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ABSTRACT. In this paper we study a metric Hopf-Lax formula looking in parti-
cular at the Carnot-Carathéodory case. We generalize many properties of the
classical euclidean Hopf-Lax formula and we use it in order to get existence
results for Hamilton-Jacobi-Cauchy problems satisfying a suitable Hormander
condition.

1. Introduction. The aim of this paper is to study some properties of the Hopf-
Lax function associated to a generalized distance on R™ and a semicontinuous da-
tum. We prove, in particular, that for Carnot-Carathéodory metrics which satisfy
the Hormander condition the Hopf-Lax function is a viscosity solution of the Cauchy
problem for an Hamilton-Jacobi equation for a state-dependent Hamiltonian, the
model being H (z, Du) = X|o(z)Dul|®, where o(z) is a m x n matrix satisfying the
Hormander condition.

In Section 2 we define a metric Hopf-Lax formula and we study some of its basic
properties. In particular we show that the Hopf-Lax function lower converges to the
function g, as t — 07, and it is non increasing in t. Moreover it is locally d-Lipschitz
in « and locally (euclidean) Lipschitz in ¢.

In Section 3 we define a minimal-time function and we show that it satisfies a Dy-
namical Programming Principle. Moreover we prove that, under the Hormander
condition, the Carnot-Carathéodory distance d(x,y) solves in the viscosity sense
the horizontal eikonal equation |o(z)Dd(z,y)| = 1 in R™\{y}, for any fixed y € R™.
By the Pansu-Rademacher Theorem, it is an almost everywhere solution, too. In
Section 4 we prove an existence result, in the viscosity lower semicontinuous sense,
for an Hamilton-Jacobi-Cauchy problem, using the metric Hopf-Lax formula and
the eikonal solution built in Sec. 3.

In Section 5 we give some applications for our Hopf-Lax function. First we prove
that, if the initial datum is continuous, then the Hopf-Lax function is also. This
implies that in this case the Hopf-Lax function is also a viscosity solution following
the usual definition of Crandall and Lions. Moreover we pay particular attention
to the sub-Riemannian model. Using the Lipschitz regularity results proved in Sec.
2, we remark that, in a such case, the Hopf-Lax solution is an almost everywhere
solution for the corresponding Cauchy problem, too. At last, in the particular case

2000 Mathematics Subject Classification. Primary: 35F25, 49L20; Secondary: 49125, 53C17.

Key words and phrases. Hamilton-Jacobi equations, Hopf-Lax formula, Dynamical Program-
ming Principle, Carnot-Carathéodory distances.

713



714 FEDERICA DRAGONI

of the 1-dimensional Heisenberg group, we check that our formula is the same as
the Manfredi-Stroffolini formula, proved in [T6].

2. Generalized distances and the metric Hopf-Lax function. We start by
recalling some metric notions.

Definition 1. A generalized distance on R™ is any function d : R” x R™ — [0, +00)
satisfying

d(z,y) >0, Va,y € R", d(y,y) =0, Vy € R", (1)
d(z,y) < d(z,2) +d(2,y), Vaz,y,z€R" (2)

In the previous definition we do not require neither the symmetry nor the positive

defining property (i.e. d(z,y) = 0 implies that z = y). For example the degenerate
distances associated to Finsler metrics are so ([I]).
It is trivial that any finite distance is also a generalized distance, so in particular
we will study the case of the Carnot-Carathéodory distances on R™ satisfying the
Hormander condition. Therefore we recall briefly what are these and some of their
properties, which are useful in the study of the associated metric Hopf-Lax func-
tion. One can find more informations on Carnot-Carathéodory distances and the
Hormander condition in [B, 17, 21]. Let Xi(x),..., X;n(z) a family of vector fields
on R™ and set H(z) = Span(X1(z),..., X;n(x)), then a distribution on R™ is defined
as H = {(z,H(z)) |z € R"}.

Definition 2. A sub-Riemannian metric in R™ is a Riemannian metric ( ) defined
on the fibers of a distribution H.

Definition 3. An absolutely continuous curve v : I — R"™ is admissible (or also
horizontal) if 4(t) € H(y(t)), a.e. t € I.

For all the admissible curves, and only for these, it is well defined the following
length-functional

I(y) = / (0l

where [§(8)] = (¥(£),7(£))*
Definition 4. A Carnot-Carathéodory distance is a function defined as
d(z,y) := inf{l(y) | v horizontal curve joining = to y}. (3)

A Carnot-Carathéodory distance, which we call simply C-C distance, is a real
distance on all R™ but sometime it can be infinite for some pair of points. So we
introduce the Hormander condition but first we recall that a bracket between two
vector fields X and Y is the vector fields defined, for any smooth real function f, as
(X, Y]f = XY f)=Y(Xf). Let £° = {X1,... X}, £ = {[X;, Xj]|i = 1,...,m}
and £F = {[V,,V;]|Yi € LMY, € L4kl = 0,....k — 1)\ U}, £, then the Lie

algebra associated to some distribution is the set £ = [J; oy ck.

Definition 5. A C-C distance satisfies the Hérmander condition if its distribution
is bracket generating, i.e. if the associated Lie algebra spans, in any point, the
whole R".

The main result for C-C distances satisfying the Hormander condition is the
Chow Theorem (see [B [I]).
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Theorem 1 (Chow Theorem). Let H a bracket generating distribution, then there
ezists a H-horizontal curve joining any two given points.

A consequence of the Chow Theorem is that the associated C-C distance is finite.
The next example shows that the Hormander condition is not a necessary condition
to get a finite C-C distance.

Example 1. We consider on R? the following vector fields X1 ((z,y)) = % and

Xo((z,y)) = a(ac)a%, with a(z) = 1, if £ > 0 and a(z) = 0, if z < 0. On the
half-plane = < 0 we can move only in one direction, then the spanned distribution
is not bracket generating. Nevertheless it is easy to write explicitly the associated

Carnot-Carathéodory distance, that is

Vig—yP+2 =y, z1>02" >0

, lz] + |2 + [y — 3], r<0x

d((‘r7y)7 (:I: 7y )) = 3 5 ,
lz] + V]2 P4y —v'?, <02’ >0

||+ V]zP 4+ ly— v 2>02" <0

It is immediate to note that d is a finite distance but it is not continuous w.r.t. the
euclidean topology. In fact for any = <0

lin%d((:v,O), (x,y)) = 2|z| > 0.
y‘}

The Hormander condition implies also that the associated distance induces the
same topology as the original euclidean topology on R™, see [I7] or Corollary 2.6
in [5]. Moreover the Hérmander condition is also a necessary condition only for
analytic vector fields while we look at smooth vector fields and so use it only as
sufficient condition.

Now we introduce the Hopf-Lax function associated to the generalized distance
d. From now on we indicate by d(z) the generalized distance from the origin to
a point z. Let g : R™ — R a lower semicontiuous function such that there exists
C>0:

g(x) = —C(1 +d(z)), (4)
and let @ : [0,+00) — [0 + 00) continuous, convex, not decreasing, with ®(0) =

0. The metric Hopf-Lax formula associated to the generalized distance d and the
function g is defined by

L o dz,y)
u(z, t) = ylean" [g(y) +td ( . )], (5)
where ®* is the Lagendre transform of @, i.e. ®*(t) = sup,~,{ts — ®(s)}. Note
that ®* : [0, +00) — [0, +0c] is convex, non decreasing and ®*(0) = 0.

We begin to study the properties of the metric Hopf-Lax function (H) (for the
euclidean case see [Il 2, [[3]), remarking that u(¢, z) < g(z), for any ¢ > 0. The next
properties are key-points for the viscosity result proved in Sec. Hl

Lemma 1. Let d a generalized distance inducing the euclidean topology on R™, then
the metric Hopf-Lax function ) lower converges to g, i.e.

( li)m(inf )u(t,x) = inf { liminf u(tn, zn) | (tn, #n) — (07, 2)} = g(T).  (6)
t,3)— (0,5 n—oo
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Proof. The proof follows the lines of a similar statement in [I]. The main step is to
prove, for any r > 0, the following estimate using the condition (@), the definition
of ®* and the monotonicity assumption on ®.

u(t,z) > yiean" [(r—C)d(z,y) — C —Cd(x) —t®(r)], Vr>0. (7)

By lower semicontinuity of g, for any € > 0, there exists § > 0 such that,

g(y) > g(T) —e, VdT,y) < 26. (8)
Choosing 7 > C : (T—C)d — C(d(T) +6) — C > g(T) in @) and 0 < 7 < B e
can estimate the Hopf-Lax function outside the ball B = B (%), i.e.

inf [g(y) +t¢*(@)} > g(T) —e.

yER™\ B

Inside the ball, using the same inequality with » = 0 and ®(0) = 0, we conclude
g(y) > g(T) — €. So we have proved that

liminf u(t,z) > g(7).
(ot inf (t,z) > g(7)

The opposite inequality follows choosing the sequences of the form (¢,,7) with
t, — 0T. In fact, by ® > 0, it immediately that u(¢,7) < g(T), then

liminf w(t,z) < liminfu(t,,Z) < g(T).
JJmintu(t.o) < liminf u(t,. ) < 9(2)

O
From ([@ with » = C, a d-superlinear estimate from below follows.
Lemma 2. Under assumptions of Lemmalll, set C' = max{C,®(C)}, then
u(t,r) > —C'(1 +d(z) + t). 9)

Lemma 3. Under assumptions of Lemmall, the metric Hopf-Lax function @) is
lower semicontinuous on [0,+00) x R™.

Proof. As for the proof of Lemma (), we follow the lines of a similar statement
in []. So we want to show that sublevels of u are closed. Let (ty,x)) a sequence
such that u(ty, ) < v, for some v € R. If (tg,xr) — (¢, ), we must prove that
u(t,z) <~. Since g € LSC(R™), we assume ¢ > 0. Let {y'} a minimizing sequence
for @) in (tg,zx), @ with r =1+ C gives

d(xk,y?))]

~v > u(ty, ) = liminf [g(y,?) + 6, " ( ;
n—oo k

> liminf d(zg, yy) — C — Cd(zk) — tx®(C).

n—oo

By definition of minimum limit with e = 1 we get y? € By = B?%(k) (2r), with
R(k) = C+Cd(xy)+tp®(C)+y+1, definitively. Using the convergence of (¢x, zx) —
(t,x), it is not hard to check that y, € B%(z) for a suitable constant R > 0. We
have assumed that d induces the euclidean topology then the relative closed balls
are compact. Therefore, as k — 400, y; admits a convergent subsequence to some
point y € B%(z). Using the semicontinuity of g, ®* and d, we can conclude

WZMQJHZQQH%@(%%Q)Zu@Q'
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We show that for any g, bounded and lower semicontinuous, the infimum in
formula () is a minimum, exactly as in the euclidean case (see [2]).

Lemma 4. Let d a generalized distance and g € BLSC(R"™) (lower semicontinuous
and bounded). Then for any x € R™ and t > 0, the infimum in @) is a minimum.

Proof. We need only to prove that, for any x € R™ and ¢t > 0 fixed, there exists
a radius R(t) enough large that g(y) + t®* (d( ) > gl for y € R"\BR(t ().

Then, since u(t,z) < g(z) < ||g/|,., then the infimum is attended in B}é(t)( x) and
so, by lower semicontinuity of g, it is a minimum.

To prove the previous claim, notice that ®*(7) is convex so there exists a supporting
line m7+¢q. Moreover ®*(0) = 0, then ¢ < 0 and, by the non decreasing property of of

®*, we can also assume m > 0. Then, chose R(t) = 2”9”7tq for y € R"\BR(t (x)

« [ dlz,y
o)+ 10" (D50 > gy) + matep) + 002 = ol + 2Nl = ol

We conclude remarking that R(¢) is not decreasing in ¢ > 0. O

Remark 1. When the convex function ® is a power, i.e. ®(t) = éto‘, with a > 1,
then we can easily show that ®*(¢t) = %tﬁ with 8 = %5, if a > 1, while if a = 1,
then
. 0, 0<t<1
®(”_{+m,t>1

So for convex powers, the Hopf-Lax function is

z.y)P
) = jnt |+ 5750 (10)
if > 1 and
u(t, ) = inf {g() | d(e. ) < 1}, (1)

if @ = 1. In these case, by simple calculations, it is possible to show that previ-
ous infimums are attended in the closed d-ball centered in z with radius R(t) =

(28)%t"7 ||g||Z. and R(t) = t, respectively.
The previous lemma is useful to prove the following locally Lipschitz properties.

Recall that a function f : R™ — R is d-Lipschitz continuous w.r.t. a non symmetric
distance d(z,y) if there exists C' > 0 such that

|f(z) = f(y)| < Cmax{d(z,y),d(y,z)}.

Proposition 1. Let ¢ € BLSC(R™) then, for any generalized distance d, fized
t > 0, the metric Hopf-Lax function B is locally d-Lipschitz continuous in x.

Proof. By Lemma Bl we can choose ¥ such that u(t,y) = g(y) + t®* (d(y’y)). o*

is convex and then locally Lipschitz continuous. Hence, for any K C R™ compact,
there exists a constant C'(K) > 0 such that

By the triangle inequality, |d(z,7) — d(y,7)| < max{d(x,y),d(y,x)}, so by the

previous estimate and swapping x with y we conclude the proof. O
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To prove the local Lipschitz continuity in ¢ we need to use the relative geodesics.
A geodesic is any absolutely continuous horizontal curve which realizes the mini-
mum in the definition (B) of C-C distance. In particular, for C-C distances satisfying
the Hérmander condition, (R™, d) is a length spaces, that is for any z,y € R™ there
exists a geodesics 7 joining x to y and such that [(v) = d(x,y) (see [I7], Theorems
1.1.19). As in any length space, we can assume that the geodesic v : [0,7] — R™ is
parameterized by arc-length, so I(y) = T and d(y(t),v(s)) = [t—s], for s,t € [0,1(7)]
(see [21] Lemma 3.3). To show the local Lipschitz continuity in ¢, we proceed as in
[13], so first we prove a suitable functional identity.

Lemma 5. Let d be a C-C distance satisfying the Hormander condition, g €
BLSC(R™), then the Hopf-Lax function @) satisfies, for any 0 < s < t,

w(t,z) = inf {u(s,y) +(t— 5)0* <d(“”y)>} . (12)

yER™ t—s

Proof. By the usual triangle inequality for d and using first the non decreasing
property of ®* and then its convexity, we get that

o (252) < (1o (222 oo (222)

for any z,y,z € R™. Fixed z, for any y we choose a minimum point z for u(s,y)
(that exists by Lemma Hl). Using such point z, we get

) < g(e) + 000 (12D} < ugon + -9

Taking the infimum for y € R", we find the following inequality

u(t,z) < inf {u(s,y) +(t— 5)* <d(x’y)>} .

yER™ t—s

t—s

d(z, y)> .

To prove the inverse inequality, we choose a minimum point w for u(¢,z). Put
T = d(z,w) there exists v : [0,7] — R™ such that v(0) = z, v(T) = w and

d(y(s),v(t)) =t —s, for every 0 < s <t < T. We define 7 := W(T(t;s)), so that
dlz,y) _ d(z,2w) _ d(y,w . . . .
Efg) = dzw) (ys ) getting the other required inequality
: d(z,y) . d(x,7)
f t—3s)0" | — || < t—s5)0" | —22 ) <
inf Juts,)+ 0= 90 (T2 < utsm+ - 9o (22 < glw
d(y d(x,y d
+ 5P* <—(y’w)> + (t— 5)" (_(x’”) = g(w) + t&* (L”w)) = u(z,1).
s t—s t
o

Remark 2. By choosing y = z in (@), from Lemmall , we deduce that the metric
Hopf-Lax function (@) is non increasing in ¢.

Proposition 2. Let g € BLSC(RY) and assume t®* (%) convex and decreasing
for t > 0. Then the Hopf-Lax function associated to a C-C distance satisfying the

Hérmander condition, is locally Lipschitz continuous in t > 0.

Proof. Since u(t, ) is non increasing in ¢, for any 0 < s < ¢, u(t,z) — u(s,z) < 0.
So we need only to check the estimate from below. Choosing a minimum point
7 =7(t) for u(t,x), then for any Ty < s < ¢t < Tj, we find

oot 0 (7)o (128
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Fix t > 0 and let s free. If d(x,7) = 0 then u(t, ) = u(s,x) and we have concluded,

then we can assume d(z,7) # 0 and set 7 = m and 0 = gro=. Therefore

teate o (1) oo (1))

Using the local Lipschitz continuity of the convex functions, for any T > 0, there
exists C' = C(T") > 0 such that

I>Cd(z,y)(r—0)=C(t—s), foranyT <o <T.
If we choose T = %, by Lemma Ml and the non decreasing property of R(t), we
get that for any s,t € [T}, Ty, 0,7 € [TV, +00) and so we can conclude. O

Remark 3. If we look at ®(t) = 1¢* with a > 1, by Remark[it is immediate that

1

to* (;) as in Proposition More in general, this property holds whenever ®* is

strictly convex and there exists (®*)”(¢), in fact (t®* (%))H = (®*)" (1) % >0 (for
example ®(t) = ¢! —1). Instead in the linear case ®(t) = ¢ both of the requirements
are not satisfied.

To conclude the study of the properties of the metric Hopf-Lax function, we point
out a link with a problem in the calculus of variation, see [T3], Section 3.3.1, for the
euclidean case. We look at the minimization problem

t
v(t, z) = inf {/ " (|4(s)))ds + g(v(¢)) '”ya.c., horizontal, withv(0) = 3:} (13)

0
Proposition 3. Let g € LSC(R") and d a C-C distance satisfying the Hormander
condition, then the infimum ([3)) coincides with the metric Hopf-Lax function (H).

Proof. From the Jensen inequality it follows immediately that

o (3 [ ) <3 [Corsienas

So for ¢ > 0 and all the a.c. horizontal curve v : [0,¢] — R™, joining 2 to a point
y € R™, it holds

o)+ 107 (10 < o) 10 (M00) < g+ [ (it

t

Taking the infimum, we get u(t,z) < v(¢t,z). To prove the reverse inequality we
must use the length structure. Fix ¢ > 0 and y € R"”, there exists v geodesic
parameterized by arc-length and joining z to y. Set T' = d(x,y) and define (s) :=

(£2), then [(s)| = $13()| = T, so

[ = [for (£)as= o (A22),

Adding g(y), we get

u(t,z) < g(y) + 10 (M)

and so we conclude taking the infimum in y € R”. O
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Remark 4. By Lemma B and Proposition B for a C-C distance satisfying the
Hormander condition and g € BLSC(R™), it is possible to express the value function
of the calculus of variation problem ([[3) as the solution of a minimization problem
in R™.

If ®(t) = 1¢%, then the metric Hopf-Lax function (B) coincides with the metric
inf-convolution w.r.t. the distance d. One can find information about euclidean
inf-convolutions in [, 2]. For a study of metric inf-convolutions in the Carnot-
Carathéodory case see the work in progress [12].

3. The generalized eikonal equation. In this section we study a generalized
eikonal equation under a suitable Hérmander-type condition on the Hamiltonian.
Generalized solutions and in particular viscosity solutions of eikonal equations are
studied by P.L. Lions in [T5] for convex geometrical Hamiltonians and then by A.
Siconolfi in [20] in the non convex case. Therefore we look at

Hy(xz, Du(z)) =1, (14)

where Hy is a geometrical Hamiltonian, i.e. Hy : R?" — [0, 4+00) is continuous in
both variables, convex and positively homogeneous of degree 1 with respect to p.
Moreover, we assume that there exists a m x n-matrix o(z), with C* coefficients,
such that the distribution, spanned by its lines, satisfies the Hérmander condition
and

o' (x)B1(0) C OHo(z,0), for anyx € R™ (15)

where of(z) is the transpose matrix of o(z) and Hy(z,0) is the subgradient of the

convex function p — Hy(z,p), in the point (z,0), and B;1(0) is the closed ball in
R™, with m < n.

Under assumption ([[H), for any fixed point y € R™ we build a generalized dis-
tance which is a viscosity solution of the vanishing Dirichlet eikonal problem in
R™\{y}. At this purpose we look at the differential inclusion

X(t) € 9Ho(X (t),0), t € (0,+00). (16)

A solution of (@) is an absolutely continuous function X : (0, +0c0) — R”™ satisfying

(@) almost everywhere.

Let F, , the set of all solutions X (-) of ([[H), joining x to y in some finite time (i.e.

X(0) =z and X(T) =y for some 0 <T =T (X(-)) < 400).

First note that (X)) implies Fy , # 0, for any pair of points =,y € R™. In fact the

set of solutions of ([[H) includes the solutions of the control systems
X(0) = o' (X(D)alt), te (0,+0) -
X(0) =z,

where the control « : [0, +00) — R™ is a measurable function, with |a(t)] < 1 a.e.

t>0.

So, by Chow’s Theorem [l there exists a solution of (), joining z to y in a finite

time, and then F , # (). Therefore we define

da.y)i=  inf T(X()) (18)

We show now that the minimal-time function is a generalized distance.
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Lemma 6. Let Hy a geometrical Hamiltonian satisfying [H), then @) is a gen-
eralized distance, inducing on R™ the euclidean topology.

Proof. As previously observed, by the Hormander condition ([[H), d is finite. Also
property ([IJ) is trivial. We must check @). Let E, , :={T =T(X(-)) | X(-) € Fay},
for any Ty € B, and T» € E, . we put X;(-) the trajectory with respect to T, for
i = 1,2, and consider the path

{ X (t), 0<t<T,

X(t) =

Xo(t—Ty), Ty <t<Ti+To.

It is trivial to check that X(-) satisfies the differential inclusion ([IH). Moreover
X(0) = z and X(Ty + T3) = 2. So X(-) € Fy., ie. Ty + Ty € Ey.. Then
d(z,z) < Th + T» and taking the infimum in E, , and E, , respectively, we can
conclude that d(x,z) < d(x,y) + d(y, z). Note that d is non symmetric in general;
indeed, for X(-) € F,.,, the inverse path X (t) := X (T — t) may not satisfy ().
Finally, by assumption [[H), d induces on R™ the euclidean topology (see proof of
Theorem 2.3 in [I7]) and this concludes the proof. O

To prove that d(x, y) is a viscosity solution of the eikonal equation () in R™\{y},
we proceed as in [2], using a Dynamical Programming Principle.

Lemma 7 (DPP). Under the assumptions of Lemmal@, for any x,y € R™

d(z,y) = inf [t+d(X(%),y)], V0<t<d(z,y). (19)
X()EFz,y
Proof. First we prove that
dlz,y) < inf  [t+d(X(t),y)]. 20
(z,y) —X&Ién,y[ +d(X(1),y)] (20)

Let y € R" and X (-) € Fy y, we set z = X (t). Since d(z,y) = infx(yep, , T(X()),

for any € > 0 there exists X(-) € F., such that d(z,y) > T(X(-)) — ¢

We define
_ X(s), 0<s<t,
X(s) =4 -
X(s—t), t<s.
It is trivial to check that X(-) € Fj,, so, for ¢ > 0, d(z,y) < T(X() = t +

T(X(:)) < t+d(z,y) + ¢ and then d(z,y) < t + d(z,y) + . Passing to the limit as
e — 0" we get d(z,y) <t+d(z,y) =t +d(X(t),y). At this point, @) follows by
taking the infimum over X (-) € F .

To prove the reverse inequality, fix y € R™ and remark that, for X () € F,, and
0 <t <dy) <T(X(), T(X(-) >t+d(X(t),y). Taking the infimum over
X(-) € F,,,, we get the last inequality. O

Using DPP we are able to solve, in the viscosity sense, the horizontal eikonal
problem

;i R™\{y}, (21)

for any y € R".

For analogous results using a such technique, one can see [2, [[3, [T5]. Moreover, there
exists a result where there is proved (by a DPP) that the minimal-time function
([X) is a viscosity solution, starting from a generic Lipschitz multifunction in place
of 0Hy(z,0), [6].
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The next lemma shows that for the model Hy(z, Du) = |o(z)Du| the minimal-time
distance d(z,y), defined by ([[J), coincides with the Carnot-Caratheodory distance
do(x,y) associated to the Hormander-matrix o(x) ([3]). We indicate by | - |, the
euclidean norm in R™ and by < . >n the inner product in R"™.

Lemma 8. Let Ho(z,p) = |o(x)p|m, where () is a m x n Hérmander-matriz
with rank equal to m < n and C*° coefficients, then

Ut(,T)Bl (O) = 6H0($, O),
for any x € R™. Therefore d(z,y) = do(x,y) in whole R™ x R™.

Proof. Let p € o*(x)B1(0), then there exists o € B1(0) such that p = o'(z)a. By
the Cauchy-Schwartz inequality, for any ¢ € R™, we get

(p.a), = (o' (@)a,q), = (@, 0(2)q),, < |a|m|o(@)dlm < |o(2)glm = Ho(z,q).

Hence p € 0H (x,0) and so we can conclude that o!(z)B;1(0) C 0H(z,0).
In order to prove the reverse inequality, we fix  and omit to write the dependence on
it. Since the Rank(c) = m, we can write R" = Ker(c) @& Im(o'). If v € dHy(z,0),
then

(v,p), < Ho(x,0) = |oplm, VpeR"™

Choosing p € Ker(co), we get <v,p>n < 0, that implies v € Im(o?). So there exists
w € R™ such that v = o'w. Hence

<0tw,p>n = <w,0p>m <|oplm, VpeR"
Since Rank(o) = m, there exists a p € R such that o p = w, so we find

<wvw>m = |w|$n < |w|m7

that implies w € B1(0) C R™.
Therefore v € o'(z)B(0), so that 9Hy(z,0) C o'(2)B1(0). O

Theorem 2. Let o(x) Hormander-matriz as in Lemma [@, then the associated
Carnot-Carathéodory distance d,(x,y) is a viscosity solution of the eikonal prob-

lem E10).

Proof. In order to prove the theorem, we use the expression of d, as the minimal-
time function (I8) and the corresponding DPP.

First we prove that u(z) = d(z,y) is a viscosity subsolution in R™\{y}. At this
purpose, let  # y and ¢ € C*(R") such that u — ¢ has a local maximum at x, i.e.
JR>0:

p(x) = ¢p(z) <dz,y) —d(z,y), V=z€ Br(x).
Let o € B1(0) and X,(+) a solution of the control system with constant control «,

X, (t) = (Xa(t)a
{ X.(0) =z
Note that, since 0 € C®, X,(-) € C* and so in particular is X, (0) = o (z)ov.
Remark that for enough small time ¢, X (t) € Br(z). Therefore,
p(r) —p(Xa(t) <d(z,y) — d(Xa(t), y) <t +d(Xa(t), y) — d(Xa(t),y) =1,

so that
o) — o(Xalt) _ |
, <
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Since X,(+) is smooth, we can pass to the limit, as ¢ — 07, getting
— (Dg(2), Xa(0)), = —(Dg(z),0' (x)a), = (o(z)Dp(z), —a), <1,  (22)

for any |a|,, < 1. Taking the infimum among all & € B;1(0) we find |o(x)Do(x)|m <
1.

It remains to prove that u is also a viscosity supersolution. So fix z % y, by
DPP we know that, for any ¢ > 0, there exists X.(-) € F, 4 such that
d(z,y) > d(X:(t),y) +t — et (23)
Let ¢ € C*(R™) such that u — ¢ has a local minimum at z, i.e. IR > 0:
d(z,y) — d(z,y) < p(x) = p(2), V2 € Br(z).
X, is absolutely continuous, so for enough small ¢, X.(t) € Bg(z). Therefore,

d(z,y) — d(X:(t),y) < p(x) — p(X:()). (24)
Using &3) in @), we get
— (X (t
In general X, is not differentiable so we cannot pass directly to the limit, as t — 01,

in order to conclude.
Nevertheless, by the absolutely continuity, we have

2 ) L [ (De(Re(s). Kol

t n

= _%/0 <D90(78(5))7Ut(yé‘(s))a(‘s»nds

Now we can add and subtract +(Dp (X (s)), o' (z)a(s)) and +(Dep(x), o' (z)a(s))
inside the previous integral.

Since the coefficients of ¢ is smooth and ¢ € C', by the absolutely continuity of
X.(s), it is easy to show that for 0 < t << 1, we have

n

I — — 1 [t
- ;/ (Dp(Xc(s)), 0" (Xc(s))a(s)), ds < —;/ (Dp(x), 0" (x)a(s)), ds+o(1)
0 0
1 t
= —;/ (o(x)Dp(x),a(s)),,ds + o(1) < |o(z) Dp(x)|m + o(1), (26)
0
since [@($)|m = 1 a.e. s. From [H) and (28, it follows that
1~ & < |0 (@) Dp(@)m + of1)
Passing to the limit, as t — 07, we find o(z)D¢(z)|m > 1 — . Hence, passing to
the limit, as e — 0T, we can conclude that |o(x) D (z)|m, > 1. O

Remark 5. Note that o(z)Du is exactly the horizontal gradient Xu, made w.r.t.
the sub-Riemannian geometry induced by the lines of o(z). Hence, by the Pansu-
Rademacher Theorem ([I7]), we get that, for any fixed y,

| Xdo(z,y)| =1, a.e. xzeR™
So we find the result proved in [I8] (Theorem 3.1).
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4. Hopf-Lax solution for the Cauchy problem. In this section we consider
the Cauchy problem

(27)

us + H(z, Du) =0, inR" x (0,+00),
u=g, inR"x{0}.

with g € LSC(R™) and H of the form

where Hj is a geometrical Hamiltonian and ® is a convex function.
More precisely, we assume that

(H1): Hp : R?™ — [0, +00) continuous in both variables, convex and positively
homogeneous of degree 1 with respect to p,

(H2): & : [0,+00) — [0,+00), differentiable, convex, not decreasing with
o(0) = 0 and lim,_o+ ®'(t) = 0.

The model example is
1
®(Ho(z,p)) = E|U(I)p|a, (28)

with @ > 1 and o(z) an Hérmander-matrix .

The Hopf-Lax solution for the above Cauchy problem has been studied in |2, [T3, [T5]
for continuous initial data g and Hy independent of z, in [Il, B] for Hy independent
of x and semicontinuous g and in [§, @] in the more general setting of the present
paper. Let us recall the following definition from [Tl A].

Definition 6. A function u € LSC([0,+00) x R"), is a lower semicontinuous
viscosity solution of the Hamilton-Jacobi equation

us + H(x, Du) =0, (29)
if, for any test function ¢ € C*(2) such that u — ¢ admits a local minimum in
(to,xo), it holds

0
g(p(to,xo) + H(LL'Q,D(p(to,!Eo)) =0. (30)

Theorem 3. Assume that d(x,y) is a generalized distance inducing on R™ the
euclidean topology. Assume also that, for any fized y, x — d(x,y) is a viscosity so-
lution of the eikonal equation Ho(z, Du(z)) =1 in R"\{y}. Let g € LSC(R") such
that @) holds, then the Hopf-Lax function [H) is a lower semicontinuous viscosity
solution of the Cauchy problem @) and moreover the estimate [@) holds.

Proof. By Lemma Bl and Lemma [l we know that u(¢,x) is lower semicontinuous
in [0,400) x R™ and assumes the initial data ¢ in the lower semicontinuity sense.
Moreover, by Lemma B the estimate () holds. To prove the theorem, it remains
only to check that u satisfies Definition

We show that u is a solution because infimum of solutions of equation ([3). So we
must prove that, for fixed y € R", the following function

v (t, ) = g(y) + tP* <M> (31)

is a lower semicontinuous viscosity solution of (2.
We introduce a strictly convex approximation of ®, set ®s(s) := &(s) + gSQ, with
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§ > 0. Then we prove that v, defined replacing ®; to ®* in [BI) is a lower
semicontinuous viscosity solution of the Hamilton-Jacobi equation

ve(t, ) + s (Ho(x, Du(t,z))) =0, in (0,400) x R™. (32)

It is trivial that v} is lower semicontinuous. Let ¢ € C! such that vy — ¢ has local
minimum (of 0) at (to,zo), i.e. there exists r > 0 and 0 < ¢ < to such that, for any
x € B.(wp) and to —t < t < to + ¢, it holds

vi(t,x) — p(t,x) > vi(to, x0) — ¢(to, zo) = 0. (33)

Writing [B3) in z = x¢ , we get that T'(t) := v} (¢, z0) —¢(t, ©o) has a local minimum
at t = to. Moreover T' € C, then T'(to) =0, i.e.

ei(to, o) = (V2 (t,2)),(to, x0) = ¥ (M) —to(rbjg)’(d(m’y)) d(x0,y) (34)

0 to t%

Since ®s is strictly convex, the duality formula @((@*)I(T)) + o*(7) = T(@*)I(T)
holds. Writing it in the point s = d(ﬁ—f;’y), @) becomes

@t (to, zo) = —‘1)6(‘1)3)/( to

So we need only to check that

(@9’(“‘%’”) — Ho(wo, Do t0)). (35)

If x = y, (B3 is trivial. In fact, by the assumptions on @, the left-side is 0. Moreover
(adding a suitable quadratic perturbation and a constant) by [B3), it is not difficult
to show that ¢(tg, z) attends a local maximum at g, so that Do(tg, o) = 0. Hence
the left-side of (BH) is 0, too.

If + # y we use the fact that d is a viscosity solution of the associated eikonal
equation (I4).

So fix t = t9 > 0, by [B3) and adding a suitable constant to the test-function, we
have that for any x € B,.(z¢)

®; (d(‘f(’)y)) — %Sﬁ(to,x) > @} (d(xt(;’ y>> - %w(to,l‘o) =0 (36)

By the assumptions on ®, in particular we have that ®;s is strictly convex and
lim; o+ ®5(¢t) = 0, then it is not difficult to check that ®3 is strictly increasing.
Then ®; is invertible in [0, +00) and moreover its inverse function is non decreasing.

Therefore by (B8) we get (®%) " (<I>§ (d(f—oy))) > (9%)7! (%ﬂ’)’m)), or, equivalently,

d(z,y) — to(®3) " (M) >0, (37)

0
where we have put <I>gl equal to zero for any negative numbers.
If we set k(z) := d(z,y) — to (@})_1 (%‘:w)), @D) implies that & has a local mini-
#(to,x)

mum at zo. Now we use ¢(z) 1= to (@g)fl (T) as test-function for the eikonal

viscosity solution d in the point zo (in fact ¢ € C1). So
Ho(,fo,D’lﬁ(,To)) =1. (38)
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Since zg # y then ¢(tg, z) > 0 near xo, so that (®})~! is strictly positive and

ool (#6422 vt
(39)

T=IQ

Put @) in BX) we get
Hy <x0, [(@;)’(Cz(%’y))]_lpw(m,xo)> =1.

Since Hy(x,p) is positively homogeneous with respect to p, we get [B3). So we can
conclude that v{ is a lower semicontinuous viscosity solution of (B2).

Remark that v¥ is lower semicontinuous and pointwise-limit of lower semicontinuous
viscosity solutions of [B2), in fact v{(t,z) — vY(t,x), as 6 — 07, for any (¢,z) €
(0,4+00) x R™. Set Hs = ®50 Hy, it is immediate that Hs — H, as § — 0T,
Therefore v¥ is a lower semicontinuous viscosity solution of 29).

Recall that the metric Hopf-Lax function (H) is lower semicontinuous (see Lemma )
and moreover it is the infimum of lower semicontinuous viscosity solutions of Ed).
Since the lower semicontinuous viscosity solutions are stable with respect to the
infimum operation, then the Hopf-Lax function is a lower semicontinuous viscosity
solution of the Hamilton-Jacobi equation (Z9). O

Example 2. Some positive-convex functions satisfying our assumptions are ®(t) =
Lt with o > 1 and ®(t) = e’ —t—1. While the functions ®(t) =t and ®(t) = e’ —
don’t satisfy all them, since lim;_,o+ ®'(¢) = 1 in both these cases.

Using in Theorem B the eikonal solution built in Sec.3, Theorem B, we conclude
with the following existence result.

Theorem 4. Let H(x,p) = ®(|o(x)p|) with @ satisfying assumptions (H2) and
o(x) m x n Hérmander-matriz with C* coefficients. If g € LSC(R™) satisfies @),
then the Carnot-Carathéodory Hopf-Lax function

u(z, t) == lian [g(y) + tP* (M)] (40)

is a lower semicontinuous viscosity solution of the Hamilton-Jacobi- Cauchy problem
@2 and moreover estimate @) holds.

About the uniqueness for the v. solutions of Cauchy problems (1), let us mention
that H] contains a uniqueness result which covers our model case é|o(m)Du|°‘ with
a =1 and ¢ bounded.

For the model case with @ > 1, comparison and uniqueness results for continuous
solutions (i.e. starting from continuous initial data) have been proved recently in
[raj.

5. Examples and applications.

5.1. Various remarks. We show that if the initial data g is continuous then the
metric Hopf-Lax function is so.

Proposition 4. If g € C(R™) then the Hopf-Lax function ), is continuous in
[0, 4+00) x R™.
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Proof. By Lemma (Bl we know that the Hopf funtion u is lower semicontinuous in
[0,4+00) X R™. So we only need to show that u is also upper semicontinuous, i.e. we
want to prove that its upperlevel sets are closed.

Fixed v € R, and let (¢;,zx) be a sequence in the vy-upperlevel. We must check
that, if (¢, zx) — (¢, ), as k — 400, then u(t,z) > .

As in proof of Lemma B we can assume ¢ > 0. From definition () it follows that

ultn,on) < o)+ o (222, (41)

for every y € R™. The right-hand side of (I is continuous, so if we pass to the
upper limit we obtain

lim sup u(ty, zx) < g(y) + t®* (M) (42)
k—+o00

Taking the infimum in @Z) for y € R, we conclude that
v < limsup u(te, 2x) < u(t, ).
k— 400
O

Since H is convex in p, when the initial data ¢ is continuous, the metric Hopf-Lax
function is also a viscosity solution, following the usual definition of Crandall and
Lions (see [4] and note that a such proof holds also in our case).

In the case when the Hamiltonian depends only on the gradient-variable, we find
the well-known Hopf-Lax formula for the solution of the Cauchy problem, that is

u(z,y) = inf {g(y) +H" <u>]

yeR™ t

where H* is the Legendre-Fenchel transform of H (see [I} [2 [T3]).

In fact, if we consider the Hamilton-Jacobi equation u;+H (| Du|) = 0, the associated
eikonal equation is |Du| = 1 whose viscosity solution is the euclidean distance
d(z,y) = |z — yl, see for example [2]. Therefore in this case we can remark that
formula ([H) reduces obviously to the classical one.

5.2. The Carnot-Carathéodory case. Now we want look at the sub-Riemannian
model H(z,p) = X|o(z)p|*, with a > 1.

Whenever g is bounded and lower semicontinuous, by Propositions [l and Bl we can
deduce that u; and Xu = o(x)Du exist for almost every ¢ > 0 and z € R". In
fact, the time derivative exists almost everywhere thanks to the classic Rademacher
Theorem, while the almost everywhere existence of the horizontal gradient Xwu is
insured by the sub-Riemannian generalization of the Rademacher Theorem (see
7, [1R, 19, 22] for more details about this point). Therefore from the locally Lip-
schitz properties proved in Sec. 2, we conclude that the Hopf-Lax formula ()
satisfies the equation almost everywhere, exactly as in the eikonal case.

Finally, we look at the model problem [R8) with o > 1, in a particular sub-
Riemannian case, the 1-dimensional Heisenberg group, and show that the Hopf-
Lax function () coincides with the formula proved by Manfredi and Stroffolini
in [16]. Set p = (z,y,2) and ¢ = (2/,9',2'), we recall that the 1-dimensional

Heisenberg group H! is the sub-Riemannian geometry generated by the vector fields

Xi(p) = & — 242 and Xo(p) = 6% +22.
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Then X3(p) = 2 = [X1(p), Xa(p)] and o(z,y)Du = (ug — Lu., uy + Zu,,u.) is
the horizontal gradient of H'. So in this case the explicit expression of the Cauchy
problem 1) is

2
u=g, inR"x{0}

Uy + é ((Uz - QUZ)z + (uy - guz)2> 2 =0, inR" x (0, +00)

We recall also that the group operation in H!' = (R3,-) is given by p-q = (z +
2, y+vy,z+ 2 + 3(zy — 2'y)) and the intrinsic dilatation &, defined inside H' is
Sa(m,y,2) = (A\x, Ay, \2z) for A > 0 (see [14]). Therefore

e () = d (5,000, 0) = ( (5. 2.5) (52 5)). @

where by dy is the Carnot-Carathéodory distance in H! defined by ().
We define the Heisenberg gauge as |p|lg = d(0, p) so, since dy is by definition a left

invariant distance, then dHl( ,q) = |p~! - q|g:, where the inverse element is given

by p~! = (—z,—y, —z). Hence, @) gives

1 -z oy —y 2 —z+ i@y —ay)
~d = 2 )
n Hl(p;q) < n ) t ) 2 -

Using formula ([l) we can write the metric Hopf-Lax function in the Heisenberg

group as
B
)

t) = inf —
u(g,t) = inf, [g(p)+ﬁ A 2

which is the same formula found in [T6] .

t(‘(x’—x y —y z’—z—i—%(:v’y—:vy’))
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