provide some equivalent characterizations of K-outward minimality and strong
K-outward minimality, which imply in particular the stability under L1 convergence of K-
outward minimizing sets.

Proposition 2.8. Let Ω ⊆ Rn be a domain. The following assertions are equivalent:

(1) E is a K-outward minimizing set in Ω (resp. strongly K-outward minimizing set with
associated constant δ > 0).

(2) For every G ⊆ Rn such that G \ E ⊂⊂ Ω there holds that

(2.2) PerK(E ∩G,Ω) 6 PerK(G,Ω), (resp. PerK(E ∩G,Ω) 6 PerK(G,Ω)− δ|G \ E|).
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(3) For all A ⊆ Ω \ E, A ⊂⊂ Ω there holds that

(2.3)

∫
A

∫
E
K(x− y)dxdy 6

∫
A

∫
Rn\(A∪E)

K(x− y)dxdy(
resp.

∫
A

∫
E
K(x− y)dxdy 6

∫
A

∫
Rn\(A∪E)

K(x− y)dxdy − δ|A|

)
.

In particular, if En is a sequence of K−outward minimizing sets (resp. strongly K-outward
minimizing sets with associated constant δ) in Ω such that En → E in L1(Ω), then E is a
K-outward minimizing set in Ω (resp. a strongly K-outward minimizing set with associated
constant δ).

Proof. We proof the characterization just for K-outward minimizers, since the case of strongly
K-outward minimizers is completely analogous. We recall that for all A,B ⊆ Rn, the following
submodularity property holds

(2.4) PerK(A,Ω) + PerK(B,Ω) > PerK(A ∩B,Ω) + PerK(A ∪B,Ω),

see e.g. [4].
If (2.2) holds, then it is immediate to check Definition 2.7: we fix F ⊇ E, with F \E ⊂⊂ Ω

and we apply (2.2) to G = F . On the other hand, if E is a K-outward minimizing set in Ω
and G is such that G \E ⊂⊂ Ω, letting F = G∪E and using the submodularity for the first
inequality and Definition 2.7 for the second one, we get

PerK(E,Ω) + PerK(G,Ω) > PerK(F,Ω) + PerK(G ∩ E,Ω) > PerK(E,Ω) + PerK(E ∩G,Ω).

We now assume that E is a K-outward minimizing set in Ω and we fix A ⊆ Ω \ E, with
A ⊂⊂ Ω. Let F := E ∪A, so that E ⊆ F and F \ E ⊂⊂ Ω. By Definition 2.7 we know that

0 6 PerK(F,Ω)− PerK(E,Ω) =

∫
A

∫
Rn\F

K(x− y)dxdy −
∫
A

∫
E
K(x− y)dxdy,

which gives (2.3). On the other hand, if we assume that (2.3) holds and fix F such that
E ⊆ F and A := F \ E ⊂⊂ Ω, then (2.3) gives

PerK(F,Ω)− PerK(E,Ω) =

∫
A

∫
Rn\F

K(x− y)dxdy −
∫
A

∫
E
K(x− y)dxdy > 0,

which implies that E is K-outward minimizing.
Finally, the stability under L1 convergence is a direct consequence of (2.2) and of the lower

semicontinuity of PerK . Indeed fix F such that E ⊆ F and F \ E ⊂⊂ Ω. Since En → E
in L1(Ω), we get that for n sufficiently large F \ En ⊂⊂ Ω. Then by the fact that En
are K-outward minimizers in Ω, PerK(En ∩ F,Ω) 6 PerK(F,Ω), and we conclude by lower
semicontinuity of PerK(·,Ω) that PerK(E ∩ F,Ω) 6 PerK(F,Ω). �

Remark 2.9 (Hyperplanes and convex sets). Let ν ∈ Rn with |ν| = 1 and define the hyper-
plane H = {x ∈ Rn s.t. x · ν > 0}. Then H is a K-outward minimizer in every ball B(0, R)
for R > 0, since H is a local minimizer of PerK in every ball B(0, R), see [28].

Moreover, every convex set C is a K-outward minimizer in every ball B(0, R) for R > 0.
Indeed C = ∩j∈JHj with Hj hyperplanes. Let E such that E \ C ⊂⊂ B(0, R). Then
E \Hi ⊂⊂ B(0, R) for every i ∈ J and by minimality of Hi we get

PerK(C ∩ E,B(0, R)) = PerK(∩jHj ∩ E,B(0, R)) 6 PerK(∩j 6=iHj ∩ E,B(0, R)).
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By repeating the same argument for every j ∈ J , we conclude PerK(C ∩ E,B(0, R)) 6
PerK(E,B(0, R)).

We now analyze the relation between K-outward minimality and K-mean convexity for
compact sets. In some sense, (strong) K-outward minimality is the variational analogue of
(strong) K-mean convexity.

Theorem 2.10.

(1) Let E ⊂⊂ Ω be a K-outward minimizing set in Ω. Then HK
E (x) > 0 for all x ∈ ∂E.

If moreover E is a strongly K-outward minimizing set with associated constant δ > 0
then HK

E (x) > δ > 0, for all x ∈ ∂E.
(2) Let E ⊂ Rn be a bounded set, with boundary of class C1,1, strongly K-mean convex

with associated constant δ > 0. Then there exists an open set Ω, such that E ⊂⊂ Ω and
E is a K-outward minimizer in Ω if δ = 0, or it is a strongly K-outward minimizer,
with associated constant δ, if δ > 0.

Proof.

(1) For the case of fractional perimeters, this result has been proved proved in [3, Propo-
sition 5.1]. Let δ > 0. If E is a K-outward minimizer, we choose δ = 0, if E is a
strongly K-outward minimizer, we choose δ > 0 to be the constant associated to E
according to Definition 2.7. We proceed by contradiction and we assume there exists
x0 ∈ ∂E, F ⊆ E with ∂F ∈ C1,1, x0 ∈ ∂E ∩ ∂F , and HK

F (x0) 6 δ − 2ρ < δ for
some ρ > 0. Then by continuity of HK there exists r > 0 such that HK

F (x) 6 δ − ρ
for every x ∈ ∂E ∩ B(x0, r). We construct a 1-parameter family Φε of C1,1 diffeo-
morphisms, such that F = Φ0(F ) ⊆ Φε(F ) ⊂ Ω and Φε(F ) \ F ⊂⊂ B(x0, r) ⊂⊂ Ω
for every ε ∈ (0, ε0). Again by continuity there holds HK

Φε(F )(x) 6 δ − ρ/2 for all

x ∈ ∂Φε(F ) \F . Using the fact that HK is the first variation of PerK with respect to
C1,1 diffeomorphisms, we get, see [9, Proposition 5.2],

(2.5) PerK(Φε(F )) = PerK(F ) +

∫
Φε(F )\F

HK
Φε(x)(F )(x)dx

where ε(x) := sup{λ ∈ (0, ε) x ∈ Φλ(F )} and

(2.6) PerK(E ∩ Φε(F ) > PerK(F ) +

∫
(E∩Φε(F ))\F

HK
Φε(x)(F )(x)dx.

From (2.5), (2.6), recalling that HK
Φε(F )(x) 6 δ − ρ/2 in Φε(F ) \ E ⊆ Φε(F ) \ F , we

conclude that

PerK(E ∩ Φε(F )) > PerK(Φε(F ))−
∫

Φε(F )\E
HK

Φε(x)(F )(x)dx

> PerK(Φε(F )) +
(
−δ +

ρ

2

)
|Φε(F ) \ E|

> PerK(Φε(F ))− δ|Φε(F ) \ E|.

in contradiction with the fact that E is a K-outward minimizing set in Ω if δ = 0 or
a strong K-outward minimizing set if δ > 0.
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(2) We let Ω := EξE , so E ⊂⊂ Ω and by [9, Proposition 5.2], for every F with PerK(F ) <
+∞ such that E ⊂ F ⊂ EξE there holds

PerK(F ) > PerK(E) +

∫
F\E

HK
{y s.t. dE(y)>dE(x)}(x)dx > PerK(E) + δ|F \ E|,

where the last inequality comes from the fact that for x ∈ F \ E, there holds that
−ξE < dE(x) < 0 and by recalling that HK

Eλ
(x) > δ for all λ ∈ [0, η′]. This implies

that E is K-outward minimizing in Ω with associated constant δ.

�

Remark 2.11. We point out that K-mean convexity does not imply K-outward minimality.
In particular if E is a set such that HK

E (x) > δ > 0 for all x ∈ ∂E, but ∂E 6∈ C1,1, then
it is not always true that there exists Ω ⊃ E such that E is a K-outward minimizing set
in Ω. We consider the example described in Remark 2.6 of a set E ∈ R2 which satisfies
Hs
E(x) > 2π

(1+
√

2)2
for all x ∈ ∂E and which is not K-outward minimizing.

We recall, see Remark 2.6, that

Hs
E∪Qr(t, r), H

s
E∪Qr(t,−r) 6 −

c(n)

rs
for all t ∈ (−r, r),

where Qr = {(x1, x2) ∈ R2 s.t. x2 ∈ [−r, r], −|x2| 6 x1 6 |x2|}. Then, arguing exactly as in
[6, Proposition 1.8] it is possible to show that Pers(E ∪Qr) < Pers(E), which implies that E
is not a K-outward minimizing set.

3. Level set formulation

In this section we recall the level set formulation of the geometric flow (1.1) in the setting
of viscosity solutions for nonlocal equations, and we collect some results that will be useful
in the sequel.

The viscosity theory for the classical mean curvature flow is contained in [12, 17], see
also [19] for a comprehensive presentation of the level set approach for classical geometric
flows. The existence and uniqueness of solutions for the fractional curvature flow in (1.1) in
the viscosity sense have been investigated in [25] by introducing the level set formulation of
the geometric evolution problem (1.1) and a proper notion of viscosity solution. The paper [9]
is the main reference where it is introduced a general framework for the analysis via the level
set formulation of a wide class of local and nonlocal translation-invariant geometric flows.

The level set flow associated to (1.1) can be defined as follows. Given a closed set E ⊆ Rn
we choose a Lipschitz continuous function uE : Rn → R such that

∂E = {x ∈ Rn s.t. uE(x) = 0} = ∂{x ∈ Rn s.t. uE(x) > 0}
and E = {x ∈ Rn s.t. uE(x) > 0},(3.1)

e.g. uE(x) = dE(x). Let also uE(x, t) be the viscosity solution of the following nonlocal
parabolic problem

(3.2)

{
∂tu(x, t) + |Du(x, t)|HK

{y s.t.u(y,t)>u(x,t)}(x) = 0,

u(x, 0) = uE(x).

For the definition of viscosity solution we refer to [9], see also [25]. We observe that the inequal-
ity HK

E (x) 6 c (resp. > c) for x ∈ ∂E can be shown to be equivalent to HK
{y s.t.uE(y)>0}(x) 6 c

(resp. > c) for x with uE(x) = 0, in the viscosity sense.
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Due to the comparison principle proved in full generality in [9] the system (3.2) admits a
unique viscosity solution for every initial datum uE which is uniformly continuous. Moreover
if uE is Lipschitz continuous, the solution is still Lipschitz continuous in x with the same
Lipschitz constant.

Remark 3.1 (Outer and Inner flow). We define the outer and inner flows defined as follows:

(3.3) E+(t) := {x ∈ Rn s.t. uE(x, t) > 0} and E−(t) := {x ∈ Rn s.t. uE(x, t) > 0}
where uE(x, t) is the unique viscosity solution to (3.2) with initial data uE as defined in (3.1).
The level set flow of ∂E is given by

(3.4) ΣE(t) := {x ∈ Rn s.t. uE(x, t) = 0}.
We observe that since the equation in (3.2) is geometric, if we replace the initial condition uE
with any function u0 with the same level sets {u0 > 0} and {u0 > 0}, the evolutions ΣE(t),
E+(t) and E−(t) remain the same. For more details, we refer to [9, 25].

Finally we observe that, if int E = ∅, then uE(x) 6 0 for every x ∈ Rn, by (3.1). Therefore,
by the comparison principle proved in [9] we get that uE(x, t) 6 0 for every t > 0. In particular
this implies that

(3.5) if E has empty interior then E−(t) = ∅ for all t > 0.

Finally we recall some results about comparison between the level set flow and geometric
regular subsolutions and supersolutions to (1.1), which have been proven in [6, Appendix]
(see also [9]).

We start with a geometric comparison principle proven in [6, Corollary A8].

Proposition 3.2.

i) Let F ⊂ E two closed sets in Rn such that d(F,E) = δ > 0. Then F+(t) ⊂ E−(t) for
all t > 0, and the map t→ d(F+(t), E−(t)) is nondecreasing.

ii) Let v : Rn × [0, T )→ R be a bounded uniformly continuous viscosity supersolution to
(3.2), and assume that F ⊆ {x ∈ Rn s.t. v(x, 0) > 0}. Then

F+(t) ⊆ {x ∈ Rn s.t. v(x, t) > 0}, for all t ∈ (0, T ).

Moreover, if d(F, {x ∈ Rn s.t. v(x, 0) > 0}) = δ > 0, then

F+(t) ⊆ {x ∈ Rn s.t. v(x, t) > 0}, for all t ∈ (0, T ),

and

d
(
F+(t), {x ∈ Rn s.t. v(x, t) > 0}

)
> δ.

iii) Let w : Rn × [0, T ) → R be a bounded uniformly continuous viscosity subsolution to
(3.2), and assume that E ⊇ {x ∈ Rn s.t. w(x, 0) > 0}). Then

E+(t) ⊇ {x ∈ Rn s.t. w(x, t) > 0}, for all t ∈ (0, T ).

Moreover, if d(E, {x ∈ Rn s.t. w(x, 0) > 0}) = δ > 0, then

E−(t) ⊇ {x ∈ Rn s.t. w(x, t) > 0}, for all t ∈ (0, T ),

and

d
(
E−(t), {x ∈ Rn s.t. w(x, t) > 0}

)
> δ.

We now state a comparison result between the level set flow and geometric subsolutions or
supersolutions to (1.1). We omit its proof since it follows exactly as in [6, Proposition A.10].
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Proposition 3.3. Let C(t) ⊆ Rn for t ∈ [0, T ], be a continuous family of closed sets with
compact boundaries, and let E ⊆ Rn be a closed set.

i) Assume that C(t) satisfies a uniform interior ball condition at every point of its bound-
ary, and that there exists δ > 0 such that at every x ∈ ∂C(t) there holds

(3.6) ∂tx · ν(x) +HK
C(t)(x) > δ.

If E ⊆ C(0), with d(E,C(0)) = k > 0, then E+(t) ⊆ C(t) for all t ∈ [0, T ], with
d(E+(t), C(t)) > k.

ii) Assume that C(t) satisfies a uniform exterior ball condition at every point of its bound-
ary, and that there exists δ > 0 such that at every x ∈ ∂C(t) there holds

(3.7) ∂tx · ν(x) +HK
C(t)(x) 6 −δ.

If E ⊇ C(0), then E+(t) ⊇ C(t) for all t ∈ [0, T ].
If d(C(0), {x ∈ Rn s.t. uE(x) > 0}) = k > 0, then E−(t) ⊇ C(t) for all t ∈ [0, T ],
with d(E−(t), C(t)) > k.

4. K-flow of K-mean-convex sets

In this section we discuss some properties of the K-flow (1.1) starting from a regularly or
strongly K-mean convex set. We first show that the flow is monotone in the following sense.

Proposition 4.1.

(1) Let E ⊆ Rn be a strongly K-mean convex with associated constant δ > 0.
If int E = ∅ then E−(t) = ∅ and int E+(t) = ∅ for every t > 0, whereas if int E 6= ∅,
there holds

(4.1) E+(t+ s) ⊆ E−(t) with d(E+(t+ s), E−(t)) > δs for every t > 0, s ∈ [0, ξE/δ)

where E−(0) = int E. In particular E+(t) \ E−(t) has empty interior for all t > 0.
(2) Let E ⊆ Rn be a regularly K-mean convex. Then there holds

(4.2) E+(t) ⊆ E and E+(t+ s) ⊆ E+(t) for every t, s > 0.

Proof.

(1) Let δ > 0 and ξE be the constants associated to E, according to Definition 2.2. Let
ξ 6 ξE . For 0 < h < min(δ, ξ) and s ∈ [0, 1]

C(s) := Eξ−hs.

We observe that C(s) is a supersolution to (1.1), in the sense that it satisfies

∂sx · ν +HK
C(s)(x) = −h+HK

C(s)(x) > 0.

Since E ⊆ Eξ = C(0), by Proposition 3.3, we get that for all s ∈ (0, 1] there hold, for
every ξ 6 ξE ,

E+(s) ⊆ C(s) = Eξ−hs ⊆ Eξ and d
(
E+(s), Eξ−hs

)
> d(E,Eξ) = ξ.

This implies that for all s ∈ [0, 1]

E+(s) ⊆ ∩0<ξ6ξEE
ξ = E.

Therefore, if int(E) = ∅, we conclude that int E+(t) = ∅ and we recall that E−(t) = ∅
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for all t > 0 by (3.5).
Assume now that E has nonempty interior. Arguing as above we define C(s) = EξE−δs

and we get that C(s) is a supersolution to (1.1) for every s ∈ [0, ξE/δ). Therefore as
above, by Proposition 3.3, we get that E+(s) ⊆ EξE−δs for every s ∈ [0, ξE/δ) and
d(E+(s), EξE−δs) > d(E,EξE ) = ξE .

Let x ∈ ∂E+(s). Then d(x, ∂EξE−δs) > d(E+(s), EξE−δs) > ξE . Therefore, for
every y ∈ ∂E we get

ξE 6 d(x, ∂EξE−δs) = min
z∈∂EξE−δs

|x− z| 6 |x− y|+ min
z∈∂Eξ−δs

|y − z|

= |x− y|+ ξE − δs,
which in turn gives that for all x ∈ ∂E+(s) with s ∈ [0, ξE/δ) and all y ∈ ∂E there
holds

|x− y| > δs.
This implies that for all s ∈ [0, ξE/δ)

(4.3) d
(
E+(s), E

)
> δs > 0.

In particular it follows that E+(s) ⊆ int(E).
By the Comparison Principle in Corollary 3.2, we get that

E+(t+ s) ⊆ E−(t) for all t > 0, s ∈ (0, ξE/δ), with d(E+(t+ s), E−(t)) > δs.

Finally we recall the following lower semicontinuity result for the outer evolution
proved in [6, Proposition A.12]: lim infη→0 |E+(t+ η)| > |int E+(t)|.
Then, since E+(t+ s) ⊆ E−(t) for s ∈ (0, ξE/δ), we get

|int (E+(t) \ E−(t))| 6 lim sup
s→0+

|int E+(t)| − |E+(t+ s)| 6 0

which gives the conclusion.
(2) Now we consider the case of a regularly K-mean convex set E. Let fix λ 6 ηE and

T < 1
cE

and define the flow C(t) = EcEλt for t ∈ [0, T ]. Note that since cEλt 6 ηE ,

there holds that HK
C(t)(x) > −c2

Eλt > −c2
EλT > −cEλ for all t ∈ [0, T ], which implies

that C(t) is a strict supersolution to (1.1). Therefore by Proposition 3.3, we get that

E+(t) ⊆ EcEλt for all 0 6 t 6 T <
1

cE
and every λ ∈ (0, ηE ].

This implies that for t ∈
[
0, 1

cE

)
, E+(t) ⊆ ∩λ∈(0,ηE ]E

cEλt = E, since E is closed.

Then by the Comparison Principle in Corollary 3.2, we get that

E+(t+ s) ⊆ E+(t) for all t > 0, s ∈
[
0,

1

cE

)
.

�

Remark 4.2. Observe that if E is K-mean convex and HK
E (x) > δ > 0 for all x ∈ ∂E in

viscosity sense, but E is not regularly or strongly K-mean convex, then in general it is not
true that E+(t) ⊆ E for t > 0 and moreover it is not true that the flow does not develop
fattening. Fattening phenomenon is related to non-uniqueness of the geometric flow; for an
analysis of this phenomenon, mainly in dimension 2, for geometric equations as (1.1), we refer
to [6].
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As an example we consider the set E described in Remark 2.6. In [6, Thm 1.10] it is proved
that there exists t > 0 and c > 0 such that E−(t) ⊆ B(0, r(τ)) ⊆ E+(τ) for all τ ∈ [0, t),

where r(τ) = c(n)τ1/(1+s), so implying that (4.2) cannot hold.

Moreover, we show that monotonicity of the flow implies K-mean convexity.

Proposition 4.3. Let E be a closed set. Assume that there exists h > 0 such that

(4.4) E+(t) ⊆ E for every 0 6 t 6 h,

then HK
E (x) > 0 in viscosity sense for every x ∈ ∂E.

If moreover there exists δ > 0 such that

E+(t) ⊆ E with d(E,E+(t)) > δt for every 0 6 t 6 h,

then HK
E (x) > δ in viscosity sense for every x ∈ ∂E.

Proof. We prove directly the second statement, since the first can be proved in a similar way,
just putting δ = 0. Assume that it is not true that HK

E (x) > δ in viscosity sense for every
x ∈ ∂E. Therefore there exists x ∈ ∂E and a set F with C1,1 boundary such that F ⊆ E,
x ∈ ∂F ∩ ∂E and HK

F (x) 6 δ − 4ρ < δ. By continuity of the curvature on regular sets (see
[9]), there exists r > 0 such that for all y ∈ ∂F ∩B(x, 4r), there holds HK

F (y) 6 δ − 3ρ.
Now we construct a strict subsolution C(t) to (1.1) with C(0) = F as follows. Let c =

maxy∈∂F H
K
F (y) > 0 and let ψr, φr : Rn → [0, 1] be two smooth functions such that ψr(y) = 1

for y ∈ B(x, r) and ψr(y) = 0 for y ∈ Rn \ B(x, 2r), and on the other hand φr(y) = 0 for
y ∈ B(x, 3r) and φr(y) = 1 for y ∈ Rn \ B(x, 4r). We construct a family of regular sets as
follows: C(0) = F and C(t) is the set whose boundary is

∂C(t) = {y + (−δ + ρ)tψr(y)ν∂F (y)− (c+ 2ρ)tφr(y)ν∂F (y) for all y ∈ ∂F}

where νF (y) is the outer normal of F at x ∈ ∂F . For t > 0 sufficiently small, C(t) is of class
C1,1 and moreover, by continuity of the curvature on regular sets,

(4.5) HK
C(t)(y) 6 δ − 2ρ for y ∈ ∂C(t) ∩B(x, 4r) and c+ ρ > max

y∈∂C(t)
HK
C(t)(y).

Finally, observe that at every y ∈ ∂C(t) there holds

∂ty · ν(y) = (−δ + ρ)ψr(y)− (c+ 2ρ)φr(y) 6 −HK
C(t)(y)− ρ

where the last inequality is obtained by recalling the definition of φr, ψr and (4.5). We
conclude by Proposition 3.3 that, since C(0) = F ⊆ E, then C(t) ⊆ E+(t) for all t > 0
sufficiently small.

Note that d(x + (−δ + ρ)tνF (x), x) = (δ − ρ)t and then d(C(t), E) 6 (δ − ρ)t < δt, in
contradiction with the fact that d(E+(t), E) > δt and C(t) ⊆ E+(t) ⊆ E.

�

Remark 4.4. Note that, arguing exactly as in the proof of Proposition 4.3, we may prove
the following result: if E is a closed set such that there exist δ > 0 and h > 0 for which

sup
x∈E+(t)

d(x,E) 6 δt ∀t 6 h,

then

HK
E (x) > −δ in viscosity sense for all x ∈ ∂E.
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Indeed we argue by contradiction and we choose F as in the proof of Proposition 4.3, with
C1,1 boundary such that F ⊆ E, x ∈ ∂F ∩∂E and HK

F (y) 6 −δ− 2ρ for all y ∈ ∂F ∩B(x, r).
We construct now a strict subsolution to (1.1) as

∂C(t) = {y + (δ + ρ)tψr(y)ν∂F (y)− (c+ 2ρ)tφr(y)ν∂F (y) for all y ∈ ∂F}
where c = maxy∈∂F H

K
F (y) > 0 (since F is compact). Therefore by comparison C(t) ⊆ E+(t)

and supx∈C(t) d(x,E) > (δ + ρ)t, which gives a contradiction.

We collect the previous results about flows of regularly and strongly K-mean convex sets.

Theorem 4.5.

(1) Let E be a strongly K-mean convex set with associated constant δ > 0. Then for all
η ∈ [0, ξE) the outer flow (Eη)+(t) is monotone according to (4.1) if δ > 0, or to (4.2)
if δ = 0 and moreover there holds

HK
(Eη)+(t)(x) > δ for all t > 0.

(2) Let E be a regularly K-mean convex set. Then the outer flow E+(t) is monotone
according to (4.2) and there holds

HK
E+(t)(x) > 0 ∀t > 0.

Proof.

(1) Note that by definition if K is strongly K-mean convex with associated constant
δ > 0, then also Eη, for any η ∈ (0, ξE), is strongly K-mean convex with associated
constant δ > 0, and ξEη = ξE − η. Therefore, we may apply Proposition 4.1 to every
Eη and deduce that if δ = then (4.2) holds for (Eη)+(t) for every t > 0 and if δ > 0

then (4.1) holds for s ∈
[
0, ξE−ηδ

]
and for every t > 0. Now, by Proposition 4.3, we

get that
HK

(Eη)+(t)(x) > δ for all t > 0.

(2) The fact that HK
E+(t)(x) > 0 is a consequence of (4.1) and Proposition 4.3.

�

5. Minimizing movements

We now recall the variational scheme, sometimes called minimizing movements, introduced
in [1] for the classical mean curvature flow, and later extended to the nonlocal setting in [9].

Given a nonempty set E ⊆ Rn with compact boundary and a time step h > 0, if E is
bounded we define the set Th(E) as a solution of the minimization problem

(5.1) min
F⊆Rn

PerK(F )− 1

h

∫
F
dE(x)dx.

If E is unbounded then we define Th(E) := Rn \ Th(Rn \ E). We also let Th(∅) := ∅.
We iterate the scheme to obtain T

(k)
h (E) = Th(T

(k−1)
h (E)), where we put T

(1)
h (E) = Th(E),

and we define the following piecewise constant flows as follows

(5.2) Eh(t) = T
(k)
h (E) for t ∈ [kh, (k + 1)h).

In the sequel we will identify a minimizer Th(E), and a time discrete flow Eh(t), with the
representative given by the set of Lebesgue points of the characteristic function.

We recall from [9] some results about this scheme.



14 A. CESARONI, M. NOVAGA

Theorem 5.1.

(1) For any set E, the minimization problem (5.1) admits a maximal T+
h (E) and a min-

imal solution T−h (E) (with respect to inclusion). We will denote the flow obtained in
(5.2) by interpolating respectively the minimal and the maximal solution as respectively
E−h (t) and E+

h (t). Every flow constructed as in (5.2) satisfies E−h (t) ⊆ Eh(t) ⊆ E+(t).

(2) If E ⊆ F , then T±h (E) ⊆ T±h (F ). Moreover if d(E,F ) > r, then d(Th(E), Th(F )) > r.
(3) There exists a constant C > 1 depending only on the dimension, such that for every

fixed R > 0 and every h > 0 such that

R− h min
x∈∂B(0,CR)

HK
B(0,CR)(x)) > 0,

there holds

T±h (B(0, R)) ⊆ B
(

0, R− h min
x∈∂B(0,CR)

HK
B(0,CR)(x)

)
.

(4) For every R0 > 0, σ > 1 there exists h0 > 0 depending on R0, σ, C such that if h 6 h0,
then there holds for any R > R0, and h 6 h0,

B

(
0, R− h max

x∈∂B(0,R/σ)
HK
B(0,R/σ)(x)

)
⊆ T±h (B(0, R)).

(5) Let E ⊂ F be a nonempty bounded set with r = d(E,F ) > 0. Then there exists
h0 > 0 depending on r and the dimension such that for all h 6 h0, there holds that
T±h (E) ⊆ F and moreover

d(T+
h (E), F ) > r − h max

x∈∂B(0,r/2)
HK
B(0,r/2)(x) > 0.

Proof. For the proof of items (1)-(4) we refer to Proposition 7.1, Lemma 7.2, Lemma 7.4,
Lemma 7.5, Lemma 7.6, Lemma 7.10 in [9].

We now show item (5). We fix x ∈ ∂F and observe that by assumption, for every r′ < r,
E ⊂ Rn \B(x, r′) and then by monotonicity

(5.3) T±(E) ⊆ T±(Rn \B(x, r′)) = Rn \ T∓(B(x, r′)).

Now, we apply item (4), choosing R0 = r/2 and σ = 2: there exists h0 depending on r such
that for all r′ > r/2, and h 6 h0,

B

(
x, r′ − h max

y∈∂B(0,r′/2)
HK
B(0,r′/2)(y)

)
⊆ T±h (B(x, r′)).

Substituting in (5.3) we get for all x ∈ ∂F

T±h (E) ⊆ Rn \B
(
x, r′ − h max

y∈∂B(0,r′/2)
HK
B(0,r′/2)(y)

)
for all r′ ∈ (r/2, r), h 6 h0.

This implies for all h 6 h0, that either T±h (E) ⊆ F or T±h (E) ⊆ Rn \ F , and in both cases

(5.4) d(F, T±h (E)) > r − h max
y∈∂B(0,r/2)

HK
B(0,r/2)(y) > 0.

Finally, we observe that necessarily T±h (E) ⊆ F . Assume by contradiction that T±h (E) ⊆
Rn \ F . Then, recalling that E ⊂ F with d(E,F ) = r, from (5.4) we would get that dE(x) 6
−2r + hmaxy∈∂B(0,r/2)H

K
B(0,r/2)(y) < 0 for every x ∈ T+

h (E). So, it would be possible, just
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by translating T+
h (E) to construct a competitor with strictly less energy, and so to prove that

T+
h (E) couldn’t be a solution to the minimization problem (5.1). �

Finally we recall the convergence of the scheme to K-mean curvature flow, as proved in
[9, Proposition 7.12 and Theorem 7.16].

Theorem 5.2. Let u0 be a Lipschitz continuous function. We define

Thu0(x) := sup {λ s.t. x ∈ Th ({x s.t. u0(x) > λ})} ,

and iteratively for k ∈ N,

(5.5) T
(k)
h u0(x) := Th(T

(k−1)
h u0(x)).

Let

uh(x, t) := T
[t/h]
h u0(x)

then there holds{
T−h ({x s.t. uh(x, (k − 1)h) > λ}) = {x s.t. uh(x, kh) > λ}
T+
h ({x s.t. uh(x, (k − 1)h) > λ}) = {x s.t. uh(x, kh) > λ}

where the second equality holds up to a negligible set, and moreover

uh(x, t)→ u(x, t) as h→ 0, locally uniformly in Rn × [0,+∞),

where u(x, t) is the unique solution to (3.2) with initial datum u0.

6. K-flow of K-outward minimizing sets

In this section we show that the level set flow preserves the K-outward minimality. In the
case of the classical mean curvature flow, we refer to [16] for an analysis of outward minimizing
sets. In particular in that paper it is shown that these sets provide a class of initial data for
which the minimizing movement scheme converges to the level set flow. For the generalization
of this result to the anisotropic case and cristalline case, we refer to [10].

First of all we show that the the minimizing movement scheme (5.2) starting from a K-
outward minimizer is monotone (see [16, Lemma 2.7] for the case of the classical perimeter,
and [10, Lemma 2.3] for the anisotropic perimeter).

Proposition 6.1. Let Ω be an open set and let E be a nonempty bounded set with E ⊂⊂ Ω.
If E is a K-outward minimizing set in Ω, then there exists h0 depending on r = d(E,Ω) > 0

such that for all h 6 h0, every piecewise constant flow Eh(t) = T
(k)
h (E), for t ∈ [kh, (k+ 1)h)

defined in (5.2) satisfies

Eh(t) ⊆ Eh(s) and PerK(Eh(t)) 6 PerK(Eh(s)) ∀t > s > 0

where Eh(0) = E. Moreover Eh(t) is a K-outward minimizing set in Ω, so that HK
Eh(t)(x) > 0

in the viscosity sense at every x ∈ ∂Eh(t).

Proof. First of all we observe that by Theorem 5.1, since E ⊂⊂ Ω, then there exists h0 such
that T+

h (E) ⊂⊂ Ω for all h 6 h0. Now we proceed by induction on k > 0 and to avoid
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long notation we will denote Ek := T
(k)
h (E). Since Th(Ek) is a minimizer of (5.1), choosing

Ek ∩ Th(Ek) as a competitor we get

PerK(Th(Ek))− PerK(Ek ∩ Th(Ek)) 6
1

h

∫
Th(Ek)

dEk(x)dx− 1

h

∫
Ek∩Th(Ek)

dEk(x)dx

=
1

h

∫
Th(Ek)\Ek

dEk(x)dx 6 0

since dEk 6 0 on Rn \ Ek. Since Ek is a K-outward minimizer, we get that

PerK(Ek ∩ Th(Ek)) 6 PerK(Th(Ek)) and
1

h

∫
Th(Ek)\Ek

dEk(x)dx = 0,

which implies that Th(Ek) ⊆ Ek, up to a negligible set, recalling that dEk < 0 on Rn \ Ek.
Now, using Ek as a competitor, we observe that, since Th(Ek) ⊆ Ek and dEk > 0 in Ek,

PerK(Th(Ek)) 6 PerK(Ek)−
1

h

∫
Ek

dEk(x)dx+
1

h

∫
Th(Ek)

dEk(x)dx 6 PerK(Ek).

Let G ⊃ Th(Ek) such that G \ Th(Ek) ⊂⊂ Ω. Our aim is to prove that PerK(Th(Ek)) 6
PerK(G). Using the minimality of Th(Ek) and G ∩ Ek as competitor we get, recalling that
Th(Ek) ⊆ Ek ∩G and that dEk = 0 on Ek \ Ek,

PerK(Th(Ek)) 6 PerK(G ∩ Ek)−
1

h

∫
G∩Ek

dEk(x)dx+
1

h

∫
Th(Ek)

dEk(x)dx 6 PerK(G ∩ Ek).

We conclude recalling that Ek is a K-outward minimizer so that PerK(G∩Ek) 6 PerK(G). �

Proposition 6.2. Under the same assumptions of Proposition 6.1, if E is also strongly K-

outward minimizing set in Ω with constant δ > 0, for all h 6 min
(
h0,

d(E,Ω)
δ

)
we have

• if E has empty interior, then Th(E) = ∅;
• if E has nonempty interior, then the discrete flow Eh(t) satisfies

d(Eh(t), Eh(t+ h)) > δh and HK
Eh(t)(x) > δ for all t > 0 and x ∈ ∂Eh(t).

Proof. Observe that, by the definition of the piecewise constant flow Eh(t), it is sufficient to

prove the second statement for Ek := T
(k)
h (E) for every k > 1. We start considering the case

k = 1. In this case E1 = Th(E). By Proposition 6.1, we know that E1 ⊆ E. We fix z ∈ Rn
with |z| < hδ and observe that E1 + z ⊆ E + z ⊂ Ω since hδ 6 d(E,Ω). Now E1 + z is a
solution to the minimization problem

min
F

(
PerK(F )− 1

h

∫
F
dE(x− z)dx

)
.

We choose E ∩ (E1 + z) as a competitor and we get

PerK(E1 + z)− 1

h

∫
E1+z

dE(x− z)dx 6 PerK(E ∩ (E1 + z))− 1

h

∫
E∩(E1+z)

dE(x− z)dx.

Since E is a strongly K-outward minimizer we get

PerK(E ∩ (E1 + z)) 6 PerK(E1 + z)− δ|(E1 + z) \ E|.



K MEAN-CONVEX AND K-OUTWARD MINIMIZING SETS 17

Substituting in the previous inequality we get

δ|(E1 + z) \ E| 6 1

h

∫
(E1+z)\E

dE(x− z)dx.

Finally for x 6∈ E, by definition

dE(x− z) = d(x− z,Rn \ E)− d(x− z, E) 6 d(x− z,Rn \ E) 6 d(x− z, x) = |z|.
Therefore in the previous inequality we get

δ|(E1 + z) \ E| 6 1

h
|z||(E1 + z) \ E| < δ|(E1 + z) \ E|

which implies that |(E1 + z) \ E| = 0 for every z with |z| < δh, that is

E1 +B(0, δh) ⊆ E.
Note that if int E = ∅, then by the previous inclusion we get that necessarily E1 = ∅.
If int E 6= ∅, we have that

E1 ⊆ E and d(E1, E) > hδ.

By Theorem 5.1, we then get

E2 = Th(E1) ⊆ Th(E) = E1 and d(E2, E1) > hδ.

So by iteration we obtain

Ek ⊆ Ek−1 and d(Ek, Ek−1) > hδ.

Finally we fix k > 1 and we claim that for any λ ∈ (0, 1), there holds

HK
Ek

(x) > δ(1− λ) in viscosity sense, for all x ∈ ∂Ek.
So, sending λ→ 0 we get the statement.

The minimality of Ek = Th(Ek−1) and the submodularity of the perimeter (2.4) give that
for all G

PerK(G ∩ Ek) 6 PerK(G) + PerK(Ek)− PerK(Ek ∪G)

6 PerK(G)− 1

h

∫
G\Ek

dEk−1
(x)dx.(6.1)

We proceed as in the proof of Theorem 2.10, item (1). We fix λ ∈ (0, 1) and we assume
by contradiction that there exists F ⊆ Ek with ∂F ∈ C1,1, x0 ∈ ∂Ek ∩ ∂F , such that
HK
F (x0) 6 δ(1− λ)− 2ρ for some ρ > 0 small. Then by continuity of HK there exists r0 > 0

such that HK
F (x) 6 δ(1− λ)− ρ for every x ∈ ∂F ∩B(x0, r0). We fix

(6.2) r < min

(
r0,

hδλ

2

)
,

so that B(x0, r) ⊂⊂ Ek−1 (since d(Ek, Ek−1) > δh) and we construct a 1-parameter family
Φε of C1,1 diffeomorphisms, such that F = Φ0(F ) ⊆ Φε(F ) ⊂ E, |Φε(F ) \ Ek| > 0 and
Φε(F ) \ Ek ⊆ Φε(F ) \ F ⊂⊂ B(x0, r) ⊂⊂ Ek−1 for every ε ∈ (0, ε0). Again by continuity
there holds HK

Φε(F )(x) 6 δ(1−λ)− ρ/2 for all x ∈ ∂Φε(F ) \F . Using the fact that HK is the

first variation of PerK with respect to C1,1 diffeomorphisms, as in the proof of Theorem 2.10
(see (2.5), (2.6)), we get

PerK(Ek ∩ Φε(F )) > PerK(Φε(F )) +
(
−δ(1− λ) +

ρ

2

)
|Φε(F ) \ Ek|.
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By the previous inequality and (6.1) applied to G = Φε(F ) we get

PerK(Φε(F ))− 1

h

∫
Φε(F )\Ek

dEk−1
(x)dx > PerK(Φε(F )) +

(
−δ(1− λ) +

ρ

2

)
|Φε(F ) \ Ek|

from which we deduce

1

h

∫
Φε(F )\Ek

dEk−1
(x)dx 6

(
δ(1− λ)− ρ

2

)
|Φε(F ) \ Ek|.

Observe that Φε(F ) \Ek ⊆ B(x0, r) and then, recalling (6.2), dEk−1
(x) > hδ− r > h

(
δ − δλ

2

)
for all x ∈ Φε(F ) \ Ek. Therefore we get(

δ − δλ

2

)
|Φε(F ) \ Ek| <

(
δ − δλ− ρ

2

)
|Φε(F ) \ Ek|

which implies Φε(F ) ⊆ Ek, in contradiction with our construction. �

We now prove the main result of this section, about the flow of K-outward minimizing sets.

Theorem 6.3. Let Ω be an open set, E a bounded set with E ⊂⊂ Ω. Assume that E is a
strongly K-outward minimizing set in Ω with constant δ > 0. Then for every t > 0 up to a
countable set, we have

Eh(t)→ E−(t) in L1(Ω), as h→ 0.

Moreover, E−(t) is a K-outward minimizing set in Ω for every t > 0, and

E−(t+ s) ⊆ E−(t) with d(E−(t+ s), E−(t)) > δs for every t, s > 0.

Moreover ∩s<tE−(s) \ E−(t) has empty interior for all t > 0, | ∩s<t E−(s) \ E−(t)| = 0 for
every t > 0 up to a countable set, and

HK
E−(t)(x) > δ for all x ∈ ∂E−(t).

Finally if E has boundary of class C1,1, the same result holds also for the outer flow E+(t)
and E+(t) \ E−(t) has empty interior for all t > 0.

Proof. Note that by Proposition 6.2 and Remark 3.1 we may assume int E 6= ∅, otherwise
the statement is trivial.

We divide the proof in several steps.
Step 1: definition of a continuous minimal time function u.

We recall that Eh(t) = T
(k)
h (E), for t ∈ [kh, (k + 1)h). We define the discrete arrival time

function as follows

(6.3) uh(x) =

{
h
∑

k>0 χEk(x) =
∫ +∞

0 χEh(t)dt x ∈ E
0 x ∈ Rn \ E.

Note that by Proposition 6.2, uh is well defined and

{x s.t. uh(x) > t} = Eh(t).

By its very definition, we get that

(6.4) T
(k)
h uh(x) = uh(x)− hk

where T
(k)
h uh(x) is defined as in (5.5).
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Moreover by Proposition 6.2we get that d(T
(k)
h (E), T

(k′)
h (E)) > δh(|k − k′| − 1). Let x ∈

T
(k)
h (E) and y ∈ T (k′)

h (E),

|uh(x)− uh(y)| = h|k′ − k| 6
d(T

(k)
h (E), T

(k′)
h (E))

δ
+ h 6

|x− y|
δ

+ h.

This implies that up to a subsequence uh → u uniformly as h → 0, where u : Rn → R is a

Lipschitz continuous function such that u = 0 in Rn \ E and |u(x)− u(y| 6 |x−y|δ .

Step 2: for all t > 0 E−(t) = {x s.t. u(x) > t}.
Note that since uh → u uniformly then it is also true that ‖Thuh−Thu‖∞ → 0 as h→ +∞

and then also ‖T (k)
h u− T (k)

h uh‖∞ → 0 as h→ 0 for all k > 1, where Thu, T
(k)
h u are defined as

in (5.5). Therefore by Theorem 5.2 we conclude that

T
[ th ]
h uh(x)→ u(x, t)

locally uniformly in Rn × [0,+∞) as h → 0 where u(x, t) is the unique viscosity solution to
(3.2) with initial datum u.

On the other side, by (6.4) we get that

T
[ th ]
h uh(x)→ u(x)− t

locally uniformly. This implies that u(x) − t is the unique viscosity solution to (3.2) with
initial datum u and in particular, since the operator is geometric and the level set {u(x) > 0}
coincide with the level set {dE(x) > 0} we conclude that

E−(t) = {x s.t. u(x) > t} ∀t > 0.

Note that by this equality we deduce also that⋂
s<t

E−(s) = {x s.t. u(x) > t},

and that the limit u of uh is unique, so the whole family uh converges to u uniformly as
h → 0. By its characterization, we get also that E−(t + s) ⊆ {x s.t. u(x) > t + s} ⊆ E−(t)
for all s > 0.

Step 3: L1 convergence and K-outward minimality property of E−(t).
By uniform convergence of uh → u, we get for all t > 0 we have

E−(t) = {x s.t. u(x) > t} ⊆ lim
h→0

Eh(t) ⊆ {x s.t. u(x) > t} =
⋂
s<t

E−(s)

where the limit is taken in the L1 sense. Since u is Lipschitz continuous, we know that
|{x s.t. u(x) = t}| = 0 for almost every t > 0, which implies that Eh(t) → E−(t) in L1(Rn)
for almost every t > 0. Moreover by stability with respect to L1 convergence of K-outward
minimizing sets see Proposition 2.8, since Eh(t) are K-outward minimizers in Ω by Proposition
6.1 we conclude that also E−(t), and

⋂
s<tE

−(s) are K-outward minimizer sets in Ω for almost
every t > 0.

Now we observe that E−(t) is a K-outward minimizer set in Ω for every t > 0 again by
stability under L1 convergence, since E−(t) = ∪s>0E

−(t + s) = lims→0+(E−(t + s)). Then
also

⋂
s<tE

−(s) = lims→t− E
−(s) is a K-outward minimizer set in Ω for every t > 0.

Step 4: K-curvature of E−(t).
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Since E is strongly K-outward minimizer with δ > 0 then by Proposition 6.2 we get that

d(Eh(t), Eh(t+ s)) > δ

(
h

[
t+ s

h

]
− h

[
t

h

]
− h
)
> sδ − 2hδ.

Then
Eh(t+ s) +B(0, δs− 2hδ) ⊆ Eh(t).

Passing to the limit as h→ 0 we get that for almost every t, s > 0

(6.5) d({u(x) > t+ s}, {u(x) > t}) > δs.
Arguing as before, we get that this inequality holds for all s, t > 0.

We apply now Theorem 4.3, choosing as initial set {u(x) > t} and observing that the outer
flow at time s > 0 of {u(x) > t} is given by {u(x) > t+ s}. So we get that

(6.6) HK
{u(y)>t}(x) > δ in viscosity sense for all x ∈ ∂{u(y) > t} and for all t > 0.

Step 5: the set {x s.t. u(x) = t}.
We show that for all t > 0

int ({x s.t. u(x) > t} \ {x s.t. u(x) > t}) = int {x s.t. u(x) = t} = ∅.
We assume by contradiction that there exists z and r > 0 such that B(z, r) ⊂⊂ {x s.t. u(x) =
t} ⊆ {x s.t. u(x) > t}. Let

α := max
k∈[r/2,r]

max
y∈∂B(0,k)

HK
B(0,k)(y).

Note that by definition of curvature, then α = maxy∈∂B(0,r/2)H
K
B(0,r/2)(y) > 0. Let s0 > 0

such that r − αs0 > r/2, and define the flow B(s) = B(z, r − αs) for s ∈ [0, s0]. Then
we get that B(s) is a strict subsolution to (1.1) since HK

B(s)(y) 6 2α for every s ∈ [0, s0].

Recalling that u(x) − t is a viscosity solution to (3.2), we conclude by Proposition 3.3, that
B(z, r − αs) = B(s) ⊆ {x s.t. u(x) > t + s}. This implies that t = u(z) > t + s for all
s ∈ [0, s0] which is not possible.

Moreover, observe that by (6.5), the set of t > 0 where |{x s.t. u(x) = t}| > 0 coincides
with the set of jumps of the strictly decreasing function t → |E−(t)|. Therefore, this set is
countable.

Step 6: case of E with C1,1 boundary.
Note that if E is strongly K-outward minimizing, then by Theorem 2.10, HK

E (x) > δ for
all x ∈ ∂E. Since E has boundary of class C1,1, then it is also a strongly K-mean convex set,
see Remark 2.3. Therefore by Proposition 4.1, item (1) we get that E+(t) ⊆ E−(t − s) for
every t > s > 0 and so

E+(t) ⊆
⋂

0<s<t

E−(t− s) =
⋂

0<s<t

{x s.t u(x) > t− s} = {x s.t u(x) > t} ⊆ E+(t).

This implies that for all t > 0, {x s.t. u(x) > t} = E+(t). �

Remark 6.4. If the outer flow satisfies E+(t) ⊂⊂ E, for t > 0, then the same results as in
Theorem 6.3 hold also for the outer flow E+(t), since we may prove that {x s.t. u(x) > t} =
E+(t), arguing exactly as in Step 5 of the proof. In particular we would get that E+(t)\E−(t)
has empty interior for all t.

We expect this monotonicity property to hold true for the flow starting by a strongly
K-outward minimizer.
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Remark 6.5. In Theorem 6.3 we show that the volume function

t→ |E−(t)|
is strictly decreasing. We expect that this function is also continuous, as it happens in the
local case.

We conclude with a corollary about the convergence of the K-perimeter of the discrete flow
to the K-perimeter of the limit level set flow (we refer to [10,16] for analogous results in the
local case).

Corollary 6.6. Let Ω be a domain and E ⊂⊂ Ω be a strongly K-outward minimizing set in
Ω with constant δ > 0. Then for every T > 0∫ T

0
PerK(Eh(t))dt→

∫ T

0
PerK(E−(t))dt as h→ 0

where Eh(t) is any piecewise constant flow defined as in (5.2) and E−(t) is the viscosity inner
flow as defined in (3.3).

Proof. By Theorem 6.3, Eh(t) → E−(t) in L1(Ω) for almost every t, therefore by lower
semicontinuity of PerK with respect to L1 convergence and Fatou lemma, we get that for
every T > 0,

(6.7) lim inf
h→0

∫ T

0
PerK(Eh(t))dt >

∫ T

0
PerK(E−(t))dt.

We now introduce the functional

(6.8) JK(v) :=
1

2

∫
Rn

∫
Rn
|v(x)− v(y)|K(x− y)dxdy v ∈ L1

loc(Rn).

Note that JK(χE) = PerK(E) for all measurable E ⊂ Rn. The coarea formula [4, Proposition
2.3] states that

(6.9) JK(v) =

∫ +∞

−∞
PerK({v > s})ds

for all v ∈ L1
loc(Rn).

Let uh as defined in (6.3) and we claim that

(6.10) JK(uh) 6 JK(v) for all v ∈ L1
loc(Rn), v > uh and supp v ⊂⊂ Ω.

The proof of this claim is a direct consequence of the coarea formula and the fact that Eh(t)
is K-outward minimizer for every t, by Proposition 6.1. Indeed, since uh 6 v, there holds for
every s > 0 that

Eh(s) = {x s.t. uh(x) > s} ⊆ {x s.t. v(x) > s} ⊂⊂ Ω

which implies, since Eh(t) is a K-outward minimizing set, that

PerK(Eh(s)) = PerK({x s.t. uh > s}) 6 PerK({x s.t. v > s}).
Integrating for s ∈ (0,+∞), and recalling (6.9), we get the conclusion.

Now, we use the same argument as in [16, Proposition 5.1]. We recall that by Theorem 6.3,
uh → u uniformly as h→ 0, where u is Lipschitz continuous and u = 0 in Rn \E. By uniform
convergence we get that for any ε > 0 there exists h0 such that uh 6 u+ ε for all h < h0. Let
v(x) := (u(x) + ε)χEi(x), so v(x) > uh(x) by construction and moreover supp v = E ⊂⊂ Ω.
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Therefore by (6.10) there holds that

JK(uh) 6 JK(v) = JK((u+ ε)χE)

6 JK(u) + JK(εχE) = JK(u) + εPerK(E).

Sending ε→ 0 we conclude that

(6.11) JK(uh) 6 JK(u)

Recalling that Eh(t) = {x s.t. uh(x) > t} and E−(t) = {x s.t. u(x) > t}, (6.11), by the
coarea formula, coincides with∫ +∞

0
PerK(Eh(t))dt 6

∫ +∞

0
PerK(E−(t))dt for all h 6 h0.

This inequality, together with (6.7), gives the thesis. �
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