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Abstract. This paper studies the structure and stability of boundaries in noncollapsed
RCD(K,N) spaces, that is, metric-measure spaces (X, d,H N ) with Ricci curvature
bounded below. Our main structural result is that the boundary ∂X is homeomorphic to
a manifold away from a set of codimension 2, and is N − 1 rectifiable. Along the way, we
show effective measure bounds on the boundary and its tubular neighborhoods. These
results are new even for Gromov-Hausdorff limits (MN

i , dgi , pi) → (X, d, p) of smooth
manifolds with boundary, and require new techniques beyond those needed to prove the
analogous statements for the regular set, in particular when it comes to the manifold
structure of the boundary ∂X.

The key local result is an ε-regularity theorem, which tells us that if a ball B2(p) ⊂ X
is sufficiently close to a half space B2(0) ⊂ RN+ in the Gromov-Hausdorff sense, then B1(p)
is biHölder to an open set of RN+ . In particular, ∂X is itself homeomorphic to B1(0N−1)
near B1(p). Further, the boundary ∂X is N − 1 rectifiable and the boundary measure
H N−1 ∂X is Ahlfors regular on B1(p) with volume close to the Euclidean volume.

Our second collection of results involve the stability of the boundary with respect
to noncollapsed mGH convergence Xi → X. Specifically, we show a boundary volume
convergence which tells us that the N − 1 Hausdorff measures on the boundaries converge
H N−1 ∂Xi →H N−1 ∂X to the limit Hausdorff measure on ∂X. We will see that a
consequence of this is that if the Xi are boundary free then so is X.
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1. Introduction

This paper studies structural and stability properties for noncollapsed RCD(K,N) spaces
with boundary. In particular, we give affirmative answers to some of the recent conjectures
presented in [DPG18, KM19].

Most of the statements are new and of interest even for noncollapsed limits of smooth
Riemannian manifolds with convex boundary and interior lower Ricci curvature bounds.

Our main results can be grouped into
• structure results for boundaries and spaces with boundary;
• stability/gap theorems about the absence/presence of boundary.

In particular, we obtain the rectifiable structure of the boundary together with mea-
sure estimates. Moreover we prove that noncollapsed RCD spaces are homeomorphic to
topological manifolds (possibly with boundary) up to sets of codimension two.

On the side of stability/gap results we are going to prove that the absence of boundary
is preserved under noncollapsed (pointed) Gromov-Hausdorff convergence and that the
boundary volume measures converge in full generality. We also show that the presence
of boundary is stable, under an additional assumption which is satisfied for sequences of
smooth manifolds with boundary.

Below, after briefly introducing the relevant terminology and background, we outline
the main achievements of the paper.

The Riemannian Curvature Dimension condition RCD(K,∞) was introduced in [AGS14]
(see also [AGMR15]) coupling the Curvature Dimension condition CD(K,∞), previously
proposed in [S06a, S06b] and independently in [LV09], with the infinitesimally Hilbertian
assumption, corresponding to the Sobolev space H1,2 being Hilbert.
The natural finite dimensional refinements subsequently led to the notions of RCD(K,N)
and RCD∗(K,N) spaces, corresponding to CD(K,N) (resp. CD∗(K,N), see [BS10])
coupled with linear heat flow. The class RCD(K,N) was proposed in [G15], motivated by
the validity of the sharp Laplacian comparison and of the Cheeger-Gromoll splitting theorem,
proved in [G13]. The (a priori more general) RCD∗(K,N) condition was thoroughly
analysed in [EKS15] and (subsequently and independently) in [AMS15] (see also [CM16]
for the equivalence betweeen RCD∗ and RCD in the case of finite reference measure).
Several geometric and analytic properties have been proved for RCD(K,N) spaces in the
last years, often inspired by the theory of (weighted) Riemannian manifolds with lower
Ricci bounds and of Ricci limits. Without the aim of being complete, let us mention the
heat kernel estimates [JLZ14], the rectifiability [MN19], the constancy of the dimension in
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the almost everywhere sense [BS19] (cf. with [CoN12] dealing with Ricci limit spaces) and
the existence of a second order differential calculus [G18].

In the theory of Ricci limit spaces, further regularity properties are satisfied under the
noncollapsing assumption. If the approximating sequence of smooth Riemannian manifolds,
besides the lower Ricci bound

RicMi ≥ −(N − 1) , (1.1)
verifies also the lower volume bound

H N (B1(pi)) ≥ v > 0 , (1.2)

then by volume convergence [C97, CC97] the volume measures converge to the H N -measure
on the limit metric space. Noncollapsed Ricci limit spaces are much more regular than
general Ricci limits, see [CC97, CN13, CN15, CJN18].

Motivated by this refinement in the theory of Ricci limits, a notion of noncollapsed
RCD(K,N) metric measure space (X, d,m) has been proposed in [DPG18] by asking that
m = H N (a weaker definition had been previously suggested in [K19]). In the same
work some properties valid for noncollapsed Ricci limits have been generalized to the
synthetic framework, such as the volume convergence and the stratification of the singular
set. More recent contributions dealt with topological regularity [KM19], volume bounds
for the singular strata [ABS19] and differential characterizations [H19].

1.1. Singular strata and boundaries. On a noncollapsed RCD(K,N) metric measure
space (X, d,H N ) any tangent cone is a metric cone (see [CC96, CC97, DPG16, DPG18]).
Moreover, there is a natural stratification of the singular set

S0 ⊂ S1 ⊂ · · · ⊂ SN−1 = S := X \ R , (1.3)
where

R :=
{
x ∈ X : Tanx(X, d) = {(RN , deucl)}

}
(1.4)

is the set of regular points of (X, d,H N ) and, for any 0 ≤ k ≤ N − 1,

Sk :=
{
x ∈ X : no tangent cone at x splits off Rk+1

}
. (1.5)

This stratification was first introduced in [CC97] for noncollapsed Ricci limits. Therein it
was proven that

SN−1 \ SN−2 = ∅ (1.6)
and that the following Hausdorff dimension estimate holds:

dimH Sk ≤ k , 1 ≤ k ≤ N − 2 . (1.7)
A more quantitative analysis of singular strata was initiated in [CN13], based on quantitative
differentiation arguments and yielding to Minkowski-type estimates for the quantitative
singular strata

Skε,r := {x ∈ X : for no r ≤ s < 1 Bs(x) is a (k + 1, ε)-symmetric ball}
and

Skε :=
⋂
r>0
Skε,r . (1.8)

We recall that Bs(x) is said to be a (k, ε)-symmetric ball provided
dGH(Bs(x), Bs(z)) ≤ sε ,

where z ∈ C(Z)× Rk is a tip of the metric cone C(Z)× Rk. We refer to section 2 for the
precise introduction of metric cones and of the Gromov-Hausdorff distance dGH .

Later on, in [CJN18] the estimates for the quantitative singular strata have been
sharpened, and the k-rectifiable structure of Sk has been shown for any 0 ≤ k ≤ N − 2.
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In the framework of RCD spaces, the top dimensional singular stratum SN−1 \ SN−2

is not empty in general, since Riemannian manifolds with convex boundary and lower
Ricci curvature bounds in the interior belong to this class (here by convex boundary we
intend that the second fundamental form with respect to the interior unit normal must
be non negative definite). Still, the Hausdorff dimension estimate (1.7) holds for any
0 ≤ k ≤ N − 1 (see [DPG18]). The same phenomenon happens in the theory of Alexandrov
spaces, where the top dimensional singular stratum is strictly linked to the boundary of the
space [P91, BBI01]. Elementary examples suggest that this is the case also for noncollapsed
RCD spaces.

In [DPG18] and [KM19] two different notions of boundary for an RCD(K,N) space
(X, d,H N ) have been proposed (see also [KLP21] for another notion introduced for
Alexandrov spaces). For the sake of this introduction we are going to deal with the one
introduced in [DPG18], where the authors define

∂X := SN−1 \ SN−2 . (1.9)

Above we denoted by SN−1 \ SN−2 the topological closure of SN−1 \ SN−2.
Let us point out that, since the density of H N at any point in SN−1 \ SN−2 equals 1/2,
by lower semicontinuity of the density it holds

∂X \
(
SN−1 \ SN−2

)
⊂ SN−2 , (1.10)

in particular
dimH

(
∂X \

(
SN−1 \ SN−2

))
≤ N − 2 . (1.11)

A comparison with the notion of boundary introduced in [KM19] will be investigated
subsequently in the paper (cf. Theorem 6.6 (i)).

Given the above definition of boundary it sounds natural to introduce the following.

Definition 1.1. We say that an RCD(K,N) space (X, d,H N ) has boundary in B1(p) if
(SN−1 \ SN−2) ∩B1(p) 6= ∅ ,

otherwise we say that (X, d,H N ) has no boundary in B1(p).

1.2. An ε-regularity theorem for top dimensional singularities. For all the subse-
quent developments of the paper, the building block is an ε-regularity theorem, dealing
with the structure of balls sufficiently close in the GH sense to a ball centered on the
boundary of a half-space.

Let us preliminarily recall that a set E ⊂ X is said to be (N − 1)-rectifiable provided

E ⊂M ∪
⋃
i∈N

Ei ,

where H N−1(M) = 0 and each Ei is biLipschitz to a Borel subset of RN−1 for any i ∈ N.

Theorem 1.2 (ε-regularity). Let 1 ≤ N <∞ be a fixed natural number and let ε > 0. If
δ ≤ δ(N, ε), then for any RCD(−δ(N − 1), N) m.m.s. (X, d,H N ) with p ∈ X such that

dGH(B16(p), BRN+
16 (0)) < δ , (1.12)

it holds that ∂X ∩B1(p) 6= ∅. Moreover
(i) (Ahlfors regularity) for any x ∈ ∂X ∩B1(p) and for any 0 < r < 1

(1− ε)ωN−1r
N−1 ≤H N−1(∂X ∩Br(x)) ≤ (1 + ε)ωN−1r

N−1 ; (1.13)
(ii) (Rectifiable structure) ∂X ∩B1(p) is (N − 1)-rectifiable;
(iii) (Topological structure) there exists a map F : B1(p)→ RN+ satisfying
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(a) (1− ε)d(x, y)1+ε ≤ |F (x)− F (y)| ≤ C(N)d(x, y) for any x, y ∈ B1(p);
(b) F (p) = 0 and ∂RN+ ∩B1−2ε(0) ⊂ F (∂X ∩B1(p)) = ∂RN+ ∩ F (B1(p));
(c) F is open and a homeomorphism with its image;
(d) BRN+

1−2ε(0) ⊂ F (B1(p)).

Remark 1.3. In view of the volume ε-regularity for the boundary Theorem 8.2 the conclusions
of Theorem 1.2 hold by assuming p ∈ ∂X and the volume pinching condition

H N (B32(p)) ≥ 1
2ωN (32)N − δ (1.14)

in place of (1.12).

The proof of Theorem 1.2 requires most of the tools developed in the paper and will be
split into several intermediate results.

One of the building blocks to prove the boundary measure estimates in Theorem 1.2 is
a weaker ε-regularity theorem, Theorem 6.1. There we prove that there exist constants
c(N) > 1 and η(N) > 0 such that if

dGH(B1(p), BRN+
1 (0)) < η(N) ,

then
c(N)−1 ≤H N−1(∂X ∩B1(p)) ≤ c(N) .

Stability is a key feature of the top dimensional singular stratum. It is well known that
codimension two singularities might appear even for limits of smooth manifolds. The easiest
example of this being that of a two dimensional singular cone, which can be obtained as a
limit of smooth manifolds with uniform lower Ricci bounds by rounding off the tip.

Among the other things, Theorem 1.2 (and even its weaker version Theorem 6.1) implies
that the top dimensional singular stratum SN−1 \ SN−2 is empty for noncollapsed Ricci
limits of manifolds without boundary, as known from the seminal paper [CC97]. It is worth
stressing that our strategy is completely different from the original one, which is based on a
topological argument and seems not suitable to handle the general case of RCD spaces. A
previous attempt in this direction has been made in [KM19], where the authors extended
Cheeger-Colding’s result to the setting of noncollapsed RCD spaces verifying an additional
topological regularity assumption. In contrast, our proof is quantitative in nature and does
not require any topological argument. Moreover, the statement we achieve is stronger, and
new even in the smooth framework. Indeed we prove that closeness to the model boundary
ball implies the presence of a definite amount of boundary points.

The Ahlfors regularity for the boundary measure in sharp form, Theorem 1.2 (i), will
be established through several steps. The key step is the improved structure theorem for
boundary balls Theorem 8.1, which when combined with Theorem 6.1 yields to Ahlfors
regularity in weaker form, with a constant c(N) > 1 and 1/c(N) in place of 1 + ε and
1− ε, respectively. The sharp version of the bound will be obtained later in Corollary 8.7
by combining the stability of Theorem 8.1 and the rectifiable and biHölder structure of
Theorem 8.4 (ii), (iii) and (iv).

The topological regularity part of Theorem 1.2 is new and of interest even in the case
of limits of smooth Riemannian manifolds. At its heart, the proof is based on two key
points, (cf. with the proof of Theorem 8.1). The first is the stability of Lemma 7.1 which
tells us that if a ball Br(x) is Gromov-Hausdorff close to a half space, then the boundary
singularities ∂X ∩ Br(x) must be ε-close to a ball in Rn−1 ∩ Br(0n−1). The second is a
boundary volume ε-regularity Theorem 8.2, based in turn on Lemma 6.5, which roughly
tells us that if there are two balls Br(x) ⊆ BR(x), both close to half spaces and centered
at a boundary point, then the smaller ball Br(x) must be at least as close to a half-space
as the larger ball BR(x). The effect of these two results is that once boundary singularities
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start to appear, they cannot stop appearing and we can eventually put them together into
a topological structure.

1.3. Structure of boundaries and of spaces with boundary. The ε-regularity Theo-
rem 1.2, when combined with a covering argument, yields a structural result for noncollapsed
RCD spaces with boundary.

Here and throughout the paper we shall adopt the notation
Br(A) :=

⋃
a∈A

Br(a)

to indicate the tubular neighbourhood of a set on a metric space.

Theorem 1.4 (Boundary Structure). Let (X, d,H N ) be an RCD(−(N−1), N) space with
p ∈ X such that H N (B1(p)) > v > 0. If (SN−1 \ SN−2) ∩B2(p) 6= ∅, then the following
hold

(i) (Rectifiability and volume estimates) ∂X is (N − 1)-rectifiable and
H N−1(Br(x) ∩ ∂X) ≤ C(N, v)rN−1 for any x ∈ ∂X ∩B1(p) and r ∈ (0, 1) ;

(ii) (Volume estimate for the tubular neighbourhood)
H N (Br(∂X) ∩B1(p)) ≤ C(N, v)r for any r ∈ (0, 1), p ∈ X, (1.15)

(iii) (Uniqueness of tangents) for any x ∈ SN−1 \ SN−2 the tangent cone at x is unique
and isomorphic to RN+ ;

(iv) (Topological regularity) for any 0 < α < 1 there exists a closed set Cα ⊂ SN−2(X)
such that
(a) dimH(X \ Cα) ≤ N − 2;
(b) X \ Cα is a topological manifold with boundary and Cα-charts.

The rectifiability of the top dimensional singular stratum was conjectured both in [KM19,
Conjecture 4.10] and in [DPG18], together with the local finiteness of the H N−1-measure.
Moreover, with (1.15) we sharpen the volume bound for the tubular neighbourhood of
the top dimensional singular set obtained in [ABS19, Corollary 2.7] by adapting the
techniques developed in [CN13] to the synthetic framework. The topological regularity
part of Theorem 1.4 improves upon [KM19, Theorem 4.11], including the boundary in the
statements.

The regularity results above are mostly peculiar of codimension one singularities:
• Volume estimates for the tubular neighbourhood and the measure estimate for the
full singular stratum, and not only for the quantitative one, fail in codimension
higher than one. Indeed there are examples of two dimensional Alexandrov spaces
where the singular set S0 has not locally finite H 0-measure, see for instance
[CJN18, Section 3.4].
• In [CN13, Theorem 1.2] a noncollapsed Ricci limit space (X, d,H N ) with a point
x ∈ SN−2 \ SN−3 with non unique tangent cone is constructed (actually tangents
with maximal splitting Rk for any 0 ≤ k ≤ N − 2 appear at that point).
• As pointed out in [CJN18, Remark 1.11, Example 3.2] based on [LN19], there is
an example of N -dimensional Alexandrov space such that the singular set SN−2

is a Cantor set, and in particular no point has a neighbourhood in which SN−2 is
topologically a manifold.

In the case of Ricci limits, Theorem 1.4 (iv) can be sharpened to a finite H N−2-measure
estimate for the topologically singular set, relying on [CJN18]:

Theorem 1.5. Let (X, d,H N ) be an RCD m.m.s. arising as noncollapsed limit of a
sequence of smooth Riemannian manifolds with convex boundaries and Ricci curvature
bounded from below in the interior by −(N − 1). Then, for any 0 < α < 1, there exist a
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constant C = C(N,α,H N (B1(p))) and a closed set of codimension two Cα ⊂ SN−2(X)
such that

H N−2(Cα ∩B1(p)) ≤ C(N,α,H N (B1(p))), for any p ∈ X (1.16)
and X \ Cα is a topological manifold with boundary and Cα-charts.

1.4. Stability and gap theorems for boundaries. The following stability theorem gives
an affirmative answer to [KM19, Conjecture 5.11] (see Remark 6.7 for more explanations).
Its proof follows directly from (a weak form of) the ε-regularity theorem for boundary balls,
Theorem 1.2 (i).

Theorem 1.6 (Stability). Let N ∈ N+ and K ∈ R be fixed. Let (Xn, dn,H N , xn) be
a sequence of pointed RCD(K,N) spaces with no boundary on B2(xn) converging in the
pmGH topology to (Y, dY ,H N , y). Then Y has no boundary on B1(y).

While the above tells that spaces without boundary converge to spaces without boundary
under non collapsing pGH convergence, stability of boundary points (i.e whether boundary
points converge to boundary points) remains an open question in the general case.

The analysis of the Laplacian of the distance from the boundary performed in section 7
allows us to prove the local Ahlfors regularity of the boundary volume measure, together
with stability of boundary points in the case of Ricci limits with boundary.

Theorem 1.7. Let (X, d,H N , p) be the noncollapsed pGH limit of a sequence of smooth N -
dimensional Riemannian manifolds (Xn, dn, pn) with convex boundary and Ricci curvature
bounded from below by K in the interior. Then:

(i) if B1(pn) ∩ ∂Xn 6= ∅ for every n then ∂X 6= ∅. Moreover if points xn ∈ ∂Xn

converge to x ∈ X, then x ∈ ∂X;
(ii) for any x ∈ ∂X one has

H N−1(B2(x) ∩ ∂X) > C(K)H N (B1(x)) ; (1.17)

(iii) H N−1 ∂X is locally Ahlfors regular and for any x ∈ ∂X any tangent cone at x
has boundary.

We conjecture that the gap estimate (1.17) holds for general noncollapsed RCD spaces
without further assumptions, which would also prove stability of boundary points and the
equivalence between the two notions of boundary in [DPG18] and [KM19] in full generality.

Our last result is a version of Colding’s volume convergence theorem (cf. [C97, CC97])
for boundary measures:

Theorem 1.8 (Boundary Volume Convergence). Let 1 ≤ N < ∞ be a fixed natural
number. Assume that (Xn, dn,H N , pn) are RCD(−(N − 1), N) spaces converging in the
pGH topology to (X, d,H N , p). Then

H N−1 ∂Xn →H N−1 ∂X weakly . (1.18)

In particular
lim
n→∞

H N−1(∂Xn ∩Br(xn)) = H N−1(∂X ∩Br(x))

whenever Xn 3 xn → x ∈ X and H N−1(∂X ∩ ∂Br(x)) = 0.

1.5. Comparison with the Alexandrov theory. In [P11, ZZ10] it has been proved
that if (X, d) is an N -dimensional Alexandrov space with curvature bounded from below
by k, then (X, d,H N ) is an RCD(k(N − 1), N) metric measure space. Below we compare
the results of the present paper with the literature about Alexandrov spaces:
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(i) on Alexandrov spaces, interior regular points have neighbourhoods bi-Lipschitz
homeomorphic to Euclidean balls and regular boundary points have open neighbour-
hoods bi-Lipschitz homeomorphic to boundary balls in the Euclidean half-space.
This was proved in [BGP92], see in particular Remark 12.9.1 for a remark dealing
with boundary points and the more recent [F19, Theorem 1.1] for a detailed proof.

(ii) While in the Alexandrov theory topological regularity near to regular interior and
boundary points was already known, the existence of biHölder homeomorphisms
with harmonic components (apart from the last coordinate in the case of boundary
points) is new also in this case. Indeed it answers to an open question in [P03], cf.
with Remark 9.6.

(iii) The non collapsing of boundaries under non collapsing convergence of Alexandrov
spaces is proved in [K07, Theorem 9.2, Remark 9.13] where the more general case of
extremal subsets is considered. The volume convergence for the boundary measure
is considered in the more recent [F19, Theorem 1.3].

(iv) When N = 2, it has been proved in [LS18] that RCD(K, 2) spaces (X, d,H 2) are
Alexandrov spaces. In particular, most of the results of the present paper follow
from the Alexandrov theory if N = 2.

(v) Relying on [LN19, Corollary 1.4] instead of [CJN18] it is possible to prove that
Theorem 1.5 holds also when (X, d,H N ) is an Alexandrov space with curvature
bounded from below.

1.6. The remainder of the paper. The rest of the paper is divided in eight sections.

The first two aim at presenting preliminary results which will be used throughout
the paper. In section 2 we recall the main definitions and basic results of the theory
of RCD spaces. In section 3 we prove a local version of the almost splitting theorem,
originally due to Cheeger-Colding (see [CC96] and [CN15] for the present form on Ricci limit
spaces) and previously proved on RCD spaces only in a weaker form (see [BPS19, BPS20]).
Moreover we adapt the proof of the transformation theorem [CJN18] (see also [CN15]) by
Cheeger-Jiang-Naber to the RCD framework.

In section 4 we introduce and study neck regions tailored for the analysis of boundaries
on noncollapsed RCD spaces. This study is the key ingredient for all the developments of
the paper: rectifiable regularity, topological regularity and stability.
The role of this tool has been prominent in the recent literature about spaces with lower
Ricci curvature bounds and bounded Ricci curvature, see [JN16, CJN18], and also in
several other frameworks, see for instance [NV17, NV19].
The analysis of neck regions is made in two steps. After their introduction in Definition 4.3,
we first describe their structure in Theorem 4.9. In the second step we prove existence of
neck regions in Theorem 4.13 under geometric assumptions, guaranteeing in particular the
non triviality of the previous structural result.
In the analysis of the structure of neck regions there are several simplifications with respect
to the study in [CJN18, JN16]. Instead non trivial new ideas are needed to deal with the
stability of codimension one singularities and the existence of neck regions.

In section 5, following closely the neck decomposition theorems in [JN16, CJN18], we
prove that any noncollapsed RCD(K,N) space can be decomposed into neck-regions,
(N, ε)-symmetric balls and a set of codimension at least 2, with quantitative summability
control over the radii of balls appearing in the covering.

In section 6 we combine the previously obtained existence and structure of neck regions
with the neck decomposition theorem to prove the weak ε-regularity Theorem 6.1. In
particular, we show the stability Theorem 1.6 for spaces without boundary, and the
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(N − 1)-rectifiable structure of the boundary together with local finiteness estimates for
the boundary measure (cf. Theorem 1.4 (i)).

We dedicate section 7 to the study of the distance function from the boundary. We show
how upper bounds on the absolutely continuous part of its Laplacian imply noncollapsing
estimates on the boundary measure, see Theorem 7.4. We present an open question
concerning the case of general noncollapsed RCD(K,N) spaces that we are able to verify for
smooth manifolds with boundary and their noncollapsed pGH limits, as well as Alexandrov
spaces with curvature bounded below. As a consequence we prove Theorem 1.7.

In section 8 we improve the structure of neck regions by a bootstrap argument based on
the stability of the boundary. In Theorem 8.1 we prove that, on a ball sufficiently close in
the GH sense to the model ball of the half-space, balls centered at boundary points are
close to the model ball in the half-space and balls centered at interior points are close to
the model ball in the Euclidean space at any sufficiently small scale.
The improved neck structure Theorem 8.1 has a number of consequences: the topological
regularity of the boundary up to sets of ambient codimension two (see Theorem 8.4), the
improved volume estimate Corollary 8.7 and the boundary volume convergence Theorem 1.8.
In section 9 we deal with the topological regularity up to the boundary of noncollapsed
RCD spaces proving Theorem 1.2 (iv), Theorem 1.4 (iv) and Theorem 1.5.
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2. Preliminaries

A metric measure space will be a triple (X, d,m) where (X, d) is a complete and separable
metric space and m is a locally finite Borel measure.
We will denote by Br(x) = {d(·, x) < r} and B̄r(x) = {d(·, x) ≤ r} the open and closed
balls respectively. By Lip(X) (resp. Lipb(X)) we denote the space of Lipschitz (resp.
bounded) functions and for any f ∈ Lip(X) we shall denote its slope by

lip f(x) := lim sup
y→x

|f(x)− f(y)|
d(x, y) . (2.1)

We will use the standard notation Lp(X,m), for the Lp spaces and L n,H n for the n-
dimensional Lebesgue measure on Rn and the n-dimensional Hausdorff measure on a metric
space, respectively. The Hausdorff measure is always normalised in such a way that it
coincides with the Lebesgue measure on Euclidean spaces. We shall also denote by H n

∞
the pre-Hausdorff measure in dimension n (obtained with no upper bounds on the radii of
the covering sets). We shall denote by ωn the Lebesgue measure of the unit ball in Rn.

We will also deal with pointed metric measure spaces (X, d,m, x) in case a reference
point x ∈ X has been fixed. We will say that a pointed metric measure space is normalised
whenever �

B1(x)
(1− d(x, y)) dm(y) = 1 . (2.2)
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We will deal with the Gromov-Hausdorff (GH), measured Gromov-Hausdorff (mGH) and
pointed measured Gromov-Hausdorff (pmGH) convergence of (pointed) metric measure
spaces. We refer to [GMS15] for the relevant background about these notions. The
associated distances will be denoted by dGH , dmGH and dpmGH .

A basic reference about analysis on metric space is the book [BBI01]. Given a proper
metric space (X, d) and two bounded subsets F,E ⊂ X we denote by

dH(E,F ) := inf { r > 0 : E ⊂ Br(F ) andF ⊂ Br(E) }
their Hausdorff distance in (X, d).1

We recall a simple connection between convergence in the Hausdorff distance and
behaviour of pre-Hausdorff measures H α

∞, for any α ≥ 0. If dH(An, A) → 0 and A is
compact, then

H α
∞(A) ≥ lim sup

n→∞
H α
∞(An) . (2.3)

When the sets are subsets of metric spaces converging in the pGH topology we will
understand the convergence as realized in a common background proper metric space and
the Hausdorff convergence of compact sets has to be understood as Hausdorff convergence
in the ambient space. All the spaces considered in this paper are proper.

Remark 2.1. We recall that in a proper metric space (Z, dZ) with a sequence of uniformly
bounded compact sets Kn ⊂ Z and K ⊂ Z, the following conditions are equivalent:

i) Kn converge to K in the Hausdorff distance;
ii) Kn converge to K in the Kuratowski sense, i.e. any limit point x of a subsequence

xn ∈ Kn belongs to K and for any y ∈ K there exists a sequence yn ∈ Kn such
that, up to subsequence, yn → y;

iii) setting dC : Z → [0,∞) to be the distance function from any closed set C ⊂ Z, it
holds that dKn → dK uniformly as n→∞.

We refer to [B85] for a treatment of these equivalences and we remark that they hold also
for subsets of a pGH converging sequence of metric spaces (once the convergence is realized
in a common proper metric space).

2.1. Calculus tools. The Cheeger energy Ch : L2(X,m)→ [0,+∞] associated to a m.m.s.
(X, d,m) is the convex and lower semicontinuous functional defined through

Ch(f) := inf
{

lim inf
n→∞

�
X
| lip fn|2 dm : fn ∈ Lipb(X) ∩ L2(X,m), ‖fn − f‖2 → 0

}
(2.4)

and its finiteness domain will be denoted by H1,2(X, d,m). Looking at the optimal
approximating sequence in (2.4), it is possible to identify a canonical object |∇f |, called
minimal relaxed slope, providing the integral representation

Ch(f) =
�
X
|∇f |2 dm ∀f ∈ H1,2(X, d,m) . (2.5)

Definition 2.2. Any metric measure space such that Ch is a quadratic form is said to be
infinitesimally Hilbertian.

Let us recall from [AGS14, G15] that, under the infinitesimally Hilbertian assumption,
the function

∇f1 · ∇f2 := lim
ε→0

|∇(f1 + εf2)|2 − |∇f1|2

2ε (2.6)

defines a symmetric bilinear form onH1,2(X, d,m)×H1,2(X, d,m) with values into L1(X,m).
1We remark that to obtain a distance one should restrict to bounded and closed sets, but this will cause

no troubles for our aims.
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It is possible to define a Laplacian operator ∆ : D(∆) ⊂ L2(X,m)→ L2(X,m) in the
following way. We let D(∆) be the set of those f ∈ H1,2(X, d,m) such that, for some
h ∈ L2(X,m), one has

�
X
∇f · ∇g dm = −

�
X
hg dm ∀g ∈ H1,2(X, d,m) (2.7)

and, in that case, we put ∆f = h. It is easy to check that the definition is well-posed and
that the Laplacian is linear (because Ch is a quadratic form).

Definition 2.3 (Perimeter and sets of finite perimeter). Given a Borel set E ⊂ X and an
open set A ⊂ X the perimeter Per(E,A) is defined as

Per(E,A) := inf
{

lim inf
n→∞

�
A

lip(un) dm : un ∈ Liploc(A), un → χE in L1
loc(A,m)

}
.

(2.8)
We say that E has locally finite perimeter if Per(E,K) <∞ for any compact set K. In
that case it can be proved that the set function A 7→ Per(E,A) is the restriction to open
sets of a locally finite Borel measure Per(E, ·) defined by

Per(E,B) := inf {Per(E,A) : B ⊂ A, A open} . (2.9)

The following coarea formula is taken from [Mi03, Proposition 4.2].

Theorem 2.4 (Coarea formula). Let (X, d,m) be a locally compact metric measure space
and v ∈ Lip(X). Then, {v > r} has locally finite perimeter for L 1-a.e. r ∈ R and, for
any Borel function f : X → [0,∞], it holds

�
X
f |∇v|dm =

� ∞
−∞

(�
f d Per({v > r}, ·)

)
dr . (2.10)

2.2. RCD spaces. Let us start by recalling the so-called curvature dimension condition
CD(K,N). Its introduction dates back to the seminal and independent works [LV09] and
[S06a, S06b], while in this presentation we closely follow [BS10].

Below P(X) denotes the set of probability measure over X while

Geo(X) := { γ : [0, 1]→ X : d(γ(t), γ(t)) = | t− s|d(γ(1), γ(0)) s, t ∈ [0, 1] } .

We define the operator et : Geo(X) → X as et(γ) := γ(t). Given µ0, µ1 ∈ P(X), an
optimal geodesic plan is any Π ∈P(Geo(X)) such that (e0, e1)]Π is an optimal plan, i.e.

�
X×X

1
2d(x, y)2 d(e0, e1)]Π(x, y) ≤

�
X×X

1
2d(x, y)2 dπ(x, y) , (2.11)

for any π ∈P(X ×X) such that π(A×X) = µ0(A) and π(X ×A) = µ1(A) for any Borel
set A ⊂ X.

Definition 2.5 (Curvature dimension bounds). Let K ∈ R and 1 ≤ N <∞. We say that
a m.m.s. (X, d,m) is a CD(K,N) space if, for any µ0, µ1 ∈P(X) absolutely continuous
w.r.t. m with bounded support, there exists an optimal geodesic plan Π ∈ P(Geo(X))
such that for any t ∈ [0, 1] and for any N ′ ≥ N we have

−
�
ρ

1− 1
N′

t dm

≤−
� {

τ
(1−t)
K,N ′ (d(γ(0), γ(1)))ρ−

1
N′

0 (γ(0)) + τ
(t)
K,N ′(d(γ(0), γ(1)))ρ−

1
N′

1 (γ(1))
}

dΠ(γ) ,
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where (et)]Π = ρtm, µ0 = ρ0m, µ1 = ρ1m and the distortion coefficients τ tK,N (·) are defined
as follows. First we define the coefficients [0, 1]× [0,∞) 3 (t, θ) 7→ σ

(t)
K,N (θ) by

σ
(t)
K,N (θ) :=



+∞ if Kθ2 ≥ Nπ2,
sin(tθ
√
K/N)

sin(θ
√
K/N)

if 0 < θ < Nπ2,

t if Kθ2 = 0,
sinh(tθ

√
K/N)

sinh(θ
√
K/N)

if Kθ2 < 0,

(2.12)

then we set τ (t)
K,N (θ) := t1/Nσ

(t)
K,N−1(θ)1−1/N .

Definition 2.6. We say that a metric measure space (X, d,m) satisfies the Riemannian
curvature-dimension condition for some K ∈ R and 1 ≤ N < ∞ (it is an RCD(K,N)
m.m.s. for short) if it is a CD(K,N) infinitesimally hilbertian metric measure space.

Note that, if (X, d,m) is an RCD(K,N) m.m.s., then so is (suppm, d,m), hence in the
following we will always tacitly assume suppm = X.

Remark 2.7 (Compatibility with the smooth case). The RCD(K,N) notion is compatible
with the smooth case of weighted Riemannian manifolds with (weighted-)Ricci curvature
bounded from below [S06a, S06b, LV09, V09]. It means that a Riemannian manifold
meets the RCD(K,N) condition if and only if it has dimension smaller than N and the
N -dimensional Bakry-Ricci tensor is bounded below by K.

Remark 2.8 (Stability). A fundamental property of RCD(K,N) spaces, that will be used
several times in this paper, is the stability w.r.t. pmGH convergence, meaning that a
pmGH limit of a sequence of (pointed) RCD(K,N) spaces is still an RCD(K,N) m.m.s..

The basic references for the theory of convergence and stability of Sobolev functions on
converging sequences of RCD(K,N) metric measure spaces are [GMS15] and [AH17, AH18].

We recall that any RCD(K,N) m.m.s. (X, d,m) satisfies the Bishop-Gromov inequality:

m(BR(x))
vK,N (R) ≤

m(Br(x))
vK,N (r) , (2.13)

for any 0 < r < R and for any x ∈ X, where vK,N (r) := NωN
� r

0 (sK,N (s))N−1 ds and

sK,N (r) :=


√

N−1
K sin

(√
K
N−1r

)
if K > 0 ,

r if K = 0 ,√
N−1
−K sinh

(√
−K
N−1r

)
if K < 0 .

(2.14)

In particular (X, d,m) is locally uniformly doubling, that is to say, for any R > 0 there
exists C(K,N,R) > 0 such that

m(B2r(x)) ≤ C(K,N,R)m(Br(x)) for any x ∈ X and for any 0 < r < R . (2.15)

Moreover, in [VR08, R12] has been proven that RCD(K,N) spaces verify a local Poincaré
inequality, therefore they fit in the general framework of PI spaces considered for instance
in [C99].
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2.2.1. Structure theory. From the point of view of geometric measure theory a notion of
k-regular point for an RCD(K,N) metric measure space (X, d,m) can be introduced in
the following terms.

Definition 2.9 (Regular points). We say that x ∈ Rk whenever(
X,

d
r
,

m

m(Br(x)) , x
)
→ (Rk, deucl, ω−1

k H k, 0k) in the pmGH topology

as r ↓ 0, where ωk := H k(B1(0k)).

In [BS19] (see also the very recent [D20]), generalizing a previous result obtained for
Ricci limits in [CoN12], it has been proved that for any RCD(K,N) metric measure space
(X, d,m) there exists an integer 1 ≤ n ≤ N , that we shall call essential dimension of
(X, d,m) from now on, such that

m(X \ Rn) = 0 . (2.16)

In this generality we also know after [MN19] that X is (m, n)-rectifiable as metric space.
Moreover, the representation formula m = θH n, for some locally integrable nonnegative
density θ, has been obtained in the independent works [KM18, DPMR17, GP16a].

2.2.2. Calculus on RCD spaces. We refer to [AGS14, G15, G18] for the basic background
about first and second order differential calculus on RCD spaces.

Here and in the following we denote by Hessu the Hessian of a function u ∈ H2,2(X, d,m),
referring to [G18] for the study of its main properties in this framework. Thanks to locality,
we will be dealing also with functions that are defined only locally. Following the notation
of [G18], we denote the space of test functions as

Test(X, d,m) := {f ∈ D(∆) ∩ L∞(X,m) : |∇f | ∈ L∞(X) and ∆f ∈ H1,2(X, d,m)} .
(2.17)

The existence of many test functions within this framework is one of the outcomes of [S14].
We will also rely repeatedly on the following existence result for good cut-off functions.

Lemma 2.10 (Good cut-off functions [AMS14]). Let (X, d,m) be an RCD(K,N) space.
Let p ∈ X be fixed. Then there exists η ∈ Test(X, d,m) such that 0 ≤ η ≤ 1 on X, the
support of η is compactly contained in B5(p), and η = 1 on B4(p).

In section 3 we will rely on some tools from optimal transportation on RCD(K,N)
spaces. Mainly we will be concerned with first and second derivatives of (sufficiently
regular) potentials along Wasserstein geodesics. We will denote by W2 the Wasserstein
distance induced by optimal transport with cost equal to the distance squared on the space
P2(X) of probabilities with finite second moment. We refer to [V09, AGS14] for the basic
terminology about this topic and to [GRS16] for a more detailed account about optimal
transportation on RCD(K,N) spaces.

The next result follows by combining Proposition 5.15 and Corollary 5.7 in [G13].

Proposition 2.11. Let (X, d,m) be an RCD(K,N) space for some K ∈ R and 1 ≤ N <∞.
Consider a W2-geodesic (ηs)s∈[0,1] ∈P2(X), satisfying ηs ≤ Cm and supp ηs ⊂ BR(p) for
any s ∈ [0, 1], for some C > 0, R > 0 and p ∈ X. Then, for any u ∈ Lip(X, d), the
function s 7→

�
udηs is C1 and one has

d
ds

�
udηs = 1

s

�
∇u · ∇ϕs dηs for every s ∈ (0, 1] , (2.18)

where ϕs is any Lipschitz Kantorovich potential from ηs to η0.
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2.3. Continuity equation and flow maps. Let us recall that given any function u ∈
Test(X, d,m) a solution to the continuity equation induced by ∇u is any absolutely
continuous curve (ρt)t∈[0,1] ⊂P2(X) such that the following holds: for any f ∈ Lipc(X, d)
the function t 7→

�
f dρt is absolutely continuous and it satisfies

d
dt

�
f dρt =

�
∇u · ∇f dρt for a.e. t ∈ [0, 1] . (2.19)

We refer to [GH15] and [AT14] for the treatment of the continuity equation on (RCD)
metric measure spaces.

The next result is a particular case of [GH15, Proposition 3.11].

Lemma 2.12. Let (X, d,m) be an RCD(K,N) metric measure space for some K ∈ R
and 1 ≤ N < ∞. Let u ∈ Test(X, d,m) and let (ρt)t∈[0,1] ⊂ P2(X) be a solution of the
continuity equation associated to ∇u. If we further assume that ρt ≤ Cm for any t ∈ [0, T ]
for some C > 0, then for any ν ∈P2(X) it holds

d
dt

1
2W

2
2 (ρt, ν) =

�
∇u · ∇ϕt dρt for a.e. t ∈ (0, 1) , (2.20)

where ϕt is any optimal Kantorovich potential for the transport problem between ρt and ν.

The theorem below is taken from [GT19] where the second order differentiation formula
along W2-geodesics has been proved on RCD(K,N) metric measure spaces.

Theorem 2.13. Let (X, d,m) be an RCD(K,N) m.m.s. for some 1 ≤ N < ∞. Let
(ηs)s∈[0,1] be a W2-geodesic connecting probability measures η0 and η1 absolutely continuous
w.r.t. m and with bounded densities and assume that u ∈ Test(X, d,m). Then, the curve

s 7→
�
∇u · ∇ϕs dηs (2.21)

is C1 on [0, 1], where ϕs is any function such that for some r ∈ [0, 1] with s 6= r it holds
that −(r − s)ϕs is an optimal Kantorovich potential from ηs to ηr. Moreover

d
ds

�
∇u · ∇ϕs dηs =

�
Hessu(∇ϕs,∇ϕs) dηs , for any s ∈ [0, 1]. (2.22)

In the context of RCD(K,∞) spaces a general theory of flows for Sobolev vector fields
has been developed in [AT14]. Here we only collect some simplified statements relevant for
our purposes.

Definition 2.14. Let u ∈ Test(X, d,m). We say that a Borel map X : [0,∞)×X → X
is a Regular Lagrangian flow (RLF for short) associated to ∇u if the following conditions
hold true:

1) X(0, x) = x and X(·, x) ∈ C([0,∞);X) for every x ∈ X;
2) there exists L ≥ 0, called compressibility constant, such that

X(t, ·)]m ≤ Lm, for every t ≥ 0 ; (2.23)

3) for every f ∈ Test(X, d,m) the map t 7→ f(X(t, x)) is locally absolutely continuous
in [0,∞) for m-a.e. x ∈ X and

d
dtf(X(t, x)) = ∇u · ∇f(X(t, x)) for a.e. t ∈ (0,∞) . (2.24)

In the next theorem we state some general results concerning Regular Lagrangian flows
that will be used in the sequel.

Theorem 2.15. Let (X, d,m) be an RCD(K,∞) space for some K ∈ R. Let us fix a
function u ∈ Test(X, d,m) with ∆u ∈ L∞(X,m). Then
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(i) there exists a unique regular Lagrangian flow X : R × X → X associated to
∇u2 (uniqueness is understood in the following sense: if X and X̄ are Regular
Lagrangian flows associated to ∇u, then for m-a.e. x ∈ X one has Xt(x) = X̄t(x)
for any t ∈ R);

(ii) X satisfies the semigroup property: for any s ∈ R it holds that, for m-a.e. x ∈ X,
X(t,X(s, x)) = X(t+ s, x) ∀t ∈ R , (2.25)

and the following bound is verified:
e−t‖∆u‖L∞m ≤ (Xt)]m ≤ e

t‖∆u‖L∞m ; (2.26)
(iii) if ∆u = 0, Hessu = 0 and |∇u| ≤ 1 in B4(p) for some p ∈ X then, for any

x ∈ B1(p) and t ∈ (−1, 1) the map X admits a pointwise representative satisfying
d(Xt(x),Xt(y)) = d(x, y) for any x, y ∈ B1(p), and t ∈ (−1, 1) . (2.27)

Proof. We refer to [ABS19, Theorem 1.12] for the proof of (i) and (ii), while (iii) follows
just localising the argument in [BS18a, Theorem 2.7]. �

Remark 2.16 (Continuity equations and flow maps). Solutions to the continuity equations
and flow maps are strictly related. Indeed, given a function u ∈ Test(X, d,m) with
∆u ∈ L∞(X,m) and X a RLF associated to ∇u one has that

ρtm := (Xt)#ρ0m , t ∈ [0, 1] ,
is the unique solution to the continuity equation with initial datum ρ0 ∈ L∞(X) and
velocity field ∇u.

2.4. Noncollapsed spaces. In [DPG18] the notion of noncollapsed RCD(K,N) metric
measure space has been proposed motivated by the theory of noncollapsed Ricci limit
spaces, studied since [CC97] (see also a similar, though a priori weaker, notion suggested
in [K19]). We say that (X, d,m) is a noncollapsed RCD(K,N) space if N is an integer and
m = H N .

We point out that another relevant class to consider would be that of RCD(K,N) metric
measure spaces for which the essential dimension equals N (called weakly noncollapsed in
[DPG18]). In the compact case it is known that these spaces are noncollapsed in the above
sense [H19] and it is conjectured that this should be true also in the general case.

On top of the usual structure of RCD(K,N) spaces, noncollapsed spaces have additional
regularity properties.

Let us begin by pointing out the following powerful result [DPG18, Theorem 1.2],
generalizing a previous statement due to Cheeger-Colding [CC97] (see also [C97]).

Theorem 2.17 (Volume convergence). Let (Xn, dn,H N , xn) be pointed noncollapsed
RCD(K,N) metric measure spaces and assume that they converge in the pGH topology to
(X, d, x). Then, if

lim sup
n→∞

H N (B1(xn)) > 0 , (2.28)

they also converge in the pmGH topology to (X, d,H N , x).

We refer to [BBI01, Definition 3.6.16] for the definition of metric cone (C(Y ), dC) over
a metric space (Y, dY ). Here we just recall that for points (r1, x1) and (r2, x2) such that
r1, r2 ≥ 0 and dY (x1, x2) ≤ π the cone distance is given by the law of cosines:

d2
C ((r1, x1), (r2, x2)) = r2

1 + r2
2 − 2r1r2 cos(dY (x1, x2)) . (2.29)

In [DPG18], generalizing [CC97] and relying on [DPG16] (which extends in turn one
of the key results in [CC96]) it has been proven that for a noncollapsed RCD(K,N)

2To be more precise, there exist unique Regular Lagrangian flows X+,X− : [0,+∞)×X → X associated
to ∇u and −∇u respectively and we let Xt = X+

t for t ≥ 0 and Xt = X−−t for t ≤ 0.
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metric measure space (X, d,H N ) any tangent cone is a metric cone over a noncollapsed
RCD(N − 2, N − 1) metric measure space (Y, dY ,H N−1). This amounts to say that any
pGH limit of (X, r−1

i d, x), for some sequence of radii ri ↓ 0, is a metric cone in the sense
above.

Given any noncollapsed RCD(K,N) metric measure space (X, d,H N ) and any x ∈ X
let us denote by

ΘX(x) := lim
r→0

H N (Br(x))
ωNrN

the density of H N at x (when there is no risk of confusion we will drop the dependence on
the ambient space X). The existence of the limit above follows from the Bishop-Gromov
inequality. Moreover, the lower semicontinuity of the density (cf. [DPG18, Lemma 2.2
(i)]) together with a standard result about differentiation of measures allow to infer that
Θ(x) ≤ 1 for every x ∈ X and Θ(x) = 1 for H N -a.e. x ∈ X.
By volume rigidity (see [DPG18, Theorem 1.6] after [C97]) we recognize that Θ(x) = 1 if
and only if the tangent cone is unique and isometric to (RN , deucl).
More generally, Colding’s volume convergence theorem [C97, CC97] (see also [DPG18,
Theorem 1.3]) yields that for any x ∈ X any cross section (Y, dY ) of a tangent cone C(Y )
at x satisfies

H N−1(Y ) = NωNΘ(x) . (2.30)

2.5. Cone splitting via content. Let us start by restating a quantitative version of the
cone splitting lemma [CN13, Lemma 4.1] tailored for RCD(K,N) spaces (see [ABS19] for
the present version).

Definition 2.18. We define the ε− (t, r) conical set in B 1
2
(x0) as

Cεt,r :=
{
x ∈ B 1

2
(x0) : dGH

(
B̄ tr

2
(x), B̄ tr

2
(z)
)
≤ εr

2 for some RCD(0, N) cone Z with tip z
}
.

(2.31)

Theorem 2.19. For all K ∈ R, N ∈ [2,∞), 0 < γ < 1, δ < γ−1, and for all τ, ψ > 0
there exist 0 < ε = ε(N,K, γ, δ, τ, ψ) < ψ and 0 < θ = θ(N,K, γ, δ, τ, ψ) such that the
following holds. Let (X, d,m) be an RCD(K,N) m.m.s., x ∈ X and r ≤ θ be such that
there exists an εr-GH equivalence

F : Bγ−1r ((0, z∗))→ Bγ−1r(x) (2.32)

for some cone Rl ×C(Z), with (Z, dZ ,mZ) an RCD(N − l− 2, N − l− 1) m.m.s.. If there
exists

x′ ∈ Bδr(x) ∩ Cεγ−N ,δr (2.33)
with

x′ /∈ Bτr
(
F
(
Rl × {z∗} ∩Bγ−1r((0, z∗))

))
∩Br(x), (2.34)

then for some cone Rl+1×C(Z̃), where (Z̃, dZ̃ ,mZ̃) is an RCD(N − l−3, N − l−2) m.m.s.,
dGH (Br(x), Br((0, z̃∗))) < ψr . (2.35)

Theorem 2.19 is a quantitative version of the following statement: if a metric cone with
vertex z is a metric cone also with respect to z′ 6= z, then it contains a line.

Let us now present a quantitative version of the cone splitting theorem via content,
taken from [CJN18, Theorem 4.9]. We begin by defining the notion of the pinching set.

Definition 2.20. Let (X, d,H N ) be an RCD(−ξ(N − 1), N) and p ∈ X, we set
V̄ := inf

y∈B4(p)
Vξ−1(y) (2.36)

where Vr(x) := H N (Br(x))
vK,N (r) is the volume ratio appearing in (2.13).
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We define the set with small volume pinching accordingly to be

Pr,ξ(x) :=
{
y ∈ B4r(x) : Vξr(y) ≤ V̄ + ξ

}
. (2.37)

Theorem 2.21. Let (X, d,H N ) be an RCD(−ξ(N −1), N) space with H N (B1(p)) > v >
0. If for some r ∈ (0, 1) it holds that H N (Bγr(Pr,ξ)) ≥ εγrN , with 0 < δ, ε < δ(N, v),
γ ≤ γ(N, v, ε) and ξ ≤ ξ(δ, ε, γ,N, v), then there exists q ∈ B4r(p) such that either

dGH(Bδ−1r(q), B
RN+
δ−1r(0

N )) ≤ δr , (2.38)
or

dGH(Bδ−1r(q), BRN
δ−1r(0

N )) ≤ δr . (2.39)

The proof of Theorem 2.21 easily follows from Theorem 2.19, see for instance [JN16,
Theorem 7.6].

3. Splitting maps on RCD spaces

In the development of the structure theory of Ricci limit spaces a prominent role has
been played by the δ-splitting maps [CC96, CC97, CN15, CJN18]. After the construction
of a second order differential calculus on RCD spaces in [G18] this tool, which provides a
way to turn analytic information into geometric information, has also begun to play a role
in the synthetic framework [BPS19].

All the works mentioned above rely on the equivalence between the existence of an
Rk-valued δ-splitting map and the (pointed measured)GH-closeness to a product with
factor Rk. Below we state the definition of a δ-splitting map relevant for the sake of this
paper.

Definition 3.1. Let (X, d,m) be an RCD(−(N − 1), N) m.m.s., p ∈ X and δ > 0 be fixed.
We say that u := (u1, . . . , uk) : Br(p) → Rk is a δ-splitting map provided it is harmonic
and it satisfies:

(i) |∇ua| < C(N);
(ii) r2 �

Br(p) |Hessua|2 dm < δ;
(iii)

�
Br(p) |∇ua · ∇ub − δab|dm < δ;

for any a, b = 1, . . . , k.

Remark 3.2 (About the scale invariant smallness of the Hessian). If we make the stronger
assumption that the ambient space is RCD(−δ(N−1), N), then condition (ii) is unnecessary
once we strengthen the harmonicity assumption to harmonicity on B2r(p), since it follows
from conditions (i) and (iii) integrating the Bochner inequality against a good cut-off
function, see for instance [BPS20].

Remark 3.3 (Sharper gradient bounds). If we assume that (X, d,m) is an RCD(−δ(N−1), N)
metric measure space then the gradient bound in (i) can be sharpened to the conclusion

sup
Br/2(p)

|∇ua| ≤ 1 + C(N)δ1/2 for any a = 1, . . . , k . (3.1)

In particular, if u : Br(x)→ Rk is a δ-splitting map according to Definition 3.1 and the
ambient space is RCD(−δ(N − 1), N), then u : Br/2(x) → Rk is a C(N)δ-splitting map
and we can replace condition (i) in the definition with the sharper gradient bound (3.1).

Moreover the following Lipschitz estimate holds
|u(x)− u(y)| ≤ (1 + C(N)δ1/2)d(x, y) for any x, y ∈ Br/4(p) . (3.2)

The validity of (3.1) has been pointed out for the first time in the framework of smooth
Riemannian manifolds in [CN15, equations (3.42)–(3.46)], we report here a slightly modified
argument tailored for the RCD framework.
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Let us fix a ∈ {1, . . . , k} and drop the dependence on the chosen component, writing
just u.
Observe that, by volume doubling and (iii), for any y ∈ Br/2(p) it holds that 

Br/2(y)

∣∣∣|∇u|2 − 1
∣∣∣ dm ≤ C(N)δ . (3.3)

Now we consider a regular cut-off function ϕ : X → [0, 1] such that ϕ = 1 on B3/4r(x)
and ϕ = 0 outside of Br(x), r2 |∆ϕ| ≤ C(N) and r |∇ϕ| ≤ C(N) (see Lemma 2.10) and
the one parameter family

ft(y) :=
�

(|∇u|2 (z)− 1)ϕ(z)pt(y, z) dm(z) . (3.4)

Differentiating with respect to time, taking into account the heat kernel estimate

pt(y, z) ≤
C(N)e−c(N) r

2
t

m(B√t(x)) ≤ C(N)
m(Br(x)) , ∀ y ∈ B 1

2 r
(x), z ∈ Br(x) \B 3

4 r
(x) and t ∈ [0, r2],

(3.5)
which follows from [JLZ14] and volume doubling, for any y ∈ Br/2(x) and t ∈ [0, r2] we
can estimate

d
dtft(y) =

� (
∆ |∇u|2 ϕ+ 2∇ |∇u|2 · ∇ϕ+ (|∇u|2 − 1)∆ϕ

)
(z)pt(y, z) dm(z)

≥− δ
�
|∇u|2 (z)pt(y, z) dm(z)− C(N)

r

�
Br(x)\B 3

4 r
(x)
|Hessu| (z)pt(y, z) dm(z)

− C(N)
r2

�
Br(x)\B 3

4 r
(x)

∣∣∣|∇u|2 − 1
∣∣∣ (z)pt(y, z) dm(z)

(3.5)
≥ − C(N)δ − C(N)δ

1/2

r2 − C(N) δ
r2

≥− C(N)δ
1/2

r2 . (3.6)

Above the first inequality follows from the bounds for the cut-off function and from
Bochner’s inequality.

Given (3.6), observing that, for m-a.e. y ∈ Br/2(x) it holds

ft(y)→
∣∣∣|∇u|2 − 1

∣∣∣ (y), as t ↓ 0 , (3.7)

we can integrate between 0 and r2 to obtain

|∇u|2 (y)− 1 ≤C(N)δ1/2 +
� ∣∣∣|∇u|2 (z)− 1

∣∣∣ϕ(z)pt(y, z) dm(z)

≤C(N)δ1/2 + C(N)
 
Br(x)

∣∣∣|∇u|2 − 1
∣∣∣ dm

≤C(N)δ1/2 .

From this we easily infer that

sup
Br/2(x)

|∇u| ≤ 1 + C(N)δ1/2 . (3.8)

In order to show (3.2) it is enough to check that for any v ∈ Rk with |v| = 1 it holds

sup
Br/2(x)

|∇(v · u)| ≤ 1 + C(N)δ1/2 , (3.9)
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Indeed (3.9) yields

|v · (u(x)− u(y))| ≤ (1 + δ1/2)d(x, y) for any x, y ∈ Br/4(p) , (3.10)

which implies (3.2) by taking the supremum w.r.t. v ∈ Sk−1.
Now the key observation to prove (3.9) is that v · u verifies (up to a constant) the same

bounds of the components of the original δ-splitting map. In particular it is harmonic and
it satisfies

−
�
Br(p)

||∇(v · u)|2 − 1| dm ≤ C(N)δ , (3.11)

therefore applying the argument already described for ua we get (3.10).

The first main result of this section will be Theorem 3.8 below, where we prove the
equivalence between the existence of an Rk-valued δ-splitting map on a ball and the
measured GH closeness of the ball with same center and comparable radius to the ball of a
product with Rk. This statement will be proved arguing by compactness, starting from its
rigid version Theorem 3.4.

The second key result is Proposition 3.13, a version of the transformation theorem
[CJN18, Proposition 7.7] (see also [CN15] for a previous version with different assumptions)
tailored for our purposes.

3.1. Functional splitting theorem, local version. In the rest of the note we will rely
on the following functional version of the (iterated) splitting theorem in local form. With
respect to the present literature the main novelty is the locality of the statement, which
requires some cut-off arguments and the use of Theorem 2.13, which relies in turn on
[GT19]. The proof combines techniques from [CC96] and [G13].

Theorem 3.4. Let (X, d,m) be an RCD(0, N) m.m.s. for some N ≥ 1 and let p ∈ X be
fixed. Assume that for some positive k ∈ N there exists u = (u1, . . . , uk) : B6(p) → Rk
satisfying

(i) u(p) = 0;
(ii) |∇ua| = 1 and ∆ua = 0, m-a.e. in B5(p) for any a = 1, . . . , k;
(iii) ∇ua · ∇ub = 0, m-a.e. in B5(p), for any a 6= b.

Then there exist a m.m.s. (Z, dZ ,mZ) and a function f : B1(p)→ Z such that

(u, f) : B1/k(p)→ Rk × Z (3.12)

is an isomorphism of metric measure spaces with its image.

Proof. Let η ∈ Test(X, d,m) be a good cut-off function (see Lemma 2.10) satisfying η = 1
on B4(p) and η = 0 on X \B5(p). Let us define the vector fields ba := ∇(ηua) and denote
by Xa their Regular Lagrangian flows, for a = 1, . . . , k. Notice that by the improved
Bochner inequality with Hessian term [G18, Theorem 3.3.8], Hess(ηua) = 0 in B4(p).
Therefore thanks to Theorem 2.15 (iii) we have a pointwise defined representative of Xa

t (x)
for t ∈ (−1, 1) and x ∈ B1(p) satisfying (2.27). Building upon [GR18, Theorem 3.24] we
conclude that Xa

ta ◦X
b
tb

= Xb
tb
◦Xa

ta whenever Xa
ta , X

b
tb
∈ B1(p), a, b = 1, . . . , k. Moreover,

it holds
ua(Xa

t (x))− ua(x) = t for any x ∈ B1(p) and t ∈ (−1, 1) . (3.13)
Let us now set Z := {u = 0 }, dZ(x, y) := d(x, y) for x, y ∈ Z, and

Φ : Rk × Z → X s.t. Φ(t1, . . . , tk, x) := X1
t1 ◦X

2
t2 ◦ . . . ◦X

k
tk

(x) . (3.14)

In order to conclude the proof it is enough to show that there exists a pointwise represen-
tative

Φ : (−1/k, 1/k)k × (B1(p) ∩ Z)→ X which is an isometry with its image. (3.15)
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Indeed, if it the case, we can conclude as follows. Observe that B1/k(p) ⊂ Φ((−1/k, 1/k)k×
(B1(p) ∩ Z)), since for any y ∈ B1/k(p) we can set

π(y) := Φ(−u1(y), . . . ,−uk(y), y) ∈ Z ∩B1(p) ,
ta := ua(y) ∈ (−1/k, 1/k) ,

and check, by means of (3.13), that Φ(t1, . . . , tk, π(y)) = y. Finally we notice that
Φ−1 : B1/k(p) → Rk × Z is the sought map, since it is an isometry and can be written
as Φ−1 = (u, f) for some f : B1/k(p) → Z, thanks to (3.13). Moreover setting mZ :=
π#(m B1/k(p)), one can easily check that

Φ#(L k ×mZ) = m on B1/k(p) .
The proof of (3.15) is divided in three steps.

Step 1. There exists a pointwise representative of Φ on (−1/k, 1/k)k × (B1(p) ∩ Z) such
that, for any x, y ∈ B1(p) ∩ Z and (t1, . . . , tk) ∈ (−1/k, 1/k)k it holds

d(Φ(t1, . . . , tk, x),Φ(t1, . . . , tk, y)) = d(x, y) and d(Xa
t (x), x) = |t| , (3.16)

for a = 1, . . . , k.
As we have already remarked, there exists a pointwise defined representative of Xa

t (x)
for t ∈ (−1, 1) and x ∈ B1(p) satisfying (2.27), therefore the first identity in (3.16) follows.
Concerning the second equality, observe that, since |∇(ηua)| = 1 in B4(p) we have that
d(Xa

t (x), x) ≤ t for t ∈ (−1, 1) and x ∈ B1(p). Moreover (3.13) and the fact that ua is
1-Lipschitz in B1(p) give

t = |ua(Xa
t (x))− ua(x)| ≤ d(Xa

t (x), x) , for x ∈ Z ∩B1(p) and t ∈ (−1, 1) . (3.17)
Combining the two inequalities also the second equality in (3.16) follows.
Step 2. In this step we are going to prove that for any a ∈ { 1, . . . , k }, any x, y ∈ B1(p)

and any t ∈ (0, 1) it holds
1
2d2(Xa

t (x), y)− 1
2d2(x, y) =

� t

0
(ua(Xa

s (x))− ua(y)) ds . (3.18)

To this aim let us fix a ∈ { 1, . . . , k }, x, y ∈ B1(p) and r > 0 with the property that
Br(x) ∪Br(y) ⊂ B1(p). Then let us define

µr := 1
m(Br(x))m Br(x) and νr := 1

m(Br(y))m Br(y) . (3.19)

Let us set ρrt := (Xa
t )# µ

r and observe that for any function f ∈ Lip(X, d) we have
d
dt

�
f dρrt = d

dt

�
f(Xa

t ) dµr =
�
∇f · ∇udρrt , (3.20)

namely ρrt = (Xa
t )# µ

r solves the continuity equation associated to ∇u (cf Remark 2.16).
Therefore Lemma 2.12 guarantees that t 7→ 1

2W
2
2 (ρrt , νr) is absolutely continuous and

d
dt

1
2W

2
2 (ρrt , νr) =

�
∇u · ∇ϕt dρrt for a.e. t ∈ (0, 1) , (3.21)

where ϕt is any optimal Kantorovich potential from ρrt to νr.
Let us now fix t ∈ (0, 1) such that (3.21) holds true. Denote by (ηr,ts )s∈[0,t] the W2-geodesic
connecting νr to ρrt . From Proposition 2.11 we get

d
ds
∣∣
s=1

�
udηr,ts = 1

t

�
∇u · ∇ϕt dρrt , (3.22)

where ϕt is any optimal Kantorovich potential from ρrt to νr.
Combining (3.21) and (3.22) we deduce

d
dt

1
2W

2
2 ((Xa

t )# µ
r, νr) = t

d
ds
∣∣
s=1

�
udηr,ts for a.e. t ∈ (0, 1) . (3.23)
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Moreover, since Hessu = 0 in supp ηr,ts for any 0 ≤ s ≤ t ≤ 1, Theorem 2.13 implies that
s 7→

�
u dηr,ts is affine. Therefore

t

�
udηr,ts = (t− s)

�
udνr + s

�
u ◦Xa

t dµr , for any 0 ≤ s ≤ t ≤ 1, (3.24)

that, along with (3.23), yields
1
2W

2
2 ((Xa

t )# µ
r, νr)− 1

2W
2
2 (µr, νr) =

� t

0

(�
u ◦Xa

s dµr −
�
udνr

)
ds . (3.25)

Finally, (3.18) follows from (3.25) by continuity letting r → 0.
Step 3. We conclude the proof of (3.15) by showing that

d2(Φ(t1, .., tk, x),Φ(s1, . . . , sk, y)) = d2(x, y) + |t1 − s1|2 + . . .+ |tk − sk|2 , (3.26)
for any x, y ∈ Z ∩B1(p) and any sa, ta ∈ (−1/k, 1/k), for a = 1, . . . , k.
In order to do so let us assume without loss of generality that t1 ≥ s1 and set x̄ :=
X2
t2 ◦ . . . ◦X

k
tk

(x) and ȳ := X2
s2 ◦ . . . ◦X

k
sk

if k ≥ 2 and x̄ := x, ȳ := y otherwise.
By exploiting the semigroup property (ii) in Theorem 2.15, Step 1 and Step 2, we get

d2(Φ(t1, .., tk, x),Φ(s1, . . . , sk, y))− d2(x̄, ȳ) = d2(Xt1(x̄), Xs1(ȳ))− d2(x̄, ȳ)
= d2(Xt1−s1(z̄), ȳ)− d2(x̄, ȳ)

= 2
� t1−s1

0

(
u1(X1

s (x̄))− u1(ȳ)
)

ds

(3.13)= |t1 − s1|2 + (t1 − s1)(u1(x̄)− u1(ȳ)) .

Observe now that u1(x̄) = u1(ȳ) = 0 since the function t 7→ u1(Xa
t (z)) is constant for

t ∈ (−1, 1), z ∈ B2(p) and a 6= 1. Indeed, taking the derivative w.r.t. t ∈ (−1, 1) and using
(iii) in our assumptions we have

d
dtu1(Xa

t (z)) = ∇u1 · ∇ua(Xa
t (z)) = 0 , (3.27)

for a.e. t ∈ (−1, 1) and for a.e. z ∈ B2(p). The statement can then be proved for any time
and starting point by a continuity argument. It follows that

d2(Φ(t1, .., tk, x),Φ(s1, . . . , sk, y)) = d2(x̄, ȳ) + |t1 − s1|2 (3.28)
and a simple induction argument gives (3.26). �

Below we specialize Theorem 3.4 to the case in which (X, d,H N ) is a noncollapsed
RCD(K,N) space and the splitting map has N − 1 components. In this case we are going
to prove that, as expected, the factor Z is one dimensional.

Theorem 3.5. Let (X, d,H N ) be an RCD(0, N) m.m.s. for some natural 2 ≤ N < ∞
and let p ∈ X be fixed. Assume that there exists a 0-splitting map

u = (u1, . . . , uN−1) : B6(p)→ RN−1 .

Then there exist a m.m.s. (Z, dZ ,H 1), with (Z, dZ) isometric to the ball of a one dimen-
sional Riemannian manifold (possibly with boundary), and a map f : B1/(N−1)(p) → Z
such that

(u, f) : B1/(N−1)(p)→ BRN−1×Z
1/(N−1) ((0, z0))

is an isomorphism of metric measure spaces.
Moreover, up to an additive constant, f coincides with the signed distance function from

the level set {f = z0}.

Remark 3.6. In particular, Z is isometric, in the sense of Riemannian manifolds, to either
a circle or a connected closed interval I ⊆ R, possibly with infinite length.
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Proof. Let us start by applying the local functional splitting Theorem 3.4 to get the metric
measure space (Z, dZ ,mZ) and the map f : B1/(N−1)(p)→ Z.

By a slight modification of the proof of [G13, Corollary 5.30], we can prove a weaker
version of the CD(0, N) condition for the space (Z, dZ ,mZ). More precisely we can check
that, for any µ0 ∈ P2(Z) satisfying µ0 � mZ and suppµ0 ⊂ B1/(N−1)(z0) there exists
r > 0 such that for any µ1 ∈P2(X) absolutely continuous w.r.t. mZ and supported on
Br(suppµ0) one has a uniqueW2-geodesic connecting µ0 and µ1 which satisfies the defining
inequality for the CD(0, N) condition.

Next we observe that, as a consequence of the discussion above, of the isometry between
B1/(N−1)(p) and the split ball and of the noncollapsing assumption, all the metric measured
tangents to (Z, dZ ,mZ) are either lines or half lines as metric spaces. By the structure
theory of RCD spaces, the tangent is unique and a line for mZ-a.e. z ∈ BZ

1 (z0). Moreover,
by the noncollapsing assumption, at points where there is a line in the tangent the tangent
is unique, since they correspond to points on the starting space where the tangent is RN .

Adapting the arguments of [KL16] (see also [S19] for a recent generalization with
simplified arguments relying on optimal transport tools), it is possible to prove that at
points of Z where there is a line in the tangent there is a small ball isometric to the
Euclidean one. Moreover, at the other points the tangent is still unique and isometric to a
half line pointed at the extreme (otherwise there would be a full line in the tangent and we
would be in the previous case). Arguing as in the proof of [S19, Theorem 3.1] we conclude
that each point in Z has a neighborhood isometric either to (−ε, ε) or to [0, ε). Hence
the metric conclusion follows from the characterization of one dimensional Riemannian
manifolds.

The conclusion about the measure can be achieved relying on the fact that

(u, f) : B1/(N−1)(p)→ BRN−1×Z
1/(N−1) ((0, z0))

is an isomorphism of metric measure spaces and the measure on (X, d) is H N .
The last conclusion in the statement can be easily proved given the previous ones. �

Remark 3.7. The converse of Theorem 3.4 is trivially verified. Indeed, if the space is locally
isomorphic to a product with Euclidean factor then the coordinates of the Euclidean factor
are easily seen to verify properties (i)–(iii).

3.2. δ-splitting maps and ε-GH isometries. Arguing by compactness we now obtain
an approximated version of Theorem 3.4. As in the rigid case the novelty with respect
to the literature of RCD spaces is the ease of producing locality of the statement, cf.
with [BPS19]. We refer to [CN15, Lemma 1.21] and [CJN18, Theorem 4.11] for similar
statements for Ricci limits.

Theorem 3.8 (δ-splitting vs ε-GH isometry). Let 1 ≤ N <∞ be fixed.
(i) For every 0 < δ < 1/2 and ε ≤ ε(N, δ) the following holds. If (X, d,m) is an

RCD(−ε(N − 1), N) m.m.s. satisfying

dmGH(B2(p), BRk×Z
2 (0, z)) ≤ ε (3.29)

for some integer k, some p ∈ X and some pointed m.s. (Z, dZ), then there exists a
δ-splitting map u = (u1, . . . , uk) : B1(p)→ Rk.

(ii) For every ε > 0 and δ < δ(N, ε) the following holds. If (X, d,m) is a normalised
RCD(−δ(N − 1), N) m.m.s. and there exists a δ-splitting map u : B6(p)→ Rk for
a given p ∈ X, then

dGH(B1/k(p), BRk×Z
1/k (0, z)) < ε (3.30)
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for some pointed metric space (Z, dZ , z). Moreover, there exists f : B1(p) → Z
such that

(u− u(p), f) : B1/k(p)→ BRk×Z
1/k (0, z) is an ε-GH isometry. (3.31)

(iii) If we additionally assume that (X, d,H N ) is RCD(−δ(N − 1), N) noncollapsed
with H N (B1(p)) > v > 0, k = N − 1, and δ < δ(N, v, ε), then (Z, dZ ,H 1) in (ii)
can be chosen to be the ball of a one dimensional Riemannian manifold, possibly
with boundary.

Proof. The first part of the statement can be proved arguing as in the proof of [BPS19,
Proposition 3.9], relying on the local convergence and stability results obtained in [AH18].

Let us now prove the second conclusion. Arguing by contradiction, for any n ∈ N, we
can find a normalised pointed RCD(−1/n,N) m.m.s. (Xn, dn,mn, pn) and a 1/n-splitting
map un : B6(pn) → Rk such that un(pn) = 0 and the following property holds: for any
pointed metric space (Z, dZ , z) and any function f : B1/k(pn)→ BZ

1/k(z), the map

(un, f) : B1/k(pn)→ BRk×Z
1/k ((0, z)) is not an ε-GH equivalence. (3.32)

Thanks to the stability and compactness of the RCD condition we can find a pointed
RCD(0, N) m.m.s. (X∞, d∞,m∞, p∞) such that, up to extract a subsequence (that we do
not relabel), it holds

(Xn, dn,mn, pn)→ (X∞, d∞,m∞, p∞) in the pmGH topology. (3.33)

Arguing as in [BPS19, Proposition 3.7] we can assume that un → u uniformly in B6(p∞),
where u is a C(N)-Lipschitz and harmonic function in B6(p∞) satisfying ∇ua · ∇ub = δab,
m∞-a.e. in B2(p∞) for a, b = 1, . . . , k. Thanks to Theorem 3.4 we can find a m.s. (Z, dZ)
and a function f : B1/k(p∞)→ Z such that

(u, f) : B1/k(p∞)→ Rk × Z is an isometry with its image. (3.34)

Let us conclude the proof by showing that (3.34) contradicts (3.32). Let us consider a
sequence of 1/n-isometries Ψn : B1/k(pn) → B1/k(p∞). By [V09, Lemma 27.4] we can
suppose that Ψn converge to an isometry from B1/k(p∞) into itself. Up to composing with
the inverse of this isometry we assume that the maps Ψn converge to the identity map of
B1/k(p∞). Set fn := f ◦Ψn. Next we claim that

(un, fn) : B1/k(pn)→ BRk×Z
1/k ((0, z)) is a ε-GH isometry for n ∈ N big enough, (3.35)

which will contradict (3.32) yielding the sought conclusion.
Being f continuous (actually 1-Lipschitz since (u, f) is an isometry with its image),

one can easily prove that (un, fn) → (u, f), therefore the image of (un, fn) is ε-dense in
BRk×Z

1/k ((0, z)) for any n big enough. It remains just to check that∣∣∣d2(x, y)− |un(x)− un(y)|2 − |fn(x)− fn(y)|2
∣∣∣ ≤ ε for any x, y ∈ B1/k(pn) (3.36)

when n is big enough. We argue by contradiction. If the conclusion were false we could
find sequences (xn) and (yn) in B1/k(pn) such that the defining condition of ε-isometries
does not hold for these points, i.e.∣∣∣d2(xn, yn)− |un(xn)− un(yn)|2 − |fn(xn)− fn(yn)|2

∣∣∣ > ε . (3.37)

By compactness, up to extracting a subsequence that we do not relabel, we can assume
that xn converge to x ∈ B1/k(p∞) and yn converge to y ∈ B1/k(p∞). It is easily verified
that x 6= y, thanks to (3.37) and to the Lipschitz regularity of un and f . Passing to the



24 ELIA BRUÈ, AARON NABER, AND DANIELE SEMOLA

limit (3.37), taking into account the uniform convergence of un to u and the convergence
of Ψn to the identity map together with the continuity of f , we get∣∣∣d2(x, y)− |u(x)− u(y)|2 − |f(x)− f(y)|2

∣∣∣ ≥ ε , (3.38)

that contradicts (3.34).
The additional conclusion under the noncollapsing assumption can be obtained relying on

Theorem 3.5. Taking into account the lower bound on the volume, the pmGH convergence
in the contradiction argument above improves to noncollapsed convergence. Therefore the
limit space is RCD(0, N) noncollapsed. �

Remark 3.9. When (X, d,H N ) is a noncollapsed RCD(−δ(N − 1), N) space satisfying
H N (B1(p)) > v, then in Theorem 3.8 we can relax (3.29) to

dGH(B2(p), BRk×Z
2 (0, z)) ≤ ε, (3.39)

provided δ ≤ δ(N, v, ε).

Remark 3.10. In the case of maximal dimension we can slightly improve upon the implication
between δ-splitting and ε-isometry. In particular the following holds: for any ε > 0 there
exists δ = δ(ε,N) > 0 such that if (X, d,m) is an RCD(−δ(N − 1), N) space, B3/2(p) ⊂ X,

dGH(B3/2(p), BRN
3/2(0)) < δ (3.40)

and u : B1(p)→ RN is a δ-splitting map, then u : B1(p)→ RN is an ε-isometry.
The same statement holds for splitting maps with N − 1 components in case we put RN+ in
place of RN .

This statement can be proved relying on the local convergence and stability results of
[AH18], taking into account the fact that local spectral convergence holds for all radii when
the limit space is the Euclidean space (or, more in general, a metric measure cone).

Notice that the main improvement is that we do not need to worsen the radius to
pass from the δ-splitting condition to the ε-isometry. Moreover we can allow not only for
harmonic δ-splitting functions but also for functions with small Laplacian in L2(B1(p)), cf.
with Definition 3.11 below.

For the study of the topological structure of RCD spaces with boundary in section 9 we
will need a slightly less restrictive notion of δ-splitting map.

Definition 3.11. Fix δ > 0. Let (X, d,m) be an RCD(−δ(N − 1), N) m.m.s. and p ∈ X.
We say that u := (u1, . . . , uk) : Br(p)→ Rk is a δ-almost splitting map provided it satisfies:

(i) |∇ua| < C(N);
(ii)

k∑
a,b=1

 
Br(p)

|∇ua · ∇ub − δab|dm +
k∑
a=1

r2
 
Br(p)

(∆ua)2 dm < δ . (3.41)

Arguing as in Remark 3.2 one can easily check through Bochner’s inequality that a
δ-almost splitting map u : B2r(p)→ Rk satisfies

r2
 
Br(p)

|Hessu|2 dm ≤ C(N)δ .

Therefore, the only meaningful difference between the notion of δ-splitting map and δ-almost
splitting map is that the latter is not harmonic but enjoys a scale invariant L2-smallness of
the Laplacian.

Remark 3.12. It is immediately seen that Theorem 3.8 and Remark 3.10 still hold when
relaxing the assumptions by considering δ-almost splitting maps in place of δ-splitting
maps.
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3.3. Transformation theorem. In [CN15] a key result in order to prove the codimension
4 conjecture for noncollapsed limits of manifolds with bounded Ricci curvature was the
so-called transformation theorem. Given an (N − 2, δ(ε))-splitting map u : B1(p)→ RN−2,
[CN15, Theorem 1.32] provides conditions guaranteeing the existence of a lower triangular
matrix with positive entries Tr such that Tru : Br(x) → RN−2 is an (N − 2, ε)-splitting
map for 0 < r < 1.

In [CJN18] (see in particular Proposition 7.8) a geometric version of the transformation
theorem was proved, in order to study singular strata of any codimension on Ricci limits.
In particular, the weak version of the estimate proven in [CJN18] was that given a (k, δ)-
splitting map on B1(p), there is a lower triangular matrix with positive entries Tr such
that Tru : Br(x) → Rk remains (k, ε)-splitting as long as Bs(p) is k-symmetric and far
from being (k + 1)-symmetric, for any r ≤ s ≤ 2.

Here we provide a version of the geometric transformation theorem tailored for the
purpose of studying the structure of noncollapsed RCD spaces with boundary. We focus
the attention only on δ-boundary balls (see Definition 4.1) and (N, δ)-symmetric balls
(corresponding to k = n−1, n in [CJN18]) and, for technical reasons, we work with possibly
non harmonic δ-splitting maps (cf. with Definition 3.11) rather than harmonic δ-splitting
maps. Up to these small variants the argument presented here is the one from [CJN18].

Proposition 3.13 (Transformation). Let 1 ≤ N <∞ be a fixed natural number. For any
ε > 0 there exists δ(N, ε) > 0 such that for any δ < δ(N, ε), for any RCD(−δ2(N − 1), N)
space (X, d,H N ), for any x ∈ X and 0 < r0 < 1 the following hold.

• If Bs(x) is a δ2-boundary ball for any r0 ≤ s ≤ 1 and u : B2(x) → RN−1 is a δ-
almost splitting map, then for each scale r0 ≤ s ≤ 1 there exists an (N−1)×(N−1)
lower triangular matrix Ts such that

i) Tsu : Bs(x)→ RN−1 is an ε-almost splitting map on Bs(x);
ii)

�
Bs(x)∇(Tsu)a · ∇(Tsu)b dH N = δab;

iii)
∣∣∣Ts ◦ T−1

2s − Id
∣∣∣ ≤ ε.

• If Bs(x) is an (N, δ2)-symmetric ball for any r0 ≤ s ≤ 1 and u : B2(x)→ RN is a
δ-almost splitting map, then for each scale r0 ≤ s ≤ 1 there exists an N ×N lower
triangular matrix Ts such that

i) Tsu : Bs(x)→ RN is an ε-almost splitting map on Bs(x);
ii)

�
Bs(x)∇(Tsu)a · ∇(Tsu)b dH N = δab;

iii)
∣∣∣Ts ◦ T−1

2s − Id
∣∣∣ ≤ ε.

We postpone the proof of the transformation Proposition 3.13 after some technical
lemmas. The first one is about the very rigid form of harmonic functions with almost
linear growth on the Euclidean space and half-space. It can be easily proved thanks to
the explicit knowledge of entire harmonic functions (cf. with [CJN18, Lemma 7.8], dealing
with a much more general case) and we omit the details.

Lemma 3.14. Let 1 ≤ N <∞ be a fixed natural number, then there exists ε = ε(N) > 0
such that the following holds. Let (X, d,H N ) be isomorphic either to the Eucildean space
RN or to the half-space RN+ . Then any harmonic function u : X → R with almost linear
growth, |u(x)| ≤ C |x|1+ε + C for any x ∈ X, is linear and induced by an R factor.

The second lemma is about estimates for the transformation matrixes, given their
existence. We refer to [CJN18, Lemma 7.9] for its proof, which is a simple inductive
argument relying on the uniqueness of Cholesky decompositions [GV13].
Below we shall denote by |·|∞ the L∞-norm on matrixes.

Lemma 3.15. Under the assumptions of Proposition 3.13, there exists a constant C =
C(N) > 0 such that, if Ts and T2s are matrixes verifying (i) and (ii) at scale s and 2s
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respectively, then automatically ∣∣∣Ts ◦ T−1
2s − Id

∣∣∣
∞
≤ C(N)ε. (3.42)

Given Lemma 3.15 and arguing inductively as in [CJN18] it is then possible to prove a
growth estimate for the transformation matrixes, once we assume that they exist.

Corollary 3.16. Under the assumptions of Proposition 3.13, there exists a constant
C = C(N) > 0 such that, if Tr̄ and Tr are matrixes verifying (i) and (ii) at scales
0 < r̄ < r respectively, then ∣∣∣T−1

r ◦ Tr̄
∣∣∣
∞
≤
(
r

r̄

)Cε
. (3.43)

Proof of Proposition 3.13. Let us treat first the second case of (N, δ2)-symmetric balls.
Observe also that we only need to prove (i) and (ii), since (iii) will follow from Lemma 3.15.

We wish to get the sought conclusion arguing by contradiction. We suppose that there
exists 0 < ε0 � 1 such that the following hold:

a) there exist pointed RCD(−δi, N) spaces (Xn, dn,H N , xn) such that the balls
Br(xn) are (N, δ2

i )-symmetric for any rn ≤ r ≤ 1, and δn-almost splitting maps
un : B2(xn)→ RN , for a sequence δn ↓ 0;

b) there exist sn > rn such that for any sn < r ≤ 1 there exist lower triangular
matrixes Txn,r such that Txn,ru : Br(xn) → RN is an ε0-splitting map on Br(xn)
and  

Br(xn)
∇(Txn,ru)a · ∇(Txn,ru)b dH N = δab ; (3.44)

c) no such mapping Txn,sn/10 exists on Bsn/10(xi).
Let us start by noticing that it must hold sn ↓ 0 as n→∞, otherwise we would easily

reach a contradiction.
Then let us consider the scaled pointed spaces X̃n := (Xn, s

−1
n dn,H N , xn). Observe that,

since BXn
r (xn) is (N, δn)-symmetric for any ri ≤ r ≤ 1, on the scaled space it holds that

BX̃n
r (xn) is (N, δn)-symmetric for any rn/sn ≤ 1 ≤ r ≤ s−1

n . Since sn → 0 as n→∞, we
infer that X̃n converge to RN in the pGH (and a posteriori pmGH) topology.

Let us now set
vn := s−1

n Txn,sn(un − un(xn)) . (3.45)
Observe that  

BX̃nr (xn)
(∆vn)2 dH N ≤ C(r)δn for any 1 ≤ r ≤ s−1

n , (3.46)

thanks to Corollary 3.16 and the fact that un is a δn-almost splitting map ( cf. Definition 3.11
(ii)). Moreover vn has almost linear growth, |vn(x)| ≤ Cd(xn, x)1+ε + C for any x such
that d(xn, x) ≤ s−1

n , thanks to Corollary 3.16, and it verifies 
BX̃n1 (xn)

∇van · ∇vbn dH N = δab , (3.47)

by (3.44).
By [AH18] and (3.46) we obtain that vn converge locally in W 1,2 and locally uniformly

to a harmonic function v : RN → RN with almost linear growth. Passing to the limit (3.47)
and taking into account Lemma 3.14, we get that v is an orthogonal transformation of RN .

Localizing the W 1,2-convergence (see [AH17, Theorem 1.5.7, Proposition 1.3.3.]), we
obtain

lim
n→∞

 
BX̃n1 (xn)

∣∣∣∇van · ∇vbn − δab∣∣∣ dH N = 0 . (3.48)
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Therefore, taking into account also (3.46), we infer that vi : BX̃n
1 (xn)→ RN becomes an

εn-almost splitting map where εn → 0 as n→∞.
Hence for each 1/10 ≤ r ≤ 1 and any sufficiently large n there exists a lower triangular
N ×N matrix An,r with |An,r − Id| ≤ C(N)εn and 

BX̃nr (xn)
∇(An,rvn)a · ∇(An,rvn)b dH N = δab . (3.49)

In particular, for any sufficiently large n, An,rvn : BX̃n
r (xn)→ RN is an ε0-splitting map

for any 1/10 ≤ r ≤ 1 satisfying the orthogonality condition (ii) in the statement. This
contradicts the minimality of si (cf. with condition (c)), scaling back to the starting spaces
Xn. This finishes the proof of the existence of transformation matrixes, the growth estimate
(iii) can be obtained by Lemma 3.15, as we already argued.

The case of boundary balls can be handled by the very same argument. The only
difference is that the sequence X̃n converges in the pmGH topology to the Euclidean half
space RN+ , instead of RN . As before, we pass to the limit in the sequence vn to get a
harmonic function v : RN+ → RN−1. Then we apply Lemma 3.14 to infer that v is linear
and depends only on the Euclidean factor Rn−1.

�

4. Neck regions

This section is dedicated to the introduction and the analysis of neck regions. We first
provide the relevant definition tailored for the study of singularities of codimension one for
noncollapsed RCD spaces. Then in subsection 4.1 and subsection 4.2 we provide structural
results for neck regions and an existence result, respectively.

The notion of neck region has been introduced in [JN16] and [NV19] to study L2-
curvature bounds for spaces with bounded Ricci curvature and the energy identity for
Yang-Mills connections. Its use has been crucial also in [NV17] and, more recently, in
[CJN18], for the rectifiability of singular sets in arbitrary codimension on noncollapsed
Ricci limits.

In the following we shall denote by RN+ := {x ∈ RN : xN ≥ 0 } the Euclidean half space
of dimension N ≥ 1.

Definition 4.1 (Boundary ball). Let 1 ≤ N <∞ and (X, d,H N ) be an RCD(−(N−1), N)
metric measure space. Given x ∈ X and r > 0 we say that Br(x) is a δ-boundary ball if it
is δr-GH close to BRN+

r (0).
Given a δ-boundary ball B1(x) and a δ-isometry Ψ : BRN+

1 (0)→ B1(x) we set

Lx,1 := Ψ({xN = 0 }) . (4.1)

When Br(x) is a δ-boundary ball we will consider the approximate singular set Lx,r that
can be introduced in the analogous way.

Remark 4.2. The following property is an easy consequence of definitions. Given a δ-
boundary ball B1(x), a δ-isometry

Ψ : BRN+
1 (0)→ B1(x)

and y ∈ Lx,1, any ball Bs(y) ⊂ Br(x) is a δs−1-boundary ball.

We now introduce the relevant notion of a neck region for this paper:
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Definition 4.3 (Neck region). Fix ε, δ ∈ (0, 1/2), an integer N ≥ 1 and τ := 10−10N . Let
(X, d,H N , p) be a pointed noncollapsed RCD(−ε(N−1), N) metric measure space. We say
that N ⊂ B2(p) is an (ε, δ)-neck region if there exist a closed set C ⊂ B1(p) and a function
r : C → [0, 1/8] such that N := B2(p) \ ∪x∈CB̄rx(x) and, setting C0 := {x ∈ C : rx = 0 }
and C+ := C \ C0, the following hold:

(i) the family { B̄τ2rx(x) }x∈C ⊂ B2(p) is disjoint;
(ii) for any x ∈ C and rx ≤ r ≤ τ−3, Br(x) is an ε2-boundary ball, i.e. there exists an

ε2r-GH isometry
Ψx,r : BRN+

r (0)→ Br(x) ; (4.2)
(iii) setting Lx,r := Ψx,r({xN = 0 })

C ∩Br(x) ⊂ B2εr(Lx,r) and Lx,r ∩Br(x) ⊂ B103τr(C) (4.3)
for any x ∈ C and rx < r < τ−3;

(iv) there exists a δ4-splitting map u : Bτ−4(p)→ RN−1 such that, for any x ∈ C and
rx < r < τ−3 it holds that

u : Br(x)→ RN−1 is a δ-splitting map (4.4)
and

r2
 
Br(x)

|Hessu|2 dH N ≤ rδ2 . (4.5)

Remark 4.4. In fact, it will follow from the construction that Lip rx ≤ τ2.

As in [JN16] and [CJN18] we introduce the packing measure as an approximation of the
Hausdorff measure restricted to the top dimensional singular stratum.

Definition 4.5 (Packing measure). Given any neck region N = B2(p) \ ∪x∈CB̄rx(x) we
shall denote by µ the associated packing measure defined by

µ := H N−1 C0 +
∑
x∈C+

rN−1
x δx . (4.6)

Remark 4.6. Informally, a neck region N := B2(p) \ ∪x∈CB̄rx(x) is the portion of the
boundary ball B2(p) that we are able to control at any scale and location. It comes with a
closed set C, which approximates the boundary of the space, and good harmonic splitting
maps u : B2(p)→ RN−1. Any ball centered at x ∈ C with radius r > rx looks like a ball in
the Euclidean half space, and u : Br(x)→ RN−1 is a δ-splitting map.

The union of balls {B̄rx(x) : x ∈ C+} is the set where we are not able to control neither
the space nor the harmonic splitting functions. A fundamental step in our work is to prove
that ∪x∈CB̄rx(x) is small (cf. Theorem 4.13).

The packing measure µ has to be understood as an approximation of the volume measure
of the boundary.

Let us explain the meaning of each item in Definition 4.3. Condition (i) guarantees that
we do not overly cover the bad set. Conditions (ii) and (iii) play the role of a Reifenberg
condition on the singular set, still they are not sufficient alone to prove rectifiability, which
requires the combination with (ii) and (iv). Condition (iv) says that u : B2(p)→ RN−1 is
well-behaved on any ball Br(x), where x ∈ C and r > rx.

Remark 4.7. With respect to the notions of neck region adopted in [JN16] and [CJN18]
here we chose to put the harmonic δ-splitting map directly into the definition. Building
δ-splitting maps that control the geometry of neck regions requires a great amount of
efforts and several ideas in codimension greater or equal than two, as in [JN16, CJN18].
Here instead we heavily rely on the fact that we are working in codimension one and the
L2-Hessian bounds for harmonic δ-splitting maps propagate well thanks to a weighted
maximal function argument, as pointed out in [CN15].
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Remark 4.8. It follows from Colding’s volume convergence theorem [DPG18, Theorem 1.3]
(see also [C97, CC97]) that there exists a function Ψ := Ψ(ε,N) depending only on N and
going to 0 as ε→ 0 such that, if Br(x) is an ε-boundary ball, then∣∣∣∣∣H N (Br(x))

ωNrN
− 1

2

∣∣∣∣∣ ≤ Ψ(ε,N). (4.7)

In particular, if N = B2(p) \ ∪x∈CB̄rx(x) is an (ε, δ)-neck region, then (4.7) holds for any
x ∈ C and for any rx ≤ r ≤ τ−3.

4.1. Structure of neck regions. The aim of this subsection is to prove a structure
theorem for neck regions, its relevance will be clear after subsection 4.2 where we are going
to prove that neck regions can be built on any ball sufficiently close to a ball of the model
half-space.

Let us recall that the main goal of the present paper is to prove rectifiability and measure
bounds for the singular stratum of codimension one on noncollapsed RCD spaces together
with stability under noncollapsing convergence. In this regard Theorem 4.9 is a key building
block since, together with Theorem 4.13, it tells that our desired properties hold, up to a
controlled error, on balls close to the model ball.

Theorem 4.9 (Neck structure theorem). Let N ∈ N, v > 0, 0 < ε < 1 be fixed, and let
η < η(N, ε) and δ < δ(N, v, ε). Then for any (η, δ)-neck region N = B2(p) \Brx(C) of an
RCD(−η(N − 1), N) space (X, d,H N ) satisfying H N (B1(p)) ≥ v it holds that:

(i) u : C → RN−1 is bi-Lipschitz with its image, more precisely
||u(x)− u(y)| − d(x, y)| ≤ εd(x, y) for any x, y ∈ C , (4.8)

where u : Bτ−4(p)→ RN−1 is as in Definition 4.3 (iv);
(ii) there exists c = c(N) ≥ 1 such that, denoting by µ the packing measure as in (4.6),

we have
c−1rN−1 ≤ µ(Br(x)) ≤ crN−1 for any x ∈ C and rx ≤ r ≤ 2 ; (4.9)

(iii) at any x ∈ C0 the tangent cone is unique and isometric to RN+ .

Remark 4.10. Let us comment on the different parts of the statement of Theorem 4.9.
The combination of points (i) and (ii) is the analogue of [JN16, Theorem 3.10] and [CJN18,

Theorem 2.9]. Together with the existence of neck regions and the neck decomposition
theorem it can be summed up to obtain rectifiability of the top dimensional singular
stratum and measure estimates.

Point (iii) has an analogue in the context of lower Ricci bounds for the codimension
two stratum [CJN18] and in the context of two sided Ricci bounds for the codimension
four stratum [JN16], where the tangent cones are also uniquely determined by the neck
structure. There is no analogue in case of general stratum under a lower Ricci bound
[CJN18] however, where uniqueness of symmetries holds in the neck region but not of the
whole tangent cone.

In order to provide the reader with an intuition about the notion of neck region and
about the neck structure theorem, we present two elementary examples below. They are
the counterparts of [CJN18, Example 2.11, Example 3.1] in the present context.

Example 4.11 (Simplest). Let (X, d,H N ) = (RN+ , deucl,H
N ) be the Euclidean half-space.

Let u : RN+ → RN−1 be the map whose components are the coordinates of the RN−1 factor
of RN+ = RN−1×R+. Let C ⊂ B2(0N−1)×{0} be any closed subset and r : C → [0, 1/8] be
any function with Lip r ≤ τ2 and such that the family { B̄τ2rx(x) }x∈C ⊂ B2(0N ) is disjoint.
Then it is straightforward to check that N := B2(p) \ ∪x∈CB̄rx(x) is a (0, 0)-neck region
with associated splitting map u.
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Notice that in this case the rectifiability and the Ahlfors regularity of the packing measure
follow since C ⊂ RN−1 canonically and {Bτrx(x)} form a Vitali covering. Moreover, if
one looks for a maximal neck region the natural choice in this case would be to consider
C = B2(0N−1)× {0} and r ≡ 0.

Example 4.12 (Conical). A less elementary example of neck region can be constructed
considering a conical singularity.
If we denote by It the closed interval of length 0 < t ≤ π, then the cone C(Ir) endowed
with cone distance and Hausdorff measure H 2 is an RCD(0, 2) space with boundary. For
t = π we obtain a half-space, while for 0 < t < π it corresponds to a convex region inside
R2 with boundary ∂C(It) and a singularity at the origin 0 ∈ C(It).
If π − t < ε2 then we can find a harmonic δ4-splitting map u : Bτ−4(0) → R, thanks to
Theorem 3.8. A first important difference with the previous elementary situation is that
|∇u(x)| → 0 as d(x, 0)→ 0. Therefore u cannot remain δ-splitting at all scales r > 0 on
Br(0).
Nevertheless, if we consider π−t < ε2, choose any τ2-Lipschitz function r : ∂C(It)→ [0, 1/8]
such that r(0) > ε and any closed set C ⊂ ∂C(It) such that {Bτ2rx(x)} is a disjoint family,
then it is possible to check that N := B2(0) \ ∪x∈CB̄rx(x) is an (ε, δ)-neck region.

The construction can be generalized to any dimension by taking the product with RN−2.

Proof of Theorem 4.9. (i). Let us fix x, y ∈ C and set r := (2τ2)−1d(x, y). Assuming
without loss of generality that ry ≥ rx, we have rx < r < τ−3 as a consequence of (i) in
Definition 4.3. Therefore, by (iv) in Definition 4.3

u : Br(x)→ RN−1 is a δ-splitting map. (4.10)

Let ε′ < ε to be fixed later. Assuming δ < δ(ε′, N), Theorem 3.8 yields the existence of a
one dimensional manifold (Z, dZ , z) and a function f : B2d(x,y)(x)→ Z such that

F := (u− u(x), f) : B2d(x,y)(x)→ BRN−1×Z
2d(x,y) ((0, z)) is a 2d(x, y)ε′-GH isometry . (4.11)

Since 2d(x, y) ≥ τ2rx, taking into account Definition 4.3 (ii) and Remark 4.2 we know that
B2d(x,y)(x) is a τ−2η-boundary ball. Therefore the triangle inequality gives

dGH(BR1
+

2d(x,y)(0), BZ
2d(x,y)(z)) ≤ 2d(x, y)(τ−2η + ε′) . (4.12)

Hence, choosing η, ε′ ≤ ε(N), we can apply Lemma 4.15 below concluding that

F = (u− u(x), f) : B 3
2 d(x,y)(x)→ B

RN+
3
2 d(x,y)(0) is a 2d(x, y)ε′-GH isometry . (4.13)

In order to get (i) it suffices to check that

|f(z)| ≤ 30(ε′ + 2τ−2η)d(x, y), for any z ∈ C ∩B 3
2 d(x,y)(x) . (4.14)

Indeed (4.14), when plugged in the defining condition of GH-isometries

||F (x)− F (y)| − d(x, y)| ≤ 2d(x, y)ε′ , (4.15)

gives the sought conclusion provided ε′, η ≤ C(ε,N).
To check (4.14) we rely on (iii) in Definition 4.3. Set s := 3

2d(x, y) to ease notation and
recall that 2τ−2s ≥ rx. Observe that

F ◦Ψx,2τ−2s : BRN+
s (0)→ B

RN+
s (0) is a 2(ε′ + 2τ−2η)s-GH isometry ,

therefore Lemma 4.15 gives

F ◦Ψx,2τ−2s({xN = 0 }) ⊂ B10(ε′+2τ−2η)s({xN = 0 }) = {xN < 10(ε′ + 2τ−2η)s } . (4.16)
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Since by (iii) in Definition 4.3 one has C ∩B2τ−2s(x) ⊂ B10ητ−2s(Ψx,2τ−2s({xN = 0 })), we
conclude that
F (C ∩Bs(x)) ⊂F (B10ητ−2s(Ψx,2τ−2s({xN = 0 })))

⊂ B20(ε′+2τ−2η)s(F ◦Ψx,2τ−2s({xN = 0 })) ⊂ {xN < 30(ε′ + 2τ−2η)s } ,
yielding (4.14).

(ii). We begin by showing that
µ(Br(z)) ≤ crN−1 for any z ∈ C and rz ≤ r ≤ 2 . (4.17)

Fix z ∈ C and rz < r < 2. Recall that by i) in Definition 4.3,
{B τ2

2 rx
(x) }

{x∈C+}
is a disjoint family . (4.18)

In view of (i) we know that u : Br(z)∩ C → B3r(u(z)) is a (1 + ε)-Lipschitz map, therefore
d(u(x), u(C0)) ≥ (1− ε)τ2rx for any x ∈ C+ ∩Br(z) , (4.19)

and u(C0 ∩Br(z)) ∪
⋃

x 6=z, x∈Br(z)∩C+

B τ2
2 rx

(u(x))

 ⊂ B3r(u(z)) . (4.20)

Then we can estimate
µ(Br(z)) =H N−1(Br(z) ∩ C) +

∑
x∈Br(z)∩C+

rN−1
x

≤c′(N)H N−1(u(C0 ∩Br(z))) + c′(N)
∑

x 6=z, x∈Br(z)∩C+

H N−1(B τ2
2 rx

(u(x)))

+ c′(N)H N−1(B τ2
2 rz

(u(z)))

≤c′(N)
(

H N−1(B3r(u(z))) + H N−1(B τ2
2 rz

(u(z)))
)

≤c
(
rN−1 + rN−1

z

)
≤ crN−1 .

Let us now show the opposite inequality:
µ(Br(z)) ≥ c−1rN−1 for any z ∈ C and 0 ≤ r ≤ 2 . (4.21)

Observe that, by the very definition of packing measure (4.6), it is sufficient to verify (4.21)
for radii r such that rz < r < 2.

Let us fix z ∈ C and rz < r < 2 as above. It suffices to prove that
Br/8(u(z)) ⊂ u(C0 ∩ B̄r(z)) ∪

⋃
x∈C+∩B̄r(z)

B̄rx(u(x)) . (4.22)

Indeed (4.22) gives
ωN−1
8N−1 r

N−1 ≤H N−1(u(C0 ∩ B̄r(z))) +
∑

x∈C+∩B̄r(z)

H N−1(Brx(u(x)))

≤ (1 + ε)NH N−1(C0 ∩Br(z)) + ωN−1
∑

x∈C+∩B̄r(z)

rN−1
x

≤ C(N)µ(B̄r(z)) .
Let us check (4.22) arguing by contradiction. Set for simplicity u(z) = 0. If the conclusion
is false we can find w ∈ Br/8(0) such that w /∈ B̄rx(u(x)) for any x ∈ C ∩ B̄r(z). Then we
can set

s := inf { sx : x ∈ C ∩ B̄r(z) and w ∈ Bsx(u(x)) } . (4.23)
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Observe that, by the very definition of s, it holds that r/8 > s = sx > rx for some
x ∈ C ∩ B̄r(z). Therefore the ball Bs(x) is an η-boundary ball and u : Bs(x)→ RN−1 is
δ-splitting. Hence, arguing as in the first part of the proof, we can complete u to an sε′-GH
isometry

F := (u, f) : Bs(x)→ B
RN+
s ((u(x), 0)) , (4.24)

provided δ < δ(N, ε′), for some ε′ < 1/8. Since (w, 0) ∈ B̄RN+
s ((u(x), 0)) we can find y ∈ Lx,s

such that |u(y)− w| ≤ 2sε′.
Moreover, thanks to the second inclusion in (iii) of Definition 4.3 there exists y′ ∈ C∩B2s(x)
such that d(y, y′) ≤ 103τs. This implies that

|u(y′)− w| ≤ |u(y)− u(y′)|+ |u(y)− w| ≤ Lipu d(y, y′) + 2sε′ ≤ (103τ Lipu+ 2ε′)s < s ,
(4.25)

since u is (1 + C(N)
√
δ)-Lipschitz and τ < 10−4, cf. with Remark 3.3.

We claim that B2s(x) ⊂ Br(z). In order to prove this claim let us first point out that

|u(x)− u(z)| ≤ |u(x)− w|+ |u(z)− w| < r/8 + r/8 = r/4 . (4.26)

Hence, since by the result of the previous step,

||u(x)− u(z)| − d(x, z)| ≤ εd(x, z) , (4.27)

we can infer that, if ε < ε(N), then d(x, z) < 2r/4 = r/2. In particular, since we already
pointed out that s < r/8, we obtain that Bs(x) ⊂ Br(z), as we claimed.

This gives (4.22), since (4.25) and the inclusion B2s(x) ⊂ Br(z) contradicts the mini-
mality of s.

(iii). Let (Y, %,H N , y) be a tangent cone at x ∈ C0, originating from a sequence rn ↓ 0.
From (iv) in Definition 4.3 we know that there exists u∞ : Y → RN−1 satisfying

(a) Hessu∞ = 0,
(b)

�
B1(y) |∇(u∞)a · ∇(u∞)b − δab|dH N ≤ C(N)δ, for a, b = 1, . . . , N − 1,

as a limit of the sequence

urn := u :
(
X,

d
rn
,
H N

rnN
, x

)
→ RN−1 as n→∞ .

This can be easily checked with a by now standard argument, relying on the convergence
and stability results of [AH17, AH18].
By the functional splitting theorem (cf. [ABS19, Lemma 1.20]), Y splits off a factor RN−1.
Moreover, it is a metric cone and it is not isometric to RN , thanks to Definition 4.3 (ii).
Therefore it is isometric to RN+ . �

4.2. Existence of neck regions. The aim of this subsection is to prove that on any ball
of a noncollapsed RCD(−(N − 1), N) space, which is sufficiently GH-close to the model
ball on the half space

B
RN+
1 (0) ⊂ RN+ (4.28)

it is possible to build a neck region.
It is worth noting that, for the sake of proving stability results, it is key to construct

neck regions quite carefully. If we were to build neck regions that are much smaller than
they should be, then the construction would not force the presence of boundary points in
SN−1 \ SN−2 on regions which look like half spaces.
For this reason below we are going to prove that neck regions verifying an additional
maximality condition exist, once we assume closeness to the model boundary ball.
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Theorem 4.13 (Existence of maximal neck regions). Let τ := 10−10N , 0 < ε ≤ ε(N),
δ < δ(ε,N) and η < η(ε, δ,N). If (X, d,H N ) is an RCD(−η(N − 1), N) m.m.s., p ∈ X
and B4τ−4(p) is an η-boundary ball, then there exists an (ε, δ)-neck region N = B2(p) \
∪x∈CB̄rx(x) on B2(p) which additionally verifies the following maximality condition:

µ(C+) =
∑
x∈C+

rN−1
x ≤ ε . (4.29)

Remark 4.14. The combination of (4.29) with the lower Ahlfors bound in Theorem 4.9 (ii)
and Theorem 4.9 (iii) implies that on η-boundary balls there exists a bunch of boundary
points in SN−1 \ SN−2.
This is the starting point of our rigidity and stability and it is unique to the codimension
one setting. Indeed, as it is pointed out in [CJN18], for neck regions on smooth Riemannian
manifolds, C0 is always empty (there is no singular set). Instead, the combination of (4.29)
and Theorem 4.9 above provides an analytic proof of a quantitative (and more general)
version of the fact, proved in [CC97], that smooth Riemannian manifolds with lower Ricci
curvature bounds cannot converge without volume collapse to a half-space.

4.2.1. Auxiliary results. Before proving Theorem 4.13, we prove three key lemmas. The
first one deals with en elementary property of one dimensional Riemannian manifolds with
boundary, the second one deals with the propagation of the δ-splitting property, the last
one is the fundamental iteration step in the proof of Theorem 4.13.

Lemma 4.15 (One dimensional rigidity). There exists ε0 > 0 such that, if a pointed one
dimensional Riemannian manifold (possibly with boundary) (Z, dZ , z) satisfies

dGH(BR+
1 (0), BZ

1 (z)) ≤ ε ≤ ε0 , (4.30)

then there exist 0 ≤ a ≤ ε ≤ 1 − ε ≤ b ≤ ∞ such that BZ
1 (z) is isometric to the ball of

radius one centered at a ∈ [0, b).

Proof. Observe that ∂Z 6= ∅, since any ball of radius one in S1(r) for some r > 0, or in
R is ε0 far from B

R+
1 (0), provided ε0 is small enough. This implies that Z is isometric to

[0, b) for some b ≤ ∞. It is now immediate to check that a ball of radius one in [0, b) is
ε-close to BR+

1 (0) if and only if it is centered at some point 0 ≤ a ≤ ε and b ≥ 1− ε. �

Next we give a general auxiliary result about the propagation of the δ-splitting property.
Basically, it amounts to saying that given a δ-splitting map at a certain location and scale,
the δ-splitting property, up to slightly worsening δ, propagates if we can control the Hessian
in a slightly better than scale invariant sense. We refer to [JN16, Lemma 5.91] and to
[BPS19] for previous appearances of this argument.

Lemma 4.16. Let 1 ≤ N < ∞ be fixed. There exists C = C(N) > 0 such that for any
RCD(−(N − 1), N) metric measure space (X, d,m) with p ∈ X the following holds. If
u : B2(p)→ Rk is a δ-splitting map with x ∈ B1(p) such that

s

 
Bs(x)

|Hessu|2 dm ≤ δ1/2 , for any 0 < r < s < 1 , (4.31)

then u : Bs(x)→ Rk is a C(N)δ1/4-splitting map for any r < s < 1.

Proof. It is enough to check that 
Bs(x)

|∇ua · ∇ub − δab|dm < C(N)δ1/4 for any 0 < r < s < 1 , (4.32)

for a, b = 1, . . . , k.
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Let us set fa,b := |∇ua ·∇ub− δab| and note that |∇fa,b| ≤ 2C(N)(|Hessua|+ |Hessub|),
here we have used (i) in Definition 3.1. Using this bound, the local Poincaré inequality (cf.
[VR08, R12]) and (4.31) we deduce∣∣∣∣∣

 
Bs(x)

fa,b dm −
 
Bs/2(x)

fa,b dm
∣∣∣∣∣

≤C(N)s
 
Bs(x)

|∇fa,b|dm

≤2C(N)
(
s2
 
Bs(x)

|Hessua|2 dm + s2
 
Bs(x)

|Hessub|2 dm
)1/2

≤4C(N)δ1/4s1−1/2 ,

for any 0 < r < s < 1. Applying a telescopic argument it is simple to see that∣∣∣∣∣
 
B1(x)

fa,b dm−
 
Bs(x)

fa,b dm
∣∣∣∣∣ ≤ C(N)δ1/4 for any 0 < r < s < 1 . (4.33)

Therefore, using that u : B2(p)→ Rk, is a splitting map we deduce 
Bs(x)

fa,b dm ≤
∣∣∣∣∣
 
B1(x)

fa,b dm−
 
Bs(x)

fa,b dm
∣∣∣∣∣+

 
B1(x)

fa,b dm

≤C(N)δ1/4 + C(N)
 
B2(p)

fa,b dm

≤C(N)δ1/4,

therefore yielding (4.32). �

The next lemma is the main iterative step in the construction of maximal neck regions
over boundary balls.

Lemma 4.17 (Iteration step). Let τ = 10−10N and γ ∈ (0, 1/4) be fixed with ε0 as in
Lemma 4.15. For any ε < 2γ ∧ ε0/2 and δ ≤ δ(ε, γ,N) the following property holds. Given
an RCD(−ε(N − 1), N) m.m.s. (X, d,H N ), an ε2-boundary ball B2(p) ⊂ X and k ∈ N, if
there exists a δ4-splitting map u : B2γ−k(p)→ RN−1 such that

τ4γ−m
 
Bτ4γ−m (p)

|Hessu|2 dH N ≤ δ2 for m = 0, . . . , k , (4.34)

then there exists a covering

B1(p) ∩ Lp,2 ⊂
⋃
α

B2τ3γ(xα)
⋃
β

B2τ3γ(xβ) , (4.35)

where
(i) the family {Bτ4γ(xα) } ∪ {Bτ4γ(xβ) } is disjoint;
(ii) for any α, B2γ(xα) is an ε2-boundary ball such that

τ4γ

 
Bτ4γ(xα)

|Hessu|2 dH N ≤ δ2

with
u : Bs(xα)→ RN−1 a Cγ,Nδ-splitting map for any s ∈ [τ2γ, γ−k] ; (4.36)

(iii) for any β,

τ4γ

 
Bτ4γ(xβ)

|Hessu|2 dH N > δ2 ; (4.37)
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(iv) xα ∈ B2γε(Lp,2) for any α, and xβ ∈ Lp,2 for any β.

Proof. We choose δ = δ(ε, γ,N) given by Theorem 3.8 such that any ball endowed with a
Cγ,Nδ-splitting map is ε2/2-close to a ball in a space splitting RN−1, where Cγ,N is the
constant in (4.40) below.

Let {Bτ3γ(xξ) } be any covering of B1(p)∩Lp,2 with xξ ∈ Lp,2 and such that {Bτ4γ(xξ) }
is a disjoint maximal collection.

Given ξ such that

τ4γ

 
Bτ4γ(xξ)

|Hessu|2 dH N ≤ δ2 , (4.38)

one has
s

 
Bs(xξ)

|Hessu|2 dH N ≤ Cγ,Nδ2 for any τγ ≤ s ≤ τγ−k , (4.39)

as a consequence of (4.34). Therefore, by Lemma 4.16,

u : Bs(xξ)→ RN−1 is Cγ,Nδ-splitting for any s ∈ [τγ, τγ−k] . (4.40)
In order to conclude the proof we just need to prove the existence of xα ∈ B2γε(xξ) such
that B2γ(xα) is an ε2-boundary ball.

To do so notice that the following properties hold:
(a) B4γ(xξ) is a 2−1γ−1ε2-boundary ball;
(b) there exists a one dimensional manifold (possibly with boundary) (Z, dZ) such that

dGH(B4γ(xξ), BRN−1×Z
4γ ((0, z))) ≤ 2γε2 . (4.41)

The property (a) follows from Remark 4.2 while (b) comes from (4.40) and Theorem 3.8.
Let us finally prove that (a) and (b) imply the existence of xα ∈ B2γε(xξ) such that

B2γ(xα) is an ε2-boundary ball.
By exploiting (a), (b), the triangular inequality and our choice of ε, we deduce

dGH(BR1
+

4γ (0), BZ
4γ(z)) ≤ 2ε2 + 2γε2 ≤ 8γ ε ≤ ε0 4γ . (4.42)

Therefore by Lemma 4.15 (in scale invariant form) there exist 0 ≤ a ≤ 8γε ≤ 4γ − 8γε ≤
b ≤ ∞ such that

dGH(B4γ(xξ), B
RN−1×[0,b]
4γ ((0, a))) ≤ 2γε2 . (4.43)

Denoting by Ψ : BRN−1×[0,b]
4γ ((0, a))→ B4γ(xξ) any 2γε2-GH isometry, we set xα := Ψ(0).

It is easily seen that xα ∈ B2γε(xξ) and B2γ(xα) is an ε2-boundary ball (compare with
Remark 4.2).

Changing xξ into xα in the above considered case and relabelling xξ as xβ in the other
one, it is easily verified that the family {Bγ(xα) }∪{Bγ(xβ) } has the sought properties. �

4.3. Strategy of proof of Theorem 4.13. The overall strategy is similar to those
[CJN18, Proposition 10.5], [JN16, Proposition 7.13, Proposition 7.26] and [NV19, Theorem
5.4]. The key difference with respect to [CJN18] and [JN16] is that we wish to build
neck regions whose geometry is controlled by the same δ-splitting map. Moreover, as
we already pointed out, we need to prove that bad-balls Brx(x) with x ∈ C+ have small
(N − 1)-dimensional content.

The first step in the construction is based on the iterative application of Lemma 4.17.
It turns that the outcome of this construction is a decomposition which shares most of
the properties of neck regions with a subtle difference: there might be nearby balls with
uncontrollably different sizes. This implies in turn that the second inclusion in condition
(iii) of Definition 4.3 needs to be relaxed to a slightly weaker inclusion, where we do not
look below the scale ry near to a point y ∈ C+, cf. with (4.45) below.



36 ELIA BRUÈ, AARON NABER, AND DANIELE SEMOLA

Definition 4.18 (Weak neck region). Fix ε, δ ∈ (0, 1/2), an integer N ≥ 1 and τ := 10−10N .
Let (X, d,H N , p) be a pointed RCD(−ε(N − 1), N) metric measure space. We say that
N ⊂ B2(p) is a weak (ε, δ)-neck region if there exist a closed set C ⊂ B1(p) and a function
r : C → [0, 1/8] such that N := B2(p) \ ∪x∈CB̄rx(x) and, setting C0 := {x ∈ C : rx = 0 }
and C+ := C \ C0, the following hold:

(i) the family { B̄τ4rx(x) }x∈C ⊂ B2(p) is disjoint;
(ii) for any x ∈ C and rx ≤ r ≤ τ−4, Br(x) is an ε2-boundary ball, i.e. there exists an

ε2r-GH isometry

Ψx,r : BRN+
r (0)→ Br(x) ; (4.44)

(iii) setting Lx,r := Ψx,r({xN = 0 }), it holds that

C ∩Br(x) ⊂ B2εr(Lx,r) and Lx,r ∩Br(x) ⊂ B100τ3 max{r,ry}(C) , (4.45)

for any x ∈ C and rx < r < τ−4, where we denoted by

B100τ3 max{r,ry}(C) :=
⋃
y∈C

B100τ3 max{r,ry}(y) ; (4.46)

(iv) there exists a δ4-splitting map u : B2τ−4(p)→ RN−1 such that, for any x ∈ C and
rx < r < τ−4 it holds that

u : Br(x)→ RN−1 is a δ-splitting map (4.47)

and

r2
 
Br(x)

|Hessu|2 dH N ≤ C(N)rδ2 . (4.48)

The packing measure associated to a weak neck region is defined as in the case of neck
regions, cf. with Definition 4.5.

The outcome of this first step will be a weak neck region for which we can additionally
prove a small content bound for bad-balls, cf. with (4.49) below. This is due to the fact
that in Lemma 4.17 we only stop the decomposition when the Hessian bound fails. Since
we start with a Hessian bound on the ambient ball, this allows to get a content bound for
bad-balls via a standard weighted maximal argument.

Proposition 4.19 (Existence of weak neck regions with content estimates). Let τ :=
10−10N . For any 0 < ε ≤ ε(N), for any δ < δ(ε,N) and η < η(ε, δ,N) the following holds.
If (X, d,H N ) is an RCD(−η(N − 1), N) m.m.s., p ∈ X and B4τ−4(p) is an η-boundary
ball, then there exists a weak (ε, δ)-neck region N = B2(p) \ ∪x∈CBrx(x) on B2(p) which
additionally verifies

µ(C+) =
∑
x∈C+

rN−1
x ≤ ε . (4.49)

Once we have built a weak neck region we need to refine the construction to get a neck
region out of it, also keeping the small content bound for bad balls. This will be achieved
refining the approximate singular set and regularizing the radius function rx.
Via this procedure we might be enlarging the set C+ of centers of bad balls and the new
bad balls might not verify anymore the maximality condition (4.37). The key observation
will be that the new center points are all near to old center points at the right scale. Then
the structure Theorem 4.9 allows to turn the small content bound for the weak neck region
into a small content bound for the neck region.
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4.3.1. Proof of Proposition 4.19. Base step. Let us fix a scale parameter γ = 1/8,
ε ≤ ε(N) and δ < δ(ε, γ,N) as in Lemma 4.17. We consider η < η(N, δ4) such that, by
Theorem 3.8 (i), there exists a δ4-splitting map u : B2τ−4(p)→ RN−1.

Let us apply Lemma 4.17 with k = 0 to obtain a covering

B1(p) ∩ Lp,1 ⊂
⋃
α

B2τ3γ(x1
α)
⋃
β

B2τ3γ(x1
β) , (4.50)

where
(i) the family {Bτ4γ(x1

α) } ∪ {Bτ4γ(x1
β) } is disjoint;

(ii) α-balls B2γ(x1
α) and β-balls B2γ(x1

β) verify the following:
(α-balls) for any α, B2γ(x1

α) is an ε2-boundary ball and

u : Bs(x1
α)→ RN−1 is a Cγ,Nδ-splitting map for any s ∈ [τ3γ, 1] ; (4.51)

(β-balls) for any β, τ4γ
�
Bτ4γ(x1

β
) |Hessu|2 dH N > δ2;

(iii) x1
α ∈ B2γε(Lp,2) for any α, and x1

β ∈ Lp,2 for any β.
Iteration steps. Observe that

N 1 := B2(p) \

⋃
α

B̄τ2γ(x1
α) ∪

⋃
β

B̄τ2γ(x1
β)

 (4.52)

is easily seen to be a neck region. However, it could be that this neck region is not nearly
maximal and can be extended. Therefore we wish to iteratively refine the construction by
decomposing the α-balls in the decomposition via Lemma 4.17.

To this aim, let us apply Lemma 4.17 with k = 1 and same choice of parameters as in
the base step of the iteration to any approximate singular set Lx1

α,γ
(after scaling the scale

γ to scale 1).
We obtain a covering(⋃

α

Lx1
α,γ

)
\
⋃
β

Bτ3γ(x1
β) ⊂

⋃
α

B2τ3γ2(x2
α) ∪

⋃
β

B2τ3γ2(x2
β) , (4.53)

such that Bτ4γ2(x2
α) and Bτ4γ2(x2

β) are disjoint,

x2
β ∈

(⋃
α

Lx1
α,γ

)
\
⋃
β

Bτ3γ(x1
β) (4.54)

and

x2
α ∈

(⋃
α

B2γ2εLx1
α,γ

)
\
⋃
β

Bτ3γ(x1
β) . (4.55)

Moreover, the balls in the covering are labeled as α-balls or β-balls according to the
convention of Lemma 4.17. In particular:

• for any center of α-ball x2
α, it holds that Br(x2

α) is a γ−1ε2-boundary ball for any
γ2 < r < τ−4 and

τ4γk
 
B
τ4γk (x2

α)
|Hessu|2 dH N ≤ δ2 for k = 0, 1, 2 . (4.56)

• for any k = 1, 2 and any centre of β-ball xkβ, it holds that

τ4γk
 
B
τ4γk (xk

β
)
|Hessu|2 dH N > δ2. (4.57)
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Moreover, being γ ≤ 1/4, the balls Bτ4γ2(x2
α) and Bτ4γ2(x2

β) are also mutually disjoint
with all the balls Bτ4γ(x1

β).
At this stage of the decomposition we have a weak neck region

N 2 := B2(p) \

⋃
α

B̄γ2(x2
α) ∪

⋃
1≤j≤2

⋃
β

B̄γj (x
j
β)

 . (4.58)

Observe that after this second step we pass from a neck region to a weak neck region
since there might already be balls of different sizes nearby. As we already pointed out this
motivates the necessity for a refinement of the construction later on.

After repeating this decomposition i times, decomposing at each step the α-balls via
Lemma 4.17 (applied with k = i after scaling each α-ball to radius 2), we get an approximate
weak neck region

N i := B2(p) \

⋃
α

B̄γi(xiα) ∪
⋃

1≤j≤i

⋃
β

B̄γj (x
j
β)

 . (4.59)

The balls in the covering in particular satisfy the following:
• for any centre of α-ball xiα, it holds that Br(xiα) is a γ−1ε2-boundary ball for any
γi < r < τ−4 and

τ4γk
 
B
τ4γk (xiα)

|Hessu|2 dH N ≤ δ2 for k = 0, 1, . . . , i . (4.60)

• for any k = 1, 2, . . . , i, and any centre of β-ball xkβ, it holds that

τ4γk
 
B
τ4γk (xk

β
)
|Hessu|2 dH N > δ2 . (4.61)

Limiting argument. Set
Ciα := {xiα} . (4.62)

By construction (cf. with (4.54) and (4.55)) we have

Ci+1
α ⊂ Bγi(Ciα) . (4.63)

Therefore, we can define the Hausdorff limit

C0 := lim
i→∞
Ciα . (4.64)

By letting i→∞ and passing to the limit the weak neck regions N i in (4.59), letting

C+ := {xβ } =
⋃
i

{xiβ } , and rxβ := γi if xβ = xiβ , (4.65)

we get

N := B2(p) \

C0 ∪
⋃
β

B̄rβ (xβ)

 = B2(p) \

C0 ∪
⋃
x∈C+

B̄rx(x)

 . (4.66)

By construction, the balls Bτ4rx(x) are disjoint for x ∈ C+,

τ4rx

 
Bτ4rx (x)

|Hessu|2 dH N > δ2 . (4.67)

Passing to the limit the bounds in the intermediate steps of the construction it is possible
to infer that N is a (γ−1ε, δ)-weak neck region.
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Content bound. Let us now verify the small content bound (4.49). Taking into account
the disjointness of the balls Bτ4rx(x) for x ∈ C+ and (4.67) we can estimate∑

x∈C+

H N (Bτ4rx(x))
τ4rx

≤δ−2 ∑
x∈C+

�
Bτ4rx (x)

|Hessu|2 dH N

≤δ−2
�
B2(p)

|Hessu|2 dH N

≤C(N)δ−2
 
B2(p)

|Hessu|2 dH N

≤C(N, τ)δ2

=C(N)δ2 ≤ ε .

The sought conclusion follows from Remark 4.8, which yields H N (Bτ4rx(x)) ≥ 1
4ωN (τ4rx)N .

4.3.2. Proof of Theorem 4.13. We can now complete the proof of the existence of neck
regions, together with the small content estimate. First we are going to apply Proposi-
tion 4.19. Then we refine the approximate singular set and the radius function to get a
neck region. In the last step of the proof we prove the content bound relying on (4.49) and
on the structure of neck regions Theorem 4.9.

Refinement of approximate singular set and radius. Let ε′, δ′ > 0 to be chosen
later in terms of ε, δ and N . Given η < η(ε′, δ′, N) we apply Proposition 4.19 with ε′ and
δ′ in place of ε and δ to obtain a weak neck region

Ñ := B2(p) \

C̃0 ∪
⋃
x̃∈C̃+

B̄r̃x̃(x̃)

 . (4.68)

Let γ = 1/8 be the iteration scale in the proof of Proposition 4.19.
In order to refine the weak neck region Ñ , let us build an approximate singular set S̃ as

follows. For any x ∈ B2(p) we denote by x̃ ∈ C̃ a point verifying d(C̃, x) = d(x̃, x) and set
sx := 2 max{d(C, x), r̃x̃}.

We say that x ∈ B2(p) belongs to S̃ if x ∈ ∪ỹ∈C̃Bτ r̃ỹ(ỹ) and

x ∈ Bε′sx Lx̃,sx . (4.69)

Now, let us define a radius function on S̃ as

rx := τ2 max{d(x, C̃), τ4r̃x̃}. (4.70)

It is easily seen that Lip rx ≤ τ2, C̃ ⊂ S̃ and rx = 0 for any x ∈ C̃0.
Choose a maximal disjoint collection {Bτ2rx(x), x ∈ S̃} whose set of centers C = C0 ∪ C+

satisfies C0 = C̃0 and C̃+ ⊂ C+.
We claim that

N := B2(p) \
(
C0 ∪

⋃
x∈C+

B̄rx(x)
)

(4.71)

is an (ε, δ)-neck region for ε′ ≤ ε′(ε,N) and δ′ ≤ δ′(ε, δ,N).

Proof of the neck region properties for N . The Vitali covering condition (i) in
the neck region Definition 4.3 is satisfied by the construction. Moreover, as we already
pointed out, it holds Lip rx ≤ τ2.

Next, note that Br(x) is an (ε′2τ−6)-boundary ball for all x ∈ C and rx ≤ r ≤ γτ−4. This
follows from Remark 4.2 thanks to the following observation: with this choice of parameters,
all the balls Br(x̃) for x̃ ∈ C̃ and r > r̃x̃ in the weak neck region are γ−1ε′2-boundary balls
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and the center point x belongs to the approximate singular set by (4.69).
Since γ−1ε′2τ−6 ≤ ε2 for ε′ ≤ ε′(N, ε), this proves condition (ii) in Definition 4.3.

The first inclusion in Definition 4.3 (iii) is also satisfied by the very construction of S̃,
since the center points all belong to the approximate singular set above their own scale.

Let us now verify the second inclusion in (iii) of Definition 4.3, which is the main reason
for the refinement of the weak neck region Ñ into N .

Let x ∈ C and rx ≤ r ≤ τ−3. Then, if x̃ ∈ C̃ is such that d(x, x̃) = d(x, C̃),

Lx,r ∩Br(x) ⊂ B2τ−2r(x̃) , (4.72)

since r ≥ rx ≥ τ2d(x, x̃) by (4.70).
The cone splitting Theorem 2.19 gives

Lx,r ∩Br(x) ⊂ Bτr/4(Lx̃,2τ−2r) (4.73)

for ε ≤ ε(N). The application of the cone splitting theorem is justified by the fact that, as
we already pointed out above, the balls Bs(x) and Bt(x̃) are ε2-boundary balls for s ≥ rx
and t ≥ rx.

In order to get (iii) of Definition 4.3 it is enough to see that

Lx̃,2τ−2r ∩Br(x) ⊂ B200τ max{2r,ry}(C) . (4.74)

Indeed, if (4.74) holds, then the Lipschitz property Lip rx ≤ τ2 gives

Lx,r ∩Br(x)
(4.73)
⊂ Bτr/4(Lx̃,2τ−2r) ∩Br(x)

(4.74)
⊂ B400τ max{2r,ry}(C) ∩Br(x)
⊂ B103τr(C ∩B3r(x)) .

Let us prove (4.74).
The property (iii) in the definition of weak neck region Ñ (see Definition 4.18) gives the
inclusion

Lx̃,2τ−2r ⊂ B100τ3 max{2τ−2r,r̃ỹ}(C̃) =
⋃

r̃ỹ≤2τ−2

rB200τr(ỹ) ∪
⋃

r̃ỹ≥2τ−2

rB100τ3r̃ỹ(ỹ) . (4.75)

Moreover, the cone splitting Theorem 2.19 implies

Lx̃,2τ−2r ∩B100τ3r̃ỹ(ỹ) ⊂ Bτ20r̃ỹLỹ,τ2r̃ỹ for any ỹ ∈ C̃ with r̃ỹ ≥ 2τ−2r , (4.76)

for any ε′ ≤ ε′(ε,N).
To finish the proof of (4.74) we are going to prove that

(Bτ20r̃ỹLỹ,τ2r̃ỹ) ∩B2τ−2r(x̃) ⊂ B2τ20r̃ỹ(S̃) ∩B2τ−2r(x̃) (4.77)
⊂ Bτ/4r(S̃) (4.78)
⊂ Bτ/4 max{2r,2ry}(C) . (4.79)

Let us first check (4.77). In particular we claim that Lỹ,τ2r̃ỹ ⊂ Bτ20r̃ỹ(S̃).
Given z ∈ Lỹ,τ2r̃ỹ we consider z̃ ∈ C such that d(z, z̃) = d(z, C̃). If d(z, z̃) ≤ τ20r̃ỹ then
z ∈ Bτ20r̃ỹ(S̃), since z̃ ∈ S̃. If d(z, z̃) > τ20r̃ỹ then

z ∈ Lỹ,τ2r̃ỹ ∩Bsz(z̃) ⊂ BεszLz̃,sz , where sz := 2 max{d(z, z̃), r̃z̃} ≥ 2τ20r̃ỹ , (4.80)

as a consequence of the cone splitting Theorem 2.19. This implies z ∈ S̃ by (4.69), since
we already know that z ∈ Bτ2r̃ỹ(ỹ) ⊂ ∪w̃∈C̃B̄τ r̃w̃(w̃).

To prove (4.78) we rely on the inequalities τ20r̃ỹ ≤ τ10ry, rx̃ ≤ r and the Lipschitz
bound Lip ry ≤ τ2. The last inclusion (4.79) follows from the definition of C.
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Let us now verify condition (iv) in Definition 4.3. For any x ∈ C we consider a point
in x̃ ∈ C̃ such that d(x, C̃) = d(x, x̃). Observe that, for any rx ≤ r ≤ τ3, it holds
Br(x) ⊂ Bτ−6r(x̃). The sought conclusion follows from

r2−
�
Br(x)

|Hessu|2 dH N ≤ C(τ,N)τ−12r2−
�
Bτ−6r(x̃)

|Hessu|2 dH N (4.81)

(4.48)
≤ C(τ,N)rδ′2 , (4.82)

by choosing δ′ ≤ δ′(N, δ).
If r ≥ τ3 instead, the sought bound can be easily obtained by recalling that u :

B4τ−4(p)→ RN−1 is a δ′-splitting map and, again, choosing δ′ ≤ δ′(δ,N).

Proof of the small content bound (4.29). By the very construction of the neck
region N , the following holds:

C+ ⊂
⋃
x̃∈C̃+

Bτ r̃x̃(x̃) . (4.83)

Moreover, for any x̃ ∈ C̃+ and for any x ∈ C+ ∩Bτ r̃x̃(x̃) it holds that

rx ≤ τ6r̃x̃ ≤ τ r̃x̃ , (4.84)

by definition of radius function (4.70).
Denoting by µ the packing measure of the neck region N as in Definition 4.5, it holds∑

x∈C+

rN−1
x = µ(C+)

(4.83)
≤

∑
x̃∈C̃+

µ(Bτ r̃x̃(x̃)) (4.85)

(4.84) (4.9)
≤ C(N)

∑
x̃∈C̃+

r̃N−1
x̃ (4.86)

(4.49)
≤ C(N)ε′ ≤ ε . (4.87)

5. Neck Decomposition

The main result of this part is Theorem 5.1 below. Its proof is based on the combination
of the following three ingredients:

• the boundary-interior decomposition Theorem 5.2, dealing with a decomposition
of the space into a singular part, regular balls and boundary balls with content
bounds;
• the existence of neck regions Theorem 4.13;
• the structure theorem for neck regions Theorem 4.9.

The covering arguments needed in the proof are essentially those of [JN16, Section 7] (see
also [CJN18, Section 10]) and we will only sketch them in most cases.

Theorem 5.1 (Neck decomposition theorem). Let η > 0 with δ < δ(N, v, η) and con-
sider a noncollapsed RCD(−(N − 1), N) m.m.s. (X, d,H N ). For any p ∈ X such that
H N (B1(p)) ≥ v, there exists a decomposition

B1(p) ⊂
⋃
a

(Na ∩Bra(xa)) ∪
⋃
b

Brb(xb) ∪ S
δ,η , (5.1)

Sδ,η ⊂
⋃
a

(C0,a ∩Bra(xa)) ∪ S̃δ,η , (5.2)

such that the following hold:
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i) for any a, the set Na = B2ra(xa) \ B̄rx(Ca) is an (η, δ)-neck region with (N − 1)-
singular set C0,a ⊂ B2ra(xa);

ii) for any b, the ball B2rb(xb) is (N, η)-symmetric and r2
b ≤ η;

iii)
∑
a r

N−1
a +

∑
b r

N−1
b + H N−1(Sδ,η) ≤ C(N, v, δ, η);

iv) it holds H N−1(S̃δ,η) = 0;
v) the singular set Sδ,η is (N − 1)-rectifiable;
vi) if η < η(N, v) and δ < δ(N, v, η), then SN−1 \ SN−2 ⊂ Sδ,η.

The Neck decomposition theorem provides a quantitative covering of B1(p) in terms of
sets that we know how to control at any scale. In the decomposition we have:

(a) (N, η)-symmetric balls Brb(xb). They cover the “interior” of the space and look
Euclidean at any scale and location;

(b) neck regions Na = B2ra(xa) \ B̄rx(Ca), where balls centred at xa ∈ Ca look like
boundary balls at any scale above ra;

(c) the set Sδ,η. This is an (N − 1)-dimensional set covering the actual boundary of
the space up to an H N−1-negligible set.

What makes our covering quantitative is the content bound c). This is the key ingredient
to prove sharp estimates on the size of tubular neighbourhoods of the boundary.

The essence of the Neck decomposition theorem is well illustrated in the case of the
convex region C(It) introduced in Example 4.12, where It is an interval with very small
length t. In this case neither interior 2-symmetric balls of fixed size, nor 1-symmetric
boundary balls of fixed size can get too close to the singular point. Therefore one is led
to consider a covering with infinitely many regular balls (whose radii become smaller and
smaller when the centres get close to the singular point) and infinitely many neck regions
(whose radii become smaller and smaller as the centres get close to the singular point).
We refer to [CJN18, Example 2.14 and 2.15] for other examples of neck decompositions in
any codimension.

The next theorem is typically the first step in the proof of the Neck Decomposition
Theorem 5.1. We emphasize it here, as once we have proven the ε-regularity Theorem 1.2
this leads to our Boundary Structure Theorem 1.4:

Theorem 5.2 (Boundary-Interior decomposition theorem). For any η > 0 and RCD(−(N−
1), N) m.m.s. (X, d,H N ) with p ∈ X such that H N (B1(p)) ≥ v, there exists a decompo-
sition

B1(p) ⊂
⋃
a

Bra(xa) ∪
⋃
b

Brb(xb) ∪ S̃ , (5.3)

such that the following hold:
i) the balls B4τ−4ra(xa) are η-boundary balls and r2

a ≤ η;
ii) the balls B2rb(xb) are (N, η)-symmetric and r2

b ≤ η;
iii) S̃ ⊂ S and H N−1(S̃) = 0;
iv)

∑
b r

N−1
b ≤ C(N, v, η);

v)
∑
a r

N−1
a ≤ C(N, v).

The proof of Theorem 5.2 proceeds via an iterative recovering argument. In the next
subsection, we introduce various rougher decompositions which include different types of
balls, and we show how we can iteratively get rid of them. The arguments are those of
[CJN18, Section 10], with some simplifications due to the strong rigidity of singularities in
codimension one. We only sketch the proofs, omitting the details and referring to [CJN18]
for all the details.

5.1. Proof of the neck decomposition theorem. Let us state an intermediate decom-
position result and show how it can be used to derive the boundary-interior decomposition
Theorem 5.2. Here a different type of balls appears, which are not η-boundary balls nor
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(N, η)-symmetric balls but have a definite volume drop with respect to the background
scale.

Proposition 5.3. For any η > 0 there exists ν0(N, v, η) > 0 such that, if (X, d,H N ) is
an RCD(−(N − 1), N) m.m.s. and B1(p) ⊂ X verifies H N (B1(p)) ≥ v, then there exists
a decomposition

B1(p) ⊂
⋃
a

Bra(xa) ∪
⋃
b

Brb(xb)
⋃
ν

Brν (xν) ∪ S̃ (5.4)

such that the following hold:
i) for any a, the ball B4τ−4ra(xa) is an η-boundary ball and r2

a ≤ η;
ii) for any b, the ball B2rb(xb) is (N, η)-symmetric and r2

b ≤ η;
iii)

∑
b r

N−1
b +

∑
ν r

N−1
ν ≤ C(N, η, v);

iv)
∑
a r

N−1
a ≤ C(N, v);

v) S̃ ⊂ S and H N−1(S̃) = 0;
vi) for any ν, infy∈B4rν (xν) Vrν (y) ≥ infy∈B4(p) V1(y) + ν0.

Let us now prove the boundary-interior decomposition Theorem 5.2. In order to do so
we just need to iteratively apply a finite number of times Proposition 5.3 to get rid of
ν-balls in the decomposition.

Proof of Theorem 5.2. In order to prove Theorem 5.2 given Proposition 5.3 we just need
to follow the first part of the proof of [CJN18, Theorem 2.12]. After a finite number of
iterations of the induction step decomposition we get a decomposition with only a-balls,
b-balls and a subset of the singular stratum SN−2. �

The remainder of this subsection is devoted to the proof of Proposition 5.3.
We are going to consider constants ξ, δ, γ, ε which in general will satisfy

0 < ξ � δ < γ < ε < ε(N) . (5.5)
We will assume additionally that (X, d,H N ) is an RCD(−ξ(N −1), N) space. The general
cases of all the statements can be achieved via additional covering arguments.

Let us introduce the notation for the various families of balls we will use in the interme-
diate steps of our arguments.

We recall that the set with small volume pinching has been introduced in (2.37) and the
almost cone splitting via content Theorem 2.21, to which we refer for the various constants
appearing below.

Any ball Br(x) will be of one or more of these types, indexed by letters b, c, d and e:
i) b-balls Brb(xb) are balls such that B2rb(xb) is (N, η)-symmetric;
ii) c-balls Brc(xc) are balls which are not b-balls but satisfy

H N (Bγrc(Prc,ξ(xc))) ≥ εγrNc ; (5.6)
iii) d-balls are balls Brd(xd) for which Prd,ξ(xd) 6= ∅ but

H N (Bγrd(Prd,ξ(xd))) < εγrNd ; (5.7)
iv) e-balls Bre(xe) for which Pre,ξ(xe) = ∅.

Remark 5.4. Let us point out that any e-ball Bre(xe) can be covered by ν-balls as in vi) of
Proposition 5.3 in such a way that

Bre(xe) ⊂
⋃
ν

Brν (xν) (5.8)

and
∑
ν r

N−1
ν ≤ C(N, v)rN−1

e .
In order to do so it is sufficient to consider a Vitali covering of Bre(xe) with balls Bξre(xie)
such that xie ∈ Bre(xe) and the balls Bξre/5(xie) are disjoint. At the end of the proof of
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[CJN18, Proposition 10.2] it is verified that the balls Bξre(xie) are ν-balls with ν0 = ξ and
the content estimate follows from the Vitali covering property.
Remark 5.5. Let us see how to recover boundary balls starting from c-balls.
We wish to prove that, for δ sufficiently small, any c-ball Brc(xc) is such that Bτ−6rc(x′c) is
an η-boundary ball for some x′c ∈ B4rc(xc), in particular Brc(xc) ⊂ Bτ−6rc(x′c).
In order to do so we argue by contradiction. Recall that the parameters are set in such
a way that the assumptions of the cone splitting via content Theorem 2.21 are satisfied.
Observe that, if Brc(xc) is a c-ball (see (5.6)), then there exists x′c ∈ B4rc(xc) such that
Bδ−1rc(x′c) is (N − 1, δ2)-symmetric. Since by assumption Brc(xc) is not (N, η)-symmetric,
it is easy to check arguing by contradiction that, for δ sufficiently small, Bτ−6rc(x′c) is an
η-boundary ball.
Proposition 5.6. Let v > 0 be fixed. For any ε ≤ ε(N, v), γ ≤ γ(N, v, ε), δ ≤ δ(N, v, η)
and ξ ≤ ξ(N, v, ε, γ, δ, η) and for any RCD(−ξ(N−1), N) m.m.s. (X, d,H N ) and B1(p) ⊂
X such that H N (B1(p)) ≥ v the following holds. There exists a decomposition

B1(p) ⊂
⋃
b

Brb(xb) ∪
⋃
c

Brc(xc) ∪
⋃
e

Bre(xe) ∪ S̃ , (5.9)

where we are adopting the usual notation for the various types of balls,∑
b

rN−1
b +

∑
c

rN−1
c +

∑
e

rN−1
e ≤ C(N, γ) , (5.10)

∑
c

rN−1
c ≤ C(N, v) (5.11)

and S̃ ⊂ S, with H N−1(S̃) = 0.
Proof. Specializing [CJN18, Proposition 10.3] to the case k = N − 1, we obtain that there
exist ε ≤ ε(N, v), γ ≤ γ(N, v, ε) and δ ≤ δ(N, v, η) such that, if the additional assumption
H N (Bγ(P1,ξ(p))) < εγ is satisfied (that is to say B1(p) is a d-ball), the following holds:
there exists a decomposition

B1(p) ⊆ S̃d ∪
⋃
b

Brb(xb) ∪
⋃
c

Brc(xc) ∪
⋃
e

Bre(xe) , (5.12)

where
i) H N−1(S̃d) = 0
ii)
∑
b r

N−1
b +

∑
e r

N−1
e ≤ C(N, γ);

iii)
∑
c r

N−1
c ≤ C(N, v).

To conclude, let us observe that, if B1(p) is either a b-ball, a c-ball or an e-ball, then
the statement is trivially verified. Therefore we can assume that B1(p) is a d-ball and the
conclusion follows from what we observed in the first part of the proof. �

Proof of Proposition 5.3. We divide the proof into two steps.
In the first one we reduce ourselves to balls such that, after rescaling of the space at

the scale of their radii the lower Ricci curvature bound is −ξ(N − 1). Then, relying on
Remark 5.4 and Remark 5.5, we get the sought decomposition starting from Proposition 5.6.
Step 1. Considering a Vitali covering of B1(p) with balls of sufficiently small radius we

reduce to balls that, when rescaled to radius one, verify the assumptions of Proposition 5.6.
The number of these balls can be controlled due to the Vitali property.
Step 2. Given any ball arising from the first step, we apply Proposition 5.6. Thanks

to Remark 5.4 we cover any e-ball with ν-balls keeping to content bound. Next, relying
on Remark 5.5, for any c-ball Brc(xc) we find xa ∈ B4rc(xc) such that Bτ−6rc(xa) is an
η-boundary ball and we substitute the given c-ball with the a-ball B4τ−4rc(xa). Since
Brc(xc) ⊂ Bra(xa) we keep the covering property and also the content bound is preserved.

�
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The proof of the neck decomposition Theorem 5.1 with properties i) to iv) relies on the
iterative application of the boundary-interior decomposition Theorem 5.2 together with
the existence of neck regions Theorem 4.13 and the structure Theorem 4.9 to take care of
the content and H N−1-measure estimates.

Proof of Theorem 5.1. In the following we are going to denote by Brf (xf ) a ball which has
not been identified with an a-ball or b-ball yet.

Let us start combining and rephrasing Theorem 4.13 and Theorem 4.9 in a way convenient
for our purposes: for any ε > 0, η < η(ε,N) and δ ≤ δ(N, η) there exists η′ > 0 such
that, if a ball B4τ−4r(p) is an η′-boundary ball, then there exists an (η, δ)-neck region
N = B2r(p) \ B̄rx(C) over B2r(p) such that

i) Br(p) ⊂ (N ∩Br(p)) ∪ C0 ∪
⋃
f B2rf (xf );

ii) H N−1(C0) ≤ A(N)rN−1;
iii) the singular set C0 is biLipschitz to a subset of RN−1;
iv) and

∑
f r

N−1
f ≤ εrN−1;

v) for any f it holds that

H N (Brf (xf )) ≤ 2
3ωNr

N . (5.13)

Let us just point out that item v) above follows from Remark 4.8.
In order to get the sought covering we proceed inductively. First we apply Theorem 5.2

with η = η′ given in the discussion above. Then we build (η, δ)-neck regions verifying i) to
v) above on any ball B2ra(xa) of the decomposition. After this first stage of the procedure
we get
B1(p) ⊂

⋃
a

(C0,a ∩Bra(xa)) ∪
⋃

(Na ∩Bra(xa)) ∪
⋃
b

Brb(xb) ∪
⋃
f

Brf (xf ) ∪ S̃ , (5.14)

with
i)
∑
b r

N−1
b ≤ C(N, v, η);

ii)
∑
a H N−1(C0,a) ≤ A(N)

∑
a r

N−1
a ≤ C ′(N, v);

iii) S̃ ⊂ S and H N−1(S̃) = 0;
iv)

∑
f r

N−1
f ≤ ε

∑
a r

N−1
a ≤ C(N, v)ε.

Next we apply again the procedure above to the balls Brf (xf ): first we perform the
boundary-interior decomposition of Theorem 5.2, then we build neck regions on any new
η-boundary ball appearing. At the first iteration we get

B1(p) ⊂
⋃
a1

(
C0,a1 ∩Bra1

(xa1)
)
∪
⋃
a1

(
Na1 ∩Bra1

(xa1)
)
∪
⋃
b1

Brb1 (xb1) ∪
⋃
f1

Brf1
(xf1) ∪ S̃1 ,

with
i)
∑
b1(rb1)N−1 ≤ C(N, v, η)(1 + C(N, v)ε);

ii)
∑
a1(ra1)N−1 ≤ C(N, v)(1 + εC(N, v));

iii
∑
a1 H N−1(C0,a1) ≤ A(N)C(N, v)(1 + εC(N, v));

iv) S̃1 ⊂ S and H N−1(S̃1) = 0;
v)
∑
f1(rf1)N−1 ≤ ε

∑
f r

N−1
f ≤ C(N, v)ε2.

Arguing by induction, after n iterations of the scheme we get
B1(p) ⊂

⋃
an

(
C0,an ∩Bran (xan)

)
∪
⋃(
Nan ∩Bran (xan)

)
∪
⋃
bn

Brbn (xbn)∪
⋃
fn

Brfn (xfn)∪ S̃n ,

with
n-i)

∑
bn(rbn)N−1 ≤ C(N, v, η)(1 + C(N, v)ε+ · · ·+ (C(N, v)ε)n);

n-ii)
∑
an(ran)N−1 ≤ C(N, v)(1 + C(N, v)ε+ · · ·+ (C(N, v)ε)n);

n-iii)
∑
an H N−1(C0,an) ≤ C(N, v)(1 + C(N, v)ε+ · · ·+ (C(N, v)ε)n);
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n-iv) S̃n ⊂ S and H N−1(S̃n) = 0;
n-v)

∑
fn(rfn)N−1 ≤ C(N, v)εn.

Next we wish to pass to the limit in the construction above.
To this aim choose ε small enough to ensure that C(N, v)ε < 1, η and δ accordingly and
let us set

S̃f :=
⋂
n≥1

⋃
fn

B2rfn (xfn) . (5.15)

Furthermore we denote by a any index belonging to ∪n {an} and by b any index belonging
to ∪n {bn}. Observe that {an} ⊂ {am} if n ≤ m and analogous inclusion holds for the
indexes b.
Then it is easy to check that

B1(p) ⊂
⋃
a

(C0,a ∩Bra(xa)) ∪
⋃

(Na ∩Bra(xa)) ∪
⋃
b

Brb(xb) ∪ S̃f ∪
⋃
n≥1
S̃n . (5.16)

Passing to the limit n-i),n-ii) and n-iii) we can easily verify that:
i)
∑
a r

N−1
a +

∑
b r

N−1
b ≤ C(N, v, η);

ii)
∑
a H N−1(C0,a) ≤ C(N, v)

iii) ∪n≥1S̃n ⊂ S and H N−1(∪n≥1S̃n) = 0.
To conclude we are left to verify that

H N−1
(
S̃f
)

= 0 and S̃f ⊂ S . (5.17)

The first conclusion can be checked relying on n-iv) above, taking into account the definition
of the Hausdorff pre-measures H N−1

ξ .
The second conclusion can be verified since the balls Brfn (xfn) satisfy the volume bounds
(5.13). Therefore, at any point x ∈ S̃f , it holds that limr→0 H N (Br(x))/ωNrN < 1, hence
x ∈ S.

All in all, letting
Sδ,η :=

⋃
a

(C0,a ∩Bra(xa)) ∪ S̃f ∪
⋃
n≥1
S̃n , (5.18)

we get the neck decomposition verifying the sought properties in the statement.
To address v) we just point out that, by (5.18), Sδ,η is covered by the countable union⋃

a

(C0,a ∩Bra(xa)) (5.19)

up to H N−1-negligible sets. Therefore it is (N − 1)-rectifiable by the neck structure
Theorem 4.9.

Now we deal with vi). In order to do so we follow the last part of the proof of [CJN18,
Theorem 2.12], with simplifications due to the rigidity of codimension one.

We claim that the following hold:
a) if η < η(N) and Bτ−1rb(xb) is an (N, η)-symmetric ball such that r2

b (N − 1) ≤ η,
then there is no point of SN−1 \ SN−2 in Brb(xb);

b) if η < η(N) and δ < δ(η,N) then no (η, δ)-neck region Na = B2ra(xa) \ B̄rx(C) can
contain points of SN−1 \ SN−2.

This will certainly suffice to establish vi), so let us prove (a) and (b) above.
To prove (a) let us fix ε < dGH(BRN

1 (0), BRN+
1 (0))/2. Then by volume convergence,

volume monotonicity and volume rigidity, if η < η(ε) = η(N), any tangent cone at any
point x ∈ Brb(xb) has unit ball ε-close to the unit ball of RN , therefore x /∈ SN−1 \ SN−2.

In order to prove (b) let us consider x ∈ Na = B2ra(xa) \ B̄rx(Ca) and let y ∈ Ca be such
that d(x, y) = d(x, Ca). Then by the first defining condition of neck region B4d(x,y)(y) is an
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η-boundary ball. Therefore, Bd(x,y)/2(x) is (N, ε)-symmetric if η < η(ε). Then, arguing as
in the proof of (a) we infer that, if ε < ε(N), then x /∈ SN−1 \ SN−2.

�

6. Boundary rectifiability and stability

This section is dedicated to the proofs of the rectifiability and first stability results for
boundaries of noncollapsed RCD spaces by means of the tools developed in section 5 and
section 4.

6.1. Proof of the stability results. Let us start with a weak ε-regularity result. Basically,
it amounts to saying that balls sufficiently close in the GH sense to a model boundary ball
have a definite amount of boundary points. This will be sharpened later on in Corollary 8.7.

Theorem 6.1. Let N ≥ 1 be fixed. There exists η(N) > 0 and c(N) > 1 such that, if
η ≤ η(N) and

dGH(B1(p), BRN+
1 (0)) ≤ η , (6.1)

where B1(p) is a ball of an RCD(−η(N − 1), N) space (X, d,H N ), then

c(N)−1 ≤H N−1(SN−1 ∩B1(p)) ≤ c(N) . (6.2)

Proof. The lower bound in (6.2) follows by combining Theorem 4.9 and Theorem 4.13.
Indeed by means of the latter, for η > 0 small enough, we can build an (ε, δ)-neck region
over B4−1τ4(p) and from (ii), (iii) in Theorem 4.9 and (4.29) we deduce that, up to take
ε, δ sufficiently small, it holds

H N−1(SN−1 ∩B1(p)) ≥H N−1(C0) ≥ µ(B4−1τ4(p))− µ(C+) ≥ c(N) .
The upper bound in (6.2) instead follows from Theorem 5.1. Indeed, it is sufficient to

apply the neck decomposition with parameters η and δ sufficiently small in such a way
that, thanks to (vi) of Theorem 5.1, SN−1 \ SN−2 ⊂ Sδ,η and then to rely on (iii) of the
same statement to infer that

H N−1
(
(SN−1 \ SN−2) ∩B1(p)

)
= H N−1(SN−1 ∩B1(p)) ≤ C(N, v) .

To conclude we observe that the dependence of the constant on the volume can be removed
taking into account the volume convergence Theorem 2.17 and (6.1). �

The ε-regularity theorem above directly yields a stability result for the absence of
boundary under noncollapsing pGH convergence.

Theorem 6.2. Let (Xn, dn,H N , xn) be a sequence of noncollapsed RCD(K,N) spaces
with no boundary on B2(xn) in the sense of Definition 1.1. Assume that

(Xn, dn,H N , xn) pGH−−−→ (Y, dY ,H N , y) . (6.3)
Then (Y, dY ,H N ) has no boundary on B1(y).

Proof. Let us argue by contradiction. Assume that there exists z ∈ B1(y) ∩ SN−1 \ SN−2.
Then we can find r ∈ (0, 1/5) such that dGH(Br(z), B

RN+
r (0)) ≤ η(N)

2 r where η(N) is as in
Theorem 6.1. Let Xn 3 zn → z ∈ Y . Then we have

dGH(Br(zn), BRN+
r (0)) ≤ dGH(Br(zn), Br(z)) + dGH(Br(z), B

RN+
r (0)) < η(N)r

for n big enough. Thanks to Theorem 6.1 above we can infer that
(SN−1 \ SN−2) ∩Br(zn) 6= ∅ ,

contradicting the assumption that Xn has no boundary in B2(xn) ⊃ Br(zn). �
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6.2. Rectifiable structure and volume estimates. The main goal of this section is
to prove Theorem 1.4 (i), (ii) and (iii). This will be achieved through some intermediate
steps.

Theorem 6.3. Let 1 ≤ N < ∞ and v > 0 be fixed. Let (X, d,H N ) be a noncollapsed
RCD(−(N −1), N) space and p ∈ X be such that H N (B1(p)) > v > 0. Then the following
hold:

(i) the singular set SN−1 is (N − 1)-rectifiable;
(ii) there exists a constant C = C(N, v) > 0 such that

H N (Br(SN−1 \ SN−2) ∩B1(p)) ≤ Cr for any r ∈ (0, 1), p ∈ X . (6.4)

In particular

H N−1(SN−1 ∩B1(p)) ≤ C for any p ∈ X ; (6.5)

(iii) at any x ∈ SN−1\SN−2, the tangent cone is unique and isomorphic to the Euclidean
half space RN−1

+ := {x ∈ RN : xN ≥ 0 }.

Proof of Theorem 6.3 (i). The rectifiability of SN−1 immediately follows from Theorem 5.1.
Indeed

SN−1 ∩B1(p) ⊂
⋃
a

C0,a ∪ S̃δ,η ,

where H N−1(Sδ,η) = 0 and C0,a is (N − 1)-rectifiable by (iv), (v) and (vi) of Theorem 5.1.
�

Proof of Theorem 6.3 (ii). We divide the proof of (6.4) in three steps: volume estimate
for the tubular neighbourhood intersected with neck regions (Step 1), volume estimate for
the tubular neighbourhood intersected with regular balls (Step 2) and combination of the
previous estimates (Step 3).

Let us point out that (6.5) can be obtained either as a consequence of Theorem 5.1, or
as a consequence of the volume bound for the tubular neighbourhood (6.4) by a standard
argument (cf. [ABS19, Lemma 2.5]).
Step 1. We claim that if ε ≤ ε(N) and δ ≤ δ(N, v, ε), then for any (ε, δ)-neck region

Na = B2ra(xa) \Brx(Ca) it holds

H N (Br(SN−1 \ SN−2) ∩Na ∩Bra(xa)) ≤ C(N, v)rrN−1
a , for any r ∈ (0, 1). (6.6)

Observe that (6.6) is trivially verified when r > ra/2. Indeed

H N (Br(SN−1 \ SN−2)∩Na ∩Bra(xa)) ≤H N (Bra(xa)) ≤ C(N, v)rNa ≤ 2C(N, v)rrN−1
a .

Therefore let us assume r ≤ ra/2. Notice that

Br(SN−1 \ SN−2) ∩Na ∩Bra(xa) ⊂ B2r(Ca) . (6.7)

Indeed, if this is not the case we could find x ∈ Br(SN−1 \ SN−2) ∩ Na ∩ Bra(xa) and
y ∈ Ca such that 2r ≤ d(x, Ca) = d(x, y) =: s. Observe that B2s(y) is an ε-boundary ball
and

(SN−1 \ SN−2) ∩B2s(y) ⊂ B8τs(Ca) , (6.8)
as a consequence of (iii) in Definition 4.3 (recall that we set τ := 10−10N ). Being x ∈
Br(SN−1 \ SN−2) ∩Na ∩Bra(xa) there exists

z ∈ (SN−1 \ SN−2) ∩B2s(y) ⊂ B8τs(Ca) (6.9)

such that d(x, z) ≤ r. This yields to a contradiction since

r ≥ d(x, z) ≥ d(x, Ca)− 8τs ≥ s(1− 8τ) ≥ 2r(1− 8τ) . (6.10)
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With (6.7) at our disposal let us conclude the proof of (6.6). Let x1, . . . , xm ∈ Ca be
such that {Br(xi) } is a disjoint family, 2r > rxi for any i = 1, . . . ,m and

{x ∈ Ca : rx < 2r } ∩Bra(xa) ⊂ ∪mi=1B5r(xi) . (6.11)
It is immediate to check that

B2r(Ca) ∩Na ∩Bra(xa) ⊂
m⋃
i=1

B10r(xi) . (6.12)

Hence from (6.7) we deduce

H N (Br(SN−1 \ SN−2) ∩Na ∩Bra(xa)) ≤
m∑
i=1

H N (B10r(xi)) ≤ C(N, v)mrN . (6.13)

It remains only to show that m ≤ C(N)r1−NrN−1
a . In order to do so we use (ii) in

Theorem 4.9 which gives

crN−1
a ≥ µ(B2ra(xa)) ≥

m∑
i=1

µ(Br(xi)) ≥ c−1mrN−1 , (6.14)

with µ packing measure associated to the neck region as in (4.6).
Step 2. We claim that, for any ε < ε(N), it holds

H N (Br(SN−1 \ SN−2) ∩Brb(xb)) ≤ C(N, v)rrN−1
b for any r ∈ (0, 1) , (6.15)

whenever B2rb(xb) is an (N, ε)-symmetric ball.
Let us choose ε(N) small enough to ensure that

(SN−1 \ SN−2) ∩B 3
2 rb

(xb) = ∅

whenever B2rb(xb) is (N, ε)-symmetric for some ε ≤ ε(N). This choice gives the implication
Br(SN−1 \ SN−2) ∩Brb(xb) 6= ∅ =⇒ rb ≤ 2r (6.16)

that easily leads to (6.15).
Step 3. Let us conclude the proof of (6.4) relying on Theorem 5.1 and the previous two

steps. Let ε(N) > 0 be smaller than the ones in Step 1 and Step 2, and let δ ≤ δ(N, v, ε(N)),
smaller than the one in Step 2 and in Theorem 5.1. By Theorem 5.1 we can find a covering

B1(p) ⊂
⋃
a

(Na ∩Bra(xa)) ∪
⋃
b

Brb(xb) ∪ S
δ,η , (6.17)

where any B2rb(xb) is an (N, ε(N))-symmetric ball, Na = B2ra \ Brx(Ca) is an (ε(N), δ)
neck region and Sδ,η is H N -negligible. Then we can estimate

H N (Br(SN−1 \ SN−2) ∩B1(p)) ≤
∑
a

H N (Br(SN−1 \ SN−2) ∩Na ∩Bra(xa))

+
∑
b

H N (Br(SN−1 \ SN−2) ∩Brb(xb))

≤C(N, v)r
(∑

a

rN−1
a +

∑
b

rN−1
b

)
≤C(N, v)r ,

where the first inequality follows from (6.17), the second one from Step 1 and Step 2 and
the last one from (iii) in Theorem 5.1. �

Proof of Theorem 6.3 (iii). When x ∈ SN−1 \ SN−2 any tangent cone has the density
at the tip equal to ΘX(x) = 1/2 since (RN+ , dEucl,H

N , 0) ∈ Tanx(X, d,H N ). Hence,
Lemma 6.5 below implies that if (Y, %,H N , y) ∈ Tanx(X, d,H N ) then, either Y = RN+ or
it has no boundary according to Definition 1.1.
This along with a classical result (see for instance [CJN18, Theorem 4.2]) ensuring that the
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set of tangent cones at given point x ∈ X is connected with respect to the pmGH topology,
implies the sought conclusion. Indeed the set of pointed RCD(K,N) spaces without
boundary is closed with respect to noncollapsed pGH convergence by Theorem 6.2. �

Remark 6.4. It follows from the lower semicontinuity of the density Θ and the observation
that Θ(x) = 1/2 for any x ∈ SN−1 \ SN−2, that for any noncollapsed RCD(K,N) m.m.s.
(X, d,H N ), it holds that Θ(x) ≤ 1/2 for any x ∈ ∂X.

Lemma 6.5. Let C(Y ) be a noncollapsed RCD(0, N) m.m.s. which is a cone over an
RCD(N − 2, N − 1) m.m.s. (Y, dY ,H N−1) with tip p. If C(Y ) has boundary according to
Definition 1.1 then Θ(p) ≤ 1

2 . Moreover, the equality holds if and only if C(Y ) is isometric
to the Euclidean half-space RN+ .

Proof. It is simple to verify that if C(Y ) has boundary then Y has boundary as well.
Observe that (Y, dY ,H N−1) is an RCD(N − 2, N − 1) space, therefore by [K15] it has
diameter less than π. Let y ∈ SN−2 \ SN−3(Y ). Then the Bishop-Gromov inequality for
the CD(N − 2, N − 1) condition ensures that

H N−1(Y ) = H N−1(Bπ(y)) ≤ ΘY (y)NωN ≤
1
2NωN . (6.18)

Therefore

ΘC(Y )(p) = lim
r→0

H N (Br(p))
ωNrN

= H N−1(Y )
NωN

≤ 1
2 , (6.19)

where the second equality follows from the definition of metric measure cone while the
inequality follows from (6.18) (cf. with (2.30)).

Let us now deal with the equality case. Assume that Θ(p) = 1
2 . We claim that C(Y ) is

a cone with respect to any x ∈ SN−1 \ SN−2. Indeed, for any x ∈ C(Y ), it holds

lim
r→∞

H N (Br(x))
ωNrN

= lim
r→∞

H N (Br(p))
ωNrN

= 1/2 , (6.20)

since

lim
r→∞

H N (Br(x))
ωNrN

= lim
r→∞

H N (Br+R(x))
ωN (r +R)N

≥ lim
r→∞

H N (Br(p))
ωNrN

· rN

(r +R)N

= lim
r→∞

H N (Br(p))
ωNrN

,

where we set R := d(x, p) and the converse inequality can be obtained switching the roles
of x and p.

Therefore, if we additionally assume that x ∈ SN−1 \ SN−2, then

r 7→ H N (Br(x))
ωNrN

is constant on (0,∞) . (6.21)

The volume cone implies metric cone theorem [DPG16] (see also [CC96] for the previously
considered case of Ricci limits) gives then the claimed conclusion.

Arguing inductively and relying on the cone splitting theorem we can now conclude that
C(Y ) = RN+ . �

6.3. A second notion of boundary and further regularity properties. Recall that
our working definition of boundary ∂X, taken from [DPG18], is as topological closure of
the top dimensional singular stratum:

∂X := SN−1 \ SN−2 . (6.22)
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In [KM19] an alternative definition of boundary has been proposed, inspired by the one
adopted for Alexandrov spaces [P91]:

FX :=
{
x ∈ X : there exists a cone with boundary (Y, dY ) ∈ Tanx(X, d,H N )

}
,

(6.23)
where cones with boundary are cones for which the cross section, that is a noncollapsed
RCD(N − 2, N − 1) space thanks to [DPG18, K15], has boundary. Arguing recursively we
reduce to RCD(0, 1) spaces and, thanks to the classification in [KL16], we know that they
are isometric to manifolds of dimension one, possibly with boundary (in the topological
sense). In this case we say that the space has boundary if and only if it is a manifold with
boundary.

Theorem 6.6. Let 1 ≤ N < ∞ and v > 0 be fixed. Let (X, d,H N ) be an RCD(−(N −
1), N) space and p ∈ X be such that H N (B1(p)) > v. Then, SN−1 \ SN−2 = ∅ if and only
if FX = ∅. Moreover the following hold:

(i) FX ⊂ ∂X;
(ii) ∂X is (N − 1)-rectifiable and

H N−1(∂X ∩Br(x)) ≤ C(N, v)rN−1 for any x ∈ ∂X ∩B1(p) and r ∈ (0, 1) ;
(iii)

H N (Br(∂X) ∩B1(p)) ≤ C(N, v)r for any r ∈ (0, 1), p ∈ X , (6.24)

Proof. From the inclusion SN−1 \ SN−2 ⊂ FX we deduce that FX = ∅ implies SN−1 \
SN−2 = ∅. To prove the converse implication we show the following

FX 6= ∅ =⇒ SN−1 \ SN−2 6= ∅ , (6.25)
by induction on N . The case N = 1 is trivial, thanks to the classification of RCD(0, 1)
spaces [KL16]. Let us deal with the inductive step. Given a noncollapsed RCD(K,N)
m.m.s. (X, d,H N ) and x ∈ FX there exists a cone (C(Y ), %,H N , y) ∈ Tanx(X, d,m)
where the cross section (Y, dY ,H N−1) is an RCD(N − 2, N − 1) space such that FY 6= ∅.
The inductive assumption gives

SN−1 \ SN−2(Y ) 6= ∅ ,
which easily yields the claimed conclusion.

Let us now prove the inclusion FX ⊂ ∂X. Being ∂X closed, for any x ∈ X \ ∂X there
exists r > 0 such that

Br(x) ∩ (SN−1 \ SN−2) = ∅ .
Therefore any tangent cone (Y, %,H N , y) at x satisfies SN−1 \ SN−2 = ∅ as a consequence
of Theorem 6.1. Hence, from (6.25) we deduce FY = ∅ which, by definition, yields x /∈ FX.

The rectifiability and the measure estimate in (ii) follow from Theorem 6.3 (i) and (6.5)
respectively, taking into account the dimension estimate dimSN−2 ≤ N − 2. The volume
bound for the tubular neighbourhood is a consequence of (6.4) and the very definition of
∂X. �

Remark 6.7. Thanks to Theorem 6.6, the notion of having boundary for a noncollapsed
RCD space is independent of the definition of boundary we choose, between the ones in
[DPG18] and [KM19]. This gives a positive answer to [KM19, Question 4.8].

Moreover, we can employ the stability result in Theorem 1.6 to prove that any pmGH
limit (X, d,H N , x) of a sequence of pointed RCD(K,N) spaces (Xn, dn,H N , xn) with
FXn = ∅ satisfies FX = ∅. This answers positively to [KM19, Question 5.11].

Remark 6.8. With the techniques of this paper we are not able to show the identity
FX = ∂X in full generality, which would give a positive answer to [KM19, Question 4.9].
Nevertheless the analysis of the Laplacian of the distance from the boundary performed
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in section 7 allows us to prove this identity, together with the local Ahlfors regularity
of the boundary volume measure, in the case of Ricci limits with boundary. Moreover,
the improved neck structure Theorem 8.1 gives the same conclusion on δ-boundary balls
whenever δ < δ(N).

Corollary 6.9. Let 1 ≤ N < ∞ be a fixed natural number. Then, for any v > 0 there
exists a constant C = C(N, v) > 0 such that the following holds. If (X, d,H N ) is an
RCD(−(N − 1), N) space and x ∈ X is such that H N (B1(x)) > v, then

H N−1
∞ (∂X ∩B1(x)) ≤H N−1 (∂X ∩B1(x)) ≤ C(n, v)H N−1

∞ (∂X ∩B1(x)) . (6.26)

Proof. The first inequality above is true in great generality by the very definition of the
Hausdorff and pre-Hausdorff measures.

Let us pass to the verification of the second one.
In order to do so let C(N, v) be such that H N−1(∂X ∩ Br(x)) ≤ C(N, v)rN−1 for any
x ∈ ∂X ∩B1(p) and r ∈ (0, 1) given by Theorem 1.4 (i). Let Bri(xi) be any covering of a
Borel set A ⊂ ∂X ∩B1(x). Then, up to worsening the constant C(n, v) we can estimate

H N−1(A) ≤
∑
i

H N−1(A ∩ ∂X) ≤ C(N, v)
∑
i

rN−1
i . (6.27)

Passing to the infimum on the family of all coverings of A we get the sought estimate

H N−1(A) ≤ C(N, v)H N−1
∞ (A) . (6.28)

�

Corollary 6.10. Let 1 ≤ N <∞ be a fixed natural number and v > 0, then the following
holds. Assume that (Xn, dn,H N , pn) are noncollapsed RCD(−(N − 1), N) spaces con-
verging in the pGH topology to (X, d,H N , p) and verifying the noncollapsing assumption
H N (B1(pn)) > v for any n ∈ N. Then

H N−1(∂X ∩B1(p)) ≥ 1
C(N, v) lim sup

n→∞
H N−1(∂Xn ∩B1(pn)) , (6.29)

where C(N, v) > 0 is the constant appearing in Corollary 6.9 above.

Proof. Let us denote by C ⊂ X the limit of the sequence of compact sets ∂Xn ∩B1(pn) in
the Hausdorff topology, possibly after passing to a subsequence. Here it is understood that
the convergence of the ambient spaces is realized in a common proper metric space (Z, dZ).
Since, as we already remarked, any boundary point has density less than 1/2 and the density
is lower semicontinuous along pGH converging sequences, we infer that ΘX(x) ≤ 1/2 for
any x ∈ C. In particular C ⊂ S ∩ B1(p). Moreover, it easily follows from the Hausdorff
dimension estimate dimH(SN−2) ≤ N − 2 that H N−1

∞ (C) ≤H N−1
∞ (∂X ∩B1(p)).

Taking into account the general inequality H N−1
∞ ≤H N−1 and the discussion above, in

order to prove (6.29) it suffices now to observe that

H N−1
∞ (C) ≥ lim sup

n→∞
H N−1
∞ (∂Xn ∩B1(pn))

≥ 1
C(N, v) lim sup

n→∞
H N−1(∂Xn ∩B1(pn)) ,

where the first inequality is a consequence of (2.3) while the second one follows from
Corollary 6.9. �
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7. Distance from the boundary and noncollapsing of boundaries

In this section we are going to study some key properties of the distance function from
the boundary. They will be useful to better understand the convergence of boundaries of
RCD spaces under noncollapsing pGH convergence and their topological regularity in the
next sections.

Given a noncollapsed RCD(−(N − 1), N) space (X, d,H N ) with boundary we denote
by

d∂X : X → R+, d∂X(x) := min
p∈∂X

d(x, p)

the distance function from ∂X.
Let us start with a key lemma regarding convergence of distance functions from the

boundary in case the limit space is the model half space.

Lemma 7.1. Let 1 ≤ N < ∞ be a fixed natural number. For any sequence of pointed
RCD(−(N − 1), N) spaces (Xn, dn,H N , xn) such that B8(xn) → B

RN+
8 (0) in the GH-

topology one has that

∂Xn ∩B3(xn)→ ∂RN+ ∩B3(0) in the Hausdorff sense. (7.1)

Moreover d∂Xn → d∂RN+ uniformly and in W 1,2 on B2(0).

Proof. Taking into account Remark 2.1 it is sufficient to prove that the convergence holds
in the Kuratowski sense.

Let us first prove that any limit point of a sequence of points yn ∈ ∂Xn∩B3(pn) belongs
to ∂RN+ ∩B3(0). To this aim it is sufficient to take into account Remark 6.4 and the lower
semicontinuity of the density along pGH converging sequences of noncollapsed spaces. We
conclude that the limit point has density less than 1/2 and therefore it belongs to the
boundary of the half space, since those are the only singular points.

Next we wish to prove that any point in ∂RN+ ∩B3(0) is the limit of a sequence of points
in ∂Xn ∩B3(pn). To prove this claim we rely on the stability of the boundary. If the claim
were false then we could find a scale r > 0 and points yn ∈ Xn such that yn → 0 ∈ RN+ and
Br(yn) ⊂ Xn has no boundary for any n ∈ N. The contradiction follows by Theorem 6.1,
since the ball Br(0) ⊂ RN+ has boundary.

The uniform convergence d∂Xn → d∂RN+ on B2(0) is a simple consequence of (7.1) (see
again Remark 2.1).

To obtain theW 1,2 convergence it is sufficient to observe that, as pointed out in [AHT18],
for uniformly continuous functions the uniform and the L2 convergence are equivalent.
Moreover, |∇d∂Xn | = |∇d∂X | = 1 H N a.e., therefore the W 1,2 convergence follows from
the volume convergence Theorem 2.17, since�

B2(pn)
|∇d∂Xn |

2 dH N = H N (B2(pn))→H N (B2(0)) =
�
B2(0)

|∇d∂X |2 dH N . (7.2)

�

Given the stability Theorem 6.1 and Lemma 7.1 we can provide a useful improvement
upon the form of the ε-isometry in Theorem 3.8 in the case of δ-boundary balls.

Corollary 7.2. Let 1 ≤ N < ∞ be a fixed natural number. Then for any ε > 0 there
exists δ = δ(ε,N) > 0 such that, if (X, d,H N ) is a noncollapsed RCD(−δ(n− 1), N) space
and B2(x) ⊂ X is a δ-boundary ball, then for any ε-splitting map u : B1(x)→ RN−1 such
that u(x) = 0 one has that

(u, d∂X) : B1(x)→ RN+ is an ε-isometry , (7.3)
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and
N−1∑
k=1

 
B1(p)

|∇uk · ∇d∂X |dH N ≤ ε . (7.4)

Proof. Both conclusions can be obtained arguing by contradiction as in the proof of
Theorem 3.8 and relying on Lemma 7.1. �

7.1. Laplacian of the distance from the boundary. Next we study the Laplacian of
the distance function from the boundary, which plays a fundamental role in establishing
noncollapsing estimates for the boundary measure.

Let us begin by recalling that d∂X has locally measure valued Laplacian ∆d∂X on
X \ ∂X as a consequence of the general representation theorem for Laplacians of distance
functions [CM18, Corollary 4.16]. Moreover in [CM18, Corollary 4.16] it is also proved that
the singular part of ∆d∂X on X \ ∂X is non positive. The following conjecture regards
the absolutely continuous part.

Open Question 7.3. Let (X, d,H N ) be a noncollapsed RCD(K,N) m.m.s. for some
K ∈ R and 1 ≤ N <∞. Assume that ∂X 6= ∅. Then

∆acd∂X ≤ −Kd∂X on X \ ∂X , (7.5)

where ∆acd∂X denotes the absolutely continuous part of ∆d∂X on X \ ∂X.

As we shall see below, Open Question 7.3 can be verified for Alexandrov spaces with
curvature bounded from below, Riemannian manifolds with convex boundary and interior
lower Ricci curvature bounds and their noncollapsed pGH limits. Notice that in this paper
manifolds with convex boundary are those for which the second fundamental form with
respect to the interior normal vector is non negative definite. Thanks to [W14, Theorem
1.2.1] this condition implies that the interior part of the manifold is geodesically convex.

The main difficulty in order to answer to Open Question 7.3 in full generality is that a
geometric condition needs to be turned into an analytic information: the fact that ∂X is
the boundary of an RCD(K,N) space (X, d,H N ), therefore it is convex to some extent,
should imply a bound on the Laplacian of the distance function.
In the case of Alexandrov spaces this difficulty can be circumvented since the distance
from the boundary is concave (in the case of non negative sectional curvature) see [AB03]
and [P07, Theorem 3.3.1]. For smooth manifolds, instead, the regularity of the boundary
is key to turn the non negativity of the second fundamental form into non negativity of
the mean curvature of the boundary.

Let us first present the main analytic and geometric implications of a positive answer to
Open Question 7.3.

Theorem 7.4. Let N ∈ N, N ≥ 1 and K ∈ R be fixed. Given an RCD(K,N) m.m.s.
(X, d,H N ) with ∂X 6= 0 such that Open Question 7.3 is verified, the following hold:

(i) d∂X has measure valued Laplacian on X and ∆d∂X ∂X = H N−1 ∂X;
(ii) for any p ∈ ∂X one has

H N−1(B2(p) ∩ ∂X) > C(K)H N (B1(p)) ; (7.6)

(iii) any tangent cone at x ∈ ∂X has boundary, in particular FX = ∂X (recall that
FX is defined in (6.23)).

Let us state and prove a lemma that is independent of the validity of Open Question 7.3
and will play a role in the proof of Theorem 7.4.

Lemma 7.5. Let 1 ≤ N < ∞ be a natural number and (X, d,H N ) be a noncollapsed
RCD(−(N − 1), N) metric measure space. Assume that ∂X 6= ∅. Then d∂X : X → [0,∞)



BOUNDARY REGULARITY AND STABILITY FOR SPACES WITH RICCI BOUNDED BELOW 55

has locally measure valued Laplacian on X \ ∂X and the singular part of ∆d∂X is non
positive on X \ ∂X. Moreover�

X
∇ϕ ·∇d∂X dH N = −

�
ϕ dµ− lim

ri→0

�
{d∂X>ri}

ϕ d∆d∂X for any ϕ ∈ Lipc(X) , (7.7)

for some sequence ri ↓ 0 and locally finite measure µ on X (a priori depending on the
chosen sequence).

Proof. We have already observed that ∆d∂X has locally measure valued Laplacian on
X \ ∂X and the singular part of ∆d∂X is non positive on X \ ∂X as a consequence of
[CM18, Corollary 4.16].

Let us verify that d∂X verifies (7.7). We treat only the case when (X, d) (and a fortiori
∂X) is compact, the general one can be handled with an additional cut-off argument.

In order to do so we wish to pass to the limit in the integration by parts formula on
(sufficiently regular) superlevel sets of the distance from the boundary.
Observe that, by the coarea formula Theorem 2.4, for almost every r > 0, the superlevel set
{d∂X > r} has finite perimeter. Moreover, the volume bound for the tubular neighbourhood
of the boundary

H N ({d∂X < r}) ≤ Cr , (7.8)
obtained thanks to Theorem 6.6 (iii) via a covering argument, together with a further
application of the coarea formula, yield the existence of a sequence (ri) with ri ↓ 0 as
i→∞ and

Per({d∂X > ri}) ≤ C for any i ∈ N . (7.9)
Since d∂X has measure valued Laplacian on X \ ∂X = {d∂X > 0}, the bounded vector

field ∇d∂X has measure valued divergence on the same domain. Therefore, applying
the Gauss Green theorem [BCM19, Section 6] to the vector field ϕ∇d∂X on the domain
{d∂X > ri} we infer that�

{d∂X>ri}
∇ϕ · ∇d∂X dH N = −

�
{d∂X>ri}

ϕd∆d∂X −
�
ϕfi d Per({d∂X > ri}) , (7.10)

for some function fi verifying

‖fi‖L∞(Per({d∂X>ri})) ≤ 1 . (7.11)

Thanks to (7.9) and (7.11) we can assume that, up to extracting a subsequence, the
measures fi Per({d∂X > ri}) weakly converge to a finite measure ν on X in duality with
continuous functions. Therefore we can pass to the limit in (7.10) as i→∞ to get that�

X
∇ϕ · ∇d∂X dH N = −

�
ϕ dµ− lim

ri→0

�
{d∂X>ri}

ϕd∆d∂X , (7.12)

as we claimed. �

Proof of Theorem 7.4. Let µ and ri ↓ 0 be as in Lemma 7.5. If Open Question 7.3 holds
then we deduce that�
∇ϕ · ∇d∂X dH N ≤ −

�
ϕdµ−K

�
ϕd∂X dH N for any ϕ ∈ Lipc(X) s.t. ϕ ≥ 0 .

In particular ϕ 7→
�
∇ϕ · ∇d∂X dH N +

�
ϕ dµ+K

�
ϕd∂X dH N is a negative linear map.

Hence there exists a nonnegative locally finite measure ν such that�
∇ϕ · ∇d∂X dH N +

�
ϕ dµ+K

�
ϕd∂X dH N = −

�
ϕdν, for any ϕ ∈ Lipc(X) .

This implies that d∂X has measure valued Laplacian on X.
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Let us now prove that
∆d∂X ∂X = H N−1 ∂X . (7.13)

Observe first that ∆d∂X � H N−1 as a consequence of the following more general
observation, applied to b = ∇d∂X : if b is a bounded vector field with measure valued
divergence div b on a noncollapsed RCD space (X, d,H N ), then div b�H N−1.

In order to prove the property above we rely on the integration by parts formula for
bounded vector fields with measure valued divergence proved in this framework in [BCM19],
taking into account the bound Per(Br(x)) ≤ CK,Nr

N−1 for any 0 < r < 1 and following
the Euclidean strategy in [NT08]. Relying on these tools we infer that

|div b(Br(x))| ≤ CK,N ‖b‖∞ r
N−1, for any 0 < r < 1 , (7.14)

which suffices to conclude that div b�H N−1.
Next observe that ∆d∂X ∂X is absolutely continuous with respect to H N−1 ∂X,

which is a locally finite measure on an (N − 1)-rectifiable set by Theorem 6.6. By standard
differentiation of measures tools we infer that, in order to prove (7.13), we need to show
that

lim
r→0

∆d∂X(Br(x))
ωN−1rN−1 = 1, for H N−1-a.e. x ∈ ∂X . (7.15)

The validity of (7.15) can be checked at any regular boundary point x ∈ SN−1 \ SN−2,
applying Lemma 7.1 to the sequence of scaled spaces converging to the tangent half-space.
Indeed the W 1,2 convergence of the distance functions, yields the weak convergence of their
Laplacians, which yields in turn (7.15) by scaling.

We can now pass to the proof of (ii). Let ϕ ∈ Lip(X) be nonnegative with bounded
support. The coarea formula Theorem 2.4 yields

d
ds

�
Bs(∂X)

ϕ dH N =
�
ϕd Per({ d∂X > s }) for a.e. s ≥ 0 .

Using again the Coarea formula, the H N -a.e. identity |∇d∂X |2 = 1 and integrating by
parts, we get� ∞

0
a′(s)

�
ϕd Per({ d∂X > s }) = −

�
a(d∂X) div(ϕ∇d∂X) dH N , (7.16)

for any a ∈ C∞c (0,∞). A simple approximation and Lebesgue points argument allows
plugging a(s) = χ{s≤r} on (7.16) for almost every r > 0, yielding

�
ϕd Per({ d∂X > r }) =

�
{d∂X<r}

div(ϕ∇d∂X) dH N for a.e. r ≥ 0 .

All in all we have
d
ds

�
Bs(∂X)

ϕdH N =
�
ϕ d Per({ d∂X > s })

=
�
Bs(∂X)

div(ϕ∇d∂X) dH N

≤
�
Bs(∂X)

|∇ϕ|dH N +
�
Bs(∂X)

ϕ d∆d∂X

(7.5),(i)
≤

�
Bs(∂X)

|∇ϕ| dH N +
�
∂X

ϕ dH N−1 +K−s

�
Bs(∂X)

ϕ dH N ,

for a.e. s ≥ 0.
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Let t ∈ (0, 1). An additional approximation argument allows to plug ϕ = χBt(p) in the
previous inequality. Setting f(s, t) := H N (Bs(∂X)∩Bt(p)), we then infer that s 7→ f(s, t)
is absolutely continuous and

d
dsf(s, t) ≤H N−1(∂X ∩Bt(p)) + Per(Bt(p), Bs(∂X)) +K−sf(s, t) ≤ C(N,K) , (7.17)

for a.e. s ∈ (0, 1). This yields in turn
d
ds

� t

0
f(s, r) dr ≤ tH N−1(∂X ∩Bt(p)) + f(s, t) +K−s

� t

0
f(s, r) dr , (7.18)

for a.e. s ∈ (0, 1), thanks to the coarea formula and the bound
|f(s, t)− f(s′, t)| ≤ |s− s′|C(N,K) for any s, s′, t ∈ (0, 1) . (7.19)

By using (7.17) and (7.19) it is simple to verify that s 7→
� 1−s

0 f(s, 1− r) dr is absolutely
continuous in (0, 1). We now prove that

d
ds

� 1−s

0
f(s, 1− r) dr ≤H N−1(∂X ∩B1−s(p)) + sK−

� 1−s

0
f(s, 1− r) dr , (7.20)

for a.e. s ∈ (0, 1).
For any t ∈ (0, 1) we denote by It ⊂ [0, 1] the set of s ∈ (0, 1) such that (7.17) holds true.
Given s ∈ ∩t∈Q∩(0,1)It =: I and ε > 0 we consider q ∈ Q such that s < q < s+ ε. Then we
have � 1−s

0

f(s+ h, 1− r)− f(s, 1− r)
h

dr

≤
� 1−q

0

f(s+ h, 1− r)− f(s, 1− r)
h

dr + εC(N,K) ,
(7.21)

for any 0 < h < 1 small enough, as a consequence of (7.17). Therefore, using the fact that
s < q, we get

lim sup
h→0

� 1−s

0

f(s+ h, 1− r)− f(s, 1− r)
h

dr

≤(1− q)H N−1(∂X ∩B1−q(p)) + f(s, 1− q)

+K−s

� 1−q

0
f(s, 1− r) dr + εC(N,K)

≤(1− s)H N−1(∂X ∩B1−s(p)) + f(s, 1− s)

+K−s

� 1−s

0
f(s, 1− r) dr + εC(N,K) ,

for any s ∈ I. Letting ε→ 0 we conclude

lim sup
h→0

� 1−s

0

f(s+ h, 1− r)− f(s, 1− r)
h

dr

≤ (1− s)H N−1(∂X ∩B1−s(p)) + f(s, 1− s) +K−s

� 1−s

0
f(s, 1− r) dr ,

(7.22)

for any s ∈ I.
Using once more (7.19) we easily deduce

lim
h→0
−1
h

� 1−s

1−s−h
f(s+ h, 1− r) dr = −f(s, 1− s) , (7.23)

which along with (7.22) gives (7.20) for any s ∈ I such that the derivative d
ds
� 1−s

0 f(s, 1−
r) dr exists.
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We can finally conclude the proof of (7.6) by integrating (7.20) in (0, 1/2):

1
2e

1
8K
−
H N (B1/2(p)) ≤

� 1/2

0
e

1
8K
−
H N (B1/2(∂X) ∩B1/2(p)) ≤ 1

2H N−1(∂X ∩B1(p)).

Let us now address (iii). This assertion can be obtained by combining Corollary 6.10
and the inequality

lim inf
r→0

H N−1(Br(x) ∩ ∂X)
ωN−1rN−1 ≥ C(K)ΘX(x) for any x ∈ ∂X (7.24)

which follows in turn from the scaling invariant version of (7.6). �

7.2. Alexandrov spaces and noncollapsed Ricci limits with boundary. We are
able to verify Open Question 7.3 in the setting of Alexandrov spaces with curvature
bounded below and in the case of Ricci limits with boundary.

Let us recall that an N -dimensional Alexandrov space with curvature bounded from
below by k and equipped with the measure H N is a noncollapsed RCD(k(N − 1), N)
space, see [P11, ZZ10].

Proposition 7.6. Let (X, d,H N ) be an Alexandrov space with curvature bounded from
below by k and assume that ∂X 6= ∅. Then d∂X has locally measure valued Laplacian,

∆acd∂X ≤ −k(N − 1)d∂X and ∆sd∂X ≤ 0 on X \ ∂X . (7.25)

In particular, there exists a constant C(k,N) > 0 such that the following holds: if p ∈ ∂X,
then

H N−1(B2(p) ∩ ∂X) > C(k,N)H N (B1(p)) . (7.26)

Next we deal with the case of RCD spaces with boundary that are also smooth Rie-
mannian manifolds, see [H17]. This is a key tool in order to address the case of limits of
Riemannian manifolds with boundary later. Let us point out that bounds for the Laplacian
on the distance from the boundary in the sense of barriers and under different assumptions
have been considered in [P16] (see also the references therein).

Proposition 7.7. Let (X, d,H N ) be a smooth N -dimensional Riemannian manifold with
convex boundary ∂X (in the sense that the second fundamental form with respect to the
interior normal is non negative definite) and Ricci curvature bounded from below by K in
the interior. Then d∂X has locally measure valued Laplacian,

∆acd∂X ≤ −Kd∂X and ∆sd∂X ≤ 0 on X \ ∂X . (7.27)

In particular

H N−1(B2(p) ∩ ∂X) > C(K)H N (B1(p)) for any p ∈ ∂X . (7.28)

The lower bound for the volume of the boundary in the case of smooth RCD spaces
with boundary allows us to get a more complete picture about their pGH limits. The last
result of this section provides, in particular, a positive answer to [KM19, Questions 4.4,
4.7, 4.9] in this setting.

Theorem 7.8. Let (X, d,H N , p) be the noncollapsed pGH limit of a limit of smooth
N -dimensional pointed Riemannian manifolds (Xn, dn, pn) with convex boundary and Ricci
curvature bounded from below by K in the interior. Assume that there exists R > 0 such
that BR(pn) ∩ ∂Xn 6= ∅ for any n ∈ N. Then

i) ∂X 6= ∅. Moreover, if points xn ∈ ∂Xn converge to x ∈ X, then x ∈ ∂X;
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ii) d∂X has measure valued Laplacian,

∆acd∂X ≤ −Kd∂X and ∆sd∂X ≤ 0 on X \ ∂X. (7.29)

and
∆d∂X ∂X = H N−1 ∂X; (7.30)

iii) ∂X = FX, H N−1 ∂X is locally Ahlfors regular and for any x ∈ ∂X any tangent
cone at x has boundary.

The remaining part of this subsection is devoted to the proof of Proposition 7.6, Propo-
sition 7.7 and Theorem 7.8.

Proof of Proposition 7.6. We avoid introducing all the relevant background about calculus
on Alexandrov spaces, since this is not the main topic of the paper. We refer to [AB18,
BBI01] for the relevant notions and references.

In [AB03] (see also [P07, Theorem 3.3.1]) it is proved that on any Alexandrov space
with curvature bounded from below by k and non empty boundary, the distance function
from the boundary is Fk-concave, that is to say its restriction to any unit speed geodesic
γ : [0, 1]→ X verifies

(d∂X ◦ γ)′′ + kd∂X ◦ γ ≤ 0 (7.31)
in the sense of barriers. We already know that the singular part of ∆d∂X is non positive
on X \ ∂X (see Lemma 7.5). It is then sufficient to prove that its absolutely continuous
part verifies

∆acd∂X ≤ −Kd∂X on X \ ∂X. (7.32)
Combining (7.31) with Alexandrov’s theorem (see [AB18, Proposition 7.5] for its proof

in the setting of DC functions on Alexandrov spaces) and the fact that the restriction of
d∂X to a minimizing geodesic connecting a regular point to a point of minimal distance on
the boundary is affine, we infer that

tr Hessac d∂X ≤ −k(N − 1)d∂X , H N -a.e. on X , (7.33)

where Hessac d∂X denotes the absolutely continuous part of the Hessian of d∂X . Indeed,
we recall that the tangent cone on an Alexandrov space can be equivalently characterised
as the set of initial velocities of geodesics. Then (7.33) follows by tracing, since there is
a direction v along which Hessac d∂X(v, v) = 0, while along all the others the estimate
Hessac d∂X(v, v) ≤ −kd∂X holds by (7.31).

The conclusion (7.32) follows from the fact that the Laplacian is the trace of the Hessian
in this context, see [AB18, Proposition 5.8, 5.9].

The second conclusion of Proposition 7.6 follows from Theorem 7.4.
�

Proof of Proposition 7.7. Observe that, as pointed out in [H17], smooth Riemannian man-
ifolds with convex boundary and Ricci curvature bounded from below in the interior are
RCD spaces.

Also in this case it is sufficient to deal only with the absolutely continuous part of the
Laplacian. The bound (7.27) can be obtained starting from the following observation:
since the boundary is smooth and convex it has non positive second fundamental form
with respect to the exterior normal. Therefore by tracing we infer that it has nonpositive
mean curvature with respect to the exterior normal. By smoothness again we infer that
the restriction of the a.c. part of the Laplacian of the distance from the boundary on
the boundary is non positive (it coincides with the mean curvature). By the localization
technique [CM18] we can then propagate the non positivity of the Laplacian on the
boundary to the interior to obtain (7.27).
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More in detail, we recall that d∂X induces a decomposition of the Riemannian manifold
into rays (Xα,mα, d) and an associated disintegration of the volume measure:�

M
ϕd H N =

�
Q

�
Xα

ϕ dmα dq(α) , (7.34)

where Q is a set parametrizing the rays in the decomposition and q is a suitable weight on
Q.
Moreover, for q-a.e. ray (Xα) the one dimensional metric measure space (Xα,mα, d) is a
CD(K,N) space, hence mα = hαH 1 for some density hα which is log−K concave, once
we parametrize the ray Xα with a geodesic γα such that its ending point belongs to ∂X.

By [CM18] we also know that
∆acd∂X = − (log hα)′ , (7.35)

with canonical identifications. The sought conclusion follows observing that since hα is
log−K concave, it holds that

(− log hα)′(s) ≥ (− log hα)′(t) +K(s− t) . (7.36)
Let p = γα(t) and γα(s) is the footpoint on ∂X of the minimizing geodesic for the distance
to the boundary γα. Since we already pointed out that the convexity of the boundary
yields (− log hα)′(γα(s)) ≤ 0 when γα(s) ∈ ∂X, we infer from (7.36) and (7.35) that,

(∆acd∂X)(p) = (− log hα)′(s− d∂X(γα(t))) (7.37)
≤ (− log hα)′(s)−Kd∂X(γα(t)) ≤ −Kd∂X(γα(t)) = −Kd∂X(p) . (7.38)

The inequality (7.28) and the fact that d∂X has measure valued Laplacian globally now
follow from Theorem 7.4. �

Remark 7.9. For general RCD(K,N) spaces (X, d,H N ), the missing ingredient for the
Riemannian strategy above is a counterpart of the non positive mean curvature condition
with respect to the exterior normal along the boundary.

Proof Theorem 7.8. Let us start by proving the second part of (ii). The first part will
directly follow. In order to do so we observe that, if xn ∈ ∂Xn, then by (the scale invariant
version of) (7.28) we infer that

H N−1(∂Xn ∩Br(xn)) > C(K,N)H N (B1(xn))rN−1 for n ∈ N and 0 < r < 1 . (7.39)
Therefore we can apply Corollary 6.10 to get that

H N−1(∂X ∩Br(x)) ≥ C(K,N, v)rN−1 for any 0 < r < 1 , (7.40)
where v > 0 is a noncollapsing bound for H N (B1(xn)). From (7.40) we infer in particular
that x ∈ ∂X.

By the stability Theorem 1.6 we know that if x ∈ ∂X then there exists a sequence
∂Xn 3 xn → x, as n→∞. Therefore d∂Xn converge locally uniformly and locally in W 1,2

to d∂X . Hence we can pass to the limit their measure valued Laplacians and the bounds
obtained in Proposition 7.7 to infer that d∂X has measure valued Laplacian satisfying the
bound (7.29).

The remaining conclusions follow immediately from Theorem 7.4. �

8. Improved neck structure and boundary measure convergence

In this section we are going to improve upon the regularity of balls sufficiently close
to the model boundary ball on the half-space. This will provide a key tool in order to
obtain topological regularity of boundaries, away from sets of ambient codimension two,
and convergence of the boundary measures under noncollapsing pGH convergence as stated
in Theorem 1.8.
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8.1. Improved neck structure theorem and boundary volume rigidity. Below we
state the key result we will rely on. As in the case of (N, δ)-symmetric balls, where
regularity propagates at all locations and scales, in the case of a δ-boundary ball we shall
see that balls centered at boundary points are still δ′-boundary balls at any scale, while
balls centered at interior points become (N, δ′)-symmetric at sufficiently small scales.

Theorem 8.1. Let 1 ≤ N < ∞ be a fixed natural number. For any 0 < ε < ε(N),
δ ≤ δ(N, ε) and for any RCD(−δ(N − 1), N) m.m.s. (X, d,H N ), p ∈ X such that B2(p)
is a δ-boundary ball, the following properties hold:

(i) for any x ∈ ∂X ∩B1(p) and any r ∈ (0, 1) there exists an εr-GH isometry

Ψx,r : BRN+
r (0)→ Br(x) ;

(ii) for any x ∈ ∂X ∩B1(p) and for any 0 < r < 1, setting Lx,r := Ψx,r({xN = 0 }) it
holds

dH(∂X ∩Br(x),Lx,r ∩Br(x)) ≤ εr . (8.1)
It follows in particular that

dGH(∂X ∩Br(x), BRN−1
r (0)) ≤ 2εr ; (8.2)

(iii) for any x ∈ B1/2(p) \ ∂X and r ∈ (0, d∂X(x)/2) the ball Br(x) is (N, ε)-symmetric.

The proof of Theorem 8.1 builds upon the following ε-regularity results for the boundary,
which is based in turn on the stability of boundaries Theorem 6.1 and the volume rigidity
for cones with boundary Lemma 6.5.

Theorem 8.2 (Volume ε-regularity for the boundary). Let N ∈ N, N ≥ 1 be fixed. For
any ε > 0, if δ ≤ δ(N, ε) and (X, d,H N , x) is an RCD(−δ(N − 1), N) pointed m.m.s.,
x ∈ ∂X and H N (B1(x)) ≥ 1

2ωN − δ, then

dGH(B1/2(x), BRN+
1/2(0)) ≤ ε . (8.3)

Proof. We divide the proof into two steps, first proving a weak version of the statement,
where we additionally assume a definite size of boundary points in the given ball, and then
passing to the strong form via bootstrap.
Step 1. We claim that the following holds: for any ε > 0 and c > 0, if δ ≤ δ(N, ε, c) and

(X, d,H N , x) is an RCD(−δ(N − 1), N) pointed m.m.s., x ∈ ∂X, H N (B1(x)) ≥ 1
2ωN − δ

and H N−1(∂X ∩B1/2(x)) ≥ c, then

dGH(B1/2(x), BRN+
1/2(0)) ≤ ε . (8.4)

We argue by contradiction. Let us assume that for some ε > 0 and c > 0 there is a sequence
(X, dn,H N , xn) of RCD(−1/n,N) p.m.m.s. with xn ∈ ∂Xn, such that H N (B1(xn)) ≥
1
2ωN −

1
n , H N−1(∂Xn ∩B1/2(xn)) ≥ c and

dGH(B1/2(xn), BRN+
1/2(0)) ≥ ε for any n ∈ N . (8.5)

Up to extracting a subsequence (Xn, dn,H N , xn)→ (X, d,H N , x) in the pmGH topology.
Notice that, by Corollary 6.10 and the uniform lower bound on the boundary measure, we
infer that ∂X ∩ B̄1/2(x) 6= ∅.

Since x is limit of boundary points it holds ΘX(x) ≤ 1/2, by lower semicontinuity of the
density. Therefore, by volume convergence and thanks to the volume pinching assumption,
H N (Br(x)) = ωN/2 for any r ∈ [0, 1]. Hence the volume cone implies metric cone theorem
(see [DPG16]) gives that B1/2(x) is isometric to the ball of radius 1/2 of a cone C(Z)
centered at a tip point z ∈ C(Z) with isometry sending x to z. The sought contradiction
comes from Lemma 6.5. Indeed Z has boundary and Θ(z) = 1

2 , therefore C(Z) is isometric
to RN+ .
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Step 2. Next we wish to remove the lower volume boundary assumption. In order to
do so we first observe that, by a limiting argument, it is sufficient to prove the statement
under the assumption that x ∈ SN−1 \ SN−2.

Let us set c := 4−Nc(N)−1 and assume without loss of generality that ε < η(N), where
c(N) and η(N) are as in Theorem 6.1. We wish to prove that δ(N, ε) = δ(N, ε, c) given by
the previous step does the right job. Let us argue by contradiction. If this is not the case
then we can find 0 < r < 1 such that

dGH(Br/4(x), BRN+
r/4(0)) ≤ εr/4 , (8.6)

but
dGH(Br/2(x), BRN+

r/2(0) > εr/2 , (8.7)

since we know that the only element of the tangent cone at x is RN+ (cf. with Theorem 6.3
(iii)).
Observe that

H N−1(∂X ∩Br/2(x)) ≥H N−1(∂X ∩Br/4(x)) ≥ crN−1 , (8.8)
by our choice of c and (the scale invariant version of) Theorem 6.1.
Moreover, by volume monotonicity,

H N (Br(x)) ≥ 1
2(ωN − δ)rN . (8.9)

Applying the result of Step 1 (in scale invariant form) we infer that

dGH(Br/2(x), BRN+
r/2(0) ≤ εr/2 , (8.10)

therefore reaching a contradiction with (8.7). �

Remark 8.3. Under the same assumptions of Theorem 8.2, it follows by volume monotonicity
and scaling that (8.4) can be slightly improved to the statement

dGH(Br/2(x), BRN+
r/2(0)) ≤ εr , (8.11)

for any 0 < r < 1.

Proof of Theorem 8.1. Let us begin by observing that for any δ ≤ δ(δ0, N) if B2(p) is a
δ-boundary ball of an RCD(−δ(N − 1), N) space then

B1(x) is a δ0-boundary ball for any x ∈ ∂X ∩B1(p) . (8.12)
This claim can be checked arguing by contradiction and exploiting the fact that boundary
points converge to boundary points when the limit ball is isometric to a ball centered on
the boundary of the half space RN+ (cf. with Lemma 7.1).

Next, by volume convergence, choose δ0 = δ0(ε,N) < ε/2 such that if B1(x) is a δ0-
boundary ball on an RCD(−δ(N−1), N) and x ∈ ∂X, then the assumptions of Theorem 8.2
are satisfied.
If we choose δ accordingly given by the observations above, then by Theorem 8.2 we infer
that, for any x ∈ ∂X and for any 0 < r < 1, Br(x) is an ε-boundary ball.

From now on we let
Ψx,r : BRN+

r (0)→ Br(x) (8.13)
be εr-isometries, for any x ∈ ∂X and any 0 < r < 1.

Let us prove (ii). We first prove that for any z ∈ B
RN+
r (0) ∩ {xN = 0} there exists

y ∈ Br(x)∩∂X such that d(Ψx,r(z), y) ≤ C(N)εr. In order to do so it is sufficient to observe
that for any s > 0 the ball Bsr(Ψx,r(z)) is an s−1ε-boundary ball. By Theorem 6.1, if s−1ε <
η(N), then there exists a boundary point y ∈ Brs(Ψx,r(z))∩∂X. Therefore, minimizing we
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infer that there exists a boundary point y ∈ Br(x)∩ ∂X such that d(Ψx,r(z), y) ≤ C(N)εr,
where C(N) := 1/η(N).

It remains to prove that for any y ∈ Br(x)∩∂X there exists z ∈ BRN+
r (0)∩{xN = 0} such

that d(y,Ψx,r(z)) ≤ C(N)εr. In order to do so it is sufficient to observe that, by elementary
considerations, if B1(p) ⊂ RN+ is an ε-boundary ball, then d(p, {xN = 0}) ≤ C(N)ε,
therefore by scaling invariance of the half-space, if Br(p) is an ε-boundary ball, then
d(p, {xN = 0}) ≤ C(N)εr.

Let us finally prove (iii). In order to obtain the conclusion it is sufficient to prove
the following statement: for any ε > 0 there exists δ > 0 such that if (X, d,H N ) is
an RCD(−δ(N − 1), N) m.m.s., p ∈ X and B4(p) is a δ-boundary ball, then for any
x ∈ B1(p) \ ∂X the ball Bd∂X(x)/2(x) is (N, ε)-symmetric. Indeed, if Bd∂X(x)/2(x) is (N, ε)-
symmetric, then by volume convergence Theorem 2.17 it has almost Euclidean volume and
by volume almost rigidity [DPG18, Theorem 1.6] we infer that Br(x) is (N, ε)-symmetric
for any 0 < r < d∂X(x)/2, up to worsening ε.

Let us now prove the claimed conclusion. Let q ∈ ∂X be such that d∂X(x) = d(q, x)
and set r := 2d∂X(x). As a consequence of (i) and (ii) we know that there exists an εr-GH
isometry Ψx,r : BRN+

r (0)→ Br(q).
By elementary considerations we can find z ∈ RN+ such that

Bd∂X(x)/2(z) ⊂ BRN+
r (0) \ ∂RN+ (8.14)

and
Ψx,r : Bd∂X(x)/2(z)→ Bd∂X(x)/2(x) (8.15)

is an 8εr-GH isometry.
�

8.2. Topological regularity of the boundary. Thanks to Theorem 8.1 we better under-
stand the geometry of δ-boundary balls. Below we build a parametrization of the boundary
of a δ-boundary ball well suited for its geometry. In particular this parametrization will
put us in position to control both the topology and the volume near to sufficiently regular
boundary points (cf. with [A90, CC97, KM19] in the case of interior regular points).
With respect to Theorem 4.9 here we heavily rely on Theorem 8.1 and on the transformation
Proposition 3.13 to get bi-Hölder continuity of the splitting map, as in [CJN18].

Theorem 8.4. Let 1 ≤ N <∞ be a fixed natural number. Then for each 0 < ε < 1/5 there
exists δ = δ(ε,N) > 0 such that for any RCD(−δ(N −1), N) space (X, d,H N ) and for any
δ-boundary ball B16(p) ⊂ X, ∂X∩B8(p) is homeomorphic to a smooth (N−1)-dimensional
manifold without boundary.
Moreover, there exists a map u : B8(p)→ RN−1 verifying the following properties:

i) u : B8(p)→ RN−1 is an ε-splitting map;
ii) there exists a closed set U ⊂ B1(p) ∩ ∂X such that

H N−1 ((B1(p) ∩ ∂X) \ U) ≤ ε (8.16)

and

(1− ε)d(x, y) ≤ |u(x)− u(y)| ≤ (1 + ε)d(x, y) for any x, y ∈ U ; (8.17)

iii) for any x, y ∈ ∂X ∩B1(p) it holds that

(1− ε)d(x, y)1+ε ≤ |u(x)− u(y)| ≤ (1 + ε)d(x, y) ; (8.18)

iv) u(B1(p) ∩ ∂X) ⊃ BRN−1
1−2ε (0).
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Proof. The fact that B8(p)∩∂X is homeomorphic to a smooth N −1-dimensional manifold
without boundary follows from Theorem 8.1 (ii) thanks to Reifenberg’s theorem for metric
spaces [CC97, Theorem A.1.1], see also [R60, A90] and [KM19].

Let us fix 0 < η < ε to be specified later. Choosing δ small enough we can build an
η-splitting map u : B8(p)→ RN−1 by Theorem 3.8. This in particular proves (i).

Let us now show (ii). We set

U :=
{
x ∈ B1(p) ∩ ∂X : s

 
Bs(x)

|Hessu|2 dH N ≤ η1/2 for any s ∈ (0, 5)
}
.

Notice that U is closed and u : Bs(x) → RN−1 is a C(N)η1/4-splitting map for any
s ∈ (0, 5), by Lemma 4.16. For δ and η small enough we deduce from Corollary 7.2 that

(u, d∂X) : Bs(x)→ RN+ is an ε

1 + ε
-GH isometry

for any x ∈ U and s ∈ (0, 5/2). In particular, given x, y ∈ U and s = d(x, y)(1 + ε), it holds

||u(x)− u(y)| − d(x, y)| ≤ ε

1 + ε
s = εd(x, y) ,

therefore yielding (8.17).
Let us prove (8.16). A standard Vitali’s covering argument produces a disjoint family of

balls {Bsi(xi) }i∈N with xi ∈ B1(p) ∩ ∂X, si ∈ (0, 1) such that

(B1(p) ∩ ∂X) \ U ⊂
⋃
i∈N

B5ri(xi) and 5si
 
B5si (x)

|Hessu|2 dH N > η1/2 . (8.19)

Relying on (8.19), the Bishop-Gromov inequality, Remark 4.8 and Theorem 1.4 (i) (see
also Theorem 6.6 (ii)), we conclude that

H N−1((B1(p) ∩ ∂X) \ U) ≤
∑
i∈N

H N−1(B5si(xi) ∩ ∂X) ≤ C(N)
∑
i∈N

sN−1
i

≤ C(N)η−1/2∑
i∈N

�
Bsi (xi)

|Hessu|2 dH N

≤ C(N)η1/2 ≤ ε ,

for η sufficiently small.

The Hölder estimate (8.18) will follow from Theorem 5.1 (i) and the transformation
Proposition 3.13, arguing as in the proof of [CJN18, Theorem 7.10].

More precisely, if x, y ∈ B1(p) ∩ ∂X we set r := d(x, y). Then by Theorem 8.1 (i) we
infer that Br(x) is an η-boundary ball, for η small to be chosen later, if δ ≤ δ(N, η). Then
we apply the transformation Proposition 3.13 to obtain existence of a lower triangular
matrix Tx,r such that Tx,ru : Br(x)→ RN−1 is an ε′-splitting map for ε′ small to be chosen
later and for any η ≤ η(N, ε′). Taking into account Corollary 7.2 we obtain that

|Tx,ru(x)− Tx,ru(y)| ≥ (1− ε)d(x, y) . (8.20)

Taking into account the matrix growth estimate |Tx,r| ≤ r−ε (cf. Corollary 3.16) and that
r = d(x, y) we get that

|u(x)− u(y)| ≥ (1− ε)d(x, y)1+ε . (8.21)
The upper bound in (8.18) follows from Remark 3.3.

To prove the last assertion we argue as in [KM19, Remark 2.10]. We claim that there
exists 0 < s < 1 such that

u(Bs(p) ∩ ∂X) ∩BRN−1

1−2ε (0) = B
RN−1

1−2ε (0) .
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To this aim we observe that u(Bs(p)∩∂X)∩BRN−1

1−2ε (0) is non empty and closed in BRN−1

1−2ε (0).
Moreover, it holds

u(Bs(p) ∩ ∂X) ∩BRN−1

1−2ε (0) = u(Bs(p) ∩ ∂X) ∩BRN−1

1−2ε (0) ,
whenever s1+ε(1− ε) > 1− 2ε. Indeed for any q ∈ ∂Bs(p) ∩ ∂X one has

|u(q)| = |u(q)− u(p)| ≥ (1− ε)s1+ε > 1− 2ε ,

as a consequence of (8.18). Therefore, for such a choice of s the set u(Bs(p)∩∂X)∩BRN−1

1−2ε (0)
is also open in BRN−1

1−2ε (0) as a consequence of the invariance of the domain (here we are
using that B8(p) ∩ ∂X is an (N − 1)-dimensional topological manifold, as we already
pointed out). �

Remark 8.5. In the smooth case, i.e. when (X, d,H N ) is a Riemannian manifold with
convex boundary and Ricci curvature bounded below by −δ(N − 1), the map u : B1(p) ∩
∂X → RN−1 obtained in Theorem 8.4 is also a diffeomorphism onto its image. This follows
by observing that u is smooth and

dux : Tx∂X → RN−1 is nondegenerate for anyx ∈ B1(p) ∩ ∂X . (8.22)
Observe that u : B2(p)→ RN−1 is a ε-splitting map where ε ≤ ε(N). Let x ∈ B1(p)∩∂X.

By the transformation Proposition 3.13 for any r ≤ 1, there exists an N ×N matrix Ax,r
such that Ax,r ◦ u : Br(x) → RN−1 is a δ-splitting map, where δ ≤ δ(δ′, N). For r ≤ rx
small enough, standard elliptic regularity estimates up to the boundary give

sup
Br(x)

|∇(Ax,r ◦ u)a · ∇(Ax,r ◦ u)b − δαβ| ≤ C(N)δ′ for any a, b = 1, . . . , N − 1 , (8.23)

which implies that dux is nondegenerate.

Corollary 8.6. Let 1 ≤ N <∞ be a natural number and (X, d,H N ) be an RCD(−(N −
1), N) metric measure space. Assume that ∂X 6= ∅, then for any 0 < α < 1 there exists
Uα ⊂ ∂X such that:

i) Uα is relatively open and dense in ∂X;
ii) dimH(∂X \ Uα) ≤ N − 2;
iii) Uα is an (N − 1)-dimensional α-Hölder topological manifold without boundary and

the charts can be chosen with components that are restriction of harmonic maps
(on the ambient space).

Proof. Fix α ∈ (0, 1). Thanks to Theorem 8.4 we can find δ < δ(N,α) with the property
that if B16(p) is a δ-boundary ball of an RCD(−δ(N − 1), N) m.m.s. (X, d,H N ), then
∂X ∩B1(p) is a Cα manifold of dimension (N − 1).
For any x ∈ SN−1 \ SN−2 we consider rx ∈ (0, δ) such that B16rx(x) is a δ-boundary ball
and we set

Uα :=
⋃

x∈SN−1\SN−2

Brx(x) ∩ ∂X .

By construction Uα satisfies (iii). Notice that Uα is open and dense in ∂X and ∂X \ U ⊂
SN−2, yielding (i) and (ii). �

Corollary 8.7. Let 1 ≤ N < ∞ be a fixed natural number. For any ε > 0 and δ <
δ(ε,N) > 0 the following holds. If (X, d,H N ) is an RCD(−δ(N − 1), N) space and B16(p)
is a δ-boundary ball, then

(1− ε)ωN−1 ≤H N−1(∂X ∩B1(p)) ≤ (1 + ε)ωN−1 . (8.24)
Moreover, FX ∩B1(p) = ∂X ∩B1(p) and for any x ∈ ∂X ∩B1(p), any tangent cone at x
has boundary.
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Proof. Let ε′ < ε to be fixed later. For δ ≤ δ(N, ε′) we find a ε′-splitting function
u : B8(p)→ RN−1 satisfying (i)-(iv) in Theorem 8.4 with ε′ in place of ε. Let in particular
U ⊂ B1(p) ∩ ∂X be the good set appearing in Theorem 8.4 (ii).

The inclusion u(U) ⊂ B1+ε′(0) implies
H N−1(∂X ∩B1(p)) ≤ ε′ + H N−1(U) ≤ ε′ + (1 + ε′)N−1L N−1(u(U))

≤ ε′ + (1 + ε′)2N−2ωN−1 .
(8.25)

On the other hand since u(B1(p) ∩ ∂X) ⊃ BRN−1
1−2ε′ (0), u((∂X ∩B1(p)) \ U) ≤ C(N)ε′ and

u is bi-Lipschitz on U we infer that

H N−1(∂X ∩B1(p)) ≥H N−1(U) ≥ 1
(1 + ε′)N−1

(
ωN−1(1− 2ε′)N−1 − C(N)ε′

)
. (8.26)

The sought conclusion (8.24) follows from (8.25) and (8.26) by choosing ε′ small enough.
The second part of the statement follows from (8.24) taking into account the following

general property: given a noncollapsed RCD(−(N − 1), N) space (X, d,H N ) and a point
x ∈ ∂X such that

lim inf
r→0

H N−1(∂X ∩Br(x))
rN−1 > 0 , (8.27)

then any tangent cone to (X, d) at x has boundary.
The verification of the claim above follows from Corollary 6.10, taking into account the
scaling properties of H N−1.

�

8.3. Convergence of boundary measures. Let us recall that for measures defined on
sequences of metric spaces converging in the pGH sense, weak convergence is understood in
duality with continuous functions with bounded support once the pGH converging metric
spaces are embedded in a common proper metric space (cf. [AH17, AH18]).

In this framework, two standard consequences of weak convergence are the lower semi-
continuity of the evaluation on open sets and the upper semicontinuity of the evaluation
on closed sets: if µn are locally finite measures on Z weakly converging to µ in duality
with continuous functions with bounded support as n→∞ and A ⊂ Z and C ⊂ Z are an
open and a closed subset respectively, then

µ(A) ≤ lim inf
n→∞

µn(A) and µ(C) ≥ lim sup
n→∞

µn(C) . (8.28)

From the two properties above one can easily infer the full convergence limn→∞ µn(O) =
µ(O), for any Borel set O ⊂ Z such that µ(∂O) = 0, where we denoted by ∂O the
topological boundary of O.

We now prove Theorem 1.8 which is restated below for reader’s convenience.

Theorem 8.8 (Boundary Volume Convergence). Let 1 ≤ N < ∞ be a fixed natural
number. Assume that (Xn, dn,H N , pn) are RCD(−(N − 1), N) spaces converging in the
pGH topology to (X, d,H N , p). Then

H N−1 ∂Xn →H N−1 ∂X weakly . (8.29)
In particular

lim
n→∞

H N−1(∂Xn ∩Br(xn)) = H N−1(∂X ∩Br(x)) ,

whenever Xn 3 xn → x ∈ X and H N−1(∂X ∩ ∂Br(x)) = 0.

Proof. Set νn := H N−1 ∂Xn. Up to extracting a subsequence one has that νn → ν
weakly, where ν is a nonnegative measure on X satisfying

(i) ν(Br(x)) ≤ C(N)rN−1 for any x ∈ X and a.e. r ∈ (0, 2);
(ii) supp ν ⊂ SN−1.
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Here we have used standard compactness theorem for measures along with Theorem 1.4 (i),
the lower semicontinuity of the density ΘXn w.r.t. the GH convergence, and Remark 6.4.
We need to prove that ν = H N−1 ∂X.

Let us begin by observing that, as a consequence of (i) and (ii), it holds that ν �
H N−1 SN−1 = H N−1 ∂X. In particular if SN−1(X) \ SN−2(X) = ∅ then ν =
H N−1 ∂X = 0. We can therefore assume that SN−1(X) \ SN−2(X) 6= ∅. To get
the claimed conclusion it is enough to verify that

lim
r→0

ν(Br(x))
ωN−1rN−1 = 1 for H N−1-a.e. x ∈ ∂X , (8.30)

thanks to a classical result about differentiation of measures [K94]. Here we used that ∂X
is (N − 1)-rectifiable with locally finite H N−1-measure.

To prove (8.30) we rely on Corollary 8.7. Observe that we can check (8.30) just
considering regular boundary points x ∈ SN−1 \ SN−2 for which the limit

lim
r→0

ν(Br(x))
ωN−1rN−1 (8.31)

exists.
Let us fix δ > 0. For any x ∈ ∂X as above there exists rx < 1 such that Br(x) is

a δ/2-boundary ball for every r ∈ (0, rx), thanks to Theorem 8.1 (i). In particular, if
∂Xn 3 xn → x ∈ ∂X then Br(xn) is a δ-boundary ball for any r ∈ (0, rx], and n big
enough (here we rely again on Theorem 8.1 (i) to handle radii in (0, rx)). Notice that the
existence of the sequence (xn) verifying the property above for r = rx is a consequence
of the stability Theorem 6.1. Let us now fix ε > 0 and assume that δ ≤ δ(N, ε) so that
Corollary 8.7 holds true. We get∣∣∣∣ ν(Br(x))

ωN−1rN−1 − 1
∣∣∣∣ =

∣∣∣∣∣ lim
n→∞

H N−1(∂Xn ∩Br(xn))
ωN−1rN−1 − 1

∣∣∣∣∣ ≤ ε for a.e. r ∈ (0, rx) 3, (8.32)

which yields (8.30), being ε arbitrary. �

9. Topological regularity up to the boundary

In [KM19, Corollary 3.2], following the arguments of [CC97] (see also the previous [A90])
and relying on Reifenberg’s theorem for metric spaces, it has been proved that on any
noncollapsed RCD(K,N) space (X, d,H N ) and for any α ∈ (0, 1) there exists an open
and dense subset U ⊂ X such that:

• dimH(X \ (U ∪ ∂X)) ≤ N − 2;
• U is an N -dimensional topological manifold with no boundary and Cα-charts.

The aim of this section is to sharpen this result including the boundary in the topological
regularity statement. We shall prove that any noncollapsed RCD(K,N) is space (with
boundary) is homeomorphic, up to a set of codimension two, to a topological manifold
(with boundary) with α-biHölder charts for any 0 < α < 1.

In view of [KM19, Theorem 4.11] and of Theorem 5.1 the main tool needed to get
topological regularity up to the boundary are biHölder topological charts on δ-boundary
balls.

Theorem 9.1. Let N ∈ N, N ≥ 1 and (X, d,H N ) be an RCD(−δ(N − 1), N) space,
p ∈ X such that B16(p) is a δ-boundary ball. Then, for any 0 < ε < 1/5 if δ < δ(N, ε)
there exists F : B1(p)→ RN+ such that

(i) (1− ε)d(x, y)1+ε ≤ |F (x)− F (y)| ≤ C(N)d(x, y) for any x, y ∈ B1(p);
(ii) F (p) = 0 and ∂RN+ ∩B1−2ε(0) ⊂ F (∂X ∩B1(p)) = ∂RN+ ∩ F (B1(p));

3the inequality (8.32) holds for all those radii such that ν(Br(x) \Br(x)) = 0, a property which fails in
at most countable cases.
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(iii) F is open and a homeomorphism onto its image;
(iv) BRN+

1−2ε(0) ⊂ F (B1(p)).

By combining [KM19, Theorem 4.11] and Theorem 9.1 we infer that on a noncollapsed
RCD(−(N − 1), N) m.m.s., if ε < ε(N) then any point in X \ SN−2

ε has a neighbourhood
which is Cα-homeomorphic either to an open set in RN or to an open set in RN+ (see (1.8)
for the definition of the quantitative singular stratum SN−2

ε ). It is then easy to infer the
following.

Theorem 9.2. Let N ∈ N, N ≥ 1 be fixed and 0 < α < 1. If (X, d,H N ) is a RCD(−(N−
1), N) metric measure space, then there exists a closed set of codimension at least two
Cα ⊂ SN−2

ε (X), for some 0 < ε < ε(N,α), such that X \Cα is a topological manifold with
boundary and Cα-charts.

Let us begin by proving Theorem 9.2 assuming the validity of Theorem 9.1. The latter
will be proven at the end of this section.

Proof. It is sufficient to prove that if ε < ε(N,α), then any point in X \ SN−2
ε admits

a neighbourhood which is either Cα-homeomorphic to an open subset of RN , or Cα-
homeomorphic to an open subset of RN+ .
In order to do so we just observe that, if x ∈ X \ SN−2

ε , then there exists 0 < r < 1 such
that either Br(x) is (N, ε)-symmetric, or Br(x) is an ε-boundary ball. In the first case
x has a neighbourhood Cα-homeomorphic to an open subset of RN by [KM19, Theorem
4.11] (see also [CC97, A90]), for ε < ε(α,N). In the second case, by Theorem 9.1 x has a
neighbourhood Cα-homeomorphic to an open subset of RN+ , if ε < ε(α,N).

�

In the framework of limits of N -dimensional manifolds with convex boundary and Ricci
tensor bounded below by −(N − 1) in the interior we can improve Theorem 9.2 with the
following.

Theorem 9.3. Let (X, d,H N ) be an RCD m.m.s. arising as noncollapsed limit of a
sequence of smooth Riemannian manifolds with convex and Ricci curvature bounded from
below in the interior by −(N − 1). Then for any 0 < α < 1 there exists a constant
C = C(N,α,H N (B1(p))) and a closed set of codimension at least two Cα ⊂ SN−2(X)
such that

H N−2(Cα ∩B1(p)) ≤ C(N,α,H N (B1(p))) , for any p ∈ X (9.1)
and X \ Cα is a topological manifold with boundary and Cα-charts.

The improvement will follow from the sharp measure estimates for the effective singular
stratum SN−2

ε on noncollapsed Ricci limit spaces obtained in [CJN18]. The conclusion is
almost straightforward once we point out that the verbatim arguments of [CJN18] allow
to treat also the case of noncollapsed limits of smooth Riemannian manifolds with convex
boundary (and interior lower Ricci curvature bounds). Since that case was not considered
therein, we also give a detailed proof relying on a gluing procedure (see [S12]) in order to
reduce the study of singularities in the boundary to that of interior singularities.

Proof of Theorem 9.3. First let us point out that, the analogue of [CJN18, Theorem 1.9]
in the case of non collapsed limits of smooth manifolds with convex boundary and interior
lower Ricci curvature bounds yields that, under our assumptions,

H N−2(SN−2
ε ∩B1(p)) < C(N, ε,H N (B1(p))) . (9.2)

The conclusion then follows from Theorem 9.2, where we proved that the topologically
singular set is included in SN−2

ε . The validity of [CJN18, Theorem 1.9] in the case of
manifolds with boundary can be checked with the verbatim arguments therein indicated.
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However, since the case of manifolds with boundary is not considered in [CJN18], below
we provide an alternative proof under the additional technical assumption that the smooth
approximating manifolds have boundaries with uniformly bounded diameter.

Let us start by pointing out that
i) if x ∈ ∂X and ΘX(x) ≥ 1/2−η(N,α), then x has a neighbourhood Cα-homeomorphic

to an open set in RN+ ;
ii) if x ∈ X verifies ΘX(x) ≥ 1 − η(N,α), then x has an open neighbourhood Cα-

homeomorphic to an open subset of RN .
We refer to [KM19, CC97, A90] for the proof of (ii), which is based on Reifenberg’s theorem
for metric spaces.
Property (i) instead directly follows from the Boundary volume rigidity Theorem 8.2 and
Theorem 9.1.

It follows from the discussion above that, letting

I := {x ∈ ∂X : ΘX(x) < 1
2 − η(N,α)}, P := {x ∈ X \ ∂X : ΘX(x) < 1− η(N,α)} ,

(9.3)
it suffices to prove

H N−2 ((I ∪ P ) ∩B1(p)) ≤ C(N,α,H N (B1(p))) . (9.4)
Let now (X̂, d̂,H N ) be the doubling of (X, d,H N ) gluing along ∂X, see for instance

[PS18] for the precise definition. We claim that it is noncollapsed Ricci limit (of a sequence
of smooth N -dimensional Riemannian manifolds with no boundary and Ricci curvature
bounded from below by −N).

Before proving the claim let us see how it implies (9.4). In order to do so we let
ι : X → X̂ be one of the canonical immersions of the starting space into its double. Since ι
is isometric, in order to prove (9.4) it suffices to prove that

H N−2 (ι(I ∪ P ) ∩B1(ι(p))) ≤ C(N,α,H N (B1(ι(p)))) . (9.5)
It is easy to check that, for any x̂ ∈ ι(I ∪ P ) it holds

ΘX̂(x) ≤ 1− 2η(N,α) .
Hence, there exists ε = ε(N,α) such that

ι(I ∪ P ) ⊂ SN−2
ε (X̂) . (9.6)

Applying [CJN18, Theorem 1.9] to (X̂, d̂) we infer that
H N−2(ι(I ∪ P ) ∩B1(ι(p))) ≤ C(N,α,H N (B1(p))) , (9.7)

which yields the sought estimate.
Let us pass to the verification of the claim. In order to do so we let (Xn, dn) be the

sequence of smooth manifolds with boundary converging to (X, d). We then let (X̂n, d̂n) be
the doubling along the boundary of (Xn, dn). From [S12] (see also the previous [K02]) we
deduce that (X̂n, d̂n) is a noncollapsed limit of a sequence of smooth Riemannian manifolds
with no boundary and Ricci curvature bounded below by −N , for any n ∈ N. Then it is
easy to check that (X̂n, d̂n) converge in the pGH topology to (X̂, d̂) without collapse. To
conclude we observe that a diagonal argument yields that (X̂, d̂) is a noncollapsed Ricci
limit space.

�

Remark 9.4. Relying on [CJN18, Remark 1.10] we can improve (9.1) by showing a stronger
packing type estimate: for any collection of disjoint balls {Bri(xi)}i∈N with xi ∈ Cα∩B1(p)
it holds ∑

i∈N
rN−2
i ≤ C(N,α,H N (B1(p))) . (9.8)
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The remaining part of this section is devoted to the proof of Theorem 9.1. Let us first
introduce a regularization result for the distance to the boundary on δ-boundary balls.
Lemma 9.5. Let N ∈ N, N ≥ 1 be fixed. For any ε > 0, if δ < δ(N, ε) then the following
holds. Given an RCD(−δ(N − 1), N) m.m.s. (X, d,H N ) and p ∈ X such that B8(p) is a
δ-boundary ball, there exists a (1 + ε)-Lipschitz function b : B4(p)→ R+ satisfying:

(i) |b(x)− d∂X(x)| ≤ εd∂X(x) for any x ∈ B2(p);
(ii) b ∈ Dloc(∆, B4(p) \ ∂X) and 

Br(x)
|∇b−∇d∂X |2 dH N + r2

 
Br(x)

|∆b|2 dH N ≤ ε , (9.9)

for any x ∈ B2(p) \ ∂X, and r = d∂X(x)/3.
Proof. We divide the proof into four steps. The first one aims at building a partition of
unity suitable for the geometry of our problem. In the second step we build harmonic
approximations of d∂X on balls with radius proportional to their distance from the boundary
and prove good estimates as in the theory of Ricci limits (cf. [CC96]). The sought function
is obtained averaging the harmonic approximations of the distance obtained in Step 2 by
the partition of unity built in Step 1. The third step is devoted to the proof of (i) while in
the last step we obtain (ii).
Step 1. There exist a family of functions {ϕk : B8(p)→ R+ }k∈N and a family of balls

{Brk(xk) }k∈N satisfying the following conditions:
(a) rk := d∂X(xk)/8, B4(p) \ ∂X ⊂

⋃
k B 2

3 rk
(xk);

(b) if B 3
2 rk1

(xk1) ∩ . . . ∩ B 3
2 rkm

(xkm) 6= ∅ then m ≤ C(N) and rki ≤ C(N)rkj for any
i, j = 1, . . . ,m;

(c) ϕk ∈ Lip(X) ∩D(∆), suppϕk ⊂ Brk(xk) and
ϕk + rk|∇ϕk|+ r2

k|∆ϕk| ≤ C(N) ;
(d)

∑
k ϕk = 1 on B4(p) \ ∂X.

Let us briefly explain how to build a family of balls satisfying (a) and (b). For any α ∈ N
we cover B4(p) ∩ { 2−α ≤ d∂X ≤ 2−α+2 } using balls {B2−α−1(xα,i) : i = 1, . . . ,mα } with
xα,i ∈ { 2−α ≤ d∂X ≤ 2−α+2 } such that {B2−α−3(xα,i) i = 1, . . . ,mα } is a disjoint family.
The verification of the fact that {B2−α−1(xα,i) : α = 1, . . . ,mα, i ∈ N } satisfies (a) and
(b) follows from the following simply verified observations:

• mα ≤ C(N) for any α ∈ N;
• if B 3

2 ·2−α−1(xα,i) ∩B 3
2 ·2−β−1(xβ,j) 6= ∅ then |α− β| ≤ 2.

We build now the partition of unity {ϕk } satisfying (c) and (d) following a standard
procedure. For any k ∈ N we use Lemma 2.10 to get a nonnegative function ηk satisfying
ηk = 1 on B 2

3 rk
(xk) and ηk = 0 on X \Brk(xk) along with the bound

ηk + rk|∇ηk|+ r2
k|∆ηk| ≤ C(N) .

Then we set
ϕk := ηk∑

i ηi
.

The verification of (c) and (d) is straightforward and builds upon the observation that
1 ≤

∑
i ηi ≤ C(N) on B4(p) \ ∂X.

Step 2. If δ < δ(N, ε), x ∈ B4(p), s = d∂X(x)/5 then there exists a unique solution bx,s
to the Dirichlet boundary value problem4{

∆bx,s = 0 on Bs(x)
bx,s = d∂X on ∂Bs(x)

(9.10)

4The Dirichlet boundary condition below is understood as bx,s − d∂X ∈ H1,2
0 (Bs(x)).
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which satisfies moreover the estimates
(1) bx,s > 0, |∇bx,s| ≤ C(N) and |∇bx,s| ≤ 1 + ε on Bs/2(x);
(2) |bx,s − d∂X | ≤ εs on Bs(x);
(3)

�
Bs(x) |∇bx,s −∇d∂X |2 dH N ≤ ε.

Existence and uniqueness of solutions to (9.10) follow from classical functional analytic
arguments (cf. [C99, (4.5)] and [AH18, (4.11)]) since X \B(1+ε)s(x) 6= ∅. The positivity of
bx,s in (1) is a consequence of the maximum principle, while the gradient bounds follow
from [J14] (for the non sharp one) and Remark 3.3, for the sharp one given (iii).

In order to verify (2) and (3) let us consider a point q ∈ B4(p)∩∂X such that d(x, q) ≤ 5s
and notice that B6s(q) is a δ′-boundary ball for δ ≤ δ(N, δ′), thanks to Theorem 8.1 (i).
Since Bs(x) ⊂ B6s(q) we can scale the space by a factor 3/2s and verify (2) and (3) in
the special case d∂X(x)/5 = s = 2/3. In order to do so we rely on the continuity of the
harmonic replacement (see [AH18]) arguing by contradiction.

First we observe that 1/n-boundary balls B2(qn) converge to BRN+
2 (0) as n→∞. Then

we recall that Lemma 7.1 yields uniform and W 1,2 convergence of the distance functions
from the boundaries along the converging sequence, and on any converging sequence of
balls B2/3(xn).5 To conclude we observe that on the half space the distance from the
boundary is harmonic away from the boundary and local spectral convergence holds for
any ball far away from the boundary. Therefore the harmonic replacements of the distance
from the boundary verify:∥∥∥bxn,2/3 − d∂Xn

∥∥∥
W 1,2(B2/3(xn))

→ 0 and
∥∥∥bxn,2/3 − d∂Xn

∥∥∥
L∞(B2/3(xn))

→ 0 , (9.11)

as n→∞, yielding the sought estimates (2) and (3).
Step 3. Let ϕk and Brk(xk) be as in Step 1. We set bk := bxk,2rk , where bxk,2rk is

obtained by Step 2, and we define

b :=
∑
k

ϕkbk .

Let us show that |b(x)− d∂X(x)| ≤ C(N)εd∂X(x) for any x ∈ B2(p).
First let us consider x ∈ B2(p) \ ∂X. Using (1), (2), (b) and (d) we get

|b(x)− d∂X(x)| ≤
∑
k

ϕk(x)|bk(x)− d∂X(x)|

≤ 2ε
∑

{k:ϕk(x)6=0}
ϕk(x)rk

≤ C(N)εd∂X(x) .

Then we can estimate

|∇b| (x) ≤
∑
k

|∇ϕk| (x)|bk − d∂X |(x) +
∑
k

ϕk(x) |∇bk| (x)

≤εC(N)
∑

{k:ϕk(x)6=0}
|∇ϕk| (x)d∂X(x) + 1 + ε

≤1 + C(N)ε ,

for H N -a.e. x ∈ B4(p). Above we exploited the very definition of b, together with (a)–(d)
and (1), (2).
This gradient estimate, together with the previous one, allows to infer that b is Lipschitz
once we set b = 0 on ∂X.

5This stronger statement can be checked arguing as in the case of balls centered at boundary points,
given the uniform convergence of the distance functions.
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Step 4. We now verify that b ∈ Dloc(∆, B4(p) \ ∂X) and 
Br(x)

|∇b−∇d∂X |2 dH + r2
 
Br(x)

|∆b|2 dH N ≤ ε ∀x ∈ B2(p), r = d∂X(x)/3 . (9.12)

For H N -a.e. x ∈ B2(p) one has

|∇(b− d∂X)|(x) ≤
∑

{k:ϕk(x) 6=0}
|∇(ϕk(bk − d∂X))|(x)

≤ C(N)ε+
∑

{k:ϕk(x)6=0}
|∇bk −∇d∂X |(x) , (9.13)

where we have used (b), (c) and (2).
Let us now observe that on B4(p) \ ∂X it holds

∆b =
∑
k

∆ϕkbk + 2
∑
k

∇ϕk · ∇bk . (9.14)

The first sum in (9.14) can be easily bounded by using (b), (c), (d) and (2)∣∣∣∣∣∑
k

∆ϕk(x)bk(x)
∣∣∣∣∣ =

∣∣∣∣∣∑
k

∆ϕk(x)(bk(x)− d∂X(x))
∣∣∣∣∣

≤ C(N)
∑

{k:ϕk(x) 6=0}
r−2
k εrk ≤ C(N)εd−1

∂X(x) .
(9.15)

The estimate of the second sum in (9.14) uses (b) and (d):∣∣∣∣∣∑
k

∇ϕk · ∇bk(x)
∣∣∣∣∣ ≤∑

k

|∇ϕk|(x)|∇bk −∇d∂X |(x)

≤ C(N)d−1
∂X(x)

∑
{k:ϕk(x)6=0}

|∇bk −∇d∂X |(x) .
(9.16)

By combining (9.13), (9.15) and (9.16) we find out 
Br(x)

|∇b−∇d∂X |2 dH N + r2
 
Br(x)

|∆b|2 dH N

≤ C(N)ε+ C(N)
 
Bs(x)

∑
{k:ϕk(z)6=0}

|∇bk − d∂X |2(z) dH N (z) ,

which easily yields the sought conclusion as a consequence of (b) and (3).
�

Before entering into the proof of Theorem 9.1 we outline its strategy for the reader’s
convenience. In a nutshell: we perform a Reifenberg type argument with two model sets,
the Euclidean space RN and the Euclidean half space RN+ , instead of the single model of
the usual statement.

The homeomorphism F : B1(p)→ RN+ is built by setting F := (u, b) where u : B8(p)→
RN−1 is a δ-splitting map with u(p) = 0 and b is given by Lemma 9.5. The latter has to
be understood as a suitable regularization of d∂X . It is straightforward to check that F is
a Lipschitz map, the delicate part of our argument is to prove that

|F (x)− F (y)| ≥ (1− ε)d(x, y)1+ε , for any x, y ∈ B1(p) . (9.17)

To this aim, we distinguish two cases.
Case 1: x, y are far away from the boundary. More precisely, r := d(x, y) is much

smaller than d∂X(y) and d∂X(x). In this case, x, y ∈ B2r(x) and the ball B2r(x) looks
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Euclidean at any scale. We can then run a transformation argument as in [CJN18, Theorem
7.10] to find a transformation matrix A such that

A ◦ F : Br(x)→ RN is a δ-almost splitting map , |A| ≤ r−ε . (9.18)
Using that δ-almost splitting maps are ε-isometries we conclude
|F (x)− F (y)| ≥ rε|A ◦ F (x)−A ◦ F (y)| ≥ rε(1− ε)d(x, y) ≥ (1− ε)d(x, y)1+ε . (9.19)
Case 2: x, y are close to the boundary. In this case B2r(x) is a boundary ball, where

r := d(x, y), and we can apply a transformation argument on u : B2r(x)→ RN−1. We can
find A such that

A ◦ u : Br(x)→ RN−1 is a δ-splitting map , |A| ≤ r−ε . (9.20)
Arguing as above, we deduce that v := (A ◦ u, b) : Br(x)→ RN+ is an ε-isometry and

|F (x)− F (y)| ≥ rε|v(x)− v(y)| ≥ (1− ε)d(x, y)1+ε . (9.21)

Proof of Theorem 9.1. For δ < δ(N, δ′) we build a δ′-splitting map u : B8(p)→ RN−1 with
u(p) = 0 and a function b : B8(p) → R+ satisfying (i) and (ii) in Lemma 9.5 with δ′ in
place of ε. We claim that F := (u, b) verifies (i)–(iv).

Let x, y ∈ B1(p) and set r := d(x, y). The inequality |F (x) − F (y)| ≤ C(N)d(x, y)
follows from the Lipschitz regularity of u and b.

Aiming at proving the inequality |F (x) − F (y)| ≥ (1 − ε)d(x, y)1+ε we are going to
argue as in the proof of [CJN18, Theorem 7.10] (see also the proof of (8.18)), relying on
the transformation theorem. Since in this case the target is the half-space and not the
Euclidean space, we need to study separately the two cases r ≤ d∂X(x)/3 and r > d∂X(x)/3.

Assume first r ≤ d∂X(x)/3. Let q ∈ ∂X ∩ B1(p) such that d(x, q) = d∂X(x). For
δ < δ(N, δ′) the ball Bs(q) is a δ′-boundary ball for any s ∈ (0, 8), by Theorem 8.1 (i).
The transformation theorem Proposition 3.13 (see also the matrix growth estimate in
Corollary 3.16) applied to u : B2d∂X(x)(q) → RN−1 (taking into account the fact that
u : B2(q)→ RN−1 is a δ′-splitting map) implies the existence of a matrix Tx such that

• Tx ◦ u : B2d∂X(x)(q)→ RN−1 is an ε′-splitting map;
• |Tx| ≤ (2d∂X(x))−ε′ ≤ (6r)−ε′ ,

whenever δ′ < δ′(N, ε′). Assume δ′ ≤ ε′. Setting v := (Tx ◦ u, b), thanks to Corollary 7.2
and (9.9), we have

N∑
α,β=1

 
Bs(x)

|∇vα · ∇vβ − δαβ|dH N +
N∑
α=1

s2
 
Bs(x)

|∆vα|2 dH N ≤ ε′′ , (9.22)

for s := d∂X(x)/3 and ε′ ≤ ε′(N, ε′′).
Applying again Proposition 3.13 to v : Bs(x) → RN taking into account that Bt(x) is a
(N, δ′)-symmetric ball for any r ≤ t < 3/2s (see Theorem 8.1 (iii)) when δ ≤ δ(N, δ′), we
get the existence of a matrix Ax such that

• w := Ax ◦ v : Br(x)→ RN is a ε′′-almost splitting map;
• |Ax| ≤ r−ε

′′ ,
for ε′ ≤ ε′(N, ε′′). Hence, if ε′′ ≤ ε′′(N, ε′′′), w : Br(x)→ RN is a ε′′′-GH isometry thanks
to Remark 3.10 and Remark 3.12, yielding that

||w(x)− w(y)| − d(x, y)| ≤ ε′′′r = ε′′′d(x, y) .
This implies in turn

|F (x)− F (y)| ≥ (1− ε)d(x, y)1+ε ,

being w := B ◦ F , where B is a matrix satisfying |B| ≤ (1 + ε)r−ε for ε′, ε′′, ε′′′ small
enough.
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Let us now deal with the case r > d∂X(x)/3. Let q ∈ ∂X ∩ B1(p) such that d(x, q) =
d∂X(x). Notice that B8r(q) is a δ′-boundary ball for δ ≤ δ(N, δ′) as a consequence
of Theorem 8.1 (i). We apply the transformation theorem Proposition 3.13 to get a
matrix Ax, such that |Ax| ≤ (8r)−ε′ and Ax ◦ u : B8r(q) → RN−1 is an ε′-splitting map.
Relying now on Corollary 7.2 and on Lemma 9.5 (i) we infer that, when δ ≤ δ(N, ε′′),
v := (A ◦ u, b) : B4r(q)→ RN+ is an ε′′-GH isometry. Notice that y ∈ B4r(q), hence

||v(x)− v(y)| − d(x, y)| ≤ 4rε′′ = 4ε′′d(x, y) .

Arguing as above we deduce |F (x)− F (y)| ≥ (1− ε)d(x, y)1+ε, for ε′′ small enough.

The assertion (ii) follows from the fact that { b = 0 } ∩B4(p) = ∂X ∩B4(p) and Theo-
rem 8.4 (iv).

Observe that F : B1(p) \ ∂X → RN+ \ {xN = 0} is an open mapping by invariance of
the domain. Indeed, under our assumptions B1(p) \ ∂X is homeomorphic to a topological
manifold thanks to Theorem 8.1 (iii) and Reifenberg’s theorem. Being F continuous and
injective, to prove that F : B1(p)→ RN+ is an homeomorphism with its image it is sufficient
to prove (iv). If this is the case, to prove that the image of any open set in B1(p) is open
in RN+ we just need to observe that on any boundary ball, up to an invertible matrix, the
restriction of F verifies the same properties that F verifies on the ball of radius 1.

Let us therefore move to the verification of (iv). In order to do this it is sufficient to
prove that

F (B1(p) ∩ { d∂X ≥ δ }) ⊃ B1−2ε(0) ∩ {xN > δ(1 + ε) } , (9.23)
for any δ > 0. This claim can be verified arguing as we did in the proof of Theorem 8.4 (iv),
relying once more on the invariance of the domain and on the fact that F (x) ∈ {xN = 0}
if and only if x ∈ ∂X. �

Remark 9.6. Arguing as in the proof of [CJN18, Theorem 7.10] (see also the proof of
Theorem 9.1 above) and relying on the transformation Proposition 3.13 it is possible to
obtain the following regularity result, which is worth pointing out.

If (X, d,H N ) is a noncollapsed RCD(−(N − 1), N) space and x ∈ X is a regular point,
then for any 0 < α < 1 there exists an open neighbourhood of x which is Cα-homeomorphic
to an open subset of RN , and the homeomorphism can be chosen with harmonic coordinate
maps.

This observation gives in particular a positive answer to a question raised in [P03,
Question 2.1] about existence of homeomorphisms from a neighbourhood of a regular point
of an Alexandrov space with curvature bounded from below to an open set in RN with
harmonic coordinates. Notice that the regularity of the harmonic map cannot be improved
to biLipschitz, due to the presence of singular points where harmonic maps do degenerate,
see [CN15, Example 2.14].
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